

Consulting
Engineers and
Scientists

Volume II Part IV of IX

Hydrogeologic Investigation Report

Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York

Submitted to:

Waste Management of New York, LLC Chaffee, New York

Submitted by:

GEI Consultants, Inc., P.C. 100 Sylvan Pkwy, Suite 400 Amherst, NY 14228

June 2020, Revised April 2022 Project 1900192

Richard H. Frappa, P.G. Senior Consultant/Hydrogeologist

Kelly R. McIntosh, P.E., Ph.D. Senior Consultant/Engineer

Table of Contents

Executive Summary			
1.	Introduction		1
	1.1	Background	1
	1.2	Report Objectives and Format	2
2.	Site F	listory and Summary of Previous Investigations	4
	2.1	Site History	4
3.	Site Investigation Plan and Field Work		
	3.1	Chronology of the SIP and Supplemental Scopes of Work	6
	3.2	Literature Search	7
	3.3	2019/2020 Subsurface Investigation Activities	8
		3.3.1 Test Pit Excavations	9
		3.3.2 Soil Borings and Piezometer Installations	9
		3.3.3 Monitoring Well Installations	10
	3.4	Groundwater Elevation Monitoring	11
	3.5	Hydraulic Conductivity Testing	11
	3.6	Pumping Tests	12
	3.7	Existing Groundwater Quality Testing	13
	3.8	Surface Water Study	13
	3.9	Investigation Locations Surveying	14
	3.10	Private Water Well Survey	14
4.	Regional Physical Setting		16
	4.1	Regional Geology	16
	4.2	Regional Hydrogeology and Aquifers	18
	4.3	Local Groundwater Usage	19
5.	Hydrogeologic Investigation Results		
	5.1	Geology	21
		5.1.1 Upper Silty Clay/Till	22
		5.1.2 Ablation Till	23
		5.1.3 Upper Silty Sand and Gravel	24
		5.1.4 Lower Silty Clay/Till	25
		5.1.5 Lower Silty Sand and Gravel	26
		5.1.6 Clay, Silt, and Fine Sand/Deeper Till	26
	5.2	Site Hydrogeology	27
		5.2.1 Upper Silty Clay/Till	27
		5.2.2 Upper Silty Sand and Gravel Water-Bearing Zone	28

GEI Consultants, Inc.

9.	References			
8.	Design Considerations and Conclusions		44	
<u>7.</u>	Environmental Monitoring			
	6.2	Critical Stratigraphic Section	40	
	6.1	Conceptual Site Model	38	
6.	Conceptual Site Model and Critical Stratigraphic Section			
	5.5	Groundwater/Surface Water Interaction	36	
	5.4	Surface Water Conditions	34	
		5.3.2 Major Elements, Anions and Cations in Groundwater	33	
		5.3.1 PFAS in Groundwater and Surface Water	33	
	5.3	32		
		5.2.5 Deeper Till Aquitard	32	
		5.2.4 Lower Silty Sand and Gravel Water-Bearing Zone	31	
		5.2.3 Lower Silty Clay Aquitard	30	

Tables

- 1. Area 7/8 Development Stratigraphic Summary
- 2. Summary of Soil Physical and Hydraulic Testing
- 3. Well and Piezometer Construction Summary
- 4. 2019/2020/2021 Groundwater Elevation Data
- 5A. Groundwater Quality Analytical Summary
- 5B. Groundwater and Surface Water Quality Analytical Summary PFAS Only
- 6. Surface Water Field Chemistry and Flow Rate Summary

Figures

- 1. Site Location
- 2. Site Features
- 3. Site Layout Plan
- 4. Boring/Monitoring Well/Piezometer Location Plan
- 5. Water Well Survey Search Area
- 6. Regional USGS Geologic Cross Sections
- 7. Mapped New York State Aquifers and Glacial Features
- 8. Cross Section Location Plan
- 9a. Geologic Cross Section A-A'
- 9b. Geologic Cross Section B-B'
- 9c. Geologic Cross Section C-C'
- 9d. Geologic Cross Section D-D'
- 10. Ablation Till and Upper Silty Clay Isopach
- 11. Upper Silty Sand and Gravel Isopach
- 12. Lower Silty Clay (Aquitard) Isopach
- 12A. Top of Lower Silty Clay (Aquitard) Contour Map
- 13. Historical Area 7/8 Development Groundwater Elevations
- 14. Groundwater Elevations at the Area 7/8 Development
- 15. Groundwater Contour Map (May 9, 2019)
- 16. Facility-Wide Potentiometric Surface Map: Upper Silty Sand and Gravel (June 12, 2019)
- 17. Facility-Wide Potentiometric Surface Map: Upper Silty Sand and Gravel (August 19, 2019)
- 18. Groundwater Contour Map (October 18, 2019)
- 19. Facility-Wide Potentiometric Surface Map: Upper Silty Sand and Gravel (December 9, 2019)
- 20. Facility-Wide Potentiometric Surface Map: Upper Silty Sand and Gravel (March 9, 2020)
- 21. Groundwater Elevation Comparison PZ-5S/5D Well Pair
- 22. Groundwater Elevation Comparison Upper and Lower Water-Bearing Zones
- 23. Supplemental Surface Water Sampling Locations
- 24. Geochemistry Comparison Area 7/8 Development
- 25. Critical Stratigraphic Section and Hydrostratigraphic Units for Monitoring

Plates

- 1 Site Layout Plan
- 2 Area 7/8 Development Plan
- 3 Geologic Cross Sections
- 4 Ablation Till and Upper Silty Clay Isopach
- 5 Upper Silty Sand and Gravel Isopach
- 6 Lower Silty Clay (Aquitard) Isopach
- 7 Potentiometric Surface Map Site-Wide Water Levels (June 2019)
- 8 Potentiometric Surface Map Site-Wide Water Levels (August 2019)
- 9 Potentiometric Surface Map Site-Wide Water Levels (December 2019)
- 10 Potentiometric Surface Map Site-Wide Water Levels (March 2020)

Appendices

- A Site Investigation Plan, Correspondence, Supplemental Scopes of Work
- B Boring, Test Pit, Piezometer and Well Construction Logs
 - B.1 2019 Investigation Logs
 - B.2 Pre-2019 Investigation Logs and Soil Borrow Area Investigation Logs
 - B.3 Summary Data for Pre-2019 Soils Testing and Hydraulic Testing
- C Soils Geotechnical Testing Laboratory Reports
- D Hydraulic Testing: Slug Tests and Pumping Test Data
- E Laboratory Data (on enclosed CD) and Validation Reports
- F Water Well Survey Documentation
- G Soil Types and USDA Soil Mapping
- H Supplemental Upper Silty Sand and Gravel Groundwater Contour Maps (June 2020, August 2020, November 2020 and March 2021)
- I Seepage Velocity Calculations

CERTIFICATION

"I, Richard H. Frappa, a professional geologist licensed and currently registered to practice in the State of New York, having experience in similar hydrogeologic investigations, participated in and/or supervised procedures for obtaining the hydrogeologic information for the Area 7/8 Development and certify the information is complete and correct to the best of my knowledge and belief and addresses Department's comments and responses acknowledged in the NYSDEC approval letter dated July 14, 2021."

Richard H. Frappa NYPG #00639

Executive Summary

The Chaffee Landfill Facility is located in the Town of Sardinia, Erie County, New York and is owned and operated by Waste Management of New York, LLC under Solid Waste Management Facility (SWMF) Permit I.D 9 1462-00001/00006. A 6 NYCRR Part 360/363 Permit Application is being submitted for the Area 7/8 Development with partial overlap on the Closed Landfill, Western Landfill, and Valley Fill Landfill Areas. The preparation of a Hydrogeologic Investigation Report is a permit application requirement and has been prepared per regulation 6 NYCRR Part 363-4.4(a).

The Chaffee Landfill disposal areas, including the Area 7/8 Development, are situated entirely on glacial moraine sediments which overlie deeper glacially-derived soils that fill a scoured bedrock valley that trends in a northwest-southeast direction. The moraine is considered a non-aquifer area. Water resources important to the NYSDEC permit application include the location of the Sardinia Aquifer which has been mapped approximately 1,600 feet to the south of the Area 7/8 Development. The Sardinia Aquifer is not listed as a NYSDEC Primary or Principal Aquifer and consists of saturated outwash sand and gravel deposits near the ground surface with confined deposits of sand and gravel at depths greater than 100 feet. The USEPA has designated a portion of the Cattaraugus Creek Watershed as a Federal Sole Source Aquifer (SSA) and includes geologic materials such as moraine deposits and bedrock in the area of the Chaffee Landfill which transmit little to no water.

The hydrogeologic investigation of the Area 7/8 Development was conducted in accordance with the NYSDEC-approved Site Investigation Plan (SIP) (February 2019) and subsequent scopes of work provided in correspondence with the Department. The 2019/2020 investigation and prior studies characterized geologic units to depths of approximately 100 feet below ground surface. Based on hydrogeologic properties, the following hydrostratigraphic units were identified:

- Discontinuous Perched Water in Upper Silty Clay/Till
- Upper Silty Sand and Gravel (also referred to as the Upper Water-Bearing Zone)
- Lower Silty Clay Aquitard
- Lower Silty Sand and Gravel (also referred to as the Lower Water-Bearing Zone)
- Deeper Till Aquitard

Hydrogeologic investigation findings include the following:

Perched water exists within discontinuous lenses of sand and gravel in the Upper Silty Clay/Till along the northern boundary of the Area 7/8 Development where the surface clay till is relatively thicker. In the southern half of the Area 7/8 Development, perched water occurring in lenses of sand and gravel was not found. However, several Upper Silty Clay/Till monitoring wells and piezometers have been observed to accumulate small amounts of water over long periods of time. This accumulation does not represent a water table and is more likely a result of seepage into the well sand pack of water temporarily present in the larger pore spaces after precipitation events. Where observed, the rate of seepage is insufficient for sampling using conventional methods.

The Upper Silty Sand and Gravel is the Upper Water-Bearing Zone in the Area 7/8 Development and elsewhere at the Chaffee Landfill area. Groundwater occurs under water table (unconfined) conditions where unsaturated areas of the Upper Silty Sand and Gravel are present below the Upper Silty Clay/Till and Ablation Till. Depth to the water table in the Area 7/8 Development is typically 15 feet or more at current grades. Recharge to the Upper Water-Bearing Zone beneath the existing Closed, Western, and Valley Fill areas and the Area 7/8 Development occurs primarily through horizontal flow as vertical flow is restricted by the low permeability of the Upper Silty Clay and Ablation Till. The Upper Water-Bearing Zone is bound at the bottom by the laterally continuous Lower Silty Clay Aquitard. This low permeability unit is approximately 7 to 22 feet thick below the Area 7/8 Development. The aquitard was found to be thicker south of the Area 7/8 Development (more than 38 feet thick). The aquitard is saturated but does not readily transmit groundwater as it primarily consists of medium plasticity silty clay having a geometric mean permeability of 4.62x10⁻⁸ cm/s. While occasional silty sand and gravel layers were identified in the Lower Silty Clay, the investigation demonstrated that the Lower Silty Clay Aquitard is effective in restricting the vertical movement of groundwater between the Upper and Lower Water-Bearing zones thereby isolating deeper water-bearing zones from the Upper Water-Bearing Zone.

Surface water in Wetland SD-1 and in Sedimentation Basins #1, #2, and #3 recharges groundwater near the Area 7/8 Development. Exfiltration of water from the wetland and the Basins was found to influence the direction of groundwater flow in the Upper Water-Bearing Zone below the Area 7/8 Development. During regionally higher groundwater elevations which occur in the spring and extend to mid-summer, exfiltration from the wetland and Sedimentation Basins has less of an effect on the groundwater flow direction and groundwater in the Upper Silty Sand and Gravel below the Area 7/8 Development flows seasonally in a south direction. However, as groundwater levels regionally decline during the late summer, through the fall and winter seasons, a progressive shift in groundwater flow direction occurs in a northeast direction caused by higher heads in Wetland SD-1 and the exfiltration of sedimentation basin surface water. Groundwater seepage velocities were estimated to average 0.59 feet/year in a south direction below the central and southernmost portion of the Area 7/8 Development during the spring and early to mid-summer months.

When the groundwater flow direction transitions to a northeast direction during the late summer months, extending through the fall and winter months, the average estimated seepage rate was calculated to be 2.07 feet/year beneath the Area 7/8 Development. Site hydrogeologic data indicate theoretical particle transport (excluding natural attenuation processes) below the Area 7/8 Development within the Upper Water-Bearing Zone would occur at an annual net vector rate of approximately 1.33 feet/year in a northeastward direction. Therefore, theoretical particle transport below the Area 7/8 footprint would not migrate toward the Sardinia Aquifer.

The overall groundwater quality of the Upper Water-Bearing Zone in the Area 7/8 Development is representative of background conditions. Groundwater quality east, west, and south of the development area is very similar to the chemistry of existing wells located along the northern boundary of the development area indicating groundwater quality below the Area 7/8 Development in the Upper Water-Bearing Zone is consistent. PFAS compounds were detected in groundwater locally at well MWSE-4 near the Sedimentation Basins. Sampling of surface water in the Sedimentation Basins confirmed PFAS presence in surface water. Sampling of surface water in Hosmer Brook confirmed PFAS presence downstream from Basin #3 discharge but the concentrations were below New York State Department of Health (NYSDOH) drinking water regulatory criteria established for public water supply in 10 NYCRR Part 5, Subpart 5-1 Public Water Systems.

Hydrogeologic investigation data for the Chaffee Facility and the Area 7/8 Development were used to develop a Conceptual Site Model (CSM) in support of the refinement of the Critical Stratigraphic Section (CSS) for the Facility. The CSS includes identification of stratigraphic units where constituents that might escape from engineered waste containment areas at the facility might reasonably be expected to migrate. The CSS for the Area 7/8 Development includes:

- the Upper Silty Clay/Till; and
- the Upper Silty Sand and Gravel.

The CSS designation requires groundwater monitoring of the Upper Silty Clay/Till where perched conditions sporadically occur on the northeast side the Area 7/8 Development (area of overlap onto the Closed Landfill) and the laterally extensive water-bearing zone in the Upper Silty Sand and Gravel below the Area 7/8 Development. This monitoring approach is consistent with the permitted areas of the Chaffee Facility as defined in the existing EMP.

The 2019/2020 hydrogeologic investigation concluded the following regarding landfill siting and design:

- The siting requirements specified in Part 363-5.1(a) are met for the Area 7/8

 Development based on the following: 1) more than 400 feet of unconsolidated deposits exist beneath the Chaffee Landfill Facility; 2) the soil below the development area consists of low permeability silty clay or ablation till with soil properties conducive to minimizing the movement of chemical constituents; and 3) the design of engineering controls for landfill construction are consistent with current regulations and have been demonstrated to provide effective containment to protect groundwater at the Chaffee Facility.
- The siting requirements specified in Part 363-5.1(d) are met for the Area 7/8 Development at Chaffee Landfill Facility as the facility is situated on the Lake Escarpment Moraine which is not a Primary or Principal Aquifer. The Sardinia Aquifer (not listed as a Primary or Principal Aquifer) is mapped approximately 1,600 feet south of the Area 7/8 proposed landfill footprint. Constituent migration from a theoretical release from the landfill and, assuming vertical migration through the Upper Silty Clay/Till to groundwater in the Upper Water-Bearing Zone, would transport constituents in a northeast direction and not toward the Sardinia Aquifer.

No variances from the regulations are required for landfill construction based on Site hydrogeologic conditions.

1. Introduction

This Hydrogeologic Investigation Report (HIR) has been prepared by GEI Consultants, Inc. P.C. (GEI) for Waste Management of New York, LLC (WMNY) in support of a 6 NYCRR Part 360/363 Permit Application for a southern lateral expansion at the Chaffee Landfill Facility, referred to as the "Area 7/8 Development" or "expansion area" in this document. The HIR addresses the requirements in regulation 6 NYCRR Part 363-4.4(a) to document hydrogeologic conditions at the Chaffee Landfill Facility with particular emphasis on the Area 7/8 Development through implementation of the Site Investigation Plan (SIP) dated February 2019, responses to comments provided by the New York State Department of Environmental Conservation (NYSDEC or Department), and supplemental scopes of work provided in correspondence dated July 24, 2019 and September 30, 2019 (included in Appendix A). The SIP and responses to Department comments with additional scopes of work developed and implemented to compliment the investigation activities described in the SIP are described in more detail in Section 3 of this report. The remainder of this section provides a brief site background and describes the report objectives and format of this HIR.

1.1 Background

The Chaffee Landfill is located in the Town of Sardinia, Erie County, New York. The landfill is owned and operated by WMNY under Solid Waste Management Facility (SWMF) Permit I.D 9-1462-00001/00006. The location of the facility is shown on Figure 1. The landfill facility includes: the 50-acre Closed Landfill; the 52.5-acre Western Landfill Area; the 13.7-acre Valley Fill Expansion Area situated between the Closed Landfill and Western Landfill Area; and permitted areas for soil borrow. These features and the proposed Area 7/8 Development are shown on an aerial map on Figure 2. A 6 NYCRR Part 360/363 Permit Application for expansion is being submitted for the Area 7/8 Development with an overlay of the existing landfill. The site layout presented on Figure 3 (also Plate 1) shows boring, test pit, monitoring well, and piezometer locations around the Facility and includes the proposed footprint of the Area 7/8 Development occupying approximately 30 acres, most of which is reclaimed land from permitted soil borrow (West Soil Borrow Area) and overlay of the existing landfill.

Since the late 1980s, a substantial volume of hydrogeologic information has been collected to support the development of the Chaffee Facility. In addition, environmental monitoring at the facility has occurred in compliance with 6 NYCRR Part 360 regulations and is currently conducted in accordance with the Environmental Monitoring Plan (EMP) dated December 2012. The information obtained from prior investigations and monitoring has been incorporated, as needed, to support this HIR.

1.2 Report Objectives and Format

This HIR addresses the primary objectives stated in the SIP and includes:

- Integration of hydrogeologic data collected from the Closed Landfill during the 1980s and 1990s, as well as hydrogeologic information obtained during permitting of the Western Landfill Area during the early 2000s and subsequent permitting for soil borrow in Soil Borrow Area A and the East and West Soil Borrow Areas.
- Provision of data necessary for landfill design and construction to meet engineering requirements of 6 NYCRR Part 363-4.3.
- Definition of the critical stratigraphic section for the Area 7/8 Development as required for development of an appropriate environmental monitoring and groundwater protection program for the facility.

In addition, the investigation findings are used to address to 6 NYCRR Part 363-5 siting requirements as they relate to physical site conditions.

As described in the SIP (February 2019), a substantial database of geologic, hydrogeologic and groundwater quality data exist for the Chaffee Facility. These data were collected during ongoing environmental monitoring programs and Site investigations conducted to support investigations of the Closed Landfill and 6 NYCRR Part 360 permitting of the Western Landfill Area and Valley Fill Area and permitting of soil borrow areas. The hydrogeologic investigation work described in this report is supplemented with that information and has been used to comprehensively document the hydrogeologic conditions in the Area 7/8 Development. This report is organized as follows:

- Section 2 describes site history and prior site investigations
- Section 3 describes the Site Investigation Plan and subsequent scopes of work for hydrogeologic investigation
- Section 4 describes regional geologic and hydrogeologic conditions including groundwater usage and primary/principal aquifers
- Section 5 describes comprehensive hydrogeologic investigation findings for the Chaffee Area 7/8 Development
- Section 6 describes the Conceptual Site Model and defines the Critical Stratigraphic Section

- Section 7 provides a conceptual plan to adequately monitor environmental conditions at the Area 7/8 Development and the Chaffee Facility
- Section 8 summarizes design considerations and investigation conclusions

2. Site History and Summary of Previous Investigations

2.1 Site History

A municipal waste disposal site has operated at the Chaffee site since 1958. The landfill facility is owned and operated by WMNY, who purchased the facility in July 1998. The landfill facility was formerly known as the C.I.D. Landfill. WMNY operated the original landfill (currently closed) and later received a permit in December 2006 to develop a lateral expansion west of the currently closed landfill. The Western Landfill Area consists of six cells designated Cell 1 through Cell 6. In May 2013, a permit application was approved to construct the Valley Fill Expansion Area.

Subsurface investigations have been completed at the Site since the early 1980s. The investigations are listed below with their purpose.

- "Comprehensive Soils Report for Chaffee Landfill, Inc.," prepared by Earth Dimensions, Inc. January 1981 Initial assessment of soil type and hydraulic characteristics.
- "Soils Report, Chaffee Landfill, Inc., Leachate Collection System," prepared by Earth Dimensions, Inc., October 1981 Report of soil conditions along perimeter trench walls during installation of the leachate collection system for the original landfill.
- "Evaluation of Hydrogeologic and Ground-Water Quality Data Pertaining to the C.I.D. Landfill," prepared by BB&L, P.C., July 1986 Investigation of groundwater quality performed on behalf of legal representation (Steve Miller, Esq.) for the Town of Sardinia.
- "Hydrogeologic and Soils Assessment for C.I.D. Landfill, Inc.," prepared by Earth Investigations, LTD., April 1989 Investigation to evaluate soil conditions on parcels adjacent to the original landfill and preliminarily assess hydrogeology of the underlying sand and gravel outwash unit.
- "Hydrogeologic Site Investigation Plan," prepared by Earth Investigations, LTD, June 1991 Review of data consisting of well and test boring logs, water level data, chemical analyses, as well as the results of previous test trench studies and hydrogeologic investigations.
- "Leachate Accountability Assessment at the Chaffee Landfill," prepared by Geomatrix Consultants, Inc., July 2000 Investigation to characterize saturation in the Closed Landfill and confirmed clay bottom of landfill.

- "Hydrogeologic Report for Chaffee Western Landfill Expansion Part 360 Permit Modification Application" February 2005 prepared by McMahon & Mann Consulting Engineers, P.C. (MMCE) and Terra-Dynamics, Inc. Detailed hydrogeologic investigation of the parcel west of the Closed Landfill to support the permit application for lateral expansion. The investigation utilized information from prior investigations to support site characterization of site geology, hydrogeology, and surface water hydrology.
- "Borrow Area Use Plan for the East and West Soil Borrow Area Chaffee Landfill" –
 March 2009 prepared by MMCE Characterization of soil and groundwater conditions in
 the soil borrow areas south of the Closed Landfill.
- "Soil Borings Completed at Potential South Soil Borrow Property and Proposed South Expansion Area", November 2017 completed by Earth Dimensions, Inc. Completed 13 soil borings to determine clay thickness on property south of the landfill and in the Proposed Area 7/8 Development for conceptual landfill layouts developed by MMCE.

Survey and geologic information presented in these reports were incorporated into this HIR to supplement the information compiled from the 2019/2020 investigation of the Area 7/8 Development. Where used in this report, the HIR summary tables include previous investigation data and relevant boring logs are included in the appendices.

3. Site Investigation Plan and Field Work

This section describes the chronology of meetings and correspondence documenting the development and submittal of the final Site Investigation Plan (SIP) implemented to investigate the Area 7/8 Development at the Chaffee Facility. The SIP was provided to the NYSDEC for comment with regard to the adequacy of methods proposed to satisfy 6 NYCRR Part 363-4.4(j) requirements for the site investigation. This section also includes an overview of investigation and field activities completed in 2019/2020 and modifications dictated by the site conditions encountered.

3.1 Chronology of the SIP and Supplemental Scopes of Work

This chronology lists meetings with NYSDEC staff to discuss permitting progress and preliminary investigation findings and identifies the submission of supplemental SIP scopes of work developed and implemented in response to Department's requests for additional information.

- November 15, 2018 A Pre-Application Kick-off Meeting was held at the Region 9 NYSDEC office on November 15, 2018 to support the Part 360/363 Permit Application for the Area 7/8 Development. The Department was provided an overview of the WMNY's permit application approach, conceptual design of the expansion, objectives of the hydrogeologic study, and overall permit application schedule.
- February 1, 2019 GEI and WMNY provided the NYSDEC with a Site Investigation Plan (SIP) dated February 2019 to satisfy the requirement in 6 NYCRR Part 363-4.4 for Hydrogeologic Investigation.
- March 6, 2019 NYSDEC reviewed the SIP and provided GEI with comments in correspondence dated March 6, 2019.
- March 25, 2019 GEI responded to the Department's comments in correspondence submitted on March 25, 2019 which included the submittal of information requested by the Department for completion of the SIP.
- April 4, 2019 The NYSDEC approved the scope of work described in the SIP with the inclusion of information provided by GEI on March 25, 2019 in correspondence dated April 4, 2019.
- July 15, 2019 A preliminary summary of findings of geologic/hydrogeologic conditions in the Area 7/8 Development was prepared and discussed during a meeting with the Department on July 15, 2019. The meeting was held prior to initiation of detailed

engineering design with NYSDEC Region 9 staff and Mr. Vincent Fay and Mr. Robert Phaneuf (NYSDEC Albany) participating via conference call. Meeting discussions focused on surface clay thickness, hydraulic properties of the Upper Water-Bearing Zone, and presence of an aquitard below the Upper Water-Bearing Zone.

- July 24, 2019 GEI and WMNY developed and submitted a scope of work in correspondence dated July 24, 2019 at the request of the NYSDEC to propose additional work to further characterize shallow soil conditions in the southwestern corner of the Area 7/8 Development as discussed in the July 15, 2019 meeting.
- September 17, 2019 A meeting with Department geologists from Region 8, Region 9, and Albany took place on September 17, 2019 at the Chaffee Landfill to discuss the implementation of the July 24 scope of work and the finding of low permeability soil in the upper 7 to 11 feet of the ground surface in the southwest corner of the expansion area. During the meeting, the NYSDEC requested further characterization of an aquitard identified below the Upper Water-Bearing Zone.
- September 30, 2019 WMNY and GEI, with interactive discussion with NYSDEC staff
 geologists, developed a scope of work to characterize the continued lateral and vertical
 presence of the aquitard below the Upper Water-Bearing Zone and assess hydraulic
 properties to verify that it functions as an aquitard. The work scope was verbally agreed
 upon and documented in GEI correspondence to the Department on September 30, 2019.

The SIP, Department correspondence, and supplemental scopes of work for site investigation identified herein are included in Appendix A. Historic site investigation locations including borings, test pits, piezometers, and monitoring wells are shown on Plate 1.

3.2 Literature Search

A comprehensive review of available reports and literature analysis was performed prior to beginning the field investigation and during the compilation of regional and site-specific information. The review included appropriate documents referenced in previous hydrogeologic investigations. Sources used to more comprehensively understand the physical site setting included, but were not limited to, reports and information from:

- United States Geological Survey Water Resources
- United States Department of Agriculture Soil Conservation Service
- New York State Geological Survey
- Erie County GIS Services Division (http://www2.erie.gov/gis/index.php)
- Army Corps of Engineers

- New York State Department of Health
- NYSDEC
- United States Environmental Protection Agency Surface Geologic Mapping

References cited in the report are included in Section 9.

3.3 2019/2020 Subsurface Investigation Activities

Prior investigations at the Chaffee Facility primarily focused on characterizing the geologic and hydrogeologic properties of the surface clay till and the "sand and gravel unit" below the clay till. The 2019 subsurface investigation characterized the following geologic units:

- Upper Silty Clay/Till and Ablation Till
- Upper Silty Sand and Gravel
- Lower Silty Clay
- Lower Silty Sand and Gravel
- Deeper Till

Subsurface investigations were completed as described in the SIP and included supplemental investigations described in Section 3.1. Subsurface investigation activities occurred between April 4 and October 11, 2019. The drilling and piezometer installation program occurred during two separate mobilizations. The first mobilization occurred in April with the completion of borings and piezometers to investigate the Upper Silty Clay/Till and the Upper Silty Sand and Gravel as described in the SIP. The first mobilization identified the Upper Silty Sand and Gravel below the Upper Silty Clay/Till in the Area 7/8 Development as somewhat thin, typically less than 30 feet in thickness and bounded at depth by a second laterally extensive clay till referred to as the Lower Silty Clay. As identified in correspondence in Appendix A, it was agreed that a second mobilization of drilling equipment was needed to further investigate the Lower Silty Clay and assess the effectiveness of the unit to function as a barrier to vertical groundwater flow (termed aquitard) and support characterization of the Critical Stratigraphic Section for the Area 7/8 Development. The second mobilization of the drilling program was conducted between September 30 and October 11, 2019.

The 2019 subsurface investigation program characterized hydrogeologic conditions at the Area 7/8 Development and included test pit excavations, soil borings and soil sample collection, piezometer installations screening either the Upper or Lower Silty Sand and Gravel, collection of soil samples from each of the geologic units for geotechnical laboratory analysis, and groundwater monitoring well installations. Subsurface investigation locations at the Area 7/8 Development are shown on Plate 2 and Figure 4 and investigation activities are described in the following sections.

3.3.1 Test Pit Excavations

As described in Section 3.1 and correspondence in Appendix A, the NYSDEC requested additional characterization of shallow stratigraphy in the southwestern corner of the Area 7/8 Development. Three test pits designated TP01-19 through TP03-19 were excavated on July 30, 2019 in the southwestern corner of the Area 7/8 Development (Figure 4) consistent with methods in Part 363-4.4(f) where the Upper Silty Clay/Till was not observed to be present above the Upper Silty Sand and Gravel. In that portion of the Area 7/8 Development, geologic materials encountered in split spoon soil samples from borings PZ03-19 and SB04-19 were described on boring logs as Silty Fill and/or Silty Reworked soil.

A track excavator was used to expose the upper 10 to 12 feet of soil for visual characterization by a GEI New York State licensed geologist and to collect soil samples for laboratory analysis for grain size distribution (sieve and hydrometers) by ASTM Method 422, in-situ permeability by ASTM Method D5084, and determination of organic matter content (organic fraction or Foc) by the Walkley-Black Method (Dichromate Oxidation Method) to assess the natural attenuation properties of the soil. Test pit excavations encountered either clay till or ablation-type till. Table 1 summarizes stratigraphic information for each test pit. Laboratory geotechnical data are summarized in Table 2. Test pit excavation logs are included in Appendix B.1 and geotechnical laboratory reports are included in Appendix C.

3.3.2 Soil Borings and Piezometer Installations

The 2019 subsurface investigation included a total of 12 soil borings for exploratory purposes and an additional 10 soil borings with the installation of temporary piezometers in and near the Area 7/8 Development (Figure 4). Soil borings confirmed the extent and refined the thickness of the surface silty clay soils (Upper Silty Clay/Till) and characterized deeper soils below the Upper Silty Sand and Gravel Unit. Split spoon soil samples collected at soil boring/piezometer locations were logged by a geologist from Earth Dimensions Drilling, Inc. under the direction and supervision of a GEI New York State licensed professional geologist. Soil boring logs are included in Appendix B.1. Soil stratigraphy encountered at each soil boring/piezometer location is summarized in Table 1.

A total of 28 soil samples considered representative of the laterally extensive soil types identified in Section 3.5 were collected during the investigation for geotechnical analysis by Third Rock, LLC which maintains AASHTO accreditation. Cohesive soil samples were analyzed for Atterberg limits by ASTM Method D4318 and all soil samples were analyzed for grain size gradation by ASTM Method D422. Soil permeability testing by ASTM Method D5856 was performed for 12 samples collected from the Upper Silty Clay/Till (or Ablation Till) and Lower Silty Clay. The geotechnical laboratory reports are included in Appendix C. Physical testing of soil characteristics are summarized in Table 2.

Two-inch diameter temporary piezometers installed in soil borings were completed with 10-foot screen lengths in the Upper Silty Sand and Gravel and either 10-foot or 5-foot screen lengths in the Lower Silty Sand and Gravel depending on thickness of the unit at the piezometer locations. At location PZ01-19, a piezometer was planned for installation to screen the Lower Silty Sand and Gravel per SIP correspondence dated September 30, 2019. However, after drilling below the Upper Silty Sand and Gravel and into Lower Silty Clay, the Lower Silty Sand and Gravel was not encountered after drilling and sampling to a depth of 80 feet. The location was re-labeled as SBPZ11D-19 and tremie grouted with cement/bentonite grout to ground surface. At the scoped location SB11-19, an exploratory soil boring was planned according to the SIP correspondence dated September 30, 2019. However, after encountering alternating layers of till and silty sand and gravel, a decision was made to install a piezometer with a well screen positioned below the Lower Silty Clay to assess groundwater elevations of the unit at that location. The 1-inch diameter piezometer is equipped with a 10-foot, 10-slot well screen and was installed at a depth of 60 to 70 feet (see geologic cross-sections on Figures 9b and 9d and Plate 3).

Piezometer pair PZ05S-19 and PZ05D-19 was installed central to the Area 7/8 Development using 4-inch diameter Schedule 40 PVC to accommodate a submersible pump for short-term pumping tests beneath the footprint of the expansion area described in Section 3.6. The "S" piezometer was installed to monitor groundwater in the Upper Silty Sand and Gravel (Upper Water-Bearing Zone) and the "D" piezometer to monitor groundwater in the Lower Silty Sand and Gravel (Lower Water-Bearing Zone) below the Lower Silty Clay (aquitard). Piezometer construction details are shown on boring logs in Appendix B.1 and summarized in Table 3.

Piezometers were developed no sooner than 48-hours after installation by removing a minimum of 10 well volumes using a Whale pump and/or bailer. The piezometers provided hydraulic information including groundwater flow direction in the Upper Silty Sand and Gravel, hydraulic conductivity, and vertical hydraulic gradients.

3.3.3 Monitoring Well Installations

Four groundwater monitoring wells MWSE-1 through MWSE-4 were installed to characterize groundwater quality at the Area 7/8 Development per Part 363-4.4(a)(2)(ii)(e)(2). The monitoring wells monitor groundwater quality of the Upper Silty Sand and Gravel (Upper Water-Bearing Zone) along the perimeter of the expansion area at locations shown on Figure 4. The monitoring well construction details conform to requirements in 6 NYCRR Part 363-4.4(k)(2) and include choke sand above and below a 3-foot thick bentonite well seal with 10-foot length, continuous 10-slot well screens. Monitoring well construction details are provided on boring logs in Appendix B.1 and summarized in Table 3. Each monitoring well was completed with a temporary lockable steel protective surface casing (Part 363-4.3(k)(2)(vi)). The temporary protective casings and concrete surface seal will be replaced to conform with requirements in 363-4.4(k)(2)(iii) as they become incorporated into the environmental monitoring program during Area 7/8 Development construction activity.

Each monitoring well was developed no sooner than one week following well installation (Part 363-4.4(k)(3). Monitoring wells were developed using a combination of a Whale pump and bailer to remove groundwater and any accumulated sediment on the well bottom. Well development information is summarized with the monitoring wells construction logs in Appendix B.1.

3.4 Groundwater Elevation Monitoring

Groundwater elevations were monitored monthly beginning May 2019 in completed piezometers and monitoring wells and continued through March 2020. Supplemental water level data were also collected monthly from the following existing wells screened in the Upper Silty, Sand and Gravel that monitor groundwater quality at the Closed Landfill Area, Western Landfill Area, and Western Soil Borrow Area:

MWBA-1	MW-50	MW-R4A
MWBA-2	MW-30	MW-R1A
MWBA-3	MW-13R	P3-03

Facility-wide groundwater measurements were collected during quarterly groundwater quality monitoring events in June 2019, August 2019, December 2019, and March 2020 from groundwater monitoring wells screened in the Silty Sand and Gravel as described in the existing EMP (2012) to supplement the monthly measurements collected from the piezometers and wells near the Area 7/8 Development. Additional water level measurements obtained during quarterly landfill monitoring (Q2, Q3, and Q4 2020 and Q1 2021) are incorporated into this report. Groundwater elevation data are summarized in Table 4.

3.5 Hydraulic Conductivity Testing

Hydraulic conductivity values for the Upper Silty Sand and Gravel were obtained from the four monitoring wells and 5 piezometers installed during the first 2019 drilling mobilization by performance of slug tests per Part 363-4.4(n). In addition, hydraulic conductivity values were obtained from two- and four-inch diameter piezometers PZ05D-19, PZBA2D-19, PZMWSE3D-19, and PZ04D-19 installed during the second drilling mobilization in October 2019 that monitor the Lower Silty Sand and Gravel. A known volume of water was displaced in the well by inserting a PVC slug and the water level decline was measured using a down-hole pressure transducer. Following equilibration, the slug was removed and the water level rise in the well monitored. Slug test displacement and recovery data were analyzed using AQTESOLV software to yield estimates of hydraulic conductivity in each well using analytical methods developed by Bouwer and Rice (1979) for unconfined and confined conditions for the Upper and Lower Water-Bearing Zones, respectively. Hydraulic conductivity calculations are provided in Appendix D and summarized on Table 2.

3.6 Pumping Tests

Pumping tests were conducted to estimate the specific yield (sustained yield) of the two 4-inch diameter piezometers (PZ05S-19 and PZ05D-19). As described in Section 5.1.2, the Upper Silty Sand and Gravel was comparatively thin and bound at its base by the Lower Silty Clay. Therefore, an additional objective established in the field during the pumping tests was to assess the effectiveness of the aquitard in minimizing vertical hydraulic communication between the Upper Silty Sand and Gravel (Upper Water-Bearing Zone) and the Lower Silty Sand and Gravel. The pumping test at PZ05D-19 was completed on July 9, 2019 and involved placement of downhole pressure transducers in PZ05D-19, PZ05S-19, and PZ04-19 (closest piezometer to the PZ05S/D-19 pair) which were used to automatically record water levels during testing at 30 second intervals. Hand measurements were recorded in wells MWSE-1, MWSE-2, MWSE-3, MWBA-1, and MWBA-2 before pumping began and several times during 6 hours of pumping at PZ05D-19.

A submersible well pump capable of a maximum flow rate of over 28 gallons per minute (gpm) was lowered to a depth of approximately 6-inches from the bottom of piezometer at PZ05D-19. Pumping was initiated at 20 gpm for approximately the first hour, the rate was increased to 22 gpm for approximately 30 minutes, then increased to a sustained, steady rate of 25 gpm for the remainder of the 6 hours of pumping. A rate higher than 25 gpm dewatered the well. The specific capacity of the test was calculated by:

$$S_c = Q / (h_o - h)$$

Where:

Sc = Specific capacity in gallons / foot Q = Equilibrium flow rate (h₀-h) = Total drawdown

The specific capacity of the piezometer was calculated to be 1.5 gpm/ft. Hydraulic response to pumping was not identified in wells screened in the Upper Water-Bearing Zone at piezometers PZ05S-19 (screened within 10 feet of the deeper pumping well), PZ04-19 or any of the wells monitored for water levels. The specific capacity calculation and summaries of monitoring water levels for hydraulic response are included in Appendix D.

Following testing at PZ05D-19, a second test was set up at piezometer PZ05S-19. An initial test was conducted to determine an appropriate rate of pumping. However, the pump was not capable of sustaining the low flow required to prevent the piezometer from becoming dewatered and it was determined that the testing of the piezometer needed to be delayed until a smaller pump could be obtained. Testing at piezometer PZ05S-19 was completed on August 23, 2019 using a Grundfos submersible pump capable of a maximum flow rate of approximately 5 gpm. A step test flow rate of 1.3 gpm was established as a sustainable rate such that the height of the water column in the piezometer would not fall below the top of the pump. After 6 hours of

pumping, the water column height was lowered by approximately 8.5 feet. Following testing, the flow rate was increased from 1.3 to approximately 1.8 gpm; however, the piezometer could not sustain the flow rate and the water level dropped below the pump intake in less than a minute.

The specific capacity of piezometer PZ05S-19 was calculated to be 0.15 gpm/ft. Hydraulic responses caused by pumping were not identified in the Upper Water-Bearing Zone at piezometer PZ04-19 or any of the other piezometers or monitoring wells screened in the Upper Silty Sand and Gravel nor was hydraulic response from pumping observed in the deeper piezometer PZ05D-19 screened below the aquitard. The specific capacity calculation and summaries of monitoring water levels for hydraulic response are included in Appendix D.

3.7 Existing Groundwater Quality Testing

As described in the SIP, existing groundwater quality at the Area 7/8 Development was established by sampling and analysis of groundwater samples collected from the four new monitoring wells MWSE-1, MWSE-2, MWSE-3, and MWSE-4 per Part 363-4.6(i)(a)(1). Groundwater quality sampling occurred during two monitoring events coincident with the Facility-wide environmental monitoring program. Sampling was performed by a sampling crew from TestAmerica during the 2019 Site-Wide Second Quarterly sampling event on July 19, 2019 and analyzed for the Part 363 Expanded List of parameters. The wells were sampled again on September 19, 2019 during the 2019 Third Quarter event and analyzed for the Part 363 Baseline List of parameters. The Baseline monitoring event parameter list also included the analysis for Per and Polyfluorinated Alkyl Substances (PFAS) following the detection of trace to low concentrations in wells MWSE-1 and MWSE-4 during the first sampling event for the Expanded List of parameters. Laboratory data reports and laboratory data validation reports for Existing Water Quality are provided in Appendix E and summarized in Table 5A. Supplemental sampling of wells MWSE-3 and MWSE-4 and surface water samples collected from Sed Basin #1 and Hosmer Brook were conducted in February 2020 for PFAS analysis. Laboratory data are summarized in Table 5B. Groundwater and surface water quality are discussed in Section 5.3.

3.8 Surface Water Study

The Chaffee Landfill is located near the surface water flow divide associated with the headwaters of un-named tributaries that are part of the Cazenovia Creek watershed system and Hosmer Brook which is part of the Cattaraugus Creek watershed system. Surface water quality and flow data were collected during investigations completed for the 2005 Western Landfill Area Part 360 Permit Application and evaluated:

- Characteristics of surface water flow on the clay till and the sand and gravel deposits; and
- The relationship of surface water and groundwater flow systems, including the locations of surface water flow divides relative to groundwater flow divides.

Based on the findings presented in the 2005 permit application, the Area 7/8 Development project lies entirely within the Cattaraugus Creek watershed system with surface flow occurring from wetlands and engineered sedimentation basins that ultimately flow to Hosmer Brook.

The surface water study completed in 2019/2020 included:

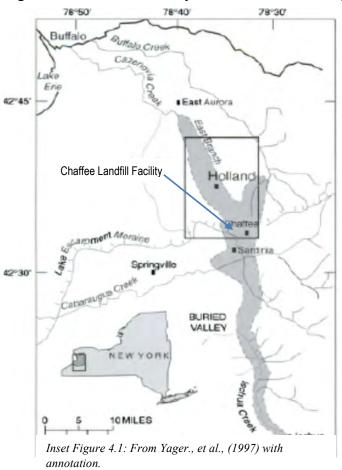
- Summarization of hydrologic findings for surface water discharging toward Hosmer Brook;
- Verification of existing surface water drainage and comparison to surface water conditions evaluated during the prior hydrologic study; and
- Collection of discharge estimates at three locations SH-2, SH-3, and SH-6 with the inclusion of field measured parameters specific conductance, pH, and temperature. New staff gauges were installed April 2019 and surveyed at locations shown on Figure 3.
- Collection of surface water samples for PFAS substances in Basin #1 discharge and Hosmer Brook in February 2020 as discussed in Section 5.3.1 and Section 5.4 and summarized in Table 5B.

Flow and field measured parameter data were collected monthly from May through December 2019 and are summarized in Table 6.

3.9 Investigation Locations Surveying

In accordance with Part 363-4.4(k)(4), the location of each soil boring, piezometer, monitoring well, and staff gauge was surveyed on May 2 and October 22, 2019 by Wendel Survey, a State of New York licensed surveyor under contract to WMNY for landfill construction. The three test pit locations were surveyed using a hand-held GPS by EnSol, Inc. on August 8, 2019.

3.10 Private Water Well Survey


A water well survey of private homeowner wells within one-mile of the Western Landfill Area and Closed landfill was documented in April 2004 for the Part 360 permit approval. While Department regulations at that time (and currently) require the survey cover a one-mile downgradient distance and a one quarter mile upgradient distance from the project area, the 2004 survey was extended one mile in an upgradient direction due to the proximity of a groundwater flow divide in the Upper Water-Bearing Zone located near the WMNY southern property boundary. The 2004 water well survey was conducted of 158 properties within the search area and excluded homes located in the Hamlet of Chaffee situated in the southeast corner of the search radius that are supplied with water by the Chaffee Water Works Company. Of the 158 properties receiving water well use questionnaires, 56 responses were received.

In 2019, the water well survey was updated to fulfill requirements in 6NYCRR Part 363.4-4(g) and included a search of landowners for tax parcels within a one-mile search radius of the limits of the Area 7/8 Development. The source of tax parcel information was obtained from the 2019 Erie County Office of GIS database. Consistent with the 2004 survey, tax parcels located in the Hamlet of Chaffee and serviced by the Chaffee Water Works Company (see Appendix F) were excluded from the 2019 survey and questionnaires were not mailed to parcels owned by Waste Management subsidiaries. The survey area is shown on Figure 5. A total of 161 questionnaires were mailed to parcel owners within the survey area, with 63 responses received. The results of the water well survey are discussed in Section 4.3.

4. Regional Physical Setting

4.1 Regional Geology

The Chaffee Landfill Facility lies on glacially derived materials deposited within a scoured bedrock valley that trends in a northwest-southeast direction carved by the pre-glacial Cazenovia River. The in-filled valley is reported to extend between East Aurora and Ischua, NY (Calkin et al., 1974 and Yager et al., 1997) (see Inset Figure 4.1 below). As shown on the figure below and Figure 7, the Chaffee Facility landfill areas, including the Area 7/8 Development are situated

north of the terminus of the Lake Escarpment Moraine. The buried bedrock valley is underlain by Middle and Upper Devonian shale. Drilling logs and gravity measurements have delineated part of the buried valley between Holland and Sardinia (Calkin and others, 1974; Miller and Staubitz, 1985). Within this reach, the buried valley beneath the Chaffee Landfill is filled with as much as 600 ft of sediments from multiple glacial advances and retreats. The East Branch of Cazenovia Creek currently flows northward across the surface of the sediment-filled buried valley.

Glacial geology in Western New York has been described by Fairchild (1932), Calkin (1974, 1982), Miller and Staubitz (1985), Muller and Calkin (1993), and Yager et al. (1997) as well as others. The most prominent glacial feature in the Chaffee area is the Lake Escarpment Moraine whose formation in Late Wisconsin

glaciation times (13,000 to 12,000 years before present and most recent glacial deposition in the area) is significant as it extends laterally in a southwest direction into Ohio and eastward into Central New York State where it is also known as the Valley Heads Moraine (Fairchild, 1932; Calkin, 1982). In Western New York, the Lake Escarpment Moraine has been intensely studied by Calkin (1982) at multiple till exposures in the area of Gowanda, New York (25 miles west of Chaffee) and describes till formation associated with ice margin oscillations forming several till hills in the area. Where the Lake Escarpment Moraine occurs between Holland and Chaffee, a

former spillway of a proglacial lake (located a few tenths of a mile west of the location of the Chaffee Landfill) was identified by Fairchild (1938). A USGS Report prepared by Staubitz and Miller (1985) describes the headwaters of Hosmer Brook originating at the former spillway location. Historic surface water flow from the spillway partly eroded a channel in previously deposited valley fill sediments, and a veneer of later outwash was deposited in this eroded area which Hosmer Brook now parallels. Clay till hills are present south of the Chaffee expansion area at the location of reclaimed Borrow Area "B" and the 8.9 acre Proposed South Borrow Area shown on Figure 2. The crest of the surface clay capping the moraine occurs near Hand Road and creates a surface water drainage divide where surface water drains to the north toward the East Branch of Cazenovia Creek and south in the direction toward Cattaraugus Creek.

Hydrogeologic studies in the buried bedrock valley between Holland and Sardinia, NY have been performed by Todd S. Miller of the US Geologic Survey (USGS) who was the primary or co-author of several USGS publications (Miller and Staubitz, 1985; Miller, 1988; Yager, Miller, and Thayer, 1997) related to this topic. The 1985 USGS investigation (Miller and Staubitz, 1985) describes the surface clay till deposit on the moraine to consist of "a fine-grained texture that is sparse in pebbles." Geologic logs from the USGS investigation were obtained by the NYSDEC and provided to GEI and logs for USGS wells SA-25 and SA-28 (located south of the expansion area) are included in Appendix B.1. Miller and Staubitz (1985) report that the till was derived from reworked fine-grained deposits from the ancestral Cazenovia River valley to the north and that these fine-grained deposits were transported by glacial ice during the Lake Escarpment readvance forming the moraine. They also suggest that the glacial ice front of the Lake Escarpment re-advance oscillated and overrode the glacially-derived deeper sand and gravel deposits that underlie the moraine near the Chaffee Facility. Figure 6 includes geologic cross-sections included in the 1985 USGS Report.

In a 1997 USGS groundwater modeling study conducted for the Town of Holland water supply system by Yager and Miller et al. (1997), they report, "The buried valley is plugged between Holland and Chaffee by the Lake Escarpment moraine,..." The report also states that, "little information is available on the types of sediments that form the Lake Escarpment moraine south of Holland. Till is present at land surface and is estimated to be 50 ft thick. Several sand and gravel layers similar to those described by Miller (1993) near the Valley Heads moraine near Dryden, NY could be buried within the moraine, but their extent and depth is unknown." The hydrogeologic conditions represented in their model included the area between an Iroquois Gas Corp. natural gas well Phelps MK1 (API number 31029045530000 - situated south of the Chaffee Landfill Facility) and an area north of the Town of Holland which parallels the buried valley. As shown on Figure 6, their model identified approximately 50 feet of Till (described as pebbles embedded in a clayey silt matrix), approximately 520 feet of undifferentiated morainal deposits, and approximately 80 feet of a "confined sand and gravel aquifer" covering the valley floor overlying bedrock near the Chaffee Facility.

The USGS geologic cross-sections provided on Figure 6 (from the 1985 and 1997 USGS reports) show deposition of alternating layers of clay till and sand and gravel (produced by glacial

advances and recessions) within at least the upper 100 feet of the ground surface in the area of the Chaffee Facility. These features are interpreted to reflect the final stage of Lake Escarpment moraine formation with surface clay deposition occurring as the final depositional sequence on the moraine. This interpretation is based on studies completed by Miller and Staubitz (1985), mapping of surficial aquifers by Miller (1988), groundwater modeling by Yager et al., (1997), and the similarity in silty clay till composition (surface clay and the deeper till layers) encountered below the Area 7/8 Development and areas to the south (see Section 5 for discussion).

4.2 Regional Hydrogeology and Aquifers

Regional groundwater flow in the buried valley occurs within the moraine where sand and gravel deposits are laterally continuous and under confining conditions as layers of silty clay till restrict the vertical movement of groundwater. In these areas, the groundwater flow direction is primarily northward within the thick moraine deposits. Little movement of water occurs in embedded saturated sand and gravel pockets found at elevations above 1450 ft msl in thicker areas of the silty clay till. Where water is present, groundwater flow in the silty clay till is minor and occurs only where sand and gravel occurs in discrete layers within the clay matrix. Age dating of groundwater in the surface clay till during the 2005 Chaffee hydrogeologic investigation for Western Landfill Area demonstrated that some saturated portions of the surface clay till have not been recharged under recent atmospheric conditions (pre-1950 tritium isotopic data) which is attributable to the low permeability of the surrounding clay matrix. South of the moraine, in the Outwash Plain, groundwater flows southward under water table conditions in surficial sand and gravel deposits and confined conditions in deeper, buried permeable deposits between layers of low permeability sediments which can be artesian (Miller and Staubitz, 1985).

La Sala (1968) identified four glacial sand and gravel aquifers in a regional study of the groundwater resources of the Erie-Niagara Drainage Basin and described till and sand and gravel deposits in the Sardinia Area. Miller and Staubitz (1985) completed a hydrogeologic appraisal of five selected aquifers in Erie County which included a study of sand and gravel deposits occurring south of the Lake Escarpment Moraine referred to as the Sardinia Aquifer. New York State has not identified the Sardinia Aquifer as a listed New York State Primary or Principal Aquifer in the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 2.1.3 (October 1990) - Memorandum for "Primary and Principal Aquifer Determinations."

The New York State Geographical Information System (GIS) Clearinghouse maintains a database of geologic and hydrogeologic mapping information completed in New York State. For New York State aquifers, the GIS Metadata file source data are based on NYSDEC's Unconsolidated Aquifers mapping at a scale of 1:250,000. The mapping of aquifers in Western New York State, including the area of Chaffee, is based on a compilation by Todd S. Miller at the USGS (1988 – Potential Yields of Wells in Unconsolidated Aquifers in Upstate New York – Niagara Sheet) and presumably used information from his 1985 study in its creation. As shown on the GIS mapping of New York State aquifers (see Figure 7), the Chaffee Landfill Facility is

located in the area mapped as "Moraine" and labeled as "Not a Primary Aquifer, Unknown". "Unknown" refers to expected pumping well yield. An area mapped as an "Unconfined, high yield aquifer not a Primary Aquifer > 100 gallons/minute" is shown to exist at its closest point to the Chaffee Facility approximately 1600 feet to the southeast of the landfill facility. The unconfined, high yield aquifer is presumed to represent Outwash Plain sand and gravel deposits, termed by Calkin (1982) and identified as the Sardinia Aquifer by Miller (1985). The outwash sand and gravel deposits occur south of the buried moraine deposits identified by Miller and hydrogeologic investigations completed at the Chaffee facility (see Section 5).

In 1987, the USEPA designated a portion of the Cattaraugus Creek Watershed as a Federal Sole Source Aquifer (SSA). SSAs are delineated primarily by surface watershed boundaries and encompass a variety of geologic materials including moraine sediments and bedrock that transmit little to no water. As reported in the 2005 Hydrogeologic Study for the Western Landfill development (MMCE, 2005), land in the area of and to the south of the Chaffee Facility lie within the federal designation of the Cattaraugus Creek Basin Sole Source Aquifer. However, as explained below, the SSA has no bearing on whether or not the area is designated as a New York State Primary or Principal aquifer.

According to NYSDEC TOGS 2.1.3, the NYSDEC considers the benefit of a Federal SSA designation as "symbolic." The NYSDEC states further in TOGS 2.1.3 that there is no evidence that the SSA designation process considers the groundwater resource potential and vulnerability in the same way the Department identifies Primary Water Supply Aquifers and Principal Aquifers. The Hydrogeologic Study for the Western Landfill development (MMCE, 2005) reported that the NYSDEC Division of Water commented and took the position during a hearing held on the proposed designation that the groundwater resource did not justify designation as a federal sole source aquifer for a number of reasons. The Division of Water did not specifically address the issue of primary/principal aquifers as it applied to the SSA in question, except to state that it endorsed the 18 already designated primary aquifers in the state being included in the federal sole source designation.

4.3 Local Groundwater Usage

As described in Section 3.10, groundwater use in the vicinity of the Chaffee Facility was assessed across a distance of one mile upgradient and downgradient from the Area 7/8 Development and existing boundaries of waste containment. Well information questionnaires were mailed via USPS to 161 property owners and 63 property owners responded to the survey. A total of 14 respondents indicated their parcel did not have a well and was either an undeveloped property or situated on Allen Road or Olean Road and serviced by municipal water provided by the Chaffee Water Works. The remaining 49 parcels reported having a well which was utilized for household or farm water supply. Appendix F provides details and includes a table summarizing tax parcel IDs and property addresses that received a questionnaire, whether

or not a well was located on the parcel, well water usage, known well construction details (when provided by the respondent) and other details if provided by the respondent.

The majority of respondents reported drilled wells with well depths of 80 feet or more. Several wells are drilled through the overburden into bedrock – particularly parcels on Savage Road west of the Chaffee Facility. Based on well depth, most wells likely obtain water from the overburden. The closest domestic well to the Chaffee Facility is situated at Parcel 218 and located on Olean Rd. approximately 0.25 miles northeast of the Facility. The well was reported to be 80 feet deep and likely obtains water from the Upper Silty Sand and Gravel beneath more than 40 feet of the clay till. South of the Chaffee Facility, Parcel 164 is located on Allen Road and was reported to utilize a 100-foot deep well for household supply.

South of the facility, the Chaffee Water Works provides water to the residents in the Hamlet of Chaffee and obtains its municipal water supply from ground water with a well screened in the upper 20 feet of sand and gravel outwash in the Sardinia Aquifer or a second, newer well screened in confined sand and gravel deposits deeper in the aquifer. The water supply well is located 1.1 miles southeast of the Area 7/8 Development.

5. Hydrogeologic Investigation Results

This section describes site geology and hydrogeologic conditions at the Chaffee Landfill Facility and the proposed Area 7/8 Development.

5.1 Geology

The Chaffee Landfill areas and proposed Area 7/8 Development are located entirely over glacially-derived deposits associated with late stages of formation of the Lake Escarpment Moraine. On WMNY property, the moraine deposits consist of clay-rich tills interbedded with deeper, laterally extensive deposits of silty sand and gravel. The moraine deposits cover the entire landfill areas and are interpreted to extend southward more than 1600 feet beyond the Area 7/8 Development boundary based on USGS studies and site-specific hydrogeologic studies.

The United States Department of Agriculture (USDA) soils database was utilized to generate a map of surficial soil types present at the Area 7/8 Development and surrounding areas to the south. Soil types and USDA soil mapping are included in Appendix G. The USDA soil mapping identifies several silt-loam and gravel-loam soils with surface slopes typically varying between 3% and 8%. Soils surrounding Hosmer Brook to the south of the Area 7/8 Development are identified as having a "muck" and silt loam surficial soil expression. The surficial soil types identified in the USDA database are consistent with the USCS classifications of soil types identified in previous investigations. The presence of silty soil types and areas of gravel loam south of the Expansion Area were verified during site investigations.

Investigations of the Chaffee Landfill, Western Landfill Area, and Area 7/8 Development have identified the following laterally extensive units situated within the upper 100 feet of the ground surface:

- Upper Silty Clay/Till
- Ablation Till
- Upper Silty Sand and Gravel
- Lower Silty Clay
- Lower Silty Sand and Gravel
- Deeper Till

The geologic materials encountered at each investigation point (test pit, soil boring, piezometer, monitoring well) at and near the Area 7/8 Development have been described on geologic logs for the 2019 subsurface investigation included in Appendix B.1 and in the stratigraphic summary presented in Table 1. Geologic logs for borings/wells completed in and near the Area 7/8 Development prior to 2019 are included in Appendix B.2. Soils and hydraulic testing information summarized from pre-2019 investigations are included in Appendix B.3.

Visual depictions of site geology at the Chaffee Landfill are provided for geologic cross-section lines shown on Figure 8 and profiled on Figures 9a through 9d and also on Plate 3. The geologic cross-section for B to B' extends off-site to the south approximately 1,600 feet to include geology from USGS well SA-25. Geologic information for the boring is included in Appendix B.1. Geologic unit thicknesses are shown on isopach maps for the surface clay till, Upper Silty Sand and Gravel, and Lower Silty Clay/Till on Figures 10 through 12. Plate size drawings of these figures are provided on Plates 4 through 6. Physical and hydraulic properties of the geologic units are summarized in Table 2.

Each unit is described below with references to the tables and figures identified above.

5.1.1 Upper Silty Clay/Till

As described in previous investigations, the Upper Silty Clay/Till comprises the uppermost strata at the Chaffee Facility and occurs across most of the Area 7/8 Development. To a lesser extent, Ablation Till is also present at the ground surface in the extreme southwest corner of the development area (see Section 5.1.2). The Upper Silty Clay/Till is classified as CL-ML (USCS classification) and described as a uniform brown (becoming gray where deeper and less oxidized) silty clay with trace fine gravel having moderate plasticity. The Upper Silty Clay/Till extends beyond the boundaries of the Area 7/8 Development with the exception of a small area in the southwestern corner of the expansion area where Ablation Till occurs. The Upper Silty Clay/Till is thickest in the northern portion of the Area 7/8 Development (greater than 57 feet in thickness) and thins to 10-feet or less in a southerly direction as shown on the isopach map of the Upper Silty Clay/Till on Figure 10 and Plate 4. The Upper Silty Clay/Till is above the water table and found to be unsaturated at each boring location during continuous split spoon soil sample collection and test pit excavation. However, piezometer PZ09 indicated saturated conditions may occur in the pore water of the surface clay Till as water slowly entered the piezometer screen (7.5 feet deep) over the course of monitoring (a water column height of 1.5 feet after four months of monitoring). This is not unexpected as decommissioned piezometer SB6-08 also identified minor water in the Upper Silty Clay/Till in the soil borrow area prior to mining. Based on the slow rate of entry into the piezometer, it is likely the water represents a transient condition under which the larger soil pore spaces are temporarily at or near saturation in response to precipitation events resulting in minor accumulation within the screened interval.

Table 2 summarizes grain size testing, Atterberg limits, and undisturbed permeability measurements from 2019 geotechnical laboratory testing. Typically, the Upper Silty Clay/Till consists of 75% or more of silt and clay and less than 10% gravel. The Plasticity Index of the samples collected during this study and previous studies (included in Appendix B.3) indicate the material is classified as moderately plastic. Permeability testing of the in-situ Upper Silty Clay/Till samples indicates very low permeability values ranging from approximately $3x10^{-8}$ cm/s to $8x10^{-8}$ cm/s in the Area 7/8 Development.

Occasional lenses of silt, sand and gravel were described to occur locally in the Upper Silty Clay/Till during prior site investigations at the Chaffee Landfill. However, only one such sand and gravel lens was encountered in borings and test pits during the 2019 investigation and found at TP01-19 (*Photograph 1*).

Laboratory soils testing for Organic Matter (organic fraction or Foc) was performed to assess attenuation properties of the soil. In addition to low permeability which influences constituent retardation, soil organic matter is important to natural attenuation processes in soil. Five samples were analyzed (one from the surface silty clay, three from Ablation Till, and one from the Upper Silty Sand and Gravel). Organic Matter was detected in the sample collected from the silty clay Till with a Foc value of 0.0029 g/g. The Foc values are

Photograph 1 – Upper Silty Clay Till with a drv sand and gravel lens at TP01-19.

considered to have average or above average soil attenuation properties since 0.002 g/g is considered a default value in USEPA natural attenuation models.

5.1.2 Ablation Till

Where the Upper Silty Clay/Till thins and is absent in the extreme southwest corner of the expansion area, compact, poorly sorted gravelly sand with silt and clay was observed at the ground surface in test pit excavations completed at TP02-19 and TP03-19. The soil was recognized as Ablation Till based on past experience at other Western New York landfill sites by the logging professional geologist (Photograph 2). The Ablation Till was found to be 7 to 11 feet thick and the estimated aerial extent is shown on Figure 10.

Table 2 summarizes grain size testing and undisturbed permeability measurements from geotechnical laboratory testing. The Ablation Till was found to consist of about 35% gravel and 50% sand in a silt and clay matrix. Permeability testing of the Ablation Till indicates permeability values range from approximately 9x10-6 cm/s to 4x10-7 cm/s. A value of 1.2x10-3 cm/s was obtained for an in-situ (Shelby tube)

Photograph 2 – Compact Ablation Till to a depth of 11.5 feet at TP03-19.

sample collected from TP03-19 at 8 feet; however, the soils laboratory indicated a piece of angular gravel adjacent to the wall of the permeameter provided an inaccurate permeability

value. Therefore, Ablation Till soil remaining in the sampling bucket collected from a similar depth in the test pit which was collected for grain size analysis and was recompacted to a similar in-place soil density as that collected from the original Shelby tube. The test was re-run and the value obtained (8.9x10-6 cm/s) which was similar to the value obtained from TP02-19. The permeability of soil is a function of the D₁₀ grain size which is also termed the "effective grain size" and is considered when evaluating the ability of soil to transmit water. The D₁₀ grain size of the soil samples collected from TP03-19 was 0.03 mm (silt size) which effectively reduces soil permeability. The recompacted permeability value is considered to be more representative of the material than the original Shelby tube. Both test results are provided in Table 2 for TP03-19.

Organic Matter was detected in samples collected from the Ablation Till with Foc ranging from 0.0014 g/g to 0.0028 g/g. The Foc values are considered to have average or above average soil attenuation properties.

5.1.3 Upper Silty Sand and Gravel

The Upper Silty Sand and Gravel is the unit found below the Upper Silty Clay/Till and Ablation Till and was deposited in a glaciofluvial, high energy glacial meltwater environment. The Upper Silty Sand and Gravel unit occurs Site-wide in the Lake Escarpment Moraine beneath the Upper Silty Clay/Till. Based on the presence of cobbles and boulders, angularity of gravel, abundance of soft black shale fragments with random orientation (non-planar), and relatively high

Photograph 3 – Upper Silty Clay on left side of split spoon and Upper Silty Sand and Gravel on the right side.

percentages of fines (typically 10 to 15%), transport and deposition likely occurred a relatively

short distance from its source of origin (glacial ice margin). The soil was classified as SM-GM (USCS classification) and described as a brown-gray gravelly silty sand with some stratification (see Photograph 3). The top and bottom surfaces of the unit are somewhat irregular and exhibit undulations from scouring of the surface of the deeper Lower Silty Clay during transport and deposition and possible scouring from glacial ice re-advance and deposition of clay till above. The unit is approximately 10 to 27 feet thick in the Area 7/8 Development (see Figure 11 and Plate 5). As shown on geologic cross-sections, the upper portion of the silty sand and gravel deposits are unsaturated as the water table occurs within the unit.

5.1.4 Lower Silty Clay/Till

The Lower Silty Clay/Till is identified as CL-ML (USCS classification) and described as uniform gray-brown silty clay with trace fine gravel having moderate plasticity (see Photograph 2 below). The Lower Silty Clay/Till extends laterally across the Area 7/8 Development and was

Photograph 4 – Sharp contact between Lower Silty Clay (left side of split spoon) and Lower Silty Sand and Gravel (right side of split spoon).

encountered in all deep borings that penetrated the Upper Silty Sand and Gravel. As shown on Figure 12 and Plate 6, the thickness of the Lower Silty Clay below the Area 7/8 Development ranged from 7.1 feet to approximately 22 feet. Outside the expansion area, the Lower Silty Clay/Till was found to be thicker to the south (greater than 38.3 feet at SBPZ01D-19) and east (25 feet at PZSB11-19). At boring locations PZBA2D-19 and PZSB11-19, the Lower Silty Clay/Till was interbedded with distinct, rhythmic recessional silty sand and gravel deposits having thicknesses ranging from about 6 inches to 2 feet. No intermixing of the layered materials was observed. The areas where silty sand and gravel deposits were found interbedded with the Lower Silty Clay/Till are shown on the geologic cross-section D-D' (Figure 9d and

Plate 3). The top surface of the Lower Silty Clay was contoured on Figure 12A to better understand the configuration of bottom of the Upper Silty Sand and Gravel and support the understanding of the seasonally transitional groundwater flow direction in the Upper Sand and Gravel described in Section 5.2.2. As depicted in Figure 12A, the surface of the Lower Silty Clay rises in a westward direction causing a thinning of the saturated portions of Upper Sand and Gravel near the northern portions of Wetland SD-1 which recharges the UWBZ west and northwest of the Area 7/8 Development. The surface of the Lower Silty Clay slopes in a north and south direction beneath the Area 7/8 Development.

Table 2 summarizes grain size testing, Atterberg limits, and undisturbed permeability measurements from geotechnical laboratory testing of the Lower Silty Clay. Laboratory testing results from the unit were nearly identical to the Upper Silty Clay/Till where the Lower Silty Clay consists of 75% or more of silt and clay and less than 10% gravel with moderate plasticity. Permeability testing results of in-situ Lower Silty Clay/Till samples were low, ranging from approximately $3x10^{-8}$ cm/s to $4x10^{-8}$ cm/s (similar to the Upper Silty Clay/Till permeability results). The Lower Silty Clay/Till samples tested excluded silty sand and gravel layered materials when present.

5.1.5 Lower Silty Sand and Gravel

The Lower Silty Sand and Gravel was encountered below the laterally extensive Lower Silty Clay/Till. Similar to the Upper Silty Sand and Gravel, the lower Silty Sand and Gravel was deposited in a glaciofluvial environment. The soil was identified as SM-GM with some samples identified as SW-SP (USCS classification) and described as a gray silty sand and gravel with some stratification. The unit was completely penetrated by five soil borings in the vicinity of the Area 7/8 Development and was found to range in thickness from 4 feet (PZMWSE3D-19) to 21 feet (SB12-19) along the southern WMNY property boundary south of the expansion area. As shown on geologic cross-sections, the top and bottom surfaces of the Lower Silty Sand and Gravel deposits undulate and are bound by the Lower Silty Clay and deeper Till, respectively. The Lower Silty Sand and Gravel was not observed southwest of the Area 7/8 Development at boring SBPZ01D-19 as the Lower Silty Clay was found to extend downward at least to a depth of 80 feet. At PZ05D-19 below the central portion of the Area 7/8 Development, the unit was found to be well sorted (visually cleaner containing fewer fines) and well stratified. Elsewhere, borings completed along the southern WMNY property boundary and at the northern end of the expansion area (i.e., decommissioned well MW-K(D) from the Western Landfill Area investigation), contained percentages of fines (silt and clay) ranging from 8.4 to 14.8% which is similar to the percentage of fines found in the Upper Silty Sand and Gravel.

5.1.6 Clay, Silt, and Fine Sand/Deeper Till

A deeper till was identified below the Lower Silty Sand and Gravel at five locations in the vicinity of the Area 7/8 Development (see geologic cross-sections on Plate 3). The deeper till was observed to be visually similar to Upper Silty Clay/Till and Lower Silty Clay/Till with the

exception of PZ05D-19. At that location, a compact, uniform very fine sand and silt was identified below the Lower Silty Sand and Gravel Unit and appeared to have glaciolacustrine deposition origins based on uniform grain size, lack of gravel, and high dilatancy. Grain size analysis indicated 4.4% sand, 92% silt, and 3.9% clay. Material similar to the deeper Till soil was identified on other boring logs in deeper borings completed in the Western Landfill Area; most notably boring MW-E(D) situated a few hundred feet south of Hand Road where it was encountered at a depth of 68 feet (1387 ft elevation) having a thickness of approximately 50 feet (see Appendix B.2 for boring log details).

5.2 Site Hydrogeology

The hydrogeology of the Chaffee Facility and the Area 7/8 Development has been characterized to depths of more than 100 feet below ground surface by borings, piezometers, and monitoring wells. The following hydrostratigraphic units have been identified:

- Discontinuous Perched Water in Upper Silty Clay/Till
- Upper Silty Sand and Gravel (also referred to as the Upper Water-Bearing Zone)
- Lower Silty Clay Aquitard
- Lower Silty Sand and Gravel (also referred to as the Lower Water-Bearing Zone)
- Deeper Till Aquitard

5.2.1 Upper Silty Clay/Till

At the Closed Landfill and Western Landfill Area, the Upper Silty Clay/Till is considered to be a monitorable hydrostratigraphic unit at locations where perched groundwater is present in lenses of course grained soils within the silty clay soil matrix. Groundwater monitoring wells screened in these perched zones exhibit spatially variable groundwater elevations corresponding generally to the elevation of the saturated lenses encountered. This head distribution suggests a lack of continuity and little to no hydraulic interconnection between the identified perched zones. The interaction between perched water in the Upper Silty Clay/Till and the water table occurring in the Upper Silty Sand and Gravel below the surface clay was evaluated in the hydrogeologic investigation for the Western Landfill Area. Pumping tests completed in the Upper Silty Sand and Gravel unit indicated no hydraulic response in wells monitoring perched groundwater. Also, age dating of perched groundwater in the surface clay till performed during the 2005 hydrogeologic investigation for Western Landfill Area demonstrated that some saturated portions of the surface clay till have not been recharged under recent atmospheric conditions (pre-1950 tritium isotopic data). This suggests accumulation of perched water in coarse-grained lenses has occurred very slowly over time.

The groundwater monitoring program established for the Closed Landfill and Western Landfill Area for the 2005 Part 360 Permit application concluded that, where groundwater was identified

in more permeable lenses of sand and gravel within the surrounding silty clay matrix, a monitoring well would be installed for groundwater quality monitoring. Along the northern boundary of the Area 7/8 Development, monitoring wells screened in surface clay at MW-K(S) and MW-3R are dry but wells MW-4CR and MW-1BR contain perched water. However, the latter of these wells requires several days or longer to recover to near static water levels after purging. At these well locations, the surface clay is more than 35 feet thick.

South of the Closed Landfill, mining in the West Soil Borrow Area removed tens of feet of clay soil from the ground surface in the Area 7/8 Development. The remaining thickness of the surface clay (15 feet or less) was investigated and described in Section 5.1.1. As reported, the clay was found to be fairly uniform with no observable sand and gravel zones containing perched groundwater. Test pit TP01-19 was found to have a lens of sand and gravel at approximately 4.5 feet below ground surface but was dry. It is important to note that two piezometers screened in Upper Silty Clay/Till within the limits of the Area 7/8 Development (decommissioned well at SB6-08 completed for the West Soil Borrow Area investigation and 2019 investigation piezometer PZ9-19) were observed to slowly accumulate groundwater over time. The groundwater recharge rates in these piezometers were measured on a time scale of weeks to months.

Unlike the Upper Silty Clay/Till in the northern portion of the Area 7/8 Development (adjacent to the Closed Landfill and Western Landfill Area) which is thicker and contains saturated sand and gravel lenses and is considered a monitorable hydrostratigraphic unit, the Upper Silty Clay/Till in the southern half of the development area is not considered a monitorable hydrostratigraphic unit based on the absence of perched water in lenses of sand and gravel, and extremely low porewater seepage rates into well screens that were installed in the silty clay soil within the expansion area.

5.2.2 Upper Silty Sand and Gravel Water-Bearing Zone

The Upper Silty Sand and Gravel Water-Bearing Zone (Upper Water-Bearing Zone) is the uppermost laterally continuous water-bearing zone below the Area 7/8 Development and the Chaffee Facility. Groundwater occurs generally under unconfined (water table) conditions as exhibited by an unsaturated zone observed in the Upper Silty Sand and Gravel. Depth to groundwater below the Area 7/8 Development is typically 15 feet based on the existing ground surface elevations in the southern half of the development area. Where ground surface elevations rise to the north, depth to groundwater increases. Recharge to the Upper Water-Bearing Zone below the Area 7/8 Development footprint occurs through horizontal flow as downward vertical flow is restricted by the low permeability of the Upper Silty Clay/Till and Ablation Till within the boundaries of the proposed landfill footprint. Surface water located west and southwest of Area 7/8 Development recharges the Upper Water-Bearing Zone.

The thickness of the Upper Water-Bearing Zone is dictated by seasonal fluctuation in water levels and the fixed surface elevation of aquitard below it. The geologic cross-sections on Figures 9a through 9d show depth to groundwater for May and October 2019 monitoring events

(data summarized on Table 4). Based on the cross-sectional information, the average saturated thickness of the unit across the expansion area ranges from approximately 7 to 15 feet depending on depth to the aquitard below the unit.

Figure 13 shows groundwater elevation fluctuations over a six year period for monitoring wells MW-R4A and MWBA-2 which are located at the north and south ends of the Area 7/8 Development, respectively. The observed groundwater elevation changes indicate a seasonal pattern of fluctuating water levels; approximately 2.5 to 4 feet during this time frame. Included on the figure are monthly groundwater elevations for piezometer PZ05S-19 installed near the center of the expansion area during the 2019/2020 hydrogeologic investigation. Groundwater elevation data in PZ05S-19 mimic the decline of groundwater elevations in the two monitoring wells (MW-R4A and MWBA-2).

Groundwater elevation fluctuations in monitoring wells and piezometers located in and near the Area 7/8 Development are shown on Figure 14. During higher water table conditions (April/May), the measured difference in groundwater elevations between locations is less than one foot. As the investigation timeframe progressed, declining water levels were observed with lows occurring in October/November. As shown on the figure, groundwater levels declined the least in piezometers and wells located closest to Sed Basins #1, #2 and #3 (i.e., MWSE-4, P3-03). Among the monitored piezometers and wells, water levels in well MWSE-4 declined the least, however fluctuation patterns in monthly groundwater elevation data generally mimic water levels responses observed in other wells/piezometers. The proximity of well MWSE-4 to the Sedimentation Basins is the cause of the observed difference in hydraulic response. Water levels in the well were held more constant as a direct result of slow exfiltration of stormwater occurring through the bottom of the basins. This process plays an important role in groundwater recharge and influences the overall direction of groundwater flow in the Upper Water-Bearing Zone. This process is more fully discussed in Section 5.5.

The groundwater flow direction in the Upper Silty Sand and Gravel is shown on potentiometric surface maps on Figures 15 through 20 for data collected in the Area 7/8 Development from May, June, August, October, and December 2019 monitoring events and the March 2020 monitoring event, respectively, as well as Appendix H for monitoring events in June, August, November 2020, and March 2021 monitoring events. The June, August, and December 2019 and March, June, August, November 2020 maps, as well as the March 2021 map depict groundwater elevation data obtained during Site-wide quarterly groundwater monitoring events. June, August, and December 2019 data and March 2020 data are also provided on Plates 7, 8, 9, and 10. Based on the horizontal hydraulic gradient across the Area 7/8 Development footprint, the groundwater flow direction in the Upper Silty Sand and Gravel (Upper Water-Bearing Zone) seasonally transitions from a north/northeast vector (Q4) to a south vector (Q2). The hydraulic gradient and groundwater seepage velocities for the Area 7/8 Development presented in Appendix I were calculated using the following Darcy seepage velocity calculation for the two

seasonal groundwater flow vector directions (south and northeast) for 2019 and 2020 using the following equation:

$$v = seepage \ velocity = \frac{Ki}{\eta_e}$$
 $where:$
 $K = hydraulic \ conductivity *$
 $i = hydraulic \ gradient = \frac{(h_1 - h_2)}{L}$
 $\eta_e = effective \ porosity **$
 $h_1 \ and \ h_2 = \Delta \ groundwater \ elevation$
 $L = horizontal \ distance$

As shown in Appendix I, the groundwater seepage velocity in the Upper Water-Bearing Zone below the Area 7/8 Development is calculated to be 0.58 ft/yr and 0.60 ft/yr in 2019 and 2020, respectively, in a southward direction in the spring and summer seasons (April - August). Flow seasonally transitions to a northeast direction at a calculated rate of 1.88 ft/yr and 2.26 ft/yr in 2019 and 2020, respectively, as groundwater elevations regionally decline during the late summer, fall and winter seasons (September through early March). Based on an average south flow component of 0.59 ft/yr and an average northeast flow component of 2.07 ft/yr, the net vector sum has an estimated annual seepage velocity beneath the Area 7/8 Development of 1.33 ft/yr in a northeast direction. Hence, a particle beneath the footprint would be expected to be transported to the northeast and would migrate at a rate of 1.3 feet per year assuming no retardation of particle transport.

5.2.3 Lower Silty Clay Aquitard

The Lower Silty Clay Aquitard was investigated for lateral continuity, thickness, and laboratory measured permeability. The aquitard is saturated but does not readily transmit groundwater as it primarily consists of moderate plasticity silty clay having a laboratory measured geometric mean permeability of 4.62×10^{-8} cm/s. As shown in geologic cross sections shown on Figures 9a through 9d, the lower aquitard is laterally continuous below the expansion area and extends southward beyond the WMNY southern property boundary. Described in Section 5.1.3, areas of alternating layers of silty clay and silty sand and gravel were identified in borings located southeast of the Area 7/8 Development but overall thickness and confirmed low permeability of the silty clay portions of the Lower Silty Clay Aquitard would not compromise the overall properties of the aquitard to restrict vertical groundwater movement based on the hydraulic data collected.

Heads in piezometers screened in the Lower Water-Bearing Zone (discussed in section 5.2.4 below) are above the elevation of the base of the aquitard while exhibiting between 3 and 4 feet of head loss relative to the Upper Water-Bearing Zone. This is indicative of the confining properties of the Lower Silty Clay Aquitard. As reported in Section 3.6, the groundwater

pumping test at PZ05D-19 (screened in the Lower Water-Bearing Zone) did not produce a hydraulic response in the Upper Water-Bearing Zone, thereby demonstrating the effectiveness of the Lower Silty Clay Aquitard to restrict vertical movement of groundwater between the Upper and Lower Water-Bearing zones below and in close proximity to the Area 7/8 Development footprint.

5.2.4 Lower Silty Sand and Gravel Water-Bearing Zone

The Lower Silty Sand and Gravel is the lower water-bearing zone investigated in the Area 7/8 Development. Groundwater occurs under confined conditions as a clay aquitard exists above and below the unit in proximity to the Area 7/8 Development footprint. Recharge to the Lower Water-Bearing Zone beneath the footprint occurs horizontally as vertical movement of groundwater is restricted by the aquitards above and below the unit. Unit recharge occurs east or southeast from Area 7/8 Development based on groundwater elevations measured in piezometers screened in the Lower Water-Bearing Zone.

The thickness of the Lower Water-Bearing Zone is fixed by the surface elevation of the aquitards above and below the unit (see Figures 9a through 9d). Based on the cross-sectional information and stratigraphic data in Table 1, the average saturated thickness of the unit across the expansion area ranges from approximately 10 to 17 feet. The Lower Water-Bearing Zone was not observed southwest of the Area 7/8 Development footprint at boring SBPZ01D-19 as the Lower Silty Clay was found to extend downward at least to a depth of 80 feet (see Figure 9a). South of the development area, geologic cross-section D-D' (Figure 9d) shows the unit thinning to the west and thickening to the east. Geologic cross-section B-B' (Figure 9b) incorporates off-site data from USGS Well SA-25 and projects a thickening of the Lower Water-Bearing Zone in a south direction with continued confining conditions by the presence of aquitards above and below the unit.

Figure 21 depicts monthly water levels at piezometers PZ05S-19 and PZ05D-19 screened respectively above and below the aquitard. Two to four feet of head loss occurs between the Upper and Lower Water-Bearing Zones. The vertical head difference of this magnitude is indicative of the low permeability aquitard restricting vertical groundwater flow.

Similar to information provided on Figure 21, Figure 22 plots heads in the other four piezometer pairs installed beyond the southern boundary of the Area 7/8 Development. The head differentials between the Upper and Lower Water-Bearing Zone range from 2 to 4 feet and are consistent with the presence of the low permeability aquitard restricting vertical flow.

The groundwater flow direction in the Lower Water-Bearing Zone is inferred in a northwest direction based on the triangulation of groundwater elevations between the five piezometers screened in the unit (see Table 2). Piezometers with the highest heads are located southeast of the Area 7/8 Development footprint. Comparatively, the highest groundwater elevations in the Upper Water-Bearing Zone occur southwest and west of the Area 7/8 Development.

Groundwater elevation data and seasonal fluctuations suggest recharge to the Lower Water-Bearing Zone occurs east and/or southeast from the Area 7/8 Development, well beyond the limits of the Area 7/8 proposed landfill footprint.

5.2.5 Deeper Till Aquitard

The Lower Water-Bearing Zone is bound by a deeper till as described in Section 5.1.5. Based on visual observation and grain size data for the deeper Till, the confining properties are expected to be similar to those described for the Lower Silty Clay Aquitard.

5.3 Groundwater and Surface Water Quality

Site-wide groundwater and surface water quality is monitored quarterly in accordance with the Chaffee Facility EMP (2012). The monitoring program includes groundwater quality monitoring in perched zones within the Upper Silty Clay/Till north of the Area 7/8 Development and in the Upper Silty Sand and Gravel unit. In the Area 7/8 Development, perched groundwater occurring in pockets of sand and gravel materials was not identified; therefore, the assessment of existing groundwater quality in the Area 7/8 Development was conducted using wells MWSE-1 through MWSE-4 (see Figure 4). Water quality data from existing monitoring wells MW-R1A and MW-R4A, currently used to monitor water quality on a quarterly basis in the Upper Silty Sand and Gravel along the southern boundary of the Closed Landfill (northern boundary of the Area 7/8 Development), were used to supplement the discussion of water quality. The wells are located on the upgradient or downgradient boundary (seasonally dependent) of the Area 7/8 Development.

Table 5A summarizes sample analytical results for four new monitoring wells screened in the Upper Water-Bearing Zone near the Area 7/8 Development. The following NYSDEC Part 363 Expanded List of organic chemicals were not detected: volatile organic and semi-volatile organic compounds (VOCs/SVOCs including 1, 4-dioxane), pesticides/herbicides, and PCBs. Per- and polyfluoroalkyl substances (PFAS) constituents were detected at low concentrations (parts per trillion level) at two well locations. PFAS constituent perfluorobutanoic acid (PFBA) (2.5 nanograms per liter {ng/L}) was detected at well MWSE-1 and seven individual PFAS constituents were detected at well MWSE-4. Based on the detection of PFAS during the Expanded List event, PFAS constituents were included with the Baseline Parameter List (second event). PFAS constituents were not detected in sample MWSE-1 and therefore, not confirmed at the well location during the Baseline sampling event. The same seven individual PFAS constituents detected at well MWSE-4 during the Expanded List sampling event were confirmed during the Baseline sampling event.

Radiological parameters (uranium and radium 226/228) and heavy trace metals were either not detected or detected at background concentrations when compared to water quality comparison criteria shown on Table 5A.

5.3.1 PFAS in Groundwater and Surface Water

As described in Section 5.2.2 and later in Section 5.5, slow exfiltration from storm water detained in Sedimentation Basins #1, 2, and 3 locally recharges groundwater near well MWSE-4. As such, surface water in the sedimentation basins was considered a possible source of the PFAS detected in groundwater at well MWSE-4.

The source of PFAS in MWSE-4 was investigated through supplemental surface water sample collection from the storm water sedimentation basins. GEI collected a surface water sample from the discharge from Basin #1 to Basin #2 on February 6, 2020 in combination with low flow groundwater sampling of wells MWSE-3 and MWSE-4 (previously sampled twice by Test America) and the collection of a surface water sample from Hosmer Book (designated HBSW-1) which receives storm water discharge from the basins. All samples were analyzed for PFAS. Following review of laboratory analytical data, three surface water samples were collected from Hosmer Brook on February 26, 2020 at: 1) an upstream sample location US-HBSW-1, 2) a downstream location DS-HBSW-1, and 3) the previously sampled surface water location in Hosmer Brook (HBSW-1). Sample locations are shown on Figure 23 and laboratory PFAS detections summarized in Table 5B.

The individual PFAS constituents and concentrations detected in the storm water sample collected at Basin #1 were similar to those detected in groundwater at well MWSE-4. Among the list of 21 PFAS compounds analyzed, only perfluorooctanoic acid (PFOA) and perfluorooctanoic acid (PFOA) have a NYSDOH drinking water standard of 10 ng/L applicable to public water systems. The concentration of PFOA was above the NYSDOH drinking water criterion at MWSE-4 during 2 of the 3 sampling events summarized in Table 5B.

PFAS constituents were not detected in the upstream sample collected from Hosmer Brook (UP-HBSW-1). PFOS and PFOA were detected in the downstream sample (DS-HBSW-1) with reported concentrations of 3.6 ng/L and 4.7 ng/L, respectively. While no ambient surface water criteria are currently proposed for New York State, the PFAS concentrations detected in Hosmer Brook are below the NYSDOH drinking water regulatory criteria.

