RESPONSE 69



Temple Recycling and Disposal Facility
Permit Amendment Application TCEQ Permit MSW-692B
Part Iii, Attachment 5, Appendix Ill-58

WMTX shall submit an annual detection monitoring report within 90 days after the facility's
last groundwater monitoring event in a calendar year. The annual report will include the
results of all analytical data in hard-copy format on form TCEQ-0312, Groundwater Sampling
Report, and in any other format requested by the TCEQ, for example, electronic format. The
LCN is described in detail in Section 3.2.

The annual report will include the following information determined since the previously

submitted annual report:

(1) a statement regarding whether a SSI has occurred over background values in any
well during the previous calendar year period and the status of any SS| events;

(2) the results of all groundwater monitoring, testing, and analytical work obtained or
prepared under the requirements of this permit, including a summary of background
groundwater quality values, groundwater monitoring analyses, statistical calculations,

graphs, and drawings;

(3) the groundwater flow rate and direction in the uppermost aquifer. The groundwater
flow rate and direction of groundwater flow shall be established using the data collected
during the preceding calendar year's sampling events from the monitoring wells of the
detection monitoring program. WMTX shall also include in the report all documentation
used to determine the groundwater flow rate and direction of groundwater flow;

(4) a contour map of piezometric water levels in the uppermost aquifer based at a
minimum upon concurrent measurement in all monitoring wells. All data or
documentation used to establish the contour map should be included in the report;

(5) recommendation for any changes; and

(6) any other items requested by the TCEQ.

5.4 Statistical Analysis - §330.405(e) and (f)

The statistical method used to evaluate the groundwater data was prepared in accordance
with the facility’s statistical plan in this section, the EPA statistical guidance document
“Statistical Analysis of Groundwater Monitoring Data at RCRA__Facilities, Unified

Guidance’{:Statistical—Analysis—of—Ground-Water—Monitoring—Pata—at—RCRA acilities

Addendum-to-tnterim-Final-Guidanee”, July-1982March 2009) (Unified Guidance), and ASTM
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standard D6312-98 (“Standard Guide for Developing Appropriate Statistical Approaches for
Ground-Water Detection Monitoring Programs”).

Attachment 1, Statistical Methodologies, provides the initial statistical design of the Detection
Monitoring program, prior to routine implementation. Updates to this program have been and
will be provided to TCEQ in routine submittals such as Background Evaluation Reports (or
BERs). The Detection Monitoring program complies with the program elements presented in
Chapter 6 of the March 2009 EPA Unified Guidance document. The site-specific Detection
Monitoring_program_has been approved by TCEQ via multiple regulatory rule revisions
including a November 23, 2010 approval of Chapter 330, Subchapter J revisions confirming

regulatory approval that the routine process of detection monitoring meets the obiective of

the requlations: using statistical testing to accurately evaluate whether or not there is a
release to groundwater at one or more compliance wells. Any changes to current conditions
will be outlined in the submittals to TCEQ.

The inorganic parameters listed in Table 5-1 will be compared to historical background data
using intraweil statistics. Intrawell statistics compare new measurements to the historical
data at each groundwater monitoring well independently. The statistical analysis used for
this facility will be in accordance with §330.405(e) and §330.405(f)(1-6), as appropriate, and
will include control charts, prediction limits, confidence limit, or other methods approved for

use in Detection or Assessment Monitoring.

eutlined-in-the-submilials—to-the-TCEQ-——For Detection Monitoring, the methodology will

employ the use of combined Shewhart-CUSUM control chart method in accordance with
§330.405(e)(4) or prediction limit (normal, log-normal, or non-parametric) in accordance with
§330.405(e)(3) depending on the detection frequency and distribution of the data set.
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Combined Shewhart-CUSUM control charts will detect releases both in terms of the
constituent concentration and cumulative increases. These methods are to be utilized on
Table 5-1 metals only since many of these constituents may be found naturally in soils and

groundwater samples.

The statistical method for evaluating VOCs is a nonparametric_prediction limit, in which the
statistical limit_corresponds to the guantitation limit, or detection limit,_ if a guantitation limit

exceeds a GWPS, for each compound. Table 5-1 organic constituents will be evaluated
based upon a verified detection of a concentration greater than their respective PQLs since
many, if not all, of these constituents are not expected to be found naturally in groundwater.
Details on verification procedures are provided in Section 5.4.1.

To remove the possibility of historical outliers and trends creating false statistical limits, the
data for each well and each constituent will be tested for the existence of outliers. The
DUMPStat® program uses the method described by W. J. Dixon (*Processing Data for
Outliers™ Biometrics, 1953, 9, 74-89) to define outliers in the background data set. If a
sample collected during background is found to be above the critical value for the sample of
size (n-1), then the value is not used in the establishment of the statistical limit from the
background data set. Outliers may be removed from consideration during the establishment
of all statistical limits. The statistical outlier and trend detection procedure will be performed
for those wells that have had at least 5 measurements for a given constituent. Once the
background database is established, the outlier procedure described above may be applied
and appropriate statistical limits set.

5.4.1 Detection Verification Procedure - §330.407(b)(2)

Once groundwater analysis results have been collected, checked for QA/QC consistency and
determined to be above the appropriate statistical level, the results must be verified before
the next groundwater monitoring event in accordance with the objectives of 40 CFR Part
258.53. Verification re-sampling is an integral part of the statistical methodology described
by EPA’s July—1882March 2009 Addendum—to—interim—FinalUnified Guidance Document.
Without verification re-sampling, much larger statistical limits would be required to achieve
site-wide false positive rates of 5% or less. Furthermore, the resulting false negative rate

would be greatly increased. The following procedure will be performed for each compound
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determined to be initially above its statistical limit. Only compounds that initially exceed their
statistical limit will be sampled for verification purposes. The use of a “pass 1 of 2"
verification option will be implemented based on an evaluation by Dr. Robert Gibbons to
manage the site wide false positive and false negative rates in the accordance with the July
4982March 2009 EPA statistical guidance document. In a “pass 1 of 2” re-sampling scheme,
the second resample does not need to be collected if the first re-sample passes (that is, if the
first sample is below the statistical limit). The re-samples should not be taken at the same
time, but rather spread out over a period between the initial SSI that triggered the re-
sampling, and the time by which re-sampling results must be submitted (that is, within 60
days of the initial SSI determination). Regardiess of the re-sampling scheme, all re-samples
must be obtained within the period between the initial SSI that triggered the re-sampling and
the time by which the results must be submitted.

5.4.1.1 Volatile Organic Compounds

If one or more VOCs are detected above their statistical limit (i.e., PQL), up to two verification
resample’s will be scheduled. A SSi will be recorded if any single VOC is verified in any of
the scheduled resampling events if a concentration is greater than the statistical limit.

5.4.1.2 Inorganic Constituents

If one or more of the inorganic parameters are detected above their statistical limit, up to two
verification re-samples will be collected with the re-sampling event. A SSI will be recorded if
verification of one elevated parameter is confirmed in a concentration greater than the
control/prediction limit for each of the discrete verification re-samples. If the re-sampling
program confirms that the initial sample represented a laboratory or sampling-induced outlier,
the verification sample will replace the original reported value to eliminate bias from the
statistical calculation which considers all data points collected at the site.
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Executive Summary

This report has two specific aims. First to describe a general statistical
strategy for ground-water detection monitoring that is applicable at the Tem-
ple RDF and second, to apply this methodology to existing data at the facility.
The methodology is first described in considerable detail, appropriately refer-
enced to both the scientific literature and USEPA regulation and guidance and
then applied to existing data at the facility. For completeness we describe ap-
propriate statistical methodologies for both inter-well (i.e., upgradient versus
downgradient) and intra-well comparisons.

The methods described here are based on the new ASTM standard PS
64-96 Developing Appropriate Statistical Approaches for Ground-Water De-
tection Monitoring Programs written by Dr. Robert Gibbons (University of
Ilinois) , Dr. Kirk Cameron (statistical consultant to USEPA) and Jim Brown
(USEPA).

The absence of detected VOCs and any clear increasing trends support
the general use of intra~-well comparisons using combined Shewhart-CUSUM
control charts for routine monitoring at this facility.

Application of this methodology revealed no statistically significant ex-
ceedances of control limits at any downgradient well. Despite the appropri-
ateness of the statistical methodology at the site, the overall site-wide false
positive rate was still high (approximately 20% for intra-well comparisons).
This rate can be reduced to the intended 5% level with the addition of ap-
proximately four more samples in each well. From the available leachate data,
only antimony, arsenic, barium, iron, manganese, nitrogen ammonia, TKN,
and potassium provide a clear contrast with upgradient ground-water quality.

In light of these results we propose to perform intra-well comparisons using
combined Shewhart-CUSUM control charts for routine detection monitoring
at this facility. In addition, we will monitor VOCs and a verified quantification
of a VOC will be used as a trigger level. For the next four monitoring events
we will continue to update background in an effort to reduce the site-wide
false positive rate to 5%. At that time, background will be fixed for a period
of two years and reupdated at that time for all wells that have not exhibited
a verified exceedance. This process will continue for the life of the facility.
Statistical analysis will be restricted to the 8 leachate indicator constituents
and Appendix I VOCs.
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Overview

In the context of ground-water monitoring at waste disposal facilities, leg-
islation has required statistical methods as the basis for investigating potential
environmental impact due to waste disposal facility operation. Owner/Operators
must perform a statistical analysis on a quarterly or semi-annual basis. A sta-
tistical test is performed on each of many constituents (i.e., 10 to 50) for each
of many wells (5 to 100 or more). The result is potentially hundreds, and
in some cases, a thousand or more statistical comparisons performed on each
monitoring event. Even if the false positive rate for a single test is small (e.g.,
1%), the possibility of failing at least one test on any monitoring event is vir-
tually guaranteed. This assumes you have done the correct statistic in the first
place.

In the following sections, a statistical plan is developed that includes: an
effective verification resampling plan, and selection of appropriate statisti-
cal methods (e.g., parametric and nonparametric prediction limits or control
charts for intra-well comparison) that detect contamination when it is present
and do not falsely conclude that the site is contaminated. Statistical sig-
nificance of contamination detection cannot be properly determined without
verification resampling. It is noted from the information presented herein that
the final statistical detection monitoring plan cannot be fully specified until
background samples for the required list of indicator constituents are avail-
able. In general, it is unwise to perform statistical computations on any less
than eight background samples. This may be four quarterly samples in each
of two upgradient wells, or eight samples taken in each well where intra-well
comparisons are to be performed. To take any fewer samples will lead to high
false negative rates due to the large size of the prediction limit (4.e., with four
samples and three degrees of freedom, the uncertainty in the true mean and
standard deviation (u and o) given the sample based estimates (Z and s) is
enormous, resulting in extremely high prediction limits). Conversely, with only
a few background measurements, our knowledge of the true sampling variabil-
ity, distributional form and detection frequency may be completely inaccurate
leading to a high false positive rate.

Yet another major concern is whether the upgradient wells accurately char-
acterize the natural spatial variability that is observed in the downgradient
wells. The alternative is to perform intra-well comparisons which are gen-



erally preferable, however, we must first demonstrate that the well has not
been impacted by the site. To this end, we will first test the appropriateness
of upgradient versus downgradient comparisons for each well and constituent,
and in those cases where intra-well comparisons are applicable, demonstrate
(1) the absence of any significant trend in that well and constituent and (2)
demonstrate the absence of any constituents of concern (e.g., volatile organic
priority pollutant list compounds or other constituents that characterize the
leachate from the facility and would not be expected in the natural ground
water).

It is noted that when justified, intra-well comparisons are always more pow-
erful than their inter-well counterparts because they completely eliminate the
spatial component of variability. Due to the absence of spatial variability, the
uncertainty in measured concentrations is decreased making intra-well com-
parisons more sensitive to real releases (i.e., false negatives) and false positive
results due to spatial variability are completely eliminated.

The following provides an outline of the general statistical procedure for
ground-water monitoring under the Subtitle D regulation, which is also de-
scribed in the flowchart at the end of this report.

A. Detection Monitoring

1. Upgradient Versus Downgradient Comparisons

(a) Detection frequency > 50%

i. If normal, compute normal prediction limit (40CFR 258.53(h)(4)),
selecting false positive rate based on number of wells, con-
stituents and verification resamples (40CFR 258.53(h)(2)), ad-
justing estimates of sample mean and variance for nondetects.

ii. If lognormal, compute a lognormal prediction limit (40CFR
258.53(h)(1)).

iii. If neither normal nor lognormal, compute nonparametric pre-
diction limit (40CFR 258.53(h)(1)) unless background is insuf-
ficient to achieve a 5% site-wide false positive rate. In this case,
use a normal distribution (40CFR, 258.53(h)(1)).



(b) If the background detection frequency is greater than zero but less
than 50%, compute a nonparametric prediction limit and deter-
mine if the background sample size will provide adequate protection
from false positives. If insufficient data exist to provide a site-wide
false positive rate of 5%, more background data must be collected
(40CFR 258.53(h)(1)).

(c) If the background detection frequency equals zero, use the labo-
ratory specific PQL (recommended) or limits required by applica-
ble regulatory agency (40CFR 258.53(h)(5)). This only applies for
those wells and constituents that have at least 13 background sam-
ples. Thirteen samples provides a 99% confidence nonparametric
prediction limit with one resample (see Table 1). If less than 13
samples are available more background data must be collected.

(d) As an alternative to (c), use a Poisson prediction limit which can
be computed from only 4 background measurements regardless of
the detection frequency (USEPA, 1992 section 2.2.4).

(e) If downgradient wells fail, determine cause.

i. If the downgradient wells fail because of natural or off-site
causes, select constituents for intra-well comparisons (40CFR
258.53(h)(3)).

ii. If site impacts are found, a site plan for assessment monitoring

and detection monitoring (at unaffected wells) may be neces-
sary (40CFR 258.55).

2. Intra-well Comparisons

(a) For those facilities that either

i. Have no definable gradient,

ii. Have no existing contamination from an on-site-off-site landfill
or other source,

iii. Have too few upgradient wells to meaningfully characterize spa-
tial variability (e.g., a site with one upgradient well or a facil-
ity in which upgradient water quality is not representative of
downgradient water quality),



iv. Satisfy specific hydrogeological criteria (e.g., slow moving ground-
water zones, no access to upgradient ground water, inappropri-
ate ground-water migration pathways) as defined by a ground-
water professional,

compute intra-well comparisons using combined Shewhart-CUSUM
control charts (40CFR 258.53(h)(3)).

(b) For those wells and constituents that fail upgradient versus down-
gradient comparisons, compute combined Shewhart-CUSUM con-
trol charts. If no VOCs or hazardous metals are detected and no
trend is detected in other indicator constituents, use intra-well com-
parisons for detection monitoring of those wells and constituents.

(c) If data are all non-detects after 13 quarterly sampling events, use
PQL as statistical decision limit (40CFR 258.53(h)(5)). Thirteen
samples provides a 99% confidence nonparametric prediction limit
with one resample (40CFR 258.53(h)(1) and USEPA 1992 section
5.2.3). Note that 99% confidence is equivalent to a 1% false positive
rate, and pertains to a single comparison (z.e., well and constituent)
and not the site-wide error rate (i.e., all wells and constituents) that
is set to 5%.

(d) If detection frequency is greater than zero (i.e., the constituent is
detected in at least one background sample) but less than 25% set
control limit to the largest of at least 13 background samples.

(e) As an alternative to (c) and (d) compute a Poisson prediction limit
following collection of at least 4 background samples (USEPA 1992
section 2.2.4). Since the mean and variance of the Poisson distri-
bution are the same, the Poisson prediction limit is defined even
there is no variability (e.g., even if then constituent is never de-
tected in background). In this case, the reporting limits are used
in place of the measurements and the Poisson prediction limit can
be computed directly.

3. Verification Resampling

(a) Verification resampling is an integral part of the statistical method-
ology (USEPA 1992 section 5).



(b) Without verification resampling much larger prediction limits would
be required to obtain a site-wide false positive rate of 5%. The
resulting false negative rate would be dramatically increased.

(c) Verification resampling allows sequential application of a much smaller
prediction limit, therefore minimizing both false positive and false
negative rates.

(d) A statistically significant exceedance is not declared and should not
be reported until the results of the verification resample are known.
The probability of an initial exceedance is much higher than 5% for
the site as a whole.

(e) Note that requiring passage of two verification resamples (e.g., in
the state of California regulation) will lead to higher false negative
rates because larger prediction limits are required to achieve a site-
wide false positive rate of 5% than for a single verification resample;
hence, the preferred method is one verification resample. Also note
that for nonparametric limits, requiring passage of two verification
resamples may result in need for a larger number of background
samples than are typically available (see Gibbons, 1994).