5.3.2 Major Elements, Anions and Cations in Groundwater

The major elements and anions and cations detected in groundwater at Area 7/8 Development (see Table 5A) were not elevated with respect to water quality comparison criteria with the exception of TDS at well MWSE-2 and the following major elements:

• aluminum at MWSE-2 (first event) and MWSE-3 (both events). Suspended solids in the sample frequently influence the detection of aluminum in groundwater samples and sample turbidity was elevated (above 5 NTU) in those samples.

• iron at MWSE-2 (first event), MWSE-3 (both events), and MWSE-4 (both events). Similar to aluminum, suspended solids in the sample affected influenced detected concentrations.

These constituents appear to be naturally elevated in groundwater at the Chaffee Facility based on quarterly testing results from the past decade of site-wide groundwater quality monitoring.

Major cation and anion chemistry for the four groundwater monitoring well samples were plotted on a Piper Trilinear Diagram to graphically plot the water-chemistry type and provide a comparison to existing groundwater quality data from monitoring wells located along the northern boundary of the Area 7/8 Development (wells MW-R1A and MW-R4A). The Piper plot is shown on Figure 24 with groundwater chemistry plotting in the upper left side of the Piper Plot. The hydrochemical facies description for samples plotted on the diagram is that of a mixed type magnesium-bicarbonate and calcium-chloride type groundwater. For geochemical comparison, the major chemistry from approximately 10 years (28 sampling events) of groundwater quality monitoring for wells MW-R1A and MW-R4A is shown on the Piper Plots presented on the lower portion of the Figure 24. The geochemical ellipse for those samples was projected onto the Piper Plot in the upper portion of the figure for direct comparison of chemistry to the four new wells. As shown on the upper diamond, the major cation and anion chemistry from the four new monitoring wells installed in the Area 7/8 Development is very similar to the chemistry of existing wells located along the northern boundary of the expansion area indicating groundwater quality across the Upper Water-Bearing Zone at the Area 7/8 Development is consistent.

5.4 Surface Water Conditions

The Chaffee Facility is located near a watershed divide which occurs naturally at the maximum elevation of the Lake Escarpment Moraine near Hand Road. Surface water drainage on the north side of the moraine crest flows within the Cazenovia Creek Watershed System and drainage south of the crest flows within in the Cattaraugus Creek Watershed System. At the Chaffee Facility, surface water run-off from the eastern portion of the Closed Landfill is collected by drainage swales and directed to Sedimentation Basin #4 situated at the southeast corner of the landfill. Permitted discharge from this detention basin eventually discharges to Wetland SD-1 that is part of the Hosmer Brook sub-watershed within the Cattaraugus Creek Watershed.

Drainage in the Western Landfill Area and proposed Area 7/8 Development is directed to Sed Basins #5, #1, #2, and # 3 which in turn flows to the south within the Hosmer Brook subwatershed.

Wetlands with perennial surface water exist east and west of the Area 7/8 Development and influence groundwater elevations in the study area. Drainage from Wetland SD-1 east of the West Soil Borrow Area and Area 7/8 Development drains to Hosmer Brook having its headwaters in wetlands west and southwest of the Chaffee Facility. Drainage from Wetland SD-

1 located west and southwest of the Area 7/8 Development occurs through a culvert installed beneath an access road southwest of Sed Basin #3 (Figure 3).

Three staff gauges, SH-2, SH-3 and SH-6 were installed and surveyed in April 2019 at locations similar to surface water locations evaluated during the Western Landfill Area Part 360 Permit Application and are shown on Figures 3 and 4. The original location of staff gauge SH-6 during the Western Landfill Area investigation was within Sedimentation Basin #3 and didn't allow for measurements of discharge from the basin. For the Area 7/8 Development investigation, the location of SH-6 was re-located south of the gravel road and within the basin discharge swale to facilitate measurements of discharge. Discharge estimates and field measured parameters including pH, specific conductance, and temperature were collected at each staff gauge location. Table 6 presents a summary of field measured parameters, surface water elevations and discharge estimates during each monitoring event.

Hosmer Brook/ Wetland SD-1 Discharge (Station SH-2)

Staff Gauge station SH-2 is located immediately downstream of a culvert pipe that drains the western portion of wetland SD-1. Surface water elevations at SH-2 are controlled by the ponded surface water in SD-1 and ranged between 1437.2 (April 2019) and 1437.5 feet msl (August 2019). Discharge rates ranged between 4.5 (April 2019) and 7.0 ft³/s (August 2019) during the investigation period.

Hosmer Brook Bridge at Allen Road (Station SH-3)

Staff gauge station SH-3 is located within the Hosmer Brook stream channel at the concrete culvert beneath Allen Road (Figure 3). Surface water elevations at SH-3 ranged from 1426.7 (August 2019) to 1427.4 feet msl (April 2019). Discharge rates at SH-3 ranged from 163 (August 2019) to 392 ft³/s (April 2019).

Hosmer Brook/ Sedimentation Basin #3 Discharge (Station SH-6)

Staff gauge station SH-6 monitors the outflow from Sedimentation Basin #3 which flows into Wetland SD-1 and ultimately drains to Hosmer Brook. Surface water elevations at this location ranged between 1440.9 (June 2019) and 1441.4 feet msl (October 2019) during the 2019 investigation. Discharge rates at SH-6 ranged between 3.2 (June 2019) and 9.6 ft³/sec (October 2019).

Chemical Constituents in Basin #3 Surface Water Discharge and Hosmer Brook

The Chaffee Facility EMP requires quarterly analysis of surface water samples from the discharge at Basin #3. During the past decade, organic chemicals, heavy metals and leachate indicator compounds commonly associated with leachate presence have not been detected in samples collected from the basin discharge. During the 2019/2020 investigation, trace constituent concentrations of PFAS were detected in Hosmer Brook and surface water in the Sed

Basins. The detected PFAS concentrations in Hosmer Brook were below proposed NYSDOH drinking water regulatory criteria. This was discussed in Section 5.3.1.

In Hosmer Brook, the range of field-measured parameters (pH, specific conductance and temperature) at each of the staff gauge locations during the 2019 hydrogeologic investigation were similar to those measured during the 2004 hydrogeologic investigation for the Western Landfill development and are consistent with values found in site-wide groundwater.

5.5 Groundwater/Surface Water Interaction

Recharge to the Upper Water-Bearing Zone outside the limits of the Area 7/8 Development is influenced by surface water located on areas of the moraine not covered by the Upper Silty Clay/Till. This includes NYSDEC Wetland SD-1 west and southwest of the Area 7/8 Development and Sed Basins #1 #2, and #3 situated immediately west of the western boundary of the Area 7/8 Development. Surface water is perennially present in both of these areas and influences groundwater elevations in the Upper Water-Bearing Zone below the Chaffee Facility.

Sedimentation Basins #1, #2, and #3 were constructed by excavation of soils where the Upper Silty Clay/Till was not present. The basin subgrades were soil lined using compacted clay having a maximum in-place permeability of 1x10⁻⁵ cm/s. The basin bottoms were constructed to elevations between 1441 and 1443 feet msl with operating surface water elevations maintained between 1444 and 1446 feet msl. Surface water in Basin #3 is conveyed toward Hosmer Brook through a permitted discharge with minimum surface water elevations of 1440.9 feet msl during the 2019 study. The surface water elevations in the Sed Basins and basin discharge are several feet higher than the expected elevation of the water table in that area (approximately 1438 feet msl). Water level monitoring data indicate surface water in the basins slowly exfiltrates and seeps downward through the unsaturated zone thereby mounding the water table beneath the area surrounding the storm water Sedimentation Basins west of the Area 7/8 Development. This effect is shown by the radial flow pattern observed on groundwater potentiometric surface mapping for the Upper Silty Sand and Gravel water-bearing zone (see Figures 15 through 20 and Appendix H) and monthly water levels at well MWSE-4 which are 1 to 3 feet higher than groundwater elevations recorded in all other piezometers and wells in and near the Area 7/8 Development. While the water level trend in MWSE-4 is somewhat similar to Site-wide declining trends in groundwater elevations, particularly in the spring and early summer, a continued decline in groundwater elevation in the late summer and fall was not observed. This observation was also noted, but to a lesser extent, in wells P3-03, PZ02-19, and PZ03-19 which are located closest to the Sed Basins.

Exfiltration of water from Wetland SD-1 and the Sedimentation Basins is an important factor influencing the direction of groundwater flow in the Upper Water-Bearing Zone below the Area 7/8 Development. The higher heads maintained by Wetland SD-1 and exfiltrating basin surface water influence the observed seasonal shift in groundwater flow direction below the expansion area from southward, during higher regional groundwater elevations, to northeastward as

seasonal declining groundwater elevations in the moraine deposits are observed. In addition, the top of the Lower Silty Clay aquitard, as shown in Figure 12A, slopes in a north and south direction which also influences the seasonal direction of groundwater flow in the Upper Water-Bearing Zone.

6. Conceptual Site Model and Critical Stratigraphic Section

This section presents a Conceptual Site Model (CSM) which provides a summary interpretation of the geologic setting, groundwater flow, and describes the possible consequence from a release of leachate from the Area 7/8 Development footprint. The CSM is used to assist with the identification of the Critical Stratigraphic Section (CSS) which is critical toward developing an effective groundwater monitoring program.

6.1 Conceptual Site Model

Geologic information described in US Geological Survey Reports, NYSDEC aquifer mapping, and earlier site-specific investigations at Chaffee, including the 2019/2020 hydrogeologic investigation, indicate the Lake Escarpment Moraine extends southward for at least 1/3 of a mile beyond the southern WMNY Chaffee Landfill property boundary near the Area 7/8 Development. The northern limits of the Sardinia Aquifer was mapped as the southern extent of moraine deposition by the USGS. The aquifer consists of a thick sequence of permeable surficial outwash sediments and deeper confined sand and gravels deposited during earlier glacial events.

The moraine geology is composed of 400 to 600 feet of glacial melt water sediments deposited in a scoured bedrock valley during ice sheet advance and retreat. The moraine sediments have been investigated to depths of over 100 feet at the Chaffee Facility and consist of a layered (interbedded) silty clay till with silty sand and gravel deposits. Observations of soils collected during the 2019 subsurface investigation of deeper soils at the Area 7/8 Development and 1984 USGS soil descriptions indicate the Upper, Lower, and Deeper Silty Clay Tills have similar physical and hydraulic characteristics and are separated by layers of Silty Sand and Gravel originating from glaciofluvial transport with deposition during late stages of moraine formation during oscillating glacial ice retreat and re-advance.

Water level data and physical testing soil data indicate the Upper, Lower and Deeper Silty Clay units are aquitards preventing the vertical movement of groundwater between saturated Silty Sand and Gravel units. In the Upper Silty Clay/Till, perched water exists within discontinuous lenses of sand and gravel in the clay till along the southern portion of the Closed Landfill and extends northward where the Upper Silty Clay/Till is thicker. Groundwater in the Upper Silty Sand and Gravel is identified as the Upper Water-Bearing Zone and is laterally continuous across the Site and is bound below by the Lower Silty Clay aquitard which prevents the downward movement of groundwater. The groundwater flow direction beneath the Area 7/8 Development in the Upper Water-Bearing Zone is seasonally dependent and transitions from a southerly direction during the spring and early summer months to a more northeasterly direction in the late summer, fall, and winter months. Surface water in Wetland SD-1 situated west and southwest of

the development area and in the Sedimentation Basins influence the groundwater flow direction below the Area 7/8 Development by recharging groundwater in the Upper Water-Bearing Zone. The measured horizontal hydraulic gradients in the Upper Water-Bearing Zone beneath the development area are very low to flat causing low groundwater seepage velocities. The groundwater flow velocity below the Area 7/8 Development was calculated to be 0.59 ft/yr. in a southward direction from April through August and transitions to a northeast direction at a somewhat higher rate of 2.07 ft/yr. as groundwater elevations regionally decline between September through March. The annual net vector sum flow rate below the Area 7/8 Development footprint occurs in a northeast direction at 1.33 ft/yr. Therefore, if a potential leachate release occurred from the Area 7/8 landfill footprint, constituents would ultimately migrate in a northeast direction in the Upper Water-Bearing Zone.

Geologic and hydrogeologic information indicate the Lower Water-Bearing Zone is isolated from the Upper Water-Bearing Zone beneath the footprint of the Area 7/8 Development and would not be affected by the presence of potential leachate related constituents in the Upper Water-Bearing Zone should a theoretical release occur. This conclusion is based on the following:

- A low permeability silty clay unit (Lower Silty Clay or aquitard) was identified between the Upper and Lower Water-Bearing Zones (permeability values between 3x10⁻⁸ cm/s and 4x10⁻⁸ cm/s) which restricts the vertical movement of water between the two water-bearing zones.
- The aquitard was found to be laterally extensive at the Area 7/8 Development outspreading the area below the design landfill footprint of Cells 7 and 8 with thicknesses ranging from 7.1 feet (PZ03-19) to 22.3 feet (SB03-19). Figure 12 depicts the mapped thickness of the Lower Silty Clay aquitard below and beyond the design landfill footprint.
- Pumping tests conducted at well pair PZ05S-19 and PZ05D-19 demonstrated no
 responses to hydraulic stress when the Upper and Lower Water-Bearing zones were
 individually pumped and potential hydraulic responses were monitored; thereby,
 confirming no vertical hydraulic communication between the units below the Area 7/8
 Development.
- Measured groundwater elevations in five (5) piezometer pairs screened in the Lower Water-Bearing Zone are uniformly 2.5 to 4 feet lower than groundwater elevations measured in the Upper Water-Bearing Zone. This head differential is further evidence of the hydraulic isolation of the Lower Water-Bearing Zone from the Upper Water-Bearing Zone.
- Among the five piezometers installed in the Lower Water-Bearing Zone, piezometer PZSB11D-19 (located southeast of the footprint) consistently has the highest

groundwater elevations with the lowest groundwater elevations measured in piezometers PZMWSE3D-19 and PZ04D-19 (located near the southwest corner of the footprint). Higher heads found in piezometer PZSB11D-19 indicate groundwater recharge occurs east or southeast of the Area 7/8 Development with flow in the Lower Water-Bearing Zone occurring toward the west and northwest. This local flow direction is independent and nearly counter to the groundwater flow direction identified in the Upper Water-Bearing Zone at Area 7/8 Development which is toward the northeast and seasonally to the south.

- Groundwater elevations in the Lower Water-Bearing Zone are lower in piezometers closest to the surface water features that recharge the Upper Water-Bearing Zone (i.e., Wetland SD-1 and the sedimentation basins). Those surface water bodies do not serve as recharge to both the Upper Water-Bearing Zone and Lower Water-Bearing Zone. This is demonstrated by 1) the fact that the heads in both units are not similar (there is a consistent seasonal 2.5 to 4 feet head differential); and 2) the groundwater elevations in both units would be highest closest to the surface water features, which is not the case for the Lower Water-Bearing Zone.
- Water level graphing of groundwater elevations in the Lower Water-Bearing Zone depicted on Figures 21 and 22 show hydraulic responses that mimic seasonal recharge. The data indicate the hydraulic responses observed in Lower Water-Bearing Zone groundwater elevations appear to be recharged by similar mechanisms as the Upper Water-Bearing Zone. However, because head data for the Lower Water-Bearing Zone are lowest where head levels in the Upper Water-Bearing Zone are the highest and the hydraulic gradient in the Lower Water-Bearing Zone is toward the west and northwest, the recharge area for groundwater in the Lower Water-Bearing Zone occurs from distant areas east and/or southeast of the Area 7/8 Development.

Based on the physical and hydraulic evidence provided from site investigations, the Lower Water-Bearing Zone is fully isolated from the Upper Water-Bearing Zone within and beyond the limits of the Area 7/8 Development. Therefore, the Lower Water-Bearing Zone is not considered a unit for inclusion into the Critical Stratigraphic Section described below.

6.2 Critical Stratigraphic Section

The Critical Stratigraphic Section below a solid waste facility is defined in 6 NYCRR Part 360.2 as "all stratigraphic units, both unconsolidated deposits and bedrock, including but not limited to the unsaturated zone, uppermost aquifer, and first water-bearing unit into which contaminants that escape from a facility might reasonably be expected to enter and cause contamination."

Prior hydrogeologic studies for the permitted Chaffee Landfill disposal areas identified the CSS as groundwater occurring in perched zones in the "surface clay/Till" and groundwater in "upper sand and gravel." The existing CSS for the Facility developed for the ongoing environmental

monitoring program has not been changed but refined using information presented in the CSM described in Section 6.1. Based on site hydrogeologic conditions in the Area 7/8 Development and other areas at the Chaffee Facility, the CSS is identified as:

- the Upper Silty Clay/Till; and
- the Upper Silty Sand and Gravel.

Figure 25 graphically presents the CSS for the Area 7/8 Development and is applicable to the entire Chaffee Landfill Facility. Based on the discussion in Section 6.1, groundwater in the Lower Silty Sand and Gravel is excluded from the CSS.

The optimal strategy to monitor the CSS in the expansion area is placement of detection monitoring wells having well screens that monitor perched groundwater encountered in sand and gravel lenses in the Upper Silty Clay/Till at the north boundary of the expansion area and groundwater in the Upper Silty Sand and Gravel which is the first laterally continuous water-bearing zone across the Site. The Upper Silty Sand and Gravel is bound at its base by a laterally continuous, thick aquitard which precludes the downward movement of groundwater.

In the unlikely scenario where landfill leachate leakage occurs in the Area 7/8 Development, the constituents would migrate very slowly in a downward direction in low permeability (1x10⁻⁸ to 1x10⁻⁶ cm/s) soil in the Upper Silty Clay/Till or Ablation Till. Attenuation to soil particles and organic matter in the tills would further retard the rate of constituent migration. Should constituents migrate vertically through the tills, migration would occur vertically downward through unsaturated Upper Silty Sand and Gravel, eventually entering the Upper Water-Bearing Zone within the Upper Silty Sand and Gravel at a typical depth of 15 feet below the current ground surface in the southern portion of the development area footprint. The Upper Water-Bearing Zone is bound at its base by an aquitard (Lower Silty Clay) preventing vertical transport beyond the Upper Silty Sand and Gravel as described in Section 6.1. Groundwater quality monitoring should focus on the detection of leachate constituents potentially released to the Upper Water-Bearing Zone.

7. Environmental Monitoring

An Environmental Monitoring Plan (EMP) is currently in place for the Chaffee Landfill Facility. The EMP was most recently updated in December 2012 for the Valley Fill Expansion. The EMP describes monitoring programs for environmental media, including groundwater, surface water, and landfill leachate collection systems. The operation of the Area 7/8 Development will require revisions to the existing EMP to address requirements in 6 NYCRR Part 363-4.6(f). The updated EMP is being submitted as Part VII of the Area 7/8 Development Part 360/363 Application package.

Section 6.2 identified the Critical Stratigraphic Section at the Chaffee Landfill Facility including the Area 7/8 Development, as the:

- Upper Silty Clay/Till; and
- Upper Silty Sand and Gravel.

Consistent with 6 NYCRR Part 363-4.6(f)(8)(i)(a)(2), the groundwater monitoring network for the Area 7/8 Development will monitor the first water-bearing unit. This requires groundwater monitoring of the Upper Silty Clay/Till where perched conditions sporadically occur on the northeast side the expansion area (area of overlap onto the Closed Landfill) and of the water-bearing zone in the Upper Silty Sand and Gravel unit below the Area 7/8 Development. This monitoring approach is consistent with the permitted areas of the Chaffee Facility as defined in the existing EMP.

The current groundwater monitoring network will be modified to incorporate groundwater monitoring wells MWSE-1 to MWSE-4, a new monitoring well pair (monitoring perched water in the Upper Silty Clay/Till and groundwater in the Silty Sand and Gravel) to be installed near the northeast corner of expansion area overlap onto the Closed Landfill, and decommissioning of existing wells: MW-K(S); MW-K(I); MW-R4A; MW-4CR; MW-82B; MW-R3; MW-R1A; and MW-R1B located on the southern boundary of the Western Landfill Area and Closed Landfill within the area of Area 7/8 Development overlap.

The revised EMP for the Chaffee Facility (inclusive of the Closed Landfill, Western Landfill and Valley Fill Areas, and Area 7/8 Development) is included as a separate document with the Chaffee Landfill Facility Manual.

Elements of the revised EMP include:

• a description of the critical stratigraphic section;

- a Site Plan and description of all proposed monitoring points, including leachate, groundwater, surface water, and sediment;
- the analyses to be performed;
- an implementation plan describing the transition of the site-wide monitoring program to incorporate requirements in Part 363-4.6(f);
- a description of the statistical methods to be used; and
- reporting requirements.

The EMP includes an implementation plan with a sampling schedule, landfill construction schedule, a schedule for the installation and decommissioning of groundwater monitoring wells, and a schedule for initiation of the existing water quality (establishing baseline groundwater quality) and operational water quality monitoring programs. The EMP also includes a contingency water quality monitoring plan with trigger mechanisms to initiate its implementation.

A Site Analytical Plan is included in the EMP describing sample collection methods, chain of custody documentation, analyses to be performed, laboratory analytical methods and reporting limits, data quality objectives, procedures for corrective actions, and procedures for data reduction, validation and reporting.

.

8. Design Considerations and Conclusions

The geologic, hydrogeologic and hydrochemical conditions were investigated for landfill expansion into the proposed Area 7/8 Development. The investigation results were used to assess the suitability of the expansion area for landfill operations (per 6 NYCRR Part 363-5.1 Siting Requirements), provide information to develop an EMP, and provide hydrogeologic and geotechnical information for landfill design.

The following is relevant hydrogeologic information for Area 7/8 Development landfill siting:

Part 363-5.1(a) - Bedrock and Unconsolidated Deposits

• Part 363-5.1(a) (2)(ii) states, "at existing landfill sites active on or after November 4, 1992 operating under and in compliance with a current permit or order on consent, there are no soil type restrictions provided the applicant demonstrates that the expansion site will have no significant adverse impact on groundwater." The siting requirements pertaining to bedrock and unconsolidated deposits are met because the proposed engineering controls for landfill construction are consistent with current regulations and the Western Landfill Area which have been proven to provide effective containment protective of groundwater. Furthermore, site-specific geologic and hydrogeologic information obtained during hydrogeologic studies has identified that the soil below the Area 7/8 Development consists of low permeability silty clay or ablation till with soil properties and hydraulic conditions conducive to minimizing the movement of chemical constituents. The depth to bedrock is more than 400 feet below the Chaffee Facility and is not recharged by surface water or shallow groundwater near the facility.

Part 363-5.1(b) – Proximity to Mines or Caves

• The Area 7/8 Development is not located near existing mines, caves or other anomalous features that can alter groundwater flow.

Part 363-5.1(d) – Primary and Principal Aquifers, and Public Water Supplies

• Per Part 363-5.1(d)(1), "... a lateral expansion cannot be constructed over a primary water supply aquifer, principal aquifer, within a public water supply stabilized cone of depression area, or within a minimum distance of 500 feet to surface waters that are actively used as a source of municipal drinking water supply." The Chaffee Landfill Facility, including the expansion area, is situated on the Lake Escarpment Moraine. Mapping and boring data indicate the moraine complex extends approximately 1,600 feet south of the proposed landfill expansion footprint. NYSDEC GIS New York State Aquifer mapping identifies the moraine as "not a Primary Aquifer" and well yield is

"unknown". Site investigation to depths of 80 feet within and outside the expansion area footprint did not identify hydrogeologic conditions that would meet the NYSDEC definition of a Principal Aquifer described in TOGS 2.1.3, October 1990. GIS aquifer mapping shows a "High Yield Unconfined Aquifer" approximately 1,600 feet south of the expansion area (see Figure 7) and represents the Sardinia Aquifer consisting of outwash sand and gravel deposits. The Sardinia Aquifer is not a NYSDEC Listed Primary or Principal Aquifer.

• Per Part 363-5.1(d)(2), "the required horizontal separation between deposited waste and primary water supply aquifers, principal aquifers, capture zones of public water supply stabilized cone of depression areas or surface waters that are actively used as sources of municipal drinking water supply must be sufficient to preclude contravention of groundwater standards in the aquifer and surface water standards in waters that are currently used as a source of municipal drinking water supply." Constituent migration from a theoretical release from the Area 7/8 Development footprint would not contravene groundwater standards in the Sardinia Aquifer situated 1600 feet south of the WMNY property boundary near the expansion area. Assuming vertical migration of constituents through low permeability silty clay soil and entry to Upper Water-Bearing Zone in the Upper Silty Sand and Gravel, constituent transport would occur in a northeast direction considering the hydraulic gradient and seasonal influences on groundwater flow direction. The expansion area is not located near surface water that is used as a source of municipal supply.

Based on the above, the following conclusions can be made for the Area 7/8 Development regarding environmental monitoring:

- The investigation sufficiently characterized hydrogeologic conditions to identify groundwater flow directions, barriers to vertical groundwater flow, and existing water quality in Upper Silty Sand and Gravel.
- The hydrogeologic investigation has demonstrated that groundwater in the expansion area is monitorable with predictable groundwater flow.
- The Critical Stratigraphic Section for the Area 7/8 Development, which is consistent with the Closed Landfill and Western Landfill Area, includes the following units:
 - ➤ Perched water in the Upper Silty Clay/Till identified at the northern boundary of the expansion area; and
 - Groundwater in the Upper Silty Sand and Gravel unit.
- The EMP will be developed to monitor the quality of perched groundwater in the Upper Silty Clay/Till along the northeastern boundary of the expansion area and groundwater in

the Upper Silty Sand and Gravel along the western, southern, eastern and northeastern boundary of the expansion area. The EMP would also monitor the quality of surface water discharge from the Site and would monitor the protectiveness of constructed landfill containment systems at the Western Landfill and Area 7/8 Development.

The following conclusions can be made for the Area 7/8 Development regarding landfill design and construction:

- No variances are required for landfill construction.
- The base of the landfill liner system should be constructed at or above an elevation of 1444 feet msl to achieve 5 feet of separation between the seasonal high groundwater elevation in the Upper Silty Sand and Gravel in the Area 7/8 Development.

9. References

- Calkin, P.E. 1982. Glacial Geology of the Erie Lowland and Adjoining Allegheny Plateau, Western New York, in Field Trips for the New York State Geological Association: New York State Geological Association, 54th Annual Meeting, Amherst, NY, p. 121-148.
- Calkin, P. E., Hodge, D. S., Champion, D. E., Oaksford, E. T., and Palmer, E. C., 1974, Gravity delineation of the preglacial Cazenovia River Valley, Western New York State, U.S.A.: Zeitschrift für Geomorphologi e N.F. Band 18, Heft 3, p. 247-259.
- Fairchild, H. L., 1932, New York Physiography and glaciology west of the Genesee Valley: Rochester Academy of Science Proceedings, v. 7, p. 97 -136
- La Sala, Jr., A.M. 1968. Groundwater Resources of the Erie-Niagara Basin, New York. U.S. Department of the Interior, Geological Survey in cooperation with the New York State Conservation Department Division of Water Resources. Basin Planning Report ENB-3.
- Miller, T. S., 1988, Potential yields of wells in unconsolidated aquifers in upstate New York -- Niagara Sheet: U. S. Geological Survey Water-Resources Investigations Report 88-4076, 1 plate., scale I:250,000.
- Miller, T.S. and W.W. Staubitz. 1985. Hydrogeologic Appraisal of Five Selected Aquifers in Erie County, New York. U.S. Geological Survey, Water Resources Investigations Report 84-4334.
- Muller, E.H. and Calkin, P.E., 1993, Timing of Pleistocene glacial events in New York State: Canadian Journal of Earth Science, v. 30, p. 1829-1845.
- Yager, R.M., Miller, T. S., and J. Thayer, 1997, Delineation of Areas Contributing Recharge to Municipal Wells in Three Selected Confined Glacial Aquifers in Erie County, New York: U.S. Geological Survey Water-Resources Investigations Report 96-4229, 40 p.
- BB&L, P.C., July 1986. Evaluation of Hydrogeologic and Ground-Water Quality Data Pertaining to the C.I.D. Landfill.
- Earth Dimensions, Inc., January 1981. Comprehensive Soils Report for Chaffee Landfill.
- Earth Dimensions, Inc., October 1981. Soils Report Chaffee Landfill.
- Earth Dimensions, Inc., November 2017. Soils Boring Logs for Thirteen Soil Borings Completed at Potential South Soil Borrow Property and Conceptual South Expansion Area.

Earth Investigations, LTD., April 1989. Hydrogeologic and Soils Assessment for C.I.D. Landfill.

Earth Investigations, LTD, June 1991. Hydrogeologic Site Investigation Plan.

Geomatrix Consultants, Inc., July 2000. Leachate Accountability Assessment at the Chaffee Landfill.

McMahon & Mann Consulting Engineers, P.C. and Terra-Dynamics, Inc, February 2005. Hydrogeologic Report for Chaffee Western Landfill Expansion – Part 360 Permit Modification Application.

March 2009. Borrow Area Use Plan for the East and West Soil Borrow Area Chaffee Landfill.

McMahon & Mann Consulting Engineers, P.C., December 2012, Environmental Monitoring Plan – Chaffee Landfill Valley Fill Permit Expansion

NYSDEC TOGS 2.1.3 October 1990 - Memorandum for Primary and Principal Aquifer Determination

State of New York Codes, Rules and Regulations, Title 6 Department of Environmental Conservation, Chapter IV. Quality Services, Subchapter B. Solid Wastes, Part 363 Landfills, Effective Date November 4, 2017.

USDA Soil Conservation Service, Web Soil Survey. Available online. Accessed December 2019.

Tables

Table 1. Stratigraphic Summary - Area 7/8 Development Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development Town of Sardinia, New York

						Unit Thickness	s (ft)		1				Un	it Surface Elevation		
Test Pit, Soil Boring or Well / Piezometer ID	NORTH COORDINATE	EAST COORDINATE	Ground Surface Elevation (ft)	Ablation Till/Upper Silty Clay	Upper Silty Sand and Gravel (3)	Lower Silty Clay	Lower Silty Sand and Gravel (3)	Clay, Silt and Fine Sand/Deeper Till	Depth of Boring/Test Pit (ft.)	Boring/Test Pit Bottom Elevation (ft)	Comments	Elevation - Top of Ablation Till/Upper Silty Clay	Elevation - Top Upper Silty Sand and Gravel	Elevation - Top Lower Silty Clay	Elevation - Top Lower Silty Sand and Gravel	Elevation - Lacustrine Fine Sand/Silt or Till
2019 Borings, Test Pits, Pie	ezometers, and Monit	oring Wells Complete	ed for Southern Expan	nsion (1)	•											
Soil Borings																
SB01-19	939664.45	1169965.72	1459.3	4.5 / 8.0	>5.5	-	-	-	18.0	1441.3		1459.3	1446.8	NA	NA	
SB02-19	939324.60	1170287.76	1453.6	4.2 / 7.8	20.7	>3.3	-	-	36.0	1417.6		1453.6	1441.6	1420.9	NA	
SB03-19 SB04-19	939255.32	1170418.79	1460.1	3.5 / 8.5	17.0	22.3	>0.7		52.0	1408.1	O fact of good bases with C fact of eith, several and ceit fill	1460.1 NP	1448.1 1447.4	1431.1 1427.4	1408.8 1414.4	
SB05-19	939102.39 939363.33	1170398.87 1170518.01	1455.4 1461.9	8 / 0 0 / 18.5	20.0	13.0 >3.1	>7.0	-	40.0 32.0	1415.4 1429.9	2 feet of road base with 6 feet of silty reworked soil fill 1.8 ft of surface stone fill stockpile	1460.1	1447.4	1431.2	NA	
SB06-19	939324.51	1170833.55	1451.6	0 / 13.5	>2.5		-	-	16.0	1435.6	no non canado dono un ocompio	1451.6	1438.1	NA	NA NA	
SB07-19	939111.58	1170723.72	1462.5	8 / 3.2	25.0	8.8	>5	-	50.0	1412.5	8 ft of soil borrow stockpile, Silty clay between 16.8 to 19.2 ft	1454.5	1451.3	1426.3	1417.5	
SB08-19	939159.41	1171416.17	1448.7	0 / 17.2	17.8	>3	-	-	38.0	1410.7		1448.7	1430.9	1413.1	NA	
SB09-19 SB10-19	939279.31 939443.50	1171345.13 1171408.75	1449.3 1449.8	0 / 10.0 0 / 20.0	19.0 >2	18	>3	-	50.0	1399.3		1449.3 1449.8	1439.3 1429.8	1420.3 NA	1402.3 NA	
SB10-19 SBPZ01D-19 (1A)	939443.50	1171408.75	1449.8	5.5 / 0	36.3	>38.2	- NP	-	22.0 80.0	1427.8 1373.2		1449.8	1429.8	1411.1	NA NA	
SB12-19 ^(1A)	938985.35	1170846.52	1454.8	0 / 10.6	16.4	10.2	21	>3.8	62.0	1392.8		1454.8	1444.2	1427.8	1417.6	1396.6
Test Pits			•			•				1						
TP01-19 (1B)	939073.42	1170695.09	1460.0	0/9.2	>2.8	-	-	-	12.0	1448.0		1460.0	1450.8	NA	NA	
TP02-19 ^(1B)	939078.33	1170559.35	1458.3	7.0 / 0	>3	-	-	-	10.0	1448.3		1458.3	1451.3	NA NA	NA NA	
TP03-19 (1B) Piezometers	939065.09	1170426.45	1454.9	11.0 / 0	>0.5	-	-	-	11.5	1443.4		1454.9	1443.9	NA	NA	
PZ01-19	938641.81	1170448.04	1453.7	6.0 / 0	18.0	>2		-	26.0	1427.7		NP	1447.7	1429.7	NA	
PZ02-19	938911.54	1170460.22	1457.2	9.5 / 1.2	17.3	9.5	>0.5	-	38.0	1419.2	9.5 ft Soil berm and Ablation Till	1447.7	1446.5	1429.2	1419.7	
PZ03-19	939121.11	1170496.19	1457.4	9.0 / 4.0	12.8	7.1	>1.1	-	34.0	1423.4	9.0 ft Soil berm and Ablation Till	1448.4	1444.4	1431.6	1424.5	
PZ04-19	938964.93	1170982.16	1456.3	0 / 10.0	20.0	>2.0	-	-	32.0	1424.3		1456.3	1446.3	1426.3	NA	
PZ04D-19 ^(1A)	938969.66	1170977.32	1456.1	0 / 10.0	26.5	6.8	>16.7	-	60.0	1396.1		1456.1	1446.1	1419.6	1412.8	4200.5
PZ05D-19 PZ05S-19	939206.77 939208.43	1170882.92 1170888.68	1451.5 1451.6	0 / 9.5 0 / 9.5	18.7 18.7	16.8 >0.8	17.0	>8.0	70.0 29.0	1381.5 1422.6		1451.5 1451.6	1442.0 1442.1	1423.3 1423.4	1406.5 NA	1389.5
PZMWSE3D-19 (1A)	938989.99	1170673.87	1457.2	8.5 / 3	30.2	7.3	4	>7	60.0	1397.2	8.5 ft Ablation Till	1457.2	1445.7	1415.5	1408.2	1404.2
PZBA2D-19 (1A)	938973.68	1171294.18	1453.3	0 / 19	19.0	13 (includes 4.7 ft S&G interbed)	9	>4	64.0	1389.3		1453.3	1434.3	1415.3	1402.3	1393.3
PZSB11-19 (1A)	938995.97	1171525.62	1455.4	0 / 19	17.0	25 (includes 11.5 ft of S&G interbed)	>9		70.0	1385.4		1455.4	1436.4	1419.4	1394.4	
Monitoring Wells				•					•					1407.9		
MWSE-1	939377.66	1171481.00	1449.7	0 / 10.0	13.8	>2.2	-	-	26.0	1423.7		1449.7	1439.7	1425.9	NA	
MWSE-2 MWSE-3	939038.17 938987.29	1171136.68 1170663.09	1449.9	0 / 4.0 5.8 / 2.2	17.0 >22	>5.5	-	-	26.0 30.0	1423.9 1427.2	5.8 ft Ablation Till	1449.9 1457.2	1445.9 1449.2	1428.9 NA	NA NA	
MWSE-4	938987.29	1170663.09	1457.2 1448.6	0/0	>20.5	-	-	-	20.5	1427.2	3.6 it Abiation Till	1457.2 NP	1449.2	NA NA	NA NA	
Pre-2019 Borings, Piezome		<u> </u>		1 2.2		L	<u> </u>									
MW-A(I)	939996.52	1169702.43	1461.6	0 / 14.0	22.5	>1.5	-	-	38.0	1423.6		1461.6	1447.6	1425.1	NA	
SB6-03	939976.51	1169910.24	1455.6	0 / 11.2	>0.8	-	-	-	12.0	1443.6		1455.6	1444.4	NA	NA	
MA-2	939480.83	1169780.91	1454.5	0/0	21.5	>2.0	-	-	30.0	1431.0	Pre-graded surface elevation at 1461.0 for leachate tank construction - Upper Silty Clay and Upper S, S&G thickness adjusted	NP	1454.5	1433.0	NA	
MA-3	939556.80	1170261.71	1458.0	0 / 16.2	>7.3		-	-	35.0	1434.5	Pre-pond construction surface elevation at 1469.5 - Upper Silty Clay thickness adjusted	1458.0	1441.8	NA	NA	
MW-3R2	939800.56	1171447.29	1498.0	0 / >57.5	-	-	-	-	57.5	1440.5		1498.0	NP	NA	NA NA	
MW-R4A ⁽¹⁾ MW-K(D) ⁽¹⁾	939812.35 939852.20	1170811.34 1170232.26	1487.8 1472.6	10 / 36.5	>24.5	-	-	<u>-</u>	55.0	1423.0	Post construction current grade increased to 1487.8 from 1478.0 Post construction current grade decreased to 1472.6 from 1496.5 -	1478.0 1472.6	1441.5 1449.9	NA 1422.9	NA 1413.9	1404.0
(1)				0 / 22.7	27.0	9.0	10.5	>3.5 Till	96.0	1400.5	Upper Silty Clay thickness adjusted			NA NA		
MW-R1A ⁽¹⁾ MW-J(I)	939822.16 940869.69	1171899.47 1170259.77	1500.6 1552 estimate	15 / 42.2 0 / 34	>11.8	11	>11	-	54.0 86.0	1431.0 1376.2	Pre-construction boring elevation. Active landfill area top elevation	1485.0 1462.2	1442.8 1428.2	1398.2	1387.2	
SB6-08	939308.23	1170614.27	1455.2	0 / 9.0	>2.4	-			26.0	1443.8	estimate Pre-mining surface elevation at 1469.8 - Upper Silty Clay thickness	1455.2	1446.2	NA		
SB7-08	939495.36	1171041.48	1463.7	0 / 16.5	>3.7	-	-	-	48.0	1442.9	adjusted Pre-mining surface elevation at 1490.9 - Upper Silty Clay thickness	1463.7	1447.2	NA		
SB8-08	939464.91	1171662.65	1466.7	0 / 26.0	>4.0	-	-	-	30.0	1436.7	adjusted No surface elevation change	1466.7	1440.7	NA	<u> </u>	
SB9-08	939087.59	1171166.69	1450.3	0 / 9.1	>12.9	-	-	-	43.3	1428.3	Pre-mining surface elevation at 1471.6 - Upper Silty Clay thickness adjusted	1450.3	1441.2	NA		
P3-03	938677.00	1169929.00	1449.1	0/0	>20	-			20.0	1429.1		1				
MW-50	939528.00	1169485.00	1460.6	0/0	22.5	>17.5			40.0	1420.6		NP	1460.6	1438.1		
MWBA-1	938980.00	1171539.30	1456.4	0 / 18.7	9.3	>2.0	-	-	30.0	1426.4		1456.4	1437.7	1428.4		
MWBA-2	938960.83	1171294.50	1454.8	0 / 16.9	>13.1	-	-	-	30.0	1424.8		1454.8	1437.9	NA NA		
MWBA-3 SB1-17	938954.21 939579.42	1170987.10 1171405.42	1456.9 1475.9	0 / 8.0	>11.0	-	-	-	19.0 44.0	1437.9 1431.9		1456.9 1475.9	1448.9 1435.2	NA NA		
SB2-17	939152.95	1170989.21	1475.9	0 / 40.7	>7.2	-	-	-	15.7	1431.9		1475.9	1435.2	NA NA		
SB3-17	939165.90	110624.50	1465.5	2.3 / 0	>4.1	-	-	-	6.4	1459.1	Silty sandy reworked soil at ground surface	NP	NP	NA NA		
SB4-17	938974.30	1170495.70	1455.1	2/0	>14	-	-	-	16.0	1439.1	Silty sandy reworked soil at ground surface	NP	1453.1	NA		
SB12-17	939164.38	1170723.15	1458.0	1.1 / 9.6	>3.3	-	-	-	14.0	1444.0		1456.9	1447.3	NA		
SB13-17	939260.93	1170682.16	1459.9	0 / 15.7	>2.3	-	-	-	18.0	1441.9		1459.9	1444.2	NA		

GEI Consultants, Inc., P.C. Page 1 of 1

⁽¹⁾ Surface elevation from Wendel May 2, 2019 survey. (1A) Surface elevation from Wendel October 22, 2019 survey. (1B) Location and surface elevation EnSol, Inc. August 8, 2019

⁽²⁾ Surface elevations provided by MMCE November 28, 2017 unless indicated differently.

⁽³⁾ Non-Cohesive, silt and sand with 15 to 30+% gravel

Table 2. Summary of Soil Physical and Hydraulic Testing Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development Town of Sardinia, New York

SOIL CLASSIFICATION,	GRAIN SIZE, A	TTERBURG LIMITS AND DE	NSITY								
Soil Boring or Piezometer ID	Sample Depth (fbgs)	Unit Name	USCS Classification/Description	% Gravel	% Sand	% Silt	% Clay	Plastic Limit %	Liquid Limit %	Plasticity Index	Density (N) Values (Sample Interval)
Soil Borings (2019)								•			
SB03-19	38-40	Lower Sitly Clay	CL/ Gray, Lean Clay with Sand	1.5	8.3	50.6	39.6	17.0	27.0	10.0	9 (38-40)
\$B04-19	10-13	Upper Silty Sand and Gravel	SM-GM/ Brown Silty Sand and Gravel	37.8	45.0	17	.2 (1)	NT	NT	NT	11 (10-12)
B05-19	6-8	Upper Silty Clay	CL/ Gray Sandy Silt and Clay	1.9	15.2	42.4	40.5	16.0	26.0	10.0	15 (6-8)
B08-19	4-6	Upper Silty Clay	CL/ Gray Sandy Silt and Clay	1.7	11.4	48.0	38.9	16.0	27.0	11.0	11 (4-6)
B09-19	6-9	Upper Silty Clay	CL/ Brown Sandy Silt and Clay	6.7	13.7	41.1	38.5	16.0	27.0	11.0	11,12 (6-9)
B09-19	42-44	Lower Silty Clay	CL-ML/ Gray Clayey Silt	5.8	5.6	67.4	21.2	16.0	22.0	6.0	18 (42-44)
B12-19	28-37.5	Lower Silty Clay	CL/ Gray Clayey Silt	0.8	7.1	92	.1 (1)	19.0	31.0	12.0	16, 24 (28-37.5)
BPZ01D-19	36-38	Lower Silty Clay	CL/ Gray Clayey Silt	5.6	16.9	48.2	29.3	17.0	25.0	8.0	27 (36-38)
SBPZ01D-19	56-58	Lower Silty Clay	CL-ML/ Gray Clayey Silt	1.4	4.3	63.8	30.5	19.0	26.0	7.0	39* (56-58) * N is from a 3-inch dia spoon
Piezometers (2019)	-										
Z05S-19	22.5-24.5	Upper Silty Sand and Gravel	GW/ Gray Sandy Gravel with Silt	63.2	31.1	5.	7 (1)	NT	NT	NT	26 (22-24)
Z05D-19	40-42	Lower Sitly Clay	CL/ Gray, Lean Clay with Sand	3.7	21.4	47.4	27.5	16.0	24.0	8.0	26 (40-42)
Z05D-19	62.5-68	Deeper Silt Clay Till	CL/ Gray Silt with trace fine Sand	0.0	4.4	92.0	3.9	NT	NT	NT	30, 42 (64-68)
PZSB11-19	36-44	Lower Silty Clay	CL/ Gray Clayey Silt	2.2	21.6	76	.2 (1)	17.0	25.0	8.0	19, 33, 14 (36-44)
PZBA2D-19	34-43.5	Lower Silty Clay	CL/ Gray Silty Clay	4.6	8.6	28.8	58.0	20.0	31.0	11.0	15, 28 (34-43.5)
PZBA2D-19	44-48	Lower Sand and Gravel	SM-GM/Gray Silty Sand and Gravel	43.5	41.7	14.	8 (1)	NT	NT	NT	26, 61 (44-48)
PZBA2D-19	52-58	Lower Sand and Gravel	SM-GM/Gray Silty Sand and Gravel	51.7	39.9	8.	4 (1)	NT	NT	NT	51,48,74 (52-58)
PZMWSE3D-19	41.7-46	Lower Silty Clay	CL-ML/ Gray Silt and Clay	1.3	8.4	50.0	43.3	18.0	25.0	7.0	19 (41.7-46)
PZMWSE3D-19	49-53	Lower Sand and Gravel	SM/Gray Silty Sand and Gravel	34.6	51.1	14	.3 (1)	NT	NT	NT	51,29 (49-53)
PZMWSE3D-19	58-60	Deeper Silt Clay Till	CL-ML/ Gray Silt and Clay	0.8	6.7	54.3	38.2	18.0	25.0	7.0	57 (58-60)
2Z04D-19	36.5-42	Lower Silty Clay	CL/ Gray Clayey Silt	4.6	16.0	33.4	46.0	18.0	27.0	9.0	28, 21 (36.5-42)
PZ04D-19	43.3-60	Lower Sand and Gravel	SW-SP/Gray Silty Sand and Gravel	23.8	63.0	13	.2 (1)	NT	NT	NT	27,23,31,37 (43.3-60)
Monitoring Wells (2019)											
1WSE-1	16-26	Upper Silty Sand and Gravel	SM-GM/ Brown Silty Sand and Gravel	46.9	36.8	14	.3 (1)	NT	NT	NT	26, 24, 36, 28, 30 (16-26)
MWSE-2	16-24	Upper Silty Sand and Gravel	SW-SM-GM/ Brown Silty Sand and Gravel	45.2	37.0	17	.8 (1)	NT	NT	NT	31, 29, 24, 20 (16-24)
MWSE-3	18-28	Upper Silty Sand and Gravel	SM-GM/ Stratified Brown Silty Sand and Gravel	46.1	35.9	18	8 (1)	NT	NT	NT	7, 7, 7, 14, 18 (18-28)
//WSE-4	8-18	Upper Silty Sand and Gravel	SW-SM-GM/ Brown Silty Sand and Gravel	48.7	36.2	15	.1 (1)	NT	NT	NT	5, 12, 5, 10, 29 (8-18)
est Pits (2019)											
P01-19	4.5	Upper Silty Clay	CL/ Brown Sandy Silt and Clay	5.4	10.7	34.5	49.4	NT	NT	NT	NA
P02-19	5-7	Ablation Till	SM/ Non-stratified Brown Silty Sand with Gravel	39.6	45.2	12.1	3.1	NT	NT	NT	NA
TP03-19	3.5-5	Ablation Till	SM/ Non-stratified Brown Silty Sand with Gravel	33.6	50.2	13.3	2.9	NT	NT	NT	NA
TP03-19	11-11.5	Upper Silty Sand and Gravel	GW/ Gray Sandy Gravel with Silt	57.2	28.0	4.1	3.8	NT	NT	NT	NA

GEI Consultants, Inc., P.C. Page 1 of 2

OIL PERMEABILITY (LABORATORY IN	-SITU OR REMOLDED)				
Location	Depth (fbgs)	Unit	% Moisture	Wet/Dry Density (pcf) (Field)	Туре	Average Permeability (cm/s)
SB03-19	5-7	Upper Silty Clay	19.3	132.4 / 111.0	In-situ	3.0x10-8
SB05-19	4-6	Upper Silty Clay	15.5	137.5/ 119.1	In-situ	8.0x10-8
SB08-19	4-6	Upper Silty Clay	14.0	140.2 / 123.0	In-situ	4.7x10-8
SB09-19	4-6	Upper Silty Clay	17.4	136.0 / 115.8	In-situ	3.7x10-8
TP01-19	4.5	Upper Silty Clay	18.5	125.2 / 105.7	In-situ	3.2x10-8
TP02-19	7.0	Ablation Till	15.8	125.6 / 108.5	In-situ	4.1x10-7
TP03-19	3.5-5	Ablation Till	9.0	118.4 / 108.6	Re-molded	8.9x10-6
TP03-19	8.5	Ablation Till	11.7	116.2 / 104.0	In-situ	1.2x10-3 ⁽²⁾
SBPZB01D-19	38-38.5	Lower Silty Clay	11.0	140.7 / 126.8	In-situ	2.7x10-8
PZBA2D-19	36-38	Lower Silty Clay	24.3	129.8 / 104.4	In-situ	2.5x10-8
PZMWSE3D-19	44-46	Lower Silty Clay	18.4	144.3 / 121.8	In-situ	4.4x10-8
PZ04D-19	38 40	Lower Silty Clay	16.2	132.9 / 114.3	In-situ	4.2x10-8

SOIL PERMEABILITY	(SATURATED SO	DIL SLUG TEST)					
Well I.D.	Screened Depth (fbgs)	Unit	Screened Interval Elevation (famsl)	Slug In (Hydraulic Conductivity (cm/s)	Slug Out (Hydraulic Conductivity (cm/s)	Average Hydraulic Conductivity (cm/s)	
MWSE-1	15-25	Upper Silty Sand and Gravel	1434.7-1424.7	3.62E-04	1.09E-04	2.0E-04	
MWSE-2	15-25	Upper Silty Sand and Gravel	1434.9-1429.9	NA	7.05E-04	7.05E-04	
MWSE-3	18-28	Upper Silty Sand and Gravel	1439.2-1429.2	4.12E-04	3.11E-04	3.58E-04	Upper Silty Sand and Gravel
MWSE-4	10-20	Upper Silty Sand and Gravel	1438.6-1428.6	1.35E-04	NA	1.35E-04	4.53E-04 cm/s Geomean
PZ01-19	15-25	Upper Silty Sand and Gravel	1438.7-1428.7	1.46E-03	NA	1.46E-03	
PZ02-19	18-28	Upper Silty Sand and Gravel	1439.2-1429.2	9.98E-04	NA	9.98E-04	
PZ03-19	18-28	Upper Silty Sand and Gravel	1439.4-1429.4	7.89E-04	NA	7.89E-04	
PZ04-19	18-28	Upper Silty Sand and Gravel	1438.3-1428.3	1.85E-04	NA	1.85E-04	
PZ05S-19	18-28	Upper Silty Sand and Gravel	1433.3-1423.3	5.59E-04	NA	5.59E-04	
PZ05D-19	52.5-62.5	Lower Silty Sand and Gravel	1399.0-1389.0	NA	1.09E-02	1.09E-02	
PZBA2D-19	50-60	Lower Silty Sand and Gravel	1403.3-1393.3	1.95E-04	9.64E-05	1.37E-04	Lower Silty Sand and Gravel
PZMWSE3D-19	49-54	Lower Silty Sand and Gravel	1408.2-1403.2	3.09E-04	2.95E-04	3.02E-04	4.62E-04 cm/s Geomean
PZ04D-19	48-58	Lower Silty Sand and Gravel	1408.1-1398.1	2.67E-04	3.79E-05	1.01E-04	

SOIL ORGANIC MATTE	R CONTENT (W	/ALKLEY BLACK Method)	
Location	Depth (fbgs)	Unit	Organic Content (mg/kg / Organic Fraction)
TP01-19	4.5	Upper Silty Clay	2970 mg/Kg / 0.0029 g/g
TP02-19	5-7	Ablation Till	2820 mg/Kg / 0.0028 g/g
TP02-19	9.5	Ablation Till	2130 mg/Kg / 0.0021 g/g
TP03-19	3.5-5	Ablation Till	1470 mg/Kg / 0.0014 g/g
TP03-19	11-11.5	Upper Silty Sand and Gravel	<1210 mg/Kg / <0.0012 g/g

USEPA Soil Screening Guidance for compound-specific evaluation of soil attenuation assumes an Foc of 0.002 g/g - Foc values above 0.002 g/g are expected to have above average soil attenuation properties.

Notes:
(1) - Presented as a total fines value.
(2) Low data quality caused by sample angular gravel resting against the wall of the laboratory permeameter after Shelby Tube extrusion. The re-molded sample was recompacted to a similar density as the original shelby tube sample prior to analysis. The permeability data of the re-compacted sample is considered more representative of Ablation Till sample from TP03-19.

- Grainsize distribution by ASTM D422

- Atterberg Limits Analysis by ASTM D4318
fbgs - feet below ground surface
NT - Not Tested (non-cohesive sample)

GEI Consultants, Inc., P.C. Page 2 of 2

Table 3. Well and Piezometer Construction Summary Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development Town of Sardinia, New York

		Coord	linates		Elevation		APPLI	CABLE	Well inside		Bottom of	Top of
Date	Monitoring	Northing	Easting	Ground	Steel Casing	PVC Casing	SURVE		diameter	Unit Screened	PVC Screen	PVC Screen
Installed	Well	(ft.)	(ft.)	Surface (ft.)	(ft.)	(ft.)	Coord.	Elev.	(in.)		Elevation (ft.)	Elevation (ft.)
Closed Land	dfill Area											
Sep-83	MW-R1A	8062.94	7787.91	1500.6	1502.30	1501.58	1	10	2.0	Upper Silty S&G	1431.0	1433.0
Dec-02	MWR-1BR	8069.78	7784.36	1485.1	1488.16	1487.63	6	6	2.0	Upper Silty Clay	1451.6	1471.1
Jun-02	MW-2R	8838.57	8093.24	1491.3	1493.50	1493.34	3	3	2.0	Upper Silty Clay	1473.3	1478.3
Sep-83	MWR-3	8049.91	7324.69	1493.5	1496.51	1496.02	1	2	2.0	Upper Silty Clay	1479.8	1481.8
Aug-84	MW-R4A	8062.54	6699.62	1487.8	1490.78	1490.53	1	10	2.0	Upper Silty S&G	1423.0	1425.0
Dec-02 May-86	MWR-4CR MW-7R	8011.05 9946.76	6674.07 7886.42	1479.1 1499.40	1482.49 1500.18	1482.19 1501.18	6	6	2.0	Upper Silty Clay Upper Silty Clay	1461.4 1434.5	1468.0 1439.5
Dec-02	MW-9R	9149.14	8053.21	1487.8	1490.50	1490.13	6	6	2.0	Upper Silty Clay	1428.4	1437.9
Dec-02	MW-10R	9960.37	7343.57	1513.3	1516.41	1516.09	6	6	2.0	Upper Silty S&G	1419.0	1428.4
Dec-02	MW-11R	9958.61	7349.28	1513.9	1516.61	1516.31	6	6	2.0	Upper Silty Clay	1499.9	1504.4
Jan-91	MW-12A	9954.78	6877.74	1491.5	1494.77	1494.63	1	2	2.0	Upper Silty Clay	1404 (approx)	1414 (approx)
Jan-91	MW-12B	9949.84	6877.89	1492.3	1493.91	1493.56	1	2	2.0	Upper Silty Clay	1483 (approx)	1488 (approx)
Dec-02	MW-13R	9121.91	8073.98	1491.3	1494.49	1494.13	6	10	2.0	Upper/Lower Silty S&G	1394.0	1403.5
Nov-96	MW-14R	9927.86	7859.21	1500.70	1502.23	1502.29	1	1	2.0	Upper Silty S&G	1407 (approx)	1417 (approx)
Mar-03	MW-24AR	9662.84	7947.73	1482.1	1484.66	1484.36	6	6	2.0	Upper Silty S&G	1388.6	1398.1
Mar-03	MW-24BR	9684.32	7942.78	1483.1	1485.64	1485.21	6	6	2.0	Upper Silty Clay	1469.1	1473.6
Dec-02	MW-80A	10038.76	7322.11	1504.0	1507.18	1506.91	6	6	2.0	Upper Silty S&G	1411.2	1420.7
Dec-02 Dec-02	MW-80B MW-81	10047.52 10037.51	7321.24 6924.92	1503.5 1495.6	1506.85 1498.82	1506.59 1498.34	6	6	2.0	Upper Silty Clay Upper Silty S&G	1489.4 1404.1	1493.9 1413.6
Nov-03	MW-82B	6696.65	7864.69	1478.4	1481.43	1481.23	7	7	2.0	Upper Silty Clay	1460.6	1467.6
		0030.03	7004.03	1470.4	1401.40	1401.20			2.0	Opper only olay	1400.0	1407.0
Western La	ndfill Area											
May-88	MW-16	9956.26	4807.15	1453.70	1455.90	1455.25	1	1	2.0	Upper Silty S&G	1426.3	1431.3
Apr-01	MW-16(S)	9951.91	4809.40	1453.50	1454.73	1454.41	4	4	2.0	Upper Silty Clay	1440.0	1445.0
May-88	MW-17	9967.69	5951.95	1459.30	1461.68	1461.06	1	1	2.0	Upper Silty S&G	1419.9	1424.9
Nov-03	MW-18BR	5964.00	9966.71	1461.37	1463.48	1463.18	7	7 10	2.0	Upper Silty Clay	1436.7	1441.7
Jun-88	MW-30 MW-32	9219.53 9219.36	4806.32 4797.54	1471.56 1470.25	1473.00 1472.45	1472.87 1472.22	•	10	2.0	Upper Silty S&G	1427.2 1459.4	1437.2 1464.4
Jun-88 Jun-88	MW-50	7787.36	5371.32	1470.25	1472.45	1472.22	1	2	2.0	Upper Silty Clay Upper Silty S&G	1435.4	1464.4
Apr-01	MW-K(S)	8107.25	6136.58	1471.49	1474.42	1474.12	5	5	2.0	Upper Silty Clay	1455.1	1460.1
Apr-01	MW-K(I)	8106.95	6129.01	1472.55	1474.58	1474.29	5	10	2.0	Upper Silty S&G	1437.2	1447.2
Jun-05	MW-L(S)	9937.06	5216.97	1464.59	1466.71	1466.64	8	8	2.0	Upper Silty Clay	1439.6	1449.6
Jun-05	MW-L(I)	9938.04	5211.36	1464.18	1466.68	1466.61	8	8	2.0	Upper Silty S&G	1424.2	1434.2
Jul-09	MW-M(S)	9949.09	5698.72	1458.81	1461.44	1461.29	8	8	2.0	Upper Silty Clay	1436.8	1446.8
Jul-09	MW-M(I)	9948.24	5692.55	1459.09	1461.41	1461.28	8	8	2.0	Upper Silty S&G	1419.1	1429.1
Jul-09	MW-N(S)	9932.47	6168.01	1474.25	1476.50	1476.39	8	8	2.0	Upper Silty Clay	1449.3	1459.3
Jul-09	MW-N(I)	9932.64	6162.63	1473.95	1476.49	1476.35	8	8	2.0	Upper Silty S&G	1428.5	1438.5
Jun-05	MW-O(S)	9543.19	4803.29	1478.34	1480.72	1480.61	8	8	2.0	Upper Silty Clay	1458.3	1463.3
Jun-05	MW-O(I)	9552.64	4805.03	1478.34	1480.63	1480.52	8	8	2.0	Upper Silty S&G	1426.8	1436.8
Jul-09	MW-P(S)	9940.36	5453.08	1465.59	1468.34	1468.24	8	8	2.0	Upper Silty Clay	1439.6	1449.6
Jul-09	MW-P(I)	9942.01	5447.89	1466.28	1469.03	1468.90	8	8	2.0	Upper Silty S&G	1413.3	1428.3
West Soil B	orrow Area											
Nov-09	MWBA-1	938980.00	1171539.30	1455.31	1456.48	1455.99	9	10	2.0	Upper Silty S&G	1425.8	1435.8
Nov-09	MWBA-2	938960.83	1171294.50	1453.63	1454.91	1454.60	9	10	2.0	Upper Silty S&G	1425.1	1435.1
Nov-09	MWBA-3	938954.21	1170987.10	1456.01	1456.95	1456.89	9	10	2.0	Upper Silty S&G	1437.7	1447.7
Southern F	cpansion Area											
	·											
Monitoring		020277 70	1171404 00	1440 70	1450.40	1451.00	10	10		Linnar Cilt. COC	14047	1404 7
Apr-19 Apr-19	MWSE-1 MWSE-2	939377.70	1171481.00 1171136.68	1449.70 1449.89	1452.13 1452.44	1451.92 1452.25	10 10	10 10	2.0	Upper Silty S&G Upper Silty S&G	1424.7	1434.7 1434.9
Apr-19 Apr-19	MWSE-3	939038.17 938987.29	1171136.68	1449.89	1452.44	1452.25	10	10	2.0	Upper Silty S&G	1424.9 1429.2	1434.9
Apr-19 Apr-19	MWSE-4	939171.92	1170603.09	1448.58	1459.45	1459.29	10	10	2.0	Upper Silty S&G	1429.2	1439.2
Piezometers		000171.02	1170200.10	1110.00	1100.12	1 100.00				- Sppor Only Odd	1.20.1	1 100.1
Aug-03	PZ03-3	938677.0	1169929.0	1449.1	1451.49	1451.36	10	10	2.0	Upper Silty S&G	1429.1	1439.1
Apr-19	PZ01-19	938641.81	1170448.04	1453.7	NA	1455.38	10	10	2.0	Upper Silty S&G	1428.7	1438.7
Apr-19	PZ02-19	938911.54	1170460.22	1457.2	NA	1458.68	10	10	2.0	Upper Silty S&G	1429.2	1439.2
Apr-19	PZ03-19	939121.11	1170496.19	1457.4	NA	1459.04	10	10	2.0	Upper Silty S&G	1429.4	1439.4
Apr-19	PZ04-19	938964.93	1170982.16	1456.3	NA	1457.79	10	10	2.0	Upper Silty S&G	1428.3	1438.3
Oct-19	PZ04D-19	938969.66	1170977.32	1456.1	NA	1458.20	11	11	2.0	Lower Silty S&G	1398.1	1408.1
Apr-19	PZ05D-19	939206.77	1170882.92	1451.5	NA	1453.89	10	10	4.0	Lower Silty S&G	1393.5	1403.5
Apr-19	PZ05S-19	939208.43	1170888.68	1451.6	NA	1453.95	10	10	4.0	Upper Silty S&G	1423.6	1433.6
Apr-19	PZ09-19	939279.31	1171345.13	1449.3	NA	1451.30	10	10	1.0	Upper Silty Clay	1441.8	1443.8
Oct-19	PZMWSE3D-19	938989.99	1170673.87	1457.2	NA	1459.15	11	11	2.0	Lower Silty S&G	1403.2	1408.2
Oct-19	PZBA2D-19 PZSB11-19	938973.68	1171294.18	1453.3	NA	1455.09	11	11	2.0	Lower Silty S&G	1393.3	1403.3
Oct-19		938995.97	1171525.62	1455.4	NA	1457.72	11	11	1.0	Lower Silty S&G	1385.4	1395.4

- NOTES: 1. Locations and elevations based on survey completed by Deborah A. Nabor, PLS, PC dated March 2001. 2. Locations and elevations based on survey completed by Deborah A. Nabor, PLS, PC dated July 2001.

 - 3. Locations and elevations based on survey completed by Deborah A. Nabor, PLS, PC dated April 19, 2002.
 - 4. Locations and elevations based on survey completed by Deborah A. Nabor, PLS, PC dated May 2001.5. Locations and elevations based on survey completed by Wendel Duchscherer Survey dated December 27, 2007.

 - 6. Locations and elevations based on survey completed by Wendel Duchscherer Survey upon completion of well installations and submitted in "Well Installation Report, Chaffee Landfill," prepared by Golder Associates Inc. and dated October 2, 2003.
 - 7. Locations and elevations based on information supplied on logs prepared by Golder Associates.

 - Locations and elevations based on survey completed by Wendel Duchscherer Survey dated August 25, 2005.
 Locations and elevations based on survey completed by Wendel Duchscherer Survey dated November 2009.
 Locations and elevations based on survey completed by Wendel Project No. 403103. Survey dated May 2, 2019.
 - 11. Locations and elevations based on survey completed by Wendel Project No. 403103. Survey dated October 22, 2019.

GEI Consultants, Inc., P.C. Page 1 of 1 Table 4. 2019/2020 Groundwater Elevation Data Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development Town of Sardinia, New York

	TOR	Apr. 12, 2019	Apr. 19, 2019	Apr. 26, 2019	Apr. 30, 2019	May 3, 2019	May 9, 2019	Jun. 12, 2019 (2)	Jul. 8, 2019	A 40, 2040 (2)	Sep. 17, 2019	Oct. 18, 2019	Nov. 15, 2019	Dec. 9, 2019 (2)	Jan. 10, 2020	Feb. 6, 2020	Mar. 9, 2020	Jun. 1, 2020	Aug. 31, 2020	Nov. 16, 2020	Mar. 8, 2021
Well ID	Elevation ⁽¹⁾	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Aug. 19, 2019 (2) Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation
		Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation	Lievation
Western Area																					
Upper Silty Clay Till I MW-K(S)	1474.12							DRY		<1456.33				DRY			1456.33	DRY	DRY	DRY	DRY
MW-32	1472.22							DICI		<1441.28				1468.79			1469.67	1467.07	1462.64	1465.33	1468.15
MW-O(S)	1480.61							DRY		<1457.97				1457.89			1470.30	1465.31	DRY	DRY	1466.61
MW-16(S)	1454.41							1446.42		1446.54				1451.71			1451.96	1448.62	1445.06	1451.84	1451.36
MW-L(S)	1466.64							DRY		<1438.52				1438.91			1439.29	DRY	DRY	DRY	DRY
MW-P(S)	1468.24							1454.28		1453.26				1453.67			1455.26	1454.42	1452.50	1452.73	1453.49
MW-18BR	1463.48							1446.72		1444.43				1445.13			1446.73	1447.06	1444.15	1443.97	1444.76
MW-M(S)	1461.29							1449.95		1449.21				1450.35			1450.72	1450.01	1448.12	1449.03	1450.01
MW-N(S)	1476.39							1461.7		1461.11				1461.94			1462.91	1461.45	1456.43	1462.37	1460.92
MW-Q(S)	1477.55							1443.88		1441.60				1440.69			1443.39	1444.49	DRY	DRY	DRY
	d Comment Managina	14/- !!																			
Upper Silty Sand and MW-K(I)	1474.29	Not repaired yet	Not repaired yet	DRY	<1439.89	<1439.89	<1439.89	<1439.89	<1439.89	<1439.89	1436.84	<1439.89	<1439.89	<1439.90	<1439.90	1437.89	1438.50	1438.65	1437.12	DRY	DRY
MW-50	1463.55	1438.80	1439.05	1438.95	1400.00	1438.84	1438.85	1438.05	1438.15	1437.66	1437.60	1437.60	1437.75	1437.87	1438.15	1438.37	1439.01	1438.76	1437.56	1437.66	1437.89
MW-30	1472.87	1438.17	1438.09	1438.55		1438.17	1438.25	1437.80	1437.47	1436.65	1436.30	1435.97	1436.10	1436.42	1436.85	1437.48	1437.82	1438.03	1436.60	1435.62	1436.34
MW-O(I)	1480.52		1100.00	. 100.00		1100.11	1100.20	1437.82	1107111	1436.63	1436.27	1100.01	1100.10	1436.39	1.00.00		1437.82	1437.99	1436.62	1435.60	1436.27
MW-16	1455.25							1437.04		1436.89				1435.67			1437.13	1437.27	1435.74	1434.82	1435.53
MW-L(I)	1466.61							1437.70		1436.49				1436.35			1437.77	1437.97	1436.38	1435.38	1436.11
MW-P(I)	1468.90							1437.96		1436.48				1435.83			1437.84	1438.13	1436.18	1435.02	1435.71
MW-17	1461.06							1437.32		1435.71				1434.74			1437.08	1437.49	1435.35	1433.91	1434.69
MW-M(I)	1461.28							1438.05		1436.47				1435.50			1437.79	1438.20	1436.04	1434.67	1435.44
MW-N(I)	1476.35							1437.99		1436.36				1435.39			1437.73	1438.14	1436.00	1434.57	1435.29
MW-Q(I)	1478.61							NA		1436.33				1435.30			1437.65	1438.11	1435.93	1434.49	1435.21
Closed Landfill																					
Upper Silty Clay Til	I Monitoring Wells	:																			
MW-2R	1493.40							1488.14		1486.32				1486.49			1487.79	1488.22	1486.16	1484.93	1486.80
MW-3R	1499.93							DRY		DRY				DRY			<1479.22	DRY	DRY	DRY	DRY
MW-R1BR	1505.20							1490.45		1470.87				1490.65			1496.89	1493.70	1472.02	1467.31	1494.25
MW-82B	1481.43							1473.85		1472.94				1472.57			1473.42	1474.08	1473.05	1471.70	1472.77
MW-R4CR	1489.19							1480.96		1481.22				1482.04			1482.22	1481.16	1480.61	1481.59	1481.69
MW-24BR	1485.21							1480.62		1479.80				1481.19			1481.37	1480.86	1478.64	1481.12	1480.77
MW-7R	1501.18							1450.19		1449.06				1448.13			1449.24	1450.25	1448.70	1447.68	1447.39
MW-11R	1516.31							1506.79		1503.93				1509.21	1		1509.52	1502.81	1506.09	1508.91	1508.90
MW-80B	1506.59							1499.61		1499.94				1502.47			1502.60	1500.06	1498.13	1502.42	1502.19
MW-12B	1493.56							1485.77		1485.77				1487.46			1488.28	1486.36	1485.48	1488.58	1487.56
Upper Silty Sand and	d Gravel Monitorin	g Wells:																			
MW-R4A	1490.53	1438.42	1438.48	1438.69		1438.39	1438.33	1438.00	1437.71	1436.67	1436.28	1435.85	1436.13	1436.27	1436.71	1437.54	1438.31	1438.13	1436.49	1435.61	1436.21
MW-R1A	1501.58	1438.69	1438.84	1438.97		1438.64	1438.67	1438.11	1437.72	1436.42	1434.98	1435.48	1435.56	1435.82	1436.48	1437.51	1438.19	1437.45	1434.94	1434.88	1435.73
MW-9R	1490.13							1455.38		1454.72				1455.05			1455.27	1455.49	1454.68	1454.49	1454.52
MW-13R	1494.13	1439.19	1439.29	1439.55		1439.09	1439.14	1438.48	1437.94	1436.48	1435.79	1435.15	1435.18	1435.51	1436.19	1437.68	1438.24	1438.67	1435.95	1434.44	1435.41
MW-24AR	1484.36							1438.40		1436.47				1435.39			1438.03	1438.62	1435.91	1434.40	1435.27
MW-14R	1502.26							1438.21		1436.21				1435.10			1437.37	1438.19	1435.49	1440.16	1434.86
MW-10R	1516.09							1437.80		1436.07				1434.99			1437.28	1437.88	1435.51	1434.14	1434.75
MW-80A	1506.91							1437.89		1436.17				1435.09			1437.36	1438.00	1435.61	1434.12	1434.86
MW-81	1498.34							1437.84		1436.14				1435.09			1437.41	1437.97	1435.65	1434.13	1434.89
MW-12A	1494.63							1437.87		1436.17				1435.18			1437.40	1437.99	1435.68	1434.19	1434.95

GEI Consultants, Inc., P.C.

Table 4. 2019/2020 Groundwater Elevation Data Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development Town of Sardinia, New York

Well ID	TOR	Apr. 12, 2019	Apr. 19, 2019	Apr. 26, 2019	Apr. 30, 2019	May 3, 2019	May 9, 2019	Jun. 12, 2019 ⁽²⁾	Jul. 8, 2019	Aug. 19, 2019 (2)	Sep. 17, 2019	Oct. 18, 2019	Nov. 15, 2019	Dec. 9, 2019 (2)	Jan. 10, 2020	Feb. 6, 2020	Mar. 9, 2020	Jun. 1, 2020	Aug. 31, 2020	Nov. 16, 2020	Mar. 8, 2021
Well ID	Elevation ⁽¹⁾	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation	Elevation
Areas 7/8 Develop	ment																				
Upper Silty Sand and	Gravel Monitoring	g Wells:																			
MWBA-1	1455.99	1438.37	1438.63	1438.61	1438.34	1438.42	1438.39	1437.79	1437.57	1436.55	1436.29	1435.79	1436.05	1436.20	1436.99	1437.57	1438.38	1438.15	1436.19	1435.52	1436.22
MWBA-2	1454.60	1438.19	1438.45	1438.45	1438.20	1438.28	1438.25	1437.68	1437.51	1436.62	1436.32	1435.88	1436.14	1436.26	1437.07	1437.50	1438.42	1438.05	1436.32	1435.66	1436.34
MWBA-3	1456.89		1438.41	1438.46	1438.23	1438.24	1438.28	1437.74	1437.57	<1436.39	<1436.39	<1436.39	<1436.39	<1436.39	<1436.39	1437.59	1438.53	1438.14	DRY	DRY	Dry
P3-03	1451.36	1438.31	1438.84	1438.69	1438.55	1438.54	1438.53	1437.86	1437.86	1437.15	1437.50	1436.76	1437.32	1437.82	1438.86	1438.84	1439.74	1438.54	1437.26	1437.06	1437.71
PZ01-19	1455.38	1437.77	1438.28	1438.17	1438.00	1438.00	1438.01	1437.36	1437.19	1436.54	1436.89	1436.38	1436.95	1437.21	1438.05	1437.97	1438.93				
PZ02-19	1458.68	1438.05	1438.63	1438.56	1438.35	1438.37	1438.38	1437.60	1437.70	1436.83	1437.29	1436.54	1437.18	1437.52	1438.43	1438.43	1439.53	1438.45	1437.08	1436.94	1437.43
PZ03-19	1459.04	1438.32	1438.52	1438.64	1438.39	1438.44	1438.44	1437.87	1437.74	1436.82	1436.71	1436.23	1436.63	1436.79	1437.59	1437.94	1438.86				
PZ04-19	1457.79	1438.19	1438.39	1438.46	1438.01	1438.23	1438.27	1437.74	1437.56	1436.62	1436.38	1435.96	1436.26	1436.36	1437.16	1437.56	1438.49				1436.41
PZ05S-19	1453.95	Not installed	1438.40	1438.52	1438.26	1438.30	1438.30	1437.91	1437.65	1436.64	1436.40	1435.95	1436.26	1436.38	1437.15	1437.60	1438.48	1438.22	1436.55	1435.80	1436.38
PZ05D-19	1453.89	Not installed	1434.89	1435.49	1435.41	1435.42	1435.34	1434.96	1434.49	1433.29	1432.66	1432.16	1432.42	1453.89	1453.89	1453.89		1453.89	1453.89		1453.89
PZ09-19 (perched in Till)	1451.30	Not installed	Not installed	<1443.80	<1443.80	<1443.80	<1443.80	<1443.80	No Reading	No Reading	No Reading	1444.98	1445.70	1446.08	1446.25	1446.90	1446.47				
MWSE-1	1451.92	Not installed	Not installed	1438.77	1438.42	1438.52	1438.54	1437.97	1437.67	1436.56	1436.15	1435.64	1435.82	1435.97	1436.77	1437.52	1438.27	1438.30	1436.20	1435.27	1436.00
MWSE-2	1452.25	Not installed	Not installed	1438.51	1438.24	1438.28	1438.31	1437.78	1437.59	1436.63	1436.36	1435.92	1436.21	1436.35	1437.12	1437.56	1438.47	1438.15	1436.37	1435.72	1436.36
MWSE-3	1459.29	Not installed	Not installed	1438.44	1438.21	1438.17	1438.24	1437.62	1437.56	1436.73	1436.70	1436.21	1436.69	1436.87	1437.70	1437.88	1438.85	1438.20	1436.74	1436.35	1436.91
MWSE-4	1450.59	Not installed	Not installed	1439.25	1439.24	1439.40	1439.23	1438.36	1438.44	1438.71	1439.59	1437.64	1438.29	1439.52	1440.79	1441.69	1443.11	1440.09	1437.91	1438.27	1440.61
Lower Water-Bearin	g Zone:																				
PZSB11D-19	1457.72											1433.87	1434.39	1434.39	1435.60	1436.66	1437.56				1434.56
PZBA2D-19	1455.09											1432.58	1432.71	1432.95	1434.27	1435.01	1435.89				1433.24
PZMWSE3D-19	1459.15											1431.99	1432.25	1432.31	1433.73	1434.54	1435.36				
PZ04D-19	1458.20											1432.10	1432.12	1432.43	1433.80	1434.59	1435.46				1432.78
PZ05D-19	1453.89		1434.89	1435.49	1435.41	1435.42	1435.34	1434.96	1434.49	1433.29	1432.66	1432.16	1432.42	1432.67	1433.89	1434.66	1435.53				1432.83
Surface Water:																					
SH-2	1436.62	1437.20				1437.32	1437.12	1437.24	1437.22	1437.52	1437.30	1437.27	1437.42	1437.38	-	-	1437.54				
SH-3	1426.24	1427.44				1427.80	1427.82	1427.14	1427.06	1426.74	1427.14	1427.24	1427.14	1427.32	-	-					
SH-6	1440.69	1441.19				1441.26	1441.09	1440.93	1441.01	1441.34	1441.37	1441.41	1441.20	1441.30	-	-	1441.47				

Notes:

Blank Cell - Data not recorded.

Staff gauge reference elevations from 0-mark on gauge. Measurement is feet above 0 mark elevation.

(1) TOR (top of riser for monitoring wells) measured in feet; distance above sea level.

(2) Data from quarterly monitoring event.

GEI Consultants, Inc., P.C.

Table 5A. Groundwater Analytical Summary - Expanded and Baseline Events Hydrogeologic Investigation Report

Chaffee Sanitary Landfill - Southern Expansion

Chaffee, New York

		Water Quality		MWS	SE-1			MWS	E-2			MWS	E-3			MWS	SE-4	
PARAMETER	UNITS	Comparison Criteria ⁽¹⁾	7/19/2019 (Expanded Ev)	9/19/2019 (Baseline Eve		7/19/2019 (Expanded Eve		9/19/2019 (Baseline Ever	nt)	7/19/2019 (Expanded Eve		9/19/2019 (Baseline Eve	ent)	7/19/2019 (Expanded Ev)	9/19/2019 (Baseline Eve	
Volatile Organic Compounds (by EPA Method 8260)	μg/L		ND		ND		ND		ND		ND		ND		ND		ND	
Semi-Volatile Organic Compounds (by EPA Method 8270D SIM)	μg/L		ND		NA		ND		NA		ND		NA		ND		NA	
Polychlorinated Biphenyls (PCBs) (by EPA Method 8082A)	μg/L		ND		NA		ND		NA		ND		NA		ND		NA	
Herbicides & Pesticides (by EPA Method 8015A/8081B)	μg/L		ND		NA		ND		NA		ND		NA		ND		NA	
Fluorinated Alkyl Substances (by EPA Method 537 Mod)	FS					T						l i		T				
Perfluorobutanesulfonic acid (PFBS)	ng/L		1.9	U	1.9	U	1.8	U	1.9	U	2	U	1.8	U	4.7		4.8	
Perfluorobutanoic acid (PFBA)	ng/L		2.5	Ť	1.9	Ü	1.8	U	1.9	Ü	2	Ü	1.8	Ü	16	1	15	
Perfluoroheptanoic acid (PFHpA)	ng/L		1.9	U	1.9	U	1.8	U	1.9	U	2	U	1.8	U	7.3		5.8	
Perfluorohexanoic acid (PFHxA)	ng/L		1.9	U	1.9	U	1.8	U	1.9	U	2	U	1.8	U	23		21	
Perfluorooctanesulfonic acid (PFOS)	ng/L	*	1.9	U	1.9	U	1.8	U	1.9	U	2	U	1.8	U	2.1		2.6	
Perfluorooctanoic acid (PFOA)	ng/L	*	1.9	U	1.9	U	1.8	U	1.9	U	2	U	1.8	U	11		9	
Perfluoropentanoic acid (PFPeA)	ng/L		1.9	U	1.9	U	1.8	U	1.9	U	2	U	1.8	U	19	+ +	15	
General Chemistry Parameters (by various EPA standard methods) Alkalinity, Total	mg/L		192	+	237	+	186	+ +	216		25.9		21.6		139	+	146	+
Ammonia as N	mg/L-N	2	0.02	U	0.05	UJ	0.02	U	0.05	U	0.02	U	0.05	U	0.02	U	0.05	U
Biochemical Oxygen Demand	mg/L	_	2	U	2	U	2	U	2	Ü	2	U	2	Ü	2	U	2	U
Chemical Oxygen Demand	mg/L		5	U	5	Ü	5	U	5	U	5	U	5	Ü	6.3		6.9	
Chromium, Hexavalent	mg/L	0.05	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U	0.01	U
Color	C.U.		10		0.01	U	10		0.01	U	40		0.01	U	5		5	
Cyanide, Total	mg/L	0.1	0.01	U	0.01	U	0.01	U	0.01	UJ	0.01	U	0.01	U	0.01	U	0.01	U
Hardness, Total	mg/L	10	362	+	368	╫	420	+ +	432	\vdash	43.1 2.4		2.3	+	225	+	252	U
Nitrogen, Nitrate Total Recoverable Phenolics	mg/L-N mg/L	0.001	0.05 0.005	U	0.11 0.0088	UJ	0.058 0.005	U	0.081	UJ	0.005	U	0.0094	UJ	0.05 0.005	U	0.05 0.008	UJ
Total Dissolved Solids	mg/L mg/L	500	480	+ -	430	- 53	587	-	617	00	57	0	54	- 55	441	+ -	336	- 55
Total Kjeldahl Nitrogen	mg/L-N		0.15	U	0.6		0.22		1.3		0.23		1.1	<u> </u>	0.15	U	0.15	U
Total Organic Carbon	mg/L		1.4		1	U	1.5		1	U	1	U	1	U	2		1.4	
Metals, Total (by EPA Method 6010C/7470A)																		
Aluminum	mg/L	0.1	0.2	U	0.2	U	1.4		0.2	U	2.8		0.74		0.2	U	0.2	U
Antimony	mg/L		0.02	U	0.015	U	0.02	U	0.015	U	0.02	U	0.015	U	0.02	U	0.015	U
Arsenic	mg/L	0.025	0.015	U	0.01	U	0.015	U	0.01	U	0.015	U	0.01	U	0.015	U	0.01	U
Barium	mg/L	1	0.1 0.002	U	0.2	U	0.12 0.002	U	0.2	U	0.061 0.002	U	0.2	U	0.055 0.002	U	0.2	U
Beryllium Boron	mg/L mg/L	1	0.002	- 0	0.003	+ 0	0.002	0	0.045	U	0.002	U	0.003	U	0.052	- 0	0.066	- 0
Cadmium	mg/L	0.005	0.002	U	0.005	U	0.002	U	0.005	U	0.002	U	0.005	Ü	0.002	U	0.005	U
Calcium	mg/L		102		105		122		133		12.3		12.9		69.9		79.8	
Chromium	mg/L	0.05	0.004	U	0.01	U	0.004	U	0.01	U	0.004	U	0.01	U	0.004	U	0.01	U
Cobalt	mg/L	0.005	0.004	U	0.05	U	0.004	U	0.05	U	0.004	U	0.05	U	0.004	U	0.05	U
Copper	mg/L	0.2	0.01	U	0.025	U	0.01	U	0.025	U	0.01	U	0.025	U	0.01	U	0.025	U
Iron	mg/L	0.3	0.061		0.1	U	2.5		0.1	U	4		0.95		0.32		0.34	
Lead	mg/L	0.025	0.01	U	0.003	U	0.01	U	0.003	U	0.01	U	0.003	U	0.01	U	0.003	U
Magnesium	mg/L	35	26.4		26.8		27.8	1	28.7		3		5	U	12.3	+	14	-
Manganese	mg/L	0.3 0.002	0.059 0.0002	U	0.036 0.0002	U	0.3	U	0.056 0.0002	U	0.2	111	0.052	111	0.13 0.0002	- 11	0.22 0.0002	U
Mercury Nickel	mg/L mg/L	0.002	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U	0.0002	U
Potassium	mg/L		1.2	+ -	5	Ü	4.6	-	5	Ü	1.8	-	5	Ü	1.8	+ -	5	Ü
Selenium	mg/L	0.01	0.025	U	0.005	Ü	0.025	U	0.005	Ü	0.025	U	0.005	Ü	0.025	U	0.005	Ü
Silver	mg/L	0.05	0.006	U	0.01	U	0.006	U	0.01	U	0.006	U	0.01	U	0.006	U	0.01	U
Sodium	mg/L	20	4.4		5		12.7		10.6		1.3		5	U	14		14.7	
Thallium	mg/L		0.02	U	0.01	U	0.02	U	0.01	U	0.02	U	0.01	U	0.02	U	0.01	U
Tin	mg/L		0.01	U	NA 0.05	┼ ∦	0.01	U	NA 0.05		0.01	U	NA 0.05	 	0.01	U	NA 0.05	
Vanadium Zinc	mg/L mg/L	0.3	0.005 0.01	U	0.05	U	0.005 0.017	U	0.05 0.02	U	0.005 0.041	1	0.05 0.02	U	0.005 0.01	U	0.05	U
Anions (by EPA Method 300.0)	nig/L	0.3	0.01	U	0.02	U	0.017	+ +	U.UZ	U	0.041	<u> </u>	0.02	U	0.01	U	0.02	T U
Bromide	mg/L	2	0.4	U	1	U	1	U	1	U	0.2	U	0.2	U	0.4	U	0.4	U
Anions (by EPA Method 4110B)		_	J			1	·		•	Ť				 	2	1	2	Ť
Chloride	mg/L	250	8.5		7.9	╅	14.1		16.1		1	U	0.96	╅	22		20	
Sulfate	mg/L	250	136		125		217		229		14.5	UJ	14.2		97.1		120	
Radiological (by EPA Method 903/904 and 908)																		
Radium-226	pCi/L	5**	0.137	U	NA		0.153	U	NA		0.101	U	NA		0.181	U	NA	
Radium-228	pCi/L	5**	0.724	U	NA	1	0.766	U	NA	igspace	0.605	U	NA	\bot	0.922	U	NA	
Uranium Control De Con	pCi/L	30**	0.116		NA		0.235	+	NA		0.0765	\vdash	NA	4	0.175	+	NA	
Field Data	011		7.00	+	704	+	7 4 5	+ +	7.07		F 00		6.40	1 1	7.50	+	6.04	+
pH, Field Field EH/ORP	SU millivolts	-	7.23 79	+	7.34 135	┼┈╟	7.45 111	+	7.37 99	\vdash	5.98 288	\vdash	6.18 174	+	7.52 70	+	6.84	-
Field EH/ORP Specific Conductance, Field	umhos/cm		692	+	25830	╅	832	+ +	1408	\vdash	104	\vdash	174	╫	70 516	+ +	570	1
Temperature, Field (°C)	°C	+	11.9		13.1	╅	13.2	+ +	12.4	\vdash	13	1	16.6	╅	16.2	+	16	
		1		1		1 1		1		1				1 1		1	10	

** EPA MCL, Radium is a combined concentration of -226/-228

GEI Consultants, Inc., P.C. Page 1 of 1

Notes:

(1) Water Quality Comparison Criteria - TOGS 1.1.1 * No MCL promulgated; NYSDEC DER further assessment required if PFOA/PFOS is >10 ng/L Shaded value indicates concentration is above NYSDEC Class GA Standard

ND = Not detected.

NA = Not analyzed for this parameter.
U = Not detected; value reported is the laboratory reporting limit.

J = Result is qualified as estimated because MS/MSD recoveries were outside of acceptance limits.

Table 5B. Groundwater Analytical Summary - Fluorinated Alkyl Substances Only Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development

Town of Sardinia, New York

PARAMETER	UNITS	Water Quality Comparison Criteria ⁽¹⁾	7/19/20 (Expanded	_	MWSE 9/19/20 (Baseline)19	2/6/20 (PFAS Onl	-	7/19/20 (Expanded		MWSE- 9/19/20 ² (Baseline E	9	2/6/2020 (PFAS Only Even	Basin 2/6/202	20	2/6/202	(Hosme	SW-1 er Brook) 2/26/20 (PFAS Only	-	DS-HBSW (Hosmer Bro 2/26/2020 (PFAS Only E	ook))	US-HBSV (Hosmer Br 2/26/202 (PFAS Only	rook) 20
Fluorinated Alkyl Substances (by EPA Method 537 Mod)																							
Perfluorobutanesulfonic acid (PFBS)	ng/L		2	U	1.8	U	1.8	U	4.7		4.8		5.7	5.3		1.8	U	1.6	U	1.6	U	1.7	U
Perfluorobutanoic acid (PFBA)	ng/L		2	U	1.8	U	1.8	U	16		15		19	14		3.8		3.4		4.1		1.7	U
Perfluoroheptanoic acid (PFHpA)	ng/L		2	U	1.8	U	1.8	U	7.3		5.8		10	5.4		1.8	U	1.6	U	1.7		1.7	U
Perfluorohexanesulfonic acid (PFHxS)	ng/L		2	U	1.8	U	1.8	U	1.8	U	1.8	U	1.9	1.9	U	1.8	U	1.6	U	1.6	U	1.7	U
Perfluorohexanoic acid (PFHxA)	ng/L		2	U	1.8	U	1.8	U	23		21		43	42		6.9		7.4		10		1.7	U
Perfluorononanoic acid (PFNA)	ng/L		2	U	1.8	U	1.8	U	1.8	U	1.8	U	2.6	1.9	U	1.8	U	1.6	U	1.6	U	1.7	U
Perfluorooctanesulfonic acid (PFOS)	ng/L	*	2	U	1.8	U	1.8	U	2.1		2.6		3.8	13		1.8	U	1.6	U	3.6		1.7	U
Perfluorooctanoic acid (PFOA)	ng/L	*	2	U	1.8	U	1.8	U	11		9		26	14		2.9		2.9		4.7		1.7	U
Perfluoropentanoic acid (PFPeA)	ng/L		2	U	1.8	U	1.8	U	19		15		27	17		3.3		3.6		4.4		1.7	U

Notes:

(1) Water Quality Comparison Criteria - * NYSDOH adopted MCL drinking water standard for PFOA and PFOS for public water systems at 10 ng/L Shaded value indicates concentration is above NYSDEC Class GA Standard

ND = Not detected.

NA = Not analyzed for this parameter.

U = Not detected; value reported is the laboratory reporting limit.

J = Result is qualified as estimated because MS/MSD recoveries were outside of acceptance limits.

GEI Consultants, Inc., P.C. Page 1 of 1

Table 6. Surface Water Field Chemistry and Flow Rate Summary Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Area 7/8 Development Town of Sardinia, New York

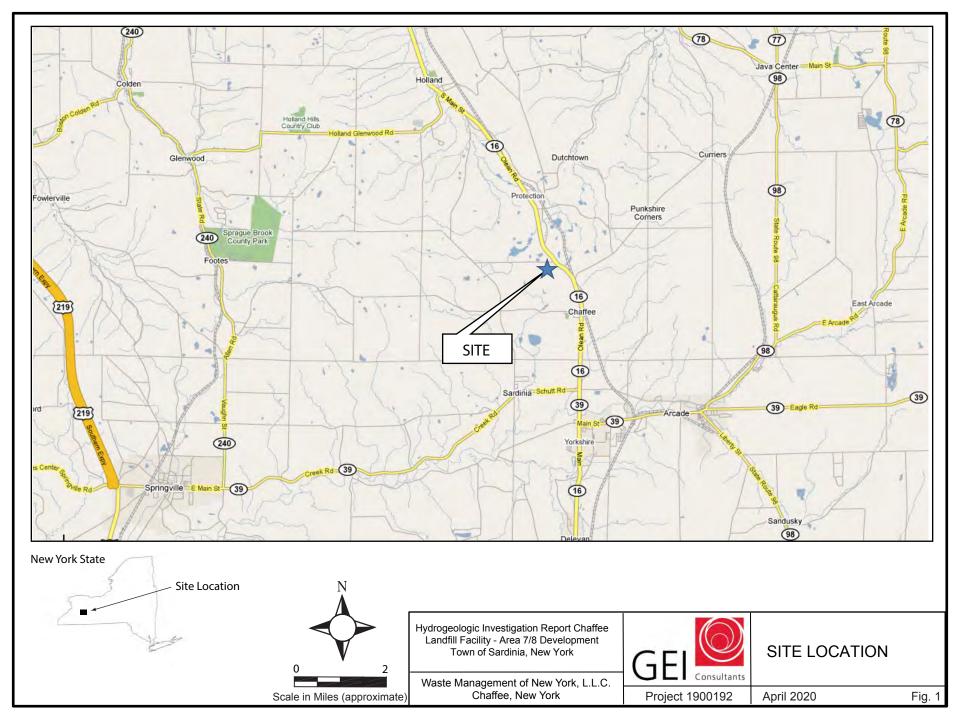
Staff Gauge ID	Parameter	UNITS				Date			
Otan Gauge ID	1 diameter	ONTO	4/12/2019	6/12/19	8/19/2019	9/17/2019	10/15/2019	8.1 8.2 290 360 7.3 3.6 1437.27 1437.42 5.0 6.2 8.3 8.2 420 460 9.1 3.0 1427.24 1427.14 327 294 8.4 8.2 450 530 9.2 3.6	12/9/2019
	рН	SU	NA	8.1	6.1	NA	8.1	8.2	8.3
	Specific Conductance	uS/cm	NA	430	310	300	290	360	310
SH-2	Temperature	°C	NA	24.9	22.5	17.5	7.3	3.6	4.5
	Surface Water Elev.	fasl	1437.20	1437.24	1437.52	1437.30	1437.27	1437.42	1437.38
	Flow Rate	ft ³ /min	4.5	4.8	7.0	5.3	5.0	6.2	5.9
	рН	SU	NA	8.0	7.9	NA	8.3	8.2	8.4
	Specific Conductance	uS/cm	NA	480	441	440	420	460	450
SH-3	Temperature	°C	NA	22.2	23.2	16.4	9.1	3.0	4.5
	Surface Water Elev.	fasl	1427.44	1427.14	1426.74	1427.14	1427.24	1427.14	1427.32
	Flow Rate	ft ³ /min	392	294	163	294	327	294	353
	pН	SU	NA	7.8	6.2	NA	8.4	8.2	8.6
	Specific Conductance	uS/cm	NA	510	447	490	450	530	730
SH-6	Temperature	°C	NA	24.2	23.0	18.8	9.2	3.6	3.4
	Surface Water Elev.	fasl	1441.19	1440.93	1441.34	1441.37	1441.41	1441.20	1441.30
	Flow Rate	ft ³ /min	6.7	3.2	8.7	9.1	9.6	6.8	8.2

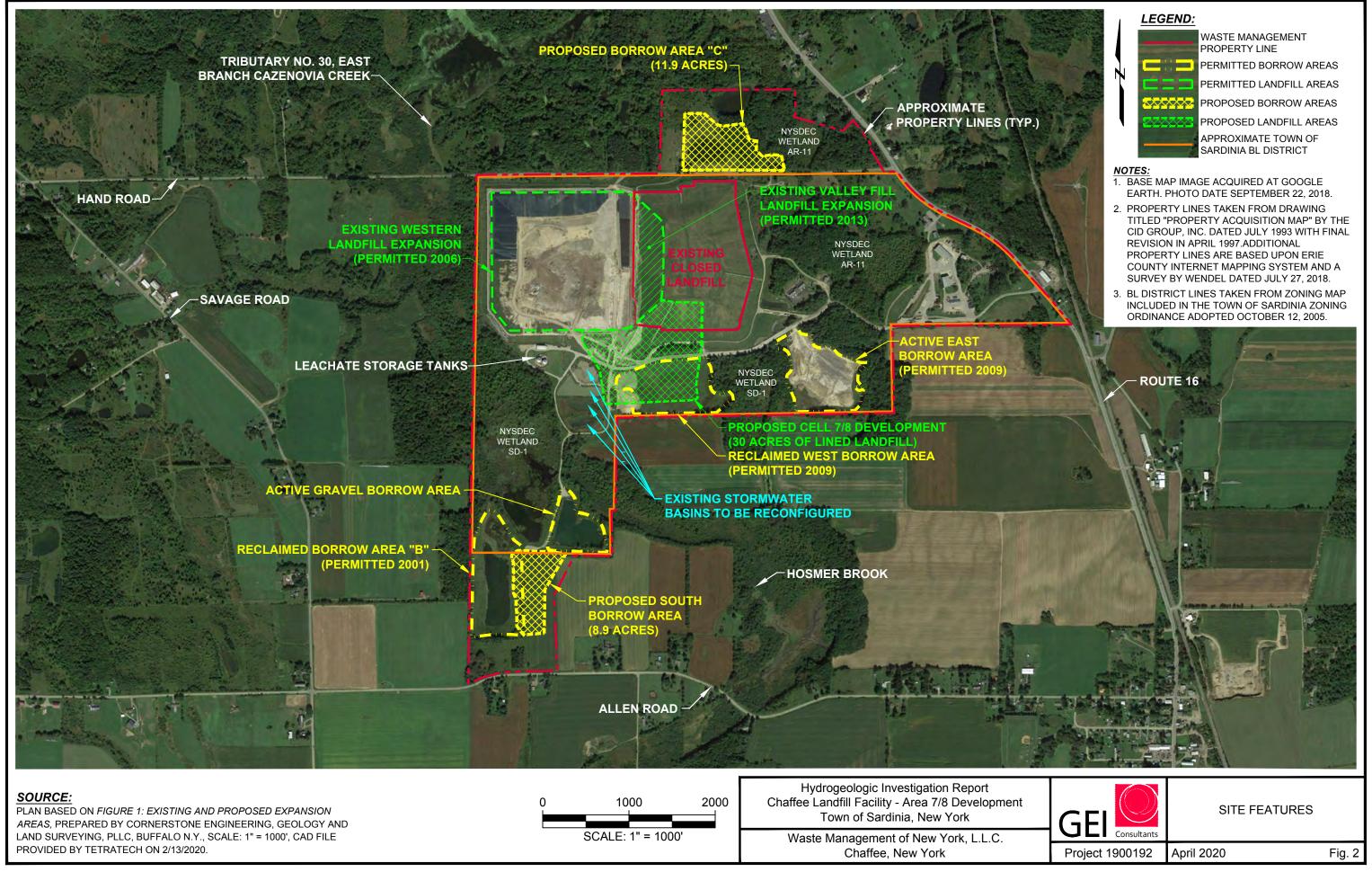
Notes:

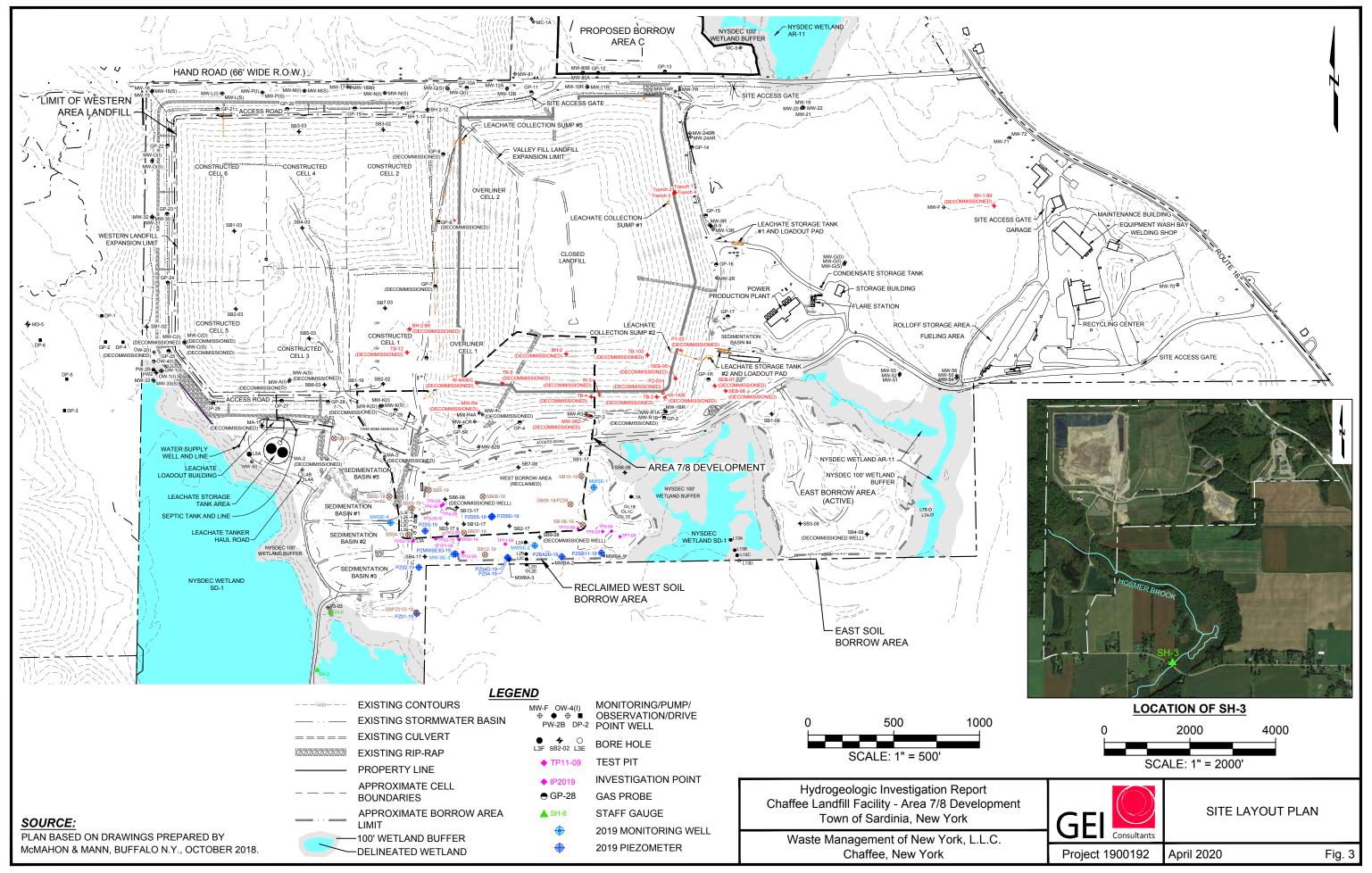
NA - measurement not performed

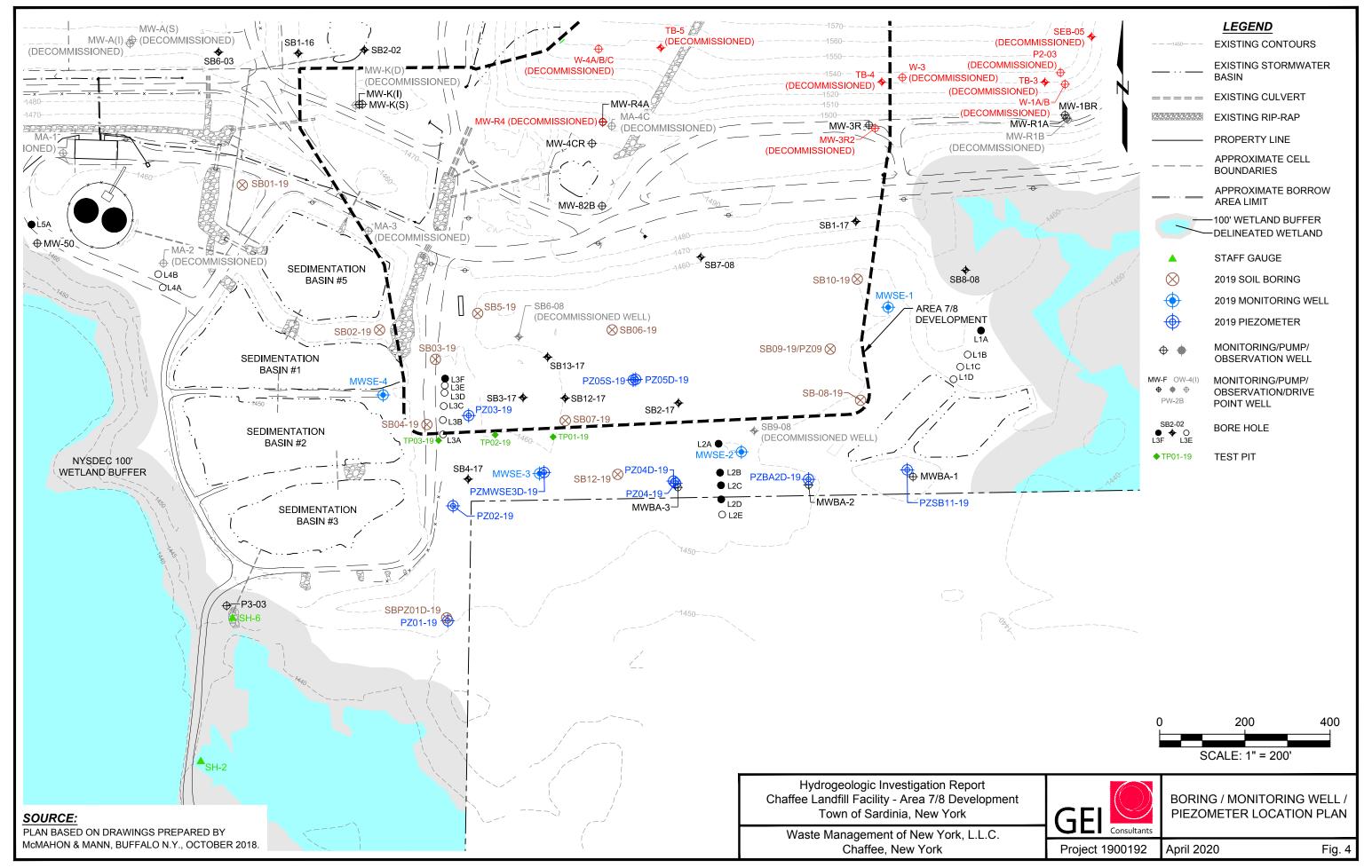
SU- standard units

uS/cm- microsiemens per centimeter

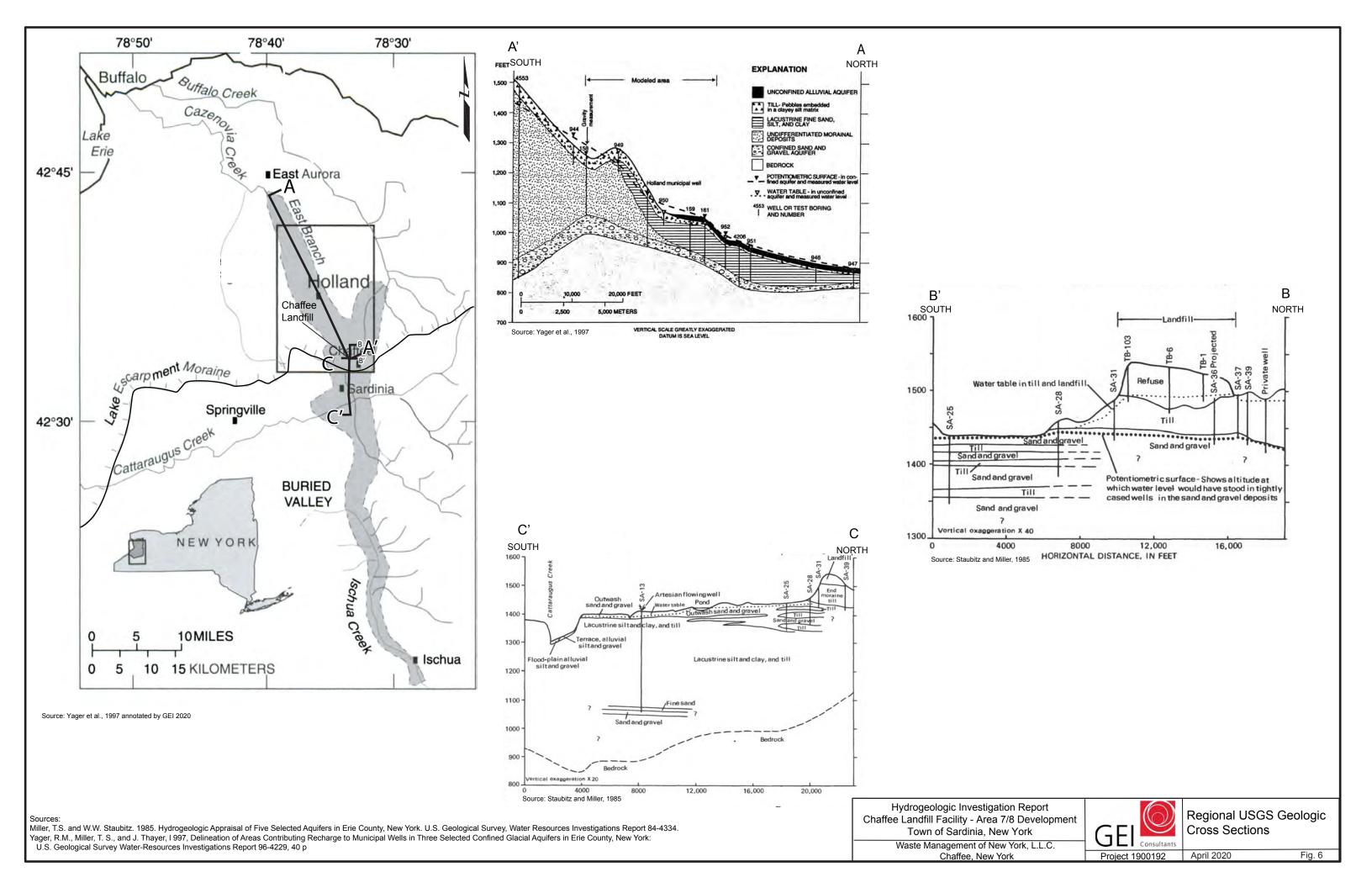

°F- degrees Celcius

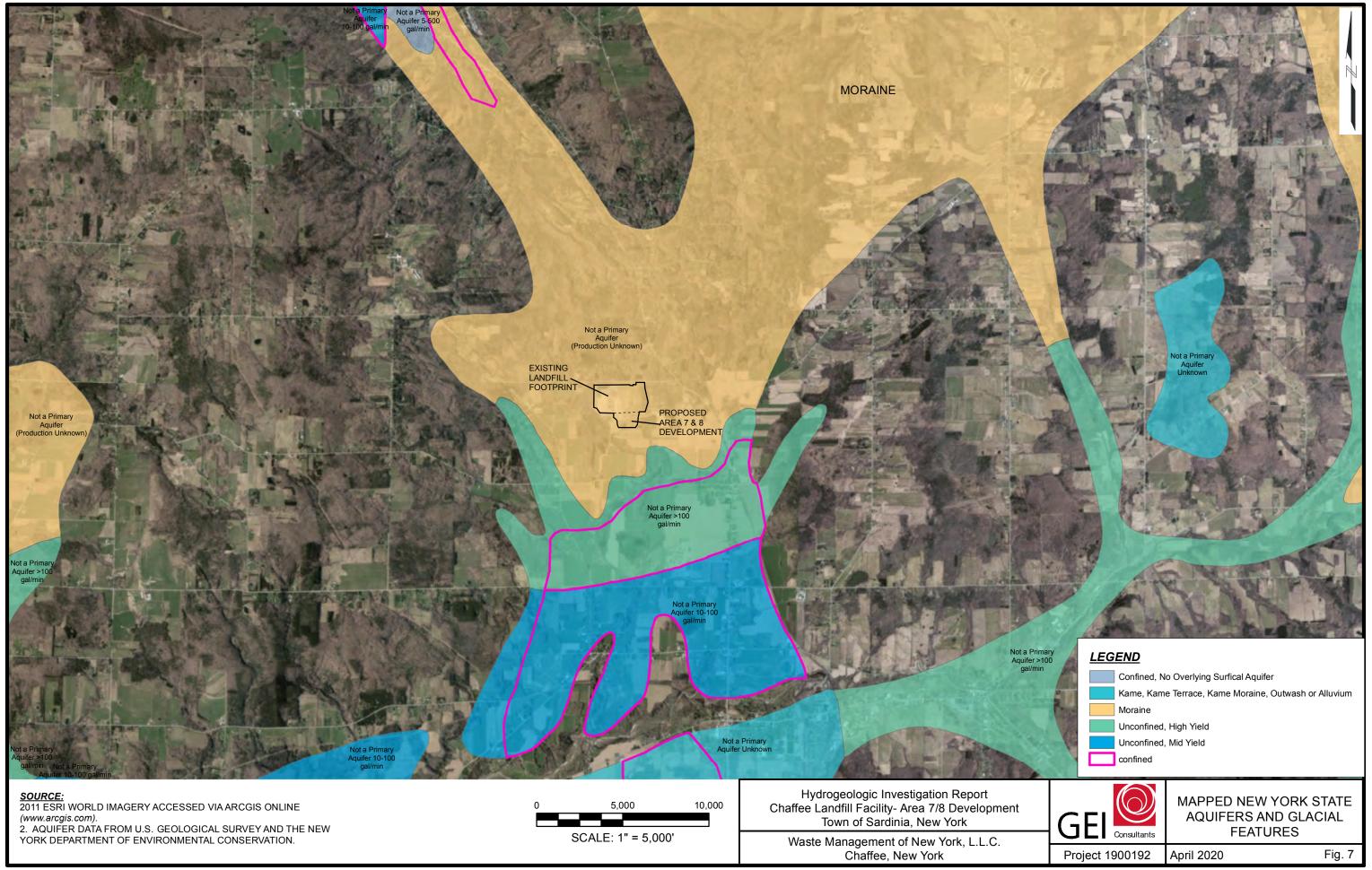

fasl- feet above sea level

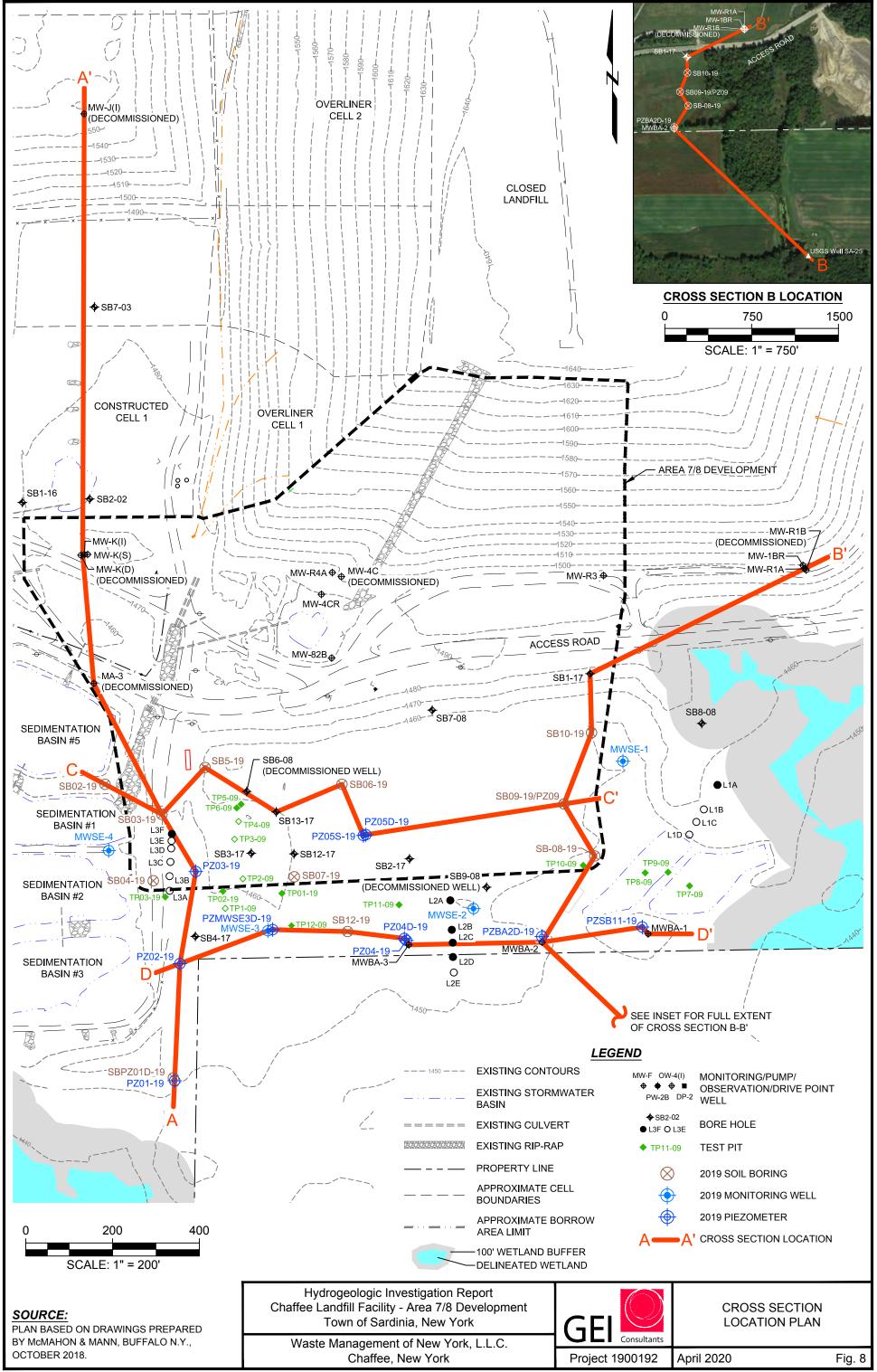

ft³/min- cubic feet per minute

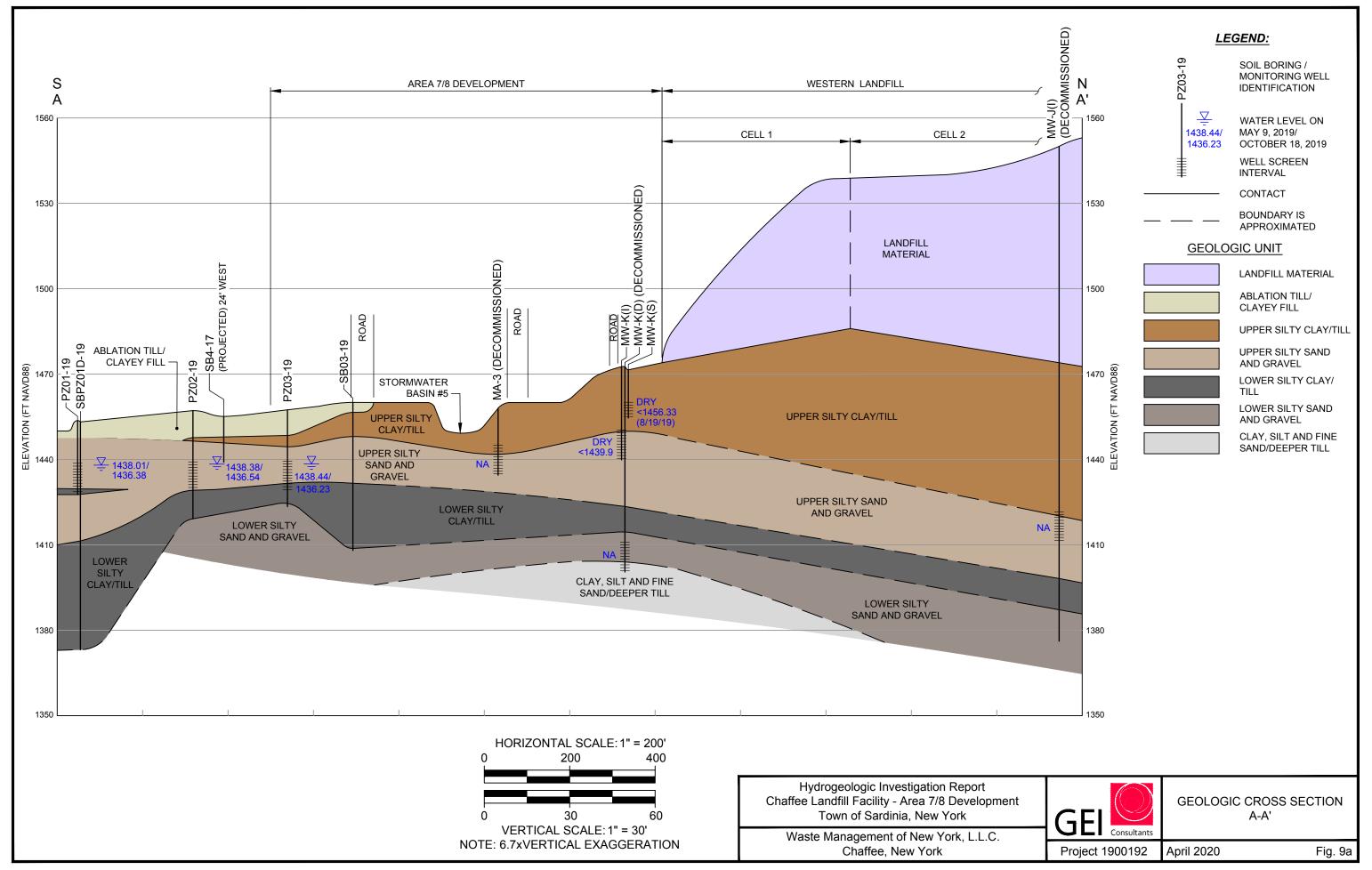

GEI Consultants, Inc., P.C. Page 1 of 1

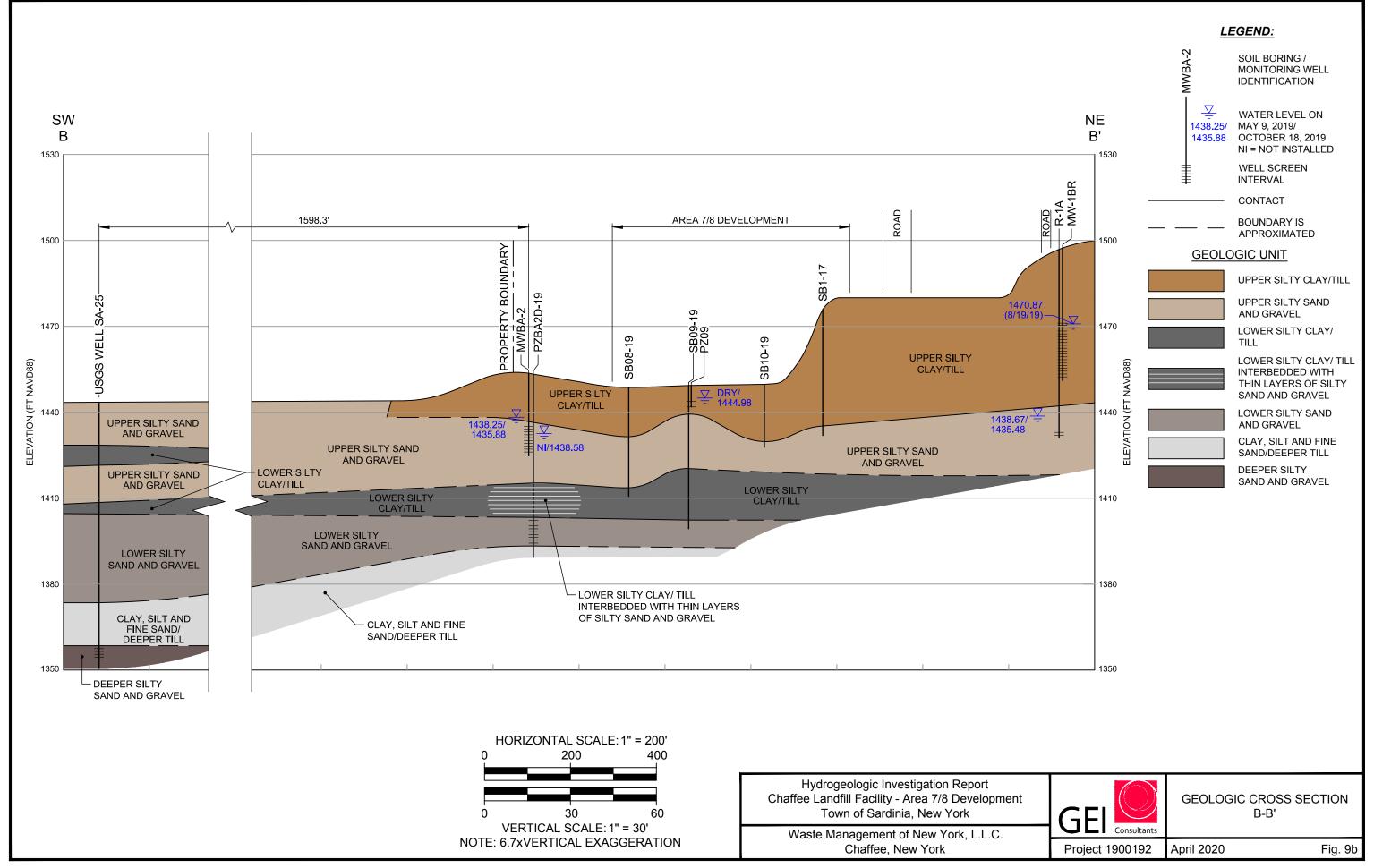
Figures

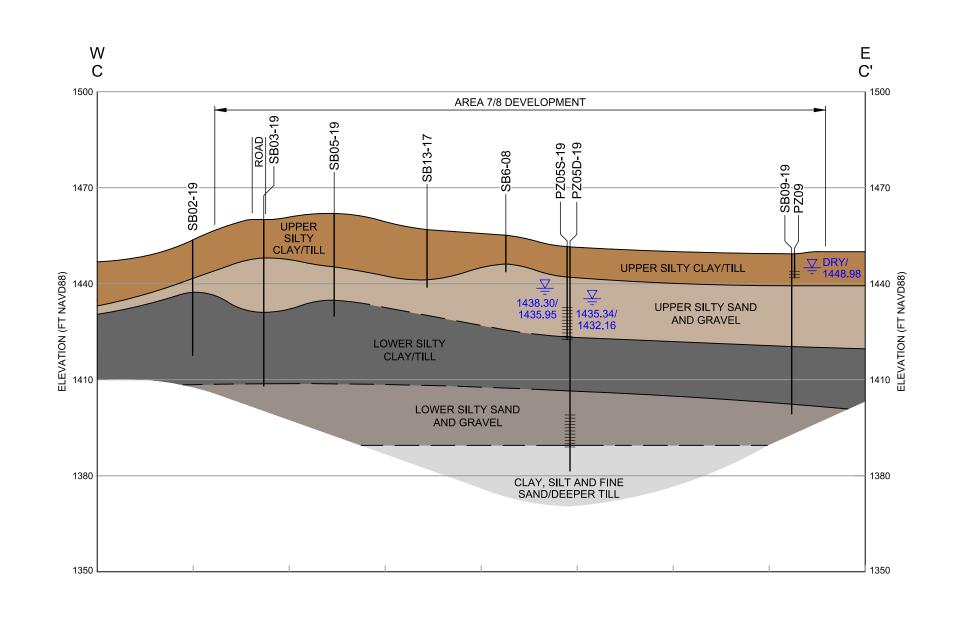


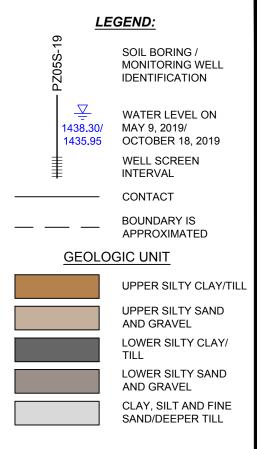


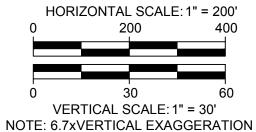




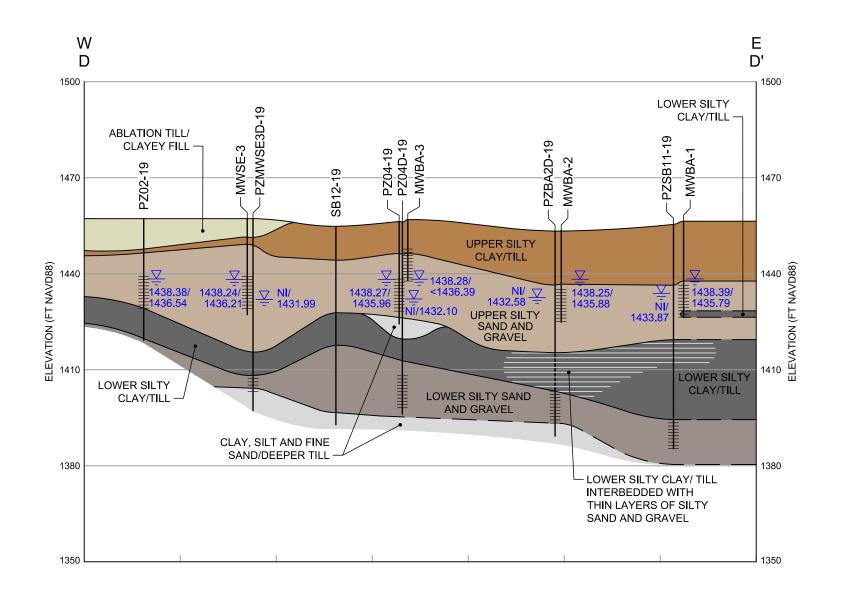




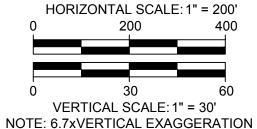




Hydrogeologic Investigation Report Chaffee Landfill Facility - Area 7/8 Development Town of Sardinia, New York


Waste Management of New York, L.L.C. Chaffee, New York



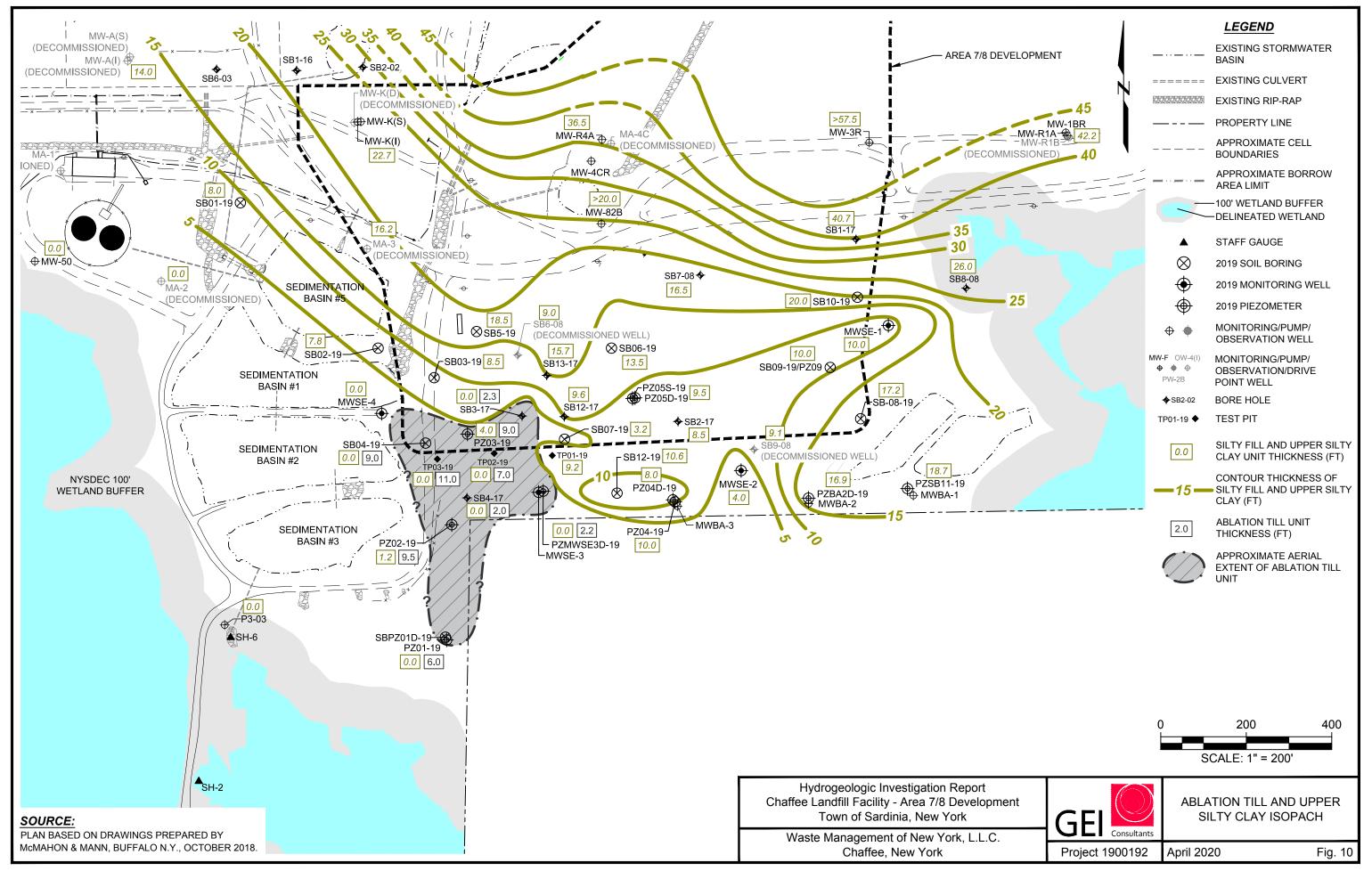

GEOLOGIC CROSS SECTION C-C'

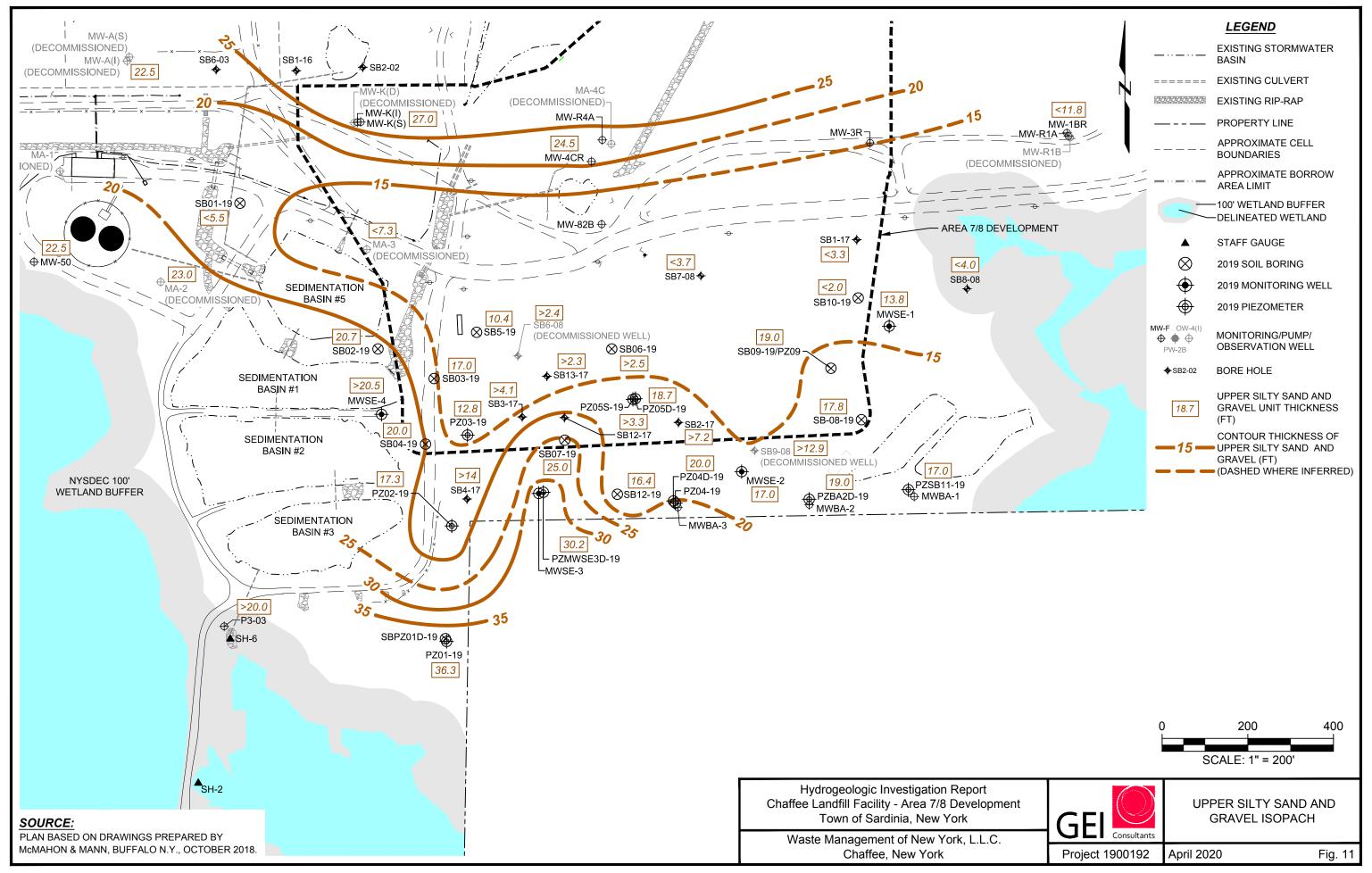
Project 1900192

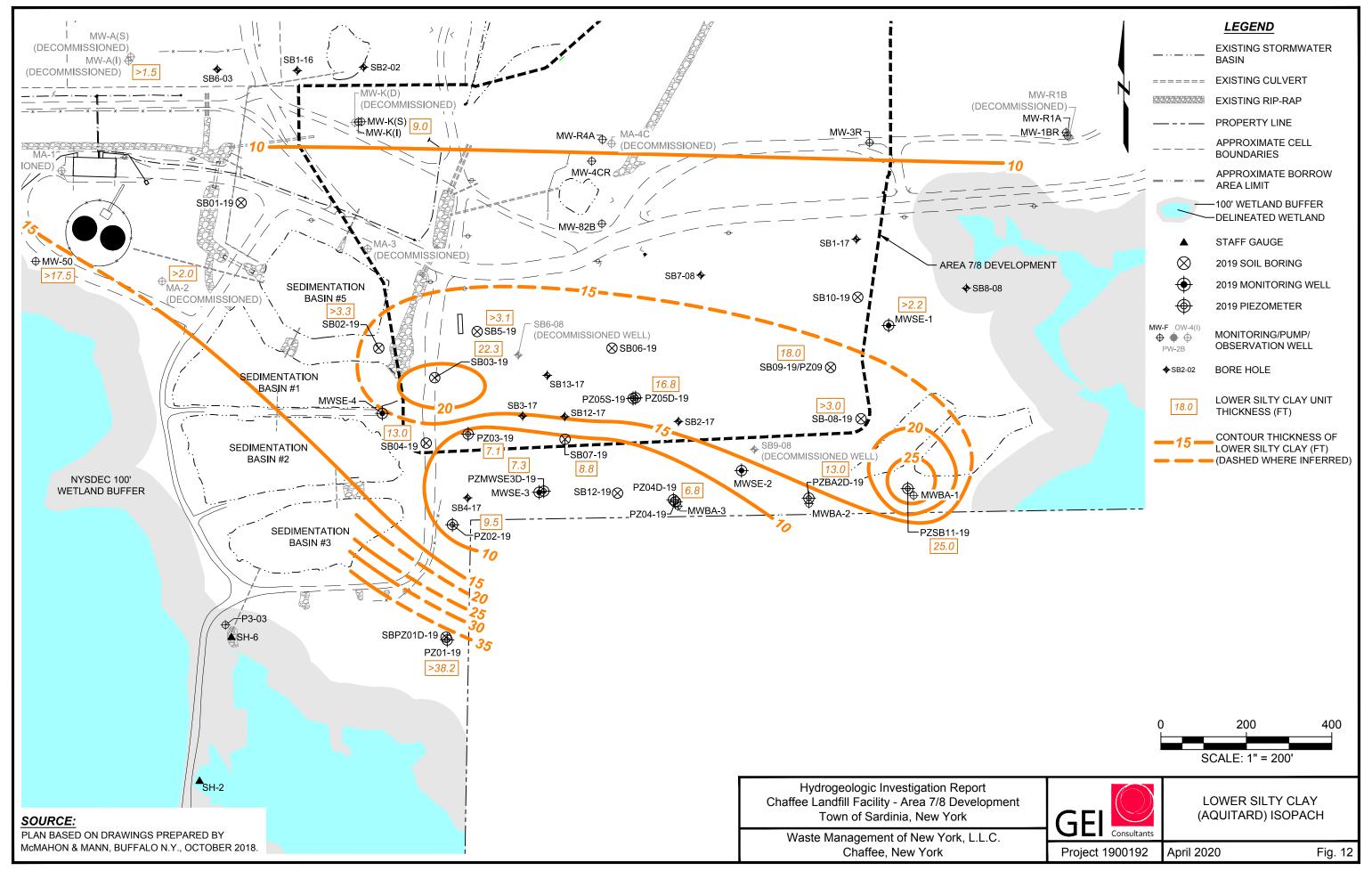
April 2020 Fig. 9c

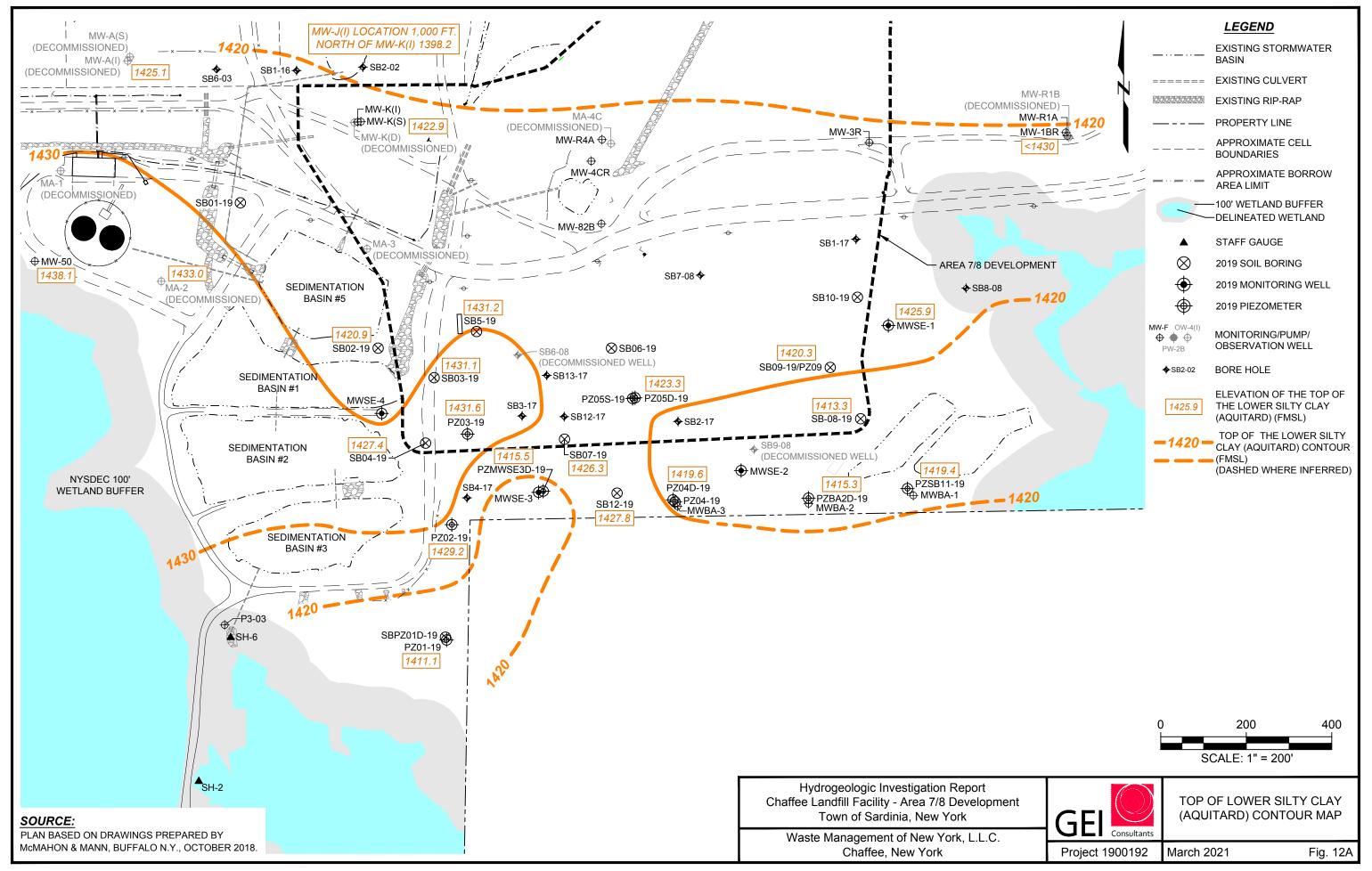
Hydrogeologic Investigation Report Chaffee Landfill Facility - Area 7/8 Development Town of Sardinia, New York

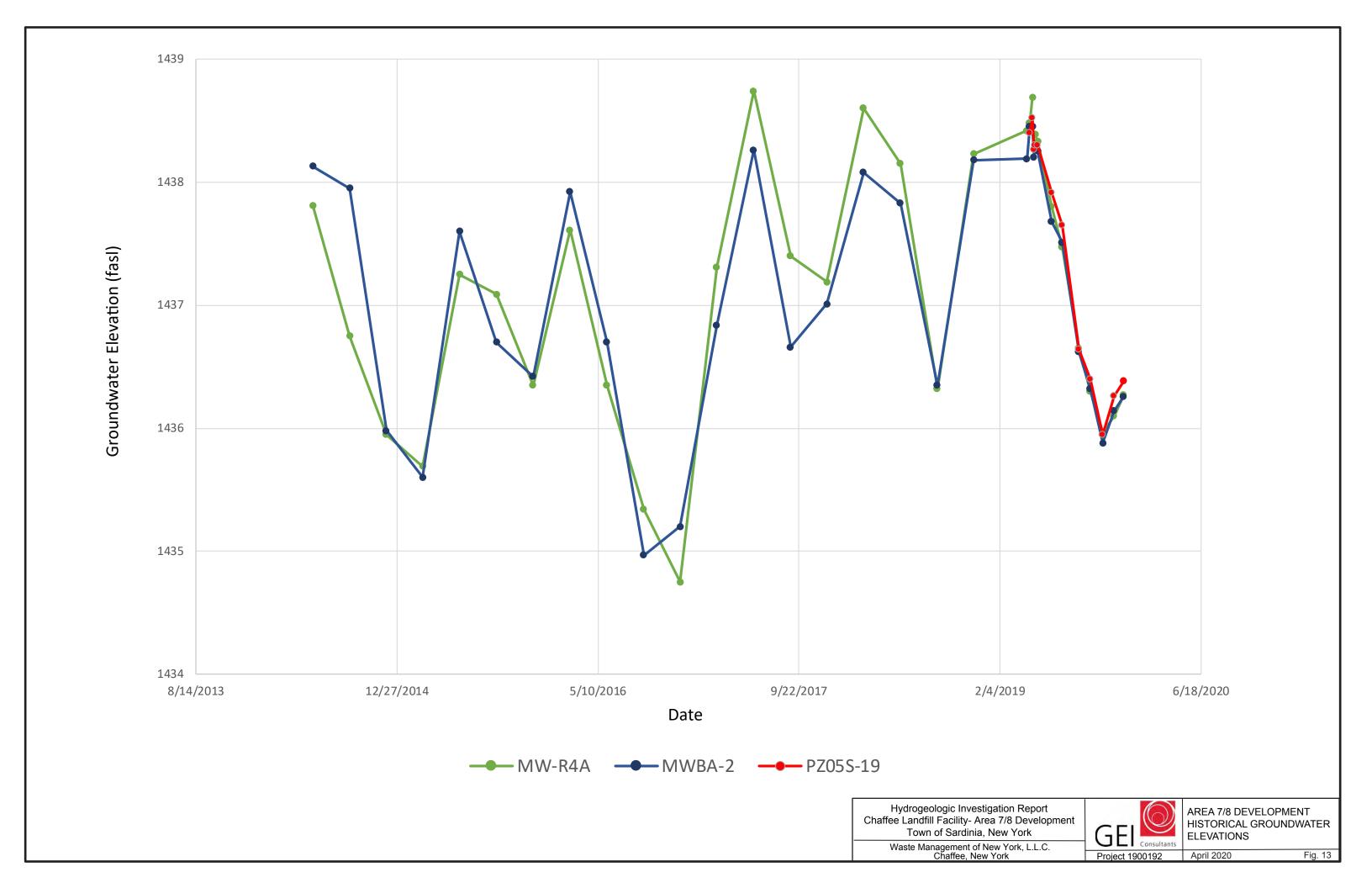
Waste Management of New York, L.L.C. Chaffee, New York

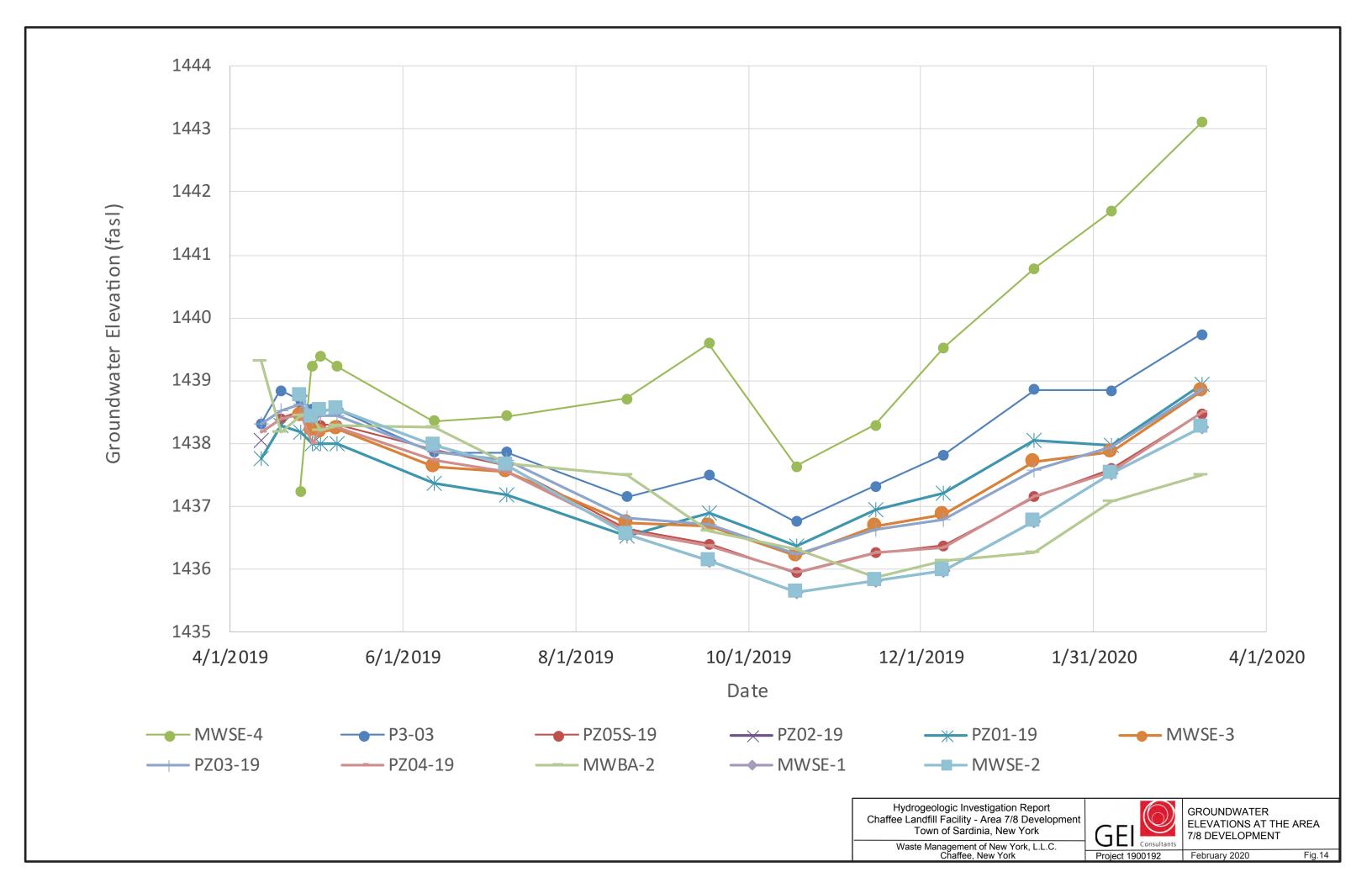


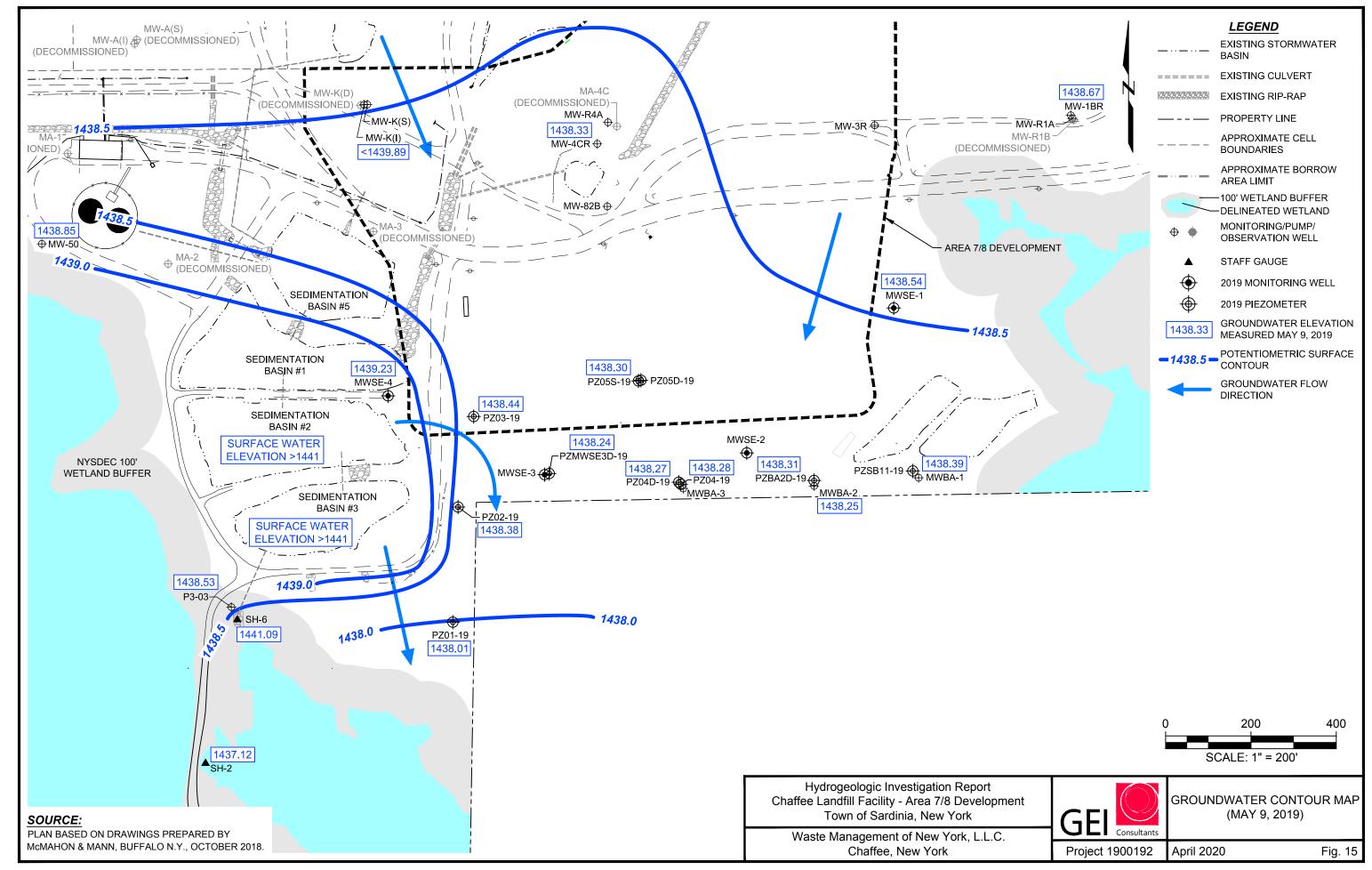

GEOLOGIC CROSS SECTION D-D'

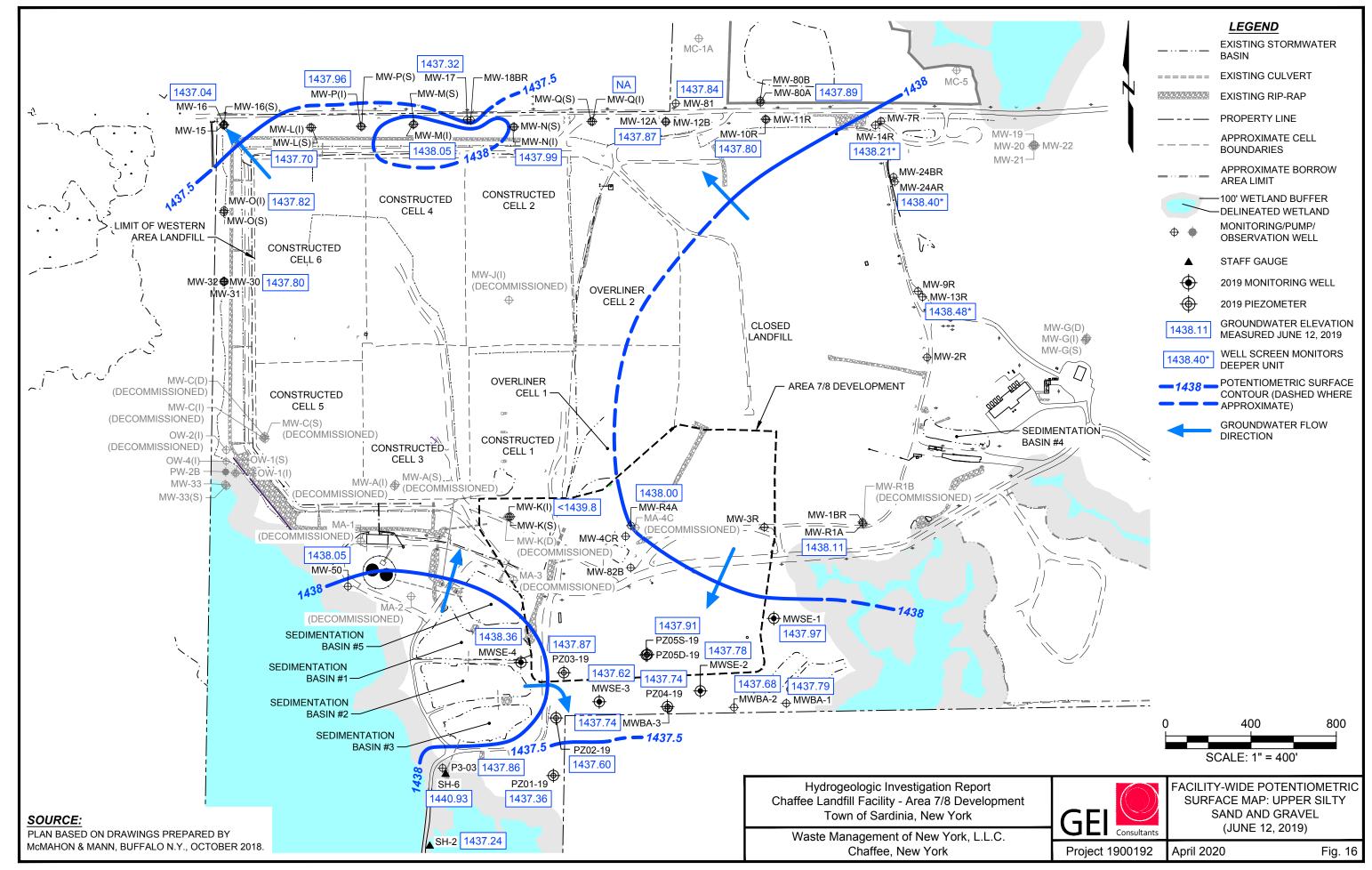

Project 1900192


April 2020

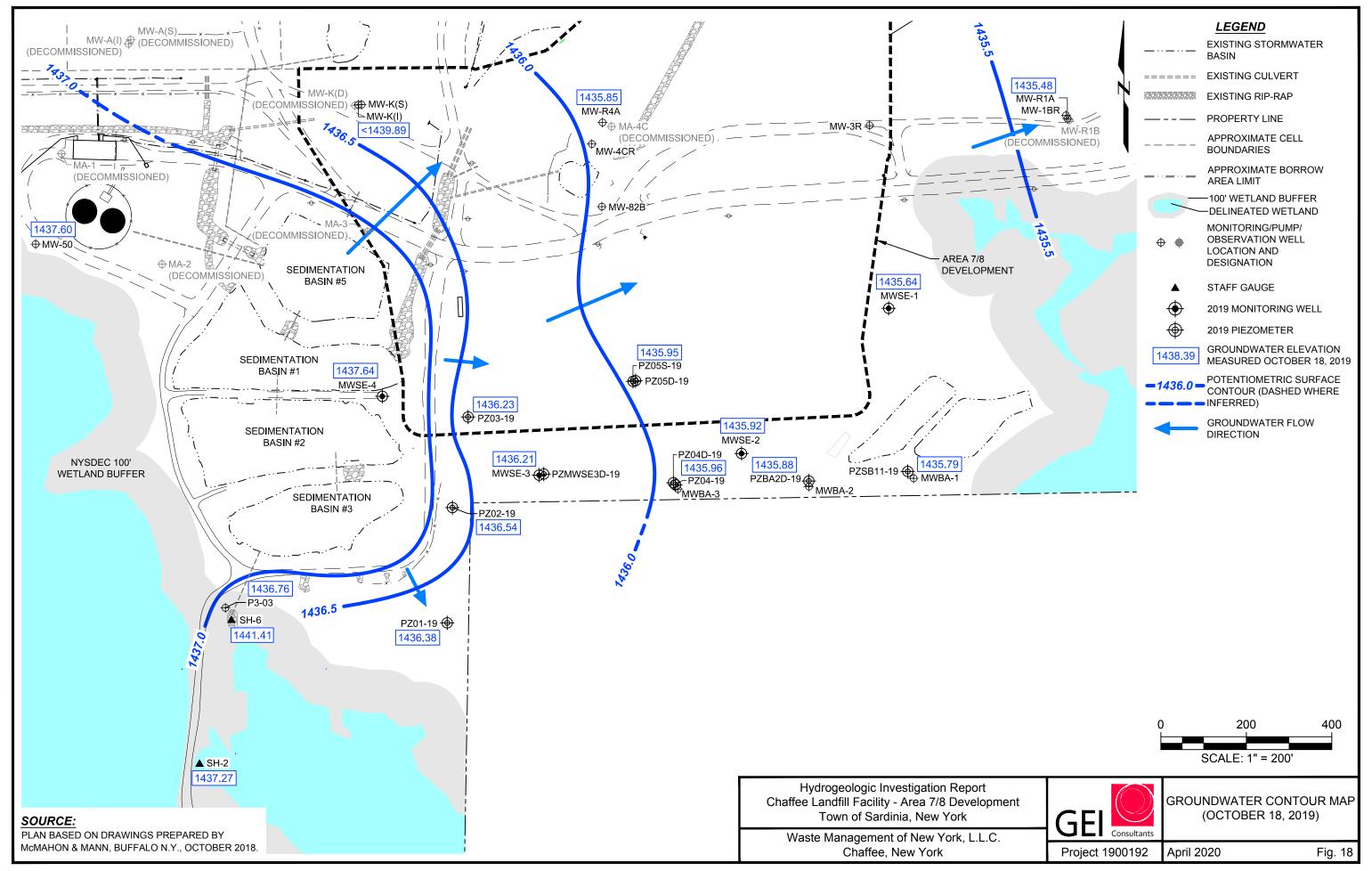

Fig. 9d

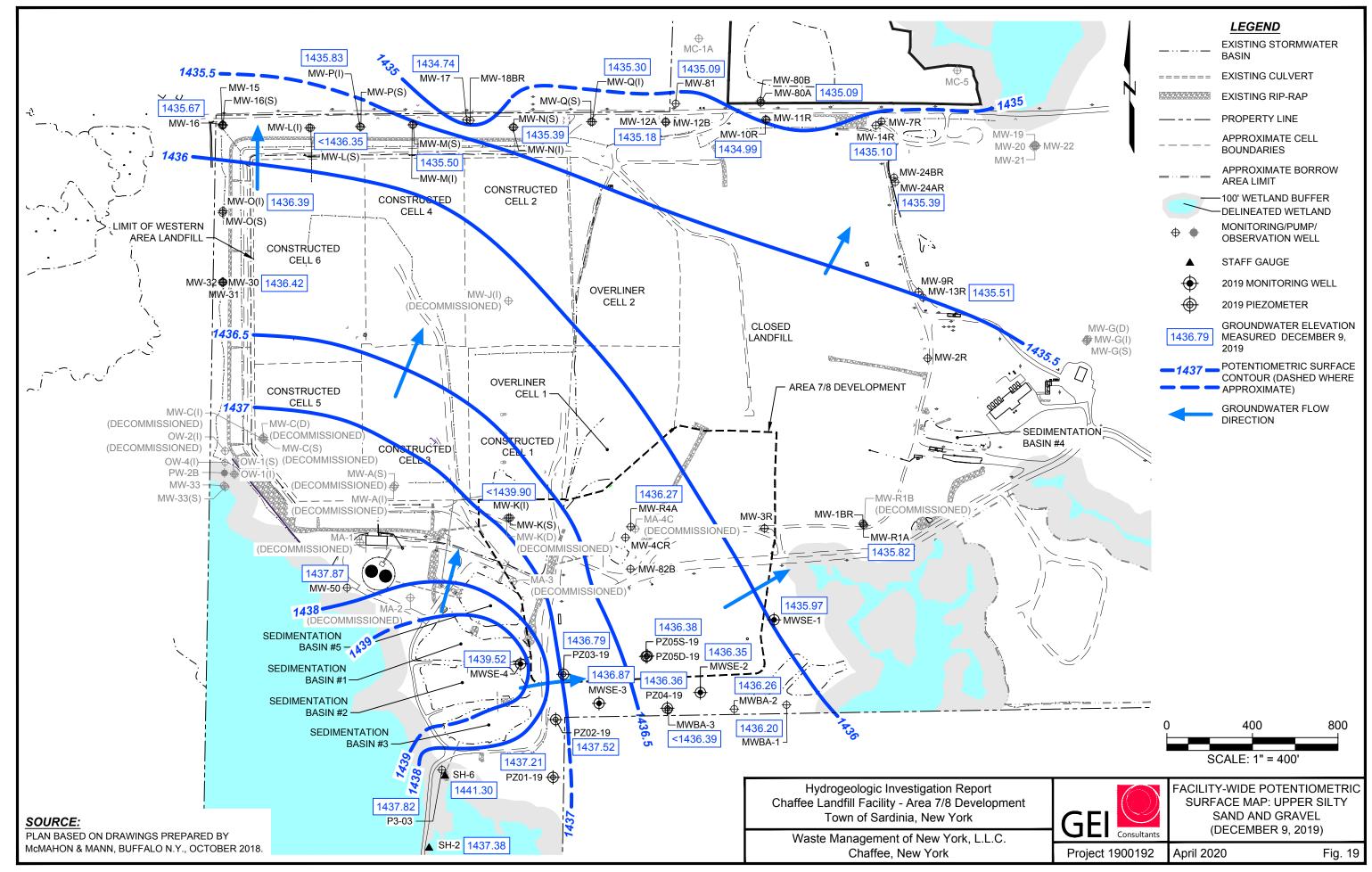


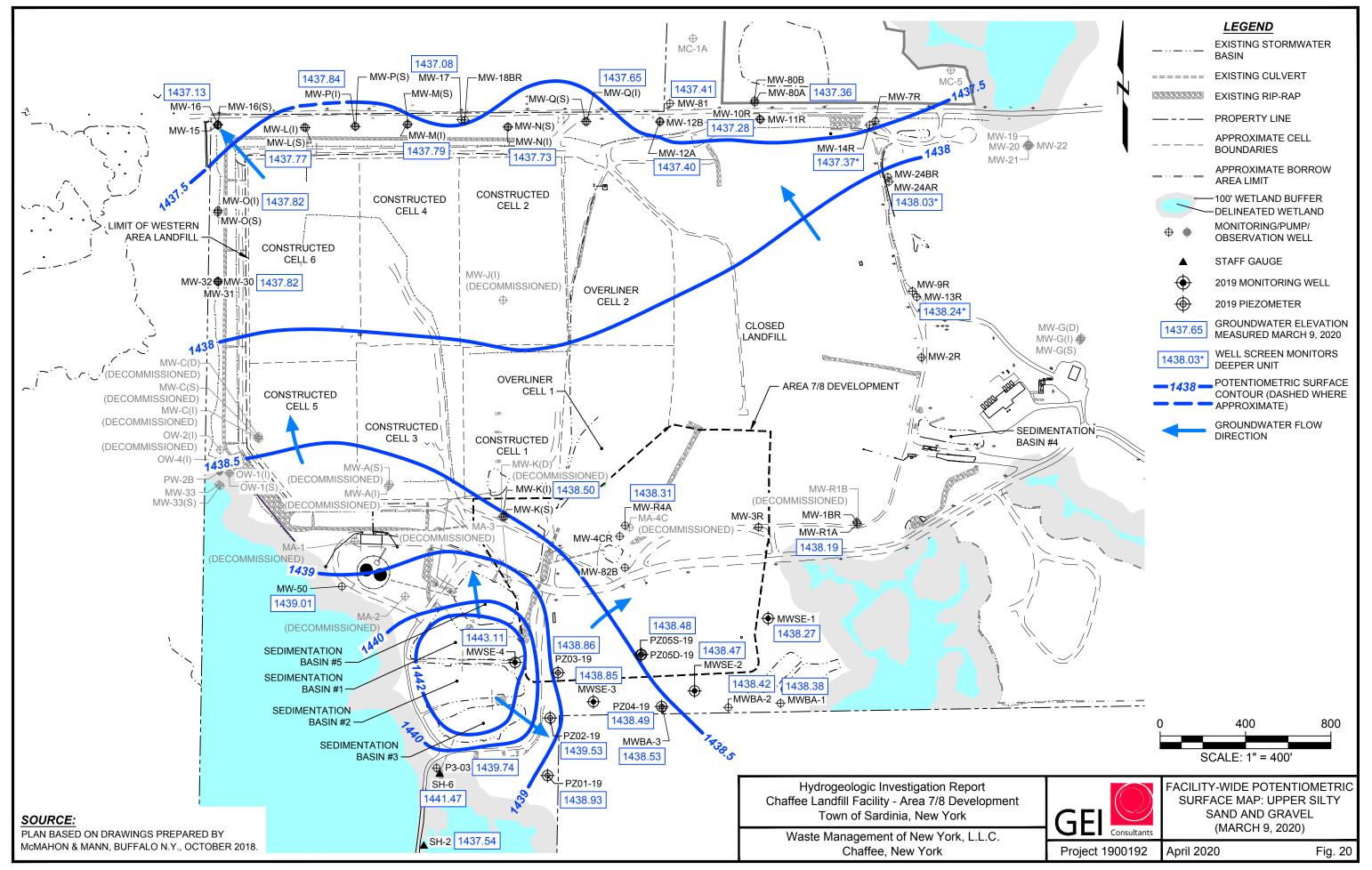


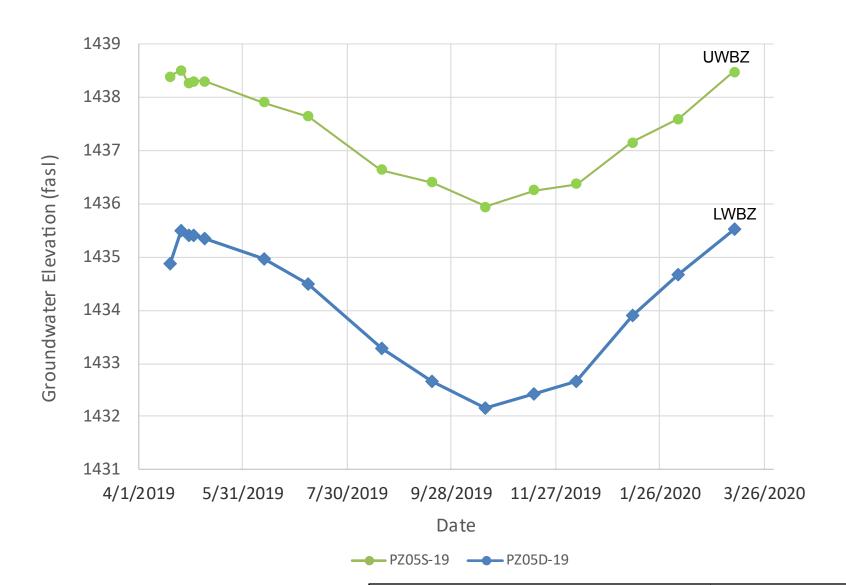






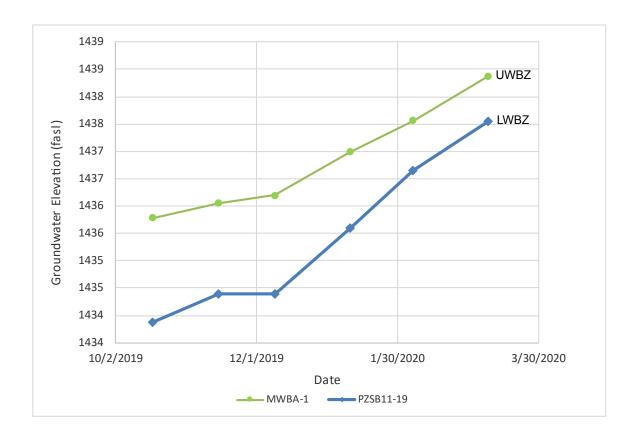


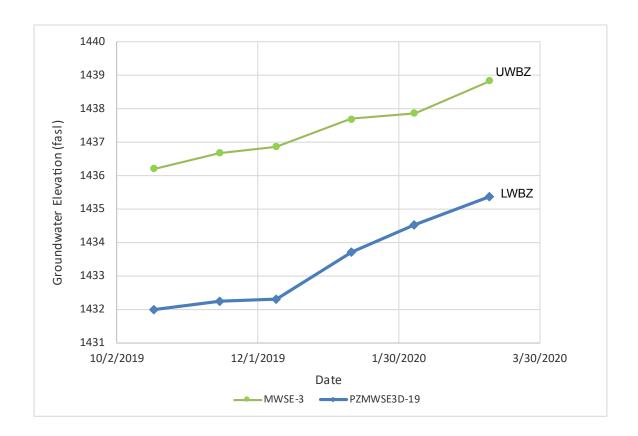


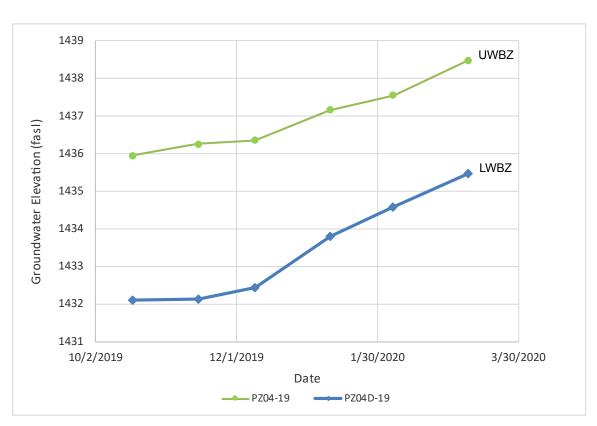


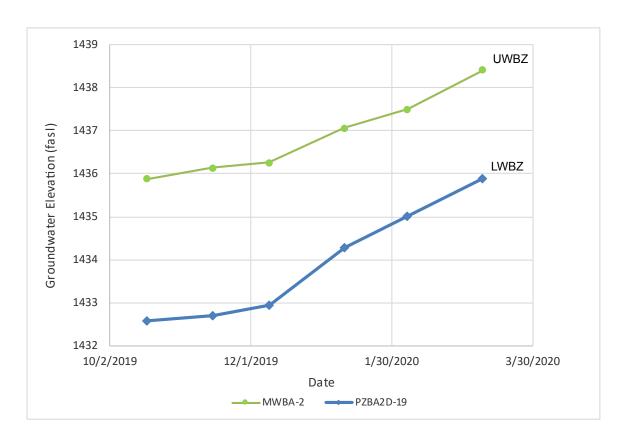
UWBZ- Upper Water Bearing Zone (Upper Silty Sand and Gravel)
LWBZ- Lower Water Bearing Zone (Lower Silty Sand and Gravel)