4. False Positives and False Negative Rates

(a) Conduct simulation study based on current monitoring network,
constituents, detection frequencies, and distributional form of each
monitoring constituent (USEPA 1992 Appendix B).

(b) Project frequency of verification resamples and false assessments
for site as a whole for each monitoring event based on the results
of the simulation study.

(c) As a general guideline, we require a site-wide false positive rate of
5% and a false negative rate of approximately 5% for differences
on the order of 3 to 4 standard deviation units (see USEPA 1992
Appendix B). Note that following USEPA we simulate the most
conservative case of a release that effects a single constituent in
a single downgradient well. In practice, multiple constituents in
multiple wells will be impacted, therefore, the actual false nega-
tive rates will be considerably smaller than estimates obtained via
simulation.



5. Use of MDLs and PQLs in Ground-Water Monitoring

(a)
(b)
(c)

(d)

(e)

(f)

MDLs indicate that the analyte is present in the sample with con-
fidence.

PQLs indicate that the true quantitative value of the analyte is
close to the measured value.

For analytes with estimated concentration exceeding the MDL but
not the PQL, it can only be concluded that the true concentra-
tion is greater than zero - there is no way of knowing the actual
concentration.

If the laboratory-specific MDL for a given compound is 3 pg/l, and
the PQL for the same compound is 6 pg/l, then a detection of that
compound at 4 pg/l could actually represent a true concentration
of anywhere between 0 and 6 ug/l. The true concentration may
well be less than the MDL (see Currie 1968, Hubaux and Vos, 1970
and Gibbons 1994).

Comparison of such a value to a maximum contaminant level (MCL),
or any other concentration limit, is not meaningful unless the con-
centration is larger than the PQL.

Verification resampling applies to this case as well.

B. Assessment or Corrective Action Monitoring

1. Comparison to Background

(a)
(b)

()

Define background for any Appendix II compounds detected (i.e.,
a minimum of four background samples 40CFR, 258.55(b)).

Compute appropriate prediction limit based on distributional tests
and detection frequency as previously described, based on upgradi-
ent data or historical data from each well (40CFR 258.55(¢)).

Compare any Appendix 11 constituent concentrations found to the
background prediction limit. If all values are below the prediction
limit for two consecutive sampling events return to detection mon-
itoring (40CFR. 258.55(e)).
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(d) In Corrective Action (required if background is exceeded) use same
statistic until background is achieved for three years. (40CFR
258.58(e)(2)). Use Sen’s test to evaluate trends (declining) to demon-
strate effectiveness of corrective action.

2. Comparison to a Standard

(a) If a maximum contaminant level (MCL) or alternate concentration
limit (ACL) is used, and the ACL or MCL is greater than the back-
ground prediction limit, then new concentrations in the assessment
or corrective action wells should be compared to the standard (i.e.,
ACL or MCL) using the upper 95% normal confidence limit com-
puted from the last four independent samples (USEPA 1992).

(b) In the case of anthropogenic compounds such as VOCs, if the stan-
dard is less than the PQL, then the standard becomes the PQL,
since no smaller value can be quantified.

(c) Use Sen’s test to evaluate trends (both increasing and decreasing)
to demonstrate the effectiveness of corrective action.

C. Implementation

1. The computer program used to implement the detection monitoring plan
will encompass all agpects of the previously presented statistical decision
tree.

2. The program will be automatic with respect to selection of statistical
methods based on the decision tree and all wells and analytes will be
input as a complete file and analyzed on the basis of a single instruction.
Cumbersome programs such as GRITS/STAT which require extensive
user input for analysis of each well and constituent individually will be
avoided.

3. Once the program is configured no further statistical decisions, choices
or selections will be made so that it can be run by someone with or
without adequate statistical background to make these decisions.



11

4. The program will have a graphical user interface that allows the user
to communicate the data format and to add new data to an existing
database rather than requiring a complete new database each quarter.

5. The computer program DUMPStat (Downgradient Upgradient Monitor-
ing Program Statistics) distributed by Discerning Systems, Vancouver
CA is the only existing program that provides these features.

D. Technical Details

The purpose of this section is to provide a description of the specific sta-
tistical methods used in DUMPStat, which is the computer program that will
be used in performing the routine statistical analysis of detection monitoring
data at the facility. Please note, however, that specific recommendations for
any given facility require an interdisciplinary site-specific study that encom-
passes knowledge of the facility, it’s hydrogeology, geochemistry, and study of
the false positive and false negative error rates that will result. In general,
the appropriate statistical methods are available in DUMPStat, however the
program must be properly configured for each site to insure that the methods
are properly implemented. Performing a correct statistical analysis, such as
nonparametric prediction limits, in the wrong situation (e.g., when there are
too few background measurements) can lead to disaster. It is for this reason
that DUMPStat’s simulation capabilities are so important. In the following,
the general DUMPStat algorithm is described.

1. Upgradient Versus Downgradient Comparisons

For those wells and constituents that show similar variability in upgra-
dient and downgradient monitoring zones inter-well comparisons can be
performed by computing limits based on historical upgradient data to
which individual new downgradient monitoring measurements can be
compared. In the following, the decision rules by which various predic-
tion limits can be computed is outlined. The decision points are based
on detection frequency and distributional form of the upgradient data.
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(a) Case 1: Compounds Quantified in All Background Samples

i. Test normality of distribution using the multiple group version
of the Shapiro-Wilk test (Wilk and Shapiro, 1968) applied to
n background measurements. The multiple group version of
the original Shapiro-Wilk test (Shapiro and Wilk, 1965) takes
into consideration that upgradient measurements are nested
within different upgradient monitoring wells, hence the original
Shapiro-Wilk test does not apply (USEPA, 1992 section 1.1.4).

ii. If normality is not rejected, compute the 95% prediction limit

as:
_ / 1
T+ tp1,gsy/l+—
n
where
T =
s ==

a is the false positive rate for each individual test,

t[n—1,q] is the one-sided (1 — a)100% point of Student’s ¢ distri-
bution on n — 1 degrees of freedom,

and n is the number of background measurements.

iii. Select & as the minimum of .01 or one of the following:
A. Pass the first or one of one verification resample
1/2
o= (1 — .951/k) /
B. Pass the first or one of two verification resamples
1/3
a=(1-.05)"
C. Pass the first or two of two verification resamples

a=1/1— .951/k/1/2

where k is the number of comparisons (i.e., monitoring wells
times constituents - see USEPA 1992 section 5.2.2).
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iv. If normality is rejected, take natural logarithms of the n back-

ground measurements and recompute the multiple group Shapiro-
Wilk test.

If the transformation results in a nonsignificant G statistic (i.e.,
the values log.(z) are normally distributed - see USEPA 1992
section 1.1), compute the lognormal prediction limit as:

/ 1
exrp (g + t[n—l,a]sy 1+ 5)

where
&K loge(z)
j= ; "
and
_ - (lOge(:L'¢> — y)z
%y = \]; n—1

i. If log transformation does not bring about normality (i.e., the

probability of G is less than 0.01), compute nonparametric pre-
diction limits as in section 3 (USEPA 1992 section 5.2.3). (Op-
tion - compute Poisson prediction limits as in section 3.4 - see
USEPA 1992 section 2.2.4).

(b) Case 2: Compounds Quantified in at Least 50% of All Background
Samples

1.

il.

Apply the multiple group Shapiro-Wilk test to the n; quantified
measurements only.

If the data are normally distributed compute the mean of the
n background samples as:

5:(1—@)5;’
n

where Z’ is the average of the n; detected values, and ng is the
number of samples in which the compound is not detected or is
below the method detection limit. The standard deviation is:

-1
s=\/<1—@>s2’+@<l—n° ):52’
n n n—1
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where s’ is the standard deviation of the n; detected measure-
ments. The normal prediction limit can then be computed as
previously described. This method is due to Aitchison (1955)
- (see USEPA 1992 section 2.2.2).

iii. If the multiple group Shapiro-Wilk test reveals that the data
are lognormally distributed, replace Z’ with §' and s’ with s
in the equations for z and s.

iv. The lognormal prediction limit may then be computed as pre-
viously described.

v. Note that this adjustment only applies to positive random vari-
ables. The natural logarithm of concentrations less than 1 are
negative and therefore the adjustment does not apply. For this
reason we add 1 to each value (i.e., loge(z; + 1) > 0), compute
the prediction limit on a log scale and then subtract one from
the antilog of the prediction limit.

s vi. If the data are neither normally or lognormally distributed,
( / compute a nonparametric prediction limit. (Option - compute
normal prediction limit).