Hydrogeologic Investigation Report Chaffee Landfill Facility- Area 7/8 Development Town of Sardinia, New York

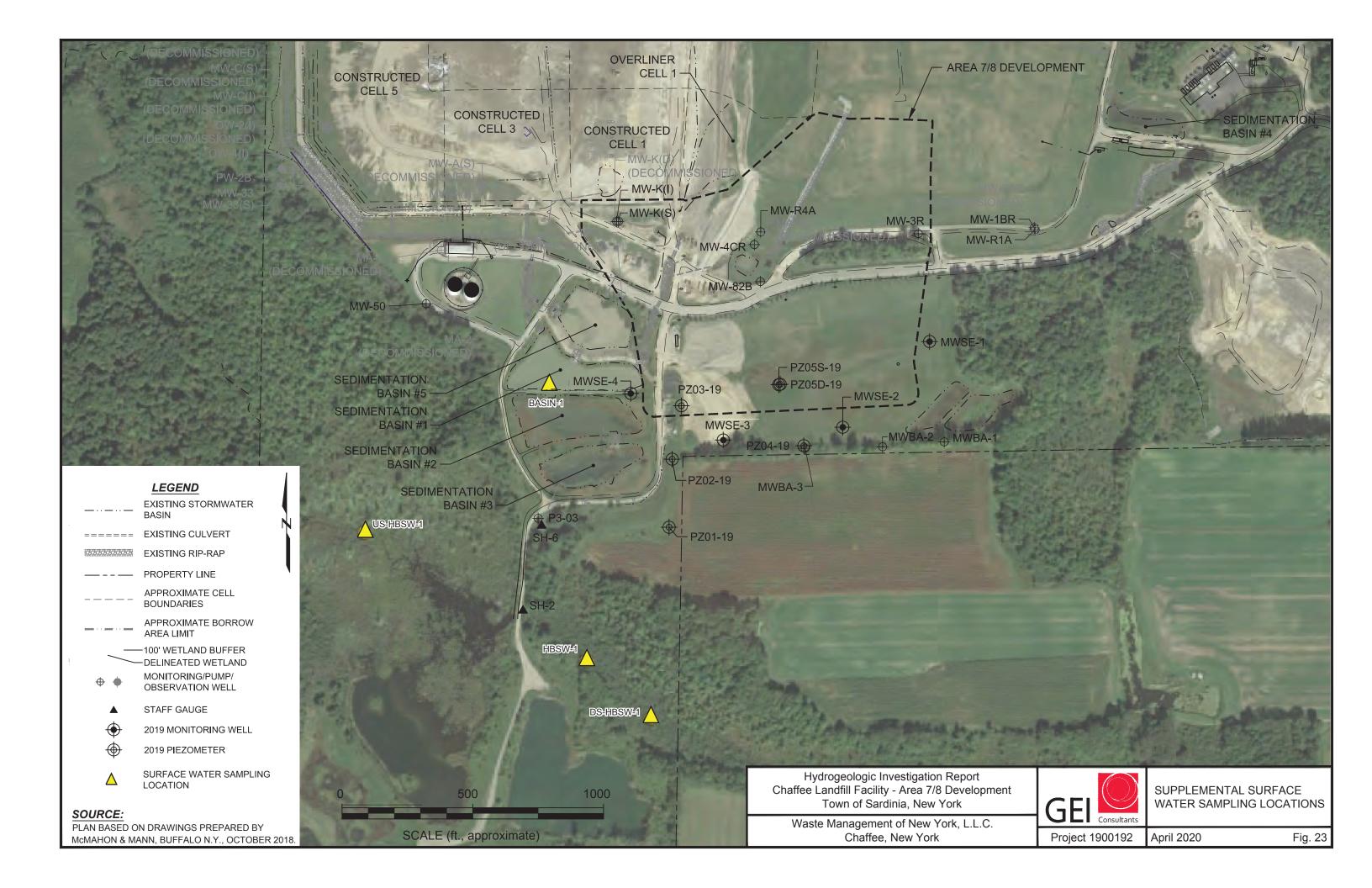

Waste Management of New York, L.L.C. Chaffee, New York

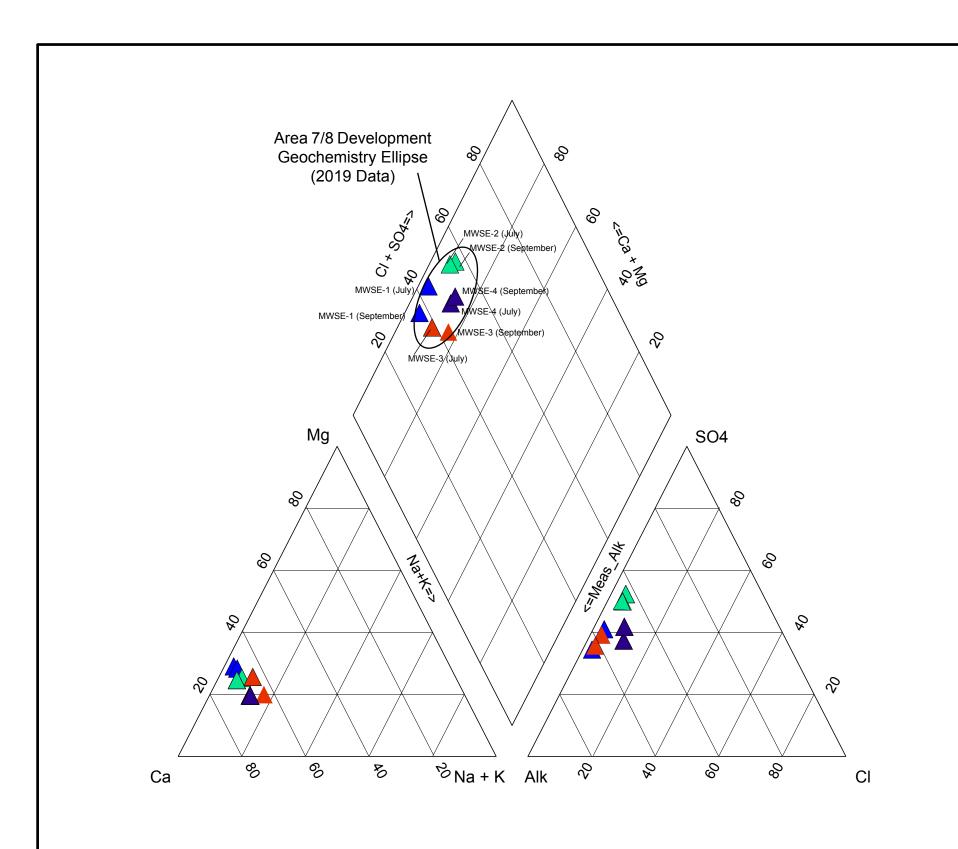


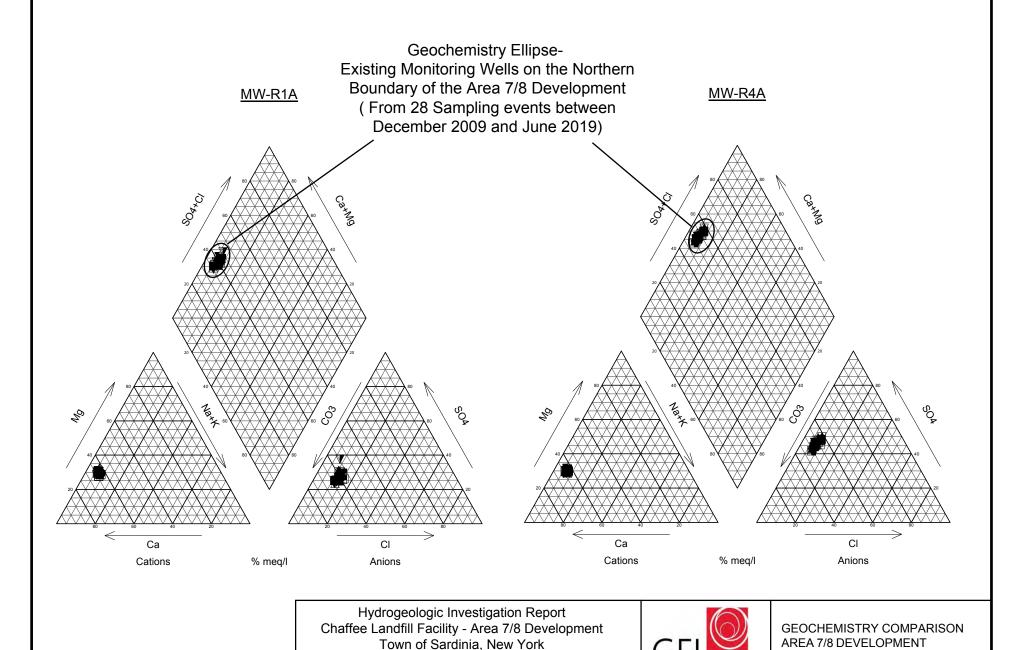

GROUNDWATER ELEVATION COMPARISON- PZ-5S/5D WELL PAIR


Project 1900192

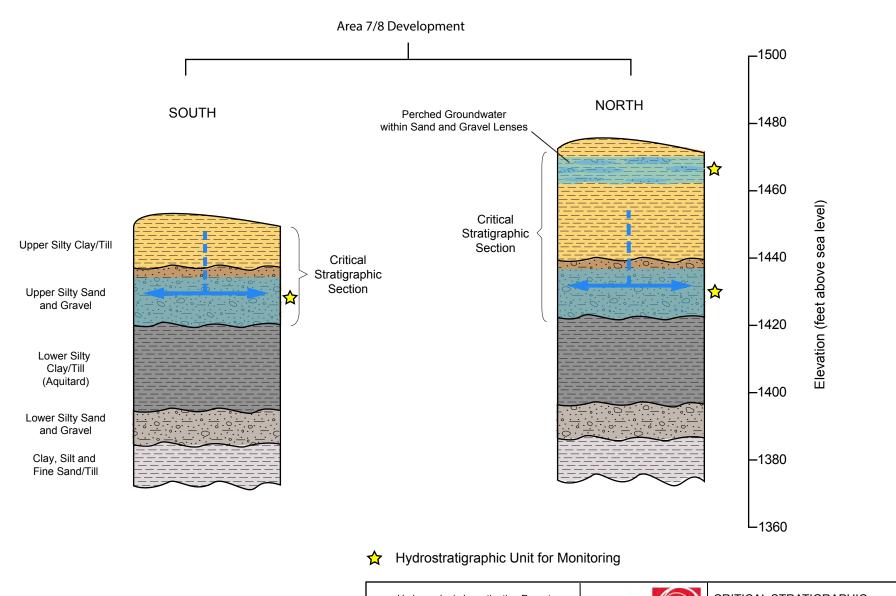
April 2020




UWBZ- Upper Water Bearing Zone (Upper Silty Sand and Gravel)


LWBZ- Lower Water Bearing Zone (Lower Silty Sand and Gravel)

Hydrogeologic Investigation Report Chaffee Landfill Facility- Area 7/8 Development Town of Sardinia, New York


Town of Sardinia, New York

Waste Management of New York, L.L.C.

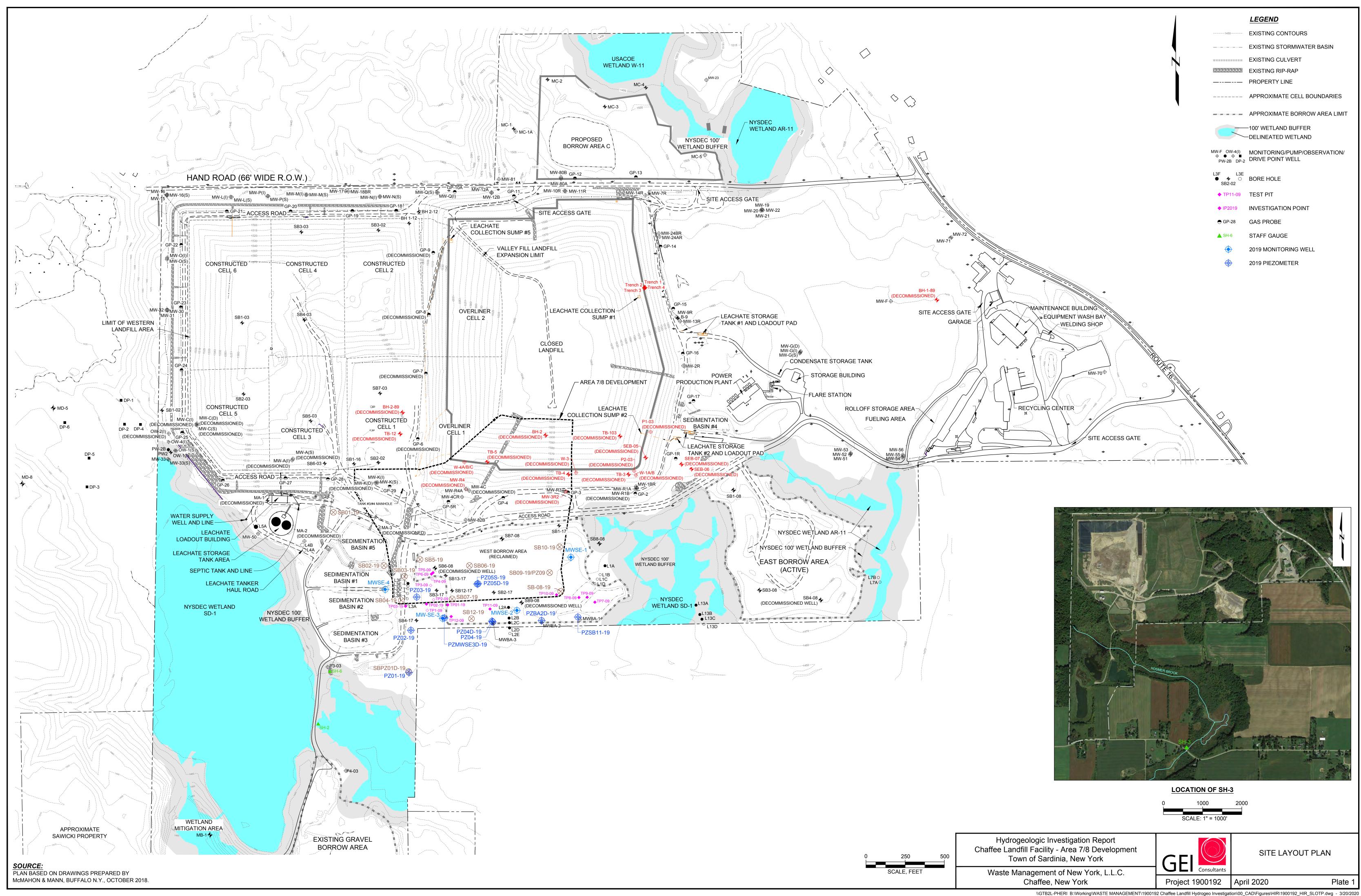
Chaffee, New York

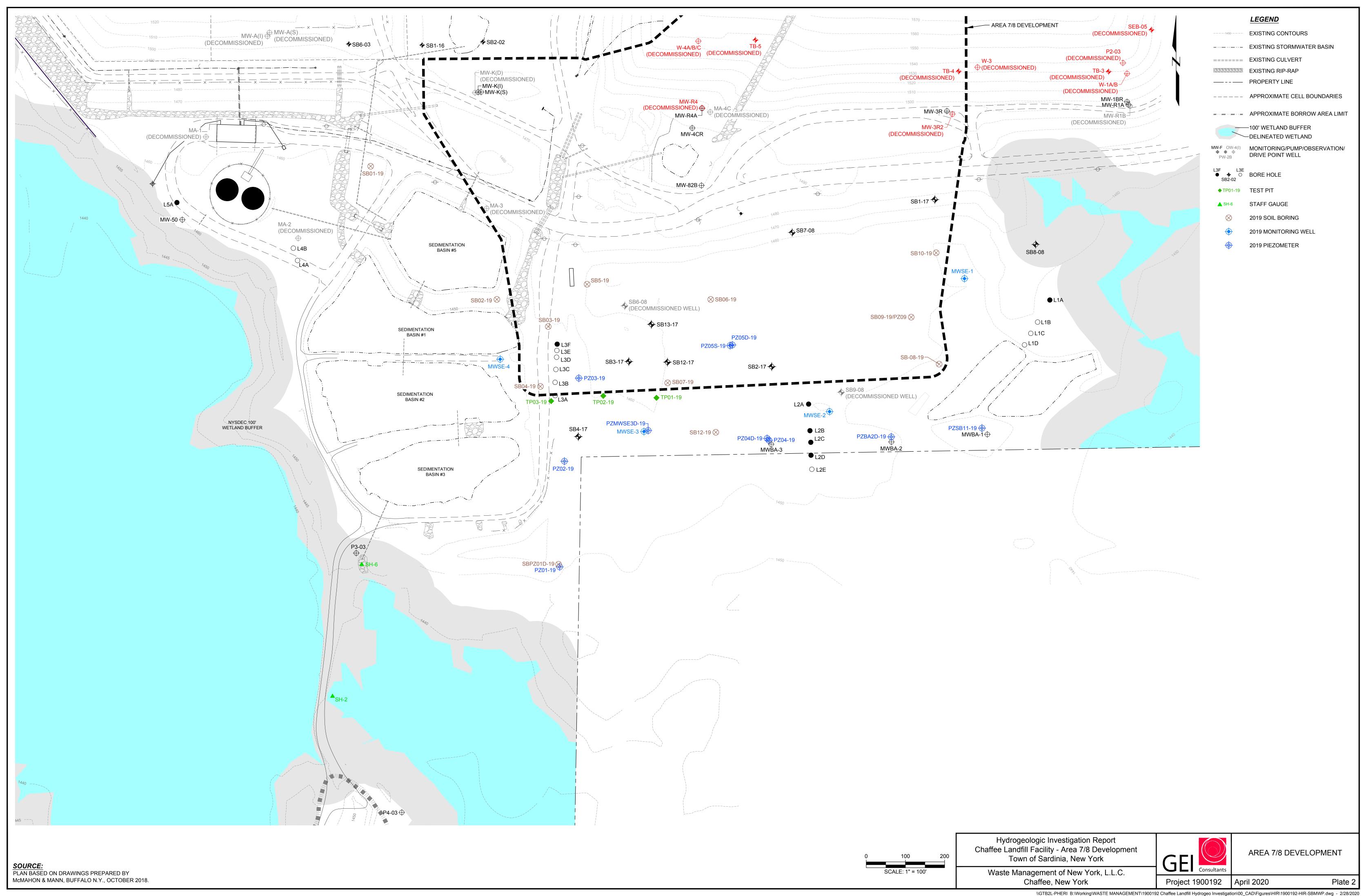
Project 1900192

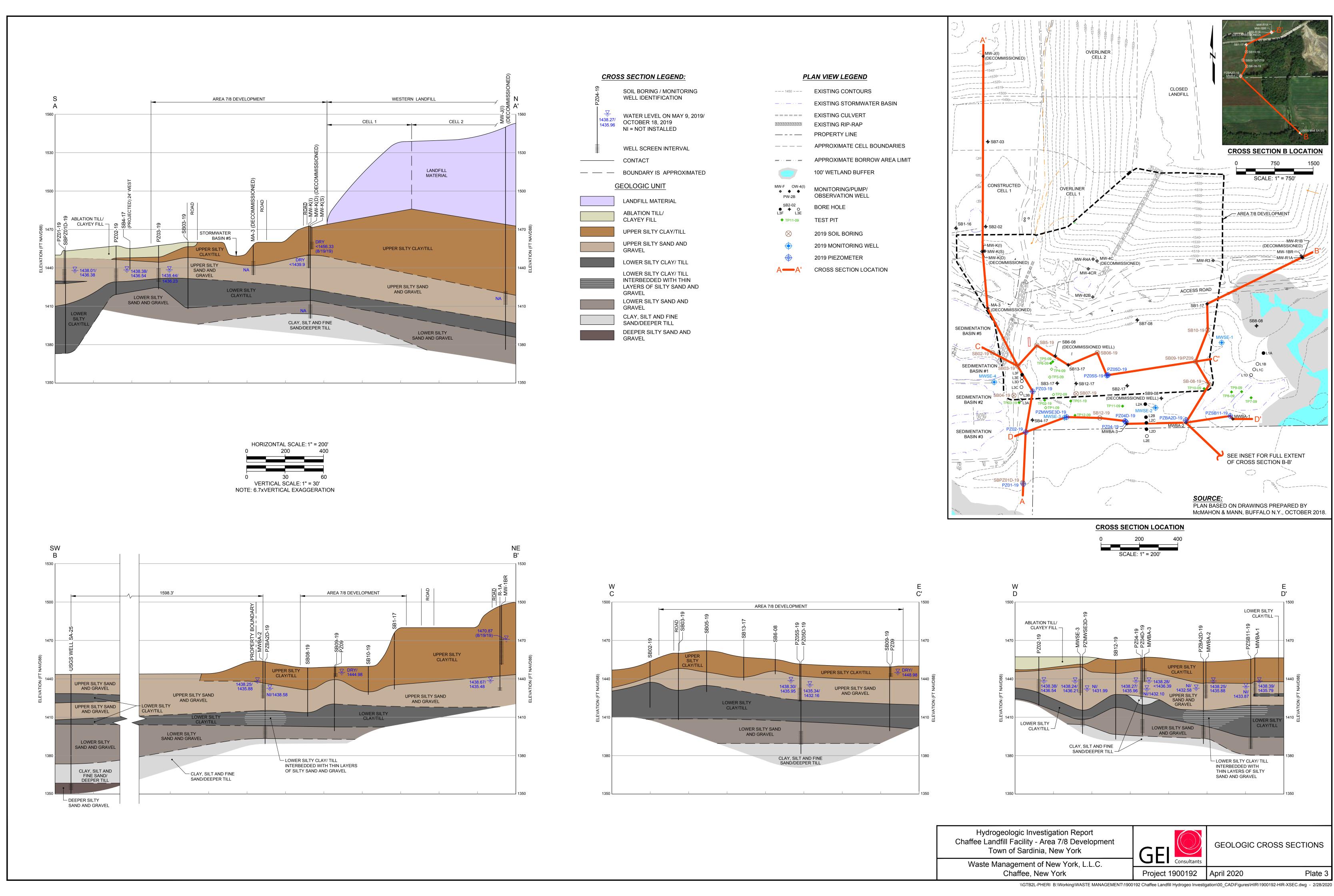
April 2020

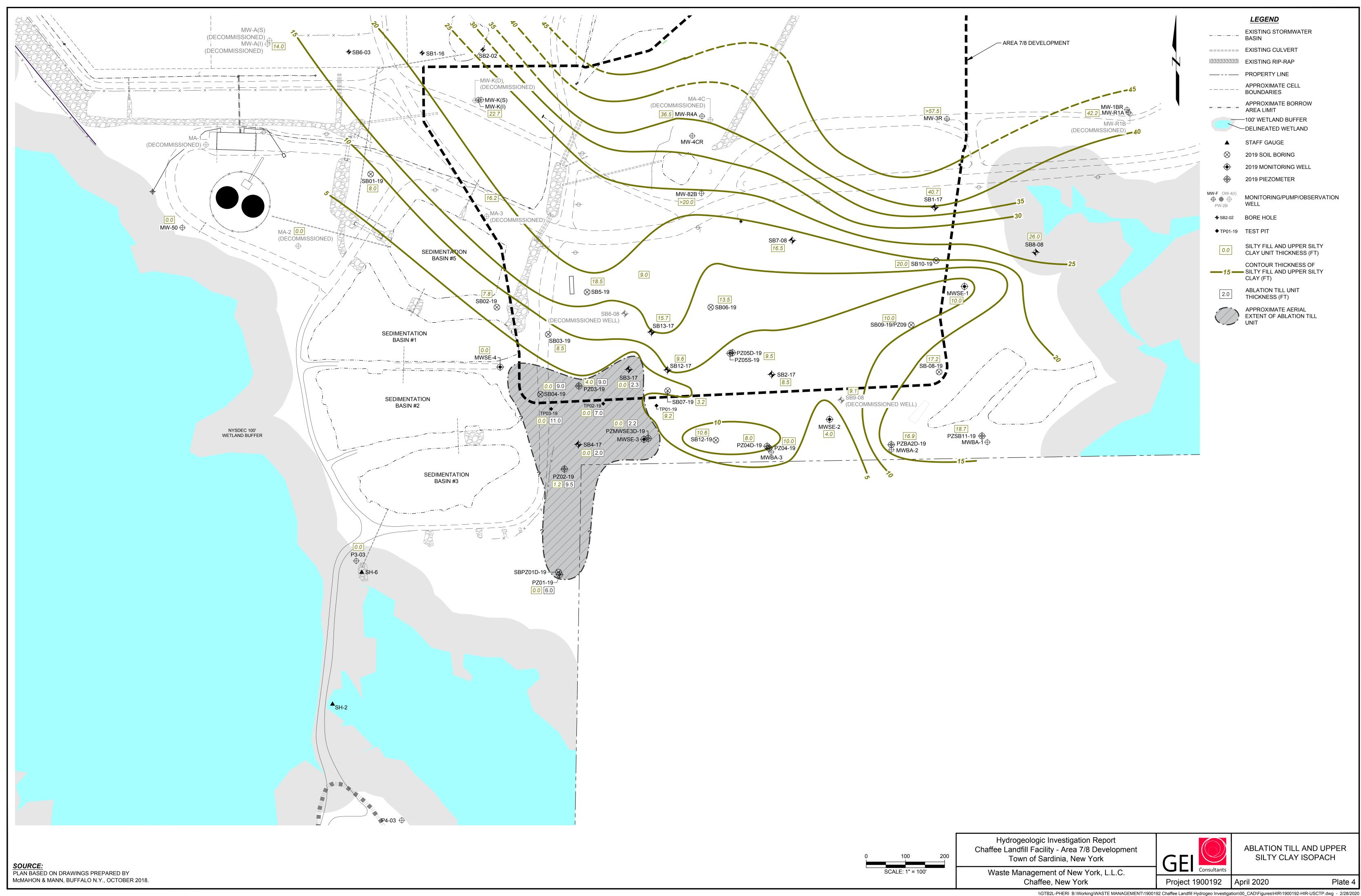
Hydrogeologic Investigation Report Chaffee Landfill Facility- Area 7/8 Development Town of Sardinia, New York

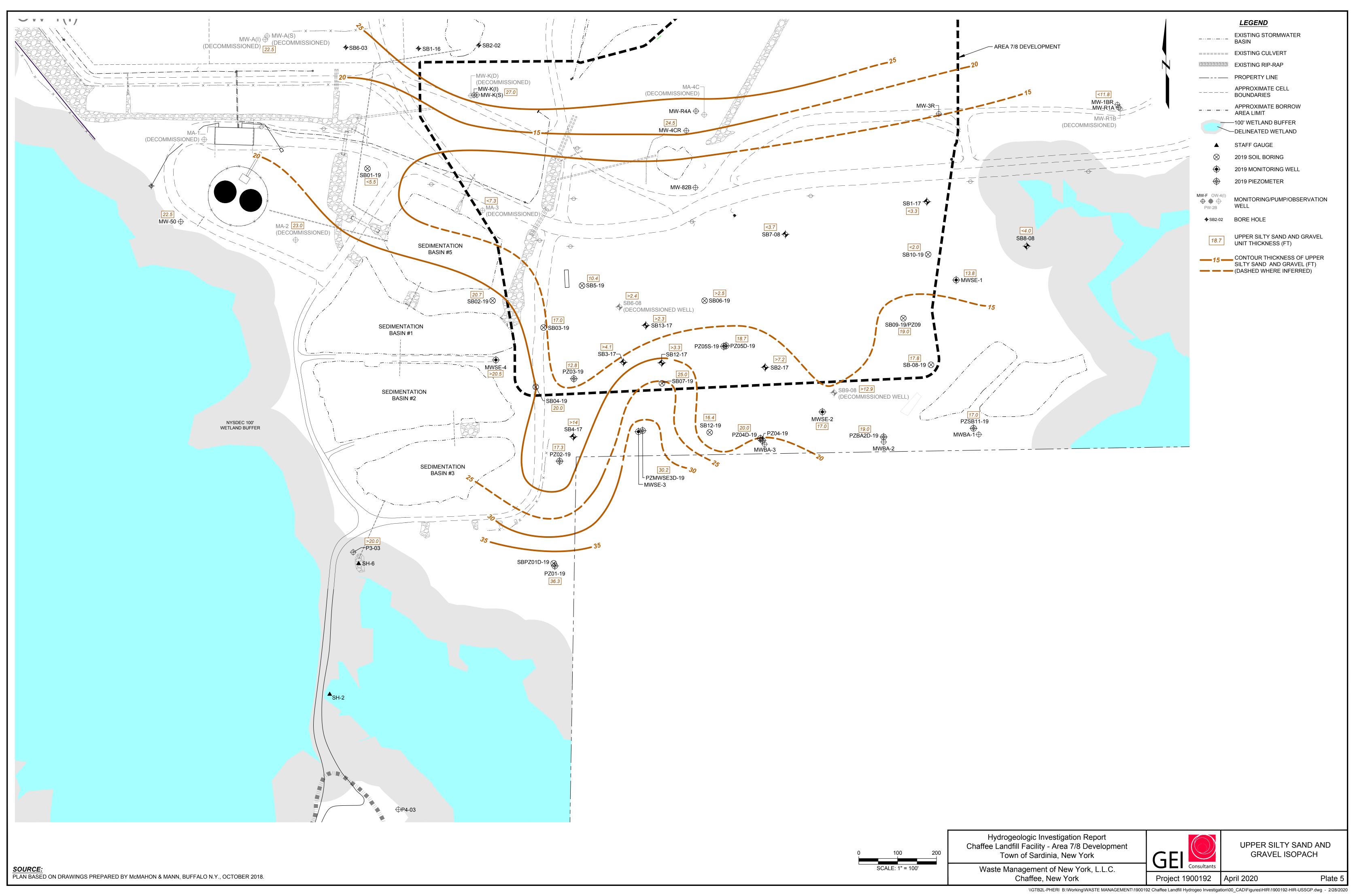
Waste Management of New York, L.L.C. Chaffee, New York

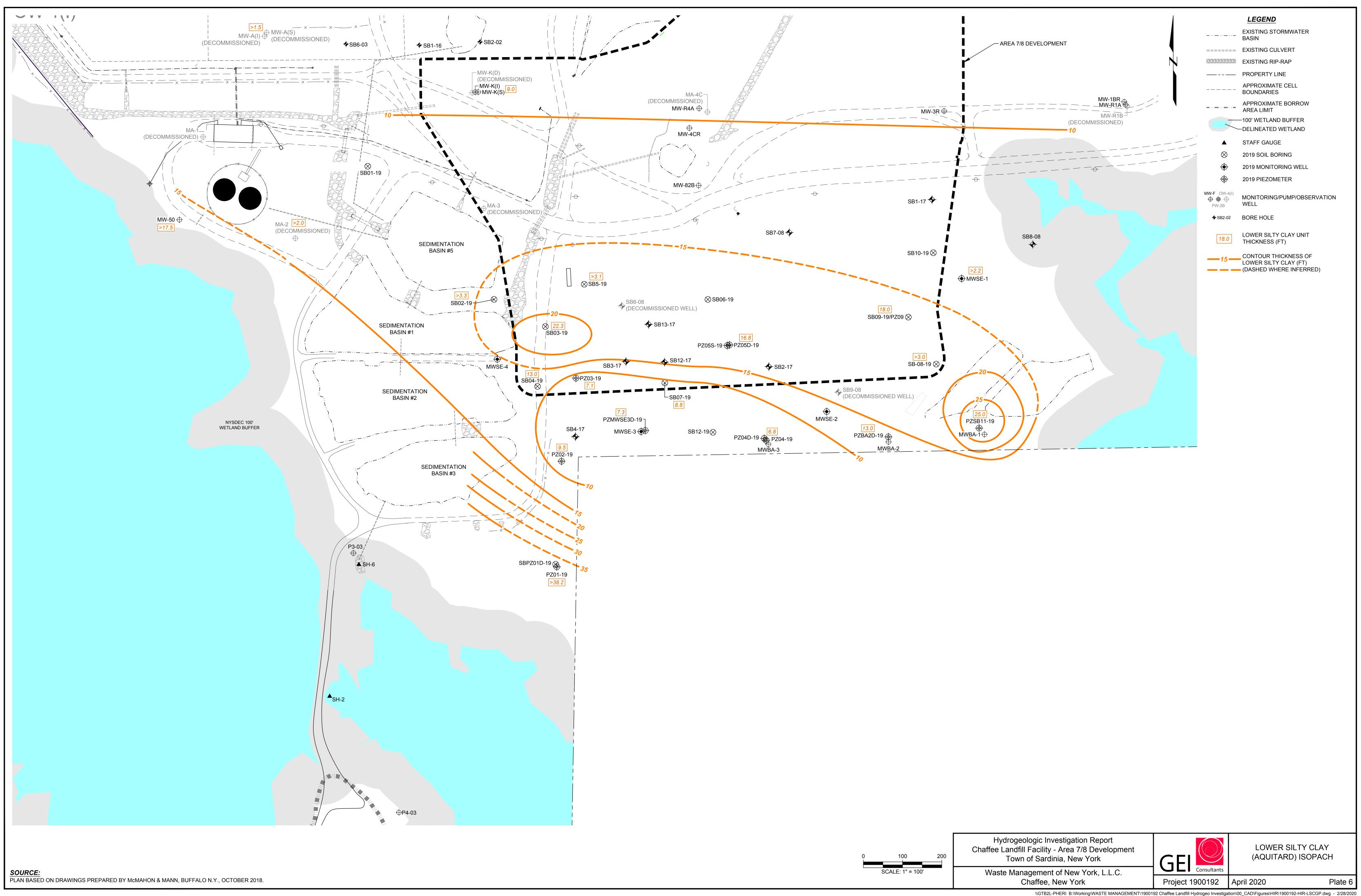

CRITICAL STRATIGRAPHIC SECTION and HYDROSTRATIGRAPHIC UNITS FOR MONITORING

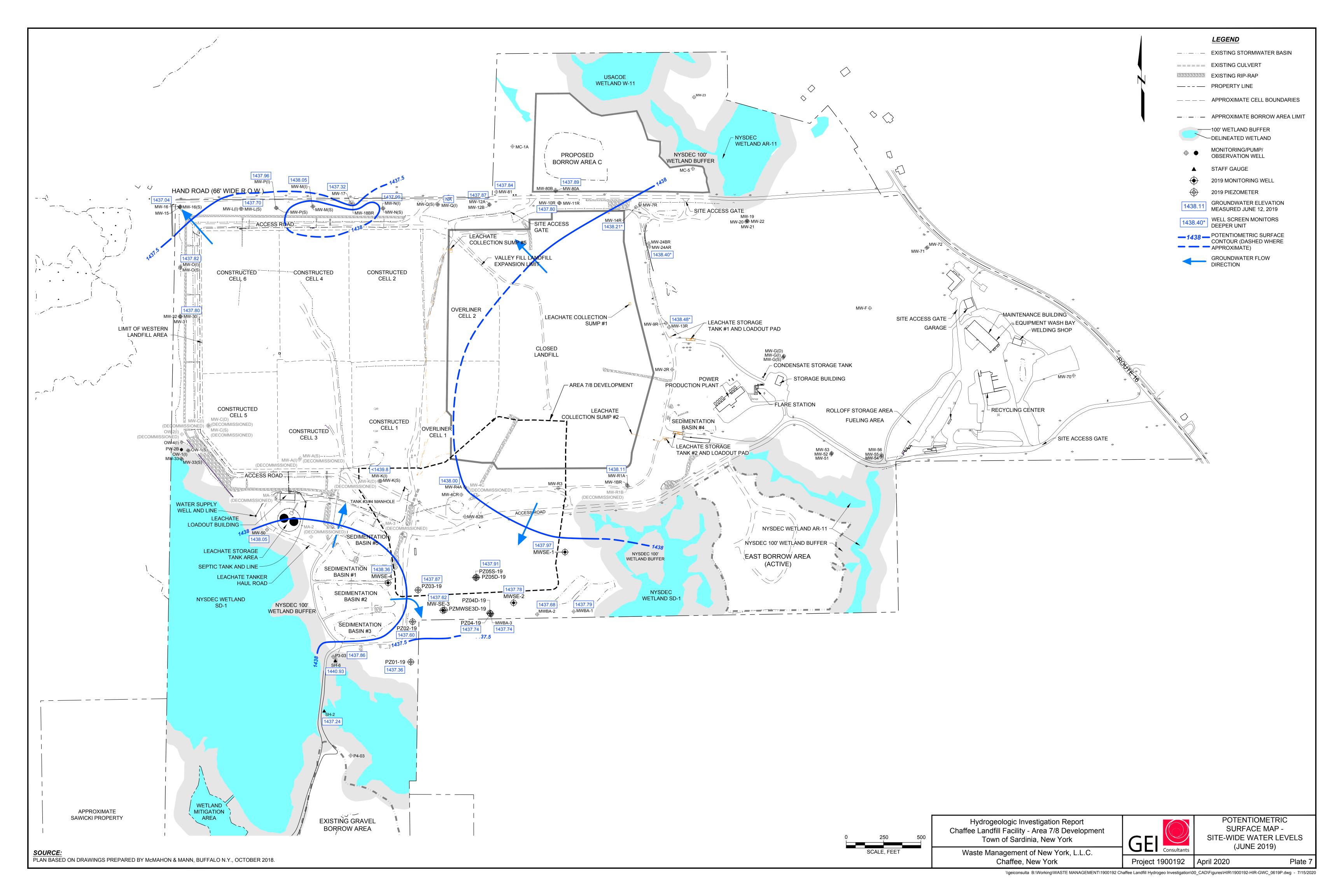

Project 1900192

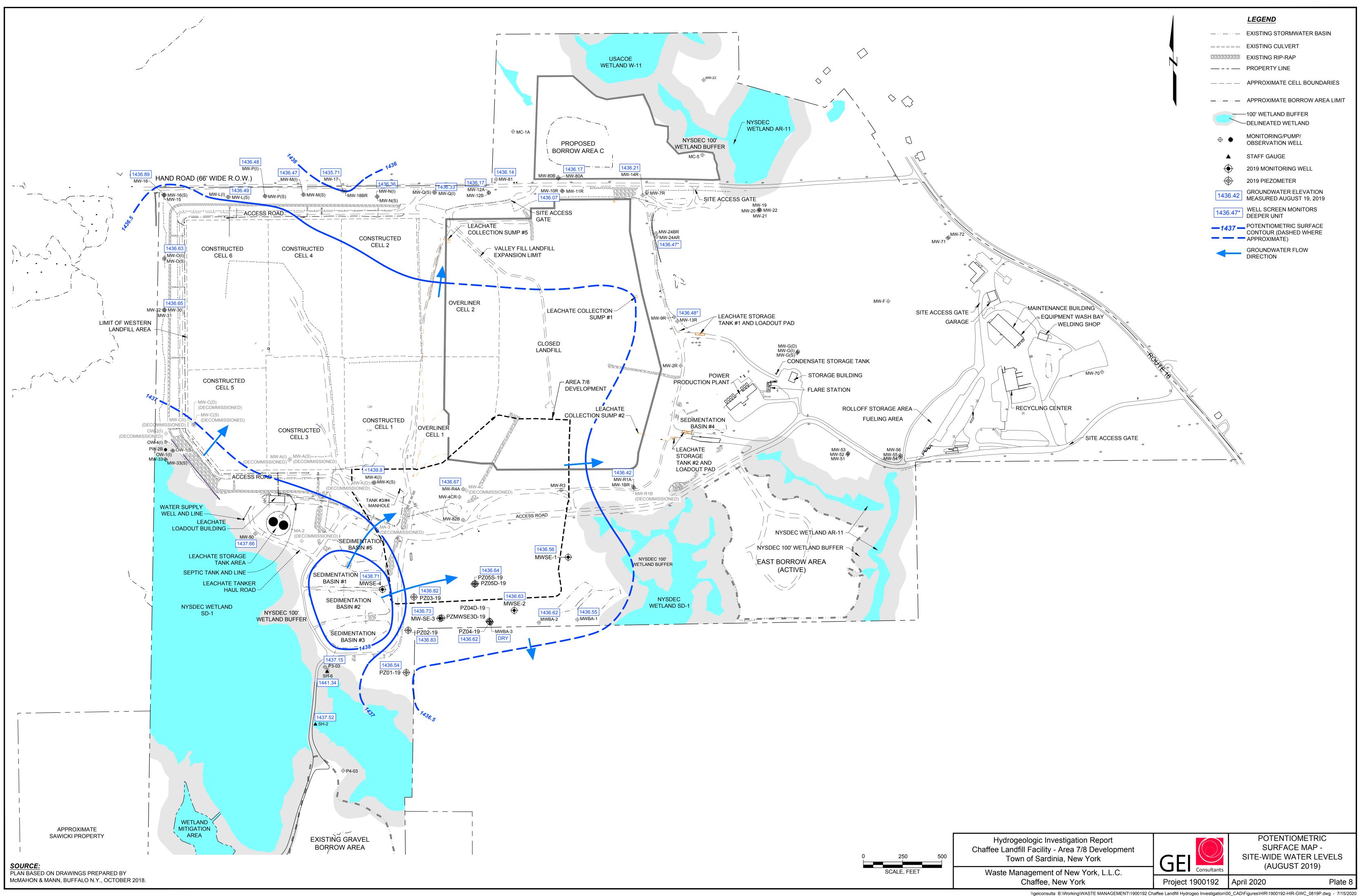

April 2020

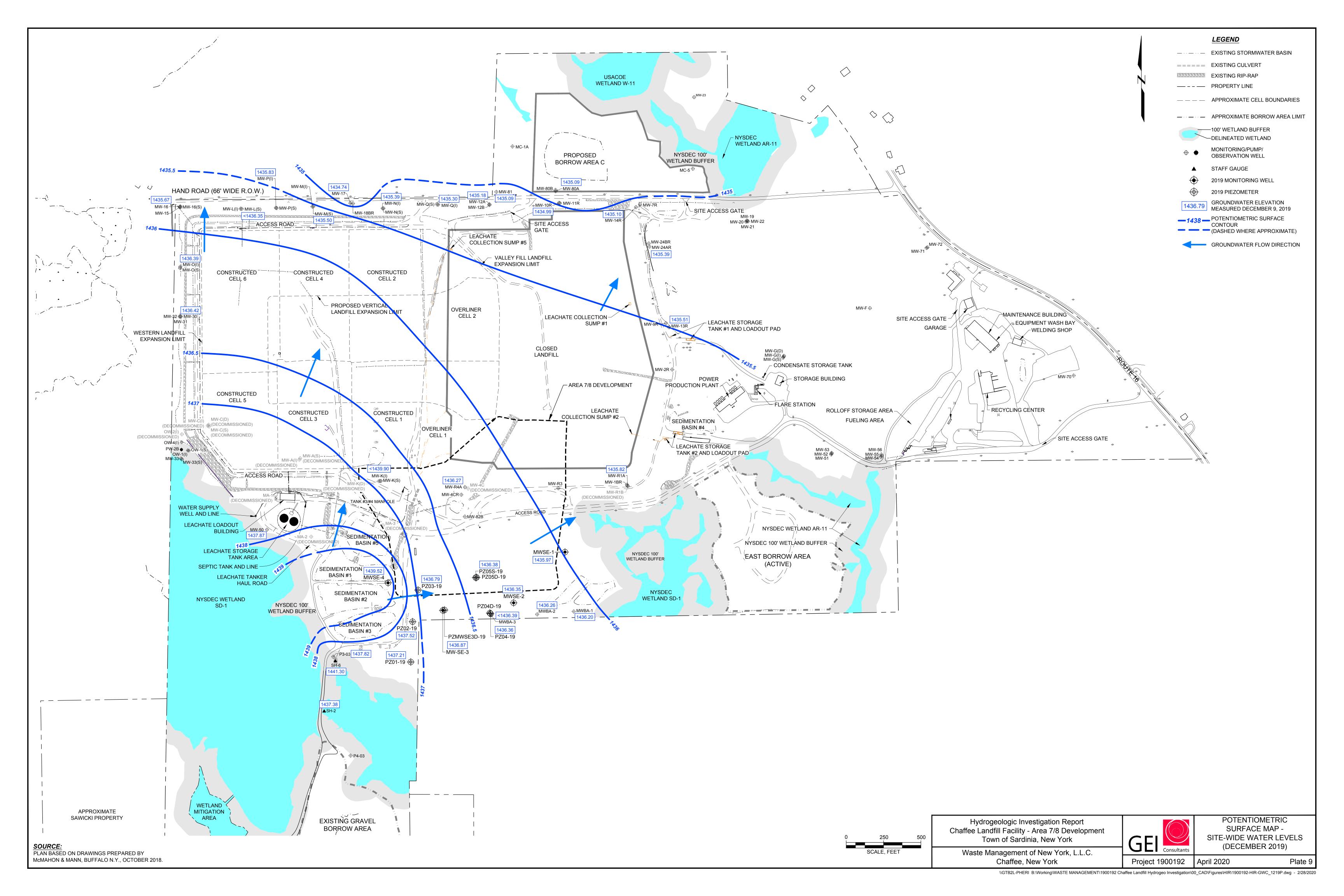

Hydrogeologic Investigation Report Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York June 2020, Revised April 2022

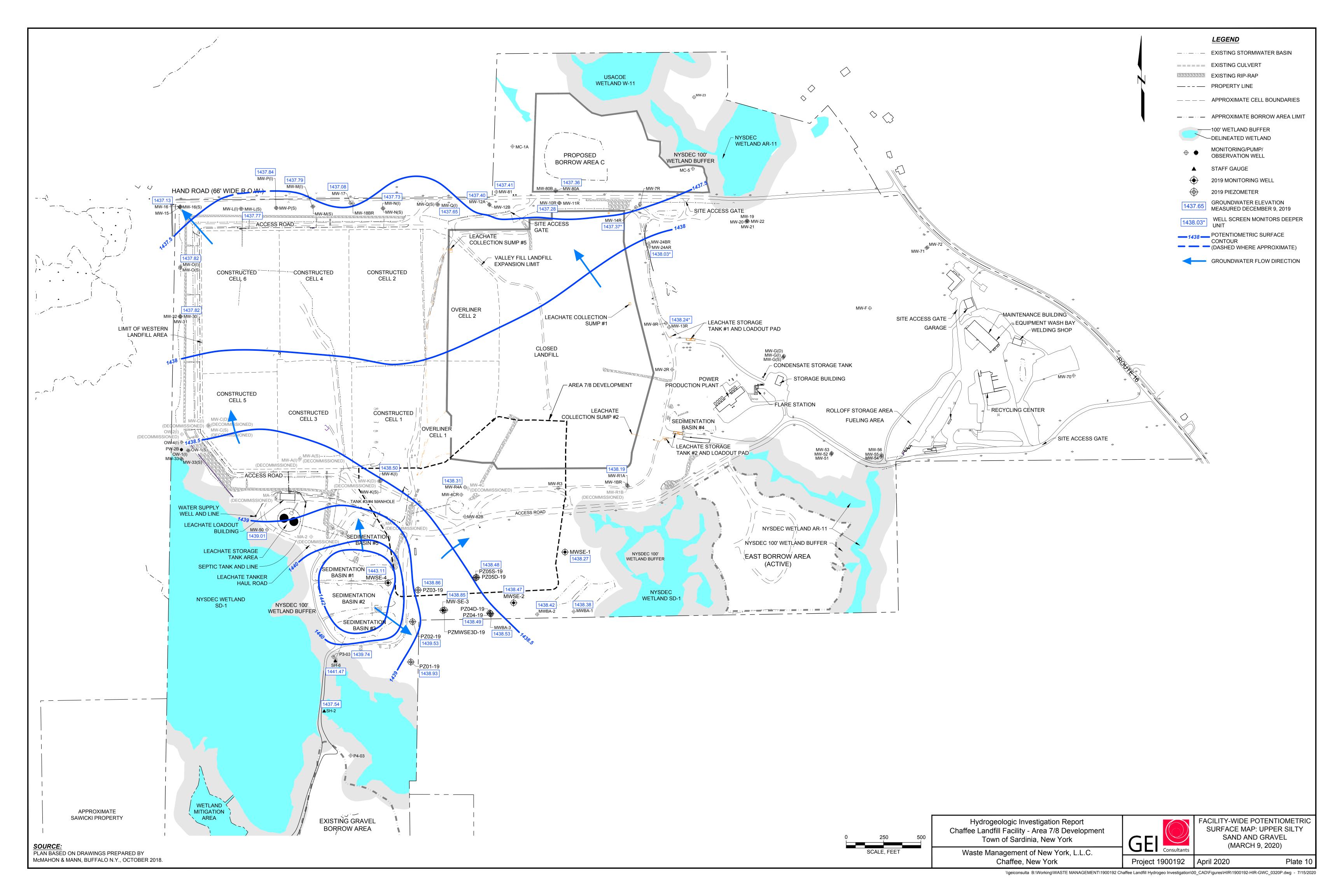

Plates











Hydrogeologic Investigation Report Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York June 2020, Revised April 2022

Appendix A

Site Investigation Plan, Correspondence, Supplemental Scopes of Work

Consulting
Engineers and
Scientists

Site Investigation Plan

Chaffee Sanitary Landfill – Southern Expansion Facility DEC ID 9-1462-00001 Chaffee, New York

Submitted to:

Waste Management of New York Chaffee, New York

Submitted by:

GEI Consultants, Inc., P.C. 90B John Muir Drive, Suite 104 Amherst, NY 14228

February 2019 Project 1900192

Richard H. Frappa, P.G. Senior Consultant/Hydrogeologist

Kelly R. McIntosh, P.E., Ph.D. Senior Consultant/Engineer

Table of Contents

1.	Intro	duction	1
	1.1	Background	1
	1.2	Objectives	1
	1.3	Plan Outline	2
2.	Site	History and Summary of Previous Investigations	4
3.	Hydr	ogeologic Setting	6
	3.1	Geology	ϵ
	3.2	Hydrogeology	7
		3.2.1 Groundwater	7
		3.2.2 Surface Water	6 7 7 8 8
	3.3	Critical Stratigraphic Section	8
4.	Data	Gaps and Site Investigation Requirements	9
	4.1	Data Gaps	9
	4.2	Hydrogeologic Investigation Activity Outline	10
5.	Scop	e of Work	12
	5.1	Literature Search	12
	5.2	Water Well Survey	12
	5.3	Surface Geologic Mapping	13
	5.4	Subsurface Investigation Activities	13
		5.4.1 Soil Borings and Piezometer Installations	14
		5.4.1.1 Soil Borings	14
		5.4.1.2 Piezometer Installations	15
		5.4.2 Monitoring Well Installations and Development	16
	5.5	Groundwater Elevation Monitoring and Hydraulic Testing	16
	5.6	Existing Groundwater Quality Testing	18
	5.7	Surface Water Study	18
	5.8	Surveying	19
	5.9	Monitoring Well/Piezometer Abandonment	19
6.	Sam	pling and Analysis Plan	20
7.	Site	Investigation Report	21
8.	Sche	edule	22

9. References 23

Tables

- 1. Clay Till Thickness Summary from Borings, Piezometers, and Wells Completed in and near the Southern Expansion Area
- 2. Sampling and Analysis Plan

Figures

- 1. Site Location
- 2. Site Features
- 3. Site Layout
- 4. Southern Expansion Landfill Footprint
- 5. Regional Geologic Cross-Section
- 6. NYS Aquifer Map
- 7. Groundwater Potentiometric Surface Map
- 8. Proposed Soil Boring, Piezometer and Monitoring Well Locations
- 9. Surface Water Monitoring Stations near the Chaffee Landfill

Appendices

- A Clay Till Thickness Model
- B Part 363 Expanded and Baseline Laboratory Analytical Parameter List

GEI Consultants, Inc.

ii

1. Introduction

This Site Investigation Plan (SIP) is submitted to the New York State Department of Environmental Conservation (NYSDEC or Department) in support of a forthcoming Title 6 New York Code of Rules and Regulations (6 NYCRR) Part 360 Solid Waste Management Facility Permit Modification application for lateral expansion of the Chaffee Landfill, known as the Southern Expansion. The SIP has been prepared in accordance with the requirements contained in 6 NYCRR Part 363-4 Permit Application Requirements. The SIP is provided to the Department for comment with regard to the adequacy of methods proposed to satisfy 6 NYCRR Part 360- Part 363-4.4(j) requirements for hydrogeologic investigation of the Chaffee Landfill. The SIP describes:

- Geologic and hydrogeologic conditions already known in the area of lateral expansion from previous site investigations;
- Data gaps existing from previous hydrogeologic studies completed in the area of expansion;
- Scope of proposed investigation to meet 6 NYCRR Part 363-4 requirements; and
- Methods used to investigate the hydrogeologic conditions of the expansion area.

1.1 Background

The Chaffee Landfill is located in the Town of Sardinia, Erie County, New York. The landfill is owned and operated by Waste Management of New York, LLC (WMNY) under the landfill's Solid Waste Management Facility (SWMF) Permit I.D 9-1462-00001. The location of the facility is shown on Figure 1. The landfill facility includes the 50-acre Closed Landfill, 52.5-acre Western Expansion Area, a Valley Fill Expansion Area situated between the Closed Landfill and Western Expansion Area and permitted areas for soil borrow. These site features as well as the proposed Southern Expansion Area is shown on the aerial map on Figure 2. A 6 NYCRR Part 360 Permit Application for expansion will be submitted for a Southern Expansion Area with overlap on the Closed Landfill, Western Landfill Expansion, and Valley Fill Landfill Areas. The site layout is on Figure 3. The proposed footprint of the Southern Expansion Area is shown on Figure 4 and would occupy approximately 30 acres, most of which is reclaimed land from permitted soil borrow (West Soil Borrow Area) and overlap on existing landfill areas.

1.2 Objectives

The primary objectives of the hydrogeologic investigation described in this plan are to:

- Integrate hydrogeologic data to be collected during the implementation of this plan with previously collected hydrogeologic data from the existing landfill area and the area south of the existing landfill.
- Provide necessary data for landfill design and construction to meet engineering requirements of 6 NYCRR Part 363-3.
- Collect and evaluate the required hydrogeologic data to develop a site wide environmental monitoring plan.

1.3 Plan Outline

A portion of this plan is devoted to summarizing existing geologic and hydrogeologic data obtained during previous studies completed at the Chaffee Landfill. This is an important aspect of this plan because the scope of additional site investigation has been developed within the current understanding and framework of the geologic and hydrogeologic conditions previously defined for the site. As such, the emphasis of site investigation activities described in this plan is to fill in identified data gaps to satisfy site investigation requirements in Part 363-4, confirm the hydrogeologic site conceptual model, and address data needs for engineering landfill design to achieve maximum groundwater protection. This plan includes the following:

- Section 2 provides a summary of site history and previous investigations completed in the area of the landfill and the area south of the landfill (proposed expansion area);
- Section 3 provides a comprehensive description of the hydrogeologic setting in the area of the landfill as characterized through prior investigations and environmental monitoring of the existing landfill;
- Section 4 summarizes Site Investigation requirements and identifies data gaps to be addressed;
- Section 5 describes a scope of work for Site Investigation;
- Section 6 describes the sampling and analysis plan;
- Section 7 describes the Site Investigation Report;
- Section 8 provides a tentative schedule for SIP implementation; and
- Section 9 summarizes relevant references.

As indicated in Part 363-4.4(c)(2), A professional geologist licensed and currently registered to practice in the State of New York State, having experience in similar hydrogeologic

investigations, will supervise all procedures for obtaining the required hydrogeologic information for the Southern Expansion.

2. Site History and Summary of Previous Investigations

A municipal waste disposal site has operated at the Chaffee site since 1958. The landfill facility is owned and operated by WMNY, who purchased the facility in July 1998. The landfill facility was formerly known as the C.I.D. Landfill. WMNY operated the original landfill (currently closed) and later received a permit in December 2006 to develop a lateral expansion west of the currently closed landfill. The Western Expansion Area consists of six cells designated Cell 1 through Cell 6. In May 2013, a permit application was approved to construct the Valley Fill Expansion Area. The Valley Fill (area between the Closed Landfill and Western Expansion Area) is anticipated to be operational in the First Quarter 2019.

Subsurface investigations have been completed at the Site since the early 1980s. The investigations are listed below with their purpose.

- "Comprehensive Soils Report for Chaffee Landfill, Inc.," prepared by Earth Dimensions, Inc. January 1981 Initial assessment of soil type and hydraulic characteristics.
- "Soils Report, Chaffee Landfill, Inc., Leachate Collection System," prepared by Earth Dimensions, Inc., October 1981 Report of soil conditions along perimeter trench walls during installation of the leachate collection system for the original landfill.
- "Evaluation of Hydrogeologic and Ground-Water Quality Data Pertaining to the C.I.D. Landfill," prepared by BB&L, P.C., July 1986 Investigation of groundwater quality performed on behalf of legal representation (Steve Miller, Esq.) for the Town of Sardinia.
- "Hydrogeologic and Soils Assessment for C.I.D. Landfill, Inc.," prepared by Earth Investigations, LTD., April 1989 Investigation to evaluate soil conditions on parcels adjacent to the original landfill and preliminarily assess hydrogeology of the underlying sand and gravel outwash unit.
- "Hydrogeologic Site Investigation Plan," prepared by Earth Investigations, LTD, June 1991 Review of data consisting of well and test boring logs, water level data, chemical analyses, as well as the results of previous test trench studies and hydrogeologic investigations.
- "Leachate Accountability Assessment at the Chaffee Landfill," prepared by Geomatrix Consultants, Inc., July 2000 Investigation to characterize saturation in the Closed Landfill and confirmed clay bottom of landfill.

- "Hydrogeologic Report for Chaffee Western Landfill Expansion Part 360 Permit
 Modification Application" February 2005 prepared by McMahon & Mann Consulting
 Engineers, P.C. (MMCE) and Terra-Dynamics, Inc. Detailed hydrogeologic
 investigation of the parcel west of the Closed Landfill to support the permit application
 for lateral expansion. The investigation utilized information from prior investigations to
 support site characterization of site geology, hydrogeology, and surface water hydrology.
- "Borrow Area Use Plan for the East and West Soil Borrow Area Chaffee Landfill" –
 March 2009 prepared by MMCE Characterization of soil and groundwater conditions in
 the soil borrow areas south of the Closed Landfill. The proposed footprint of the
 Southern Expansion of the Landfill occurs in the area characterized in the Borrow Area
 Use Plan.
- "Soil Borings Completed at Potential South Soil Borrow Property and Proposed South Expansion Area", November 2017 completed by Earth Dimensions, Inc. Completed 13 soil borings to determine clay thickness on property south of the landfill and in the Proposed Southern Expansion Area for conceptual landfill layouts developed by MMCE.

3. Hydrogeologic Setting

This section describes site geology and hydrogeologic conditions at the Chaffee Landfill and proposed expansion area. Figure 3 shows the site layout and includes test pit, boring, monitoring well, and piezometer locations completed at the Chaffee Landfill during prior investigations.

3.1 Geology

The Chaffee facility is located in the Erie-Niagara Drainage Basin. La Sala (1968) completed a study of the groundwater resources of the basin and included a regional surficial geology map showing that the Chaffee facility was underlain by "Till". Site investigations identified in Section 2 verified that the Closed Landfill, Western Expansion Area, Soil Borrow Areas, and a majority of the Southern Expansion Area are underlain by clay till. The till overlies outwash sand from a north to south progression with the southern boundary of the till shown on Figure 3 trending in an east-west direction.

Miller and Staubitz (1985) describe the "clay till" deposits at the Chaffee Facility as "having a fine-grained texture that is sparse in pebbles". They suggest the till was derived from reworked fine-grained deposits from the Cazenovia River valley (located to the north of the facility) and that these fine-grained deposits were transported by glacial ice during the Lake Escarpment readvance to form an end moraine. According to Calkin (1982), the Lake Escarpment moraine was deposited in the Late Wisconsin glacial period (approximately 12,000 years ago). Miller and Staubitz suggest that the glacial ice front of the Lake Escarpment re-advance oscillated and overrode the glacially derived sand and gravel deposits that underlie the till below the Chaffee Facility.

The site geology consists of a low permeability clay till unit overlying a thick sequence of sand and gravel with some interbedded layers of silt and clay above shale bedrock. Miller and Staubitz (1985) indicate that over 400 feet of soils overlie bedrock below the site. A regional profile of site geology is shown on Figure 5.

Clay Till Description – Soil descriptions describe the Clay Till as a mixture of glacio-lacustrine clayey silt, silty clay and sandy silt, typically brown or gray in color. In certain areas, pebbles are intermixed within the clay and silt deposits. The clay till contains interbedded, discontinuous (isolated) stringers of silty sand, sand, and sand and gravel – occasional varved silt interbeds occur. The thickness of the clay till ranges from being absent in a small area of the southwest corner of the Southern Expansion Area (SB3-17) to greater than 55 feet near the northeast corner of the Southern Expansion Area (decommissioned well MW-3R2). The clay till thickness identified in the Southern Expansion Area is summarized in Table 1. The clay till thickness thins naturally in a southerly direction. GEI developed a preliminary three-dimensional (3D) model to

evaluate the lateral extent and known thickness of the clay till unit in the proposed Southern Expansion Area. Two-dimensional renderings of the model are presented in Appendix A as a series of snap shots showing the extent of clay till greater than 1 foot in thickness in 1-foot increments (1 foot through 10 feet) and 5-foot increments (15 feet and 20 feet).

Sand and Gravel Description - The permeable, coarse-grained sand and gravel unit is comprised of a variety of deposits including lake outwash sediments and sand and gravel outwash. The lake outwash deposits are located west and southwest of the Southern Expansion Area and are described by Miller and Staubitz (1985) to be associated with a proglacial lake. The sand and gravel outwash deposits are located beneath the Lake Escarpment Recessional Moraine and appear at the ground surface south and east of the clay till deposits. Silt and clayey silt zones observed in the test borings in the expansion areas within the sand and gravel unit can be more than 20 feet in thickness. Miller and Staubitz (1985) indicate that over 400 feet of unconsolidated deposits overlie bedrock below the landfill property (see Figure 5). These deposits overlay the Machias Formation consisting of predominantly shale bedrock.

3.2 Hydrogeology

The sand and gravel deposits south of WMNY property are known as the Sardinia Aquifer (Miller and Staubitz, 1985). New York State has not identified the Sardinia Aquifer as a Primary Aquifer but categorizes the aquifer as a Principal Aquifer based on its hydraulic properties. As shown on GIS mapping of New York State aquifers (see Figure 6), the Chaffee Landfill and proposed expansion area are situated on an area labeled as "Not a Primary Aquifer, Unknown". Unknown refers to expected pumping well yield. An area mapped as an "Unconfined, high yield aquifer not a Primary Aquifer > 100 gallons/minute" is labeled on an area situated approximately 1600 feet south of the Site. Farther south, areas that include a deeper confined aquifer are identified on aquifer mapping.

3.2.1 Groundwater

At the Chaffee Landfill, perched groundwater conditions were identified in many areas of the clay till or in the upper section of the sand and gravel in the Western Landfill Expansion. The perched groundwater term is used because groundwater was not identified above or below these zones of saturation and water table conditions do not exist as evidence of wells screened in till having heads at spatially variable elevations. In areas where perched groundwater exists, site investigation for the Western Expansion Area indicated no direct hydraulic connection between the clay till confining unit and the sand and gravel unit. Groundwater flow in the clay till, where saturated, occurs at an estimated seepage velocity of approximately six inches/year in a vertically downward direction. Low flow velocities were confirmed by environmental isotope studies conducted in wells screened in the clay till.

The groundwater flow direction in the sand and gravel is primarily horizontal. The groundwater elevation difference measured in wells screened at the top of the sand and gravel unit and wells screened deeper in the sand and gravel in the Western Expansion Area was typically only a few inches. Groundwater in the sand and gravel below the Closed Landfill and Western Expansion Area flows in a north direction under low hydraulic gradient and is associated with regional discharge (see Figure 7) within the Cazenovia Creek Watershed which extends northward from the Chaffee Landfill.

Surface water flowing in streams where sand and gravel is present at the ground surface near the southern extent of the proposed limits of the Southern Expansion Area flow southward toward Hosmer Brook. Hosmer Brook is located south of the landfill property and associated with the Cattaraugus Creek Watershed that extends southward from the Chaffee Landfill. Groundwater occurring in the sand and gravel under water table conditions would also flow southward. Hence, a regional groundwater and surface water flow divide occurs in the sand and gravel unit near the southern edge of the proposed Southern Expansion Area.

3.2.2 Surface Water

The end moraine formed by the clay till creates a surface water drainage divide. Surface water to the north of the divide flows to a tributary of Cazenovia Creek. South of the divide, surface water flow is to Hosmer Brook, a tributary of Cattaraugus Creek. Surface water runoff from the site is directed into the Hosmer Brook watershed. Surface water runoff from precipitation drains off the Closed Landfill, Landfill Expansion Areas and Soil Borrow Areas via drainage systems to surface water detention basins. Surface water run-off from the eastern part of the Closed Landfill is collected by drainage swales and directed to existing Sedimentation Basin #4 at the southeast corner of the landfill. This detention basin eventually discharges to a wetland that is part of the Hosmer Brook watershed.

Surface water run-off from other areas is directed to the lined Sedimentation Basin #5. This basin is located just north of Sedimentation Basins #1, #2 and #3 (see Figure 3). Basin monitoring is incorporated in the site's environmental monitoring program.

3.3 Critical Stratigraphic Section

The Critical Stratigraphic Section (CSS) below a solid waste facility is defined in 6 NYCRR Part 360 as all stratigraphic units into which contaminants that theoretically could escape from the facility might reasonably be expected to enter and cause contamination. Definition of the CSS at the Chaffee Landfill site was a major goal of the Hydrogeologic Investigation for the Western Expansion Area. The CSS for the Chaffee Landfill is the clay till and the upper saturated sand and gravel unit.

4. Data Gaps and Site Investigation Requirements

This section identifies data gaps and data requirements for Hydrogeologic Report preparation for submittal of a permit application for the proposed Southern Expansion.

4.1 Data Gaps

Review of existing geologic and hydrogeologic information for the property near the proposed Southern Expansion Area has identified the following key data gaps to be addressed during hydrogeologic site investigation:

Description of Data Gap	Significance
Refinement is needed of the extent and thickness of the clay till along the southern boundary of the proposed Southern Expansion Area landfill footprint.	Landfill design parameter for footprint layout and landfill base grade elevations
Groundwater occurred in well SB6-08 which was screened in clay till (prior to abandonment and soil mining). While other borings completed in the West Borrow Area were described as moist (unsaturated), well screens were not installed in the clay till and further assessment is needed to determine if the clay till contains perched groundwater or if a water table condition is present in till where saturated soil is observed.	Landfill design parameter to determine need for a porewater drain
Several dry monitoring wells currently exist within or near the proposed Southern Expansion Area footprint. Additional piezometers and wells are needed to determine depth to groundwater in the sand and gravel unit below the clay till, within the footprint of the proposed Southern Expansion Area.	Landfill design parameter to determine minimum base grade elevation

Description of Data Gap	Significance
gravel occurs near the Southern Expansion	Environmental monitoring program design parameter to determine positioning of downgradient monitoring wells

Landfill design will establish a minimum separation distance of ten feet between the landfill base grade and the top of the saturated sand and gravel unit. The hydrogeologic investigation will expand the existing knowledge of clay till extent and thickness within the landfill footprint.

4.2 Hydrogeologic Investigation Activity Outline

Site investigation for the Hydrogeologic Report for the proposed Southern Expansion will include:

- Preparation of a Site Investigation Work Plan per Part 363-4.4(j) describing the work scope and investigation methods and identification of specific hydrogeologic questions to be addressed (included herein).
- Completion of soil borings and installation of piezometers having well screens positioned in the clay till and sand and gravel within the footprint of the proposed expansion area to determine groundwater presence in the clay till and the depth to groundwater in the uppermost water-bearing zone.
- Installation of piezometers/monitoring wells along the south property line with well screens installed in saturated sand and gravel to ascertain groundwater flow direction in the sand and gravel below the expansion area footprint.
- Water level monitoring on a seasonal basis to ascertain if seasonality affects groundwater flow direction in the sand and gravel near the proposed expansion area.
- Well development and hydraulic conductivity testing.
- Groundwater quality testing of the sand and gravel unit for water quality parameters as required in Part 363-4.
- Update the prior private water well users survey.

The focus of site investigation activities will be to address data gaps identified from the review of hydrogeologic data summarized in Section 4.1 and collect information for design and permit application requirements.

5. Scope of Work

Site investigation tasks are described below.

5.1 Literature Search

A preliminary review of existing reports and literature has been performed as described in Sections 2 and 3. A more comprehensive review of available reports and literature will be performed prior to beginning the field investigation. Additionally, Site-specific data available from the following resources will be incorporated into the literature review:

- The United States Geological Survey
- The United States Department of Agriculture
- The New York State Geological Survey
- The U.S. Army Corps of Engineers
- The New York State Department of Health
- The Erie County Department of Health
- The New York State Department of Environmental Conservation
- The New York State Department of Transportation
- The United States Environmental Protection Agency

5.2 Water Well Survey

A water well survey dated April 2004 was performed to supplement the Hydrogeologic Investigation Report for the Western Expansion Area permit application. At the time of the survey, uncertainty existed regarding the location of the groundwater flow divide in the sand and gravel unit. Because of the uncertainty that existed before additional monitoring wells were completed and monitored in the West Soil Borrow, the 2004 survey was conducted using a search radius of 1-mile from the Site.

The water well survey for the Southern Expansion Area will be conducted as specified in 6 NYCRR Part 363-4.4(g),

"A survey of public and private water wells within one mile downgradient and onequarter mile upgradient of the facility must be conducted. Surveys must obtain, where available, the location of wells, which must be shown on a map with their approximate elevation and depth, name of owner, age and usage of the well; stratigraphic unit screened; well construction; static water levels; well yield; perceived water quality; and any other relevant data that can be obtained."

If the Southern Expansion hydrogeologic investigation indicates groundwater flow in the sand and gravel unit beneath any portion of the footprint occurs in a southerly direction, the water well survey will be expanded to a search radius of one mile.

A private water well questionnaire will be mailed to residents living within the search radius of the Site. Information returned from the survey will be compiled into a database and summarized in the Hydrogeologic Investigation Report. Erie County Department of Health database records will aide in the search.

5.3 Surface Geologic Mapping

The U.S. Department of Agriculture Soil Conservation Service (SCS) soil series and associated hydrologic soil groups will be identified for Site soils within 100 feet of the expansion area footprint. The surface soil within the portion of the expansion area situated within the limits of the reclaimed West Soil Borrow Area is reclaimed soil. Soil boring data obtained during the site investigation will document surface soil type across the expansion area.

5.4 Subsurface Investigation Activities

As described in Section 3, the Chaffee Landfill has been extensively investigated. Investigations include those evaluating:

- environmental conditions around the Closed Landfill while it was in operation;
- detailed hydrogeologic studies of the land west of the Closed Landfill for the Part 360 Permit Application for the Western Expansion Area;
- investigations to assess clay till thickness in the East and West Soil Borrow Areas south of the Closed Landfill; and
- investigation to improve the understanding of clay thickness and extent for conceptual design of the Southern Expansion.

Table 1 summarizes the clay till thickness encountered in borings, test pits, and wells completed in and near the footprint of the Southern Expansion Area during prior investigations. Clay till thickness information presented in Table 1, as well as geologic information from investigations completed north of the Southern Expansion Area, were used to prepare the two-dimensional (2-D) model renderings of the three-dimensional (3D) model shown in Appendix A. Additional data obtained from soil borings proposed in and near the Southern Expansion will refine the model for landfill design.

Subsurface investigations planned for the Southern Expansion Area are described in the following sections.

5.4.1 Soil Borings and Piezometer Installations

Soil boring and piezometer installations to be completed in and near the footprint of the Southern Expansion will confirm the extent and refine the thickness of the clay till. Piezometers installed in the area will provide hydraulic information and determine groundwater flow direction in the sand and gravel at the south end of the expansion area. Soil boring and piezometer locations are shown on Figure 8. The following investigation activities will be performed:

- Completion of 10 soil borings with geologic sampling; select samples will be analyzed for physical properties.
- Installation of 3 piezometers screened in the sand and gravel unit to assess the horizontal hydraulic gradient and flow direction at the Southern Expansion Area.
- Installation of a piezometer pair within the footprint of the expansion area to determine vertical hydraulic gradient and hydraulic properties.
- Installation of a deeper piezometer at monitoring well MWBA-3 which has been dry.

5.4.1.1 Soil Borings

Five (5) soil borings will be completed to confirm the extent of clay till soil and five (5) will be located to characterize thickness of clay till and assess for potential saturated conditions within the footprint of the expansion area. Boring locations are shown on Figure 8. Soil borings may include installation of temporary piezometers to determine if clay till is saturated. Soil will be drilled using 2 3/4-inch diameter hollow stem augers with an all-terrain drill rig and the soil profile will be continuously sampled using 2-inch diameter stainless steel split spoons in accordance with 6 NYCRR Part 363 requirements. Blow counts for Standard Penetration Testing (SPT) will be obtained during sample collection. The soil will be continuously logged in accordance with the Unified Soil Classification System (USCS). A representative soil sample from each split spoon will be placed in a glass jar and labeled with the boring number, date, and sample collection depth. All soil samples will be packaged neatly for archive at the landfill facility. Each of the 10 soil borings will be sampled to a depth of no less than 10 feet into the sand and gravel unit below the Clay Till. Following the completion of borings used for exploratory purposes (not piezometer installation), borings will be backfilled to ground surface using a cement-bentonite grout mixture emplaced using tremie methods. The location of each boring will be staked and labeled for surveying of location and elevation.

Representative soil samples will be collected during the investigation of soils for geotechnical analysis as required by 6 NYCRR Part 363-4.4(1)(2). Approximately 5 soil samples collected from the clay till in the Southern Expansion Area will be analyzed for the following:

- Atterberg limits ASTM D4318
- Grain Size Gradation (grain size distribution sieve and hydrometer analysis ASTM D422

At a minimum of two locations, a Shelby tube sampler will be advanced for collection of clay till soil by method ASTM D1587 for undisturbed permeability analysis by method ASTM D5856.

The location and depth of each sample to be submitted for soil property characterization will be noted on the field logs.

5.4.1.2 Piezometer Installations

Four 2-inch diameter temporary piezometers and one piezometer pair will be installed at locations shown in Figure 8 to monitor groundwater elevations in the sand and gravel unit. Three piezometers will be installed in a north – south alignment parallel with the groundwater flow direction in the sand and gravel unit. A fourth piezometer will be installed to monitor groundwater elevations in the sand and gravel unit near existing well MWBA-3 which has been dry since installation in 2009. These piezometers will establish the hydraulic gradient and flow direction in the sand and gravel unit near the southern limit of the Southern Expansion Area.

Each temporary piezometer will consist of a 2-inch diameter, Schedule 40 PVC, 20-slot well screen 10 feet in length. A filter pack of #00N morie sand will be installed around the screened interval. Bentonite chips will backfill the borehole above the sand pack to a depth of 3 to 4 feet of ground surface. Cuttings will backfill the remaining borehole. Cement-bentonite grout will not be used for temporary well installations. The piezometers will be properly decommissioned after hydrogeologic assessments of the proposed expansion area are complete.

A temporary piezometer pair will be installed within the footprint of the expansion area to characterize the sand and gravel unit to a depth of approximately 65 to 70 feet below grade. Two borings will be advanced using 6 ¼-inch HSAs for installation of 4-inch diameter Schedule 40 PVC piezometers with 20-slot well screens that can accommodate a downhole pump for hydraulic testing. The depths of the screened interval (10 feet) of each piezometer will be field determined. The objective of screen placement will be to install a deeper piezometer at an approximate depth of approximately 65 to 70 feet and a shallower piezometer to about 35 to 40 feet below grade (assuming low permeability interbedded deposits are encountered in the sand and gravel unit and a clay till thickness of about 15 feet). The deeper of the two piezometers will be continuously sampled during advancement of augers as described in Section 5.4.1.1. Groundwater elevation data will support the understanding of vertical and horizontal groundwater flow direction in the sand and gravel unit.

5.4.2 Monitoring Well Installations and Development

Groundwater monitoring wells will be installed to characterize groundwater quality at the Southern Expansion Area per Part 363-4.4(a)(2)(ii)(e)(2). The monitoring wells will monitor the CSS along the perimeter of the proposed lateral expansion area and would be incorporated into the monitoring well network for the Chaffee Landfill. Four permanent groundwater monitoring wells will be installed at locations shown on Figure 8. Soil borings for each well installation will be advanced using 6 ½-inch diameter hollow stem augers with continuous sampling. Continuous 10-slot schedule 40 PVC wire wrapped well screens 10 feet in length will be placed within the upper 15 feet of the saturated sand and gravel unit.

The monitoring well construction details for each well will conform to those requirements outlined in 6 NYCRR Part 363-4.4(k)(2) and include choke sand above and below a 3-foot thick bentonite well seal. Each monitoring well will be completed with a lockable protective surface casing and appropriately labeled for incorporation into the Site groundwater monitoring network.

Each newly-installed monitoring well will be developed no sooner than one week following well installation. Monitoring wells will be developed using a suction-lift pump, centrifugal downhole pump, bottom-discharging bailer, or a Waterra[™] hand pump. Development will involve using a combination of pumps and bailers to remove groundwater and any accumulated sediment on the well bottom. Development will be considered complete when the pH, specific conductivity, oxidation reduction potential and temperature have stabilized; and when the turbidity is at or below 5 NTU or has stabilized above 5 NTU and approximately 10 well volumes have been removed. Stability is defined as variation between measurements of 10 percent or less and no overall upward or downward trend in the measurements is observed. Water removed during development will be discharged to the ground surface.

5.5 Groundwater Elevation Monitoring and Hydraulic Testing

Groundwater elevations will be monitored in the new piezometers and monitoring wells monthly for a period extending no less than 6 months. Supplemental water level data will be collected monthly from the following existing wells screened in the sand and gravel unit:

MWBA-1	MW-50	MW-R4A
MWBA-2	MW-30	MW-R1A
	MW-13R	

Site-wide groundwater measurements will be collected from clay till and sand and gravel unit wells on a quarterly basis to supplement the monthly measurements recorded in new piezometers and wells.

Hydraulic conductivity estimates for the sand and gravel unit will be obtained from the four new monitoring wells by performance of slug tests. A known volume of water will be displaced in the well by inserting a PVC slug and the water level decline will be measured using a down-hole pressure transducer. Following equilibration, the slug will be removed and the water level rise in the well will be monitored. Slug test displacement and recovery data will be analyzed using AQTESOLV (or similar) software to yield estimates of hydraulic conductivity in each well.

Pumping tests will be conducted to determine the specific yield (sustained yield) of the two 4-inch diameter piezometers and determine the potential for vertical hydraulic communication in the sand and gravel unit. The pumping tests will be completed sequentially over a two-day period and involve the following:

- 1. Placement of down-hole pressure transducers to record water level changes in each piezometer during testing.
- 2. Place a submersible well pump 6 inches from the bottom of the piezometer and engage pumping at maximum flow rate (approximately 20 gpm) and monitor water level change automatically with pressure transducers and manually using an electronic water level indicator.
- 3. Pump for a minimum of six hours and record water level measures periodically to ensure water level in the piezometer does not fall below the pump intake. The discharge tubing will be directed to the clay till ground surface no closer than 100 feet from the piezometer.
- 4. Maintain a constant flow during the test.
- 5. Take drawdown readings in each of the three piezometers at a frequency no less than twice every hour and periodically check transducer readings to ensure they are functioning properly.
- 6. Monitor recovery data until a minimum of 80% recovery.

Pumping data will be plotted on a semi-log graph of drawdown vs. time and calculate specific capacity:

$$S_c = Q/(h_o - h)$$

Where:

Sc = Specific capacity in gallons / foot Q = Equilibrium flow rate (h₀-h) = Total drawdown

Observations of hydraulic response in the shallow and deeper piezometer during testing will be noted during testing and data analysis.

5.6 Existing Groundwater Quality Testing

Existing groundwater quality in the expansion area will be established using the four new monitoring wells on two sampling events per Part 363-4.6(f)(9)(i)(a) requiring characterization of the existing groundwater quality to be included in the permit application. The first sampling event is expected to be performed during a higher groundwater condition (late spring/early summer) and the second groundwater quality characterization sampling event will occur during a lower (fall) groundwater condition. The Part 363 Expanded and Baseline parameter lists are provided in Appendix B.

The background groundwater quality testing for the Southern Expansion Area (required prior to waste placement) will be described in the updated EMP for the landfill facility and will be included with the permit application.

5.7 Surface Water Study

The Chaffee Landfill is located near the surface water flow divide associated with the headwaters of un-named tributaries that are part of the Cazenovia Creek watershed system and Hosmer Brook which is part of the Cattaraugus Creek watershed system. Surface water quality and flow data were collected during investigations completed for Western Expansion Area Part 360 Permit Application and are shown on Figure 9. The investigation evaluated:

- Characteristics of surface water flow on the clay till and the sand and gravel deposits; and
- The relationship of surface water and groundwater flow systems, including the locations of surface water flow divides relative to groundwater flow divides.

Based on the findings presented in the permit application, the Southern Expansion Area project lies entirely within the Cattaraugus Creek watershed system with flow occurring from wetlands and engineered sedimentation basins that ultimately flow to Hosmer Brook.

The surface water study to be completed with the Site Investigation will include the following:

- Summarize hydrologic findings for surface water flowing toward Hosmer Brook;
- Verify existing surface water drainage and compare to surface water conditions evaluated during the prior hydrologic study; and
- Collect flow and field chemistry data from investigation locations SH-2, SH-3, and SH-6 (chemistry data only, no discharge) which are shown on Figure 9. If necessary, new staff gauges will be installed if the prior gauges are no longer functional.

Data will be collected monthly for a period of six months concurrent with groundwater elevation monitoring in the Southern Expansion Area.

5.8 Surveying

The location of each soil boring, piezometer, monitoring well, and staff gauge will be surveyed by a State of New York licensed surveyor working at the landfill. The locations will be presented in the New York State Plane Coordinate System. Ground surface and surface water elevations will be presented as feet above sea level, utilizing North American Vertical Datum standards.

5.9 Monitoring Well/Piezometer Abandonment

Following NYSDEC approval of the Site Investigation Report, monitoring wells and piezometers that occur within the footprint of the Southern Expansion that are not specified for use in the Environmental Monitoring Plan for the site will be properly abandoned. Monitoring wells and piezometers will be decommissioned in accordance with Part 363-4.4(k)(6).

6. Sampling and Analysis Plan

The sampling and analysis plan (SAP) is presented in Table 2. Groundwater monitoring well sampling will be conducted by a Test America sampling crew during sampling events conducted at the Chaffee Landfill. Sampling of the newly installed groundwater monitoring wells will be conducted consistent with current sampling protocols for quarterly environmental monitoring as described in the current Environmental Monitoring Plan (MMCE, December 2012). Field sampling protocols will be recorded on WM standard field forms. Prior to sampling, groundwater level measurements will be collected from wells and piezometers described in Sections 5.5 and 5.6. A minimum of three well volumes will be removed until field measured parameters (pH, temperature, specific conductance, and turbidity) stabilize. Stabilization is defined as variation between field measurements of 10 percent of less and no overall upward or downward trend in the measurements. Water removed during well purging will be discharged to the ground surface.

Field monitoring equipment will be calibrated in accordance to the manufacturer's recommendations and recorded on the sampling forms. The sampling devices used to monitor the environmental conditions at the site will be clearly marked on the sampling forms. The groundwater samples will be properly labeled, preserved, stored, and shipped in a manner that preserves its integrity and chain of custody.

Each sample will be labeled with a unique sample identification number using a non-removable label fixed to the outside of the sample container and will include: sample ID, sample collection date and time, sampler's initials, preservative (if required), and analytes for analysis with method number. The sample will be recorded on the Chain of Custody (COC) form.

Samples will be placed immediately into a sample shipping cooler packed with ice. The samples will be transported to the laboratory at the end of each work day under strict COC.

Laboratory analytical results will be evaluated for data usability and 5% of the samples collected from the expansion area will be validated during each sampling event.

7. Site Investigation Report

Following completion of the site investigation, a Site Investigation Report will be prepared consistent with Part 363-4.4(a). The Site Investigation Report will include, as an appendix, the following documents:

- Final Site Investigation Plan
- Revised Environmental Monitoring Plan

The Site Investigation Report will include a description of regional geology and hydrogeology. This assessment of geologic and hydrogeologic conditions will discuss the following:

- glacial geology, including a discussion of the formation, timing, stages, and distribution of glacial deposits, advances and retreats, hydrologic characteristics of the surficial deposits, such as kames, eskers, outwash moraines, etc.;
- major topographic features, their origin and influence upon drainage basin characteristics; and
- surface water and groundwater hydrologic features, including surface drainage patterns, recharge and discharge areas, wetlands and other sensitive environments, public water supply wells, and private water supply wells identified in the water supply well survey.

The Site Investigation Report will also include a discussion of Site-specific geology and hydrogeology. The Site Investigation Report will discuss the following:

- site geology, surface water and groundwater flow, and how they relate site-specific conditions to the regional geology;
- site hydrogeologic conditions in three dimensions and their relationship to the proposed landfill expansion;
- the critical stratigraphic section; and
- potential impact the landfill expansion will have on surface and groundwater resources.

The Site Investigation Report will include raw field data, analytical calculations, maps, geologic and hydrogeologic cross-sections, soils engineering data, interpretations (and alternative interpretations where applicable), and conclusions. The revised EMP will discuss monitoring details and will include an updated Site Analytical Plan.

8. Schedule

The anticipated duration/timing of tasks proposed for the site investigation is presented below. Groundwater sampling activities will be scheduled to be coincident with monitoring events scheduled for the existing landfill.

PROJECT PHASE	DURATION/ ANTICIPATED MILESTONE
Draft SIP Submittal to NYSDEC	Milestone (February 1, 2019)
Pre-Investigation Meeting with NYSDEC	Milestone (February 8, 2019)
Address NYSDEC SIP Comments/Finalize SIP	Milestone (March 1, 2019)
Literature Search, Private Water Well Survey Update, Surface and Subsurface Geologic Mapping	12 weeks
Soil borings, Piezometer and Monitoring Well Installations	4 to 5 weeks
Well Development & Hydraulic Testing/Survey	2 weeks
Groundwater/Surface Water Elevations (Monthly for 6 mos.) / Site-Wide Quarterly	9 months
Groundwater Quality Characterization (2 events – Late Spring / Fall 2019)	6 months
Prepare Draft Site Investigation Report & Draft EMP and SAP	Milestone (December 2019)
Address NYSDEC comments and submit Final Site Investigation Report with Final EMP and SAP	Milestone (January 2020)

9. References

- BB&L, P.C., July 1986. Evaluation of Hydrogeologic and Ground-Water Quality Data Pertaining to the C.I.D. Landfill.
- Earth Dimensions, Inc., January 1981. Comprehensive Soils Report for Chaffee Landfill.
- Earth Dimensions, Inc., October 1981. Soils Report Chaffee Landfill.
- Earth Dimensions, Inc., November 2017. Soils Boring Logs for Thirteen Soil Borings Completed at Potential South Soil Borrow Property and Conceptual South Expansion Area.
- Earth Investigations, LTD., April 1989. Hydrogeologic and Soils Assessment for C.I.D. Landfill.
- Earth Investigations, LTD, June 1991. Hydrogeologic Site Investigation Plan.
- Geomatrix Consultants, Inc., July 2000. Leachate Accountability Assessment at the Chaffee Landfill.
- McMahon & Mann Consulting Engineers, P.C. and Terra-Dynamics, Inc, February 2005. Hydrogeologic Report for Chaffee Western Landfill Expansion – Part 360 Permit Modification Application.
- McMahon & Mann Consulting Engineers, P.C. March 2009. Borrow Area Use Plan for the East and West Soil Borrow Area Chaffee Landfill.
- State of New York Codes, Rules and Regulations, Title 6 Department of Environmental Conservation, Chapter IV. Quality Services, Subchapter B. Solid Wastes, Part 363 Landfills, Effective Date November 4, 2017.

Tables		

Table 1. Boring/Test Pit Locations Encountering Clay Till Near Expansion Area Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

Boring/Test Pit ID	Northing	Easting	Ground Surface Elevation at Time of Drilling	2015 Ground Surface Elevation	Elevation Notes	Clay Till Thickness (feet)	Bottom of Clay Till Elevation	Total Depth of Boring (feet)	Bottom of Boring Elevation
MW-A(I)	939996.52	1169702.43	1461.58	Ϋ́Z	Landfill Constructed Over This Location	14.00	1447.58	38.0	1423.58
SB6-03	939976.51	1169910.24	1455.58	NA	Landfill Constructed Over This Location	11.20	1444.38	12.0	1443.58
MA-2	939480.83	1169780.91	1460.98	1454.48	Regraded for Leachate Tank Construction	5.00	1455.98	30.0	1430.98
MA-3	939556.80	1170261.71	1469.45	1458.00	Regraded for Sediment Basin #5	27.70	1441.75	35.0	1434.45
MW-50	939527.86	1169485.08	1459.85	NA	No Change	12.50	1447.35	40.0	1419.85
MW-3R2	939800.56	1171447.29	1498.00	1498.00	No Change	>57.5	>1440.5	>57.5	1440.50
MW-R4A	939812.35	1170811.34	1478.00	1487.65	Regraded for Berm Construction	36.50	1441.50	55.0	1423.00
MW-K(D)	939852.20	1170232.26	1496.50	1473.86	Regraded for Berm Construction	46.60	1449.90	0.96	1400.50
MW-R1A	939822.16	1171899.47	1485.00	1496.89	Regraded for Berm Construction	42.20	1442.80	54.0	1431.00
SB6-08	939308.23	1170614.27	1469.76	1455.16	Excavated for Borrow Area	22.90	1446.86	26.0	1443.76
SB7-08	939495.36	1171041.48	1490.92	1463.71	Excavated for Borrow Area	43.70	1447.22	48.0	1442.92
TP8-09	939120.70	1171532.29	1455.06	1447.95	Excavated for Borrow Area	7.00	1448.06	8.0	1447.06
MWBA-1	938980.00	1171539.30	1456.40	NA	No Change	18.70	1437.70	30.0	1426.40
MWBA-2	938960.83	1171294.50	1454.84	NA	No Change	16.90	1437.94	30.0	1424.84
MWBA-3	938954.21	1170987.10	1456.90	NA	No Change	8.00	1448.90	19.0	1437.90
SB1-17	939579.42	1171405.42	1475.95	NA	No Change	40.69	1435.25	44.0	1431.95
SB2-17	939152.95	1170989.21	1450.14	NA	No Change	8.50	1441.64	15.7	1434.44
SB12-17	939164.38	1170723.15	1457.96	NA	No Change	10.70	1447.26	14.0	1443.96
SB13-17	939260.93	1170682.16	1459.91	NA	No Change	15.70	1444.21	18.0	1441.91

Table 2. Sampling and Analysis Plan Site Investigation Plan Chaffee Sanitary Landfill – Southern Expansion Chaffee, New York

BASELINE PARAMETERS

PARAMETER ¹ M	METHOD	SAMPLE COLLECTION ² AND CONTAINER	SAMPLE ^{3,4} PRESERVATION	RECOMMENDED ⁵ HOLDING TIME
Alkalinity	310.2	100 ml P,G, zero headspace	Cool, 4°C	14 days
Ammonia	350.1	125 ml P,G	Cool, 4°C	28 days
Biochemical Oxygen Demand, 5d-BOD5	405.1	500 ml P,G	Cool, 4°C	48 hours
Boron	6010	100 ml P	Preserve in lab	6 months
Bromide	300.0	125 ml P,G	Cool, 4°C	28 days
Chemical Oxygen Demand (COD)	410.4	125 ml P,G	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Chloride	300.0	125 ml P,G	Cool, 4°C	28 days
Color	110.2	125 ml P,G	Cool, 4°C	48 hours
Cyanide (Total)	9010	125 ml P,G	Cool, 4°C NaOH to pH >12	14 days
Hardness	130.1	100 ml P,G	HNO ₃ to pH <2	6 months
Kjeldahl Nitrogen, Total	351.1	125 ml P,G	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Metals Aluminum (Total) Antimony (Total) Arsenic (Total) Barium (Total) Beryllium (Total) Chromium (Total) Chromium (Hexa.) Calcium (Total) Cadmium (Total) Cobalt (Total) Copper (Total) Iron (Total) Lead (Total) Magnesium (Total) Manganese (Total) Mercury (Total) Nickel (Total) Potassium (Total) Selenium (Total)	6010 6010 6010 6010 6010 7196A 6010 6010 6010 6010 6010 6010 6010 60	500 ml P,G	HNO ₃ to pH <2	6 months

Table 2. Sampling and Analysis Plan Site Investigation Plan Chaffee Sanitary Landfill – Southern Expansion Chaffee, New York

BASELINE PARAMETERS (Continued)

PARAMETER ¹	<u>METHOD</u>	SAMPLE COLLECTION ² AND CONTAINER	SAMPLE ^{3,4} PRESERVATION	RECOMMENDED ⁵ HOLDING TIME
Silver (Total) Sodium (Total) Thallium (Total) Vanadium (Total) Zinc (Total)	6010 6010 6010 6010 6010			
Nitrate	300.0	125 ml P,G	Cool, 4°C	48 hours
Phenols	9066	125 ml G only	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Sulfate	300.0	125 ml P,G	Cool, 4°C	28 days
Total Dissolved Solvesidue on evaporati (TDS/ROE) 180° C	on	500 ml P	Cool, 4°C	7 days
Total Organic Carbo (TOC)	on 9060	2-40 ml vial or 125 ml P	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Volatile Organics	8260	2-40 ml vial w/septum caps	Cool, 4°C HCl to pH <2	14 days
Field Parameters Static water levels in wells		nearest 0.01 ft		
Specific Conductand Temperature	ce 9050	nearest 0.5 ° F		
Floaters and Sinkers	s (observation)			
pH	9040			
Eh				
Dissolved Oxygen				
Field Observations				
Turbidity	180.1			

Table 2. Sampling and Analysis Plan Site Investigation Plan Chaffee Sanitary Landfill – Southern Expansion Chaffee, New York

EXPANDED PARAMETERS

PARAMETER ¹ N	<u>METHOD</u>	SAMPLE COLLECTION ² AND CONTAINER	SAMPLE ^{3,4} <u>PRESERVATION</u>	RECOMMENDED ⁵ <u>HOLDING TIME</u>
Alkalinity	310.2	100 ml P,G, zero headspace	Cool, 4°C	14 days
Ammonia	350.1	125 ml P,G	Cool, 4°C	28 days
Biochemical Oxygen Demand, 5d-BOD5	405.1	500 ml P,G	Cool, 4°C	48 hours
Boron	6010	100 ml P	Preserve in lab	6 months
Bromide	300.0	125 ml P,G	Cool, 4°C	28 days
Chemical Oxygen Demand (COD)	410.4	125 ml P,G	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Chloride	300.0	125 ml P,G	Cool, 4°C	28 days
Color	110.2	125 ml P,G	Cool, 4°C	48 hours
Cyanide (Total)	9010	125 ml P,G	Cool, 4°C NaOH to pH >12	14 days
Hardness	130.1	100 ml P,G	HNO ₃ to pH <2	6 months
Kjeldahl Nitrogen, Total	351.1	125 ml P,G	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Metals Aluminum (Total) Antimony (Total) Arsenic (Total) Barium (Total) Beryllium (Total) Chromium (Total) Chromium (Hexa.) Calcium (Total) Cadmium (Total) Cobalt (Total) Copper (Total) Iron (Total) Lead (Total) Magnesium (Total) Magnesium (Total) Mercury (Total) Nickel (Total) Potassium (Total) Selenium (Total) Silver (Total)	6010 6010 6010 6010 6010 6010 7196A 6010 6010 6010 6010 6010 6010 6010 60	500 ml P,G	HNO ₃ to pH <2	6 months

Table 2. Sampling and Analysis Plan Site Investigation Plan Chaffee Sanitary Landfill – Southern Expansion Chaffee, New York

EXPANDED PARAMETERS (Continued)

PARAMETER ¹ N	<u>METHOD</u>	SAMPLE COLLECTION ² AND CONTAINER	SAMPLE ^{3,4} PRESERVATION	RECOMMENDED ⁵ HOLDING TIME
Sodium (Total) Thallium (Total) Tin (Total) Vanadium (Total) Zinc (Total)	6010 6010 6010 6010 6010			
Nitrate	300.0	125 ml P,G	Cool, 4°C	48 hours
Phenols	9066	125 ml G only	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Sulfate	300.0	125 ml P,G	Cool, 4°C	28 days
Sulfide	9030	500 ml P,G	Cool, 4°C NaOH, ZnOAc to pH >9	7 days
Total Dissolved Solids residue on evaporation (TDS/ROE) 180° C		100 ml P	Cool, 4°C	7 days
Total Organic Carbon (TOC)	9060	2-40 ml vial or 125 ml P	Cool, 4°C H ₂ SO ₄ to pH <2	28 days
Volatile Organics	8260	4-40 ml glass vial w/septum caps	Cool, 4°C HCl to pH <2	14 days
Acid Extractables	8270	1000 ml Glass only (Amber) w/Teflon liner	Cool, 4°C	Extract within 7 days; analyze within 40 days
Base/Neutral Extractables	8270	1000 ml Glass only (Amber) w/Teflon liner	Cool, 4°C	Extract within 7 days; analyze within 40 days
Herbicides	8151	1000 ml Glass only (Amber) w/Teflon liner	Cool, 4°C	Extract within 7 days; analyze within 40 days
PCB	8082	1000 ml Glass only (Amber) w/Teflon liner	Cool, 4°C	Extract within 7 days; analyze within 40 days
Radium-226	903.1	1000 ml Glass (Amber)	Cool, 4HNO3 or HCl to pH	1 < 2 6 mos
Radium-228	904.0	1000 ml Glass (Amber)	Cool, 4HNO3 or HCl to pH	1 < 2 6 mos
Total Uranium	908.0	1000 ml Glass (Amber)	Cool, 4HNO3 or HCl to pH	1 < 2 6 mos.

Table 2. Sampling and Analysis Plan Site Investigation Plan Chaffee Sanitary Landfill – Southern Expansion Chaffee, New York

EXPANDED PARAMETERS (Continued)

PARAMETER¹ M Pesticides	<u>IETHOD</u> 8081	SAMPLE COLLECTION ² AND CONTAINER 1000 ml Glass only (Amber) w/Teflon liner	SAMPLE ^{3,4} PRESERVATION Cool, 4°C pH 5 - 9	RECOMMENDED ⁵ HOLDING TIME Extract within 7 days; analyze within 40 days
Semi-volatile Organics	8270	1000 ml Glass only (Amber) w/Teflon liner	Cool, 4°C	Extract within 7 days; analyze within 40 days
Per- & polyfluoroalkyl Substances (PFAS)		P,G 250 mL	Trizma® at 5g/L	14 days
1,4-Dioxane	8270D SIM	1000 ml Glass only (Amber)	Cool, 4°C	Extract within 7 days; analyze within 40 days

Field Parameters

Static water levels nearest 0.01 ft

in wells

Specific Conductance 9050

Temperature nearest $0.5 \, ^{\mathrm{O}}\,\mathrm{F}$

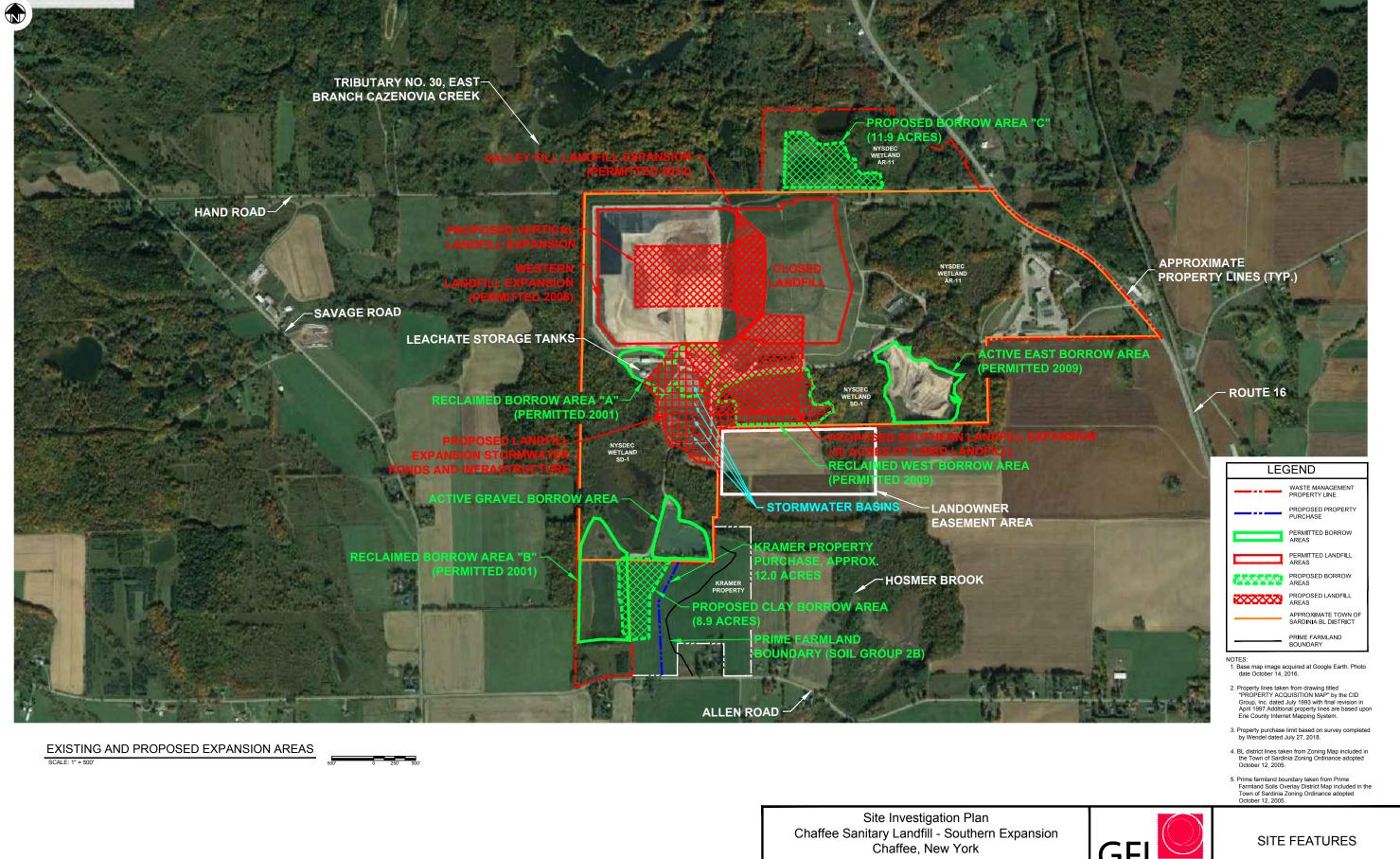
Floaters and Sinkers (observation)

pH 9040

Eh

Dissolved Oxygen


Field Observations


Turbidity 180.1

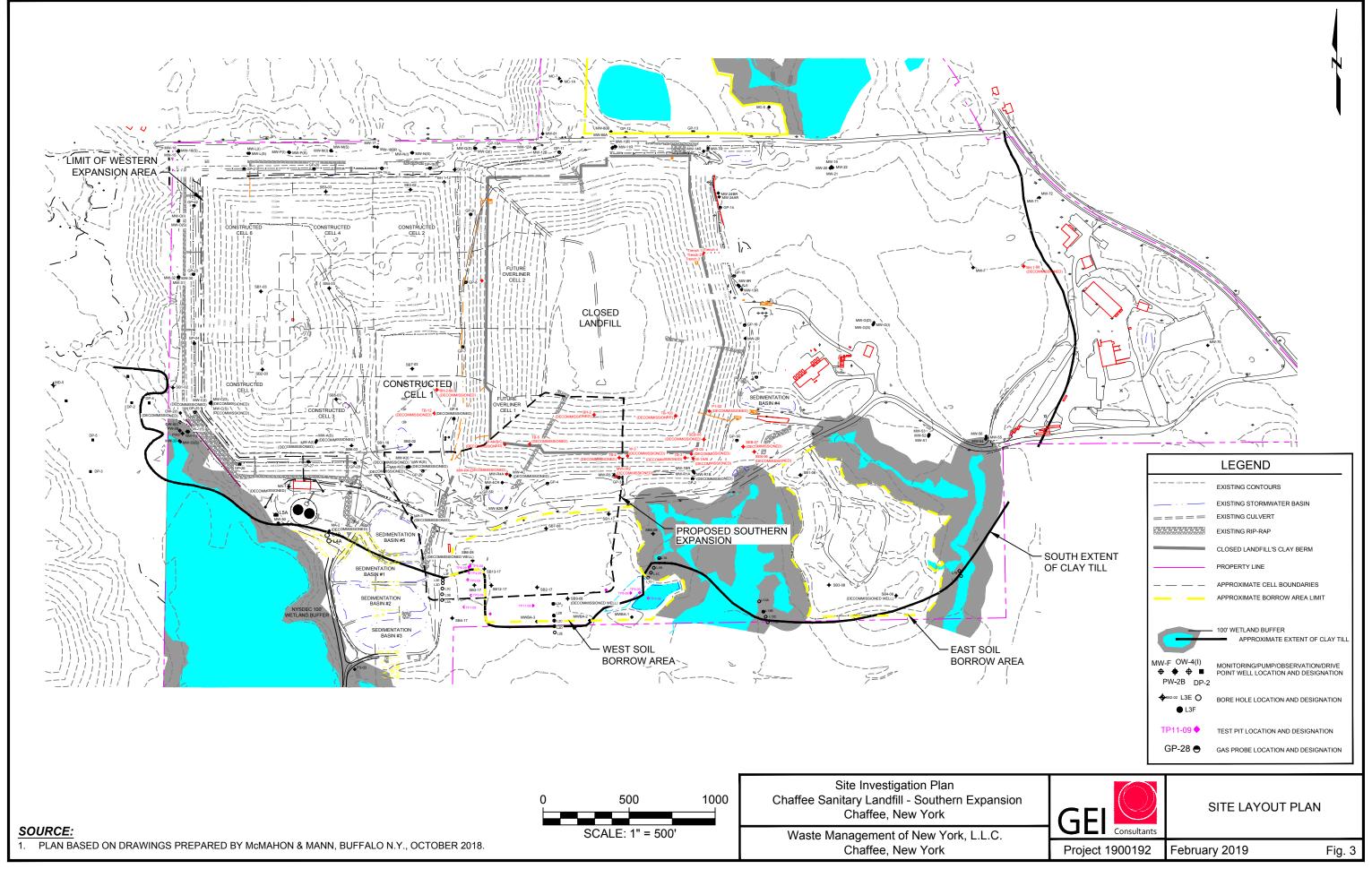
Notes

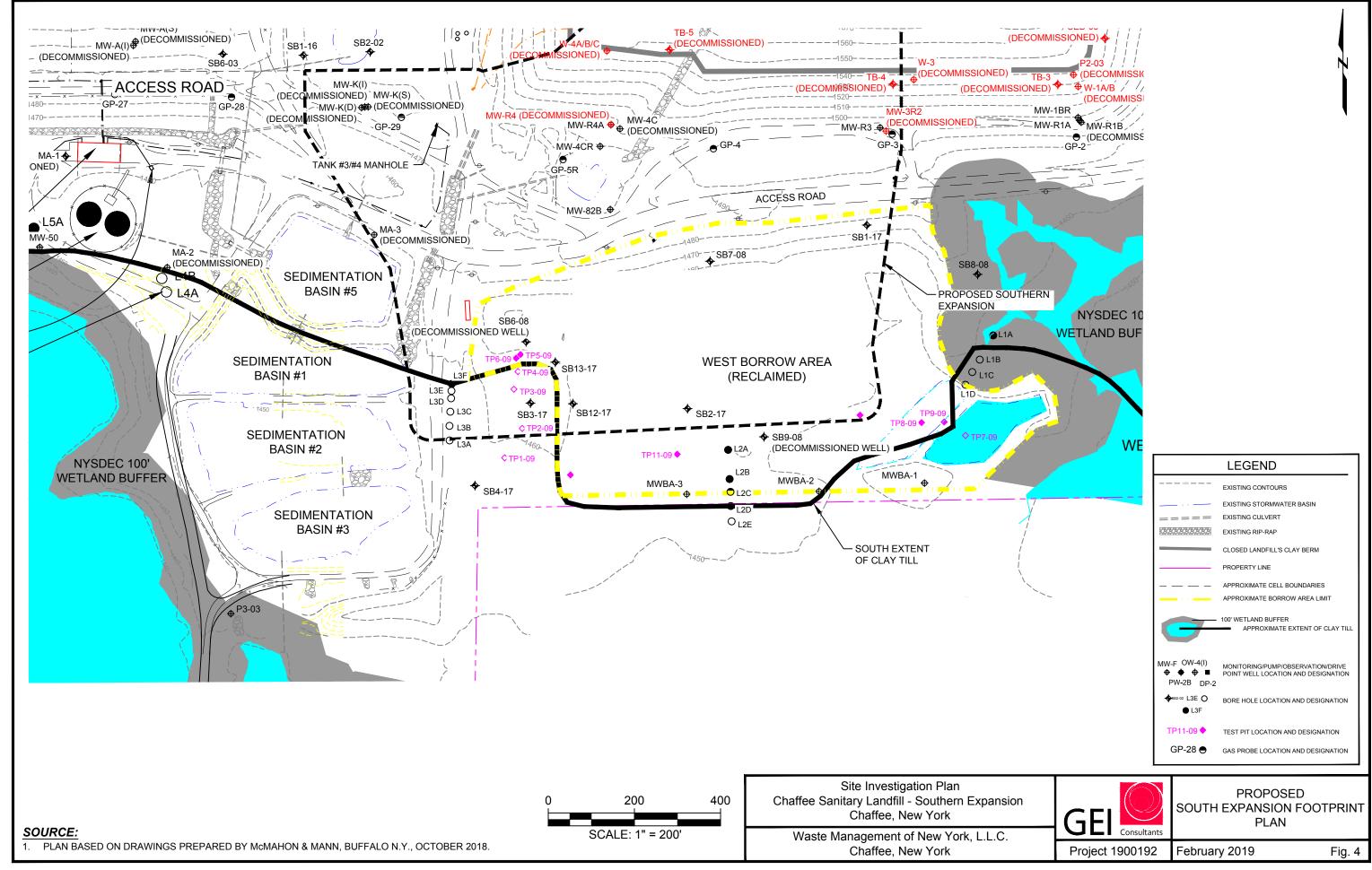
- Table include Part 363-4 Baseline and Expanded list parameters.
- 2. Plastic (P) or Glass (G). For metals, polyethylene with a polypropylene cap (no liner) is preferred.
- 3. Sample preservation should be performed immediately upon sample collection. For composite samples, each aliquot should be preserved at the time of collection. When use of an automated sampler makes it impossible to preserve each aliquot, then samples may be preserved by maintaining at 4°C until compositing and sample splitting is completed.
- 4. When any sample is to be shipped by common carrier or sent through the United States mail, it must comply with the Department of Transportation Hazardous Materials Regulations (49 CFR Part 172). The person offering such material for transportation is responsible for ensuring such compliance. For the preservation requirements of Table 5-4, the Office of Hazardous Materials, Materials Transportation Bureau, Department of Transportation has determined that the Hazardous Materials Regulations do not apply to the following materials: Hydrochloric acid (HCI) in water solutions at concentrations of 0.15% by weight or less (pH about 1.62 or greater); Sulfuric acid (HzSO₄) in water solutions at concentrations of 0.35% by weight or less (pH about 1.15 or greater); Sodium hydroxide (NaOH) in water solutions at concentrations of 0.080% by weight or less (pH about 12.30 or less).
- 5. Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held before analysis and still considered valid. Samples may be held for longer periods only if the permittee, or monitoring laboratory, has data on file to show that the specific types of sample under study are stable for the longer time, and has received a variance from the Regional Administrator. Some samples may not be stable for the maximum time period given in the table. A permittee, or monitoring laboratory, is obligated to hold the sample for a shorter time if knowledge exists to show this is necessary to maintain sample stability.
 - Note: Many tests can be combined in bottles. For example, Chloride, Fluoride, Nitrate, Nitrate, pH, Sulfate, TDS, TSS will be collected in a 1 liter plastic bottle.

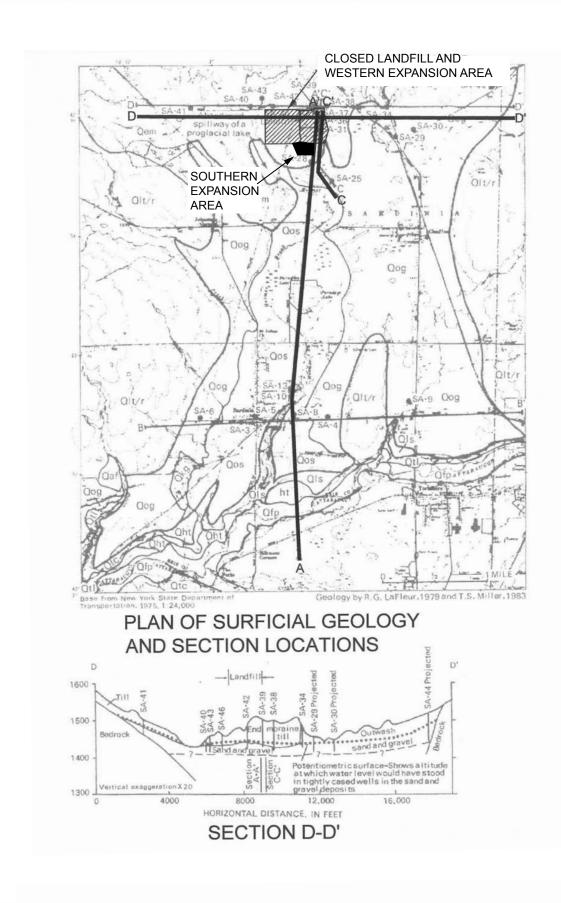
Figures			

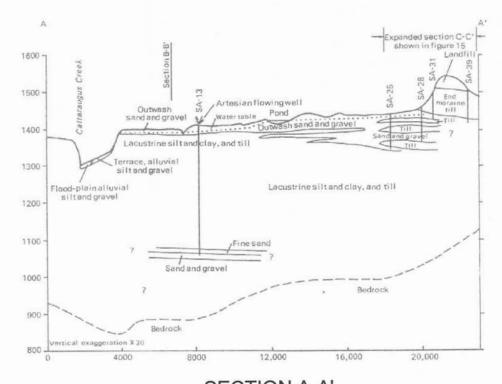
SOURCE:

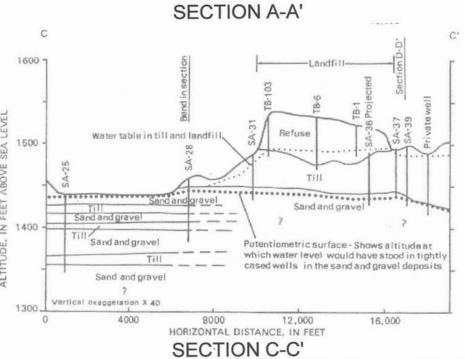
1. PLAN BASED ON DRAWINGS PREPARED BY McMAHON & MANN, BUFFALO, N.Y., JANUARY 2019.


Waste Management of New York, L.L.C. Chaffee, New York




Project 1900192


February 2019


Fig. 2

SECTION DESCRIPTION

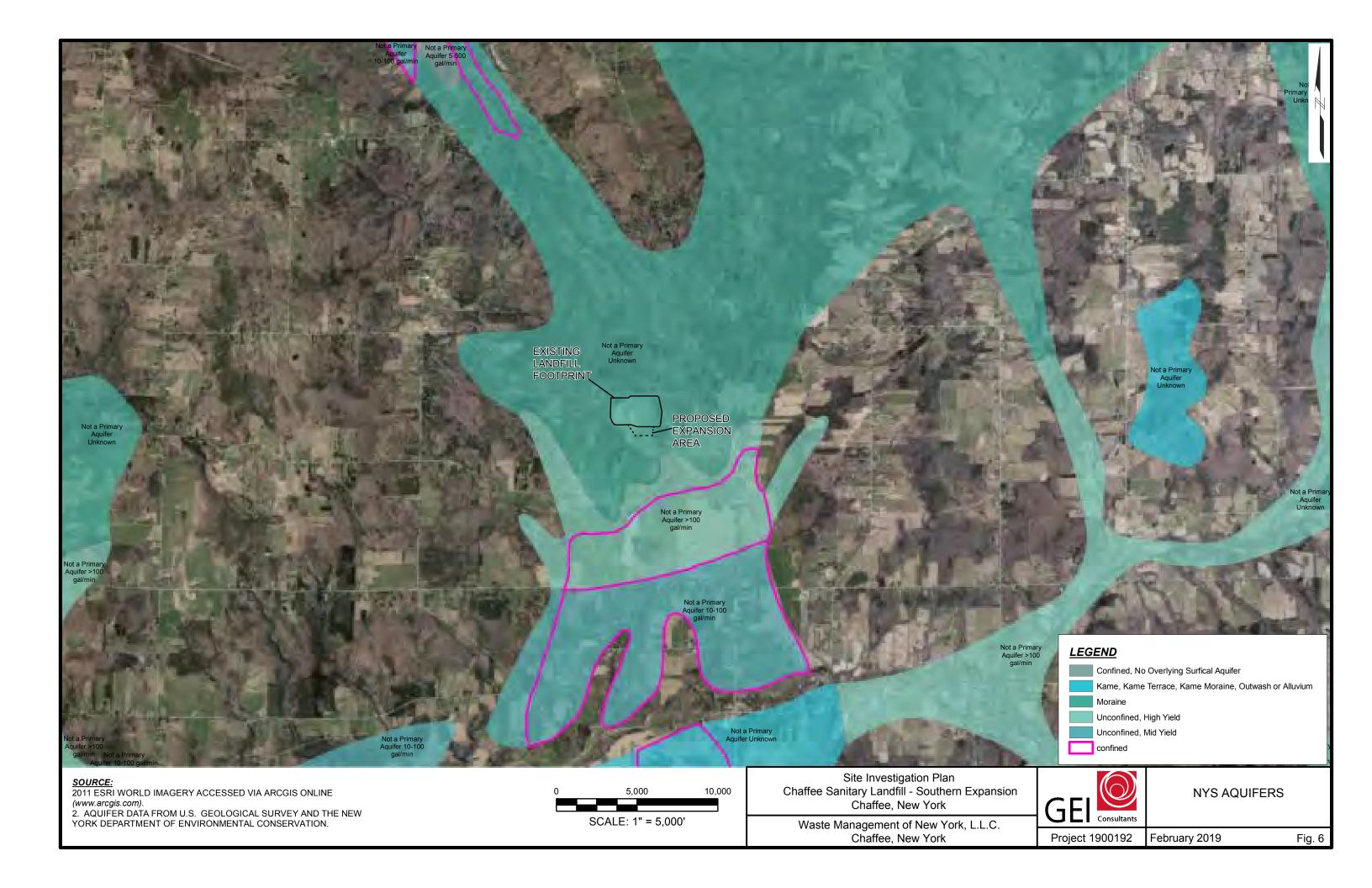
A-A' NORTH-SOUTH SECTION THROUGH SARDINIA AREA

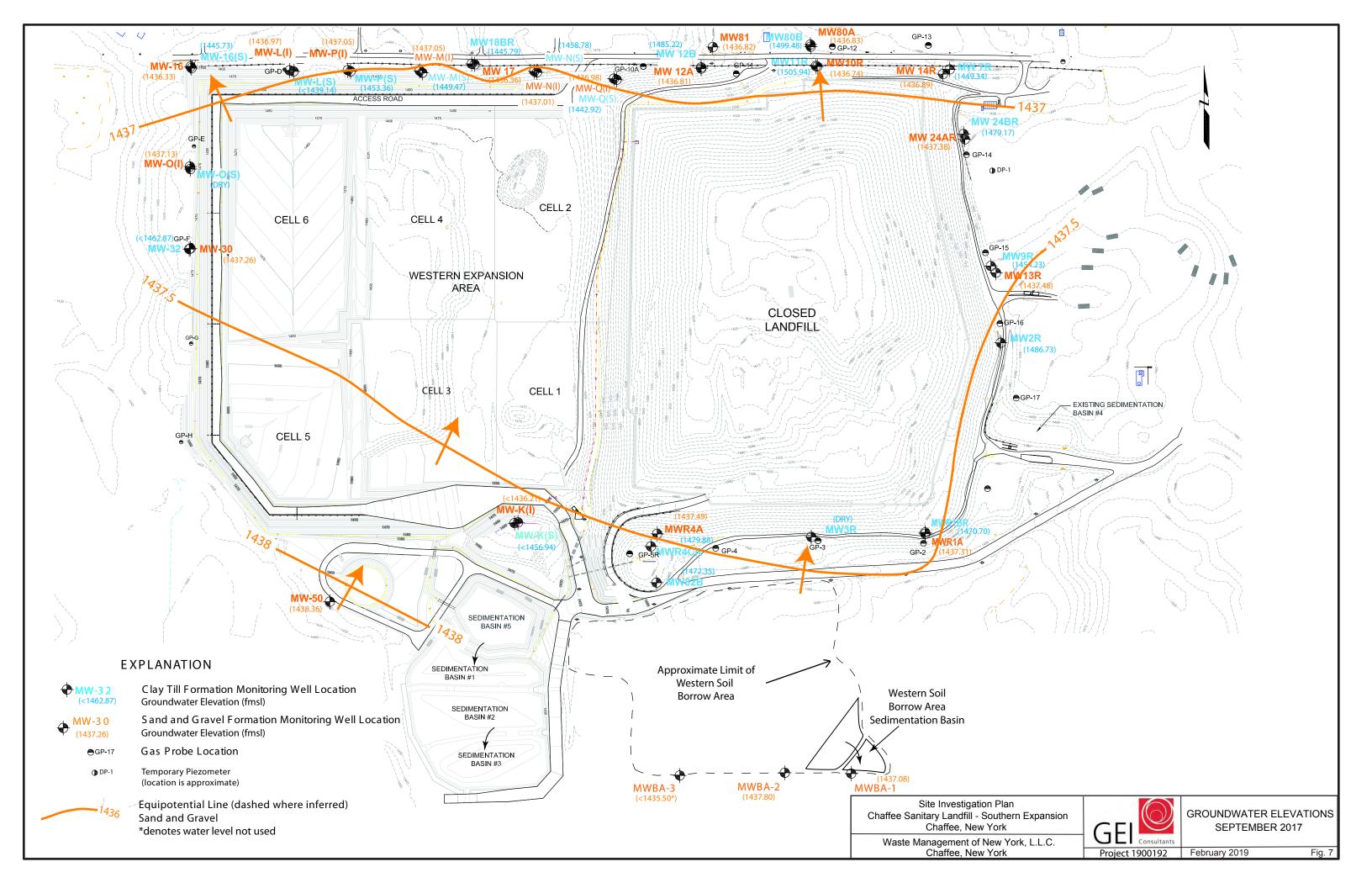
C-C' NORTH-SOUTH SECTION IN LANDFILL

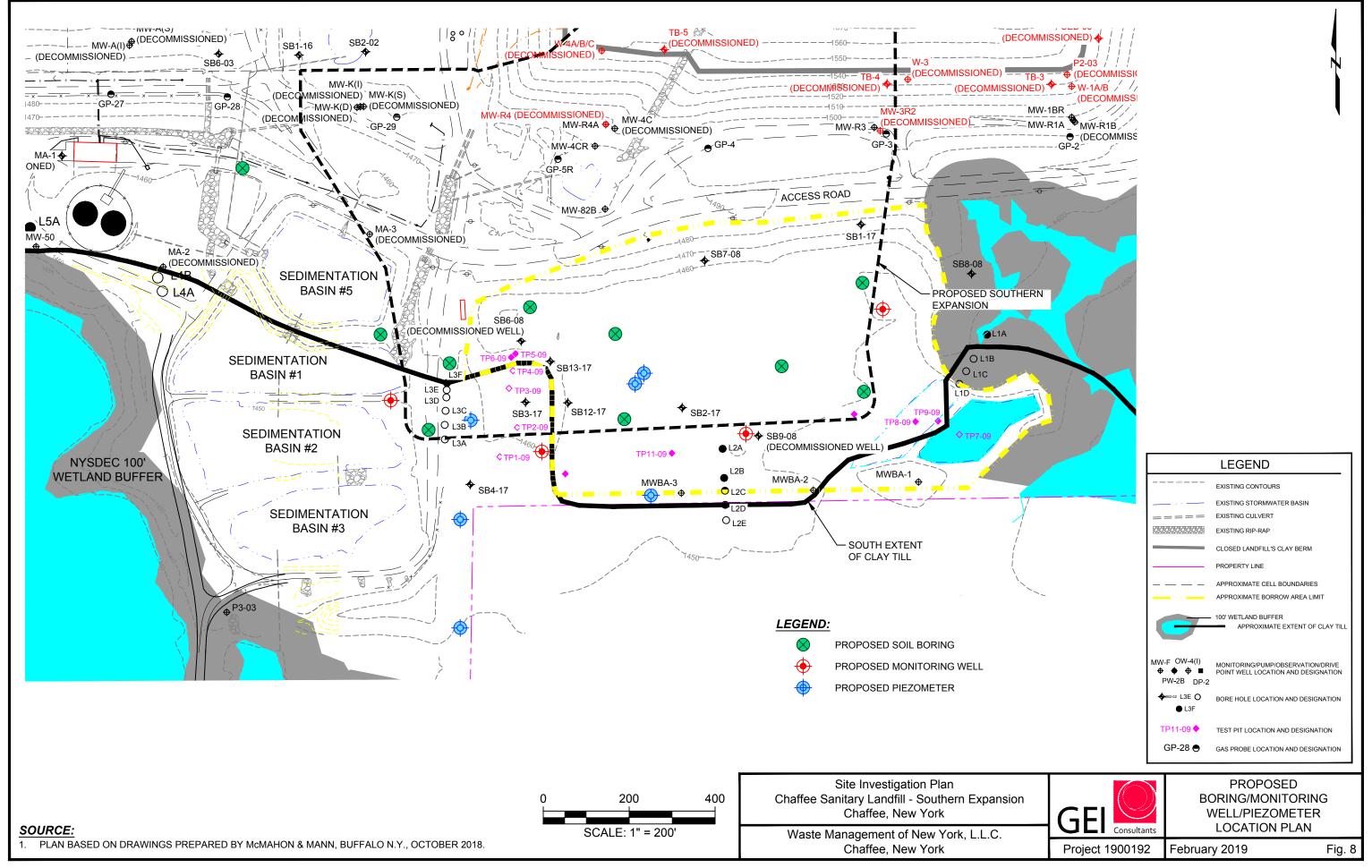
D-D' SECTION ALONG HAND ROAD

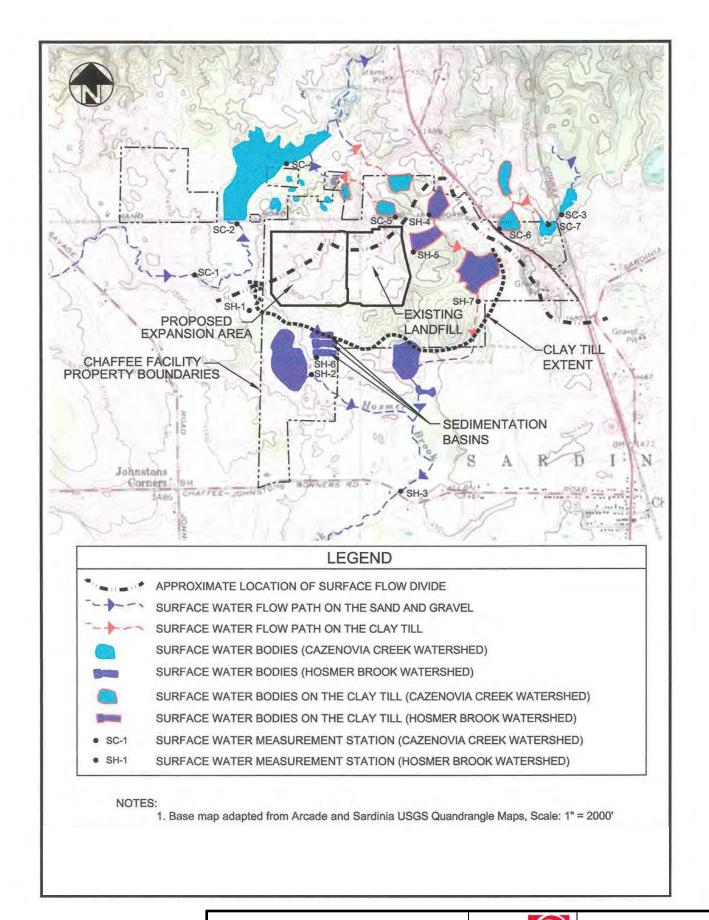
NOTES:

- 1. Drawings adapted from "Hydrogeologic Appraisal of Five Selected Aquifers in Erie County, New York," Miller and Staubitz, U.S. Geologic Survey, Water Resources Investigations Report 84-4334,1985.
- 2. Section B-B' not shown on figure.


Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York


Waste Management of New York, L.L.C. Chaffee, New York




REGIONAL GEOLOGIC MAP AND CROSS-SECTIONS

SOURCE:

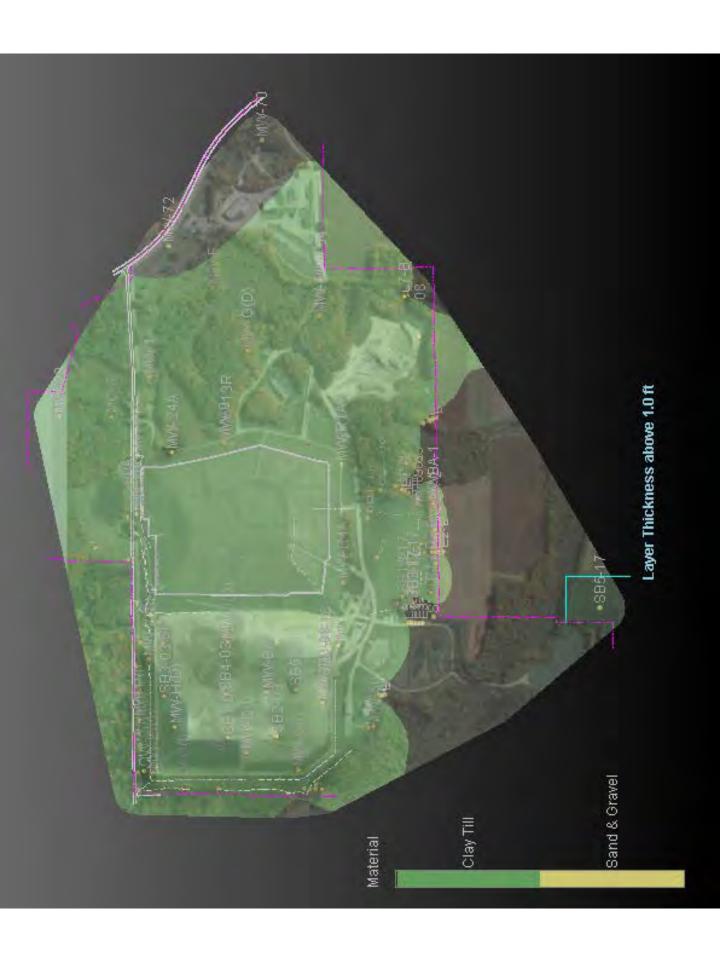
Site Investigation Plan
Chaffee Sanitary Landfill - Southern Expansion
Chaffee, New York

Waste Management of New York, L.L.C. Chaffee, New York

Project 1900192

SURFACE WATER FEATURES NEAR CHAFFEE LANDFILL

Fig. 9


Clay Till Thickno	ess Model		

Lateral Extent of Clay Til Chaffee Landfill

December 20, 2017

GEI Consultants

Appendix 6
Part 363 Expanded and Baseline Laboratory Analytical Parameter List

Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

Field Parameters:	Leachate Indicators:	Inorganic Parameters: (total unless otherwise noted):
Static water level (in wells and sumps)	Total Kjeldahl Nitrogen	Aluminum
Specific Conductance	Ammonia	Antimony
Temperature	Nitrate	Arsenic
Floaters or Sinkers ³	Chemical Oxygen Demand	Barium
H	Biochemical Oxygen Demand (BOD5)	Beryllium
Eh	Total Organic Carbon	Cadmium
Dissolved Oxygen ⁴	Total Dissolved Solids	Calcium
Field Observations ⁵	Sulfate	Chromium
Turbidity	Alkalinity	Chromium (Hexavalent) ⁶
	Phenols	Cobalt
	Chloride	Copper
	Bromide	Cyanide
	Total hardness as CaCO3	Iron
	Color	Lead
	Boron	Magnesium
		Manganese
		Mercury
		Nickel
		Potassium
		Selenium
		Silver
		Sodium
		Thallium
		Vanadium
		Zinc

Notes:

¹This list contains parameters for which possible analytical procedures are provided in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), IIIA (April 1998), document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title.

^{&#}x27;Methods for Chemical Analysis of Water and Wastes', USEPA-600/4-79-020, March, 1983, incorporated by reference in section 360.3 of this Title.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals. "Total" indicates all species in the groundwater that contain this element.

³Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁴Surface water only.

⁵Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

⁶The department may waive the requirement to analyze hexavalent chromium provided that total and hexavalent and trivalent chromium values do not exceed 0.05 mg/l.

Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

BASELINE PARAMETERS: Organic Parameters ¹ Organic Parameters:			
Acetone	1,1-Dichloroethane; Ethylidene chloride	Styrene	
Acrylonitrile	1,2-Dichloroethane; Ethylene dichloride	1,1,1,2-Tetrachloroethane	
Benzene	1,1-Dichloroethylene; 1,1- Dichloroethene; Vinylidene chloride	1,1,2,2-Tetrachloroethane	
Bromochloromethane	cis-1,2-Dichloroethylene; cis-1,2- Dichloroethene	Tetrachloroethylene; Tetrachloroethene; Perchloroethylene	
Bromodichloromethane	trans-1,2-Dichloroethylene; trans-1,2-Dichloroethene	Toluene	
Bromoform; Tribromomethane	1,2-Dichloropropane; Propylene dichloride	1,1,1-Trichloroethane; Methylchloroform	
Carbon disulfide	cis-1,3-Dichloropropene	1,1,2-Trichloroethane	
Carbon tetrachloride	trans-1,3-Dichloropropene	Trichloroethylene; Trichloroethene	
Chlorobenzene	Ethylbenzene	Trichlorofluoromethane; CFC-11	
Chloroethane; Ethyl chloride	2-Hexanone; Methyl butyl ketone	1,2,3-Trichloropropane	
Chloroform; Trichloromethane	Methyl bromide; Bromomethane	Vinyl acetate	
Dibromochloromethane; Chlorodibromomethane	Methyl chloride; Chloromethane	Vinyl chloride; Chloroethene	
1,2-Dibromo-3-chloropropane; DBCP	Methylene bromide; Dibromomethane	Xylenes	
1,2-Dibromoethane; Ethylene dibromide; EDB	Methylene chloride; Dichloromethane		
o-Dichlorobenzene; 1,2-Dichlorobenzene	Methyl ethyl ketone; MEK; 2-Butanone		
p-Dichlorobenzene; 1,4-Dichlorobenzene	Methyl lodide; lodomethane		
trans-1,4-Dichloro-2-butene	4-Methyl-2-pentanone; Methyl isobutyl ketone		

Notes:

February 2019

¹This list contains parameters for which possible analytical procedures are provided in:

^{&#}x27;Test Methods for Evaluating Solid Waste, Physical/Chemical Methods', EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998) document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title.

^{&#}x27;Methods for Chemical Analysis of Water and Wastes', USEPA-600/4-79-020, March, 1983, incorporated by reference in 360.3 of this Title.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁴Surface water only.

⁵Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

Site Investigation Plan
Chaffee Sanitary Landfill - Southern Expansion

Chaffee, New York

Field Parameters:	Leachate Indicators:	Inorganic Parameters: (total unless otherwise noted):	Radionuclides ⁷
Static water level (in wells and sumps)	Total Kjeldahl Nitrogen	Aluminum	Radium-226 per EPA 903.1
Specific Conductance	Ammonia	Antimony	Radium-228 per EPA 904.0
Temperature	Nitrate	Arsenic	Total Uranium per EPA 908.0
Floaters or Sinkers ³	Chemical Oxygen Demand	Barium	
рН	Biochemical Oxygen Demand (BOD5)	Beryllium	
Eh	Total Organic Carbon	Cadmium	
Dissolved Oxygen ⁴	Total Dissolved Solids	Calcium	
Field Observations ⁵	Sulfate	Chromium	
Turbidity	Alkalinity	Chromium (Hexavalent) ⁶	
	Phenols	Cobalt	
	Chloride	Copper	
	Bromide	Cyanide	
	Total hardness as CaCO3	Iron	
	Color	Lead	
	Boron	Magnesium	
		Manganese	
		Mercury	
		Nickel	
		Potassium	
		Selenium	
		Silver	
		Sodium	
		Thallium	
		Tin	
		Vanadium	
		Zinc	

¹This list contains parameters for which possible analytical procedures are provided in:

Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998) document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title.

'Methods for Chemical Analysis of Water and Wastes', USEPA-600/4-79-020, March 1983, incorporated by reference in 360.3 of this Title.

^{&#}x27;Test Methods for Evaluating Solid Waste, Physical/Chemical Methods', EPA Publication SW-846 (Third

^{&#}x27;Prescribed Procedures for Measurement of Radioactivity in Drinking Water', USEPA-600/4-80-032, August 1980, incorporated by reference in section 360.3 of this Title.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals. "Total" indicates all species in the groundwater that contain this element.

³Any floaters or sinkers found must be analyzed separately for baseline parameters.

⁴Surface water only.

⁵Any unusual conditions (colors, odors, surface sheens, etc.) noticed during well development, purging, or sampling must be reported.

⁶The department may waive the requirement to analyze hexavalent chromium provided that total and hexavalent and trivalent chromium values do not exceed 0.05 mg/l.

⁷Two sets of samples must be collected: one filtered and one unfiltered. Filtered samples must be filtered using a 0.45 micron filter via standard techniques.

APPENDIX B. Part 363 Expanded and Baseline Parameter List Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

Organic Parameters:			
cenaphthene 2,4-Dichlorophenol		Naphthalene	
Acenaphthylene	2,6-Dichlorophenol	1,4-Naphthoquinone	
Acetone	1,2-Dichloropropane; Propylene dichloride	1-Naphthylamine	
Acetonitrile; Methyl cyanide	1,3-Dichloropropane; Trimethylene dichloride	2-Naphthylamine	
Acetophenone	2,2-Dichloropropane; Isopropylidene chloride	o-Nitroaniline; 2-Nitroaniline	
2-Acetylaminofluorene; 2-AAF	1,1-Dichloropropene	m-Nitroaniline; 3-Nitroaniline	
Acrolein	cis-1,3-Dichloropropene	p-Nitroaniline; 4-Nitroaniline	
Acrylonitrile	trans-1,3-Dichloropropene	Nitrobenzene	
Aldrin	Dieldrin	o-Nitrophenol 2-Nitrophenol	
Allyl chloride	Diethyl phthalate	p-Nitrophenol; 4-Nitrophenol	
4- aminobiphenyl	0,0-Diethyl 0-2-pyrazinyl	N-Nitrosodi-n-butylamine	
Anthracene	cis-1,2-Dichloroethylene; cis-1,2- Dichloroethene	N-Nitrosodiethylamine	
Benzene	trans-1,2-Dichloroethylene	N-Nitrosodimethylamine	
Benzo[a]anthracene; Benzanthracene	Phosphorothioate; Thionazin	N-Nitrosodiphenylamine	
Benzo[b]fluoranthene	Dimethoate	N-Nitrosodipropylamine; N- Nitroso-N- dipropyl-amine; Di-n-propylni-trosamine	
Benzo[k]fluoranthene	p-(Dimethylamino)azobenzene	N-Nitrosomethylethalamine	
Benzo[ghi]perylene	7,12-Dimethylbenz[a]anthracene	N-Nitrosopiperidine	
Benzo[a]pyrene	3,3 ¹ -Dimethylbenzidine	N-Nitrosopyrrolidine	
Benzyl alcohol	2,4-Dimethylphenol; m-Xylenol	5-Nitro-o-toluidine	
alpha-BHC	Dimethyl phthalate	Parathion	
beta-BHC	m-Dinitrobenzene	Pentachlorobenzene	
delta-BHC	4,6-Dinitro-o-cresol 4,6- Dinitro-2- methylphenol	Pentachloronitrobenzene	
gamma-BHC; Lindane	2,4-Dinitrophenol	Pentachlorophenol	
Bis(2-chloroethoxy)methane	2,4-Dinitrotoluene	Phenacetin	
Bis(2-chloroethyl) ether; Dichloroethyl ether	2,6-Dinitrotoluene	Phenanthrene	
Bis-(2-chloro-1-methyl- ethyl)ether; 2,2 ¹ -Dichlorodiisopropyl ether; DCIP ³	Dinoseb; DNBP; 2-sec- Butyl-4,6- dinitrophenol	Phenol	
Bis(2-ethylhexyl)phthalate	Di-n-octyl phthalate	p-Phenylenediamine	
Bromochloromethane	Diphenylamine	Phorate	
Bromodichloromethane	Disulfoton	Polychlorinated biphenyls; PCBs; Aroclors ⁵	

APPENDIX B. Part 363 Expanded and Baseline Parameter List Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

Organic Parameters (continued):			
Bromoform	Endosulfan I	Polychlorinated dibenzo-p- dioxins; PCDDs ⁶	
4-Bromophenyl phenyl ether	Endosulfan II	Polychlorinated dibenzo- furans; PCDFs ⁷	
Butyl benzyl phthalate; Benzyl butyl phthalate	Endosulfan sulfate	Pronamide	
Carbon disulfide	Endrin	Propionitrile; Ethyl cyanide	
Carbon tetrachloride	Endrin aldehyde	Pyrene	
Chlordane ⁴	Ethylbenzene	Safrole	
p-Chloroaniline	Ethyl methacrylate	Silvex; 2,4,5-TP	
Chlorobenzene	Ethyl methanesulfonate	Styrene	
Chlorobenzilate	Famphur	2,4,5-T; 2,4,5-trichloro- phenoxyacetic acid	
p-Chloro-m-cresol; 4-Chloro-3- methylphenol	Fluoranthene	1,2,4,5-Tetrachlorobenzene	
Chloroethane; Ethyl chloride	Fluorene	2,3,7,8-Tetrachlorodi- benzo-p-dioxin; 2,3,7,8-TCDD	
Chloroform; Trichloromethane	Heptachlor	1,1,1,2-Tetrachloroethane	
2-Chloronaphthalene	Heptachlor epoxide	1,1,2,2-Tetrachloroethane	
2-Chlorophenol	Hexachlorobenzene	Tetrachloroethylene; Tetrachloroethene; Perchloroethylene	
4-Chlorophenyl phenyl ether	Hexachlorobutadiene	2,3,4,6-Tetrachlorophenol	
Chloroprene	Hexachlorocyclopentadiene	Toluene	
Chrysene	Hexachloroethane	o-Toluidine	
m-Cresol; 3-methylphenol	Hexachloropropene	Toxaphene ⁸	
o-Cresol; 2-methylphenol	2-Hexanone; Methyl butyl ketone	1,2,4-Trichlorobenzene	
p-Cresol; 4-methylphenol	Indeno(1,2,3-cd)pyrene	1,1,1-Trichloroethane; Methylchloroform	
2,4-D; 2,4-Dichlorophen- oxyacetic acid	Isobutyl alcohol	1,1,2-Trichloroethane	
4,4 ¹ -DDD	Isodrin	Trichloroethylene; Trichloroethene	
4,4 ¹ -DDE	Isophorone	Trichlorofluoromethane; R-11	
4,4 ¹ -DDT	Isosafrole	2,4,5-Trichlorophenol	
Diallate	Kepone	2,4,6-Trichlorophenol	
Dibenz[a,h]anthracene	Methacrylonitrile	1,2,3-Trichloropropane	
Dibenzofuran	Methapyrilene	0,0,0-Triethyl phosphorothioate	
Dibromochloromethane; Chlorodibromomethane	Methoxychlor	sym-Trinitrobenzene	

Site Investigation Plan Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

Organic Parameters (continued):				
1,2-Dibromo-3-chloro- propane; DBCP	Methyl bromide; Bromomethane	Vinyl acetate		
1,2-Dibromoethane; Ethylene dibromide; EDB	Methyl chloride; Chloromethane	Vinyl chloride; Chloroethene		
Di-n-butyl phthalate	3-Methylcholanthrene	Xylene (total)		
o-Dichlorobenzene; 1,2- Dichlorobenzene	Methyl ethyl ketone; MEK; 2- Butanone	Per- and polyfluoroalkyl substances ⁹ 1,4-Dioxane		
m-Dichlorobenzene; 1,3- Dichlorobenzene	Methyl iodide; lodomethane			
p-Dichlorobenzene; 1,4- dichlorobenzene	Methyl methacrylate			
3,3 ¹ -Dichlorobenzidine	Methyl methanesulfonate			
trans-1,4-Dichloro- 2-butene	2-Methylnaphthalene			
Dichlorodifluoromethane; CFC 12	Methyl parathion; Parathion methyl			
1,1-Dichloroethane; Ethyldidene chloride	4-Methyl-2-pentanone; Methyl isobutyl ketone			
1,2-Dichloroethane; Ethylene dichloride	Methylene bromide; Dibromomethane			
1,1-Dichloroethylene; 1,1-Dichloroethene; Vinylidene chloride	Methylene chloride; Dichloromethane			

Notes:

'Methods for Chemical Analysis of Water and Wastes', USEPA-600/4-79-020, March 1983, incorporated by reference in section 360.3 of this Title.

¹This list contains parameters for which possible analytical procedures are provided in:

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods', EPA Publication SW-846 (Third Edition, (November 1986), as amended by Updates I (July 1992), II (September 1994), IIA (August 1993), IIB (January 1995), III (December 1996), and IIIA (April 1998) document number 955-001-00000-1), incorporated by reference in section 360.3 of this Title.

²Common names are those widely used in government regulations, scientific publications, and commerce; synonyms exist for many chemicals.

³This substance is often called Bis(2-chloroisopropyl) ether, the name Chemical Abstracts Service applies to its noncommercial isomer, Propane, 2,2"-oxybis[2]-chloro- (CAS RN 39638-32-9).

⁴Chlordane: This entry includes alpha-chlordane (5103-71-9), beta-chlordane (5103-74-2), gamma-chlordane (5566-34-7), and constituents of chlordane (57-74-9; 12789-03-6).

⁵Polychlorinated biphenyls (1336-36-3): This category contains congener chemicals, including constituents of Aroclor 1016 (12674-11-2), Aroclor 1221 (11104-28-2), Aroclor 1232 (11097-69-1), and Aroclor 1260 (11096-82-5).

⁶Polychlorinated dibenzo-p-dioxins: This category contains congener chemicals, including tetrachlorodibenzo- p-dioxins, pentachlorodibenzo-p-dioxins, and hexachlorodibenzo-p-dioxins.

⁷Polychlorinated dibenzofurans: This category includes congener chemicals, including tetrachlorodibenzofurans, pentachlorodibenzofurans, and hexachlorodibenzofurans.

⁸Toxaphene: This entry includes congener chemicals contained in technical toxaphene (CAS RN 8001-35-2), i.e., chlorinated camphene.

⁹ Per- and polyfluoroalkyl substances (PFAS): This category contains congener chemicals, including but not limited to perfluorooctanoic acid, perfluorooctanesulfonic acid, perfluorobenancia acid,

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Materials Management, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

March 6, 2019

Richard Frappa, P.G. Senior Consultant/Hydrogeologist GEI Consultants, Inc., P.C. 90B John Muir Drive Suite104 Amherst, New York 14228

Dear Mr. Frappa:

#15S14 Chaffee Landfill Draft Site Investigation Plan for Southern Expansion comments

This office has reviewed the February 1, 2019 "Site Investigation Plan" submitted by GEI Consultants, Inc., P.C. The following comments have been generated:

Section 3.0 Hydrogeologic Setting

3.1 Geology

- 1. 1st paragraph, Figure 3 is referenced regarding clay till progression. Please confirm.
- Please provide the boring log for MW-3R2.

3.2 Hydrogeology

- Figure 6 presents a portion of the landfill footprint over the surficial sand & gravel unconfined aquifer. This is prohibited by Part 363-5.1(d)
- 2. The Miller and Staubitz paper suggest "a deep (100- to 200- ft) test boring to define the deeper subsurface hydrogeology." Has this been done during any of the hydrogeologic investigations?

3.2.1 Groundwater

- 1. How thick is the saturated sand and gravel unit?
- 2. What underlies the saturated sand and gravel unit?

Richard Frappa, P.G. March 6, 2019 Page 2

4.1 Data Gaps

- 1. The overall understanding of the saturated sand and gravel aquifer requires a better understanding, not just the groundwater flow.
- 2. "A minimum separation distance of ten feet between the landfill base grade and the top of the saturated sand and gravel unit."

This is a minimum requirement if the applicant can demonstrate that the expansion-site will have no significant adverse impact on groundwater.

The Department is requesting a twenty-foot separation of low permeability soils between the landfill base and the sand and gravel aquifer unit.

4.2 Hydrogeologic Investigation Activity Outline

1. Incomplete regulation- Groundwater quality testing of the sand and gravel unit for water quality parameters as required in Part 363-4.6(f)(9)(i-iii)

5.4.1.1 Soil Borings

- 1. With the highly permeable sand and gravel unit at the surface and near surface throughout the proposed southern expansion, we would like to emphasize backfilling to ground surface using a cement-bentonite grout mixture.
- 2. Undisturbed permeability analysis should be analyzed at the same representative number as those sampled for Atterberg limits and grain size gradation as stated in Part 363-4.4(I)(2).

5.4.1.2 Piezometer Installations

 Temporary piezometers are approved, as written, to deviated from Part 363-4.4(k)(2) construction clauses with the assurance that Part 363-4.4(k)(1)(ii) requirements will still be maintained.

5.4.2 Monitoring Well Installations and Development

1. What filter pack will be used on the sand and gravel monitoring wells?

5.5 Groundwater Elevation Monitoring and Hydraulic Testing

1. Piezometer P3-03 should be included in the monthly groundwater elevation monitoring for the sand and gravel unit.

Richard Frappa, P.G. March 6, 2019 Page 3

- 2. #5 Is it three or two piezometers?
- 3. Is twice an hour sufficient for a high-producing aquifer?

5.6 Existing Groundwater Quality Testing

1. If the groundwater data indicates the groundwater divide is within the proposed southern landfill expansion, what will be used as an upgradient well?

Additional Comments

 Special consideration should also be given to a sufficient distance between the landfill footprint and the surface exposure of the aquifer and the ability of the facility to prevent any surface spill from reaching the aquifer.

Sincerely,

Steven McDonnell Engineering Geologist Division of Materials Management

SM/dpp

ec: Peter Grasso, NYSDEC, Regional Materials Management Engineer James Sacco, NYSDEC, Environmental Engineer II March 25, 2019

Mr. Steven McDonnell

Consulting
Engineers and
Scientists

Engineering Geologist
Division of Materials Management
New York State Department of Environmental Conservation
Division of Solid and Hazardous Materials, Region 9
270 Michigan Avenue
Buffalo, NY 14203-2999

Subject: Chaffee Landfill #15S14

Response to NYSDEC Correspondence dated March 6, 2019 Comments to Draft Site Investigation Plan for Southern Expansion

Dear Mr. McDonnell:

GEI Consultants, Inc., P.C. (GEI) has prepared this letter on behalf of Waste Management of New York, LLC (WMNY) to respond to the Department's correspondence regarding review of the Draft Site Investigation Plan for Southern Expansion. Each Department comment is provided below with a response to address the comment.

Section 3.0 Hydrogeologic Setting 3.1 Geology

Comment 1:

1st paragraph, Figure 3 is referenced regarding clay till progression. Please confirm.

Response:

Figure 3 is referred to correctly as it identifies the mapped southern extent of the Clay Till (southern clay till progression) associated with the end moraine on the WMNY property.

Comment 2:

Please provide the boring log for MW-3R2.

Response:

The boring log for MW-3R2 is appended to this letter.

3.2 Hydrogeology

Comment 1:

Figure 6 presents a portion of the landfill footprint over the surficial sand & gravel unconfined aquifer. This is prohibited by Part 363-5.1 (d).

Response:

As shown on Figure 6 of the SIP, the entire Chaffee Facility, including the proposed Southern Expansion Area is situated on an area mapped as "Moraine". The source of Figure 6 is NYSDEC

GIS NY Aquifer Metadata mapping. For visual clarity, GEI modified the color of the mapped moraine and aquifers material shown on NYSDEC mapping presented in the SIP and has appended the revised Figure 6 to this correspondence. Part 363-5.1(d) refers to landfill siting over, "Primary water supply aquifers, principal aquifers, and public water supplies." As such, regulation Part 363-5.1 would not prohibit the siting of the landfill. The moraine includes Clay Till and interbedded sand and gravel with till. The mapping shows the expansion area is approximately 1,300 feet north of the mapped extent of a "High Yield Unconfined Aquifer."

Comment 2:

The Miller and Staubitz paper suggest "a deep (100- to 200- ft) test boring to define the deeper subsurface hydrogeology." Has this been done during any of the hydrogeologic investigations?

Response:

Table 2 of the Hydrogeologic Investigation Report for the Western Expansion Area summarizes soil borings (converted to wells or piezometers) completed during the prior site investigation and is appended for your information. Among the soil borings that extended below the Clay Till into the sand and gravel unit, five soil borings extended to depths in a range between 80 and 144 feet below grade to characterize deeper subsurface hydrogeology. Deeper borings/wells include: MW-D(D), MW-E(D), MW-H(D), MW-J(D), and MW-K(D).

GEI transmitted historic to documents to the Department on February 12, 2019 which included the geologic information for these deeper borings/borings.

3.2.1 Groundwater

Comment 1:

How thick is the saturated sand and gravel unit?

Response:

On page 24 of the Miller and Staubitz paper, it states the saturated thickness of the surficial aquifer (sand and gravel unit) ranges from 5 feet to more than 60 feet.

Comment 2:

What underlies the saturated sand and gravel unit?

Response:

Lacustrine silt and clay and till are reported to exist below the sand and gravel unit with till interbeds (see Figure 5 of the SIP).

4.1 Data Gaps

Comment 1:

The overall understanding of the saturated sand and gravel aquifer requires a better understanding, not just the groundwater flow.

Response:

The deep piezometer pair proposed in the Southern Expansion Area is planned to characterize the geologic characteristics and hydraulic properties of the sand and gravel deposits to a depth of 70 feet. The information from the drilling and sampling and hydraulic testing proposed, combined with data previously collected from hydrogeologic investigation of the Western Expansion Area, will address the data gap.

Comment 2:

"A minimum separation distance of ten feet between the landfill base grade and the top of the saturated sand and gravel unit."

This is a minimum requirement if the applicant can demonstrate that the expansion-site will have no significant adverse impact on groundwater.

The Department is requesting a twenty-foot separation of low permeability soils between the landfill base and the sand and gravel aquifer unit.

Response:

The siting requirements specified in Part 363-5.1(a) are met for the Southern Expansion Area. Specific to site geologic considerations, Part 363-5.1(a)(2) requires a minimum of ten feet of unconsolidated deposits beneath the proposed landfill site to minimize the migration of contaminants from the facility. More than 400 feet of unconsolidated deposits exist beneath the Chaffee Landfill Facility (including the Southern Expansion Area). While not a siting requirement, the conceptual design will maintain a minimum separation distance of more than 10 feet between the landfill base grade and the saturated sand and gravel unit.

Part 363-5.1(2)(ii) states, "at existing landfill sites active on or after November 4, 1992 operating under and in compliance with a current permit or order on consent, there are no soil type restrictions provided the applicant demonstrates that the expansion site will have no significant adverse impact on groundwater." As such, the siting requirements are met because the proposed engineering controls are designed to protect groundwater.

Environmental monitoring of landfills constructed in New York State with double composite liner systems has demonstrated that the current Part 360 engineered controls are protective of groundwater. As a site-specific example, the Western Expansion Area has operated since 2006. The NYSDEC-approved EMP requires routine sample collection and analysis of liquids in landfill groundwater protection systems. Of particular importance are sample analytical results for the secondary leachate collection systems (SLCS) at each of the six landfill cells of the Western Expansion Area which serve as leak detection systems for the primary liner systems. To date, none of the samples collected from the SLCS has exhibited impacts indicative of a leak from the primary LCS. Testing of liquid collected in the porewater drain at Cell 6 has not detected impacts from landfill leachate. These results indicate that the engineering controls currently in place are protective of groundwater. This is confirmed through decades of quarterly groundwater quality monitoring at the facility which have consistently shown no adverse impacts to groundwater. These findings are documented in groundwater and surface water quality monitoring reports submitted to the NYSDEC.

Landfill construction in the Southern Expansion Area will be similar in design (double composite liner system) with similar expected performance. For enhanced groundwater protection, the

minimum 10-feet of separation referred to above will be maintained by low permeability soil, further enhancing the double composite liner system.

Ongoing groundwater and surface water quality monitoring has demonstrated the performance of the engineered groundwater protection systems at the Chaffee Landfill Facility to prevent significant adverse impacts to groundwater and surface water. The same engineered groundwater protection systems will exist in the Southern Expansion Area. Given the demonstrated performance of the double composite liner system, ten feet of low permeability soils will provide more than adequate additional environmental protection, thus the 20-foot separation requested by the Department is not necessary.

4.2 Hydrogeologic Investigation Activity Outline

Comment 1:

Incomplete regulation – Groundwater quality testing of the sand and gravel unit for water quality parameters as required in Part 363-4.6(f)(9)(i-iii)

Response:

Comment acknowledged. The SIP tasks are inclusive of the requirements in Part 363-4.6(f)(9)(i-iii).

5.4.1.1 Soil Borings

Comment 1:

With the highly permeable sand and gravel unit at the surface and near surface throughout the proposed southern expansion, we would like to emphasize backfilling to ground surface using a cement-bentonite grout mixture.

Response:

Acknowledged. Backfilling with a cement-bentonite grout mixture will occur to grade. If grout settlement has been observed following a next day inspection, the borehole will be topped off to grade with additional grout. Borehole abandonment will be documented on the soil boring log.

Comment 2:

Undisturbed permeability analysis should be analyzed at the same representative number as those sampled for Atterberg limits and grain size gradation as stated in Part 363-4.4(1)(2).

Response:

Acknowledged. A minimum of 5 samples for undisturbed permeability analysis will be collected.

5.4.1.2 Piezometer Installations

Comment 1:

Temporary piezometers are approved, as written, to deviated from Part 363-4.4(k)(2)

construction clauses with the assurance that Part 363-4.4(k)(1)(ii) requirements will still be maintained.

Response:

Acknowledged.

5.4.2 Monitoring Well Installations and Development

Comment 1:

What filter pack will be used on the sand and gravel monitoring wells?

Response:

Based on recommendations from the driller, the following sand sizes will be used for piezometers having 20-slot (0.02") slot size and monitoring wells having 10-slot (0.01") slot size. Grain size distribution for the sand is appended.

Screen Slot	Morie Sand #
0.01"	00N
0.02"	0

A 00 sand size will be used for the choke sand.

5.5 Groundwater Elevation Monitoring and Hydraulic Testing

Comment 1:

Piezometer P3-03 should be included in the monthly groundwater elevation monitoring for the sand and gravel unit.

Response:

Piezometer P3-03 will be included in monthly water level monitoring.

Comment 2:

#5 Is it three or two piezometers?

Response:

It should refer to 2 piezometers. The proposed piezometer adjacent to MWBA-3 was considered for monitoring but will be too far away to be of value.

Comment 3:

Is twice an hour sufficient for a high-producing aquifer

Response:

As stated in the SIP, transducers will be the primary method of water level monitoring. The rate of water level recording by the transducer will occur at a frequency of one minute. The twice an hour hand measurement will only serve as a backup in case of transducer failure. The frequency of hand level measurements specified in the SIP is considered a minimum. In actuality, hand measurement frequency will be frequent (1 to 2 minute intervals) early in the pumping test after pump engagement and the frequency will gradually be reduced to a rate of no more than twice an hour.

5.6 Existing Groundwater Quality Testing

Comment 1:

If the groundwater data indicates the groundwater divide is within the proposed southern landfill expansion, what will be used as an upgradient well?

Response:

Upgradient monitoring wells are necessary for sites utilizing an interwell data comparison method where downgradient groundwater quality is compared to upgradient groundwater quality. The environmental monitoring program at the Chaffee Landfill utilizes an intrawell data evaluation method. The Environmental Monitoring Plan (EMP) for the Site will be revised with the permit application submittal. The EMP will be revised to appropriately monitor groundwater quality at the South Expansion Area in consideration of the site investigation findings.

Additional Comments

Comment 1:

Special consideration should also be given to a sufficient distance between the landfill footprint and the surface exposure of the aquifer and the ability of the facility to prevent any surface spill from reaching the aquifer.

Response:

WMNY recognizes its responsibility in protecting surface water and groundwater resources at the landfill facility. The current and future engineering controls at the Chaffee Facility are designed to address those concerns.

These responses to Department comments memorialize changes to the Site Investigation Plan dated February 2019 and will be incorporated into the Hydrogeologic Investigation Report with the SIP as an appendix.

If further discussion is required, please contact the undersigned at (716) 204-7156 or Mr. Jonathan Rizzo of WMNY. We will stay in contact with you regarding the schedule for investigation.

Sincerely yours,

GEI Consultants, Inc., P.C.

Richard H. Frappa, P.G. Senior Hydrogeologist

cc. P. Grasso (NYSDEC Region 9)

J. Sacco (NYSDEC Region 9)

J. Rizzo (WMNY)

M. Mahar (WMNY)

C. Chapman (WMNY)

Enc.

Attachments

- Boring Log MW3R2
- Revised Figure 6
- Table 2. Western Expansion Area Well Summary
- Morie Sand Grain Size

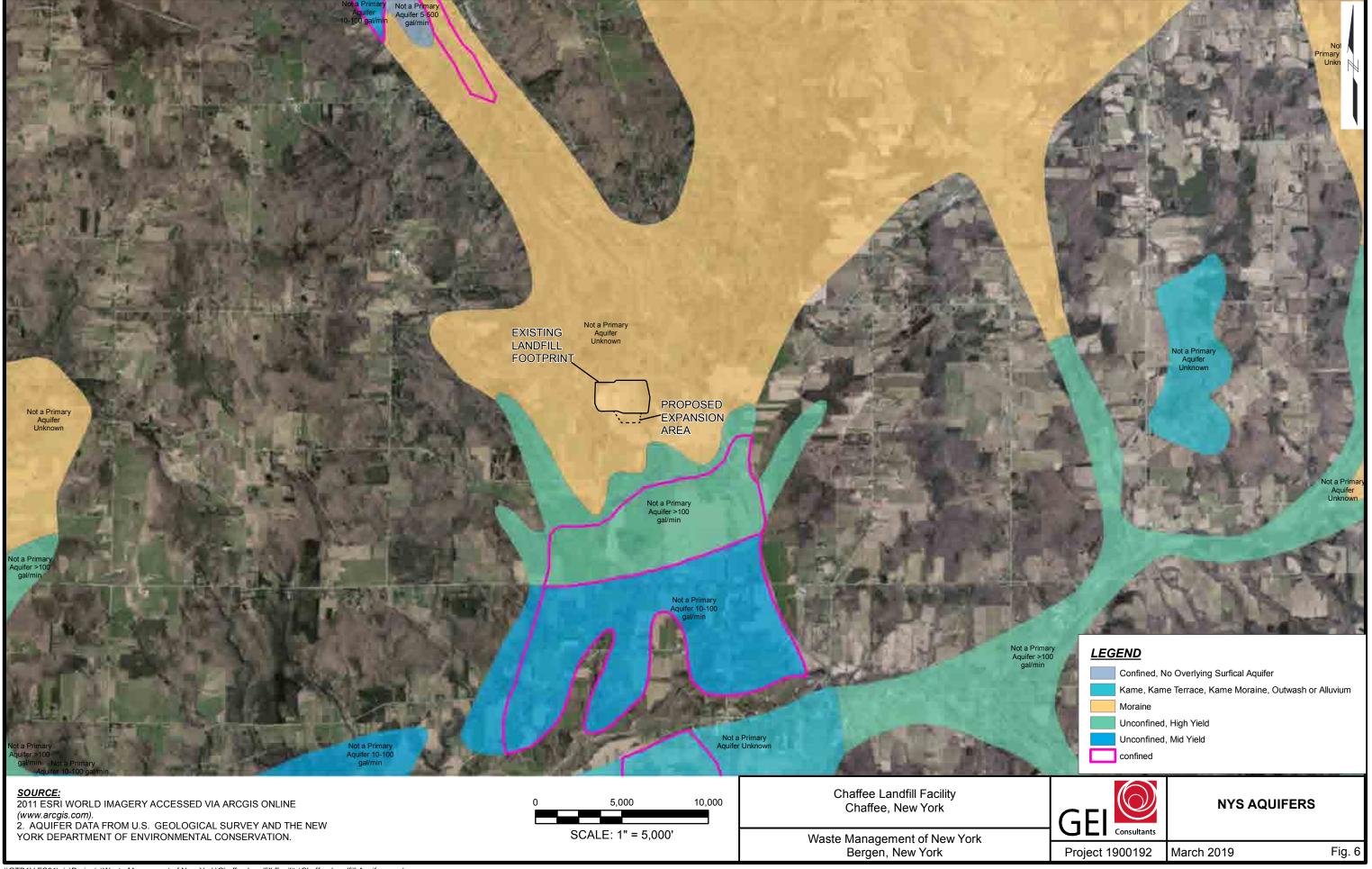
NORTHORIZ VERT LOCA Drillin DATE CONT EQUIP AUGE HAMM	ZONTA ICAL E ATION: ng Info	Not L DA DATUI Adjac Drmat / END: R: _EaDied : _4.2 PE: _A	Survey TUM: N/A W: N/A cent to tion 6/11/2 arth Dim rich D-1 5 in / 8 i utomatic	MV 201: ens 20 n	V3R 5 - 6/11/2 ions	2015 	DRILLE	STATION CEN GROUND SUR ER: Andy G ID/OD: 2 in / ER WEIGHT (lbs	TEI FA	CI	TOTAL DEPTH (LOGGED BY:	FT): 57.5 Mike Cummings DD: Hollow Stem	Auger	M\ PA	W3I	R2
GENE	RAL NO	TES:	Monito	ring	well dry					_	l properly abandoned June 15,					
ABBRE	EVIATION	OI Pe	O = Outsid	de D etrati	iameter ion Length	mpf = S = Sp	Blows per Minute p olit Spoor Direct Pu	per Foot C	= Ro = Fie C = S	eld Sor	Core WOH = W Vane Shear RQD = Ro	eight of Rods eight of Hammer ock Quality Designation ganic Vapor Meter	Sv= n F _v =	Pocket 1 Field Va	Torvane ne Shea	meter Strength Shear Strength ar Strength able, Not Measured
		Casing Pen.		_	SAMPL	E INFO		F:	g)	Sampl	le			CON	WELL STRUCTION
Elev. (ft)	Depth (ft)	(bpf) or Core Rate (mpf)	Sample No.	Type	Depth (ft)	Pen./ Rec. (in)	Blow Coun or RQD	nt Test Data	GRAPHIC	0	Description Classification	on &				DETAILS
Ctroto II	- 5 - 5 - 10 - 15 - 20 - 25		1 2 3 4 5 6 7 8 9 10 11		3 to 5 8 to 10 13 to 5 15 to 17 17 to 19 19 to 21 21 to 23 23 to 25 25 to 27 27 to 29 29	24/21 24/24 24/22 24/23 24/21 24/22 24/23 24/23 24/24	3-72- 37-10 7-12- 17-21 12-15- 19-26 9-16- 18-21 6-9-13 15 8-13- 17-24 4-7-13 5-11- 18-27 4-8-11 15 5-9-14 19 7-13-	3- 3- 1- 4-			(ML) Tan brown to brown strace fine sand and fine submoist, low plasticity fines (Total ML) Brown silt with fine to little medium subrounded gaturated (perched). (ML) Grey to dark grey stit trace medium sand and me gravel, moist, low plasticity	bangulár gravel, FILL). medium sand an gravel. Locally Locally Locally Locally Locally Locally Locally Locally Locally	d			—Completed as temporary well. No grout installed.
Strata lir	nes repres	ent the		ate							Т			251.0		Into the D.C.
boundar transition readings	ies repres ies betwe ns may be s have bee vels may	en soil ty gradua en made	ypes. Actu I. Water le at times	ual evel state	ed. mes.	CITY/ST	T NAI	NY ME: Chaffee L Sardinia, New NUMBER: 15	Yo	rk		GEI			hn Mu 04	ants, Inc., P.C. iir Drive 14228

GLASTONBURY - GEOTECHNICAL BORING LOG 02 MW3R AND MW3R OFFSET BORING LOGS.GPJ NEW.GDT 6/17/15

Boring Location

NORTHING: Not Surveyed EASTING: Not Surveyed STATION: N/A

OFFSET: N/A


BORING

MW3R2

HORIZONTAL DATUM: N/A **VERTICAL DATUM:** N/A

STATION CENTERLINE: N/A GROUND SURFACE ELEVATION (FT): Not Surveyed

		Casing Pen.		SA	MPLE	INFO	RMATION		18	Corrects	WELL
Elev. (ft)	Depth (ft)	(bpf) or Core Rate (mpf)	Sample No.		epun F	Pen./ Rec. (in)	Blow Count or RQD	Field Test Data	GRAPHIC LOG	Sample Description & Classification	CONSTRUCTION DETAILS
	- -		12		to	24/23	15-21 4-11- 16-24			(ML) Till unit as above, with thin (0.01' thick) saturated fine sand lens at 30'bgs.	schedule
	_ _		13	$\sqrt{}$	to	24/22	5-9-14- 19				40 PVC riser
	— 35 -		14	$\sqrt{}$	35 2 to 37	24/24	4-8-11- 16			(ML) Till unit as above, with thin (0.01' thick) saturated fine sand lens at 34.5' bgs.	
	_		15	$\sqrt{}$		24/24	6-11- 14-19			(ML) Till unit as above with saturated silty sand seam at 37.6-37.8' bgs.	
	- - 40		16	XI t	39 2 to 41		5-8-16- 20				
	<u>-</u>		17	XI +	41 2 to 43	24/24	4-7-11- 15				choke sand3/8"
	-		18	XI t	43 2 to 45	24/24	5-13- 18-24				diamet hydrate benton chips
	— 45 -		19	XI t	45 2 to 47	24/24	4-7-9- 13				choke
	- -		20	XI t	47 2 to 49		7-17- 22-22			(ML) Till unit as above with saturated fine sand, silt and trace fine angular shale gravel	#00N filt
	_ _ 50		21	XI t	49 2 to 51	24/21	6-7-8- 10			(ML) Grey-brown stiff silt with little fine sand and fine subangular gravel, wet at ~51' bgs.	
	_ _		22	XI τ	51 2 to 53	24/24	4-8-10- 12			and line subangular graver, wereat 51 bgs.	
	_		23	XΙ t	53 2 to 55	24/24	6-9-11- 13			(ML) Till unit (ML) Grey-brown firm silt with little fine sand and fine subangular gravel, wet.	0.000
	— 55 -		24	XI t	55 2 to 57	24/23	8-12- 15-16			(ML) Till unit (ML) Grey stiff silt with little fine sand, wet.	0.006" s continuo wire wra schedule
	_									End of Boring at 57.5 feet	40 PVC well screen
	— 60 _										
	_ _										
	- - 65										
	_										
			approximate				WMNY				GEI Consultants, Inc., P
ransition		e gradua	I. Water lev	el	PR	OJEC	T NAME	: Chaffee La	and	fill ((a))	90B John Muir Drive

Chaffee Facility Western Landfill Expansion Hydrogeologic Report

Table 2 - Monitoring Well Construction Details and Hydraulic Conductivity Data - Expansion Area Wells

							T
Monitoring	Ground Surface	Well Depth from	Well Depth from	Bottom of	Top of	Monitoring	Hydraulic Conductivity
Well/Borehole	Elevation (ft.)	Ground Surface (ft.)	Ground Surface (ft.)	PVC Screen	PVC Screen	Well Screen	(cm/s)
Location	(See Note 1)	(See Note 2)	at Time of Drilling	Elevation (ft.)	Elevation (ft.)	Location	
MW-15	1453.66	38.6	39.0	1415.06	1420.06	Sand and gravel unit	1.18x10-2
MW-16(S)	1453.50	13.5	13,5	1440.00	1445.00	Clay till	3.32x10-6
MW-16	1453.70	27.4	28.0	1426.26	1431.26	Sand and gravel unit	5.27x10-3
MW-17	1459.30	39.4	39.8	1419.86	1424.86	Sand and gravel unit	3.20x10-2
MW-18	1458.80	19.4	20.0	1439.36	1444.36	Clay till	3.47x10-7
MW-18A	1460.40	24.5	24.5	1436 (approx)	1441 (approx)	Clay till	2.48x10-7
MW-30	1471.00	43.8	44.0	1427.21	1437.21	Sand and gravel unit	5.31x10-3
MW-31	1470.40	27.9	28.5	1442.50	1447.50	Clay till	dry
MW-32	1470.25	10.8	11.0	1459.40	1464.40	Clay till	1.69x10-6
MW-33(S)	1443.70	12.5	12.5	1431.20	1436.20	Clay till	4.72x10-6
MW-33	1443.70	30.0	30.0	1413.73	1428.73	Sand and gravel unit	2.62x10-3
MW-50	1460.30	25.0	24.5	1435.35	1445.35	Sand and gravel unit	1.30x10-3
MW-A(S)	1461.50	10.5	10.5	1451.00	1456.00	Clay till	dry
MW-A(I)	1461.60	35.0	35.0	1426.58	1431.58	Sand and gravel unit	2.46x10-3
MW-B(S)	1495.10	40.0	40.0	1455.07	1465.07	Clay till	dry
MW-B(I)	1495.10	59.3	59.5	1435.77	1445.77	Sand and gravel unit	1.54x10-2
MW-C(S)	1466.20	19.5	19.5	1446.70	1456.70	Clay till	3.15x10-6
MW-C(I)	1465.60	33.6	33.6	1431.99	1436.99	Sand and gravel unit	1.06x10-3
MW-C(D)	1465.10	73.0	73.0	1392.10	1402.10	Sand and gravel unit	2.25x10-3
MW-D(S)	1482.00	31.5	31.5	1450.50	1460.50	Clay till	2.07x10-6
MW-D(I)	1482.50	49.0	49.0	1433.52	1438.52	Sand and gravel unit	4.79x10-3
MW-D(D)	1481.80	80.0	80.0	1401.77	1406.77	Sand and gravel unit	1.06x10-2
MW-E(S)	1456.40	27.5	27.5	1428,90	1438,90	Clay till	1.27x10-6
MW-E(I)	1455.56	40.0	40.0	1415.56	1420.56	Sand and gravel unit	3.41x10-2
MW-E(D)	1455.40	144.0	144.0	1311.40	1321,40	Sand and gravel unit	1.04x10-4
MW-H(S)	1477.10	42.0	42.0	1435,10	1445.10	Clay till	3.13x10-6
MW-H(I)	1477.50	64.0	64.0	1413,50	1423.50	Sand and gravel unit	1.09x10-3
MW-H(D)	1477.32	97.5	97.5	1379.82	1384.82	Sand and gravel unit	2.95x10-3
MW-H(D)R	1475.90	98.0	98.0	1377.90	1382.90	Sand and gravel unit	2.552.10-5
MW-I(S)	1496.40	48.0	48.0	1448.40	1458.40	Clay till	dry
MW-I(I)	1496.30	78.0	78.0	1418.30	1428.30	Sand and gravel unit	2.68x10-3
MW-J(S)	1462.20	27.5	27.5	1434.70	1439.70	Clay till	Insufficient Water
MW-J(I)	1462.12	50.5	50.5	1411.62	1421.62	Sand and gravel unit	9.82x10-4
MW-J(D)	1462.20	85.8	85.8	1376.40	1386.40	Sand and gravel unit	9.18x10-5
MW-K(S)	1496.60	41.5	41.5	1455.10	1460.10	Clay till	dry
MW-K(I)	1496.70	59.5	59.5	1437,20	1447.20	Sand and gravel unit	2.42x10-3
MW-K(D)	1496.70	95.5	95.5	1437.20	1411.00	Sand and gravel unit	2.42x10-3 2.32x10-2
PW-1	1455.6	41.0	41.0	1414.60	1429.60	Sand and gravel unit	2.323 10-2
PW-2B	1450.3	33,2	33.2	1417.10	1429.60	Sand and gravel unit	
OW-1(S)	1450.3	33.2 14.5	33.2 14.5	1417.10	1427.10	Sand and graver unit Clay till	1.35x10-7
OW-1(3)	1452.9	32.0	32.0	1438.40	1448.40	Sand and gravel unit	1.358 10-7
OW-1(i)	1452.7	22.0	22.0	1420.70	1430.70	Sand and gravel unit	1.61x10-5
OW-2(f) OW-3(S)	1457.0	19.0	19.0	1431.20	1441.20	Clay till	1.01x10-5
OW-3(3)	1457.0	41.0	41.0	1438.00	1448.00	Sand and gravel unit	1.13.10-0
OW-3(I)	1456.9	23.0	23.0				
MA-2	1453.8	28.0	23.0	1430.80	1440.80	Sand and gravel unit	6.8x10-4
				1433.00	1443.00	Sand and gravel unit	
MA-3	1469.45	34.5	34.5	1434.95	1444.95	Sand and gravel unit	1.5x10-4
P3-03	1448.9	20.0	20.0	1428.90	1438.90	Sand and gravel unit	3.3x10-3
P4-03	1440.4	18.0	18.0	1422.40	1432.40	Sand and gravel unit	1.2x10-2

Notes:

- 1. Monitoring well elevation data based on survey completed by Deborah A. Nabor, PLS, PC in March 2001 and July 2001 unless otherwise noted below: Monitoring well MW-E(I) elevation data based on survey completed by Deborah A. Nabor, PLS, PC. and submitted in "Data Report Hydrogeologic Studies, Chaffee Landfill Facility, Chaffee, New York," prepared by McMahon and Mann Consulting Engineers, P.C. dated September 2000. Wells MA-2 and MA-3 elevation data based on survey completed by M.J.R. Land Surveyor, PC on June 11, 2001. Monitoring well MW-H(D)R elevation data based on survey completed by Wendel Duchsherer Survey on September 25, 2002. Pump and observation well elevation data based on survey completed by Wendle Dushcherer Survey on November 27, 2001. Wells P3-03 and P4-03 elevation based on survey completed by Wendle Duchscherer Survey dated August 28, 2003.
- Well depth refers to the measured ground surface elevation minus the bottom of screen elevation. The bottom of screen elevation was calculated by subtracting the well depth contained on the log from the ground surface elevation at the time of drilling.