(c) Case 3: Compounds Quantified in less than 50% of All Background
Samples

i. In this application, the nonparametric prediction limit is the
largest concentration found in n upgradient measurements (USEPA
1992 section 4.2.1).

ii. Gibbons (1990, 1991) has shown that the confidence associ-
ated with this decision rule, following one or more verification
resamples, is a function of the multivariate extension of the
hypergeometric distribution (USEPA 1992 section 5.2.3).
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1v.
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Complete tabulations of confidence levels for n = 4,...,100,
k= 1,...,100 future comparisons (e.g., monitoring wells),
and a variety of verification resampling plans are presented in
Gibbons (1994). For example with 5 monitoring wells and 10
constituents (4.e., 50 comparisons), we would require 40 back-
ground measurements to provide 95% confidence (USEPA 1992
section 5.2.3). Table 1 displays confidence levels for a single
verification resample.

Note that from time to time samples may need to be diluted and
the resulting reporting limit may be increased by an order of
magnitude or more. In these cases, DUMPStat substitutes the
median reporting limit for all nondetects so that the nonpara-
metric prediction limit will not be artificially set to an elevated
reporting limit.

As an option to the nonparametric prediction limits, DUMP-
Stat can compute Poisson prediction limits. Poisson predic-
tion limits are useful for those cases in which there are too
few background measurements to achieve an adequate site-wide
false positive rate using the nonparametric approach. Gibbons
(1987) derived the Poisson prediction limit as

t2
Poisson PL = y/n + 5t t/n\/y(l +n)+t2/4.

where y is the sum of the detected measurements or report-
ing limit for those samples in which the constituent was not
detected and ¢ is the (1 — a)100 upper percentage point of Stu-
dent’s t-distribution (USEPA 1992 section 2.2.4). More recent
work in this area suggests that a more conservative approach
is to substitute the normal multiplier z for ¢ using a value of «
as previously described. The normal multiplier is now used in
DUMPStat.
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TABLE 1
PROBABILITY THAT THE FIRST SAMPLE OR THE VERIFICATION RESAMPLE
WILL BE BELOW THE MAXIMUM OF n BACKGROUND MEASUREMENTS
AT EACH OF k MONITORING WELLS FOR A SINGLE CONSTITUENT
Previous Number of Monitoring Wells (k)

n 1 2 3 4 5 6 8 9 10 11 12 13 14 15
.933 .881 .838 .802 771 744 .720 .698 .679 .661 .645 .630 617 .604 .592

5 .952 913 .879 .849 .823 .800 779 .760 742 .726 711 .697 .684 672 661
6 964  .933 .906 .882  .860 .840  .822  .805  .789 774 761 .748 736 .725 714
7 972 .947 .925 .905 .886 .869 .853 .838 .825 .812 799 .788 1T .766 757
8 978 .958 .939 .922 .906 .891 .878 .864 .852 .841 .830 .819 .809 .800 791
9 .982 .965 .949 .935 .921 .908 .896 .885 .874 .864 .854 .844 .835 .827 .818
10 .985 971 .957 .945 .933 .922 911 .901 .891 .882 .873 .865 .857 .849 .841
11 .987 975 .964 .953 .942 .933 .923 914 .906 .897 .889 .882 874 .867 .860
12 .989 .979 .969 .959 .950 1941 .933 1925 917 .910 .902 .896 .889 .882 .876
13 1990 .981 .973 .964 .956 .948 .941 .934 .927 .920 914 .907 .901 .895 .889
i4 .992 .984 976 .969 .961 .954 .948 941 .935 .929 .923 917 .912 .906 .901
15 .993 .986 .979 972 .966 .959 .953 947 .942 .936 .931 .926 .920 915 .910
16 .993 .987  .981 975 .969 964  .958 953 .948 .943 .938 933  .928  .923 .919
17 1994 .988 .983 .978 972 967 .962 957 .953 .948 .943 .939 .935 .930 1926
18 .995 .990 .985 .980 .975 .970 .966 .961 .957 .953 .949 .944 .940 .937 .933
19 .995 .991 .986 .982 977 973 .969 .965 .961 .957 .953 1949 .946 .942 .938
20 .996 1991 .987 .983 979 975 972 .968 .964 .960 957 .953 .950 .947 .943
25 997 .994 .992 .989 .986 .984 .981 .978 .976 973 971 .968 .966 .964 .961
30 .998 .996 .994 .992 .990 .988 .986 .984 .983 .981 .979 977 975 974 972
35 .998 .997 .996 .994 .993 .991 .990 .988 .987 .986 984 .983 981 .980 979
40 999 .998 .997 .995 .994 .993 .992 .991 .990 .989 .988 987 .985 .984 .983
45 .999 .998 .997 .996 .995 .995 .994 .993 .992 .991 .990 .989 .988 .987 .987
50 .999 .998 .998 .997 .996 .996 .995 .994 .993 .993 .992 .991 .990 .990 .989
60 .999 .999 .998 .998 997 997 996  .996 .995 .995 .994 994 993 .993 .992
70 1.00 .999 .999 .998 .998 .998 .997 .997 .997 .996 .996 .995 .995 .995 .994
80 1.00 .999 .999 .999 .998 .998 .998 .998 .997 .997 .997 .996 .996 .996 .996
920 1.00 1.00 .999 .999 .999 .999 .998 .998 .998 .998 .997 .997 .997 .997 .996
100 1.00 1.00 .999 .999 .999 .999 .999 .998 .998 .998 .998 .998 .997 .997 .997

Previous Number of Monitoring Wells (k)

n 20 25 30 35 40 45 50 55 60 65 70 75 80 90 100
4 .542 .504 474 .449 428 410 .394 .380 .367 .356 .345 .336 .327 .312 -299
5 .612 574 .543 517 .495 476 459 .443 .430 417 .406 .396 .386 .369 .355
6 .668 .631 .600 .574 .552 .532 .514 .499 484 472 .460 .449 .439 .420 .405
7 .713 .678 .648 .623 .600 .580 .563 547 .532 .519 .507 .496 .485 .466 .450
8 .750 .77 .688 .664 .642 .622 .605 .589 .574 .561 .549 .537 527 .507 .490
9 .781 750 .723 .699 678 .659 642 .626 .612 .598 .586 574 .564 .544 .527
10 .807 Nea 752 729 .709 .691 674 .659 644 .631 .619 .608 .597 .578 .560
11 .828 .801 T77 755 .736 .718 702 .687 674 .661 .649 .638 627 .608 .590
12 .847  .821 .799 778 .760 .743 727 713 700 .687 675 .664  .654  .635 .618
13 .862 .839 817 .798 .781 764 750 .736 .723 .7T11 .699 .689 678 .660 .643
14 876 .854 .834 .816 .799 .784 .769 .756 744 732 721 .710 .701 .682 .666
15 .888 .867 .848 .831 .815 .801 787 774 762 .751 .740 .730 721 .703 .686
16 .898 .879 .861 .845 .830 .816 .803 .791 779 768 .758 .748 .739 722 .706
17 .907 .889 872 .857 .843 .830 817 .806 794 .784 774 .765 756 .739 723
18 914 .898 .882 .B68 .855 .842 .830 .819 .808 798 .789 .780 771 754 .739
19 921 .906 .891 878 .865 .853 .842 .831 .821 .811 .802 .793 .785 769 754
20 .928 .913 .899 .886 .874 .863 .852 .842 .832 .823 .814 .806 .798 782 .768
25 .950 .939 .929 .919 .910 .901 .892 .884 .876 .869 .862 .855 .848 .835 .823
30 .963 .955 .947 .940 .932 .925 .919 912 .906 .900 .894 .888 .882 872 .861
35 972 .966 .959 .954 .948 1942 .937 .931 .926 1921 916 911 907 .898 .889
40 978 973 .968 .963 .958 954  .949 945 1941 .936 .932 928 924  .917 909
45 .982 .978 974 .970 .966 1962 .959 .955 .951 .948 .944 .941 .938 .931 .925
50 .985 .982 979 .975 972 .969 .966 1963 .959 .956 .954 .951 .948 .942 .937
60 .990 .987 .985 .982 .980 .978 975 .973 971 .968 .966 1964 .962 .958 .954
70 .992 .990 .989 .987 .985 .983 .981 .980 .978 .976 974 973 971 .968 .965
80 .994 993 .991 .990  .988 .987  .986 .984  .983 .981 .980 979 977  .975 972
90 .995 .994 .993 1992 .991 .990 .988 .987 .986 .985 .984 .983 .982 .980 .978
100 .996 .995 .994 .993 .992 .991 .991 .990 .989 .988 .987 .986 .985 .983 .982

2. Intra-Well Comparisons

One particularly good method for computing intra-well comparisons is
the combined Shewhart-CUSUM control chart (USEPA 1992 section
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6.1). The method is sensitive to both gradual and rapid releases and
is also useful as a method of detecting “trends” in data. Note that this
method should be used on wells unaffected by the landfill. There are
several approaches to implementing the method and in the following one
useful way is described as well as discussion of some statistical properties.