MORIE SCREENINGS

Per Cent Passing

Sieve No.	Lnches	MM	Grade #4	Grade #3	Grade #2	Grade #1	Grade #0	Grade MCON	Grade #00
1/4	.025	6.3	100.00						11
4	.187	4.75	99.8	100.0			CECLL		
6	.132	3.35	54.8	97.2	100.5				
8	.094	2.36	13.7	45.3	93.0				
10	.079	2.00	6.2	17.5	71.7	100.0			
12	.066	1.7	2.3	4.0	33.1	95.1		V	
14	.056	1.4	0.8	0.5	5.6	55.8	100.0		
16	.047	:.18	0.3	0.3	1.7	19.0	95.9		
18	.035	1.00	0.2	0.1	1.0	4.7	79.9	100.0	17/
20	.033	0.85	0.1	0.0	0.8	0.8	40.6	99.8	
25	.028	0.71	0.0	0.0	0.7	0.4	11.5	87.8	100.C
30	.023	9.6	0.0		0.7	0.1	2.4	54.1	98.4
35	.020	C.50	1000		. 0.5	0.1	0.5	12.6	70.3
40	.017	0.43			, 0.4		0.3	5.5	43.6
50	-012	0.30			0.1		0.1	1.2	7.9
70	.008	0.212	100				0.0	0.4	2.0
MAI							HEEL LAND	0.0	0.0

All screen analysis and graphs are typical and are subject to changes over time. Current information is uvailable by calling your "Sales Representative" or our Customer Service Department.

AL ANALYSIS
99.23
0.11
0.0005
0.33
0.12
0.016
0.007
0.012
0.11
0.16
2.55-2.70
(1:1HC1) - Less Than .5
38 to 46%

WARNING: This product contains silica. Do not breath dust; may cause delayed lung injury (Silicosis). May also cause lung cancer, Follow OSHA guidelines for control of crystalline silica; for industrial use only see material safety data sheet for detailed information. CAS No. 14808-60-7

DISCLAIMER: All products are sold without warranty expressed or implied and seller specifically does not warrant that these products are suitable for a particular purpose or purposes or are increhantable. Buyer agrees it does not rely on seller's skill or judgment to select or furnish these products. Buyer shall make its own test to determine the suitability of such products for its purposes. Caution should be exercised when exposing these products to the elements. Staining could occur because of varying levels of iron bearing minerals in the deposit.

SKUL at sometime of the source of the source

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Materials Management, Region 9 270 Michigan Avenue, Buffalo, NY 14203-2915 P: (716) 851-7220 | F: (716) 851-7226 www.dec.ny.gov

April 4, 2019

Richard H. Frappa, P.G. Senior Hydrogeologist GEI Consultants, Inc., P.C. 90B John Muir Drive Suite 104 Amherst, New York 14228

Dear Mr. Frappa:

#15S14 Chaffee Landfill Site Investigation Plan Approval

The New York State Department of Environmental Conservation (the Department) has reviewed your letter dated March 25, 2019, responding to the Department's correspondence dated March 6, 2019, which provided comments on the Draft Site Investigation Plan (SIP) for Southern Expansion.

The response under Section 3.2 Hydrogeology, comment 1 states "the proposed Southern Expansion Area is situated on an area mapped as 'Moraine'". The GIS NY Aquifer Metadata map (Figure 6 in the SIP) is used as evidence of the aquifer boundary. This is a small-scale map. The Clay Till Extent Investigation was conducted to clarify the site specific extant of the clay till. Figure 4 of the Draft SIP indicates Waste Management of New York and GEI Consultants are aware of the Clay Till Extent Investigation. There are numerous examples of differentiating between the clay till (Lake Escarpment Recessional Moraine) and the sand and gravel aquifer within each expansion investigation environmental monitoring plan.

The site-specific investigations will take precedence over the small-scale GIS NY Aquifer Metadata map. The landfill footprint directly over the surficial sand and gravel aquifer is a concern for the Department and prohibited by Subpart 363-5.1(d). A variance request (Part 363-5.1(d)(1)) can be requested during the permitting process, where the Department will request 20 feet of low permeability soils beneath the landfill footprint and some low permeability soils surrounding the footprint as a safety measure to prevent surface water infiltration of leachate surrounding the footprint into the aquifer.

The Site Investigation Plan dated February 2019, with the Response to NYSDEC Correspondence dated March 25, 2019 as an appendix is approved with these comments noted moving forward.

Richard H. Frappa, P.G. April 4, 2019 Page 2

If you have any questions, please contact this office at (716) 851-7220.

Sincerely,

Steven McDonnell Geologist Trainee

Division of Materials Management

SM/dpp

ec.: Peter Grasso, NYSDEC, Regional Materials Management Engineer James Sacco, NYSDEC, Environmental Engineer II Vincent Fay, NYSDEC, Professional Geologist I Michael Mahar, Waste Management of New York Jonathan Rizzo, Waste Management of New York

July 24, 2019

Consulting
Engineers and
Scientists

Mr. Steven McDonnell
Engineering Geologist
Division of Materials Management
New York State Department of Environmental Conservation
Division of Solid and Hazardous Materials, Region 9
270 Michigan Avenue
Buffalo, NY 14203-2999

Subject: Chaffee Landfill #15S14

Supplemental Site Investigation Scope of Work Southern Expansion Hydrogeologic Investigation

Dear Mr. McDonnell:

GEI Consultants, Inc., P.C. (GEI) and Waste Management of New York, LLC (WMNY) appreciate the Department's time on July 15, 2019 to discuss the preliminary summary of findings from implementing the Chaffee Landfill Southern Expansion Site Investigation Plan (February 2019) which was approved on April 4, 2019. Following the presentation of findings at the meeting with Region 9 and Albany DEC staff (participating via conference call), the Department provided feedback regarding shallow soil conditions in the southwestern corner of the Southern Expansion Area where the Upper Silty Clay Unit (till) is not present above the Upper Silty Sand and Gravel Unit. In that portion of the expansion area, Silty Fill and/or Silty Reworked soil was found to be present above the Upper Silty Sand and Gravel Unit.

The Department expressed interest in further characterization of the soil conditions in that portion of the expansion area. Below is a description of a scope of work for supplemental investigation to collect additional site characterization data of soil conditions of unsaturated soils in the southwest corner of the expansion area.

Scope of Work

A track-mounted excavator will be used to excavate test pits at the approximate locations shown on Figure 1. The test pits will be excavated to a depth of 10 to 15 feet below ground surface. The excavator bucket will be used to collect soil for visual characterization by a professional geologist and soil will be described in accordance with the Unified Soil Classification System (USCS). Representative soil samples will be archived in glass jars and labeled with the test pit number, date, and sample collection depth. All soil samples will be packaged neatly for archive at the landfill facility.

Additional soil collected in 5-gallon buckets from each test pit will be submitted for grain size gradation (grain size distribution sieve and hydrometer analysis – ASTM D422). It is anticipated that one (1) or two (2) samples will be collected from each test pit location for grain size analysis.

Mr. Steven McDonnell NYSDEC July 24, 2019 Page 2

At each test pit location, a Shelby tube sampler will be used to collect in-situ soil samples by method ASTM D1587 for soil density and for ASTM Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter by method D5084. The data will be used to estimate the vertical permeability of unsaturated soil where the Upper Silty Clay Unit is not present at the ground surface.

Schedule

WMNY will coordinate with the on-site contractor to support test pit excavation and plans to conduct the supplemental investigation on July 30, 2019.

We believe this scope of work will satisfy the Department's request for additional information from this area of the Expansion Area. Please contact the undersigned or Mr. Jonathan Rizzo of WMNY at (716) 286-0354 if you have questions.

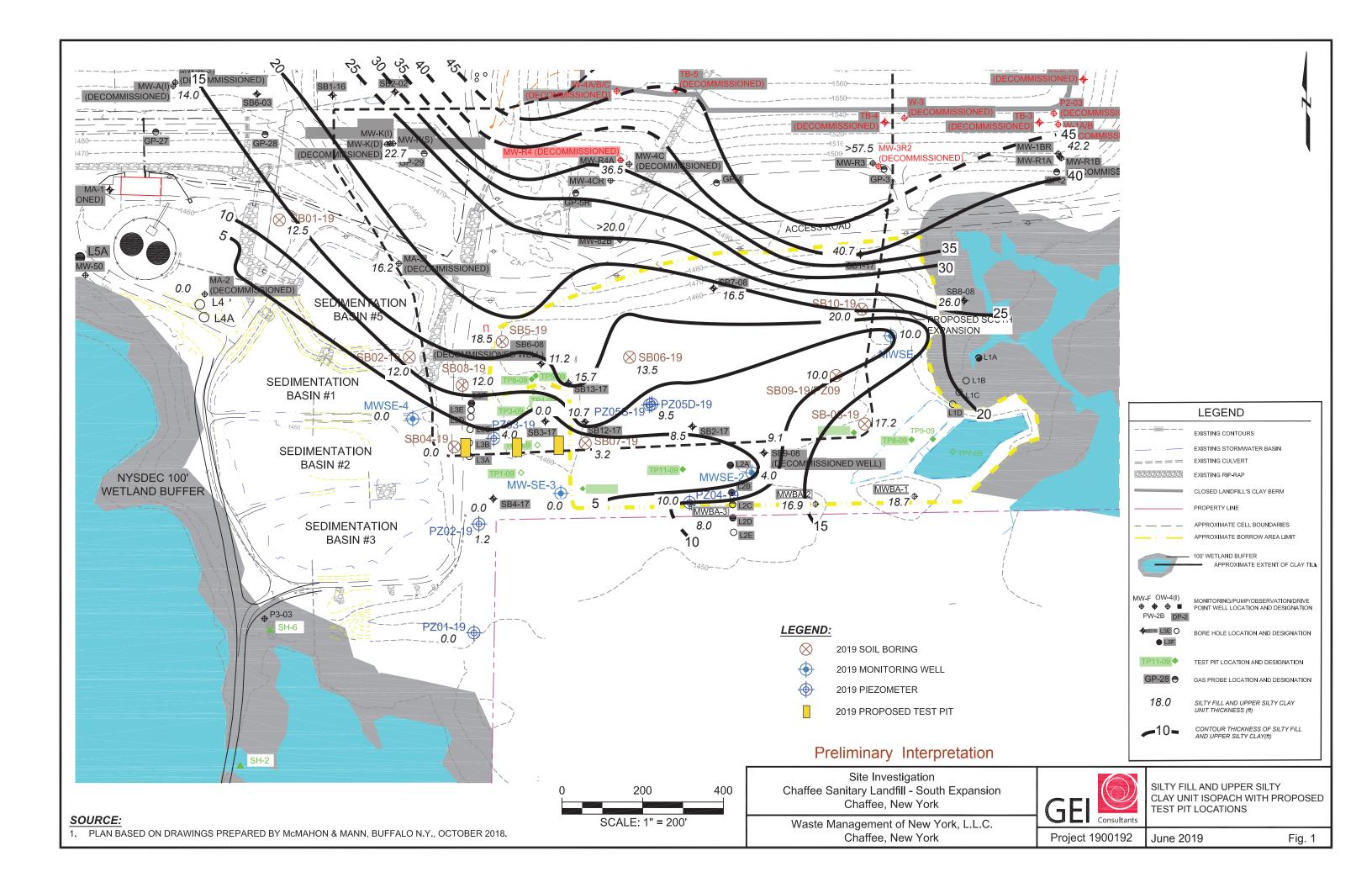
Sincerely yours,

GEI Consultants, Inc., P.C.

Richard H. Frappa, P.G. Senior Hydrogeologist

Killype-

cc. P. Grasso (NYSDEC Region 9)


J. Sacco (NYSDEC Region 9)

J. Rizzo (WMNY)

M. Mahar (WMNY)

C. Chapman (WMNY)

Enc. Figure 1 – Proposed Test Pit Locations

September 30, 2019

Consulting Engineers and Scientists Mr. Steven McDonnell
Engineering Geologist
Division of Materials Management
New York State Department of Environmental Conservation
Division of Solid and Hazardous Materials, Region 9
270 Michigan Avenue
Buffalo, NY 14203-2999

Subject: Chaffee Landfill #15S14

Supplemental Site Investigation Scope of Work Southern Expansion Hydrogeologic Investigation

Dear Mr. McDonnell:

GEI Consultants, Inc., P.C. (GEI) and Waste Management of New York, LLC (WMNY) met at the Chaffee Landfill on September 17, 2019 with NYSDEC geologists to discuss Site Investigation findings and conduct a walkover of the site investigation area. NYSDEC staff included yourself, Vince Fay (NYSDEC – Albany), and Dan Maeso (NYSDEC Region 8). Discussions included an overview of geologic and hydrogeologic conditions, the findings from September 2019 test pit excavations, and details about a deeper, more productive water-bearing deposit identified below a deeper till unit which is referred to as the Lower Silty Clay unit. Discussions with the Department concluded with general agreement that the uppermost water-bearing unit (Upper Silty Sand and Gravel) in the area of the expansion has moderate hydraulic conductivity (approximately 1 X 10-4 cm/s) and low yield (about 1.3 gpm), occurs under water-table conditions having a low hydraulic gradient with a very slow groundwater flow velocity (about 1 foot per year), and is covered by low permeability Silty Clay Till or gravelly Ablation Till.

The presence of a second layer of silty clay till (Lower Silty Clay or Deeper Till) below the upper water-bearing zone across the entire Expansion Area was also discussed. The Lower Silty Clay is characterized as an aquitard as it prevents the downward migration of groundwater from the upper water-bearing zone to potentially more productive deeper water-bearing deposits. The confining properties of the Lower Silty Clay are demonstrated by:

- vertical differences in head between the two water-bearing zones (head differential is approximately 3 feet in the downward direction),
- pumping test data which demonstrated no vertical hydraulic communication during pumping, and

Mr. Steven McDonnell NYSDEC September 30, 2019 Page 2

• grain size analysis of the Lower Silty Clay which classifies the material as a lean clay with sand with inherent low permeability.

Subsequent discussions between WMNY and the NYSDEC concluded with the Department indicating that further characterization of the extent of the aquitard in a southern direction from the footprint of the Expansion Area is necessary. Specifically, the Department is requesting verification of the presence of the Lower Silty Clay south of the landfill footprint, documentation of unit thickness, and assessment of hydraulic properties that verify its function as an aquitard.

GEI was able to obtain geologic boring information from USGS wells drilled and sampled in 1982 located south of the Expansion Area confirming the presence of the Lower Silty Clay south of the expansion area. Using this information in concert with existing site-specific data and input from NYSDEC and WMNY discussions, GEI has prepared this scope of work to investigate the aquitard south of the footprint of the Southern Expansion Area.

Scope of Work

The investigation of the aquitard south of the Expansion Area will include the drilling of six (6) soil borings with four (4) borings being converted to piezometers having well screens monitoring water-bearing deposits below the Lower Silty Clay aquitard. Investigation activities will utilize methods described in the NYSDEC-approved Site Investigation Plan (SIP) dated February 2019. Proposed soil borings and piezometer locations are shown on Figure 1.

Similar to other piezometers installed during the SI, the four piezometers will be constructed of SCH-40 PVC, 10-foot long, 20-slot well screens. Each will be paired with an existing monitoring well or piezometer allowing for the assessment of vertical hydraulic gradients between the Upper Silty Sand and Gravel and the Lower Silty Sand and Gravel.

At each soil boring location, continuous soil samples will be collected from split spoon samples where prior geologic data has not been obtained. Where shallower soil boring data are available, soil samples will be collected at standard split spoon sample intervals (5-foot intervals) to confirm existing geology. Soil borings not completed as piezometers will be sampled to a maximum depth of 4 feet below the bottom of the Lower Silty Clay. Borings converted to piezometers will be drilled to an approximate depth of 14 feet below the bottom of the Lower Silty Clay to allow for the installation of up to a 10-foot well screen (dependent on the thickness of the lower silty sand and gravel unit) and a minimum 3-foot thick bentonite seal above the screen's sand pack (including required choke sand layers).

Mr. Steven McDonnell NYSDEC September 30, 2019 Page 3

At each boring location, soil samples will be collected and analyzed at the laboratory for the following:

Samples from the Lower Silty Clay (aquitard)

- Atterberg limits ASTM D4318
- Grain Size Gradation (grain size distribution sieve and hydrometer analysis ASTM D422)
- Shelby tube sampler collection of clay till soil by method ASTM D1587 for undisturbed permeability analysis by method ASTM D5856

Samples from the Lower Silty Sand and Gravel (deeper water-bearing zone)

• Grain Size Gradation (sieve only – ASTM D422)

The location and depth of each sample submitted for laboratory physical soil characterization will be noted on the field logs.

Each newly-installed piezometer will be developed no sooner than 3 days after installation as described in the SIP and will be tested for hydraulic conductivity by slug test methods. Heads in piezometer pairs will be collected on a frequent basis during the drilling program and incorporated into the monthly water level monitoring program for the Southern Expansion Area.

The data obtained from the investigation will be used to update the previously summarized hydrogeologic data and characterize the Critical Stratigraphic Section for the Expansion Area.

Schedule

Based on the driller's schedule of availability, drilling will begin on September 30, 2019 and is expected to continue for 2-weeks. GEI will contact you about drilling start-up and progress.

Mr. Steven McDonnell NYSDEC September 30, 2019 Page 4

Please contact the undersigned or Mr. Jonathan Rizzo of WMNY at (716) 286-0354 if you have questions.

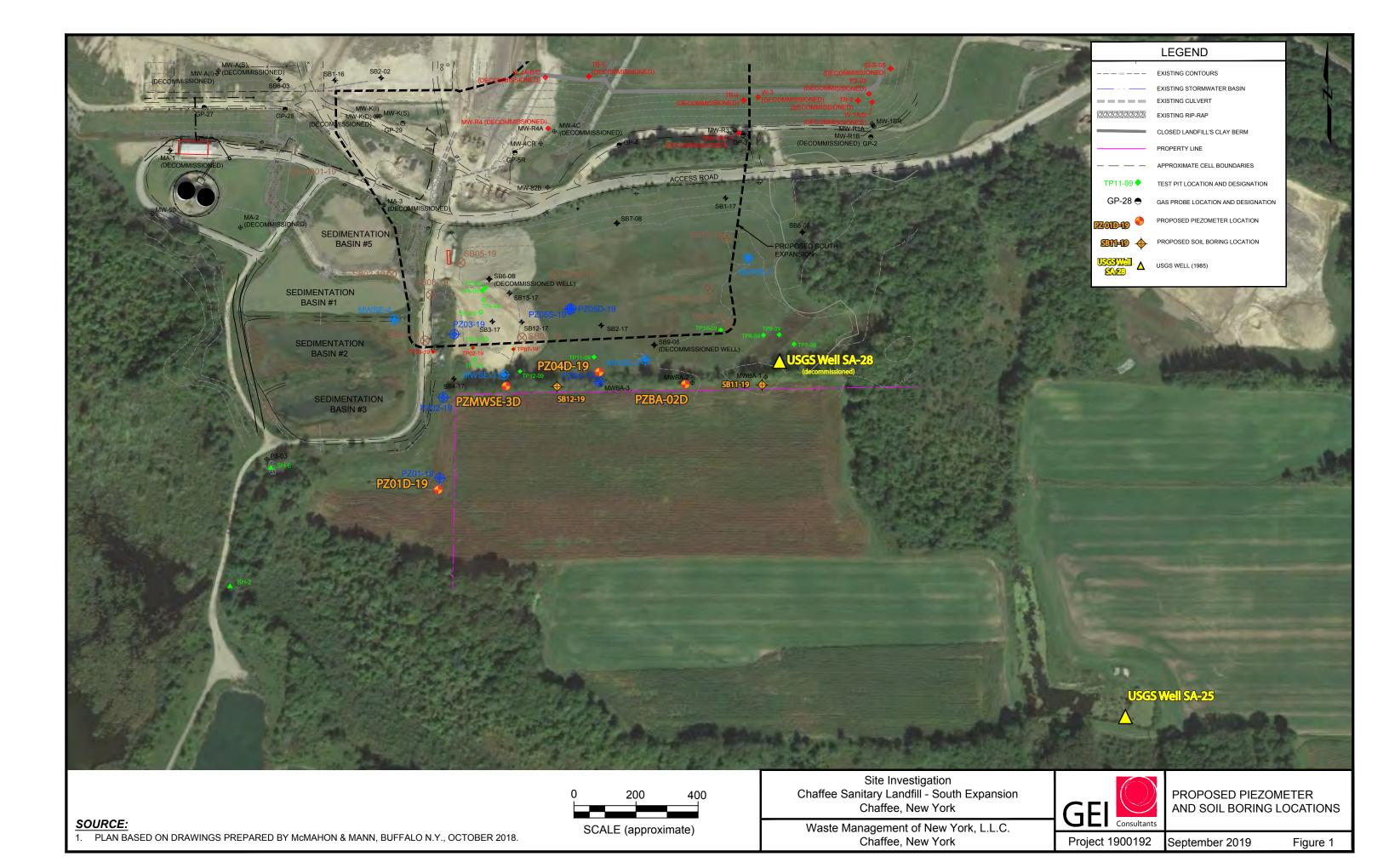
Sincerely yours,

GEI Consultants, Inc., P.C.

Richard H. Frappa, P.G. Senior Hydrogeologist

Enc. Figure 1 - Proposed Soil Boring and Piezometer Locations

cc. V. Fay (NYSDEC Albany)


P. Grasso (NYSDEC Region 9)

J. Sacco (NYSDEC Region 9)

J. Rizzo (WMNY)

M. Mahar (WMNY)

C. Chapman (WMNY)

Appendix B

Boring, Test Pit, Piezometer and Well Construction Logs

B.1 Area 7/8 Development 2019 Investigation Test Pit, Soil Boring, Piezometer, Monitoring Well logs and construction details with well development details and USGS Logs for Wells SA-28 and SA-25

Soil and Hydrogeologic Investigations • Wetland Delineations

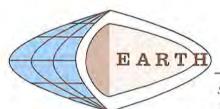
1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. MWSEI-19

2A79ch PROJECT SURF. ELEVATION 1449.7

WMNY Chaffee Landfill - Southern Expansion

PVC Riser: 1451.92 LOCATION Northing: 939377.7

Town of Sardinia, Erie County, NY


Easting: 1171481.0

GEI Consultants Inc. P.C. CLIENT

COMPLETED 04/17/19 DATE STARTED 04/16/19

BLOWS ON DEPTH IN FT SAMPLER

214 1 1		JA	FFU								
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	1	WATER TABLE AND REMARKS
1.35						*********	(=		DC.		(4) 4 (each leaking stool
16		3				0_00_0	Extremely moist brown (CLAYEY-SILT)			1	(1) 4-inch locking steel protective casing 2.4 feet above
10		3	-		8	0 0	topsoil with little organic matter and			11	ground surface, PVC stickup 2.2
	-	_	_5_			<u> </u>	clay, trace sand, very soft, granular	11 11		Wa	feet above ground surface
-				_5_		0 0 0	soil structure, (ML-CL).	11		1	reet above ground surface
2	_3_	_					clear transition to 0.3	1		10	
22		3			9	<u> </u>	Moist to extremely moist gray	1 4		84	
			6			8 5	(SILTY-CLAY) with 3 to 7% gravel,	1		JUN I	
				7			trace sand, firm to stiff, weakly thinly			1	
3	2					_ 	laminated with very thin coarse silt	11		0/	
24		4			10	0 0 0	lenses, (CL).	1	10	3	
			6		10			1 4	Rise	(C)	
				8		0 0 o		11	0	ZI	
4	3		100	~	1	* - * -		1	ď	CEMENT BENTONITE WORDEN	\$17 m
24	-3-	5				T+ = T+ =	clear transition to 7.3	11 4	2-inch Schedule 40 FJT PVC Riser	10	
24		5	14		22	ō ō	clear transition to 7.3	-11	0	11	
-		-	17	100		0 0 0	Moist faintly mottled to distinctly	=	9		
-	-	-	-	19	-	* *	mottled, light brown to orangish brown,	1 11	등	1 4	
5	3	-				<u> </u>	(SANDY-SILT) with some mostly very	11	1 8	1	Lod
23	-	7			19	0 0 0	fine size sand with an occasional	2	Š		+ 9.0'
			12		100	8 . 0 .	(SILTY-CLAY) lense, compact, thinly	-	S	3	← 9.5'
				17	1	<u> </u>	bedded, (ML) with an occasional thin	1	7	1	
6	8					0000	(CL) interbed.	12		1	(2) #00 size choke sand
19	1	19	-		41	0.00	grades downward to 9.4	1		8	
	-		22		7"	0000	Extremely moist brown (SILTY-SAND)	1	-	1	(3) Bentonite Seal (chips)
				14	1	0000	with 3 to 7% gravel, little silt, compact,	12	4	12	
7	10				1	0 00	thinly bedded, (SM).	1		1	+ 12.5'
20	10	22		100	100	0000	grades downward to 10.0			3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	1	- 22	or		47	0000		1.55		1.23	← 13.0'
-	-		25	12	1	0 00	Moist brown (SILTY-SAND) with 20 to	9 4		15	
100				16	1	0000	, 30% gravel, trace to little silt, dense, stratified, (SM).	1.5	Ž		
8	10	10.372		-	4	0000		1		pack	
17	-	10	-	-	23	0000	grades downward to 14.0	1 6	-	- d	÷ 15.0°
		-	13	-	-	0.000	Extremely moist brown gravelly			sand	/acamon and the street ware
			1000	12	1	5000	(SILTY-SAND) with 30 to 50% gravel,			S	(4) 2" schedule 40 PVC 0.010
9	- 11					0000	trace to little silt, dense, stratified,	20	-	morie	slot continuous wrap screen
11		12		-	26	0 1 0 1	(SM), (GM).	13	1		Water at approximately (E.E. foot
			14		- 20		grades downward to 16.0)	(5)	#00N size	Water at approximately 15.5 feet below ground surface upon
				16		0000	Wet brown gravelly (SILTY-SAND) with		1	Z	completion.
10	9			1	1	0 00	20 to 40% gravel, trace to little silt,	13	3	0	- COMPIGUION.
9	9	11			12.	0000	compact, stratified, (SM).	100		130	
-	-	10	10		24	0000	AND THE PROPERTY OF THE PROPER	0.5	1	1.5	
-	-	-	13	100	-	0.0	Control relations in the	0			
	1	1		13		1010	grades downward to 20.	0	-	-	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. MWSEI-19

SURF. ELEVATION 1449.7

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939377.7 PVC Riser: 1451.92


Town of Sardinia, Erie County, NY

Easting: 1171481.0

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/16/19 COMPLETED 04/17/19

REC		12	18	24	И	LITH	DESCRIPTION AND CLASSIFICATION			WELL		WATER TABLE AND REMARKS
	14					0000	blad brausiah genu arawallu		14			(5) 2" schedule 40 PVC 0.010
9	14	14			230	000	Wet brownish gray gravelly (SILTY-SAND) with 30 to 50% gravel,		4.4			slot continuous wrap screen
			22		36	0000	trace to little silt, dense, stratified,		10		sand pack	siot continuous map sorgen
\rightarrow	_	_	- 22	22		0000	(SM), (GM).		18		ď	
-	35.1			26		0000	(34), (64).		963		le l	
12	8					0000			71	(2)		
20		12			28	0000		100			morie	
			16		2.0	0000		23.8	1		e.	
	71.11			_22		0 0 0	Moist to extremely moist gray		153		size	
13	12					E E E	(SANDY-SILT) with 3 to 7% gravel,				#00N	
20		14			30	5 5	trace to little sand, compact, weakly		17			÷ 25.0'
			16		30		thinly bedded, (ML).		34	1.11	9.44	7.75
				20		71.11.11.1	grades downward to	25.0	0.0	Line K	1,1	÷ 26.0'
			7.5	-	1		L					· 20.0
	_			-			Wet gray (SAND) mostly very fine to	1				Note: Advanced bore hole with 6
	-	-					fine size, trace silt, dense, thinly					5/8" ID x 10" OD hollow stem
			-		1		bedded, (SP).	100				auger casing with continuous spli
_			-					26.0				spoon sampling to 26.0 feet.
							Boring completed at 26.0 feet.	-				Installed 2-inch PVC monitoring
							Boring completed at 20.0 feet.	- 1				well according to NYS DEC
			-	1		1 1						regulations.
					1							75 (Mar. 22.)
-					1							Cement Bentonite Grout
					1							
	-				1							7.8 gallons water
	-	-	_	-	1							94 lb portland cement
	_			-	-							4 lb Bentonite
17 7 1					4							
					1							
1									1			
4												
-												
					1							
	-	-			1							
	-		-	-	1							
-	-	-	-	-	1							
		-										
				1	1							
					1							
Y == [
]							
	-				1							
		12.00	-	-	1							

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • EAX (716) 655-2915 HOLE NO. MWSE2-19

SURF. ELEVATION 1449.9

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939038.2 PVC Riser: 1452.25

Town of Sardinia, Erie County, NY

Easting: 1171136.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/17/19

COMPLETED 04/18/19

INFI		SAM	PLEN								
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		S NELL		WATER TABLE AND REMARKS
1	2					66	CANDY STIT	1			(1) 4-inch locking steel
23	100	4					Extremely moist brown (SANDY-SILT) topsoil with little sand and organic			14	protective casing 2.6 feet above
-			6	-	10	6 6 6	matter, very loose, granular soil			11	ground surface, PVC sitckup 2.3
			h.	7			structure, (ML).	1 =			feet above ground surface
1.7	1.0	_		7		<u> </u>		1		11	1001 00010 311111
2	9		-	-		8 _0 8 _0	clear transition to 0.2	01		N	Note: Advanced bore hole with 6
20		6		_	17	_ <u> </u>	Moist gray (SILTY-CLAY) with 3 to 7%	14		84	5/8" ID x 10" OD hollow stem
			11_			0 0 0	gravel, trace sand, stiff, weakly thinly			ENGRORY	auger casing with continuous spl
				17		-44-	laminated with very thin coarse silt			1	spoon sampling to 26.0 feet.
3	- 11					.49.	lenses, (CL).	14		04	Installed a 2-inch monitoring we
14		5		-	12	0 . 4	clear transition to 3.4	1	ä	BENTONITE	in completed bore hole according
			7	4	12	9	Moist brown (CLAYEY-SILT) with 3 to	11 =	Rist	图	to NYS DEC regulations.
		-		17	1	0 0	7% gravel, little to some clay, trace	1	2	CEMEN	
4	15			-	1	0000	sand, very stiff, weakly thinly	1	P	B.	
11	15_	13			1	0.00.0	laminated with very thin coarse silt	14	4-inch Schedule 40 FJT PVC Riser	0	
-11		13	10		25	0000	li lenses, (ML-CL).	1	0	1	
		-	12	72		0.000	grades downward to 4.0	1	9	11	
32		100		12	1	0000		14	de	1	
5	13	-				0000	Moist grayish brown (SAND) with 3 to	11	che	1	V. Com
17		14			31	0000	7% gravel, mostly fine to medium size	1	S	10	← 9.0'
	7 7		17	-	100	0000	sand, compact, thinly bedded, (SP).		nct	2	+ 9.5*
				11	1	0.000	grades downward to 6.0	1	4-1	1	TO THE RESERVE TO THE
6	19		-			0.00	Moist brown very gravelly	1	27	12	(2) #00 size choke sand
15		11			20	0.00	(SILTY-SAND) with 30 to 50% gravel,	[1]		(E)	(3) Bentonite seal (chips)
			9	1	20	0.0	occasional cobble, trace to little silt,	1		1	And the second s
-			-	8		6:05:	compact to dense, stratified, (SM).	1		1/	
7	10	7		0	1	0.7.0	grades downward to 10.0	11		1	+ 40 E
4	10	14			1	0:00:	L	15.8		3	← 12.5'
4		14	1/4	-	- 31	1000	Moist brown very gravelly (SAND) with 40 to 60% gravel, occasional cobble,	7.58			÷ 13.0'
-	-	-	17	14	1	0.00	trace silt, compact, stratified, (SW).	7.7		181	
-		-		17	-	0.30	grades downward to 11.7	903		A 1	
8	5	-	/	-		0.00	L	133	1	pack.	1 10.7
6		6	-		13	0:00:	Extremely moist to wet brown gravelly			- g	← 15.0°
			7		16	0.00	(SAND) with 30 to 50% gravel, trace	15.8		pues	Sample II taken with 3-inch
-				8		0.00	silt, compact to dense, stratified,	1 80		S	spoon due to law recovery.
9	10]	0.00	(SW).			morie.	
12		17			31	0.00.	grades downward to 14.0	1.3		0.77	(4) 2-inch 0.010 slot continuous
			14		7 31	000	Wet brown very gravelly (SAND) with	1.1	(4)	#00N size	wrap screen
100			13	12	1	0.00.	40 to 60% gravel, trace silt, compact	12.0	-	2	
10			-	12		0.00	to dense, stratified, (SW).	100		00	Water at approximately 15.0 fee
10	5	100	-	-		0.00.	grades downward to 19.0	100		44	below ground surface upon
13	-	12			- 29	0,000	Grades downward to 1970	133		1.54	completion.
		-	17	-	100	0000	See next sheet	- 0			
	1		1	15	-	0000	See Heat Sheet	1.7			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. MWSE2-19 FAX (716) 655-2915

SURF. ELEVATION 1449.9

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939038.2 PVC Riser: 1452.25

Town of Sardinia, Erie County, NY


Easting: 1171136.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/17/19 COMPLETED 04/18/19

DEPTH IN FT BLOWS ON SAMPLER

THE		SAIN	FLER						
SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
11	24					0000	THE WAY STATISTICAL STREET	13.4	(5) 2-inch 0.010 slot continuous
16	24					0000	Wet brown very gravelly		
10		13	10.0		24	5_000	(SILTY-SAND) with 40 to 60% gravel,	<u>र</u> ्	wrap screen
-		-	- 11	-		= = = = =	trace to little silt, compact, stratified,	ď	
				13		6 _ 6 G	(SM).	S.	
12	10_		1				grades downward to 21.0	(5)	
9		8			20		Moist to extremely moist gray		
		12.0	12			8 8	(SILTY-CLAY) with 3 to 7% gravel,	₽ I	
				12		E*==*=	trace sand, very stiff, thinly laminated	921	
13	12				1	6 6 e	with very thin coarse silt lenses, (CL).	(5) #00N size morie sand pack	
0	1	17		1 - 1	18.50	8 - 8 -	A STATE OF THE PROPERTY OF THE		05.01
		11	144		30	<u> </u>			+ 25.0'
	-	-	13			8 6 6	26.0		V355
		-		15		_ + + _	D 1		+ 26.0'
	_	-		-	-	11	Boring completed at 26.0 feet.		
				_					
					1				
+	-	-			1				
-	-				1				
-	-			-	-				
				-					
					1				
	1								
					1				
					1				
-	-			1	1				
-		-	-	-	1				
-	-	-	-		-				
	-	-	-	-	4				
							1	1	
	100		1						
			1						
		1			1				
	1	-		1	1			14	
-	+-	-	-	+-	-				
		-							

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. MWSE3-19

SURF. ELEVATION 1457.2

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 938987.3 PVC Riser: 1459.29

Town of Sardinia, Erie County, NY

Easting: 1170663.1

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/18/19 COMPLETED 04/22/19

SN	0/ 6	6/	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION		ELL	WATER TABLE AND REMARKS
1	1					0 60 6	Moist to extremely moist gray			(1) 4-inch locking steel
21	1500	5		1	1	2. 3:	(SILTY-SAND) fill with little silt, trace	1 4	10	protective casing 2.25 feet
			6		11	0 60 6	organic matter, very loose, massive soil	1	1	above ground surface, PVC
				10		0 60 6	structure, (SM).		1	stickup 2.1 feet above ground
2	5			10		0	0.2	1 1	1	surface
22	-5-	6						1	-	,
22		_0_	8		14	9 9	Moist to extremely moist brown	101	11 8	The rest that are a large a large a large a
			-8-	10		0 . 0 . 0	(SILTY-SAND) with 3 to 7% gravel, little to some silt, trace organic	14	100	y 5/8" ID x 10" OD hollow stem auger casing with continuous spli
				10		0000	matter, compact, weakly blocky soil	1	BROWN	spoon sampling to 30.0 feet.
3	8			-		0.0	structure, (SM).	1	E S	Installed a 2-inch monitoring wel
23		6	1		11	0000	grades downward to 2.0	1	بنيا	in completed bore hole according
_			_5_	1.2		0'0'		1	3	to NYS DEC regulations.
	-			6	1	0000	Moist brown (SILTY-SAND) with 5 to	1	FUT PVC Riser	A control of the same production
4_	5	-				0000	15% gravel, little silt, compact,	1	is (ii)	<i>y</i>
18		5			11	0 00	stratified, (SM).	1	2	
			- 6		27.0	0000	grades downward to 4.0	14	S W	
				8		0 00 0	, Moist to extremely moist brown			<u>//</u>
5	2	1		11.0		0000	(SILTY-SAND) with 10 to 20% gravel,		E	3
17		3			6	0 00 0	little to some silt, compact, stratified,		4 1	//
			3		1	0000	(SM).	1	dule	"
				2		0000	grades downward to 8.0		ned /	
6	3					0 00 0	Extremely moist brown gravelly		-inch Schedule 40 FJT PVC Riser	4
10		6			13	0000	(SILTY-SAND) with 20 to 40% gravel,	1	5	<u>//</u>
			7	-	13	0000	little silt, loose to compact, stratified,		Ī /	
				5	1	0 00 0	(SM).	1	4	// ← 12.0'
7	4			1	1	0000		1.4	3	
- 11	1	5		-	1.2	0000				1 - 12.5
	7 1	-	6	1	11	0 00				(2) #00 size choke sand
			0	7		0000		1	(3)	(3) Bentonite seal (chips)
8	8			-		0000		13	-	
4	8	_				0 0				4
4		9	- 11		20	111111111111111111111111111111111111111		1	1	11 0 12 4.
		-	_11_	1 2	1	0000	grades downward to 16.0	72.4	3	t 15.5'
		-		9	1		that their beaus groundly	- 1		+ 16.0°
9	4	-			-	0000	Wet light brown gravelly (SILTY-SAND) with 20 to 40% gravel,		V.	(4) #00N size morie sand pack
12		3		-	15	0000	little silt, loose to compact, stratified,	1	12	A CONTRACTOR OF THE PARTY OF TH
			12	-	4	0 0	(SM).		11	
			-	14	1	0000	1400	2.4	₹	← 18.0'
10	4					0000		3.4	1 2	(5) 2-inch 0.010 slot continuous
16		4			7	0000			(2)	wrap screen
1		1	3	1		0000				The state of the s
		1		2		0 00 0		23		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915

SURF. ELEVATION 1457.2

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 938987.3 PVC Riser: 1459.29

Town of Sardinia, Erie County, NY

Easting: 1170663.1

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/18/19 COMPLETED 04/22/19

SN	0	6 12		12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	QT.	WATER TABLE AND REMARKS
11	6						0000	COLUMN DESCRIPTION	A.		13.5	Water at approximately 16.0 feet
11	_	1				12	0 0	Wet light brown gravelly (SILTY-SAND) with 20 to 40% gravel,	1	c	, a v	below ground surface upon
				3	-	7	0000	little silt, loose to compact, stratified,	1.7	ree	100	completion.
				-	2		0000	(SM).	1.33	SC	1.37	1.200
12	2					1	0 0	2200	4.7	rap		
16	_		1			12	0000		1	X S	1.0	h _a
- 10				3	-	7	0000		1.47	non	ac.	/
					2		0 0			章	D.	
13	6				-		0000		100	00	Eg.	
8	-		3			7%	0000		1.1	ot	ā	
-		1	+	6		14	0 00			0 8	DE .	
		-	+	0	7		0000	grades downward to 26	0.8	10.0	že	
1.4	iz						6 0 . 0	Wet gray (SAND) with 3 to 7% gravel,	9.5	H C	S	
14		\neg	9					mostly fine to coarse size sand, trace	13	2-inch 0.010 slot continuous wrap screen	#00N size morie sand pack	
12	-	-	1	9		18	. 9 4 .	silt, compact, stratified, (SW).	V	N	365	i
-	+	-		9	11		0. 00 0	grades downward to 28	8.0	4		
-	1	+	_	_	_1)		0 . 0 0 . 0	Wet brown (SILTY-SAND) with 5 to	1	1 1 1 5	-	← 28.0'
15 7	- 2		_	-				15% gravel, little silt, loose, stratified,	12	17.14		7.1
-	+	-	3	_		8	9 9	(SM).	10	1,3,23		
-	-	-	-	5			0 60 6		0.0		111	NIA by
	-	-	-	_	6	1	19. 19.					4 30.0'
	-	+		-				Boring completed at 30.0 feet.				
	-	-	-			-						
-	+	-	-			-	1					
_	+	-	_	_								
_	+	-	-		-		1 1					
_	-	4		-	_		1					
							1					
						1						
_												
	- 1											
			1									
							1	4				
			=1	-								
					= 1	1						
						1						
-	_	_				1	1 1 11					

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. MWSE4-19

SURF, ELEVATION 1448.6

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939171.9 PVC Riser: 1450.59

Town of Sardinia, Erie County, NY

Easting: 1170296.2

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/22/19 COMPLETED 04/22/19

REC		12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	Ī	S WELL		WATER TABLE AND REMARKS
	4					0.000	1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		1	(0.4 lead leaking atom)
15	-	5		7.24	14	0000	Moist to extremely moist brown (SILTY-SAND) fill with 5 to 15% gravel,			1 4	(1) 4-inch locking steel protective casing 2.2 feet above
10		-1	7		12	0000	little sand, trace organic matter, loose,			11	ground surface, PVC stickup 2.0
		_		8		0 0	massive soil structure, (ML).	0 1		N ===	
2	5			-0		0000	0.3	1 4	-	8	
13	-9-	5			137	0000		1	ise	11	(2) Cement Bentonite Grout
-10			6		ii.	0000	Extremely moist brown gravelly (SILTY-SAND) with 20 to 40% gravel,	111	C		
	-		-0	6		0000	little silt, loose to compact, stratified,	14	9	1 4	+ 4.0'
3	8			-		0000	(SM).	1.4	E	(3)	
10	-	4			1	0000	137.XI		40		← 4.5'
		-1	4	-	8	0000			a e		(3) #00 size choke sand
	_		4	6	1	0000	grades downward to 6.0	1	edu	41	and their stem withing again.
4	5	7		0	1	0000	Wet brown gravelly (SILTY-SAND) with	1	2-inch Schedule 40 FJT PVC Riser		(4) Bentonite chips (chips)
9	- 0	5			1	0 00	20 to 40% gravel, little silt, loose to		5		
		-5	6		11	0000	compact, stratified, (SM).	1	Ę.	1	. 76
			.0	6		0000		1284	2	(3)	+ 7.5'
5	2		1 - 1	-0	1	0 0		1.4		15.5	← 8.0′
6	-	2			2	0000		15		14.0	
-		-	3	_	5	0000		18		150	
			-3	4	1	0 0		13.5		12.4	← 10.0°
6	6			-		0000		8.4		16	e 10.0
8	0	7			100	0000				100	Note: Advanced bore hole with 6
-			5		12	0 00		100			5/8" ID x 10" OD hollow stem
		-	3	3		0000		1	-		auger casing with continuous spli
7	7			3	1	0000		100	eel	Se .	spoon sampling to 20,5 feet.
9		2				0 00	grades downward to 13.0	143	SCI	d p	Installed a 2-inch monitoring well
0		-	3		5		Wet gray (SAND) with mostly fine to	197	de	ue .	in completed bore hole according to NYS DEC regulations.
	100		3	3	1	14:11:11	medium size sand, trace silt, loose,		M.	:00.	to MYS DEC requiations.
8	6			3	1	0.00	weakly stratified, (SW).	3 5	Jour	morie sand pack	Water at approximately 13.0 feet
13	0	5				5000	grades downward to 14.0	1 1	.010 slot continuous wrap screen	size	below ground surface upon
15		9	5		10	0.00	Wet gray very gravelly (SAND) with 40		COD	Z.	completion.
			5	5		800	to 60% gravel, occasional cobble,	14.3	ot	MOO#	
_	10			2	1	0.0	trace silt, loose to compact, stratified,	1	O S	420:	
9 10	10	10			0.0	0.00	(SW), (GW).	4.73			
IŲ	-	12	17		29	0.00		14.4	9	810	
-	-	-	17	W.	1	0:00:		1	2-inch 0	100	
	- 1	-		9	-	0.90			2	100	
10		1022			1	0.00		100		13.3	
15		12	144	1	30	5000		150			
	-		18	21	-	0.00		0.00		. 24	÷ 20,0°

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. MWSE4-19 FAX (716) 655-2915

SURF. ELEVATION 1448.6

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939171.9 PVC Riser: 1450.59

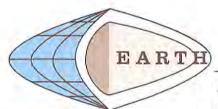
Town of Sardinia, Erie County, NY

Easting: 1170296.2

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/22/19 COMPLETED 04/22/19

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
KEC						V.6.V.	Wet gray very gravelly (SAND) with 40 to 60% gravel, occasional cobble, trace silt, loose to compact, stratified, (SW), (GW).	<u>P</u>	← 20.5' (5) #00N size morie sand pack
							Boring completed at 20.5 feet.		


Table B-1 Monitoring Well Development Summary Hydrogeologic Investigation Report Chaffee Sanitary Landfill - Southern Expansion Chaffee, New York

Well ID	Development Date	Volume Removed (gallons)*	pH (standard units)	Specific Conductance (uS/cm)	Temperature (°C)	Turbidity (ntu)	Comments
MWSE-1	06/13/19	15	7.80	680	10.5	6.40	185 gallons removed during initial filter pack development on 5/3/19 and 5/6/19
MWSE-2	06/12/19	13	7.60	850	12.7	7.10	100 gallons removed during initial filter pack development on 5/3/19
MWSE-3	06/12/19	23	7.40	620	13.9	6.11	110 gallons removed during initial filter pack development on 5/1/19
MWSE-4	06/12/19	14	7.30	350	14.8	5.56	100 gallons removed during initial filter pack development on 5/1/19

Notes:

GEI Consultants, Inc., P.C. Page 1 of 1

^{*}represents volume removed during final low-flow well development to satisfy water quality sampling requirements following initial high-flow development event in early May 2019 which developed sand filter pack after well installation.

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZ01-19

SURF. ELEVATION 1453.7

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 938641.8 PVC Riser: 1455.38

Town of Sardinia, Erie County, NY

Easting: 1170448.0

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/04/19 COMPLETED 04/04/19

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WEL	5	WATER TABLE AND REMARKS
1	1	11		-		0.00.6	Acces to be access to the books		1	1	(1) Approximately 1.7 feet of
17		2				27.	Moist to extremely moist brown				2-inch PVC stick up with J-Plug
-1/		-	3		5	4	(SILTY-SAND) fill with 3 to 7% gravel, little to some silt, loose, massive soil	12	1	1	2-ment ve stick up min v ring
-		-	_3_	3		0 60 6	structure, (SM), (soil berm)	1	1	14	
7.0-	-			_3_			ondered for the formation				
20	2_					9. 9.		1	d	17	
20	-	2	1.4	-	5	0 60 6		1		1	
-	-	-	3_								
1 12.0	100			3_		4		1	1	1	
3	2	-	_	-	-	0 60 6		1		5	
20		2			- 5		5.4		2-inch Schedule 40 FJT PVC Riser	(CHIPS)	
_		-	_3_	-			Moist brown (SAND) with mostly fine to	1	- E	3	
-	-	-		1			coarse size sand, trace silt, very	1	ě Š	SEAL	
4	4				-	0000	loose, stratified, (SW).		5	120	
14	_	2			4	0000	grades downward to 6.0	1	F	BENTONIYE	
			2		1	0 0	L	1	4	8	
			1.0	1	1	onor	Moist to extremely moist brown	1] #	21	Note: Two attempts were made
5	3			1000	1	0000	(SILTY-SAND) with 10 to 20% gravel, occasional cobble, little silt, loose,	1	je j	8	to get better recovery for
1		2			4	0000	stratified, (SM).		S	12	sample 5
-			2		18.	0000	grades downward to 8.0	1	1 5	1	
			100	1		0000	L	1	3		
6	2					0,000	Extremely moist brown (SILTY-SAND)	N.		12	
10		2	4		4	0000	with 15 to 25% gravel, little silt, very loose, stratified, (SM).	/	ij	1	/
			2] [2	0000			3	27	
				2		0 00 0	grades downward to 12.		1	1	1
7	2					0000	Extremely moist, wet below 15.0 feet,	/	i	1	
8		5			7	0 00 0	brown gravelly (SILTY-SAND) with 20	1	4	1	+ 13.0'
			2		7 '	0000	to 40% mostly subangular shale and	13	3	10	
				2		0000	dolostone gravel, little silt, loose,	13		150	
8	5					0 00 0	stratified, (SM).	. 1	e e		
9	-	3			1 .	0000		1 44		1 9	÷ 15.0°
		1	3		- 6	0000		1		ck	10.0
				4	1	0 00		2.6	9	sand pack	(2) 0.020 slot 2-inch PVC scree
9	5	-				0000		13	2	and	
6	0	3			1	0000				0.0	Water at approximately 15.5 feet
0		3	2		- 5	0 0			(2)	#0 Size	below ground surface upon
	-	-	- 4		-	0.000		1.5	33	0#	completion.
100	-	+		2	-	0000		1 4		13	
10	2	-		-	-			9.3	V.	157	
2	-	2	-	-	- 4	0000		1		1.8	3
-	-	+	2	-	-	0000	20 m 20 m 20 m 20 m				
				5	1	1.0.0.0	grades downward to 20	.0			

Soil and Hydrogeologic Investigations * Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. PZ01-19 * FAX (716) 655-2915

SURF. ELEVATION 1453.7

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 938641.8 PVC Riser: 1455.38

Town of Sardinia, Erie County, NY

Easting: 1170448.0

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/04/19 COMPLETED 04/04/19

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL		WATER TABLE AND REMARKS
11	6					0.0000000000000000000000000000000000000	(07.7)	.53	5	2.00	Company Company (1)
16		10			3.0	0000	Wet brown (SILT) with trace very fine size sand, compact, thinly bedded,	100	0.020 slot 2-inch PVC screen	14.5	Note: Took sample 13 and
10		-10-	- 6.5		24	0 00	(ML).		SC	10	augered to 25.0 feet.
	-		14			0000		.77	Š	*	Note: Advanced bore hole with 4
	- 17.			14_		8000	grades downward to 20.4	10	4	ba	1/4" ID x 8" OD hollow stem
12	15	VAL				0000	Wet brown gravelly (SILTY-SAND) with		iệ	sand pack	auger casing with continuous spli
9		_17_	-		40	0000	20 to 40% gravel, trace to little silt,	104	2	S.	spoon sampling to 26.0 feet.
_			23	-		0000	compact, stratified, (SM).	10	slo	size	Installed a 2-inch standpipe
_		-		24		0.004	, grades downward to 22.0	4	20	0#	piezometer in completed bore
13	_3_					- 	Wet brown very gravelly	10	0.0	46	hole to 25.0 feet.
13		5			14	5 6	(SILTY-SAND) with 40 to 60% gravel,	175	<u> </u>	٠, الـ	÷ 25.0°
			9		1 1		occasional cobble, trace to little silt,	1		1.7	
			0.00	16		4 - 4 -	dense, stratified, (SM), (GM).	. pmt	-644		+ 26.0'
				173			grades downward to 24.0				
			-				Moist to extremely moist gray high plasticity (SILTY-CLAY) with 3 to 7%				
		100			1		gravel, trace sand, stiff, thinly				
-	-				1		laminated with very thin coarse silt				
-		_			1		lenses, (CL).				
_				-	1		26.0				
-		-		-	4		/				
-	_	-		-	-		Boring completed at 26.0 feet.				
	-	_		-	-						
					4	1					
	11.000										
					1						
	1			1	1						
		1	-		1						
-		-	-	-	-						
-	-	-	-	-	-						
		-		-	4						
		-	-	_	-						
		_									
	1										
	-	1		1	7						
-	-	-		+	+						
-	-	-	-	-	-						
						1					

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 HOLE NO. PZ02-19 • FAX (716) 655-2915

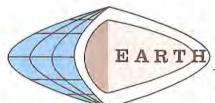
2A79ch

SURF. ELEVATION 1457.2

PROJECT WMNY Chaffee Landfill - Southern Expansion LOCATION Northing: 938911.5 PVC Riser: 1458.68

Town of Sardinia, Erie County, NY

Easting: 1170460.2


CLIENT GEI Consultants Inc. P.C. DATE STARTED 04/05/19 COMPLETED 04/08/19

DEPTH

BLOWS ON

SAMPLER INFT

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	1	WATER TABLE AND REMARKS
Lyn	1	-				0000	Andreas and any sector	1	-	1	(1) Approximately 1.8 feet of
18		2				0.0	Extremely moist grayish brown (SILTY-SAND) fill with 15 to 25%				2-inch PVC stick up with J-Plug
10			-		5	0000	gravel, some silt, trace organic matter,	1	1	1	2-ment ve stien op men v 170g
-	_		_3_			0 0	loose, massive soil structure, (SM).	12	1	12	
				3		0000	loose, massive son structure, (Sin).	1]	1	
2	2		-			0000			7	23	
16		2			6	0 0				1	
			4		-	0000		1	1	1	
		-		4		0000		1	1	1	
3	3			100		0000					
14		4				0000	clear transition to 5,0	1	1	1	
7.0			6	1 3	10	0000	Extremely moist to moist brownish gray	1		12	
			O		1	0.0	gravelly (SILTY-SAND) with 15 to 25%	1		1	
- 0	12			4	1	0000	gravel, very fine to very coarse size	1	1	VCHIPS)	
4_	3			-		0.00	sand, little silt, loose, stratified, (SM).		2-inch Schedule 40 FJT PVC Riser	(3)	
12	-	3_			6	0000		1	1 8	5	6
			3			0000		1	2 2	SEAL	
	1.1		1 3.11	4		0.0		/	E	병미	
5	3					0000		1	- 11	E.	
12	14.3	4			8	0 00 0	0.5		8	Z	9
			4] "	0000	clear transition to 9.5	1	를	12	la contraction of the contractio
	1			7	1	000	Extremely moist brown (CLAYEY-SILT)	1	8	BÉNTONITE	
6	3					_AA_	with 3 to 7% gravel, some clay, trace		1 5		
14	3	-		-		0 0	sand, stiff, weakly thinly laminated,	>	3	1	
14		4	_		10	0000	(CL).		Ϋ́	12	
-	-	-	6		1	0 00 0	11 clear transition to 9.8	1	1 0	11	
_		-	-	4	4	0000	1	1	3	13	
7	5					0000	Extremely moist brownish gray		!		
13	1000	4			9	0 0	(SANDY-SILT) with 5 to 10% gravel,	1	ď	1/1	
	- 1	-	5			0000	some fine to coarse size sand, trace clay, loose, weakly stratified, (ML).	1		12	
				9		0000	[[[[[[[[] [[] [[] [[] [[] [[] [[] [[] [Ŋ	1	
8	3				1	0000	clear transition to 10.7	1	3		Water at approximately 18.0 feet
9		5			1	0000	Extremely moist brownish gray gravelly			1	below ground surface upon
		1	5	100	10	0 00 0	(SILTY-SAND) with 20 to 40% mostly	1	1	1	completion.
			3	0		0000	subangular shale and dolostone gravel,		1	1	
	1	-	-	8	-	The state of the s	occasional cobble, very fine to very		· ·	100	÷ 16.0'
9	8	-		-	1	0000	coarse size sand, little to some silt,	1		1	(a) #0 size eachees!
7	-	12		-	20	00.00	loose, stratified, (SM) tending toward	P.	à	13	(2) #0 size sandpack
			8		1	0 0	(SM), (GM).		3	130	1.1.9. 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
				16		0000	grades downward to 18.0	0		(5)	+ 18.0'
		-						1,4	4	1.7	(3) 0.020 slot 2-inch PVC scree
			100	100		110.1		2.6	(3)	1.0	Note: No sample number 10 due
				1 - 1		0000	A N		_		to boulder.
_	-	1	-	-	-	0 0	See next sheet	100		100	to boulder.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 HOLE NO. PZ02-19 FAX (716) 655-2915

2A79ch

SURF. ELEVATION 1457.2

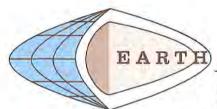
PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 938911.5 PVC Riser: 1458.68

Town of Sardinia, Erie County, NY

Easting: 1170460.2

GEI Consultants Inc. P.C. CLIENT


DATE STARTED 04/05/19 COMPLETED 04/08/19

DEPTH BLOWS ON IN FT SAMPLER

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WEL	L	WATER TABLE AND REMARKS
	-11	6					00000	Extremely moist brownish gray gravelly	1.77		1.0	Note: Advanced bore hole with 4
	6	- 1	5			9	0.0	(SILTY-SAND) with 20 to 40% gravel,	121		3.4	1/4" ID x 8" OD hollow stem
				4		9	0000	occasional cobble and boulder, trace	6.1	-	120	auger casing with continuous spli-
					6		0000	to little silt, compact, stratified, (SM)		E E	1,2 9	spoon sampling to 38.0 feet.
1	12	4	-				0 00	tending toward (SM), (GM).	1 1 1	SCREEN	100	Installed a 2-inch standpipe
	5		3			1 .	0000	18.0	1	CS	100	piezometer in completed bore
1				2		5	0000	Boulder.	130	₽	YCK.	hole to 28.0 feet.
					4		0 00 0	19.0	1 3 3	공	P.	
Ì	13	3	-		15.4		0000	Wet brownish gray gravelly		F	SANDPACK	
	6		6			1	0000	(SILTY-SAND) with 20 to 40% gravel,	13.	1 2	ui.	T I
				5		11	0 00 0	trace to little silt, loose, stratified,	1	120	SIZE	
					12	10	0000	(SM).	1	000	0#	
	14	13				1	0000			0.020 SLOT 2-INCH PVC	1	
1	8		10			12	0 00 0		4	~	134	
-			10	9		19	0.000	424	10		100	
				-	12	1	0000	28.0	134			÷ 28.0°
	15	5			16	1	00	Wet to extremely moist gray high		UV		- 28.0
	14	1	6			1	0 0	plasticity (CLAYEY-SILT) with 3 to 7%	100	10		+ 29.0'
			-	8	1000	14		gravel, some clay, trace sand, stiff,		-		- 29.0
			0.00		11		0	thinly laminated with very thin coarse		(Note: Two attempts to collect
)—	16	13			- 1	1	0 0	silt lenses, (CL).	1	-/	1/1	sample number 16 (12" recovery
	12	-19	14			1			1	1	->/	is from second spoon).
			14	17		31	0 0			1		
				-10	18	1	0 0 0		1	-/	181	
	17	8			10	1			1	->	<u>- 医</u> (
	22	0	7		-		0 _0 _0			1		
4			-	10		17	0 0 0		1	-/	Tai	
				10	13				1	->	160/	4
	18	5			13	1	· A · A ·		1	1	与	
	20	- 0	7			12	0 0		/	-/	TOWN	
5—			-	10		17			1		-3	1
				10	13				1	1	1	
	19	5			13		0 -0 -0		1	-/	11]
	20	0	8			34			1	->	-/	1
			0	9		17	·	clear transition to 37.5	5	1	1	
				9	13	1	V 0V	Wet gray gravelly (SAND) with 15 to	1	1		1
					13	1		25% gravel, very fine to very coarse		<u> </u>		d ← 38.0°
					-	1		size sand, trace silt, compact,				
						1		stratified, (SW).				
	-	-	-		-	1		38.0)			

Boring completed at 38.0 feet.

" SPOON 12 * WITH 140 Ib. WT. FALLING " PER BLOW N=NUMBER OF BLOWS TO DRIVE 2_ 30 SHEET 2 OF 2 LOGGED BY Brian Bartron & Jason Kryszak, Geologists, (cns)

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZ03-19

SURF. ELEVATION 1457.4

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939121.1 PVC Riser: 1459.04

Town of Sardinia, Erie County, NY

Easting: 1170496.2

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/03/19 COMPLETED 04/04/19

DEPTH IN FT BLOWS ON SAMPLER

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL		WATER TABLE AND REMARKS
1	13					9 9	Moist brown (SILTY-SAND) fill with 5	1		23	(1) Approximately 1.7 feet of
18		2			6	0 60 6	to 15% gravel, little silt, trace organic	12		1	2-inch PVC stick up with J-Plug
			4	1	٥	200	matter, loose, massive soil structure,	1		1	A con the second of the second
111				4		9 9	(SM).			1	
2	1					0 . 0 . 6	2.0	12		12	
17	-	4			10	0 00 0	Moist brown (SANDY-SILT) with 5 to	11	1	11	
		-4-	4		8	9. 9.	15% gravel, little silt, loose, stratified,	1		06	
			9	4		0 60 6	(SM).	12		12	
-				4			(SIII).	1	1	1	
3	4					9 9		1		1	
17		4	12	_	9	0 60 6				()	
-	-	1	5_	100	1		grades downward to 6.0	1	1	1	
		-	-	4	1	0 . 60 . 6		12	1	S	
4	2	-				2. 3.	Wet brownish gray (SILTY-SAND) with		ser	(CHIPS)	
13		3			- 5	0 . 0 0 . 4	5 to 15% gravel, little silt, loose, stratified, (SM).	1	Œ	19	
			2			0 40 4	stratified, (SM).	12	20	SEAL	
				1	1	9 9		1	1 =		
5	1			1 40	1	0 . 60 . 6	grades downward to 9.0	1	L	H.	
10		2			7			1	2-inch Schedule 40 FJT PVC Riser	BENKONITE	
-			5		1		Moist gray (SILTY-CLAY) with 3 to 7%	1	i ii	ZI	
				6		0 0 0	gravel, trace sand, stiff to very stiff,	1)ed	18	
6	5					_ = = = = =	thinly laminated with very thin coarse	1	Scl	1	
22		6	F 14	-	16	0 0 0 0	silt lenses, (CL).	1	ક	1	1.8
		_	10		10	8 8 0		1	1 =	1	1
			1	9	1	=====			2		
7	5				1	0_00_0	Street Wilderson Co.	. 7	1	1	1
24		7	-		1	8 8 0	grades downward to 13.0) / /		12	1
		1	9		16	0000	Moist, wet below 19.0 feet, grayish		ų l		
	1	-	9	-		0000	brown to brownish gray (SILTY-SAND)	1	1	1	1
-	1	-	1	9		0000	with 15 to 25% gravel, little silt,	12		1	1
8	5	-		-	1	0.000	compact, stratified, (SM).	1		1	
16		7		-	14	0000		1	3	1	A .
_	-	-	7	100	-	10000		1		1	1.350
-	-	-	-	7	4	0 00 0		-	7	1	← 16.0'
9		-	_	-		0000		200	1	100	(A) 100 cm 2 cm 2 cm 2 cm
8		8	_		- 19	0000		18	1	1	(2) #0 size sandpack
		1	11			0 00		113	,	13	
	4			9		0000		188	-	(2)	+ 18.0'
10	2			W.		0000		.4.	4	18	(3) 0.020 slot 2-inch PVC screen
11		4		+ - 1	8	0 00		1.5	(3)	3 2	10.0
-			4		7 °						below ground surface upon
				2		0 00 0	grades downward to 20.	.0	,	1 5	completion.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 HOLE NO. PZ03-19 • FAX (716) 655-2915

2A79ch

SURF, ELEVATION 1457.4

PROJECT

WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939121,1 PVC Riser: 1459.04

Town of Sardinia, Erie County, NY

Easting: 1170496.2

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/03/19 COMPLETED 04/04/19

100	EC	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WE	LL	WATER TABLE AND REMARKS
-	11	3			T.		0000	Wet grayish brown to brownish gray	57		Note: Advanced bore hole with 4
	10		5		1		0 0	(SILTY-SAND) with 20 to 30% mostly	11.	13	1/4" ID x 8" OD hollow stem
			TV	8		13	0000	subrounded to subangular gravel, little	-	100	auger casing with continuous spli-
			-		10	V 1	0000	silt, compact, stratified, (SM).			spoon sampling to 34.0 feet.
	12	5			-10		0 0	23. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20	SCREEN	in line	Installed a 2-inch standpipe
_	8	_5_	6				0000		S		piezometer in completed bore
۲	-		-0	-5		11	0000		3	5	hole to 28.0 feet.
F				-5-	5		0 0		동	SANDPACK	,
H		25			- 5		0000		Z	N.	
	13	_3_		_	-	1	0000		~ ~	S	9
+	10		15		-	30	0 0	and the second second	0.020 SLOT 2-INCH PVC	#0 SIZE	
-	-	_		15			0000	grades downward to 25.8	S	0.5	
-	_			-	14		5_05_0	Moist gray high plasticity	020	#	۵.
	14	6		-			===	(SILTY-CLAY) with 3 to 7% gravel,	0		
L	13	100	9			19	I+ II+ I	trace sand, very stiff, thinly laminated	.60		d d
		1	111	10		700	8 0	with very thin coarse silt lenses, (CL).	1.4	- 4	·
				100	13						+ 28.0'
	15	- 5	-		1		= + = - + =		1.4		4
	21	US C	10		3.	23	*			2.5	← 29.0'
			PL-11	13		20			ンーン	1-8	
Т	. 1				16		- + + -		1/1	10	
t	16	4				1	8 8 0		1	1.0]
	22	1.2 41	8			1	<u> </u>		(-)	-	a
F				10		18	0_00_0		1/1	一名	4
-				10	13		8 8 -		11-	T W	1]
r	17	4			12		<u> </u>	20.0		(-E	3
_	24	4	8	-		700	8 8 0	clear transition to 32.9	1	15	
-	24		8			16	17271	Wet (SAND) mostly fine to medium size,	11-	18	1
-	_	-		8	1.0	-		trace silt, compact, thinly bedded,	1	/	
-	_	_	-		12	1		(SP).			ıl + 34,0°
1		_	-	-	-	-	-	34.0	3		
+			-	-	-	1		Boring completed at 34.0 feet.			
L			-		-	-		boring completed at 34.0 feet.			
			-		-						
L				-		1			40		
				1							
1									Y		
						1					
1				1							
-	_		1		1	1					

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road · Elma, NY 14059 HOLE NO. PZ04-19 • FAX (716) 655-2915

2A79ch

SURF, ELEVATION 1456.3

PROJECT WMNY Chaffee Landfill - Southern Expansion

PVC Riser: 1457.79 LOCATION Northing: 938964.9

Town of Sardinia, Erie County, NY


Easting: 1170982.2

GEI Consultants Inc. P.C. CLIENT

DATE STARTED 04/08/19 COMPLETED 04/09/19

BLOWS ON DEPTH SAMPLER IN FT

1 18	\ \	ωн			1. 4. 4.4.4.		DOMESTIC BY	The state of the s		3		
18	-			~			***********	SALES AND THE PROPERTY OF THE	1		14	was a second of the second
10		WH	100			10	*******	Extremely moist dark gray				(1) Approximately 1.5 feet of 2-inch PVC stick up with J-Plug
_	+	_		1		3	T4 E T4 E	(SANDY-SILT) topsoil with little	1		23	2-Inch PVC Stick up with 3-ring
	+	\rightarrow	_	2			8-58-5	organic matter, trace to little sand, trace clay, very loose, granular soil	1		1	WH: Sampler penetration with
10.154	-	2	-	-	_5_			structure, (ML).				weight of rods and hammer.
2		5			-		<u> </u>	clear transition to 0.7	1		03	
20		-	6			13	0 0 0		1		1	Note: Advanced bore hole with 4
_	-	-	-	7			0_00_0	Moist light brown (SILTY-CLAY) with 3	1		1	1/4" ID x 8" OD hollow stem
_	-	\rightarrow			-8		<u> </u>	to 7% gravel, trace sand, firm, blocky	13		13	auger casing with continuous split
3		1	_	7.1			0_0 0_0	soil structure, (CL).	1		1	spoon sampling to 32.0 feet.
17	4	_	3			6	===	grades downward to 3.5	1		1	Installed a 2-inch standpipe piezometer in completed bore
- 14			100	3		7	55	Moist to extremely moist brown	1		13	hole to 28.0 feet.
			2	1.7	4			(SILTY-SAND) with 10 to 20% gravel,			3	tole to 20.0 feet.
4		3	w# 1	117	11.0		<u> </u>	little sand, trace clay, compact,	1	6	121	
24			5			13	\$	stratified, (SM).	1.	Rist		
				8		13	0_00_0	grades downward to 5.2		2		
				1 10	-11	1	<u> </u>	Moist to extremely moist gray	1	٩	SEAL	
5		5			17	1	13.00	(SILTY-CLAY) with trace sand, firm,	12	5		
18	_	9	7			1.0	0.000	weakly thinly laminated with very thin	1	9	到	
10	+		-	9		16	23336	coarse silt lenses, (CL).	1	9	2	
	+	_	_	9	32	1	1100000	clear transition to 7.3	12	npa	BENTONITE	
-		10		-	32		0000	(1	2-inch Schedule 40 FJT PVC Riser	20	
6		10	10				W.8V.1	Moist to extremely moist light brown (SILTY-CLAY) with trace sand, very	1	5.5	03	
10	+		_15_	2.57		45	0.00	stiff, thinly laminated with very thin	12	ij.	12	
-	+	_	_	30	45	1	0.00.	coarse silt lenses, (CL).	11	2	11	
-	-		_	_	36	1	0.00	grades downward to 8.0	1	17	13	
7		37	_				0.00		1		()	
20)	_	29			59	5000	Moist (SAND) mostly very fine to	1		1	N ₀
_	-			30			0.00	coarse size, compact, stratified, (SW).	1		1	(2) a
_					32		3.00	grades downward to 10.0				
8		45					0.0	Moist (SILTY-SAND) with 20 to 30%	1		1	
2	1	100	36			71	0:00	gravel, occasional cobble, trace silt,	1		1.	
	-			35		1 1 9	0.00	dense, stratified, (SW).				
11				777	25		0:00:	10.5	2		1	← 16.0'
9		11		-			10:00	Moist very gravelly (SAND) with 40 to	87		12.3	1977
8	_		12			0.7	0:00:	60% gravel, occasional cobble, trace	100		18	(2) #0 size sandpack
				15		27	60.00	silt, dense to very dense, stratified,	10		- 17	The second of the second
			-	.0	12	1	0.00	(SW), (GW).	1.30	-	(2)	← 18.0*
10		11	-		14	1	0000	grades downward to 18.0	181		3	
13	_	CII.	11			33	0000	Glades downward to 10.0	1,4	~	1	(3) 0.020 slot 2-inch PVC screen
10	+		- 11	•		19	00000		130	(3)	33	Water at approximately 18.0 feet
-	-		*	8	3	+	0000	See next sheet	9.5		1983	below ground surface upon completion.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

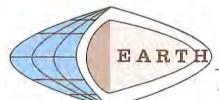
(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>PZO4-19</u>

SURF. ELEVATION 1456.3

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 938964.9 PVC Riser: 1457.79

Town of Sardinia, Erie County, NY


Easting: 1170982.2

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/08/19 COMPLETED 04/09/19

DEPTH IN FT BLOWS ON SAMPLER

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WE	ELL	WATER TABLE AND REMARKS
11	5			1		0000	Met brown yeary grayelly	100	12	
9		4			,	0.00	Wet brown very gravelly (SILTY-SAND) with 40 to 60% gravel,	3.3		
			5		9	0000	trace to little silt, compact, stratified,	-59	1.0	
				5		0000	(SM), (GM).	i i		
12	5					0000	grades downward to 20.0	ol i ë	5	
10		6			2.	0000	Wet brown very gravelly		3	
- 10			5		11	0000	(SILTY-SAND) with 40 to 60% gravel,	3	X	5
			-5-	6		0000	trace to little silt, loose, compact	3	5 6	
13	8		-	-0-		0000	below 22.0 feet, stratifed, (SM).	2	AN N	
7	- 8	7				0000		144 5	S	
-1	94	-	9	-	16	00000000000000000000000000000000000000		2	#0 SIZE SANDPACK	
_	-		я	8	1	0000		0	0.0	
4.1	74			-	1	0000		O OO O O OT 2-TINCH DVC SCREEN	70	1
14_8	10	-				V . ~ V		, c	9	
0		_11_	16		21	P.O.O.O.4		139	1	
			10	100		0000		, 4 ×		* 100
27.5	15	-		8	1	0000				⊢ 28.0'
15	7		-	-		7.0.0.V		7.40	30.0	
6	-	8		-	17	0.00.0		171	11	← 29.0*
	-	-	9			0000	grades downward to 30.0	0/1-	1	(4) Bentonite Seal (Chips)
	-	-	-	11	1	000		DE)	1-2	(4) Bentonite Seai (Chips)
16	8	-			1	14.50	Wet gray (SAND) mostly very fine to fine size, trace silt, compact, weakly	1/1	13	
16		5			14	1246	thinly bedded, (SP).	1-	1	·[]
		100	9		1	1355	32.0		/-/	3
_		-		10	1	*****		1		± 32.0°
	_	_			1		Boring completed at 32.0 feet.			
	-	-		_						
			100		1			1		
					1					
-										
					1					
		-								
	100			-						
]					
	10	1								
	10-1									
110	1 1									
				-	1					

Soil and Hydrogeologic Investigations * Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

CLIENT

HOLE NO. PZ05D-19 FAX (716) 655-2915

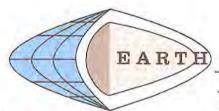
SURF. ELEVATION 1451.5

PVC Riser: 1453.89

PROJECT WMNY Chaffee Landfill - Southern Expansion LOCATION Northing: 939206.8

Easting: 1170882.9

Town of Sardinia, Erie County, NY


GEI Consultants Inc. P.C.

DATE STARTED 04/09/19

COMPLETED 04/12/19

DEPTH BLOWS ON SAMPLER IN FT

		18	24	100				3		
	_				2400000000	The second secon	1	~	1	None company to the first to the
_3	_		-		6_66_6	Extremely moist brown (CLAYEY-SILT)	1		1	(1) Approximately 2.4 feet of
100	_5_			11		topsoil with little organic matter and	14		1	4-inch PVC stick up with J-Plug
		6_								
			6		0_00_0	structure, (ML-CL).	23		21	Note: Water level at 17.0 feet
3	4.7		2.17		<u> </u>	clear transition to 0.3	1		1	below ground surface after
	3			_	0 0 0	E (COLOR DE LA COLOR DE LA COL	1		1	augers left at 56.0 feet for 12
		199	-	1			1		1	hours.
		-4	-							Malai Camala aumbora 31 30 33
-			- 6		0 0 0		1		1	Note: Sample numbers 31, 32, 33, 34, and 35 were taken with a 3"
		-			= <u>+</u> ====	coarse siit lenses, (oc).	1		1	[] - (2.1) () 회사 () () () () () () () () () () () () () () ()
	3			7	0_00_0		1		11	spoon.
		4					1		1	Note: Advanced bore hole with 6
			7		<u> </u>					5/8" ID x 10" OD hollow stem
2					5 6 6		1		1	auger casing with continuous spli
	4	-		1	T* TT* F		1		1	spoon sampling to 70.0 feet.
	-4	-23		9	5 6 6		11		1	Installed a 4-inch standpipe
		5	1			19	1	Se	14	piezometer in completed bore
	-		6		-4			œ	(5)	hole to 62.5 feet.
4					8 8	the second secon	1	Š	异	Hole to 02.0 feet.
4	9			21		clear transition to 9.3	1	E	6,	
	1111	12		2.5	- A	(en Tu e 110) - 11 - 1-11	1	2	41	
	-		20		0000		1	40	SE.	
B				1	0 9			프	اسًا	
-0_	0			0.0	S . S		1	ed	21	
	-0			24	. 9 6 .	clear transition to 9.5	1	t _C	ē/	
		16				Moist brown gravelly (SAND) with 20 to	1	50	高广	
	-		16		0.0.0.0		1	2	00/	
7			17.7.11		0.00			4		
	15	100		35			1		1	
	10	20					1		12	
			28		0.0.0		1		1	
14				1	0000		1		1	//
17	20			1 22	6000	The state of the s			()	
	20	2.4		60	0000	grades downward to 11.4	1		27	
		34	1 50	1	0000	Moist brown gravelly (SAND) with 20 to	1		1/	
			50	-	2000		1		1	
6					0000		1		1	
1 4	14		-	28	0000	- 1000000000000000000000000000000000000	()	177	[]	
	1	14		100	000	grades downward to 14.0	1		1	1
			13]	0000	The state of the s	12		12	
6			1	1	0000		1		1	1
0	10			500	0000		1		1	
4	10			25	0.00					
	1000	15		173	0000		k /		N 2	
	1 2 4 8 7 14	5	5 6 6 34 6 14 14 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 6 6 7 15 20 28 14 26 60 6 14 28 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 6 6 7 11 2 20 8 8 8 16 16 7 15 20 28 14 26 60 00 00 00 00 00 00 00 00 00 00 00 00	topsoil with little organic matter and clay, trace sand, soft, granular soil structure, (ML-CL). clear transition to 0.3 Extremely moist gray (SILTY-CLAY) with 3 to 7% gravel, trace sand, stiff, weakly thinly laminated with very thin coarse silt lenses, (CL). clear transition to 9.3 Extremely moist gray (SILTY-CLAY) with 3 to 7% gravel, trace sand, stiff, weakly thinly laminated with very thin coarse silt lenses, (CL). clear transition to 9.3 Extremely moist gray (SILTY-CLAY) with 3 to 7% gravel, trace sand, stiff, weakly thinly laminated with very thin coarse silt lenses, (CL). clear transition to 9.3 Wet brown (SILTY-SAND) with mostly very fine to fine size sand, little silt, compact, thinly bedded, (SM). clear transition to 9.3 Moist brown gravelly (SAND) with 20 to 30% gravel, trace silt, compact, stratified, (SW). grades downward to 10.0 Moist brown gravelly (SAND) with 5 to 15% gravel, trace silt, compact, stratified, (SW). grades downward to 11.4 Moist brown gravelly (SAND) with 20 to 40% gravel, trace silt, compact, stratified, (SW). Moist brown gravelly (SAND) with 20 to 40% gravel, trace silt, compact, stratified, (SW).	by the property of the propert	topsoil with little organic matter and clay, trace sand, soft, granular soil structure, (ML-CL). clear transition to 0.3 Extremely moist gray (SILTY-CLAY) with 3 to 7% gravel, trace sand, stiff, weakly thinly laminated with very thin coarse silt lenses, (CL). Clear transition to 0.3	topsoil with little organic matter and clay, trace sand, soft, granular soil structure, (MCL.) clear transition to stremely moist gray (SILTY-CLAY) with 3 to 7% gravel, trace sand, stiff, weakly thinly laminated with very thin coarse silt lenses, (CL.). clear transition to 9.3 4 7 weakly thinly laminated with very thin coarse silt lenses, (CL.). lear transition to 9.3 Wet brown (SILTY-SAND) with mostly very fine to fine size sand, little silt, compact, thinly bedded, (SM). clear transition to 9.5 Wet brown (SILTY-SAND) with mostly very fine to fine size sand, little silt, compact, thinly bedded, (SM). clear transition to 9.3 Moist brown gravelly (SAND) with 20 to 30% gravel, trace silt, compact, stratified, (SW). grades downward to 1.4 Moist brown gravelly (SAND) with 5 to 15% gravel, trace silt, compact, stratified, (SW). grades downward to 1.4 Moist brown gravelly (SAND) with 20 to 40% gravel, trace silt, compact, stratified, (SW). grades downward to 1.4 Moist brown gravelly (SAND) with 20 to 40% gravel, trace silt, compact, stratified, (SW). grades downward to 1.4 Moist brown gravelly (SAND) with 20 to 40% gravel, trace silt, compact, stratified, (SW).