(a) Assumptions

The combined Shewhart-CUSUM control chart procedure assumes
that the data are independent and normally distributed with a fized
mean g and constant variance o2. The most important assumption
is independence, and as a result wells should be sampled no more
frequently than quarterly. In some cases, where ground-water moves
relatively quickly, it may be possible to accelerate background sam-
pling to eight samples in a single year; however, this should only
be done to establish background and not for routine monitoring.
The assumption of normality is somewhat less of a concern, and if
problematic, natural log or square root transformation of the ob-
served data should be adequate for most practical applications. For
this method, nondetects can be replaced by the method detection
limit without serious consequence. This procedure should only be
applied to those constituents that are detected at least in 25% of
all samples, otherwise, o2 is not adequately defined.

(b) Nondetects

i. For those well and constituent combinations in which the de-
tection frequency is less than 25%, we will provide graphical
display of these data until a sufficient number of measurements
are available to provide 99% confidence (i.e., 1% false positive
rate) for an individual well and constituent using a nonpara-
metric prediction limit, which in this context is the maximum
detected value out of the n historical measurements. As pre-
viously discussed this amounts to 13 background samples for 1
resample, 8 background samples for pass 1 of 2 resamples and
18 background samples for pass 2 of 2 resamples. It should
be obvious that if nonparametric prediction limits are to be
used for intra~-well comparisons of rarely detected constituents,
two verification resamples will often be required and failure will



ii.

1il.

1v.

18

only be indicated if both measurements exceed the limit (i.e.,
the maximum of the first 8 samples).

For those cases in which the detection frequency is greater than
25%, DUMPStat substitutes the median reporting limit for the
nondetects. In this way, changes in reporting limits do not
appear to be significant trends.

If nothing is detected in 8, 13 or 18 independent samples (de-
pending on resampling strategy), DUMPStat uses the reporting
limit as the control limit.

As in the previously described inter-well comparisons, DUMP-
Stat provides optional use of Poisson prediction limits as an al-
ternative to nonparametric prediction limits for rarely detected
constituents (i.e., less than 25% detects). Poisson prediction
limits can be computed after 8 background measurements re-
gardless of detection frequency.

(c) Procedure

i

ii.

iii.

DUMPStat requires that at least 8 historical independent sam-
ples are available to provide reliable estimates of the mean p
and standard deviation o, of the constituent’s concentration in
each well.

DUMPStat selects the three Shewhart-CUSUM parameters h
(the value against which the cumulative sum will be compared),
k (a parameter related to the displacement that should be
quickly detected), and SCL (the upper Shewhart limit which
is the number of standard deviation units for an immediate re-
lease). Lucas (1982) and Starks (1988) suggest that &k = 1, h
= 5, and SCL = 4.5 are most appropriate for ground-water
monitoring applications. This sentiment is echoed by USEPA
in their interim final guidance document Statistical analysis of
ground-water monitoring data at RCRA facilities (April, 1989).
Also see USEPA 1992 section 6.1. For ease of application, how-
ever, we have selected h = SCL = 4.5, which is slightly more
conservative than the value of h = 5 suggested by USEPA.

Denote the new measurement at time-point t; as z;.
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Compute the standardized value z;
T, — T

2y =
S

where Z and s are the mean and standard deviation of the at
least 8 historical measurements for that well and constituent
(collected in a period of no less than one year).
At each time period, t;, compute the cumulative sum S;, as

S; = max |0, (z; — k) + S;_1]
where max[A, B] is the maximum of A and B, starting with
So = 0.
Plot the values of S; (y-axis) versus ¢; (x-axis) on a time chart.
Declare an “out-of-control” situation on sampling period t; if
for the first time, S; > h or z; > SCL. Any such designation,
however, must be verified on the next round of sampling, before
further investigation is indicated.

The reader should note that unlike prediction limits which pro-
vide a fixed confidence level (e.g., 95%) for a given number of
future comparisons, control charts do not provide explicit con-
fidence levels, and do not adjust for the number of future com-
parisons. The selection of h = SC'L = 4.5 and k = 1 is based on
USEPA’s own review of the literature and simulations (see Lu-
cas, 1982; Starks, 1988; and USEPA, 1989). USEPA indicates
that these values “allow a displacement of two standard devi-
ations to be detected quickly.” Since 1.96 standard deviation
units corresponds to 95% confidence on a normal distribution,
we can have approximately 95% confidence for this method as
well.

In terms of plotting the results, it is more intuitive to plot val-
ues in their original metric (e.g., pug/l) rather than in standard
deviation units. In this case h = SCL = Z + 4.5s and the S;
are converted to the concentration metric by the transforma-
tion S; % s + Z, noting that when normalized (i.e., in standard
deviation units) Z = 0 and s = 1 so that h = SCL = 4.5 and
Six14+0=25;.

When n > 12 Starks (1988) and USEPA (1992) suggest that
k= .75, and h = SCL = 4.0 provide more conservative control
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limits and this approach is now used in DUMPStat.

(d) Outliers

i.

ii.

iii.

From time to time, inconsistently large or small values (outliers)
can be observed due to sampling, laboratory, transportation,
transcription errors, or even by chance alone. The verification
resampling procedure that we have proposed will tremendously
reduce the probability of concluding that an impact has oc-
curred if such an anomalous value is obtained for any of these
reasons. However, nothing has eliminated the chance that such
errors might be included in the historical measurements for a
particular well and constituent. If such erroneous values (either
too high or too low) are included in the historical database, the
result would be an artificial increase in the magnitude of the
control limit, and a corresponding increase in the false negative
rate of the statistical test (i.e., conclude that there is no site
impact when in fact there is).

To remove the possibility of this type of error, the historical
data are screened for each well and constituent for the exis-
tence of outliers (USEPA 1992 section 6.2) using the well known
method described by Dixon (Biometrics, 1953, 9, 74-89). These
outlying data points are indicated on the control charts (using
a different symbol), but are excluded from the measurements
that are used to compute the background mean and standard
deviation. In the future, new measurements that turn out to
be outliers, in that they exceed the control limit, will be dealt
with by verification resampling in downgradient wells only.

This same outlier detection algorithm is applied to each up-
gradient well and constituent to screen outliers for inter-well
comparisons as well.

(e) Existing Trends

If contamination is pre-existing, trends will often be observed in
the background database from which the mean and variance are
computed. This will lead to upward biased estimates and grossly
inflated control limits. To remove this possibility, we first screen the
background data for each well and constituent for trend using Sen’s
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(1986) nonparametric estimate of trend. Confidence limits for this
trend estimate are given by Gilbert (1987). A significant trend is
one in which the 99% lower confidence bound is greater than zero.
In this way, even pre-existing trends in the background dataset will
be detected.

(f) A Note on Verification Sampling

i. It should be noted that when a new monitoring value is an
outlier, perhaps due to a transcription error, sampling error, or
analytical error, the Shewhart and CUSUM portions of the con-
trol chart are affected quite differently. The Shewhart portion
of the control chart compares each individual new measurement
to the control limit, therefore, the next monitoring event mea-
surement constitutes an independent verification of the original
result. In contrast, however, the CUSUM procedure incorpo-
rates all historical values in the computation, therefore, the
effect of the outlier will be present for both the initial and ver-
ification sample; hence the statistical test will be invalid.

ii. For example, assume Z = 50, and s = 10. On quarter 1 the
new monitoring value is 50, so z = (50 — 50)/10 = 0 and S; =
max[0, (z — 1) + 0] = 0. On quarter 2, a sampling error occurs
and the reported value is 200, yielding z = (200 — 50)/10 = 15
and S; = max[0, (15— 1)+ 0] = 14, which is considerably larger
than 4.5; hence an initial exceedance is recorded. On the next
round of sampling, the previous result is not confirmed, because
the result is back to 50. Inspection of the CUSUM, however,
yields z = (50 —50)/10 = 0 and S; = max[0, (0— 1)+ 14] = 13,
which would be taken as a confirmation of the exceedance, when
in fact, no such confirmation was observed. For this reason, the
verification must replace the suspected result in order to have
an unbiased confirmation.

(g) Updating the Control Chart

i. As monitoring continues and the process is shown to be in
control, the background mean and variance should be updated
periodically to incorporate these new data. Every year or two,
all new data that are in control should be pooled with the
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initial samples and Z and s recomputed. These new values of
Z and s will then be used in constructing future control charts.
This updating process should continue for the life of the facility
and/or monitoring program (USEPA 1992 section 6.2).

ii. DUMPStat allows the user to update background by changing
the time window menu option. This option sets a window of
time for which background summary statistics are computed.
Changing the maximum date will incorporate new data into
the background limit estimate. Note that this time window
applies to computing background for both inter-well and intra-
well comparisons.

(h) An Alternative Based on Prediction Limits

i. An alternative approach to intra-well comparisons involves com-
putation of well-specific prediction limits. Prediction limits are
somewhat more sensitive to immediate releases but less sensi-
tive to gradual releases than the combined Shewhart-CUSUM
control charts. Prediction limits are also less robust to devia-
tions from distributional assumptions.

ii. As an alternative to combined Shewhart-CUSUM control charts
DUMPStat can compute normal prediction limits as described
in the previous section on inter-well comparisons.

iii. For detection frequencies greater than 25%, nondetects are re-
placed with the median reporting limit. For detection frequen-
cies less than 25%, either nonparametric or Poisson prediction
limits are computed depending on what option the user has
selected (i.e., rare-event statistic window).

3. Comparison to a Standard

(a) For assessment or corrective action, it is often required that samples
from a potentially impacted well be compared to a ground-water
quality protection standard such as an MCL or ACL. DUMPStat’s
assessment monitoring module provides tabular and graphical dis-
play of this comparison based on tests of increasing and decreasing
trend and comparison of the standard to the upper 95% normal
confidence limit applied to the last four independent samples.
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(b) The 95% confidence limit for the mean of the last four measurements

is computed as

_ S
T+ t[3,.05]§ .

(c) Nondetects are replaced by one-half of the reporting limit since with

only four measurements, more sophisticated statistical adjustments
are not appropriate.

E. Some Methods to be Avoided

In the following sections some statistical methods that should be avoided
are described.

1. Analysis of Variance - ANOVA

Application of ANOVA procedures to ground-water detection monitor-
ing programs, both parametric and nonparametric is inadvisable for the
following reasons.

(a)

Univariate ANOVA procedures do not adjust for multiple compar-
isons due to multiple constituents which can be devastating to the
site-wide false positive rate) As such, a site with 10 indicator con-
stituents will have a 40% chance of failing at least one on every
monitoring event (USEPA 1992 section 5.2.1).

ANOVA is more sensitive to spatial variability than contamination.
Spatial variability effects mean concentrations but typically not the
variance, hence small yet consistent differences will achieve statisti-
cal significance. In contrast, contamination effects both variability
and mean concentration, therefore a much larger effect is required
to achieve statistical significance. In fact, application of ANOVA
methods to pre-disposal ground-water monitoring data can result
in statistically significant differences between upgradient and down-
gradient wells, despite the fact that there is no waste in between.
The reasons for this are: (a) The overall F-statistic tests the null
hypothesis of no differences among any of the wells regardless of
gradient (i.e., it will be significant if two downgradient wells are
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different), and (b) The distribution of the mean of 4 measurements
(i.e., four measurements collected from the same well within a six
month period) is normal with mean u and variance 0?/4 whereas
the distribution of each of the individual measurements is normal
with mean p and variance 2. This means that the standard devi-
ation of the mean of four measurements is one-half the size of the
standard deviation of the individual measurements themselves. As
a result, small but consistent geochemical differences that are in-
variably observed naturally across a waste disposal facility will be
attributed to contamination. To make matters worse, since there
are far more downgradient than upgradient wells at these facilities,
spatial variation has a far greater chance of occurrence downgra-
dient than upgradient further increasing the likelihood of falsely
concluding that contamination is present. While spatial variation
is also a problem for prediction limits and tolerance limits for sin-
gle future measurements, it is not nearly as severe a problem as
for ANOVA since the distribution of the individual measurement is
considered and not the more restrictive distribution of the sample
mean.

Nonparametric ANOVA is often presented by USEPA as if it pro-
tects the user from all of the weaknesses of its parametric coun-
terpart. This is not the case. Both methods assume identical dis-
tributions for the analyte in all monitoring wells. The only differ-
ence is that the parametric ANOVA assumes that the distribution
is normal and the nonparametric ANOVA is indifferent to what
the distribution is. Both parametric and nonparametric ANOVA
assume homogeneity of variance, a condition that almost never oc-
curs in practice. This is not a weakness of methods for single future
samples (i.e., prediction and tolerance limits) since the variance es-
timates rely solely on the background data. Why would anyone
want to use downgradient data from an existing site (which could
be affected by the site) to characterize natural variability? Yet this
is exactly what the ANOVA does. Furthermore, ANOVA is not a
good statistical technique for detecting a narrow plume that might
effect only one of 10 or 20 monitoring wells (USEPA 1992 section
5.2.1).
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(d) ANOVA requires the pooling of downgradient data. Specifically,
USEPA has suggested that four samples per semi-annual monitor-
ing event be collected (i.e., eight samples per year). As such, on
average, it will never most rapidly detect a release, since only a
subset of the required four semi-annual samples will be affected by
a site impact. This heterogeneity will decrease the mean concen-
tration and dramatically increase the variance for the affected well
thereby limiting the ability of the statistical test to detect contam-
ination when it occurs. This is not true for tolerance limits, predic-
tion limits and control charts, which can and should be applied to
individual measurements. USEPA may like ANOVA because it will
appear to be more powerful than prediction and tolerance limits for
single future values. The increased power, however, is only realized
when all four measurements from a single well are equally affected
by the site impact which on average will only occur 25% of the time
(i.e., if four semi-annual sampling events are evenly spaced, all four
will be impacted by a new release only one in four times). For
these reasons, when applied to ground-water detection monitoring,
ANOVA will maximize both false positive and false negative rates,
and double the cost of monitoring (i.e., ANOVA requires four sam-
ples per semi-annual event or eight per year versus a maximum of
four quarterly samples per year for prediction or tolerance limits
that test each new individual measurement).

To illustrate, consider the data in Table 2 which were obtained from a
facility in which no disposal of waste has yet occurred (see Gibbons, 1994
NSWMA WasteTech Conference Proceedings, Charleston SC, 1/14/94).
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TABLE 2

Raw Data for All Detection Monitoring
Wells and Constituents (mg/1)
This Landfill has no Garbage in it

Well | Event | TOC TKN COD ALK
MWO01 1 5.2000 | .8000 | 44.0000 | 58.0000
MWo1 2 6.8500 | .9000 | 13.0000 | 49.0000
MWO01 3 4.1500 | .5000 | 13.0000 | 40.0000
MWO01 4 15.1500 | .5000 | 40.0000 | 42.0000
MWO02 1 1.6000 | 1.6000 | 11.0000 | 59.0000
MWO02 2 6.2500 | .3000 { 10.0000 | 82.0000
MWO02 3 1.4500 | .7000 | 10.0000 | 54.0000
MW02 4 1.0000 | .2000 | 13.0000 | 51.0000
MWO03 1 1.0000 | 1.8000 | 28.0000 | 39.0000
MWO03 2 1.9500 | .4000 | 10.0000 | 70.0000
MWO03 3 1.5000 | .3000 | 11.0000 | 42.0000
MWO03 4 4.8000 | .5000 | 26.0000 | 42.0000
MWo04 1 4.1500 | 1.5000 | 41.0000 | 54.0000
. MWO04 2 1.0000 | .3000 | 10.0000 | 40.0000
(, : MWO04 3 1.9500 | .3000 | 24.0000 | 32.0000
— MW04 4 1.2500 | .4000 | 45.0000 | 28.0000
MWO05 1 2.1500 | .6000 | 39.0000 | 51.0000
MWO05 2 1.0000 | .4000 | 26.0000 | 55.0000
MWO05 3 19.6000 | .3000 | 31.0000 | 60.0000
MW05 4 1.0000 | .2000 | 48.0000 | 52.0000
MWO06 1 1.4000 | .8000 | 22.0000 | 118.0000
MWO06 2 1.0000 | .2000 | 23.0000 | 66.0000
MW06 3 1.5000 | .5000 | 25.0000 | 59.0000
MWO06 4 20.5500 | .4000 | 28.0000 | 63.0000
P14 1 2.0500 | .2000 | 10.0000 | 79.0000
P14 2 1.0500 | .3000 | 10.0000 | 96.0000
P14 3 5.1000 | .5000 | 10.0000 | 89.0000