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059

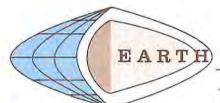
2A79ch

HOLE NO. PZ050-19 FAX (716) 655-2915

SURF, ELEVATION 1451.5

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939206.8 PVC Riser: 1453.89


Town of Sardinia, Erie County, NY

Easting: 1170882.9

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/09/19 COMPLETED 04/12/19

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
11	15			1.44		0000	Mail Bassie many Bassiens	13	1
13	13	16			00	000	Wet brown very gravelly		
-15		ID.	14311		30	0000	(SILTY-SAND) with 40 to 60% mostly subangular shale and dolostone gravel,	23 2	· il
	_	-	14_	132		0000	occasional cobble, trace to little silt,	1	4
	-	-		12		0000	very dense, stratified, (SM), (GM).		
12	8	_		_		0000	grades downward to 16.0	03 0	-3
13		12			26	000	I		7
			14		COL	PO 00 4	Wet brown gravelly (SILTY-SAND) with	11	11
		-		16		0000	, 30 to 50% gravel, little silt, compact, stratified, (SM), (GM).	13 D	.4
13	13					0000	grades downward to 20.0		7
11		14			26	0000		11 1	ii -
-			12			0000	Wet brown very gravelly		.4
				10		0000	(SILTY-SAND) with 40 to 60% gravel,		4
14	5	1,7	-	1.60		2000	occasional cobble, little silt, very		ी
10		17			1	0000	dense, stratified, (SM), (GM).		4
		"	26		43	000			ી !
			20	21		0000	grades downward to 28.2	1 8 D	<u> </u>
-	~			-		200		-inch Schedule 40 FJT PVC Riser	(C. 1)
15	8	-		-	1	- - - - - -	Extremely moist gray (SILTY-CLAY)	11 3	E i]
8		9			21	0_0	with 3 to 7% gravel, trace sand, very	15	33
	-		12		-		stiff to hard, weakly thinly laminated	10	L L
-	-	-		17	1		with very thin coarse silt lenses, (CL).	7 4 3	Pil
16	14	-			1	6 _ 6 _ 6		1 3	<u>"</u>
22	-	16	1	700	39		grades downward to 31.3	a se	51
			23	-	1	0000	Wet gray very gravelly (SILTY-SAND)	S	
			Farfy	29		0000	with 40 to 60% gravel, trace to little	1 2 6	# /
17	9		1	- 11	1	0000	silt, dense, stratified, (SM), (GM).	112	^I]
13	1 15	8	1		15	0000	grades downward to 33.3	1	-3
			7		19	0.00		1	4
				6		<u> </u>	Extremely moist gray (CLAYEY-SILT)	11	<u> </u>
18	7	1-	-		1	0	with 3 to 7% gravel, some clay, trace	C4 1	-3
17		В			1	9 9	sand, firm, thinly laminated with very thin coarse silt lenses, (CL).		4
		1	12		20		unit codise sit iclises, (CL).	11	1
			12	16	1	0		14	.4
14	17.4	-		16	1				C)
19	7	- 1	-	-	100				21
17		11	1000	-	- 24	0 0			1
		-	13	-	100				
1			-	14	-	0		03	-3
20	4		-	YY		0 0 0			
16		8			19			21	1
	1	1	11	1 + - 1	100	0 0		14	4
				13					

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZ05D-19

SURF, ELEVATION 1451.5

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939206.8 PVC Riser: 1453,89

Town of Sardinia, Erie County, NY

Easting: 1170882.9

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/09/19 COMPLETED 04/12/19

1	SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	1	WELL		WATER TABLE AND REMARKS
1	21	8					0	Extremely moist gray (CLAYEY-SILT)	1		1	
	18	1.4	11	-		26	0 0 0	with 3 to 7% gravel, some clay, trace	1		1	
			-/-	15	1.	20		sand, firm, thinly laminated with very	1		1	
			-	1 1	17		00	thin coarse silt lenses, (CL).	03		23	
	22	5					0 0	Andreas Automotive	1		1	
	15	-	11	- 1		00			1		1	
				17		28	00		13		8	
	- 1	+ +			19		0 -0 -0		1	ser	CHIPS	
1	23	3					-44-			8		
	16		9	-		22		grades downward to 45.4	1	P	A.	
7				13	-	22	0 0 0		1.4	5	160	
					18		0. op . o	Wet gray (SANDY-SILT) with some		0	E	
	24	7		17	refered.		3 . 4	mostly very fine to fine size sand,	1	e 4	ě,	
	15		7			21		compact, thinly bedded, (ML) tending toward (SM).	1	-inch Schedule 40 FJT PVC Riser	BENTONITE	
		(F. 18)		14	1	21	0. 00 . 0	grades downward to 45.7	()	che	9	
				-01	16		3	L	11	h.S	1	
	25	11		12.2			9	Wet gray (SAND) with 3 to 7% gravel,	1	-inc	1	
	16		_11	1		27	s	mostly fine to coarse size sand, trace silt, compact, stratified, (SW).	1	4	()	
				16			44;75;44 <u>;</u> 4		1		1	bl.
					22				13		13	
1	26	13						Moist to extremely moist gray				← 50.5'
	24		12			26		(SILTY-CLAY) with trace sand, very			3.54	17.764.90
				14				" coarse silt lenses, (CL).	13.5		1.50	// 12
					14			clear transition to 49.1	13			4.4
	27	10	-		7.0		0000	[[13.		- 33	+ 52.5"
	17		17	-		36	0.000	Wet gray (SANDY-SILT) with some	15.0		1,50	Contract of the Assessment of the Assessment
				19			0000	very fine to fine size sand, compact, thinly bedded, (ML).	13		10	(2) 4-Inch Schedule 40 0.020
	F	_14		275	22		2000	grades downward to 50.0			SAND PACK	slot PVC FJT screen
	28	21	1		4."		4. 9	[1.77		9.0	
5_	16	9.1	17		1877	32	0 5	Wet gray (SILTY-SAND) with mostly	1		AN	
5	-	1 1	-	15				" fine to medium size sand, trace to little " silt, compact, thinly bedded, (SM).				
	- 71				16		4 9	grades downward to 50.9		(2)	#0 SIZE	
	29	22					XXXX	L	5.5	22	0	
	16		23			51		Wet gray (SANDY-SILT) with little	1		**	
	-7		111	28		1		mostly very fine size sand, compact,	1		13.4	
				- 11	30		V 20 2	thinly bedded, (SM).	1		0.8	
	30	29	1	100	-		0000	grades downward to 51.7	1		1	
	10	-	20			33	0000					
		- 1		13		3.7	00000	San and March				
0		1			20		2020	See next sheet.	100		1,20,	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZ05D-19

SURF. ELEVATION 1451.5

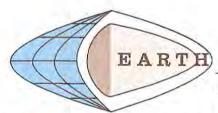
PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939206.8 PVC Riser: 1453.89

Town of Sardinia, Erie County, NY

Easting: 1170882.9

CLIENT GEI Consultants Inc. P.C.


DATE STARTED 04/09/19 COMPLETED 04/12/19

DEPTH

BLOWS ON

IN FT SAMPLER

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS			
31	18					0000	Marine Calculation and Page 1	33	(3) 4-inch Schedule 40 0.020			
6		15	-			0000	Moist to extremely moist gray (SILTY-CLAY) with trace sand, very	(3) SAND PACK	slot PVC FJT screen			
			15		30	0000	stiff, thinly laminated with very thin	(3) (1) P/	277-1 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15			
-	100	4		20		0000	coarse silt lenses, (CL).	N.				
32	18					0 0	grades downward to 52.0		+ 62.5°			
24	-10	28	14.7				Wet gray very gravelly (SILTY-SAND)	SIZE	, oz.o			
			60	1.1.	88	100000	with 40 to 60% gravel, trace to little	0				
W. T.			3617	65			silt, dense, stratified, (SM), (GM).	14-15-15	+ 64.0'			
33	12						grades downward to 54.0		3.00			
17	100.00	14			30	(8.874)	Wet (SAND) with 3 to 7% gravel, trace	1/1/2				
11			16		30		silt, dense, stratified, (SW).	というに				
				10			grades downward to 56.0	シーン一変				
34	51						Wet gray (SILTY-SAND) with mostly	1/1/2				
16		20	1	-	42		medium to fine size sand, little silt,					
		-	22		42		very dense, stratified, (SM). grades downward to 58.0	シーンニ連合				
				23				17778				
35	3	-		100		View III	Wet gray gravelly (SILTY-SAND) with	11(1)				
15		12			19		30 to 50% gravel, little silt, dense,	ンニンニ出仕				
	-	-4	7		, ,	7.1.	stratified, (SM), (GM).					
				11		14 (1 W)	grades downward to 62.0	1 1 1 1	← 70.0°			
-							Moist to extremely moist gray					
							(CLAYEY-SILT) with 3 to 7% gravel,					
1							little to some clay, very stiff, thinly laminated with very thin coarse silt					
							lenses, (ML-CL).					
							grades downward to 62.	7				
		-			4		Wet gray (SILTY-SAND) uniform fine					
					4		sand, some silt, very dense, thinly	1				
	100						bedded, (SM).					
		_					70.0					
		-		-	1		Boring completed at 70.0 feet.					
		-		-	4							
	1	-			-			N.	7			
1	-	-			-							
5		-			-			1				
		-		-	-							
-	-	-		-	-							
	-	+	-	-	-							
_	-	-	-	-								
-	-	-			-							

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. PZ05S-19 • FAX (716) 655-2915

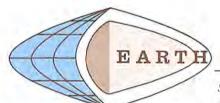
SURF. ELEVATION 1451.6

WMNY Chaffee Landfill - Southern Expansion PROJECT

PVC Riser: 1453.95 LOCATION Northing: 939208.4

Town of Sardinia, Erie County, NY

Easting: 1170888.7


CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/12/19

COMPLETED 04/14/19

DEPTH BLOWS ON SAMPLER IN FT

SN REC	0/ 6	6/	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	V	S VELL	1	WATER TABLE AND REMARKS
							Advanced augers without split spoon sampling to 22.5 feet.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4-inch Schedule 40 FJT PVC Riser	// // // BENTOKITE/CHIPS////////////////////////////////////	(1) Approximately 2.0 feet of 4-inch PVC stick up with locking Royer cap Note: Advanced bore hole with 6 5/8" ID x 10" 0D hollow stem auger casing without sampling to 22.5 feet. Collected a 3-inch diameter split spoon sample from 22.5 to 24.5 feet and completed with 6 5/8" ID x 10" 0D hollow stem auger casing without sampling to 29.0 feet. Installed a 4-inch diameter standpipe piezometer in completed bore hole to 28.0 feet.
								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		インノンノン	Water at approximately 13.5 fee below ground surface upon completion.
									(2)	#0 size sandback	← 16.0° ← 18.0° (2) 0.020 slot 4-inch PVC screen

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZ05S-19

SURF, ELEVATION 1451.6

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939208.4 PVC Riser: 1453.95

Town of Sardinia, Erie County, NY

Easting: 1170888.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/12/19 COMPLETED 04/14/19

DEPTH IN FT BLOWS ON SAMPLER

RE	10.00	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL		WATER TABLE AND REMARKS
								Advanced augers without split spoon sampling to 22.5 feet.	5			
2		8	15	26	32	41	000000	Wet gray gravelly (SILTY-SAND) with 30 to 50% gravel, trace to little silt, dense, stratified, (SM), (GM).	4.5	Ü	#0 size sandback	Note: Sample 1 taken from 22.5 to 24.5 feet with 3" spoon for selve analysis.
								Advanced augers without split spoon sampling to 29.0 feet.		0.020 slo		
								29	9.0			+ 28.0' + 29.0'
E								Boring completed at 29.0 feet.				
E												
								<u> </u>				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB01-19

2A79ch

HOLE NO. SBUI-18

SURF. ELEVATION 1459.3

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939664.5

Town of Sardinia, Erie County, NY

Easting: 1169965.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/03/19 COMPLETED 05/03/19

100	ALE A		0.,,,	CCI					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
ľ		2		7 1			**********		Note: Advanced bare hole with 3 1/4" ID x 7" OD hollow stem auger casing with continuous split space sampling to 18 0 feet.
ŀ	20		5				000	Extremely moist to wet dark brown	Note: Advanced bare hole with 3
ŀ	20	-	_5_			12	000	(SAND-SILT-CLAY) topsoil fill with 0	casing with continuous split
ŀ		_		7	75.0		0.0	to 3% gravel, little sand, trace to little clay and organic matter, soft, massive	spoon sampling to 18.0 feet.
1					9		0 0	soil structure, (ML-CL).	spoon sampling to 18.0 feet. Bore hole was tremie grouted to
-	2	18_					0.0		A SA SA 1 ground surface upon completion
1	18		17			33	5 30	0.3	
1	_			16		120	0-0	Moist to extremely moist brown gravelly	
					11		0 00	(SAND-SILT-CLAY) fill with 25 to 50%	No water at completion.
	3	4					8	gravel, occasional cobble, little sand	Cement Bentonite Grout Mix
1	22		9			1	=====	and clay, stiff to hard, (ML-CL)	
			-0	15		24	0 0	tending toward (SC), (GC).	7.8 gal water
1		-		_15_	17			grades downward to 4.2	4 lb granular bentonite
					17	1		Extremely moist brownish gray to gray	4 lb granular bentonite 94 lb portland cement
1	4_	_5_		-			<u> </u>	(SILTY-CLAY) with 0 to 3% gravel,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- }	24		6	-		13		trace sand, stiff to very stiff, weakly	
	-			7				thinly laminated with very thin coarse	
					9		====	silt lenses, (CL).	
	5	5	1				<u> </u>	Sitt leffocst foch	
	24		6			13	<u>₹</u>		1 1 1 1 1 1 1 1 1 1 1 1
	11			7		13			
					8	1	<u> </u>		1 = 1100=
1		3			-	1			11 11 211
	6		-			1000			
	22	_	3			9			1 1 1 1 1 1 1
	-		_	6	-		=-=-		
					7	-	<u> </u>	clear transition to 12.5	
	7	16							1 4 1 4 1 4
	22		24		A	68	0.00	Dry to moist grayish brown very	
			LY.Y.	44		7.6	0.00	gravelly (SAND) with 40 to 60% mostly	1 1 1 1 1
П		11			43		0.00	angular to subangular gravel and flat	
	8	29		-	1		0.00	sided shale stone fragments,	
	12	20	36		-	11	0.00	occasional cobble, trace silt, very	12121
·-	10		30	22		69	0:00	dense, stratified, (SW), (GW).	
		-	-	33	-	1	0.20		
		-	-	-	35	1	0:00:		
	9	19	-	-	-		0.20		
	6		41			85	0:00		1414
		-		44		1	0.00	18.0	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
					29		0.00	10.0	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>
							0.50	Boring completed at 18.0 feet.	
0									

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road · Elma, NY 14059 HOLE NO. SB02-19 * FAX (716) 655-2915

2A79ch

SURF. ELEVATION 1453.6

WMNY Chaffee Landfill - Southern Expansion PROJECT

LOCATION Northing: 939324.6

Town of Sardinia, Erie County, NY

Easting: 1170287.8

CLIENT GEI Consultants Inc. P.C. DATE STARTED 05/02/19 COMPLETED 05/02/19

DEPTH IN FT

BLOWS ON SAMPLER.

NF		JAM	PLER						
SN	0	6/ 12	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	1					.—.—	E. Y		Note: Advanced bore hole with 3
22	-	-					Extremely moist olive brown to grayish	1 2 1 2 1 2	1/4" ID x 7" OD hollow stem auge
46	1	-4-	_		10		brown (CLAYEY-SILT) fill with 0 to 3% gravel, some clay, trace sand and	10 10 10 1	casing with continuous split
			6		0.1	* *	organic matter, firm to stiff, weakly	1 4 1 4 1 4	spoon sampling to end of boring
	1000		-	8_			thinly laminated with very thin coarse	141414	at 36.0 feet. Bore hole was
2	-6_	-		-			silt lenses, (CL).	1 10 11	tremie grouted to ground surfac
24	-	9_		-	21		grades downward to 1.5	1 4 1 4 1 4	upon completion.
_		-	12			EdaFda			
				17			Extremely moist brownish gray to gray		
3	9						(SILTY-CLAY) with 0 to 3% gravel,	11 4 11 4 11 4	
24	1.454	12		- 1	24		trace sand, stiff to very stiff, weakly		
	1 1	1-1	12				thinly laminated with very thin coarse silt lenses, (CL).		
				16			SIL ICIISES, LOCA	1 = 1 = 1 =	
4	11					Z - Z - Z			
24		15					grades downward to 7.3	1 = 1 = 1	
			12		27			1111111	
			12	15		Z-ZZ-Z	Extremely moist olive brown to grayish	1111	
5	10	1757		10		T-T-	brown gravelly (SAND-SILT-CLAY)	リデルデル	
24		1.7			XX		with 10 to 25% gravel and flat sided	11 11 511	
24		14	10		30	Z + Z Z + Z	shale stone fragments, occasional cobble, some sand, trace to little clay,		
_		-	16_	479			very stiff to hard, massive soil	1 = 1 = 1	
- 3	0.5	-		17			structure, (ML-CL) tending toward		
6	8				1.3		(SC).	- S	
12	-	7		-	18	-	grades downward to 11.5	// = // = // = // = // = // = // = //	
			- 11		100	6 6		// WE	
_	-			15		5.55.5	Extremely moist gray (SILTY-CLAY)		
7	9	-				0000	with 0 to 3% gravel, trace sand, hard, weakly thinly laminated with very thin	141414	
14		- 11			33	0.00.0	coarse silt lenses, (CL).		
1			22	117	1	0000	[12] - 12] [10] CO [10] [10] [10] [10] [10] [10] [10] [10]	1 = 1 = 1	
			-	28		P.O. V.O. 4	L	1 4 1 4 11 4	
8	9	-		LANCE OF		0.00.0	Extremely moist to wet grayish brown	11 11 11	K*
12		6			10	0000	very gravelly (SILTY-SAND) with 40	" " " " " "	W.
			4] "	200	to 60% mostly subrounded to rounded		
				8	1	0.0	gravel with flat sided shale stone fragments, occasional cobble, little to	1 41 41	
9	2				1	0000	some silt compact to dense stratified	11 4 11 4 11 4	.*1
12	-	3				0000	(SM), (GM).		Water level at 17.0 feet below
1,64		1	6		9	0000	grades downward to 15.0		ground surface at completion.
_			0	2	1	0000	grades downward to 15.0	1 4 1 4 1 4	ground surface at completion.
		-		3	1	0.000			
					1	KU 7.0.0		11 = 11 = 11	
10	3					0.0		10000	
10 8	3	3	2		5	00000000000000000000000000000000000000			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB02-19

SURF. ELEVATION 1453.6

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939324.6

Town of Sardinia, Erie County, NY

Easting: 1170287.8

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/02/19 COMPLETED 05/02/19

R	C	0/ 6	6/ 12	12/	18/	151	NECKS THE	STATE OF THE PROPERTY AND A STATE OF THE STA	WELL	WATER TARIE AND DEVARE
_1	,	1	P		24	N	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
					-		0000	that become generally		Cement Bentonite Grout Mix
			3	-		~	0.00	Wet brown gravelly (SAND-SILT-CLAY) with 10 to 25%	1 = 1 = 1 =	
				3		6	P.O.O. Q	mostly subrounded to rounded gravel		7.8 gal water
			1	400	6		0000	with flat sided shale stone fragments,	1 91 911	4 lb granular bentonite
10	,	3					0000	some silt, trace to little clay, stiff,	1 4 1 4 1 4	94 lb portland cement
1		3	5				0000	weakly thinly bedded to weakly	4 94 94	
-	9	-	-2-	- (4)		8	2020	stratified, (ML-CL).	12121	
+	+	-	-	3_	20.0		0.000	grades downward to 16.5	1 4 1 4 1 4	
-	_	-	_		4		0000	Wet brownish gray very gravelly	111111	
	3	10		_	-		0.00	(SILTY-SAND) with 40 to 60% mostly		
2	0		20		_	32	0000	subrounded to rounded gravel with flat	1 4 1 4 1 4	
_	-			12		100	0000	sided shale stone fragments,	11111	
	_				7		1 1	occasional cobble, little to some silt,	No.	
L	4	6		_			0000	loose to compact, weakly stratified		
1	0	-	1			2	0 0	with occasional thin (SILTY-CLAY)	1 = 1 = 10=	
				11	-	100	0000	lenses <3", (SM), (GM) with an occasional thin (CL) interbed.	1 4 1 4 1	
					1		0000			
	5	14					0000	grades downward to 26.0	1 1 1 1 W	
	0	100	16			65	0000	Wet brownish gray to grayish brown	1 = 1 = 1 =	
		100		49		00	0000	gravelly (SILTY-SAND) with 15 to 25%		
		-	-	70	66		0000	mostly subrounded to rounded gravel,	EWEN IN	
+	6	18			-00	1	0000	little silt, very loose, weakly stratified,	14141	
	8	10	27			102	0000	(SM).	11111	
H	-	_	21	19		46	0000	grades downward to 28.0		No.
\vdash		-		19	77			Wet dark gray to brownish gray very	1 4 1 4 1 4	
-		_	-	-	14	1	0000	gravelly (SILTY-SAND) with 40 to 60%	1 01 01	
_	7	14	172.7		-		0.00.0	mostly subrounded to rounded gravel	1 4 1 4 11 4	
-4	4	_	12		-	22	_ + + _	with flat sided shale stone fragments,		
-	_	-		10			5 6	little silt, very dense, stratified,		
	1				11	-		(SM), (GM).	1 4 1 4 1 4	
	8	5	-				o o	clear transition to 32.7		
1	4		9			23	8 _ 6 _ 6	Extremely moist gray (SILTY-CLAY)	/ = // = //	
L		1	10.00	14			<u> </u>	with 3 to 7% gravel, trace sand, very	12121	
		- 1		= =	13		5_0 5_0	stiff, weakly thinly laminated with very	11111	+ 36.0'
								thin coarse silt lenses, (CL).		
	1							36.0		
						1		Boring completed at 36.0 feet.		
						1		Burny completed at 36.0 feet.		
						1				
						1				
					1	1				
				-		1	100			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. SB03-19

SURF, ELEVATION 1460.1

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939255.3

Town of Sardinia, Erie County, NY

Easting: 1170418.8

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/01/19 COMPLET

COMPLETED 05/02/19

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
NEC	- 147			1	-	0000	Francis III & The Part of the Control of the Contro	1 = 11 = 11 =	and the second property of the same of
24	8				1.3	000	Moist to extremely moist grayish brown		Note: Advanced bore hole with 3 1/4" ID x 7" OD hollow stem auge
24	-	12	0.00		25	0000	gravely (SILTY-SAND) FILL with 30	1 11 11	casing with continuous split
	-	-	13	1.0		0000	to 50% gravel, occasional cobble, little silt, compact, massive soil structure,		spoon sampling to end of boring
	-			16		0000	(SM).	1 4 1 4 1 4	at 52.0 feet. Bore hole was
2	5_					0000	(Gri)		tremie grouted to ground surfac
24		10			24	0:00:0	3.5		upon completion.
-		-	_14	170		0500	Maria de la companya de la contra dela contra de la contra dela contra de la contra del la contra	1111111	
_	-			10		000	Moist to extremely moist grayish brown (CLAYEY-SILT) FILL with 10 to 20%	12 9 2 9 2 1	Cement Bentonite Grout Mix
3	3					00	gravel, little to some clay, trace sand,	1 2 1 2 1 2	7.0 and water
24	-	4		11 1 1	10		very stiff, massive soil structure,		7.8 gal water 4 lb granular bentonite
			6		116	<u> </u>	(ML-CL).	11 11 11 11	94 lb portland cement
				7		5	grades downward to 4.3	11 = 11 = 11 =	sea ne feat merra seamann
4	5						h	12121	
4		7			17		Extremely moist grayish brown	1 2 4 2 4 2 1	
		T-apro	10		"	0 -0 -	(CLAYEY-SILT) with 5 to 10% gravel,	1 4 1 4 1 4	
	1.1		1	10			some clay, stiff, weakly thinly laminated with very thin coarse silt		
5	4					خطب خطب	lenses and nearly vertical gray		
8		4			12	0 0 0	desiccation cracks, (CL).		
1.0		-	8		12		grades downward to 9.8		
				8	1	00		1 1 1 1 1 1 1 1 1 1 1	
6	3				1	0 -0.0 -0	Extremely moist gray (SILTY-CLAY)	1 4 1 4 124	
24		4			1		stiff, weakly thinly laminated with very	/ S / S / S /	
-			5		9	00		1 = 1 = 1 E	
			-	5		00	grades downward to 10.2		
7	4	1		-		10000	Extremely moist light grayish brown		
20	4	5				0.0.	(SILTY-SAND) with mostly very fine	1 4 1 4 1	
20		10	4		9	0000	to fine size sand, some silt, loose,	111111	
-	-	-	4_	5	1	p	thinly bedded, (SM).	1 1 1 1	
_	2	-	-	5	1	12.4.4.1	grades downward to 11.0		
20	1 2				1	b, . p	Moist to extremely moist (SAND) with 5	111111	
20	-	2	14	1	- 5		to 15% gravel, mostly fine size sand,		
-	-	-	3	4	+	0000	trace to little silt, loose, thinly bedded	12121	No.
	-	-	-	3	-	0.0	to weakly stratified, (SM).	. // . // . //	
9	4	-	-	-	-	0000	grades downward to 11.5		
6		4	100		- 11	0000	Extremely moist grayish brown	1 2 11 2 11 1	
		-	7		1	000000000000000000000000000000000000000	(SILTY-CLAY) stiff, thinly laminated	9 39 39	
				10	1	0000	with very thin coarse silt lenses, (CL).		
10	10					5000	grades downward to 12.0	11 11 11 11	
14		5	-		10	0000 0000 0000			
			5		, ,	0000	LGANANTIN FOR EL		
				5		2000	See next sheet	11 . 11 . 11	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB03-19

SURF. ELEVATION 1460.1

PROJECT

WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939255.3

Town of Sardinia, Erie County, NY

Easting: 1170418.8

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/01/19 COMPLETED 05/02/19

DEPTH

40

BLOWS ON

SAMPLER IN FT SN 0/ 6/ 12/ 18/ WATER TABLE AND REMARKS LITH DESCRIPTION AND CLASSIFICATION WELL N 12 18 24 6 REC 00000 11 0 Extremely moist brown gravelly 1111 6 (SILTY-SAND) with 15 to 30% gravel Õ, 000 41141 and flat sided shale stone fragments, Water level at 21.6 feet below little silt, loose, weakly stratified, 11 ground surface after augers left " " " " 000 12 in overnight at 50.0 feet. 00 13.5 14 000 5 Moist to extremely moist light brown 0 3 (SAND) mostly fine to very fine size 3 sand, trace silt, loose, weakly thinly 13 bedded. (SM). 20 5 14.5 25 13 8 Extremely moist dark grayish brown 0 (SAND) with 5 to 10% gravel, trace silt, 00 10 14 loose, stratified, (SM). 14 8 15.2 00 grades downward to 11 5 Extremely moist brown gravelly 0000 (SILTY-SAND) with 20 to 40% gravel 15 and flat sided shale stone fragments, 22 occasional cobble, trace to little silt, 10 loose to compact, weakly stratified, (SM) tending toward (SM), (GM). 5 30grades downward to 16 Wet brown gravelly (SILTY-SAND) with 20 5 13 25 to 50% gravel and flat sided shale 8 stone fragments, occasional cobble, 10 little to some silt, loose to compact. 17 weakly stratified, (SM) tending toward 24 4 (SM), (GM). 10 6 grades downward to 9 Extremely moist olive brown to gray 4 18 (SILTY-CLAY) with 0 to 3% gravel, 24 5 trace sand, stiff, weakly thinly 35-12 laminated with very thin coarse silt 8 lenses. (CL). 19 4 12 5 12 8 20 2 24 4 9 5

 $Soil\ and\ Hydrogeologic\ Investigations\ \bullet Wetland\ Delineations$

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. \$B03-19

SURF. ELEVATION 1460.1

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939255.3

Town of Sardinia, Erie County, NY

Easting: 1170418.8

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/01/19 COMPLETED 05/02/19

S	24	0/ 6	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
		-	7,0	7.5	18.1			A STATE OF THE PARTY OF THE PAR	1 = 1 = 1 =
_2		2			-			Extremely moist olive brown to gray	
2	4		_5			11		(SILTY-CLAY) with 0 to 3% gravel,	
-	-	-		_6_	-		₹ <u>-</u>	trace sand, stiff, weakly thinly	1 = 1 = 1
-	-	2		_	_7_			laminated with very thin coarse silt lenses, (CL).	
2		3						jenses, (CL).	
2	4		_5_			11	= = =		1 4 1 4 1 4
				6		P	F- FF- F		
1	7				9		<u> </u>		
2	3	2					====		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	4		5			13	<u> </u>		
1			17	8		13	<u></u>		1 = 11=1
					9				11 81
0	4	5	-						Z Z Z
	4		8			122			1 = 1 = 100
-	-		-0	10		18			1 X X
-	= †			-10	12	1	<u> </u>		
- 2	1	1		. 7	13_	1	- - -		1 4 104
	5	3			_		FHEFF	grades downward to 49	9.0
12	4	_	6_	7.0		20	1 1	Moist to extremely moist grayish brown	
-	-		-	_14_	1.35			(SILTY-CLAY) with 0 to 3% gravel,	1 4 1 4 1 4
-	-				19			trace sand, very stiff to hard, weakly	
	6	6					====	thinly laminated with very thin coarse	
2	20		10			25	F-77-5	silt lenses, (CL).	121212
				15		1.29	0000	grades downward to 51.	- 4 4 4 4 4 1
				100	16		0000		52.0'
F								Wet gray gravelly (SILTY-SAND) with 10 to 25% mostly subrounded to	
						1		rounded gravel, trace to little silt,	
								compact to dense, stratified, (SM).	
		-		-	-			52.	.0
				-					77.
					-			Boring completed at 52.0 feet.	
+		-				1			
		1		-		1			
				-	-	1			
-	-	-				1			
-	-	-	-		1	+			
-		_	-		-	-			
						-			
						1			
	31			-					
	-								

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. \$B04-19

2A79ch

SURF. ELEVATION 1455.4

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939102.4

.Town of Sardinia. Erie County. NY

Easting: 1170398.9

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/30/19 COMPLETED 05/01/19

BLOWS ON DEPTH IN FT SAMPLER

			JAN						170	
	SN	0/	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
	REC	6	12	18	24					
	,	10					0000			
	-10	_10_		_	7		0000	Extremely moist to moist brownish gray	1 1 1 1 1	Note: Advanced bore hole with 3
	18		21		_	38	0000	gravelly (SILTY-SAND) FILL with 30	10 00 001	1/4" ID x 7" OD hollow stem auger
1				_17_			0.000	to 50% gravel, occasional cobble, little	1 1 1 1	casing with continuous split
					20		000	silt, dense, massive soil structure,	1/ 1/ 1/1	spoon sampling to end of boring
	2	_8_		<u></u>			0000	(SM). (Gravel Road Base)	141414	at 40.0 feet. Bore hole was
	20		8				0 00	2.0		tremie grouted to ground surface
				- 11		19	0000	Maint have and are wired arreally		upon completion.
				-4-			0 00 0	Moist brown and gray mixed gravelly	1 4 1 4 1 4	
		_			13		0000	(SILTY-SAND) FILL with 15 to 25%	1/ // // 1	Note: Sample #7 recovery repeat
	3	_10_					0000	gravel, some silt, compact, massive soil	1 4 1 4 1 4	with 3-inch spoon.
5—	18		_10_			20	ρ	structure, (SM).	1/ 1/ 1/	
				10		ا ت	0000		1 1 1 1	Cement Bentonite Grout Mix
					9		0 0	6.0		
		7			- 3		9.09.	Extremely moist faintly mottled		7.8 gal water
1	<u>4</u> 16						0.0.0	brownish gray gravelly (SILTY-SAND)	141414	4 lb granular bentonite
	10		8			15	0.000	with 20 to 40% mostly angular to	10 10 10	94 lb portland cement
							0.0.0	subangular gravel, occasional cobble,	1 1 1 1	
					6		1	very fine to very coarse size sand,		
	5	7					0.0.0	little silt, trace clay, compact,	1 = 1 = 18=	
	5		6			۱.,	OO	stratified, (SM) tending toward	11 11 151	
				5		11	0.0.0	(SM). (GM).		
				_ <u>-y</u>			O	(31-1), (31-1).	// 』/	4
10—					_4_		0.0.0			
	6	4								
	14		5			11	0.0.0			
				6			O O .			12
					33		0.0.0			9
	7	18					0.00		/ · · · · ·	
-	16	_10_	12				0.0.0	13.0	1 1 1 1	
	,,,		12	40		22	9 0 9 0	Extremely moist brown, gray, and light		
				10			0 0	brown mixed, (SAND-SILT-CLAY) with	11 11 11	
					8		2 0	5 to 15% gravel, little sand and clay,	1 4 1 4 1 4	
	_8	_2_					0.00	very stiff, weakly stratified,	1/ // // 1	
15—	14		_3_			6	0.01	(ML-CL), (SC).	1 1 1 1	ľ
-				3		_	0000	i		
					3			grades downward to 14.0	1/ 1/ 1/	
	9	2					0000	Extremely moist grayish brown gravelly	1414	
	10		2				0.00	(SAND-SILT-CLAY) with 15 to 25%		
						4	0000	gravel, little sand and clay, firm,		7-0
V				2			0000	weakly stratified to massive soil		
					5		0 0	structure, (SC).		
	10_	_1_					0000	15.0	1 1 1 1	
	8		3			8	0,000		1 11	
				5		U	0000		1 = 1 = 1	
				Ť	6			See next sheet		
20							<u> </u>		n " " " " "	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. \$B04-19

2A79ch HOLE NO. SB04-

SURF. ELEVATION 1455.4

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939102.4 Easting: 1170398.9

Town of Sardinia, Erie County, NY

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/30/19 COMPLETED 05/01/19

SN	6	6/	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
11	140					0000	Futuament males to just begunden dent		
21	1111	5		YEAR	1	00	Extremely moist to wet brownish gray gravelly (SILTY-SAND) with 20 to 40%	1 4 1 4 1 4	
-		*1	2		7	1000	mostly rounded to subrounded gravel,	0 10 10	
			_	3		0000	occasional cobble, little silt, trace		
1.0	100			-2		0000	clay, loose to very loose, weakly	1 4 1 4 1 4	Partie representative objective of
12	. 3	14			15	0000	stratified, (SM) tending toward	1 11 11	Note: Sample #12 recovery
18		3		-	8		(SM), (GM).		repeat with 3-inch spoon.
		-	_5_			€-€-	grades downward to 20.0	1 1 1 1 1 1	
-			-	8_			Wet grayish brown to brownish gray	11111	
13	2	- 21					gravelly (SILTY-SAND) with 15 to 25%	1 = 1 = 1 =	
12	-	3			9		gravel, very fine to very coarse size	1111111	
-			-6		10	<u> </u>	sand, little silt, loose, stratified, (SM).	11111	
				9	1		clear transition to 22.8	11 4 11 4 11 4	
14	6					<u> </u>	Extremely moist to moist gray		
22	1111	7			14		" (SILTY-CLAY) with 0 to 3% gravel,		
	1		7	1	1		trace sand, stiff, weakly thinly	1 = 1 = 1 =	
				11		=-=-=	! laminated with very thin coarse silt		
15	4		110				lenses, (CL).		
24		6			14		grades downward to 26.0	1 4 1 4 101	
-			8		1.7	= = = =	Extremely moist gray		
	-1			11			! (SAND-SILT-CLAY) with little sand	1 1 1 1	
16	3		1				and clay, stiff, weakly thinly laminated	1 1 1 1 121	
24		4			1	=====	and weakly stratified, (ML-CL).	GD	(3)
			9		13		clear transition to 26.7	1 = 1 = 15=	
			1 7 4	11	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
17	4			1	1	Z-2C-2	Extremely moist to moist gray		
24	1-	12			3		(SILTY-CLAY) with 0 to 3% gravel, trace sand, stiff, weakly thinly		
	+	16	12		24	0.00.	I laminated with very thin coarse silt	141414	
-	-		12	14	1	50.00	lenses, (CL).	1 11 11	
10	8			14	1	0.00	clear transition to 33.0		
18	8	10				800	L	141411	
22		12	100	-	24	0.00	Wet gray very gravelly (SAND) with 40 to 60% rounded to subrounded gravel,	19191	1
			12	y'a	1	0.00	very fine to very coarse size sand,		
	1.2			16	1	A. O.	trace to little silt, compact, stratified,	1 4 1 4 1 4	
19	15	2/2	-	-		0.00	(SW), (GW).	1 1 1 1	1
22	-	14			28	0.00	grades downward to 36.0	1 = 1 = 11	
-	-	-	14			0.0.0		11 11 11 11	
		-		15		000	Wet gray gravelly (SAND) with 15 to		3
20	20	-		-		0.0.0	30% mostly subrounded to rounded gravel, trace to little silt, compact,	1 = 1 = 1	
18	1	12			22	0000	stratified, (SW).		
	1.0		10						D. O. A.
1	11 (1 =)			11		000	Boring completed at 40.0 feet. 40.0	11 . 11 . 11	J + 40.0°

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

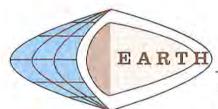
HOLE NO. SB05-1917 • FAX (716) 655-2915

SURF. ELEVATION 1461.9

WMNY Chaffee Landfill - Southern Expansion PROJECT

LOCATION Northing: 939363.3

Town of Sardinia, Erie County, NY


Easting: 1170518.0

GEI Consultants Inc. P.C. CLIENT

DATE STARTED 04/25/19 COMPLETED 04/25/19

BLOWS ON DEPTH IN FT SAMPLER

114	1		SAN	rcen					2
SI		0/ 6	6/ 12	12/ 18	18/ 24	Ŋ	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
1		Y			IT III		000	Marthy #1 to #2 tize counded to	Note: Sample Number 2 and
4		_	2			14.5		Mostly #1 to #2 size rounded to subrounded gravel F1LL with trace	N = N = N = Cample Number 3 were taken wit
- 4	+		-			4	000	그리를 보이 걸었다. 영화 에는 국민에게 되어 되었다고 있다고 있다면 하는 것이 되었다.	a 3-inch spoon.
-	+	-	-	2			200	sand.	N = N = N =
-	+	-			_3_		0_ 0_ 0	1.8	Note: Advanced bore hole with 3
2	_	7		-	11			Moist to extremely moist gray	1 ≥ 0 ≥ 0 1 1/4" TO v 7" OD bollow stem augs
17			7			16		(CLAYEY-SILT) with 3 to 7% gravel,	\ = \\ = \\ = casing with continuous split
				9		17	Z+Z-5Z	little clay, trace sand and organic	10 30 30 1
17				10	10		0 0 0	matter, very stiff, blocky soil	spoon sampling to 32.0 feet. Bore hole was tremie grouted to
3		4			77.			structure, (ML-CL).	ground surface upon completion
17	_		10	1.00			4 6 4	grades downward to 3.0	4 9 4 9 4 1
			10	9		19	5 5		Cement Bentonite Grout Mix
-	+	_		M			2000	Moist to extremely moist gray	// // //
_	-			-	10		<u> </u>	(SILTY-CLAY) with 3 to 7% gravel,	2 4 2 4 2
4		4		-			8 _ 6 _ 6	trace sand, very stiff, weakly thinly laminated with very thin coarse silt	// // // // 4 lb granular bentonite
14	1		6			15		" lenses, (CL).	94 ID portiand cement
				9					\\ \(\times \) \(
					9		0 0 0	grades downward to 5.2	
5		4						Extremely moist to wet brownish gray	
17	_		6	100		100	8 _ 6 _ 0	(SILTY-SAND) with 10 to 20% gravel,	1 1 1 1 1 1 1 1 1
1	\neg			8		14		little to some silt, compact, stratified,	- N N N N N N N N N N N N N N N N N N N
-	1			-0_		1		(SM).	1 = 1 = 18
1	-	- A			9	1	σ <u>σ</u> σσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσσ	grades downward to 5.6	
6		4				-			1 = 1 = 1 m
18	3		7			21	0_00_0	Moist to extremely moist gray	1 4 1 4 164
				14			- -	(SILTY-CLAY) with 3 to 7% gravel,	
					10		Z+ Z Z+ Z	trace sand, very stiff, weakly thinly laminated with very thin coarse silt	1 = 10
7		4			-		8 6 6	lenses, (CL).	
20	0		5			11		lenses, (OL).	
				6		1 "	0_00_0		(4,4,4
	1	- 1			10	1	8 8		
		-			10		# # # # # # # # # # # # # # # # # # #		
8		5		-		1	0_00_0		141414
15	0		5			- 11			
1			-	6	-	1	6 _ 6 6 _ 6		1 = 1 = 11 =
		11	1-		8		8 - 8 -		
9	3	6			77		= + = = + =		
2		14.1	6			14	8 a 8 a		111111
		1,000		8	1	14			
-					10	1	0 _ 0 _ 0 _ 0		
100		-			10	1	8-8-	grades downward to 18.5	
10		5	1.00	-	-	-	0.000		
1	1		16		-	40	0000		1111111
				24		-	0000	Con paul phoof	
					26		2000	See next sheet	1/ n // n //

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>\$B05-19</u>

SURF. ELEVATION 1461.9

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939363.3


Town of Sardinia, Erie County, NY

Easting: 1170518.0

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/25/19 COMPLETED 04/25/19

SN	0/	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
REC	Ü	12	10	24	- X	V:0'V:0		1 = 1 = 1 = 1	
11	20		-			000000	Moist brown very gravelly		
17		30	150			0.000	(SILTY-SAND) with 40 to 60% gravel,	1 = 1 = 11 =	
TANA T		Marie Y	100/3			500 d	trace to little silt, dense, stratified,	1 1 1 1 1 1	
	1		7.5	+ =		2000	(SM), (GM).	10 90 90	
12	8					10000	grades downward to 22.0	011 411 411	
9		7	100		1	0 00	Wet brown gravelly (SILTY-SAND) with	1 = 1 = 1	
			7	-	14	0000	20 to 40% gravel, little silt, compact,	10 10 10	
				7	1		stratified, (SM).	11 = 11 = 11 =	
13	5					0 00	on annual term	1 01	
14	-	6				0000			
14		-0	5		11	0.00		11 = 11 = 1	
			0		1	0.000		Z.	
401			- 3	_6_	1	0000			
14	5					0000		// 1/ 1/ 1/ 1/1/1/1/1/1/1/1/1/1/1/1/1/1	
9		6			14	0000		1 51	
	-	-	8	-	1	0000			
- N.	-	-		7	1	0 00 0		9 1 1 1 1 1 1 1 1	
15	4			-		0000	grades downward to 28.5	9 / 1 / 1	
14		5			10	5_6-6	Extremely moist gray (SILTY-CLAY)	1 = 1 = 1 =	
			5	-			with 3 to 7% gravel, trace sand, stiff,	1 1 1 1 1 1	
5				6	1		weakly thinly laminated with very thin	111111	
16	5				1	5 8	coarse silt lenses, (CL).	1 4 1 4 1 4	
17	TLI	5		1	12		7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 11 11	
11			7			0 0	32.0		
				8			52.0	141414	← 32.0'
	-				1		Boring completed at 32.0 feet.	F C A	주회·7
	-			-			40.00		
				1	1				
					1			1	
	1			-	1				
					1			1	
					1				
					1				
			-						
-	-	-			1				
-	-	-	-		-			T I	
-	-	-		-	1				
		-			1				
				-	-				
-	-	-							
		-			1				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

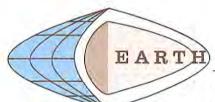
(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB06-19

SURF. ELEVATION 1451.6

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939324.5

Town of Sardinia, Erie County, NY


Easting: 1170833.5

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/03/19 COMPLETED 05/03/19

DEPTH	BLOWS ON
INFT	SAMPLER

SN	6	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
REC	0	14	10	24	1001			त चात्र व	
1	3					**********	Extremely moist to wet dark brown		Note: Advanced bore hole with 3
20	+++	3			8	7-17-1	(SAND-SILT-CLAY) topsoil fill with	1 = 1 = 1	1/4" ID x 7" OD hollow stem auge
		-	5		v	·- ·-	little sand, trace to little clay and	1111111	casing with continuous split
			1	12		0 0	organic matter, firm, massive soil	1111	spoon sampling to 18.0 feet.
2	10					==	structure, (ML-CL).	1 = 1 = 1	Bore hole was tremie grouted to
24		-11) - T		100	00	0.4		ground surface upon completion.
24			11-		22	0 0	Cutured malet braue		We continued assessment
			-11	12			Extremely moist brown (SAND-SILT-CLAY) fill with 0 to 5%		No water at completion.
7				13		0	gravel, little sand and clay, trace	11 211 211	Cement Bentonite Grout Mix
3	_3_		1000			==	organic matter, frim, massive soil	1 2 1 2 1 2	Cellent Bentonite broat his
24		_5_	-		14		structure, (ML-CL).	1 4 1 4 1 4	7.8 gal water
	-		9			***	1.0	2 2 2 2 2 1	4 lb granular bentonite
				15				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.4 lb cortland cament
4	11			17.		0 0	Extremely moist brownish gray to gray	11 11 0011	Switch Commercial States
22		6			11		(CLAYEY-SILT) with 0 to 3% gravel,	1000001	
			5		"	°°	some clay, trace sand, very stiff,	1 = 1 = 1	
				7		==	weakly thinly laminated with very thin	1 1 1 1 2	
5	3				1	•_ •_	coarse silt lenses, (CL).		
18		5			75	*	grades downward to 4.0		
10		-3-	13		18	==	Extremely moist gray (SILTY-CLAY)	NA NE	
_			13				with 0 to 3% gravel, trace sand, weakly	OENEW PROPERTY	
_				8		==	thinly laminated with very thin coarse		
6	6_	-				* *	silt lenses, (CL).		
20		10	100	-	20	0 0	clear transition to 5.0	121111	Mi.
		-	10	-	17.5	• •	Extremely moist brown	11 11 11	1
				10		•	(SAND-SILT-CLAY) with 0 to 5%		1
7	3			100			gravel and flat sided shale stone	141414	
24	-	5			10	=	fragments, little mostly very fine to	11 11 11	
			5	-	, ,		If fine size sand, trace to little clay,	1 = 1 = 1 =	
				32]	0.00	very stiff, weakly thinly laminated to		
8	4					85.00	weakly thinly bedded, (ML-CL).	11 11 11	
24	1	26	-		1	0.00	clear transition to 5.6	1 1 1 1 1 1	
		20	33		- 59				
_			33	30	1	0.00	Dry to moist grayish brown very	1 = 1 = 1 =	
-	-		-	32	1	2 -13 2	gravelly (SAND) with 40 to 60% mostly subrounded to rounded gravel, trace	1 37	¹ ← 16.0'
-		-		-	-		silt, compact, stratified, (SW), (GW).		
-		-		-	4		그림 하다는 것이 있었다면 하나도 없다면 하다면 그렇게 다 맛없는 사람이 되었다면 하다 하다.		
		-			1		clear transition to 6.5		
					4		Extremely moist grayish brown		
							(SAND-SILT-CLAY) with 5 to 15%		
							gravel, little sand and clay, stiff,		
	-					100	weakly thinly laminated to weakly		
	_						thinly bedded, (ML-CL).		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB06-19

SURF, ELEVATION 1451.6

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939324.5

Town of Sardinia, Erie County, NY

Easting: 1170833.5

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/03/19 COMPLETED 05/03/19

0973	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
							Extremely moist grayish brown (SAND-SILT-CLAY) with 5 to 15% gravel, little sand and clay, stiff, weakly thinly laminated to weakly thinly bedded, (ML-CL). clear transition to 7.2		
							Extremely moist gray (SILTY-CLAY) with 0 to 3% gravel, trace sand, stiff, weakly thinly laminated with very thin coarse silt lenses, (CL), grades downward to 8.5		
							Moist to extremely moist faintly mottled brown (SAND-SILT-CLAY) with 5 to 15% gravel, little sand and clay, very stiff, weakly thinly laminated to weakly thinly bedded, (ML-CL). grades downward to 9.5		
							Extremely moist brownish gray (SILTY—SAND) with 10 to 20% gravel, trace to little silt, compact, weakly thinly bedded to weakly stratified, (SM).		
							grades downward to 11.3 Moist to extremely moist brown (SAND-SILT-CLAY) with 5 to 15% gravel, little sand and clay, very stiff, weakly thinly laminated to weakly thinly bedded, (ML-CL). grades downward to 11.7		
							Extremely moist gray (SILTY-CLAY) with 0 to 3% gravel, trace sand, very stiff, weakly thinly laminated with very thin coarse silt lenses, (CL). clear transition to 13.5		
							Moist grayish brown (SAND) with 40 to 60% mostly subangular to subrounded gravel with flat sided shale stone fragments, occasional cobble, trace silt, very dense, stratified, (SW), (GW).		
- 1					-		Boring completed at 16.0 feet.		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

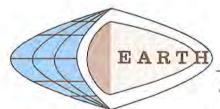
2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB07-19

SURF. ELEVATION 1462.5

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939111.6


Town of Sardinia, Erie County, NY

Easting: 1170723.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/06/19 COMPLETED 05/07/19

SI		2 1	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
						-		Destruction float of call		Note: Advanced bore hole with 3
	1							Boring on eastern flank of soil stockpile. Augered without sampling to	1 1 1 1 1 1	1/4" ID x 7" OD hollow stem auge
								8.0 feet.		casing without sampling to 8.0
		_						0.0 1001	2 4 2 4 2	feet. Continued below with
	1								121214	continuous split spoon sampling
		_				Y			1 1 1 1 1 1 1	to end of boring at 50.0 feet.
)				Bore hole was tremie grouted to
									11 11 11	ground surface upon completion.
		+								
_	_	_		_						
-	+	-		-	_				1 4 1 4 1 4	
	-	-			_				11 11 11	
-		+		-						
_	+	+			_				141414	
-	+	+			_				1000001	
_	+	-			_		1	8.0	1 2 1 2 1 2	
-	+	-	-	_	_		0_0.0_b	Futsonelly malet brown		
_1	_	4		_				Extremely moist brown (SAND-SILT-CLAY) fill with 10 to 20%	E	
4	+	-	4			9		gravel, little to some sand, trace to		
	-	-	-	5_			# #	little clay, stiff, massive soil structure,	1414	
	-		-		_5_		8 8	(ML-CL).		
_2	$\overline{}$	2	4.7					grades downward to 10.0	1 4 4 100	
24	4	-	4_	200		15	0_0_0	Extremely moist gray (SILTY-CLAY)	1 = 1 = 1	
-	-	-	-	_11_	1 × 72 T		0 0 0	firm, thinly laminated with very thin		
		-	-	_	12		<u> </u>	coarse silt lenses, (CL).	12 12 13	
_3	_	22					0 0 0 0	clear transition to 11.2	1 1 1 1 1	
20)	-	10			18		!! Extremely moist brown (SILTY-CLAY)		
-	+	-	-	8	-		0.00.	!! very stiff, thinly laminated with very		
- 1	-	-		_	13		0.00	thin coarse silt lenses, (CL).	1 4 1 4 1 4	
4		21	المالما	-			0.00	clear transition to 11.6		
24	1	-	32	TAKE T		51	30.0	Dry to moist grayish brown gravelly	1 1 1 1 1 1	
-	+	-		19	100		0.00	! (SILTY-SAND) with 20 to 40% mostly	12121	
		100			18		0:00	subrounded to rounded gravel with flat	11 11 11	96
2		26	10			100	020	sided shale stone fragments,	1, 11, 11	n e
2	4	-	13	142	-	25	•	occasional cobble, trace to little silt,	1 = 1 = 1	
-	-	-	-	12	100	1	I + I I + I	compact, stratified, (SW) tending	1111111	in the second second
	-	33			13	1	0 0 o	toward (SM), (GM).		F //
6	_	23	400			150		grades downward to 13.0	1 = 1 = 1	No.
2	4	-	27	-		58		ABOUT ALCOHOLOGY (ACT 2012)	1111111	
				31		1	0.00	See next sheet	10000	

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB07-19

SURF. ELEVATION 1462.5

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939111.6

Town of Sardinia, Erie County, NY

Easting: 1170723.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/06/19 COMPLETED 05/07/19

SN	6	6/	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
REC	11.57	110	10.4	17.00		0.00.	LAND THE RESIDENCE OF THE PROPERTY AS THE		
7	38	1.78			2.0	0.00	Extremely moist brown (CLAYEY-SILT)	1 1 1 1 1 1	
22	-	38_			98	0.00	with little to some clay, trace sand,	49494	
_	-	_	60	1/21	111	0.00	very stiff, thinly laminated with very	1 4 1 4 1 4	
	-		-	90		0.00.	thin coarse silt lenses, (ML-CL) tending toward (CL).		
-8	30	-				20.7	grades downward to 13,5	1 11 11	
22	-	16		-	31	0.00	L	11 11 11 11 11	
-	-	-	15		100	0.00	Dry to moist grayish brown very gravelly (SAND) with 40 to 60% mostly		1- I
	-	-		9		000	" subangular to angular gravel and flat		
9	16					0:00:	sided shale stone fragments,	1 4 1 4 11 4	
12		11			22	0000	occasional cobble, trace silt, dense to		
-		-	- 11		1	1000	very dense, stratified, (SW), (GW).	0 10 10	
		-	1 1	7		0000	grades downward to 16.8	1 4 1 4 1 4	
10	39	-	1			0.00.0	Moist brown (CLAYEY-SILT) with 0 to		ground surface at completion.
14		17	_		30	P.O.O.V.	3% gravel, little to some clay, trace	10000	
-			13	-		0000	sand, very stiff, weakly thinly	12121	
				9		0000	laminated with very thin coarse silt	111111111111111111111111111111111111111	
_11	14			-		0000	lenses, (ML-CL) tending toward (CL).	1 11 11	1
12	100	15			30	0000			
	111		15		73	11.00	Extremely moist gray to brownish gray	111111111111	
				14		10.00.U	(SILTY-CLAY) with 3 to 7% gravel,	1000	
12	23				1	0000	trace sand, very stiff to hard, weakly thinly laminated with very thin coarse		
20		24			59	11:01	silt lenses, (CL).		
1.		100	35			10.00.4	clear transition to 19.3		
				23		0000	Dry to moist grayish brown very	いまりまる	
13	26					0 -0	gravelly (SAND) with 40 to 60% mostly	11 11 11 11	
20	1	14		-	30	0000	subangular to angular gravel with flat	11111	
11.0		130	16			0000	sided shale stone fragments,	1 = 11 = 11	
		1 =	2	20		(1.00)	occasional cobble, trace silt, dense to		
14	42			142		P.O.D.O.U	very dense, stratified, (SW), (GW).	1 11 11	3
18	4 1 1 1	37			64	0000	grades downward to 25.0	11 = 11 = 11	
	1		27			10.00.0	Wet grayish brown very gravelly	1 = 1 = 1 =	
				21		0000	(SILTY-SAND) with 40 to 60% mostly	11 11 11	A.
15	13			72.7		4	subrounded to subangular gravel, flat		
24		7			18		sided shale stone fragments,	1 // // //	
			11		18	======	occasional cobble, little silt, compact	2020	3
1				14		<u> </u>	to very dense, stratified, (SM), (GM).		4
16	6	-			1		clear transition to 36.	111111111	
22		9	La		23				3
175	1	11	14		7 23				
			-	18			See next sheet	11 11 11	/

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB07-19

2A79ch

11000 110. 2007 10

SURF. ELEVATION 1462.5

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939111.6

Town of Sardinia, Erie County, NY

Easting: 1170723.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/06/19 COMPLETED 05/07/19

DEPTH

BLOWS ON

IN FT SAMPLER

SN	0	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
17	11						- 100 TV CI IV		Cement Bentonite Grout Mix
24		1 7				<u> </u>	Extremely moist gray (SILTY-CLAY)	1 = 1 = 1 =	Cement Bentonite Grout Mix
24	1	1	11		18	<u> </u>	with 0 to 3% gravel, trace sand, very stiff to hard, weakly thinly laminated	111111	7.8 gal water
-			- 11	15			with very thin coarse silt lenses, (CL).		4 lb granular bentonite
-	-	+		_15_		=====	clear transition to 39.0	1 4 1 4 1 4	94 lb portland cement
18						0 0	1	10000	
24	-	5	- 22		13	F== F==	Extremely moist gray (SANDY-SILT) with mostly very fine to fine size sand,	1 1 1 1 1 1 1 1 1 1 1 1	
-	+	+	8				trace clay, dense, thinly bedded,		
-	-	-		10_			(ML).	1 0 0 0 W 1	
_19		-	-	-	1	= = = = =	clear transition to 40.3	11 11 11	
20		10			24	3-3-			
			14		1	0000	Extremely moist gray to brownish gray	12 02 000	
-		-		17_		0 0 0	(SILTY-CLAY) with 0 to 3% gravel,	1 1 1 1	
20	20			11.4		9 9	trace sand, very stiff, weakly thinly laminated with very thin coarse silt		
20	1	23			54	0 60 6	(in lenses, (CL).	1	
1			31	-	300	10000	grades downward to 44.1	1 = 1 = 1	
				36		0,000	<u></u>		
21	10						Wet brownish gray (SILTY-SAND) with		
20		15			32	0000	mostly very fine to fine size sand,	1 21 21 1	
			17		3.2	0 00 0	trace to little silt, compact, weakly thinly bedded, (SM).		
				26		0000	C)	2 4 2 4 2 1	÷ 50.0'
1	7-			F	1		grades downward to 45.0		337
				-	1		Wet brownish gray gravelly		
		-	2.11		1		(SILTY-SAND) with 20 to 40% mostly		
		1			1	1	subrounded to rounded gravel, trace		
100					1		to little silt, compact, stratified, (SM) tending toward (SM), (GM).		
					1		1 AP	,	
					1		clear transition to 45.8	1	
-					1		Extremely moist brownish gray		
	-		-	-	1		(CLAYEY-SILT) with 0 to 3% gravel,	1	
-	-		+	-	1		some clay, trace sand, hard, weakly		
+	-	+-	+		-		thinly laminated with very thin coarse		
-	-	-	-		-		silt lenses, (CL).		
-	-	-					grades downward to 46.0	1	
-	-	+	-	-	1		Extremely moist brownish gray	1	
	Y 15	+	-	-	-		(SILTY-SAND) with 3 to 7% gravel,		
	-	-	-	-	4		mostly very fine to fine size sand,		
1		-		-	4		some silt, trace clay, dense, weakly	411	
			-	-	4		thinly bedded, (SM).		
					1		grades downward to 47.0		
1					4		Con part shoot		
							See next sheet		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB07-19

2A79ch

SURF. ELEVATION 1462.5

WMNY Chaffee Landfill - Southern Expansion PROJECT

LOCATION Northing: 939111.6

Town of Sardinia, Erie County, NY

Easting: 1170723.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/06/19 COMPLETED 05/07/19

BLOWS ON DEPTH IN FT SAMPLER

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
							Extremely moist to wet brownish gray gravelly (SILTY-SAND) with 20 to 40% mostly subrounded to rounded gravel and flat sided shale stone fragments, occasional cobble, little silt, dense, stratified, (SM), (GM). 50.0 Boring completed at 50.0 feet.		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

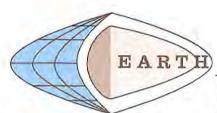
(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB08-19

SURF. ELEVATION 1448.7 LOCATION Northing: 939159.4

PROJECT WMNY Chaffee Landfill - Southern Expansion

Town of Sardinia, Erie County, NY

Easting: 1171416.2


GEI Consultants Inc. P.C. CLIENT

DATE STARTED 04/26/19 COMPLETED 04/26/19

DEPTH BLOWS ON SAMPLER INFT

2A79ch

10	FI		SAM	FLER						
	SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
		2						2475000000000000000000000000000000000000		Note: No water in auger until
-	21	-						Extremely moist grayish brown	141414	taking sample number 9.
H	21	_	_3_			9	0 0	(SAND-SILT-CLAY) fill with 3 to 7%	11 11 11	taking sample number 9.
-				6			F-FF-F	gravel, little sand and clay, trace	141414	Water taken at 10 O fact balance
L				-	9		<u> </u>	organic matter, very loose, weakly		Water level at 12.0 feet below
Œ	2	7		-				granular soil structure, (ML-CL).	1 = 1 = 1 =	ground surface at completion.
	24		7	Î		1	• •	1.0		
H			-	_		13	=-=-	Est and a point to make arms		Note: Advanced bore hole with 3
-				6_			=-====	Extremely moist to moist gray	1 4 1 4 1 4	1/4" ID x 7" OD hollow stem auge
H					_7_	-		(CLAYEY-SILT) with 3 to 7% gravel,	11 11 11	casing with continuous split
L	3	4					F-3F-3	some clay, trace sand, stiff, weakly	1 4 1 4 1 4	spoon sampling to 38.0 feet.
	20		6			11	0	thinly laminated with very thin coarse		Bore hole was tremie grouted to
T			700	5		1 "		silt lenses, (CL).		ground surface upon completion.
		-		-	10	1		grades downward to 6.0		2 10 2 10 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10
H					10	1		Moist gray (CLAYEY-SILT) with 3 to		Cement Bentonite Grout Mix
-	4	4	-			1	F15F15	7% gravel, some clay, trace sand, stiff,	1 4 1 4 1 4	
L	22		6			12	•	weakly thinly laminated with very thin	1 11 11	7.8 gal water
				6		7/12			1 = 1 = 1 =	4 lb granular bentonite
T					8			coarse silt lenses and an occasional		94 lb portland cement
r	5	2				1		thin (SILTY-SAND) lense with little silt	リデルデル	
H		-				D.	エキゴエ・エ	(CL) lense and occasional thin (SM)	11 11 5011	
H	24	_	5_		_	- 11		interbed.		
L	_		_	6		4	FIFFE	grades downward to 9.0	1 4 1 4 124	
1					7		6 6	Moist to extremely moist gray	11112	
1	6	2	1		-			(SILTY-CLAY) with 0 to 3% gravel,	1 = 1 = 12	
Г	24	11-11	3		1			trace sand, stiff, thinly laminated with	/ S	
۲	-		-	6		9	=-=-	very thin coarse silt lenses, (CL).	1 = 1 = 15=	
H			-	- 6		4	<u> </u>	very thin coarse sit lenses, toc.	11 11 11	
ŀ		_	-	-	7	-				
1	7_	3		_		-			1 4 1 4 1 4	
	24	100	4			- 11	-		1 11 11	
Г				7		77			1 = 1 = 1 =	
۲					8	1				
1		-			0	1			1 = 1 = 1 =	
-	8	3	- V.	-		10	X- XX- X		11 11 11	
4	24	_	4			11				
				7		1	E====		1 4 1 4 1 4	
					8				1 1 1	
	9	3							11 = 11 =	
ŀ	20	-	7			1 10	======	clear transition to 17.2		
ŀ	20		1	1/2		17	5-5-			
+			-	10	-	-	0000	Wet brownish gray gravelly	11 11 11	
					15	1	0 0	(SILTY-SAND) with 20 to 40% gravel,		
	10	3					0000	occasional cobble, very fine to very	141411	
T	10		В			144	0 00	coarse size sand, little silt, compact to		3
- 1	10	-	1	_	1		loose, (SM) tending toward (SM), (GM).	11=11=11=		
-			1	6			loose, tony terraing terrain territ			

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB08-19

2A79ch

HULE NO. 5808-19

SURF. ELEVATION 1448.7

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939159.4


Town of Sardinia, Erle County, NY

Easting: 1171416.2

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/26/19 COMPLETED 04/26/19

	EC	0/ 6	6/	12/ 18	18/ 24	z	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
	11	5		- 1			0000	Wat brougish gray grayally		
	8		4			-	0000	Wet brownish gray gravelly (SILTY-SAND) with 20 to 40% gravel,	121111	
F				3	2.10	7	0000	occasional cobble, very fine to very		
					1		0000	coarse size sand, little silt, compact to		
	12	5			-		0 0	loose, (SM) tending toward (SM), (GM).	141414	
\neg	5	-2	7				0000			
	3		-4-			8	0000			
-				4	-		0000		1 4 1 4 1 4	
	12.0	-7-			5_		0000			
	13					100	0000			
+	12		2	-/-		6	0000		121111	
-	-			4	-		0000	grades downward to 26.0	0 = 1 = 0	
-			_		4		0.8			
	14	21			-		000	Wet brownish gray very gravelly	1111111	
-	10		10		-	24	0:00:	(SAND) with 40 to 60% gravel, occasional cobble, very fine to very	1 1 3	
		-		14	-		0.00	coarse size sand, trace silt, compact,	ラディデル	
_					20		0.00.	dense below 30.0 feet, stratified,	11 11 11 11	
	15	7					0.00	(SW), (GW).		
	15		10			25	0.00		1 = 1 = 12	
	-		MIN'S	15		27.5	202			
0	7				22		0.00			
	16	44					25.00	clear transition to 31.0	11 11 11 11 11	
	14	Tatal	21			36	0.0	clear transition to 5		
				15		1 30	6 9.	Wet gray (SAND) with 3 to 7% gravel,		
					15		8 . 8 . 6	fine to coarse size sand, trace silt,	1 = 1 = 1 =	
	17	11	-				19:00	dense, stratified, (SW).		
	16	7 77	21			1 40	0	33.0		
				21		42	0000	Wet gray gravelly (SILTY-SAND) with	11 211 211 2	
				-	41	1	0,00	20 to 40% gravel, very fine to very		
-	18	10			1 71		0000	coarse size sand, little silt, dense,		
	11	10	18			1	00.00	stratified, (SM).	121111	
5	11		10	22		40	0_00_0	35.0	0 / / / / /	
-		-	-	22	27	1		Wet to extremely moist gray		
-	160	100	-		37	1	<u> </u>	(SILTY-CLAY) with 3 to 7% gravel,	1 11 11 11	
	19	16	1			7	8 0 8 0	trace sand, hard, weakly thinly	1 1 1	
-	24	-	15		-	33	_ + T _ + T	laminated, (CL).	1 = 1 = 1	
-	_	-	-	18	100			38.0		L. Lamos
-	_				22	-			"="="	+ 38.0'
				-	-			Boring completed at 38.0 feet.		
		-		-	-	-				
			_	-	-					
o L						المد الر				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road . Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB09-19

SURF. ELEVATION 1449.3

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939279.3

Town of Sardinia, Erie County, NY

Easting: 1171345.1

CLIENT GEI Consultants Inc. P.C. DATE STARTED 04/29/19 COMPLETED 04/30/19

BLOWS ON DEPTH SAMPLER INFT

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS	
1						**********	and the backets that the		Note: Advanced bore hole with 3	
23		_			1	66 66	Moist to extremely moist brown	121212	1/4" ID x 7" OD hollow stem auge	
23		_3	17.6	-	6		(SANDY-SILT) topsoil fill with 3 to 7%	100000	casing with continuous split	
			3_			0_00_0	gravel, little sand and organic matter,	1 4 1 4 1 4	spoon sampling to end of boring	
_			-	_5_			trace clay, very loose, massive soil	121211	at 50.0 feet. Bore hole was	
2	_6_					0 0 0 0	structure, (ML).		tremie grouted to ground surface	
4		6		-	11		0.5	1 4 1 4 1 4	upon completion.	
			5	5. 7		= + = = + =	Extremely moist brown (CLAYEY-SILT) with little clay, trace organic matter	1 11 11	apoli sompletion	
						8 8 8		121212		
2	3 4				121111					
17	4	5				6 0 6 5	(ML-CL).	1 1 1 1 1		
11		6		11		grades downward to 1.5	121111			
			-6			- 	L	1 11 11		
				7	_7_	1	5_0 5_0	Moist to extremely moist gray	1 4 1 4 1	
4	3				1		(SILTY-CLAY) with 3 to 7% gravel,	1 2 1 2 1 4		
20		5_	-		12	0 0 0 0	trace sand, stiff, weakly thinly	1 11 11		
			7			F-5-	laminated with very thin coarse silt	11 4 11 4 11 4		
			1-7-1	10		T + T T + T	lenses, (CL).	- E		
5	3	-]	0 0 0				
23		5			150			111101		
		- 3	7		12	0 0 0	clear transition to 9.6			
			-/-	8		0_06_0		1 = 1 = 18		
50	100			8	1	V 0 V 0	, Extremely moist light brown	1 ZII		
6	4					2000	(SAND-SILT-CLAY) with little mostly very fine size sand and clay, stiff,	1 - 1 - 1 U		
17	-	17		_	37	0000	Constitution to the land to the state of the	1 1 1 1 1		
			20		4	0000	bedded, (ML-CL).	- B		
			21		0000	grades downward to 10.0	1 = 1 = 18			
7	15			120		1. A. L. A.	grades downward to 10.0			
16		20	20	20		44	0000	Moist, extremely moist to wet below	11111	
			24		77	0000	13.0 feet, brown very gravelly	1 = 1 = 1		
7 1	1	-		22		0000	(SITLY-SAND) with 30 to 50% gravel,		Water level at 14.0 feet below	
8	7			1	1	0000	occasional cobble, trace to little slit,	100000	ground surface at completion.	
4	1	14			1	0000	dense, stratified, (SM).	141414	Si antia antiaca at ambiendin	
-4	-	14		-	31	0000		1 2 2 2 2 1	Cement Bentonite Grout Mix	
-	-		17		1	0000		1 1 1 1 1 1		
	-			12	1	0000		" " " "	7.8 gal water	
9	12	-		-		0000			4 lb granular bentonite	
20		15		1	31	0000		1 4 1 4 1 4	94 lb portland cement	
			16		1 5	0000			And the second s	
			-	21		0000		1 = 1 = 1		
10	12	-		1	1	0.000				
12	16	22	-	-	1	000				
12		66	0.4		46	000000000000000000000000000000000000000				
	1	1	24		1	12.02		10000		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

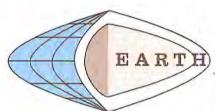
2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB09-19

SURF. ELEVATION 1449.3

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939279.3


Town of Sardinia, Erie County, NY

Easting: 1171345.1

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/29/19 COMPLETED 04/30/19

13	12	12/18	18/24	N 38	LITH	DESCRIPTION AND CLASSIFICATION Moist, extremely moist to wet below 13.0 feet, brown very gravelly	WELL	WATER TABLE AND REMARKS
13	21		13	38	0000	Moist, extremely moist to wet below		
13	21		13.	38	0000	Moist, extremely moist to wet below	11 11 11 11	
	1		13.	38	0000	13 O teet, Drown Very gravelly		
	7.75		13.			(SITLY-SAND) with 30 to 50% gravel,		
	7.75	21	13.	1	0.00	occasional cobble, trace to little silt,	1 = 1 = 1	
	7.75	21			0000	dense, stratified, (SM).	1 4 1 4 1 4	
14	20	21			0-0-	deliber ottatilled. (e.m.	00000	
14		21	-	41	0000		11 - 11 - 11	
14		-			0000	grades downward to 24.0	1 11 . 11 . 11	
14			17		0000			
	1				0000	Wet gray gravelly (SAND) with 20 to	11 41 41 4	
	18			38	0:0:	40% gravel, trace silt, dense,	11 11 11	
		20			0.000	stratified, (SW).		
			17		0		1 4 1 4 1 4	
8					0.10.0.10			
	14			20	0.00.			
		22	160	30	0.0.0		11 11 11	
			16		0.00		1111	7 10
7			10			3 2.7 - 29A-0. (9.29)	アデルデル	
						grades downward to 29.0	11 11 101	
	16	7		19	0_00_0	Moist to extremely moist		
		-	10	1			1 = 1 = 18	,
-			10	1	T+ TT+ T	trace sand, very stiff, weakly thinly	11 11 211	
				1	6_66_6		- 1 - 0	
+	-	1		16	===	lenses, (CL).	ルデルデルを	
+	-	9	-	1	E + E E + E		11 11 51	
+.		-	-21	1	0_00_0		1119	
_			-			grades downward to 33.0		5
-	14			35	5 6	Man and an analysis (CILTY CAND) with	11 11 11	
4	-	21			<u> </u>		11 11 11	1
			21		0 0 0		1 = 11 = 11 =	
_		-			5 5	Stratificat forth	1 11 11	
	14			30	<u> </u>	grades downward to 35.4		
	710	16			8 8 9		141411	
	1 -	1	13	1	_ <u> </u>		11 911 911	1
	0				8 8 8		1 = 1 = 1	
				30	8 8		1111111	
				30	I 4 = I 4 E		11111	1
			20		5 5 5	1200	1 = 1 = 1	
) 4	4			1			1 1 1 1 1	
3			-	100			1 1 1 1	
		- 11	13	18		1 = 1 = 1 =		
-		1"	14					
	7	7 12 5 7 7 14 14 10 14 14 14 14 14 14 14 14 14 14 14 14 14	8 14 22 7 12 7 5 7 9 9 7 14 21 16 16 16 16	17 8 14 22 16 7 10 5 7 9 21 7 14 21 21 21 21 14 16 13 10 14 16 20 4 7	20 17 8 14 36 16 7 10 5 7 9 16 7 14 35 21 21 21 14 30 16 13 10 16 20 18 18 11 18	20	14	8 14 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>SB09-19</u>

SURF. ELEVATION 1449.3

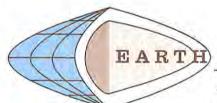
PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939279.3

Town of Sardinia, Erie County, NY

Easting: 1171345.1

CLIENT GEI Consultants Inc. P.C.


DATE STARTED 04/29/19 COMPLETED 04/30/19

DEPTH

60

BLOWS ON SAMPLER

IN FT SN 0/ 6/ 12/ 18/ DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS LITH N 8 12 18 24 REC 10 Moist to extremely moist gray 24 (CLAYEY-SILT) with some clay, trace 26 sand, very stiff to hard, thinly 13 laminated, (ML-CL) tending toward 13 (CL). 22 24 10 15 23 23 16 45 10 10 3 24 47.0 19 17 Wet gray very gravelly sand with 30 to 10 50% gravel, trace silt, compact, 17 stratified, (SM), (GM). 25 9 29 16 50.0 22 ÷ 50.0° 50-Boring completed at 50.0 feet. 55

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SBIO-19

SURF. ELEVATION 1449.8

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939443.5

Town of Sardinia, Erie County, NY

Easting: 1171408.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/06/19 COMPLETED 05/06/19

DEPTH BLOWS ON IN FT SAMPLER

SN	0/ 6	6/ 12	12/ 18	18/ 24	z	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	2					***********			Martin Advanced base balls with 3
22					1251	=====	Extremely moist to wet dark brownish	1 4 1 4 1 4	Note: Advanced bore hole with 3 1/4" ID x 7" OD hollow stem auge
22		4	_		10	-	gray (SAND-SILT-CLAY) topsoil fill with 0 to 3% gravel, little to some clay,	11 11 11 11	casing with continuous split
0.07			_6_	1			trace to little sand and organic		spoon sampling to end of boring
			-	6_			matter, soft, massive soil structure,	141414	at 22.0 feet. Bore hole was
2	_5_	100					(ML-CL) tending toward (CL).	1 1 1 1 1	tremie grouted to ground surface
24		_5	25.0	-	12	E=====	0.3		upon completion.
-		-	7	1			The state of the s	1 4 1 4 1 4	
-	-			10			Extremely moist gray (SILTY-CLAY)	11111	
	7		_	_		<u> </u>	with 0 to 3% gravel, trace sand, stiff to very stiff, weakly thinly laminated	1 = 1 = 1	
22		8			20	<u> </u>	with very thin coarse silt lenses, (CL).		
			12		1		clear transition to 6.5		
				15				11 = 11 = 11 =	
	9								
22		15			26		Moist to extremely moist dark gray		
			- 11		20	=====	gravelly (SANDY-SILT) with 15 to 30%	121111	
	101		,	10		E	mosity subrounded to rounded gravel,	E	
5	11			100			little to some sand, compact, weakly	1 = 1 = 18=	
22		8			17		thinly bedded to weakly stratified, (ML).	1 1 1 10/1	
			9		17	=-=-			
	111	1		9		F15F15	clear transition to 7.0	1 = 1 = 18=	
6	8				1		Extremely moist brownish gray	1 1 1 Z	
24	0	6				=-=-	(CLAYEY-SILT) with 0 to 3% gravel, some clay, trace sand, stiff to very		
44		-	8		14	<u> </u>		ルデルデル	
			0	- 11		stiff, weakly thinly laminated with very	11 11 12		
-	10	1		-11	1	====	thin coarse silt lenses, (CL).		
7	16	1.5	-			<u> </u>		1 = 1 = 1	
24		16			36				
-	-	-	20	250	1				A STATE OF THE STA
	-	-		21	-	=====		1 4 1 4 1 4	Water level at 14.0 feet below
8	4	-	-		-	<u> </u>			ground surface at completion.
22		5			13				No vistor arior to tables assole
4 1		-	8	-	1	=====		11 11 11 11	No water prior to taking sample number 9 from 16.0 to 18.0 feet.
		-		12				11111	number a from 10.0 to 10.0 feet.
. 9	28						grades downward to 17.0	12121	Note: Poor recovery for sample
24		31		h in the	63		grades dominard to	141411	number 7 and sample number 9,
1 -4			32		100	0000	Wet grayish brown gravelly		3" split spoon sample was taken
11 -	1			18		3 3	(SILTY-SAND) with 15 to 30% gravel,		for better recovery for both
							trace to little silt, very dense,	11 11 11 11	samples.
						Z-32-F	stratified, (SM).	1 11 11	A CONTRACTOR OF THE PARTY OF TH
					1	₹ ₹	grades downward to 17.7		
	_	-			1				

N=NUMBER OF BLOWS TO DRIVE 2 SPOON 12 WITH 140 Ib. WT. FALLING 30 PER BLOW LOGGED BY Brian Bartron & Kyle Shearing, Geologists, (cns) SHEET 1 OF 2

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SBIO-19

SURF. ELEVATION 1449.8

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION Northing: 939443.5

Town of Sardinia, Erie County, NY

Easting: 1171408.7

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 05/06/19 COMPLETED 05/06/19

TIALL		-	FLEN		-	1		7.0.0	
SN	6	6/	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
10	16					0000	Variation plant at all to		(1) Cement Bentonite Grout
22	-113	35	11.00		125	0 0	Wet grayish brown to gray (SANDY-SILT) with little to some	1 4 11 4 11	(i) Cement Bentonite order
		-35	33		68	0.000	mostly very fine to fine size sand,		
		-	-3.3	- 2		0000	trace clay, dense, weakly thinly		
		_		30		0.00.00	l bedded, (ML).	2 12 12	+ 22,0'
_							grades downward to 20.0		Committee Count Niv
							L		Cement Bentonite Grout Mix
							Wet gravelly (SILTY-SAND) with 20 to		7.8 gal water
						1 1	40% mostly subrounded to subangular		4 lb granular bentonite
	111111111111111111111111111111111111111						gravel, occasional cobble, little silt, very dense, stratified, (SM).		94 lb portland cement
						V 4 - (1)	[1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2		ou to portiona someth
							22.0	1	
					1		Boring completed at 22.0 feet.	1	
			-		1		A STATE OF THE STA	I .	
					1				
				-	1				
		-		_	1			A Company	
_	-	-		-					
	-			-	-				
		-			1				
				1					
7-3								1	
100									
1	-								
			-		1				
-					1				
-		-			1				
	-	-	-		1				
-	-	-	-	-	-				
				-	1				
				_	4			(1)	
	1-				1				
			1						
				1 41					
			1						
			1						
	-								
-	-	-			1				
-	1	-	1	1	1				
-	-	-	-	-	-				
_		-	-	-	-				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

CLIENT

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB03ST-19

SURF. ELEVATION 1460.1

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION at SB03-19

Town of Sardinia, Erie County, NY

GEI Consultants Inc. P.C.

DATE STARTED 05/02/19 COMPLETED 05/02/19

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
							Advanced augers without split spoon sampling.	Note: Advanced bore hole with 3 1/4" ID x 7" OD hollow stem auge casing without sampling to 5.0 feet. Pushed a Shelby Tube sample to 7.0 feet. Bore hole was tremie grouted to ground surface upon completion.
SI	#1							surface upon completion. ST #I: Shelby Tube Sample #1 5.0 to 7.0 feet recovery = 21/24
							7.0 Boring completed at 7.0 feet.	Cement Bentonite Grout Mix
								7.8 gal water 4 lb granular bentonite 94 lb portland cement
								No water at completion.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. SB05ST-19 • FAX (716) 655-2915

SURF, ELEVATION 1461.9

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION at SB05-19

Town of Sardinia, Erie County, NY

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/25/19 COMPLETED 04/25/19

 SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
ST	#1						Advanced augers without split spoon sampling.	A CEMENT BENT ON THE STATE OF T	Note: Advanced bore hole with 3 1/4" ID x 7" OD hollow stem auger casing without sampling to 5.0 feet. Continued below with 3" spoon to 6.0 feet and pushed a Shelby Tube to refusal at 7.3 feet. Bore hole was tremie grouted to ground surface upon completion. ST #1: Shelby Tube Sample #1 6.0 to 7.3 feet recovery = 14/16
							7.3 Boring completed at 7.3 feet.		the 7.3' Cement Bentonite Grout Mix 7.8 gal water 4 lb granular bentonite 94 lb portland cement

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB08ST-19

SURF. ELEVATION 1448.7

PROJECT WMNY Chaffee Landfill - Southern Expansion

LOCATION at SB08-19

Town of Sardinia, Erie County, NY

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/29/19 COMPLETED 04/29/19

DEPTH IN FT BLOWS ON SAMPLER

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
							Advanced augers without split spoon sampling.	Note: Advanced bore hole with 1/4" ID x 7" OD hollow stem aug
								Note: Advanced bore hole with 1/4" ID x 7" OD hollow stem aug casing without sampling to 4.0 feet. Pushed a Shelby Tube sample to 6.0 feet. Bore hole was tremie grouted to ground surface upon completion. ST #I: Shelby Tube Sample #1 4.0 to 6.0 feet recovery = 17/24
								surface upon completion. ST #I: Shelby Tube Sample #1
ST	#1							4.0 to 6.0 feet recovery = 17/24
							Boring completed at 6.0 feet.	← 6.0'
							Borning completed at 0.0 rees.	Cement Bentonite Grout Mix
								7.8 gal water 4 lb granular bentonite 94 lb portland cement
		- y						

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ch

HOLE NO. SB09-19/PZ09 FAX (716) 655-2915

SURF. ELEVATION 1449.3

PROJECT WMNY Chaffee Landfill - Southern Expansion


LOCATION at SB09-19

Town of Sardinia, Erie County, NY

CLIENT GEI Consultants Inc. P.C.