Results of applying both parametric and nonparametric ANOVA to these
predisposal data yielded an effect that approached significance for Chem-
ical Oxygen Demand (COD) (p < .072 parametric and p < .066 non-
parametric) and a significant difference for Alkalinity (ALK) (p < .002
parametric and p < .009 nonparametric). In terms of individual compar-
isons, significantly increased COD levels were found for well MWO05 (p
< .026) and significantly increased ALK was found for wells MWO06 (p <
.026) and P14 (p < .003) relative to upgradient wells. Of course, these
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results represent false positives due to spatial variability, since there is
no garbage. What is perhaps most remarkable, however, is the absence
of any significant results for TOC, where some of the values are as much
as 20 times higher than the others. The reason, of course, is that these
extreme values tremendously increase the within-well variance estimate,
rendering the ANOVA powerless to detect any differences regardless of
magnitude. This is yet another testimonial to why it is environmentally
negligent to average measurements from downgradient monitoring wells,
a problem that is inherent to ANOVA-type analyses when applied to dy-
namic ground-water quality measurements. The elevated TOC data are
clearly inconsistent with chance expectations and should be investigated.
In this case, however, they are likely due to insects getting into the wells
since this greenfield facility is in the middle of the Mohave desert.

. Cochran’s Approximation to the Behrens Fisher ¢-test

Although no longer required, for years the USEPA RCRA regulation
was based on application of the Cochran’s approximation to the Behrens
Fisher (CABF) t- test. The test was incorrectly implemented by requir-
ing that four quarterly upgradient samples from a single well and single
samples from a minimum of three downgradient wells each be divided
into four aliquots and treated as if there were 4n independent measure-
ments. The net result was that every hazardous waste disposal facility
regulated under RCRA was declared “leaking.” As an illustration con-
sider the data in Table 3.
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TABLE 3

Mlustration of pH Data Used in Computing
the CABF ¢-test

Date Replicate Average
1 2 3 4

Background
11/81 TAT 7776 7.78 7.78 7.7
2/82 774 780 7.82 7.85 7.80
5/82 7.40 7.40 7.40 7.40 7.40
8/82 7.50 7.50 7.50 7.50 7.50
X5 ' 7.62 7.62
SDpg 0.18 0.20
Np 16 4
Monitoring
9/83 7.39 7.40 7.38 7.42 7.40
Xg ‘ 7.40 7.40
SDg 0.02
Np 4 1

Note that the aliquots are almost perfectly correlated and add virtu-
ally no independent information yet they are assumed to be completely
independent by the statistic. The CABF t-test is computed as

Xg—X 62 —17. .22
5 — X _ 7621740 2 e

t = -
2 2 .032 .0004
\/ e Vg 0

The associated probability of this test statistic is 1 in 10,000 indicating
that the chance that the new monitoring measurement came from the
same population as the background measurements is 1 in 10,000. Note
that in fact, the mean concentration of the four aliquots for the new
monitoring measurement is identical to one of the four mean values for
background, suggesting that intuitively the probability is closer to 1 in




29

4 rather than 1 in 10,000. Averaging the aliquots, which should have
never been split in the first place, yields the statistic

oo Xp— Xy _T62-740 22
Spy/az+1 204141 22

which has an associated probability of 1 in 2. Had the sample size been
increased to Np = 20 the probability would have decreased to 1 in 3.
It took U.S. EPA six years to recognize this flaw and to change this
regulation (see USEPA 1988).

=1.0

. Control of False Positive Rate by Constituent

Site-wide false positive and false negative rates are more important than
choice of statistic, nonetheless, certain statistics make it impossible to
control the site-wide false positive rate because the rate is controlled sep-
arately for each constituent (e.g., parametric and nonparametric ANOVA
- see USEPA 1992 section 5.2.1). The only important false positive rate
is the one which includes all monitoring wells and all constituents, since
any single exceedance can trigger an assessment. This criterion impacts
greatly on the selection of statistical method. These error rates are
dependent on the number of wells, number of constituents, number of
background measurements, type of comparison (i.e., intra-well versus
inter-well), distributional form of the constituents, detection frequency
of the constituents and the individual comparison false positive rate of
the statistic being used. Invariably, this leads to a problem in inter-
val estimation the solution of which is typically a prediction limit that
incorporates the effects of verification resampling as well as multiple
comparisons introduced by both multiple monitoring wells and multiple
monitoring constituents.

. Restriction of Background Samples

Certain states have interpreted the Subtitle D regulation as indicating
that background be confined to the first four samples collected in a day
or a semi-annual monitoring event or a year. The first approach (i.e.,
four samples in a day violates the assumption of independence and con-
founds day to day temporal and seasonal variability with potential con-
tamination. As an analogy, consider setting limits on yearly ambient
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temperatures in Chicago by taking four temperature readings on July
4th. Say the temperature varied between 75 and 85 degrees on that day
yielding a prediction interval from 70 to 90 degrees. As I write this, the
temperature in Chicago is-20 degrees. Something is clearly amiss. In the
second example of restricting background to the first four events taken in
6 months, the measurements may be independent if ground water flows
fast enough, but seasonal variability is confounded with contamination.
The net result is that comparisons of background water quality in the
summer may not be representative of point of compliance water quality
in the winter (e.g., disposal of road salts increasing conductivity in the
winter). In the third example in which background is restricted to the
first four quarterly measurements, independence is typically not an issue
and background versus point of compliance monitoring well comparisons
are not confounded with season. However, as previously pointed out
in the site-specific illustration, restriction of background to only four
samples dramatically increases the size of the statistical prediction limit
thereby increasing the false negative rate of the test (i.e., the predic-
tion limit is over five standard deviation units above the background
mean concentration). The reason for this is that the uncertainty in the
true mean concentration covers the majority of the normal distribution.
As such we could obtain virtually any mean and standard deviation by
chance alone. If by chance the values are low, false positive results will
occur. If by chance the values are high, false negative results will occur.
By increasing the background sample size, uncertainty in the sample
based mean and standard deviation decrease as does the size of the pre-
diction limit, therefore both false positive and false negative rates are
minimized. Furthermore, use of statistical outlier detection procedures
applied to the background data will remove the possibility of spurious
background results falsely inflating the size of the prediction limit.
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F. Results of Application at the Temple RDF

In the following, results of site-specific analysis of the existing monitoring
program are described.

1. Monitoring Well Network

A list of upgradient and downgradient monitoring wells are provided in
the following Table.

Current Upgradient and Downgradient Monitoring Wells
Upgradient Downgradient
MWO01 MWO03
MWO02 MWO04

MWO5R
MWO06
MWO07
MWO08
MWO09
MW10
MW11
MW12
MW13
MW14
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A list of the constituents used in the analysis is provided in the following
Table.

Constituents used in the Analysis
Constituent
Alkalinity (as caco3)
Antimony-dissolved
Arsenic-dissolved
Barium-dissolved
Beryllium-dissolved
Cadmium-dissolved
Calcium-dissolved
Chloride
Chromium-dissolved
Cobalt-dissolved
Iron-dissolved
. Lead-dissolved
( Magnesium-dissolved
Manganese-dissolved
Nickel-dissolved
Nitrogen, ammonia
Nitrogen, nitrate
Nitrogen, total kjeldahl
Potassium-dissolved
Selenium-dissolved
Silver-dissolved
Sodium-dissolved
Solids, total dissolved
Sulfate
Thallium-dissolved
Total organic carbon
Vanadium-dissolved
Zinc-dissolved
Appendix I VOCs
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2. Comparison to Leachate

In an effort to obtain the most relevant site-specific list of monitoring
constituents, concentrations of monitoring constituents in leachate were
compared to the upgradient prediction limits in the following Table.

Most Current Leachate Monitoring Data

Constituent Units Well Date Result Pred. Limit
Alkalinity (as caco3) mg/L  LCSOL  03/30/1995 788.0000 688.9567
Alkalinity (as caco3) mg/L  TANK  06/09/1998 884.0000 688.9567
Antimony-total ug/L LCS01  03/30/1995 2.2000 3.0000
Antimony-total ug/L TANK  06/09/1998 ND 60.0000 3.0000
Arsenic-total ug/L LCS01 03/30/1995 50.7000 10.0000
Arsenic-total ug/L TANK  06/09/1998 34.5000 10.0000
Barium-total ug/L LCSo01 03/30/1995 2120.0000 280.1689
Barium-total ug/L.  TANK  06/09/1998 2480.0000 280.1689
Beryllium-total ug/L LCSO01 03/30/1995 ND 0.6000 2.0000
Beryllium-total ug/L TANK 06/09/1998 ND 5.0000 2.0000
Cadmium-total ug/L LCso01 03/30/1995 ND 5.0000 5.4000
Cadmium-total ug/L TANK 06/09/1998 ND 5.0000 5.4000
Calcium-total ug/L LCS01 03/30/1995 222000.0000 301683.0257
Calcium-total ug/L TANK 06/09/1998 174000.0000 301683.0257
Chloride mg/L LCso01 03/30/1995 159.0000 228.2979
Chloride mg/L TANK 06/09/1998 373.0000 228.2979
Chromium-total ug/L LCS01 03/30/1995 ND 10.0000 10.0000
Chromium-total ug/L TANK 06,/09/1998 ND 10.0000 10.0000
Cobalt-total ug/L LCSo1 03/30/1995 ND 50.0000 50.0000
Cobalt-total ug/L. TANK 06/09/1998 ND 50.0000 50.0000
Tron-total ug/L.  LCSO0L  03/30/1995 41700.0000 100.0000
Iron-total ug/L TANK 06/09/1998 4580.0000 100.0000
Lead-total ug/L LCso1 03/30/1995 ND 5.0000 5.0000
Lead-total ug/L TANK 06/09/1998 ND 5.0000 5.0000
Magnesium-total ug/L LCS01 03/30/1995 19800.0000 15448.3601
Magnesium-total ug/L TANK  06/09/1998 24000.0000 15448.3601
Manganese-total ug/L LCS01 03/30/1995 2330.0000 90.8487
Manganese-total ug/L TANK 06/09/1998 423.0000 90.8487
Nickel-total ug/L LCSo1 03/30/1995 ND 40.0000 40.0000
Nickel-total ug/L TANK 06/09/1998 50.5000 40.0000
Nitrogen, ammonia mg/L LCSo01 03/30/1995 20.0000 0.8300
Nitrogen, ammonia mg/L  TANK  06/09/1998 42.6000 0.8300
Nitrogen, nitrate mg/L LCSso01 03/30/1995 ND 0.0500 12.5689
Nitrogen, nitrate mg/L. TANK  06/09/1998 ND 0.0500 12.5689
Nitrogen, total kjeldahl mg/L LCS01 03/30/1995 23.9000 3.5000
Nitrogen, total kjeldahl mg/L TANK 06/09/1998 ND 80.0000 3.5000
Potassium-total ug/L LCS01 03/30/1995 17200.0000 3328.9153
Potassium-total ug/L TANK 06/09/1998 21500.0000 3328.9153
Selenium-total ug/L LCS01  03/30/1995 ND 5.0000 5.0000
Selenium-total ug/L TANK 06/09/1998 ND 5.0000 5.0000
Silver-total ug/L LCS01 03/30/1995 ND 25.0000 25.0000
Silver-total ug/L TANK 06/09/1998 ND 25.0000 25.0000
Sodium-total ug/L LCSO01 03/30/1995 129000.0000 116826.1018
Sodium-total ug/L TANK 06/09/1998 277000.0000 116826.1018
Solids, total dissolved mg/L LCSo1 03/30/1995 1070.0000 1208.8797
Solids, total dissolved mg/L TANK 06/09/1998 1500.0000 1208.8797
Sulfate mg/L LCso1 03/30/1995 22.4000 246.3714
Sulfate mg/L TANK 06/09/1998 ND 15.0000 246.3714
Thallium-total ug/L LCSo01 03/30/1995 ND 2.0000 38.1000
Thallium-total ug/L TANK 06/09/1998 ND 2.0000 38.1000
Total organic carbon mg/L LCSO01 03/30/1995 74.1000 27.6000
Total organic carbon mg/L TANK 06/09/1998 65.3000 27.6000
Vanadium-total ug/L LCSo01 03/30/1995 ND 50.0000 50.1000
Vanadium-total ug/L TANK 06,/09/1998 ND 50.0000 50.1000
Zinc-total ug/L  LCSOI  03/30/1995 22.5000 30.0000
Zinc-total ug/L TANK 06/09/1998 47.6000 20.0000

Among these constituents, only antimony, arsenic, barium, iron, man-
ganese, nitrogen ammonia, TKN, and potassium provide a clear contrast
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‘with upgradient ground-water quality. In the following sections, anal-

ysis is restricted to this subset of leachate indicator constituents and
Appendix I list VOCs.

. Upgradient versus Downgradient Comparisons

Results of upgradient versus downgradient comparisons are presented
in Appendix A. All historical data for each downgradient well and con-
stituent is displayed graphically along with the upgradient prediction
limit (¢.e., horizontal line). All historical upgradient data were used in
computing the prediction limits, hence the shaded background time line
covers the entire x-axis. Raw upgradient data with outliers indicated are
displayed in Table 1 for all constituents. Current downgradient moni-
toring results with statistical exceedances noted are displayed in Table
2. Comparison of detection frequencies in upgradient and downgradient
wells is presented in Table 3. Tests of distributional form and correspond-
ing type of prediction limit selected are displayed in Table 4. Computed
prediction limit values and intermediate statistics for normal and lognor-
mal prediction limits and confidence levels for nonparametric prediction
limits are displayed in Table 5. Historical data for those downgradient
monitoring wells that exceeded an upgradient prediction limit (whether
they were verified or not) are displayed in Table 6.

Inspection of Table 2 of Appendix A revealed verified exceedances of
upgradient limits for iron and manganese in MWO08 and potassium in
MWQ09. Inspection of Table 6 in Appendix A and associated graphs
reveals that these wells and constituents have historically been at sim-
ilar levels. Initial exceedances for antimony (MW04 and MWO07) and
potassium (MWO8) were noted and are awaiting verification.

. Intra-well Comparisons

In general, given (1) the presence of spatial variability, (2) the absence
of any detected volatile organic compounds (which are present in large
concentrations in the facility’s leachate) and (3) the absence of any sig-
nificant trend in historical concentrations, intra-well comparisons are
the method of choice. Combined Shewhart-CUSUM control charts are
displayed graphically for all wells and constituents in Appendix B. Sum-
mary statistics and intermediate computations are displayed in Table 1
of Appendix B.
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All wells and constituents were automatically tested for trend using
Sen’s nonparametric test prior to analysis and none were found. No
exceedances of control limits were found.

. Statistical Power

Statistical power curves for the facility-wide false positive and false neg-
ative rates are presented at the end of each Appendix. For upgradient
versus downgradient comparisons the false positive rate is 10% and the
test becomes sensitive to 5 standard deviation unit increases over back-
ground. For intra-well comparisons the false positive rate is 20% and the
test becomes sensitive to 2.5 to 3 standard deviation unit increases over
background. These false positive rate for intra-well comparisons will be
reduced to the 5% level with additional sampling.

. VOCs

Historical detections of all Appendix I VOCs are displayed in Appendix
C. Inspection of Table 1 in Appendix C reveals that the only verified
detection of a VOC was 11-DCA in upgradient well MWO02. This finding
futher questions the usefulness of inter-well comparisons at this site.

. Summary

The absence of detected VOCs and any clear increasing trends sup-
port the general use of intra-well comparisons using combined Shewhart-
CUSUM control charts for routine monitoring at this facility.

Application of this methodology revealed no statistically significant ex-
ceedances of control limits at any downgradient well. Despite the ap-
propriateness of the statistical methodology at the site, the overall site-
wide false positive rate was still high (approximately 20% for intra-well
comparisons). This rate can be reduced to the intended 5% level with
the addition of approximately four more samples in each well. From
the available leachate data, only antimony, arsenic, barium, iron, man-
ganese, nitrogen ammonia, TKN, and potassium provide a clear contrast
with upgradient ground-water quality.

In light of these results we propose to perform intra-well comparisons
using combined Shewhart-CUSUM control charts for routine detection
monitoring at this facility. In addition, we will monitor VOCs and a
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verified quantification of a VOC will be used as a trigger level. For the
next four monitoring events we will continue to update background in
an effort to reduce the site-wide false positive rate to 5%. At that time,
background will be fixed for a period of two years and reupdated at that
time for all wells that have not exhibited a verified exceedance. This
process will continue for the life of the facility. Statistical analysis will

be restricted to the 8 leachate indicator constituents and Appendix I
VOCs.
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