DATE STARTED 04/30/19 COMPLETED 04/30/19

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
							Advanced bore hole without split spoon sampling to 7.5 feet.	(1) Approximately 2.0 feet of 1-inch PVC stick up ST #1: Shelby Tube Sample #1 4.0 to 6.0 feet recovery = 23/24
ST	#1							+ 4.5' + 5.5'
							7.5 Boring completed at 7.5 feet.	+ 7.5' (2) Bentonite seal (chips)
								(3) 1-inch FJT Schedule 40 Ris (4) #00N morie sand pack (5) 0.010 slot 1-inch PVC scree
								Note: Advanced bore hole with 1/4" ID x 7" OD hollow stem aug casing without sampling to 4.0 feet. Collected Shebly Tube sample from 4.0 to 6.0 feet. Continued below with hollow ste auger casing to 7.5 feet and installed a temporary 1-inch
								plezometer in completed bore hole.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZ04D-19

2A79cj HOLE NO. PZ

SURF. ELEVATION 1456.1

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938969.66 PVC Riser: 1458.20

Town of Sardinia, Erie County, NY

Easting: 1170977.32

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/10/19

COMPLETED 10/11/19

SN	0/	6/	12/	18/		LITH	DESCRIPTION AND CLASSIFICATION	1	WELL		WATER TABLE AND REMARKS
REC	6	12	18	24	N		COSTIL STAIL NAME OF PERSONS STAIL		(1)		
1	1					*******	Extremely moist dark brown	1		1	(1) 2-inch PVC stick up: 2.1 feet
22		2			7	° °	(SANDY-SILT) topsoil fill with 0 to 3%	1		1	AVE MONTHS SHOW SPIRIT
		-	5		0	- A A	gravel, little sand and organic matter,	1		1	
1 - 4				8			trace clay, very loose, granular soil	0.3		13	
1		-			1	0 0 0	structure, (ML).	1		1	
		1			1	<u> </u>	0.7	11		1	
							Moist faintly mottled brown	13		13	
			1.5		1	0 000	(CLAYEY-SILT) with 3 to 7% gravel,			1	
			-		1		some clay, trace sand, stiff, blocky	1		1	
		100				0	soil structure, (CL).	13		1	
2			1		1	0 0	5.0				
19	4	6			1	====	Moist grayish brown to brownish gray	1		1	
10		-	7	-	13	=====	(SILTY-CLAY) with 0 to 3% gravel,	13			
			-/-	9		*	trace sand, stiff, thinly laminated,	1		1	
	-			9	1	====	(CL).	11		1	
1					1	=====		14	ise	1	
-	-				1	<u> </u>		1	8	()	
_	-				1			1	P	41	[N.J.
	-				1	<u> </u>		14	5	SEAL	
	-				1	<u></u>	10.0		0 F		
		-			1	0.50.	Moist brownish gray very gravelly	11	2-inch Schedule 40 FJT PVC Riser	BENTONTE	
3	- 11	- 2				6000	(SAND) with 40 to 60% gravel,	13	D D	12	
15	-	26	1.56	_	64	0.00.	occasional cobble, trace silt, very		che	(W)	i)
_	-		38			5.0.0	dense, (SW), (GW).	11	S	71	
-	-	-	-	54	1	0.0.0	To the second se	1	incl	1	
-	-	-		-	1	200			2-	()	
_	-	-				02.0		1	1	1	
-		-				6.00		14		1	
-		-			1	0.00		1		1	
_						0:00:	grades downward to 15.0	1		1	
-			14.4		4	0000		1		1	
4	10		-			0.0.0	Moist brownish gray gravelly (SAND)	()		()	
10		17	1		34	0:0:	with 20 to 40% gravel, occasional cobble, trace silt, dense, (SW) tending	1		1	
_			17			0.0.0	toward (SW), (GW).	14		1	+
				19		0.00	tonard tony tony	1		()	
				T to her		0.0.0		1		1	
			1	1				1		1	III.
						0.0.0		(1)		(1	
						0.00		1		1	
	100					0 0	i de la	1		1	
						000	20.0			1	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>PZO4D-19</u>

2A79ci HOLE NO. PZO:
PROJECT Chaffee Landfill - Southern Expansion

SURF. ELEVATION 1456.1

LOCATION Northing: 938969,66 PVC Riser: 1458.20

Town of Sardinia, Erie County, NY E

Easting: 1170977.32

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/10/19 COMPLETED 10/11/19

1 -	SN	6	6/	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION		WE	LL	WATER TABLE AND REMARKS
-	REC		-	- 1	II SC SX []		0.00		-	1	1	1
-	5	9		-			0000	Wet grayish brown gravelly		[]	1]
-	12	-	6_		-	13	0000	(SILTY-SAND) with 20 to 40% mostly		23	1	3
L	-		-	7_	_		0 0	angular to subangular gravel,				
_	-	-	_		_7		0000	occasional cobble, fine to coarse size		1	1	i]
_							0000	sand, little silt, compact, (SM) tending toward (SM), (GM).		13	1	3
L							0 0	tomara tomy tom				y .
L	_						0000			11	/	il i
L				Y						13	1	3
L			4				0 00					y .
L							10000			11	/	il
L	6	7					0000			13	1	3
	14		7		- 1	12	0 00					4
				5		1 1/2	1.0000			11	1	1
					6		0000			13	1	3
		- 11					0 00			1	שׁ עֹ	1
L	-						10000			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	1
							0000			13	1	1
							0000				SEAL	1
Г		-		100			0000	Special accompany's	30.0	111	2 6	1
ſ					11		0,000	grades downward to	- 30,0	149	Z-INCH SCHEDUNG 40 FULL	3
	7	5	171	7.1			19,000	Wet gray (SAND) mostly fine size,		1		4
	20		7			15	A. CA	trace silt, compact, tends to liquefy		11	E Z	i]
	100			8	8	10		when disturbed, thinly bedded, (SP).		133	S B	3
					8					1	US .	7
Γ	8	5			100					11	1	1]
T	21		7			14	A CONTRACT			13.		3
			14	7		1,4	12. 14.			1		X
		-			12		1.58 - 58			1		1]
	9	27					3.37			1		3
T	17		34			67						A .
T				33		07	337.40		35.7	1	1	d .
T		13.41			29		0.00	Mat area espuelly (STI TV_SAND) with	_	13		3
t	10	11		= 12			0000	Wet gray gravelly (SILTY-SAND) with 20 to 40% mostly angular to	,	1		X
f	22		13		200	00	0 0 0 0	subangular gravel, little silt, very		1	1	1]
r			10	15		28	8 5	dense, (SM), (GM).		13		3
+		- 7		10	17		<u> </u>	Light of the second second	36.5			A .
1	ST	#1			1		0 0	Employer Cold Provide State	_	1	1	Sample Number 11:
1	01	#1	-				8	Extremely moist brownish gray (SILTY-CLAY) with 3 to 7% gravel,		13		ST #1: Shelby Tube sample #1
1							<u> </u>	trace sand, very stiff, weakly thinly				38.0 to 40.0 feet
L			_	_	-		0 0	laminated, (CL).		21	1	recovery 24/24

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>PZO4D-19</u>

SURF. ELEVATION 1456.1

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938969.66 PVC Riser: 1458.20

Town of Sardinia, Erie County, NY

Easting: 1170977.32

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/10/19 COMPLETED 10/11/19

DEPTH BLOWS ON IN FT SAMPLER

2A79ci

	SN	0/ 6	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION		V	ELL		WATER TABLE AND REMARKS
1	REC						0 h 0 h			1	-	1	
1	12	6_					I+ II - I	Extremely moist brownish gray		1		1	Grain size and Atterburg Sample
1	16		8_			21	\(\oldsymbol{\pi} \) \(\oldsymbol{\pi} \)	(SILTY-CLAY) with 3 to 7% gravel,	1	1		1	36.5 to 42 feet
1	1 - 11			13		70		trace sand, very stiff, weakly thinly			E	SEAL	
1					16		Z + Z Z + Z	laminated, (CL).		23	Ris	5	
	13	- 5					8 6 6			1	2	F.	
	20		6			30		clear transition to	43.3		۵	종미	
				24		30	0 000		-	13	2	BENTONITE	
ı					25	1	0000	Wet brownish gray to gray gravelly		1	40	创	
1	14	16	-				0000	(SILTY-SAND) with 30 to 50% gravel,		1	e	11	
	22	10	21	M		100	000	occasional cobble, fine to coarse size sand, little silt, dense and very dense,		13	edu	13	+ 45.0*
-			-61	24		45	0000	stratified, (SM), (GM).		200	ch	4	+ 45.0
		-	-	_24_	27	1	K 7 1 7 1	sticines, torn torn		1	5		
	10	14			-21	1	0000			100	2-inch Schedule 40 FJT PVC Riser		
	15_	14	0.4				3000	grades downward to	47.0	33	à	1.17	
	10	-	24		_	45	5	Wet gray fine to coarse size sand with	~			123	
	-			21_		1		5 to 10% gravel, trace silt, dense and		153			wels' so
. 19	300	-		-	20	-	9 . 4 . 4	compact, (SW).		137	_	1.13	+ 48.0°
1	16_	-11				1	5. 60	compact town		1.0			0
	18	-	16	-		31	4					200	Grain size sample: 43.3 to 60 feet
Н				15			9 40 6			100		133	reet
0—					15	-	0. 00.					287	
H	17	9	100	100	1		.49 .			100		37	
	12		12			27	0 . 6 0			YW	e e	ac)	
	1 1 1		- 11	15	1 73	-	5	grades downward to	52.0		Screen	d b	
ш		1		100	16		.49.	grades dominard to		14.9	S	ne :	
	18	8					4	Wet gray (SAND) mostly fine to medium	n	5.8	2-inch PVC	size morie sand pack	
	10		10	. 4. 1		23	0 8	size with 3 to 7% gravel, trace silt,			och Ch	JO.	
				13		-5	7	compact, stratified, (SW) tending		1,1.4	7	22	
					15		4. 9	toward (SP).		1 1		Sī	
	19	17					0 . 5			23	0.020 Slot	0#	
	15		14		-	000	4			1,4	020	1.3	
5—				15		29	000 .0	A Section of the American	14.4	Qi'	0	117	
				-10	16	1	8 . 8	grades downward to	56.0			100	
	20	7	-		10	1	9.09	Wet gray (SAND) fine to coarse size				2.4	
	18	4	12		- 1	1	0.0.0	with 10 to 20% mostly rounded to		50		0.	k
	10		12	100		- 31	0.00	subrounded gravel, dense, stratified,				100	
-				19	124	1	0.0.0.9	(SW).		0.9		2.13	W 55 68
				4. *	25	-	0000			1.00	127	- , -	+ 58.0°
	21	8	100			1	0.0.0			130	114		
	22		13			37	000			3.4		1.11	
			-	24						40.00	Ç.		b 650
0				-	29		1000		60.0	1	4 1/4		+ 60.0'

Soil and Hydrogeologic Investigations * Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cj

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZSBII-19_

SURF. ELEVATION 1455.4

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938995.97 PVC Riser: 1457.72

Town of Sardinia, Erie County, NY

Easting: 1171525.62

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/03/19 COMPLETED 10/07/19

41	A D I		JAI	IFLER							
- 1	SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		ILL IS	WATER TABLE AND REMARKS
	1	2					********	An recent Core, made washes	1	1	(I) Approximately 2.0 toot over
	16		1 27				***********	Extremely moist dark brown			(1) Approximately 2.0 feet over
H	10	-	_3_			9	P. 10-7-17	(SANDY-SILT) topsoil fill with little	D3		1-inch PVC stickup
-				-6			2	sand and organic matter, trace wood			
					7		7-4-7-4-4	fiber, very loose, granluar soil	27	1	1
			11 COM		1.000		* 2	structure, (ML).	12	1	
-			-		7			0.7	11	/	1
1	-						* * *		1	1	1
H	_	-	-	-	-		N. 178	Extremely moist to moist faintly			il .
L								, mottled brown (SAND-SILT-CLAY)	13		3
L	2	3		0.0			1	with 0 to 3% gravel, little sand and			
1	20		3					clay, stiff, weakly blocky soil	1	1	d
1			1	5	100	8	===	structure, (ML-CL).	1		
1				- 5	120		0 0	grades downward to 4.0	1	1	1
1		-	-	-	7				1	1	1
-							0 0	Moist brown (CLAYEY-SILT) with 0 to	1		ıl .
					-		-	3% gravel, some clay, trace sand, stiff,	1.4	1	1
						1		weakly thinly laminated, (CL).		- [<u>J</u>
1						1	0 0		13 9	2	3
H		-	-	-		1	120		10		4
-		_		-		-	9	grades downward to 9.0	11 8	2 1	d
			-				*XX 512		N P	1	
1	3	7	2.0				-44-	Moist brown (CLAYEY-SILT) with 3 to	110	2 80	ıı
	22		9			1	9 . 9 . 9	7% gravel, some clay, trace sand, very	1/ 5	5 元	1
+			-	10		22	- K K-	stiff, weakly thinly laminated with very	10	Then schedule 40 rul rvc hisel	1
H	_	-	-	13	10.0		9-08-0	thin coarse silt lenses, (CL).	1		3
-	_		-		18				1 3		
							0 0		170	2 2	d
									1 1	5 .	X
- [1	·		115	= /	1
+							a		1	- 1	
H	-	-	_	-		-			1		il
H			-	-	_	4	0 -00 -0	grades downward to 14.0	14	1	1
		1				1	- h-				<u> </u>
	4	5				1	Z-Z-Z-Z-	Extremely moist brownish gray	1	1	3
1	24		8		72-1	17	<u></u>	(SILTY-CLAY) with 0 to 3% gravel,			X
1				9		17	F-FF-F	trace sand, stiff, weakly thinly	1	1	il
1	-			9	1	1	<u> </u>	laminated with very thin coarse silt		١.	
-		-	-		9			lenses, (CL).		/)]
				-					1	1	1
			-								y .
							<u> </u>		13	2	3
+			1			1	=-=-				4
-	_		-		-	1	Z - Z Z - Z		11	1	1
1	-		-	-	-	-		grades downward to 19.0	1		
		-				1	Z-2Z-2	41,202 (1.50 Marte NJ) 14	1	/	A
	5	5					1. A. A. A. A.		1	1	4
İ	17		4			1	7.0.1	See next sheet	1		1
L	-14	_	1 4	1	-	1 8					

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cj

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>PZSB11-19</u>

SURF. ELEVATION 1455.4

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938995.97 PVC Riser: 1457.72

Town of Sardinia, Erie County, NY

Easting: 1171525.62

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/03/19 COMPLETED 10/07/19

	SN	6	6/	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WE	ELL	WATER TABLE AND REMARKS
ľ				4			41,735	Established and below 20.0 foot	13	1	
Ī			-		2			Extremely moist, wet below 20.0 feet, grayish brown (SAND) mostly fine size,			
-	1				-		0.00	trace silt, loose, weakly thinly bedded,	121	1	fi.
-	-						34 5 3 5	(SP).		1	
ŀ	-	_				1	4.5	(31).			y .
+				Associated to the second			1 1 1 1		23	1	1
ŀ	-			-	-		1 1 1 1 1 1 1 1		1	1	4
H		-	-	-	-		100	grades downward to 24.	1.0		
ŀ							000		0.3		3
1	6	_6_		-			0000	Wet grayish brown gravelly	1	1	4
4	8		5			9	0000	(SILTY-SAND) with 20 to 40% gravel, fine to coarse size sand, little silt,	1	1	1
				4			0 0	loose, (SM).	0.3	1	3
					5		Conor	grades downward to 26.	10		4
	7	16			-		0000		1	1	i]
	15		15		-	29	0.00.0	Wet grayish brown gravelly	13	1	3
				14	100		0000	(SILTY-SAND) with 30 to 50% mostly	() :	T .	4
					22		0000	angular to subangular gravel,	71 8	AIS /	rī .
	8	13			100		00000	occasional cobble, fine to coarse size sand, little silt, (SM), (GM).	1	2 /	1
	10	- 47	12			26	0.000	said, little sit, (SH), (SH).		SEAL	
	100			14	-	20	0000		111	2 2	เป็
1					17		0000		1/2	5 后	1
+	9	31				1	0.00.0			GENTONITE	
Ì	13	-	19			1	0000		773	E E	d
ı	12		10	19		38	0000		1.43	S H	1
ı				10	17		0000			5	J.
1	10	14			-	1	0000		13	-inch schedule 40 FJI PVC RISER	đ
	16	14	15			1	0.00.3		1	- 1	4
1	10		15	13		28	M. O'O. Y				g
1				13	10		0000		1	1	9
1	- 7.	or.			10	1	0000		\ \		Note: Sample # 11 used 3-inch
1	8	25	6.				P.O.O.0.4				spoon.
; -	0		21	16-	-	36	0000		23	2	3
				15			0000	36.	.0	١.	7
	= 160	100			15	1	55	Futramely majet broughth gray	10		i)
	12	10			-			Extremely moist brownish gray (SILTY-CLAY) with 0 to 3% gravel,)	3
	14	-	8	-	-	19		trace sand, very stiff, weakly thinly			X
_			-	-11		1	-	laminated, (CL).	[1]	1	()
			-	-	22		F####	38.	1.5		3
	13	21				1	V.000				K
	15	(10)	19			33	0000	Wet gray (SILTY-SAND) with 15 to	11		1
		-	-	14		1 25	0000	30% gravel, little silt, trace clay,	13	1	3
,					16		-1-1-	dense, (SM).			<u> </u>

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

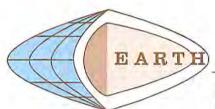
(716) 655-1717 • FAX (716) 655-2915 2A79cj HOLE NO. <u>PZSBII-19</u>

SURF. ELEVATION 1455.4

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938995.97 PVC Riser: 1457.72

Town of Sardinia, Erie County, NY


Easting: 1171525.62

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/03/19 COMPLETED 10/07/19

DEPTH IN FT BLOWS ON SAMPLER

1N F		SAM	PLER								
SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	W	ELL		WATER TABLE AND REMARKS
14	14					5-5-	SIST STATE (CT TV CAND) WITH IE IS	1		1	From 36 to 47.5 alternating
14		7			Sest	0.0.0	Wet gray (SILTY-SAND) with 15 to			1	sequence of till and silty sand
15.		-	7		14		30% gravel, little silt, trace clay, dense, (SM).	1		1	and gravel layers
-		10000		1		-0	39.5	1		1	and graver layers
		-	-	8		0 -0 -0			1		
15	15		_				Extremely moist grayish brown to gray	13		1	
13		14			30	0	(SILTY-CLAY) with 0 to 3% gravel,				
		1.00	_16_		1000	0000	trace sand, hard, massive soil	11		1	
				19		0 00 0	structure, (CL).	14		/	
16	25	L		36.77		. 4 9 .	clear transition to 40.3	11	ľ		
18		24			51	0 6	Wet gray gravelly (SAND) with 20 to	1		1	
			27		31	1	40% mostly angular to subangular	1		1	
_				35		4	gravel, fine to coarse size sand, trace			1	
17	16					5opa	silt, compact, (SW).	1		7	
14	10	15	-		140	8	41.2	1	1	1	
1		10	16		31	191.1.4.1	Extremely moist brownish gray	1	. !		
-	1	-	16	4.30		€	(CLAYEY-SILT) with 3 to 7% gravel,	13	Riser	1	
	-	-	_	14			some clay, trace sand, very stiff,	1	B		
18	8	-		-			weakly thinly laminated, (CL).	1	PVC	41	
8		16			27	- - - -	43.0	1.4	FJT	SEAL	
			11			<u> </u>			LL	التا	
)				12			Wet brownish gray gravelly	1	40	BENTONITE	
19	8			100			(SILTY-SAND) with 20 to 40% gravel,	1	음	é	
21		10			22	=====	fine to coarse size sand, little silt,	1	pac	21	
	111	1 4	12				compact, (SM).	1	Sch	B/	
				13	1		44.0	1	-inch Schedule		
20	7			100	1		Wet gray (SAND) with 5 to 10% gravel,	1	Ę.	1	
24	-	12				-	mostly fine size sand, very dense in	1.4	-	1	
2.7		16	19		- 31		place, loose when disturbed, (SW)				/ Plan la
-	-		19	1.0	1		tending toward (SP).	13		2	Maria Salama Maria Maria
7.107	-	-		18	1		grades downward to 46.0	1	1	1	Note: Sample # 21 used 3-inch
21			-		1	<u> </u>		1		1	spoon.
24		15	-		47	<u> </u>	Wet gray (SAND) with 5 to 15% gravel, fine to coarse size sand, trace silt,	1		1	47.5 to 61 feet: Uniform silty clay
	177		32	10.0			dense and compact, stratified, (SW).			1	47.3 to of feet, official sitty clay
				42		<u> </u>	그래, 다시이라마, 그러워면, 남자시에 마이어지는 일으로 받으는 그리고 있는 없었다. 그 그 그리고	1		11	
22				10.		8 8	clear transition to 47.5	1		1	
17		22		1	56		Extremely moist brownish gray				
			34		33	0 0	(SILTY-CLAY) with 0 to 3% gravel,	1		1	
				47			trace sand, very stiff, weakly thinly	12		1	
23	24				1		laminated, (CL).	1		1	
20	_	24			1	<u> </u>		13		1	
20		24	00		52					1	
	-	1	28	20	1			1		1	
0	_	1		36				انط	_		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road · Elma, NY 14059

2A79cj (716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZSBII-19

SURF, ELEVATION 1455.4

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938995.97 PVC Riser: 1457.72


Town of Sardinia, Erie County, NY

Easting: 1171525.62

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/03/19 COMPLETED 10/07/19

11/4 1-	/	07,1	FLER							
SN		6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WE	ELL	WATER TABLE AND REMARKS
24	7						Particular activity beautiful beauti	1	(8)	
18	1	16			200		Extremely moist brownish gray (SILTY-CLAY) with 0 to 3% gravel,	1 3	7	← 61.0'
-10		10	22		38	٠٠٠٠٠	trace sand, very stiff, weakly thinly	3.7	2 1	e 61.0
	+	-	22	7.4		0.0.0	laminated, (CL).	1.5	1.37	7.3.2.
1000	1	-		18		V. 60.	61.0	/ -	1,00	← 62.0'
25	19	-				0.0.0		134	3.5	(a) I has Sabadula 40 F IT BVC
	-	24		+ -	44	00	Wet gray gravelly (SAND) with 20 to	63.0	- 13	(2) 1-inch Schedule 40 FJT PVC Riser
-	-	-	20			0.0.0	40% mostly rounded to subrounded	A	* S	Nisel
				18		0.00	gravel, fine to coarse size sand, trace	1 3	sand pag	(3) Bentonite Seal
26	11_					0.0.0	silt, dense, stratified, (SW).		D P	127 227/11/11/12
15		10			26		clear transition to 64.5		S S	
	1	In	16	1		10000	Wet grayish brown (SAND) mostly fine	2	morie sand pack.	
1				24		1, 446, 1, 344	size, trace silt, compact, weakly thinly		S E	
27	8		-				bedded, (SP).	134	U.UIU Slot 1-inch PVC #00N size morie s	
11	-	12				000	grades downward to 66.5		5 Z	
-		16.	14		26			Č	7 00	1
			14	00		.6	Wet gray (SAND) fine to coarse size	1 4 8	5	
	-	-		22		0 0	with 5 to 15% gravel, trace silt, compact, stratified, (SW).			
28	7	1	-	-			compact, stratified, (SW).	133		
8	-	9			25	.4		2.4	110	
-	-	-	16_			8. 60 .	70.0		1.5	La Carlo
	-	-	200	25		. 4			10/4	J ← 70.0'
		-			4		Boring completed at 70.0 feet.			
					1					
-										
		11								
					1					
	_	-			1					
+		-	1=	1						
-	-				1			1		
	-		-	-	1					
-	-	-			-					
-	+		+	-	1					
-	-	-		-	-					
-	-	-	-	-	-					
-					-					
	4									

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cj (716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>SB12-19</u>

SURF. ELEVATION 1454.8

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938985.35

Town of Sardinia, Erie County, NY

Easting: 1170846.52

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/08/19 COMPLETED 10/09/19

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND R	EMARKS
1	2			HTT		WWW.	1 Wat to autromoty malet dayly brains	Cement Bentonite Gr	out Miv
13	1	4		-		0000	Wet to extremely moist dark brown (SANDY-SILT) topsoil with 0 to 3%	1 = 11 = 11	
			7 .	POC SE	11	0000	gravel, little sand, trace to little	7.8 gal Water	
	1	444	-1	7		0.0	organic matter, very loose, granular	Z S Z S Z 1 M4 ID FOLLIGIOU I VDE	1/11
2	7			-		•	soil structure, (ML).	1 4 Ib Bentonite	
20		6	-				0.3		
			7		13		Extremely moist faintly mottled brown		
1			1	9		•	gravelly (SILTY-SAND) with 20 to 40%	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	
- 3	5	-		-0_			mostly angular to subangular gravel,		
17	-3-	8				===	occasional cobble, fine to coarse size		
		0	9		17		sand, little silt, (SM) tending toward	1 4 1 4 1 4	
	-		- 0	13			(SM), (GM).		
4	11			-13			clear transition to 2.0		
12	-11	10			32	• •	Moist grayish brown to brownish gray	1 4 1 4 1 4	
		-10-	13		23	-	(CLAYEY-SILT) with 0 to 3% gravel,		
		-	13	14		-	some clay, trace sand, stiff, very stiff		
-	15	7	1 - 1	_14_			below 6.0 feet, weakly thinly	1 = 1 = 184	
18	10	15			10		laminated, (CL).	1 25/1	
10		10	14	7 - 7	29	0.0.0	clear transition to 8.7		
		-	_14_	9			, Moist brownish gray gravelly (SAND)	1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-	-	-		9			with 15 to 25% gravel, fine to coarse		
16	8	00			100	V.6V.	size sand, trace silt, compact, (SW).		
10		26	27		53	0.00	9.5	1、一、一、一、一	
			-21	or		0.00	Moist brown (CLAYEY-SILT) with some		
7	29			25		0.00	clay, trace sand, very stiff, weakly		
18	28	05				0.00	thinly laminated, (CL).	1 = 1 = 1	
10		25	0.7	_	52	000	10.6		
-	-		27	02	1	000	Moist brownish gray very gravelly	4 1 4 1 1	
_	100/0	_	-	23	1	0.00	(SAND) with 40 to 60% mostly angular		
2	100/2				1		to subangular gravel, occaisonal	1 1 1 1 1	
- 2				-	1	000	cobble, fine to coarse size sand, trace		
	-				1	0.7.0.7	silt, dense and very dense, (SW), (GW).		
2	-				1	0.00		1 1 1 1 1	
9 15	24	70			V.	2000			
10		16	0.1		37	0.00			
-	-	-	21				grades downward to 18.0		
-	124			23		3000			
10	20	1240		_		0000			
17		17			35	00.00		111111	
-			18						

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cj

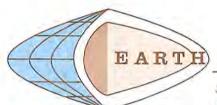
(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>SB12-19</u>

SURF. ELEVATION 454.8

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938985.35

Town of Sardinia, Erie County, NY


Easting: 1170846.52

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/08/19 COMPLETED 10/09/19

DEPTH IN FT BLOWS ON SAMPLER

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
	REC	0	12	10	24			
	_11	_17	_	-			0000	Extremely moist, wet below 19.5 feet,
	10	-	11		_	24	0000	gravery (SIETT SAND) with 20 to 40%
			_	13			0 00	mostly angular to subangular gravel,
	40			-	22_		0000	little silt, dense to compact, (SM) tending toward (SM), (GM).
-	12	13	40				0000	
	-17		18	22	-	40	0000	1 " 1 " 1 "
		-			24		0 00	
	13	11			74		0000	
25—	18		12			25	0000	clear transition to 25.0
25—				13		25		Wet grayish brown (SAND) mostly fine
					18		000	, size, trace silt, compact, weakly thinly
	14	12					0000	bedded, (SP).
	20		11			19	أعثمقا	clear transition to 25.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
_				8			=====	Wet brownish gray gravelly
	_				9		<u></u>	(SILTY-SAND) with 15 to 25% gravel,
	15	6					====	fine to coarse size sand, trace to little silt, compact, (SM).
	24		8			16		clear transition to
		-		8	_		=-=	
30—				—–	_11_		<u> </u>	Wet to extremely moist brownish gray (SILTY-CLAY) with 0 to 3% gravel, (SILTY-CLAY) with 0 to 3% gravel,
	ST	#1						trace and very stiff workly think
							=====	laminated, (CL). 30.0 to 32.0 feet recovery = 0/24
		=						crushed tube
	17	9					<u></u>	
	22		11			0.4		Grain size and Atterburg Sample:
				13		24	<u></u>	28 to 37.5 feet
					17		<u>•</u>	Sample Number 18:
	ST	#2						ST #2: Shelby Tube sample #2
35_							=====	1 4.0 to 36.0 feet
-								recovery = 0/24
							<u></u>	crushed tube
	19	12						1 = 1 = 1
	21		15			32	<u></u>	37.2
-			_	17			i · io: io · io	Wet gray (SAND) fine to coarse size
					22		0.0.0	, with 10 to 20% gravel, trace silt, (SW).
	20	53		-	-			38.0 1 4 1 4
	16		23			47		
				24				See next sheet
40					25		F. 14 . 17.5 15.	See next sheet

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cj

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SBI2-19

SURF. ELEVATION 1454.8

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938985.35

Town of Sardinia, Erie County, NY

Easting: 1170846.52

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/08/19 COMPLETED 10/09/19

	SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
H	21	a					g System	con the sale has nothing and a first		
-	20	- 4	12			133	(v)	Wet gray (SILTY-SAND) with mostly	11 11 11 11	
-	20	_	12	7		19	0000	, fine size sand, little silt, dense, weakly thinly bedded, (SM).	1 1 1 1 1	
ŀ	-				26		0000	물 위에 가게 하면 이 이 이 사람이 되었다. 그리아 그렇게 하고 있는 그 사람이 있다고 있다.		
ŀ		- 04			-26_			grades downward to 41.0		
1	22	21_	18				0000	Wet gray (SILTY-SAND) with 10 to		
ŀ	66		18	22		40	0 00	20% gravel, fine to coarse size sand,		
ŀ				-//	19		0000	trace to little silt, compact, (SM).	1 4 1 4 1	
ŀ	23	18		-	18		0000		11 11 11	
ŀ	15	_10_	16			0.24	0 0		11 11 11 11	
+	10		-10	19		35	0.0.00		11 = 11 =	
1				1.5	15		0000	grades downward to 46.0		
ı	24	12			-13		WAY AND	Wet gray (SAND) mostly fine size,	100000	
1	18	12	9				14.11	trace silt, compact, weakly thinly	1 4 1 4 1	
1	10		- 0	12		21		bedded, (SP).		
1				12	11		325 W.	grades downward to 48.	0 2 0 2 0 2 1	
1	25	9					0, .00 . 0	Wet gray (SAND) with 3 to 7% gravel,		
1	14	-	12		-		3 5	fine to coarse size sand, trace silt,		
t		10.7		14	100	26	.9	compact, stratified, (SW).		
Ì		7		17	12		o o p . a			
+	26	7	-	-		1	S . S		1 1 1 1 ZI	
Ì	13	1000	7		in a T		6	51.3	1 9 9	
Ì		14.4	- 1-	9		16	b, p' . a		N S S S S S S S S S S S S S S S S S S S	7
- 1				_	12	1	5 9	Wet light grayish brown (SILT) with	1 = 11 = 111=	1
1	27	16						illite mosity fine size sand, compact, thinly bedded, (ML).		
	18		20			40	9	51.6	11 11 11	
Ì		-	-	20		40	0. 00 . 0	L	1 4 1 4 1 4	
1	7				18		3	Wet gray (SAND) with 5 to 15% gravel,		
	28	15	-			1	9. 4.	fine to coarse size sand, trace silt, compact, granular soil structure and	100000	
	19		12	-	-	30	0.00	stratified, (SW).	1 4 1 4 1 4	
				18	4.0	30	0 .00 .	**************************************		
	ALE!				48		.6	•		1
	29	18					0, 00,0		1 = 1 = 1 =	
	12		17			38	0 . 6		11111111	
				21	1-	36	.6 4.			
	- 1-	-	-	-	25		0. 00.0	clear transition to 58.	2	
	30	19							1111111	
	22		21			47			1 1 1 1	
				26		1 40				
,					27		*****	See next sheet	11 11 11	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road · Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB12-19

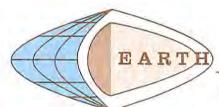
2A79cj

SURF. ELEVATION 1454.8

PROJECT Chaffee Landfill - Southern Expansion

Easting: 1170846.52

Town of Sardinia, Erie County, NY


CLIENT GEI Consultants, Inc. PC

COMPLETED 10/09/19 DATE STARTED 10/08/19

LOCATION Northing: 938985.35

DEPTH BLOWS ON SAMPLER IN FT

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
31	13	_17_	24		41		Wet to extremely moist brownish gray (CLAYEY-SILT) with little to some clay, trace sand, hard, weakly thinly laminated, (ML-CL) tending toward (1) Cement Bentonite Grout
				28			laminated, (ML-CL) tending toward (CL). grades downward to 60.0
							Extremely moist brownish gray (CLAYEY-SILT) with some clay, weakly thinly laminated with very thin coarse silt lenses, (CL).
							Boring completed at 62.0 feet.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>SBPZ01D-19</u>

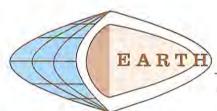
SURF. ELEVATION 1453.2

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938648.41

Town of Sardinia, Erie County, NY

Easting: 1170445.15


CLIENT GEI Consultants, Inc. PC

DATE STARTED 09/30/19 COMPLETED 10/02/19

DEPTH BLOWS ON IN FT SAMPLER

2A79cj

1 12		2	4	4			*******	142-49-Aberton Studienskinskinski	1 = 1 = 1 =	
			4	4		1 - 1		 In the property of the property o	10000	Control Productive Count Miss
			4	4			9 9	Extremely moist dark brown		Cement Bentonite Grout Mix
				4		8	0 60 6	(SANDY-SILT) topsoil fill with little		7 B gal Water
							9	sand, trace to little organic matter,	1 = 1 = 1 =	7.8 gal Water 94 lb Portland Type 1/II
				_	5		0 60 6	very loose, granular soil structure, (ML).		5 lb Bentonite
				-			0 60 6	0.3		o lo delitorinte
		- 1	_				9		1 = 1 = 1	
-	-	-	_	_	_		0 60 6	Moist brown (SILTY-SAND) fill with 3		
				-			0 60 6	to 7% gravel, little silt, loose, massive		
-	-						9 9	soil structure, (SM). (Soil Berm)	141414	
- 0							0 60 6	5.0		
_/		5					12.7	Moist grayish brown (SAND) fine to		
15	5	0.1	5			11		coarse size, trace silt, compact, (SW).	1 4 1 4 1 4	
		-	474.0	6		C.		5.5		
				11. 11.	4		30/10/20		1 = 1 = 1	
								Moist to extremely moist grayish brown	1111111	
						1		to brownish gray gravelly (SILTY-SAND) with 15 to 25% gravel,	1111	
			_			1		occasional cobble, fine to coarse size	いまいま	
						1		sand, little silt, compact, (SM).	11 11 51	
-		-				1			ACEMBRY SEN NOVI VE GROUN AND ALL AND	
-		-10	-						// // Z//	
3	_	10	13.0			1	100000		(A)	
18	3		10	125	-	21			" " " "	
_	+			_11_			15		// WE	
-	-		_		13	1	100000			
_	-	-	-			1				
	-	_		-		-				
				_	-	1				
									1 4 1 4 1 4	
								grades downward to 15.0		
						1				
4	1	6					0000	Extremely moist, wet below 17.3 feet,		
10	0		8	1	10.00	14	0 00 0	gravelly (SILTY-SAND) with 20 to 40%	11111	
				6] ''	0000	gravel, occasional cobble, little to	1 = 1 = 1	
		7.7			7		0000	some silt, compact, dense below 20.0 feet, (SM) tending toward (SM), (GM).	11 11 11	
]	0 00 0	reet, (SM) tending toward (SM), (GM).		
			-			1	0000		1 4 1 4 1	
	\exists					1	0000			
				-		1	0 0			
						1				
-	-					1	0000			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SBPZ01D-19

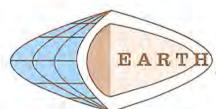
SURF. ELEVATION 1453.2

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938648.41

Town of Sardinia, Erie County, NY

Easting: 1170445.15


CLIENT GEI Consultants, Inc. PC

DATE STARTED 09/30/19 COMPLETED 10/02/19

DEPTH BLOWS ON IN FT SAMPLER

2A79ci

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	WATER TABLE AND REMARKS
5	65					0000	and the Thirty P. Late Lands and	N.		Matarable black sounds someth as
15	0.5	21			100		Extremely moist, wet below 17.3 feet,			Note: High blow counts sample #5 due to cobble.
10	-	2	0.7		48	0000	gravelly (SILTY-SAND) with 20 to 40% gravel, occasional cobble, little to	6		due to cobbie.
	-		27	-		0 0	some silt, compact, dense below 20.0	K		
107		-		31_		0000	feet, (SM) tending toward (SM), (GM).		141414	
6	7		-			0000	reed feet, telland remain feet, feet,	ſ		
10		9		_	23	0 00		1	1 = 11 = 11 =	
_			14	-		0000			11 11 11	
		-		15		0000		24.5	11111	
	3					3 3	7 (A)	- 1	1 = 1 = 1	
18		- 5	-		11	<u> </u>	Moist to extremely moist			
-			6			3 3	(SILTY-CLAY) with 0 to 3% gravel,	. 1		
	ht mi			14		0000	trace sand, stiff, thinly laminated with very thin coarse silt lenses, (CL).		141414	
-8	21			-		0,000	Very truit coarse sitt lenses, 10c/.	25.5		
14		12			25			25.5		
	-		13		20				1 4 1 4 1 4	
				10		0.00.0	(SILTY-SAND) with 20 to 40% gravel,		E	
9	7					0000	occasional cobble, fine to coarse size		1 = 1 = 18=	
6	12	12			22	0000	sand, little silt, trace clay, compact,		1 4 1 4 101	
1 1	T		10		22	0.0	(SM) tending toward (SM), (GM).			
			100	15		0000			1 = 1 = 18=	
10	17	5.4		-10_		0000	clear transition to	30.5	11 11 Z/	
18	-1/	16			10.3	0000	Wet gray gravelly (SAND) with 20 to		1 1 1 20	
10		10	13		29	0	30% gravel, fine to coarse size sand,		リデリデル	
-			13	17		00000	trace to little silt, compact, (SM).		11 11 XI	
	-	-	-	17	1	0.00	'\ grades downward to	32.0		
11	53	100	-	-		0.0.0	~	== "	1 = 11 = 11 =	
10	-	16			31	O. O.	Wet gray gravelly (SAND) with 15 to			
-		-	15		10	0.0.0	25% gravel, trace silt, dense, stratified, (SP).			
-	30.	-	-	20		0.00	Strannest to the		1 = 1 = 1	
12	31					0.0.0				and the second second
18	_	26		100	49	0000		25.7		Grain size and Atterburg Sample
-	10		23	11.00	TY	0.0.0.0		35.7	1 4 1 4 1 4	36 to 38 feet
				14		0 -0 -0	Extremely moist grayish brown			
13	8					0 0	(CLAYEY-SILT) with 5 to 10% gravel,			
22		11		1	27	- La-	some clay, trace sand, very stiff,		1 4 1 4 1 4	
			16	Jan.	1 -	0 0 0	weakly thinly laminated, (CL).		1 1 1 1	
1	100			19				22.5	1 = 11 = 11 =	ST #1: Shelby Tube sample #1
ST	#1				1	-aa-		38.6	1111111	38.0 to 40.0 feet
-					1			_		recovery = 8/24
			111.7		1	0.00			1 = 1 = 1	
						0000	See next sheet		11 11 11	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SBPZ0ID-19

SURF. ELEVATION 1453.2

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938648.41

Town of Sardinia, Erie County, NY

Easting: 1170445.15

CLIENT GEI Consultants, Inc. PC

DATE STARTED 09/30/19 COMPLETED 10/02/19

DEPTH BLOWS ON IN FT SAMPLER

2A79ci

SN	0/	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
REC	6	12	18	24	YY		LEADING WITH SELECTION OF TANK	0 = 0 = 0 =	HICKORY CARLOTTE
15	4					0000	Wet brownish gray gravelly		
10		10	7		0.00				
			14		44	0000	subangular gravel, occasional cobble,		
				15		0.0	fine to coarse size sand, little silt,	11 11 11 11	
16	8			800 (0		<u> </u>	compact, (SM) tending toward	1 4 1 4 1 4	
13	100	12			00	8 _ 8 _ 5	(SM), (GM).		
77			16		28	5 5	clear transition to 41.8		
-		1-1		25	1		Extremely moist brownish gray	1 4 1 4 1 4	
17	7				1	5 5	(SILTY-CLAY) with 3 to 7% gravel,	12121	
20		11		10-0	12	- - - -	trace sand, very stiff, thinly laminated,	1001011	
			17		28		(CL).	11 4 11 4 11 4	
			-1/-	22		0 _ 0 0 _ 0		" " " " " "	
18	7			-		σ - σ -			
11	-	10						1 = 1 = 1 =	
- 11		10	14		24	8 - 8 -			
		-	14_	21		===	grades downward to 48.0		
10				21			Extremely moist gray (SILTY-CLAY)	1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
19	8_				lost.		with 0 to 3% gravel, trace sand, very	1 1 1 1 1 1 1	
24		- 11	10		27		stiff, weakly thinly laminated with very		
-			16			= = =	thin coarse silt lenses, (CL).	1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	
0.2	- 2	\vdash	_	22					
20	5					I + III - I			
24		6	11.0		17	- -	clear transition to 51.5	// = // = //	
	- 5-1		- 11	- 13		5 9	U. I (CAND) fine to appear size	// WE	
1	-	-		_13_			Wet gray (SAND) fine to coarse size with 5 to 10% gravel, compact,		
21	7			-		0, 0, 0, 0	\\ stratified, (SW).	1 4 1 4 1 4	
19		9		_	22	==	clear transition to 52.5		P.5
	-		13	-		•	L	10000	1/
-				14	-		Extremely moist brownish gray	1 4 1 4 1 4	
22	7					==	(CLAYEY-SILT) with 0 to 3% gravel,		
17	1	10	1		26	• - •	some clay, trace sand, very stiff to hard, thinly laminated with very thin		
	100	-	16	-			coarse silt lenses, (CL).	1 = 1 = 1 =	A Company of the Company
				19		==	F15015 400 15015351 1550	11 11 11	Note: No recovery sample # 23
23	8					•			with 2-inch spoon. Used 3-inch
22		18		1	39				spoon for 22 inches of
		100	-21	1		==			recovery.
			li lia le	26		•		1 = 1 = 1 =	Grain size and Atterburg Sample
24	6							1 4 11 4 11 11	Grain size and Atterburg Sample 56 to 58 feet.
17	-	8			21			1,31,31	55 10 55 1661.
1			13] "			1 = 1 = 1	
				18	1	三三			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79c) (716) 655-1717 • FAX (716) 655-2915

SURF, ELEVATION 1453.2

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938648.41

Town of Sardinia, Erie County, NY

Easting: 1170445.15

CLIENT GEI Consultants, Inc. PC

DATE STARTED 09/30/19 COMPLETED 10/02/19

SN	6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
25	8						Estample malet brougleb army		
23		8				-	Extremely moist brownish gray (CLAYEY-SILT) with 0 to 3% gravel,	1 = 11 = 11	
			12		20	==	some clay, trace sand, very stiff to		
			-1/-	16		*	hard, thinly laminated with very thin		
26	8			-117		47743	coarse silt lenses, (CL).	121211	
20	_0_	10			300	1. Ve.	grades downward to 62.0		
			12		22	Tel Tel	Wet gray (SAND-SILT-CLAY) with		
			12	12		47.47	little fine size sand and clay, very	121414	Vistor Comple # 07 wood 3-inch
27	10			_12_			stiff, thinly bedded and thinly	1 1 1 1 1	Note: Sample # 27 used 3-inch spoon.
24	_101_	19			177.00	7.07	laminated, (ML-CL).	1 11 11	spoon.
-		18	22		41		grades downward to 65.0	1 = 1 = 1 =	
-				29			Wet to extremely moist brownish gray		
28	15			20			(CLAYEY-SILT) with little to some	1 11 11	
24	1.0	22		-			clay, trace sand, hard, thinly laminated	1 4 1 4 1 4	
			29	1	51		with very thin coarse silt lenses,		
			-20	24		• •	(ML-CL) tending toward (CL).	1.11	
29	13			24			clear transition to 67.5	11年18日	
18	13	17			30		Extremely moist brownish gray	11 11 1011	
10		-11	24		41		(SILTY-CLAY) with 0 to 3% gravel,		
			24	28		=-=-	trace sand, hard, thinly laminated with	1 = 18=	
30	11	_	7	20		<u> </u>	very thin coarse silt lenses, (CL),	11 11 ZI	
24	-"	19			32				
		10	23		42	-		1 = 1 = 1	
			- 60	25		$F \circ F \circ F$		1 1 1 1 1 1 1 1 1 1 1 1	
31	12			-					
18	-16	16				-			
		10	17		33	E-5E-5		1 4 1 4 1 4	
			-11	17		- x = z		1 1 1 1 1	Note: Cample # 32 used 3-inch
32	6			1/	1	<u> </u>		44000	Note: Sample # 32 used 3-inch spoon.
24	0	18			1			1 4 1 4 1 4	ARAK(III
		10	30		48			11 911 911	
	7 - 1	-	30	46	1	<u> </u>			
33	13			70				1 4 1 4 1 4	
22	13	18			16	=====	grades downward to 77.0	1000001	
	-	10	21		39		Extremely moist (SAND-SILT-CLAY)	1 4 1 4 1	
			21	21			with little clay, trace to little sand,	121111	
34	4			- 21	1		\ hard, thinly laminated, (ML-CL).		
18	4	10			174		grades downward to 78.0		
10		10	16		26	==	L		
1			10		1	the same of	See next sheet	1 4 4 4 4	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79ci

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SBPZOID-19

SURF. ELEVATION 1453.2

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938648.41

Town of Sardinia, Erie County, NY

Easting: 1170445.15

CLIENT GEI Consultants, Inc. PC

DATE STARTED 09/30/19 COMPLETED 10/02/19

DEPTH BLOWS ON

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
							Moist brownish gray (CLAYEY-SILT) with some clay, hard, weakly thinly laminated with very thin coarse silt lenses, (CL).		
							Boring completed at 80.0 feet.		
	1			-					

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059

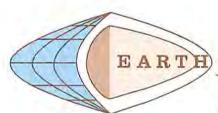
2A79cj (716) 655-1717 • FAX (716) 655-2915

SURF. ELEVATION 1453.3

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938973.68 PVC Riser: 1455.09

Town of Sardinia, Erie County, NY


Easting: 1171294.18

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/15/19 COMPLE

COMPLETED 10/17/19

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		ELL	WATER TABLE AND REMARKS
KEC	ing mi					*********	C CONTINUED ON THE PARTY OF THE	1	1/1	14 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22	\rightarrow	3-				1/4/53/434	Extremely moist dark brown			(1) 2-inch PVC stickup: 1.7 feet
22	_	4			9	00	(SANDY-SILT) topsoil with 0 to 3%	1	23	
			5.	-	1	===	gravel, little sand and organic matter,	1	1/	
				9		9	trace clay, very loose, granular soil structure, (ML).	1	11	
					-	0 0	All the second of the second o	13	0.3	
							0.4			
2	2					-AA	Moist faintly mottled light grayish	1	1	
24	1	2		-	8	0 -0 -0	brown (SANDY-SILT) with little mostly	1.4	1	
			6		"		fine size sand, trace clay, loose,			
				7]	000	blocky soil structure, (ML).	13	23	
					1	0 -0 0 -0	1.0	1	12	
	17				1		Moist brown (CLAYEY-SILT) with 0 to	11	71	
					1	0 _00 _0	3% gravel, some clay, trace sand, stiff,	13	0.3	
				-	1		blocky soil structure, (CL).			l I
		-	-	-	1		grades downward to 3.0	1	/1	
		-		-	-	0 0 0	L	1.1	se l	
_						+B- +B-	, Moist brown (CLAYEY-SILT) with 3 to	1 3	E []	
3	5		-			I - I - I	7% gravel, some clay, trace sand, stiff,	E FC	2	
22		7			16		weakly thinly laminated with very thin	1/1	SEAL)	4
1111			9		1 00		coarse silt lenses, (CL).	111	2 80	
L - 41				10	-	<u> </u>	grades downward to 8.0	1 3	2-inch Schedule 40 FJI PVC Hiser	
1-1		-			1	=-=-	Moist grayish brown to brownish gray		e e	
120					1	F45F45	(SILTY-CLAY) very stiff to stiff,	1	E Z	
					1		weakly thinly laminated with very thin	13	S S	
					1		coarse silt lenses, (CL).		5	
				1	1	<u> </u>		7.	¥ //	
-		-	_	-	-			17	0	
		-	-	-	-	-7-1-7-1		1	1	
4	4		-	-				23	1	
22		6		-	13					
			7	-	-			11	1	
		-		10				1	1	
				11.40						
				1,00	1	FAFFAS		27	1	1
					1				12	
						====				
					1	I-25-2		53	1	
					1				1	1
-	7		1-0-1					11	1	
5 19	1	1		-		Z-3Z-2	19.0	0		1
19	-	11	24		26	13/11/11				
	-	-	15		4		See next sheet	1	1	
				16		THU KAK	Sac Hour shoet	-1		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cj

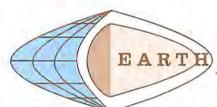
(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>PZBAO2D-19</u>

SURF. ELEVATION 1453.3

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938973.68 PVC Riser: 1455.09

Town of Sardinia, Erie County, NY


Easting: 1171294.18

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/15/19

COMPLETED 10/17/19

S		0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELI		WATER TABLE AND REMARKS
£ 10		12	20	25	45	45	00000000000000000000000000000000000000	(SM), (GM).	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
-	7 8 8	8	34	33	32	67	101 40000000000000000000000000000000000	29.6 Boulder nesited in clayey soil.	7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \ 7 \	2-inch Schedule 40 FJT PVC Riser	VENTONITE SEALY	Note: No sample number 8 taken due to boulder. Note: Sample # 10 used 3-inch
1	9 1	100/4					0-8-0 0-8-0-0		1111	2-inch	/////	Note: Drilled into boulder and carried it down hole with auger from 29.8 to 38.0 feet.
	0 2	99	99	99	99	198			11111		1	Grain size and Atterburg Sample 34 to 43.5 feet.
	11	30	23	17	16	40		38.	0	17.1-7.1-7		
	12	3	6	9	11	15		Extremely moist brownish gray (SILTY-CLAY) with 3 to 7% gravel, trace sand, stiff, weakly thinly laminated, (CL).	1/1/1		1	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZBA02D-19

2A79c) HOLE NO. PZI

SURF, ELEVATION 1453.3

PROJECT Chaffee Landfill - Southern Expansion

Town of Sardinia, Erie County, NY

LOCATION Northing: 938973.68 PVC Riser: 1455.09

Easting: 1171294.18

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/15/19

COMPLETED 10/17/19

SN	0/ 6	6/ 12	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WE	LL	WATER TABLE AND REMARKS
					-	0_0,0_0	en de unidade management (C.C.)	1	1	210 20076 210 42
ST	#1_	1					Extremely moist brownish gray			Sample Number 13;
		-		-		00	(SILTY-CLAY) with 3 to 7% gravel,	23	23	ST #1: Shelby Tube sample #1
-	-		-	_		0 0	trace sand, stiff, weakly thinly		12	40.0 to 42.0 feet
						<u> </u>	laminated, (CL).	1	1	recovery 24/24
14	9_					0_0		1 a	1.4	Grain size sample: 44 to 48 feet
22	(110)	7			26	===	43.3	1 SE		Grant size sample, 44 to 40 fee
			19			0.00.0		7:19	SEAL	
			III.	29		0000	Wet gray very gravelly (SILTY-SAND)	1 2	\$	
15	13					0000	with 40 to 60% mostly rounded to subrounded gravel, occasional cobble,	112	世	
22		17			101	0000	trace to little silt, dense to very	2 9	3	
			44		61	0000	dense, weakly stratified, (SM), (GM).	0	E	
			44	38		0000	Glaciofluvial type deposition	11 3	BENTONITE	
10	1974			-38		5000	AND AND THE PARTY TO PARTY.	1 5	1	
16	19		-	-	1.7	0000		2-inch Schedule 40 FJT PVC Riser	(1)	
6		22	774		36	0000		2 5	1	
100			14		1	0000	48.0	1/2	12	
				15		0000				
17	7					I4 I I I I	Extremely moist brownish gray	23	1	
18		9		-	22	88	(SILTY-CLAY) with 3 to 7% gravel,			+ 49.0'
	2.1.5	1000	13	-			trace sand, very stiff, weakly thinly		200	
	1, 1,			16			laminated, (CL).	3.3	1.50	← 50.0*
18	6					8 3	4/4	+ 27		
17	7 27 11	9				<u> </u>	51.0	23.3		Grain size sample: 52 to 58 fee
	1		23		32	0000	Wet gray gravelly (SILTY-SAND) with	100	111	1.5560.000.000.000.000.000.000
			60	21		0 0	20 to 40% mostly rounded to	38		
10	12			- 61		0000	subrounded gravel, occasional cobble,	13.3	333	
19	12	- 44			10.1	0,000	trace to little silt, dense and very	· c	*	
10	-	27	200		51	0000	dense, weakly stratified, (SM) tending	99	pac	
-			24	115.51		0000	toward (SM), (GM).	Slot 2-inch PVC Screen	sand pack	
855	7 22 4	-		22		0 00 0		N S	sa.	
20	16			-		0000		d.	morie	
14	1	22	-		48	0000		uc Ju	E.	
		770	26		176	0 0			#0 size	
				41		0000		· · · · · ·	0.5	
21	22					0000		8	神	L
10		54			7.4	0		0.020	190	Note: Used 2-inch and 3-inch
			20		14			1 0	184	spoon from 58.0 to 60.0 feet.
171	-			25		0 00 0				wherein mann agin in water mann
20	60			2.0		0000		453		Note: Poor recovery and high
22	60	40			1.5	00000		100	1	blow counts from 58.0 to 61.0
U	-	48			98	0000	59.5	1.50		feet due to cobble.
			50			1000		1 2 2	1,3	The state of the s

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZBA02D-19

2A79c) HOLE N

SURF. ELEVATION 1453.3

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938973.68 PVC Riser: 1455.09


Town of Sardinia, Erie County, NY

Easting: 1171294.18

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/15/19 COMPLETED 10/17/19

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
	55	-/			-		Prement conditions with a	1/1/	NA
23	_55_						Extremely moist brownish gray		Note: Change in soil composition
Ų.		68		_		=+====	(SILTY-CLAY) with 0 to 3% gravel,	>->-	at 59.5 feet determined by clayey soil on outside of spoon
12.7	1.1					====	trace sand, stiff, weakly thinly laminated, (CL).	1/1/	and change felt during augering
24	18_	- 0.5	-				laminated, (CL).	という	(Z)
18	-	- 11	e.i.		27	<u> </u>		V->-	Note: Sample # 23 used 3-inch
_	-	-	16	-		-		トンハン	w spoon.
-	-		-	_1.7_			6	4.0	[7]
-				-		•			← 64.0'
-		-		_			Boring completed at 64.0 feet.		
_				-					
								1	
				11771	1				
	-		-						
-	-								
				1					
			100		1				
-1									
					1				
					1				
					1				
			-		1			1	
					1				
					1				
-		+			1	1			
			1						
	-				1				
_			-	1	1				
_	-			-	1				
-		-		-	1				
		-		-					
		-	-		1				
_	_	-	-	-	-				
	-	-		-	-				
	_	-	-						
					1				
					1				
				-					
					1				

Soil and Hydrogeologic Investigations • Weiland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZMWSE3D-19

SURF. ELEVATION 1457.2

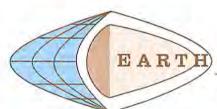
PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938989,99 PVC Riser: 1459,15

Town of Sardinia, Erie County, NY

Easting: 1170673.87

CLIENT GEI Consultants, Inc. PC


DATE STARTED 10/14/19

COMPLETED 10/15/19

DEPTH BLOWS ON IN FT SAMPLER

2A79c)

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
1 21	4	7	-8-	_11	15		Extremely moist grayish brown gravelly (SAND) fill with 20 to 40% gravel, occasional cobble, little silt, loose, massive soil structure, (SM).
2 19	3.	_5	8		13	3	Moist grayish brown to brownish gray (CLAYEY-SILT) with 3 to 7% gravel, some clay, trace sand, stiff, weakly thinly laminated, (CL). grades downward to 3.0
				10			Moist brown (SILTY-SAND) with 5 to 15% gravel, fine to coarse size sand, little silt, compact, (SM). (Ablation till)
3	4					0000	grades downward to 8.0 9.0
14		5	6	.5	11		grades downward to Moist to extremely moist faintly mottled grayish brown gravelly (SILTY-SAND) with 15 to 25% mostly angular to subangular gravel, fine to coarse size sand, little silt, compact, (SM). (Ablation till) clear transition to Extremely moist grayish brown gravelly (SILTY-SAND) with 20 to 40% mostly
4	8						occasional cobble, fine to coarse size
10		7	5	5	12		sand, little silt, (SM) tending toward (SM), (GM).
5 15	4	6	7	6	13		

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZMWSE3D-19

SURF. ELEVATION 1457.2

PROJECT Chaffee Landfill - Southern Expansion

LOCATION Northing: 938989.99 PVC Riser: 1459.15

Town of Sardinia, Erie County, NY

Easting: 1170673.87

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/14/19 COMPLETED 10/15/19

DEPTH BLOWS ON IN FT SAMPLER

2A79cj

	SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
				-				Extremely moist grayish brown gravelly	23
							0.00	(SILTY-SAND) with 20 to 40% mostly	K4 K4
L							0.0	angular to subangular gravel,	
-					_		b O o o o	occasional cobble, fine to coarse size	PA PA
+							0000	sand, little silt, (SM) tending toward (SM), (GM).	NA NA
-			-		_		0.0	\ grades downward to 23.	
H	6	5_					1000 h		YJ KJ
-	13	_	8		_	17	0000	Wet grayish brown gravelly (SILTY—SAND) with 30 to 50% gravel,	64 64
H		-		9	115		0000	occasional cobble, fine to coarse size	
+					12		0000	sand, little silt, compact, (SM), (GM).	
H				_			0000		27 27
							0000		0.0
							0000		
							36000000000000000000000000000000000000		
							0000		2-inch Schedule 40 FJT PVC Riser
	7	8					0000		148 14
L	6		11		-	24	0.00.0		FUT PV
L				13			P.O. D.O. U		
+					15		0000		Schedule 40
1	8	5_					0000		
ŀ	17		9	12.0	_	20	0000		() 8 ()
H	_	-	-		-		P.O.O.Q	A STANDARD S	
-	_	8	-	_	14		0000	clear transition to 32.	3 D A & D A
+	9 24	8_	25			103	======	Extremely moist brownish gray	K ~ K
1			-25	37		62		(SILTY-CLAY) with 3 to 7% gravel,	
-			-	- 11	41		0000	-, trace sand, hard, weakly thinly , laminated, (CL).	PA PA
	10	22				1	0 00 0	33.	5 2 4 2 3
1	18		24			43	0000	L	
			-7-5	19		43	0000	Wet gray gravelly (SILTY-SAND) with 20 to 40% gravel, occasional cobble,	
	77			- 15	21		0.000	fine to coarse size sand, little silt,	P3 P3
	11	9			7.41		0000	dense and very dense, (SM).	
	12		19			42	0000		
4				23		118	0000	grades downward to 38.	
-				-	18		0.0.		0.3
-	12	7					2	Wet gray (SILTY-SAND) with 5 to 15% gravel, little silt, compact, (SM).	
-	15		10	- 1		23	9 9	graver, little sitt, compact, (SM).	
				13			0 0 0		DG DG

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZMWSE3D-19

SURF. ELEVATION 1457.2

PROJECT Chaffee Landfill - Southern Expansion

Town of Sardinia, Erie County, NY

LOCATION Northing: 938989,99 PVC Riser: 1459.15

___Easting: 1170673.87

CLIENT GEI Consultants, Inc. PC

DATE STARTED 10/14/19

COMPLETED 10/15/19

DEPTH BLOWS ON IN FT SAMPLER

2A79ci

-	M E I		SAM	ruch								
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELI		WATER TABLE AND REMARKS
	13	15					0 . 60 . 6	Man and (STITY SAND) with E to 15%	13		1	Grain size and Atterburg Sample:
ľ	10		22				Wet gray (SILTY-SAND) with 5 to 15%				41.7 to 46 feet	
ŀ	10			38	9 9	gravel, little silt, compact, (SM).	1		1	41.7 to 40 feet		
ŀ				16			0 60 6	clear transition to 41.7	1/		1/	
ŀ	-		-	-	12		Z + Z Z + Z	Extremely moist brownish gray	1	ser	31	
4	14	_5_		_				(SILTY-CLAY) with 0 to 3% gravel,	1	盗	SEA	
1	22		7			19	F-F-F	trace sand, very stiff, weakly thinly	()	S	S	
	-			12			* T * T	laminated with very thin coarse silt	Vi	1		
					16			lenses, (CL).	1/	E	8	
ſ	ST	#1							1	40	BENYONIY	Sample Number 15:
		1111			8 - 8 -		0	<u>a</u>	岁.	ST #1: Shelby Tube sample #1		
1							FEFFE		1	Schedule 40 FJT PVC Riser		44.0 to 46.0 feet
ŀ		-			_		• •	46.0	17	G.	121	recovery 12/24
ŀ	-			-	-		000		12	S	1/	Todataly level
1	16	-11		_	_		0000	Wet gray gravelly (SILTY-SAND) with	1	50		1 = 21
	18		26 24		50	0000	20 to 40% gravel, fine to coarse size	1	2-inch	~	← 47.0°	
				24				sand, little silt, dense, (SM).	140	1200		
					15	0		\ 47.5	163		1.53	
	17	10				1	0 5 5	Extremely moist gray (SILTY-CLAY)	1 34	1	1 W.	
	16		17] _F ,	<u> </u>	with 5 to 15% gravel, trace sand, hard,	33.5		8.	+ 49.0'
ŀ	,,,		-4-	34		51	0000	weakly thinly laminated, (CL).		C	Ted.	
ŀ	_			34	172		0000	49.0		ee	sand pack	Grain size Sample; 49 to 53 feet
-				-	35		0000		1.0	Screen	S.	
1	18	10	-		-		0 0	Wet gray gravelly (SILTY-SAND) with	177	2	шопе	
	- 11		13			29	0000	15 to 25% gravel, fine to coarse size	190	9	E.	
				16		- Y	0000	sand, trace to little silt, compact,	111	nct.	size	
			1 1	1.7	14		0 0	stratified, (SM).	1	2-inch PVC	\$ O.#	
	19	8			1		0000	700	. Han	Siot	4h	
	14	12	12	2		27	0 00	53.0 Extremely moist brownish gray	100	S		
1			-	15			0 0			0.020	1.0	
1				15	-			(CLAYEY-SILT) with 5 to 10% gravel,	1	0.0	1	
	144			-	21			some clay, trace sand, very stiff,		4		4 54.0"
	20	97			weakly thinly laminated, (CL).				Controller and Milesburg Conste			
	18		18	-		43		clear transition to 55.5	5			Grain size and Atterburg Sample
	111	1, 11	o Ma	25			0 -0 -0					58 to 60 feet
	1 1	1 -1			31		-00-d	Extremely moist to wet gravelly				
	21	12			1 520		0.00	(SAND-SILT-CLAY) with 15 to 25%				
	17		17			37	27 9 09 0	gravel, little sand and clay, hard,				
				20	1-	1 3/	0 0	massive soil structure, (ML-CL).				
					26	1	0 0 0	grades downward to 56.0	3			
	-	10	-	-	20	1	••	Extremely moist to wet brownish gray				
	22	19	100		-	1	三三	(SAND-SILT-CLAY) with 3 to 7%				
	16		25	-	-	57	*	gravel, little sand and clay, hard, very				
	1 1			32		1	===	weakly thinly bedded, (ML-CL).				
)		_		-	34	-		meanly many personal time sen				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

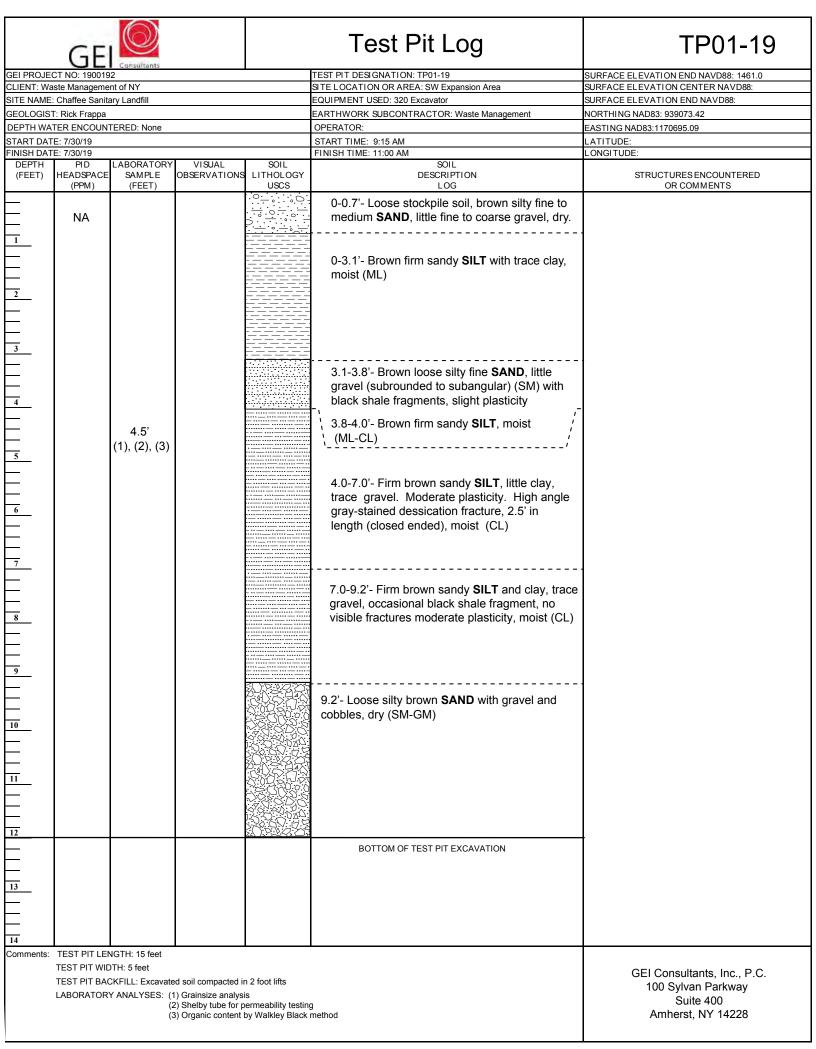
(716) 655-1717 • FAX (716) 655-2915 HOLE NO. PZMWSE3D-19

SURF. ELEVATION 1457.2

PROJECT Chaffee Landfill - Southern Expansion LOCATION Northing: 938989.99 PVC Riser: 1459.15

Town of Sardinia, Erie County, NY

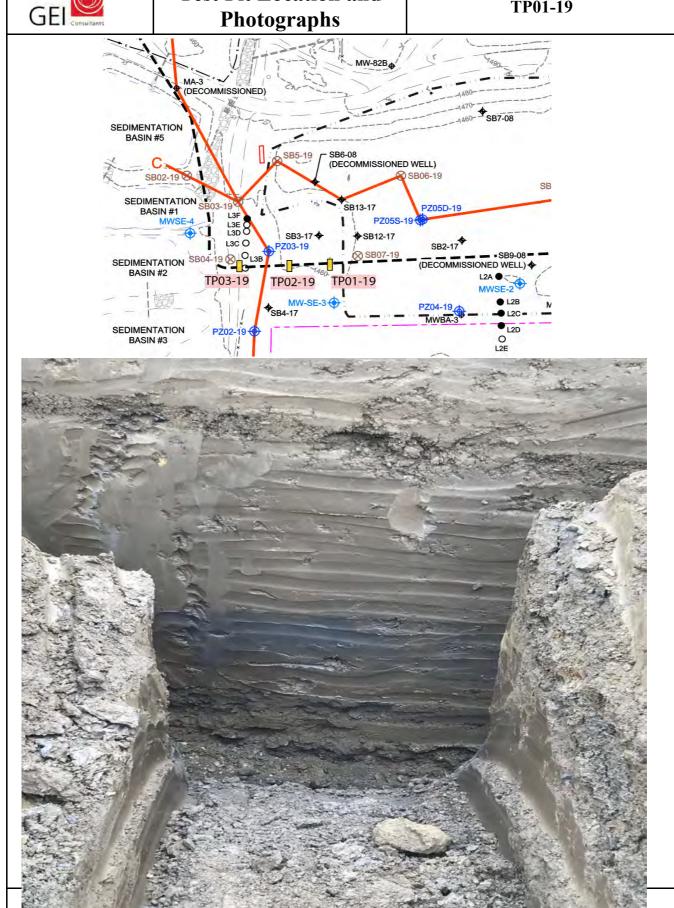
Easting: 1170673.87

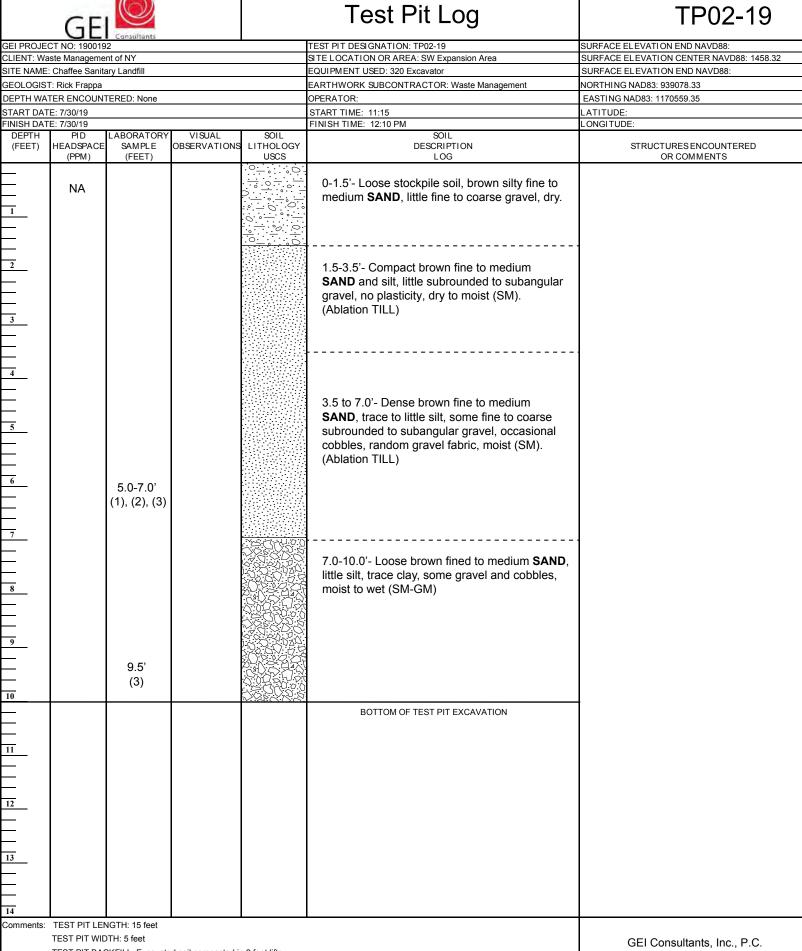

GEI Consultants, Inc. PC CLIENT

COMPLETED 10/15/19 DATE STARTED 10/14/19

BLOWS ON DEPTH SAMPLER IN FT

2A79cj


SN	0/ 6	6/ 12	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
							Extremely moist to wet brownish gray (SAND-SILT-CLAY) with 3 to 7% gravel, little sand and clay, hard, very weakly thinly bedded, (ML-CL). grades downward to 58.0		
							Extremely moist brownish gray (CLAYEY-SILT) with 0 to 3% gravel, some clay, trace sand, hard, weakly thinly laminated, (CL). 60.0		
							Boring completed at 60.0 feet.		



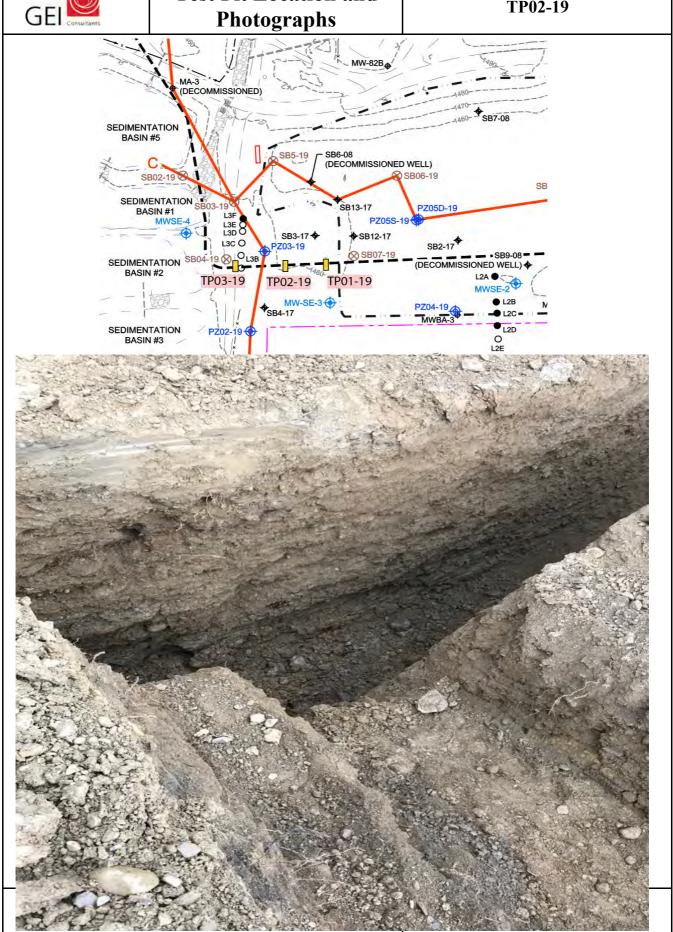
Test Pit Location and

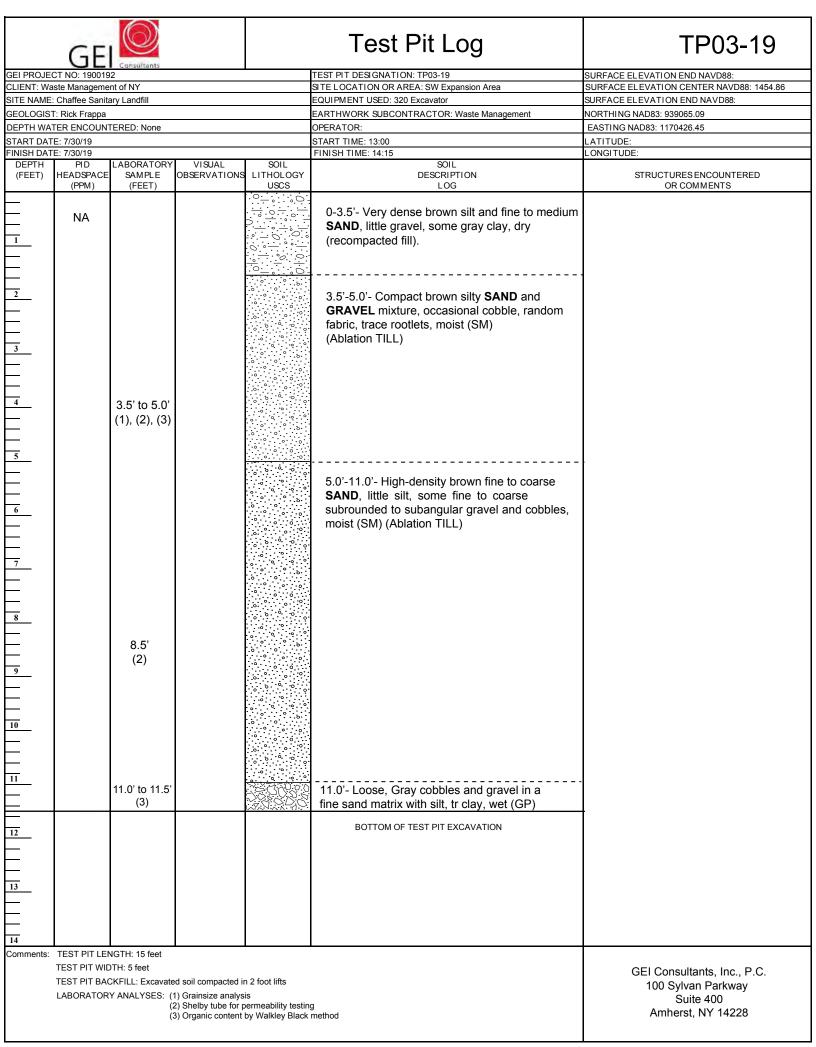
TP01-19

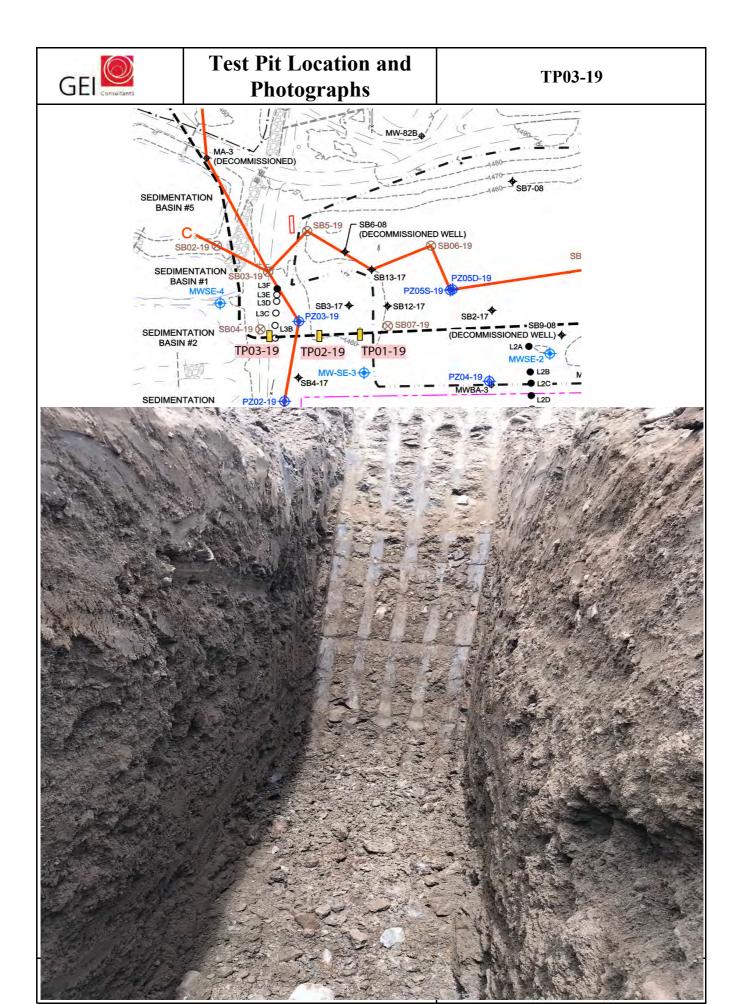
TEST PIT BACKFILL: Excavated soil compacted in 2 foot lifts

LABORATORY ANALYSES: (1) Grainsize analysis

(2) Shelby tube for permeability testing


(3) Organic content by Walkley Black method


100 Sylvan Parkway Suite 400 Amherst, NY 14228



Test Pit Location and

TP02-19

Hydrogeologic appraisal of five selected aquifers in Erie County, New York

USGS Water-Resources Investigations Report 84-4334

By: Todd S. Miller and W.W. Staubitz (1985)

USGS Well SA-25 and SA-28 Locations and Well logs

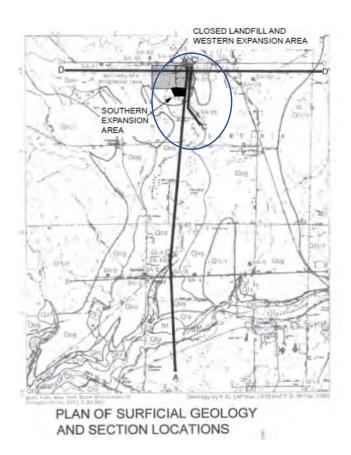


Figure 10 from Miller and Staubitz (1985)

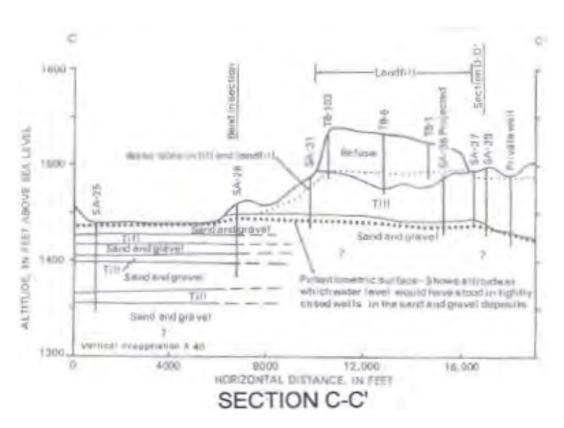
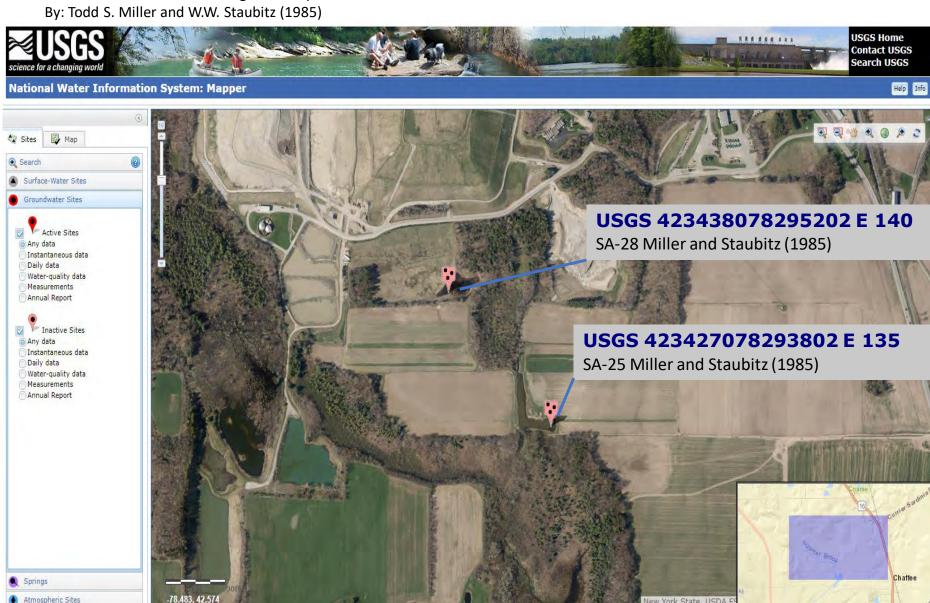


Figure 11 from Miller and Staubitz (1985)

Mapped Location of USGS Wells SA-28 and SA-25 on USGS National Water Information System Website https://waterdata.usgs.gov/nwis/nwismap/?site_no=423438078295202&agency_cd=USGS


Hydrogeologic appraisal of five selected aquifers in Erie County, New York

USGS Water-Resources Investigations Report 84-4334

Atmospheric Sites

Site Information

Other Sites

New York State, USDA F

Table 9 .-- Records of selected wells in Erie County, New York

NUMBERING AND ARRANGEMENT OF WELLS

All wells and borings are identified by latitude and longitude to the nearest second, as measured from 71/2-minute topographic maps, scale 1:24,000. The location of each well or boring record was plotted on these maps by U.S. Geological Survey staff during a visit to the site or from large-scale engineering drawings.

The location of each well and boring is shown on maps within the text. Data are arranged in 1-minute strips of latitude. Each table begins with the southernmost strip followed by other strips successively farther north.

FOO TNO TES AND ABBREVIATIONS

1. Type of well			2.	Aquifer	type	
Drl = drilled Dug = dug Drv = driven	Si: Fi:	Sh = 1t = 11 =	sandstone shale silt fill Onondaga Lim	estone	S&G Grv1 Till	= sand = sand & gravel = gravel = till = clay
3. Land-surface altitude	<u>e</u> , ,_	-0.00	4.	Water u	se	
in feet above National			abandoned			= industrial
Geodetic Vertical Datum			commercial		In	= institutional
of (1929 (NGVD), estimated			domestic			= observation
from topographic maps.	3	PS =	public supply	у	_	= unused
/					F	= farm
1						
Continsion		_	Damanlaa			
			Remarks			
CO-Jusis- HO NAVD88	Yield	(e)	= estimated	yield		
NAVD88 Submet 0.55ft	Yield	(m)	= measured y pumping te		ing	
	Yield	(r)	= reported y	ield		
- Me taucz		F	≃ fine			
		M	= medium			75
		C	= coarse			

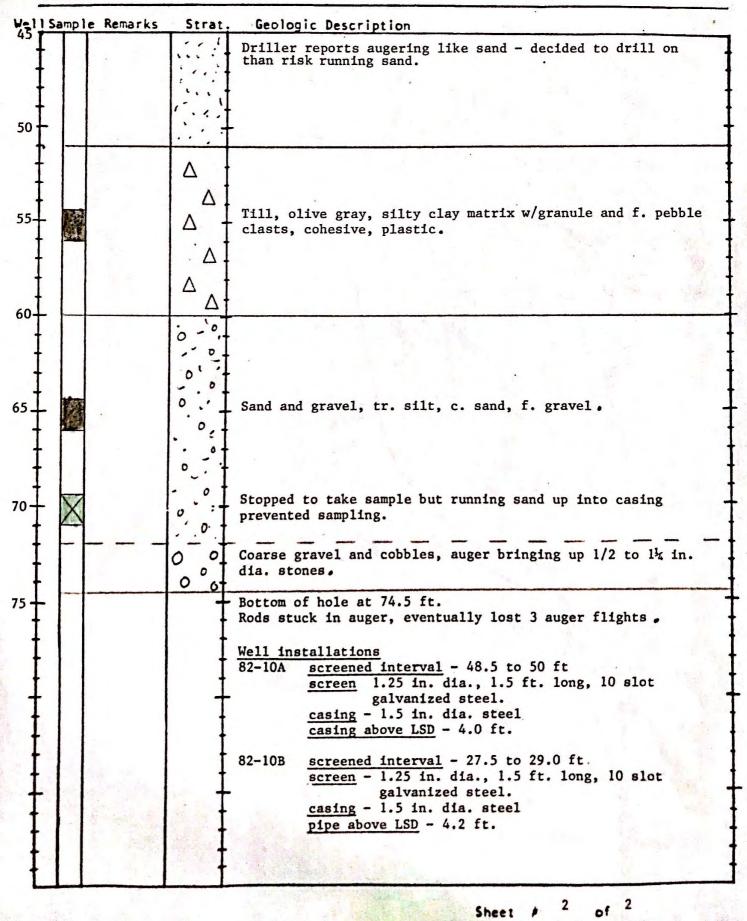
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

Vell		tion Long	Local well	Owner	Date drilled	Type of well	Well depth (ft)	Cas- ing depth (fr)	Cas- ing diam (in)	Depth to bed- rock (fr)	Aqu1- fer type	Alti- tude sur- face (fr)	Water- level depth below land sur- face (ft)	Date measured	Geol.	Water use	Remarks (Depths are in feet below land surface; * - chem. analysis)
							1.17	1117		1.67	сурс	1117	1167	and an area	108	996	cies. analysis;
	SARDINIA	AREA (WEL	1 location	s shown in i	ig. 2.)												
	4231 36			sinek	1955	Dr 1	110	110	6		S&G	1,405		5-20-82	No	F	A second well 235 ft deep ends in S&G
A-2	4231 50	7831 21	Scl	hiener	1962	Drv	22	20	1.25		S&C	1,410		-	No	מ	
A-3	4232 27	7830 40	Do	D2 S		Drv	18	16	2.5		S&G	1,390			No	а	
	4232 29		_	ssel	1972	Drl	114	114	6		S&G	1,420		7-29-82	Yes	Ď	S&G 0-25, clay 25-70, layers sand and S&G 70-114 coarse gravel 114 ft
A-5	4232 29	7830 32		ighley	1940	Drv	12	10			S&G	1,398			No	D	
A-6		7831 11		ggans	1961	Drl	87		6		S&C	1,435			No	D	* 1n ENB-3
A-7	4232 30	7828 44	N1chols	Brk Morel		Dr 1	43	43	6		S&G	1,436			Yes	С	Yield (r) 50 gal/min; S&G 0-43 ft.
A-8	4232 30	7830 05	Ric	ce	1978	Dr 1	48	48	6		S&G	1,400		-	Yes		S&G 0-25, clay 25-35, S&G 35-48 ft.
A-9	4232 35	7828 48	Die	amond Saw	1957	Drl	42	42	6		S&G	1,435		57	Yes	ī	Yield (r) 25 gal/min; S&G 0-20, clay 20-37, gravel 37-42 ft
A-10	4232 41	7830 U9	Hog	gan	1963	Drl	175	175	6		S&G	1,405	11.4	8-1 L-64	No	D	* 1n ENB-3
	4232 42		Sci	hiener	1962	Drl	28		2.5		S&G	1,400			No	D	*.
	4232 47		Wes	rtz	1958	Dr l	29	29	6			1,435	18.3	6-25-64	No	C	
A-13	4232 48	7830 19	He	yer s	1974	Drl	344	344	6,4		S&G	1,410	f		Yes	D	*; S&G 0-12, clay 12-100, sand 100-110, clay and cla and sand 110-342 ft
A-14	4232 58	7828 43	82-4 US	GS	1982	Aug	22	17	2		S&G	1,443	16.4	10-15-82	Yes	0	*; S&G 0-24, clay 24-32, S&G w/trace silt 32-40, clay 40-42, S&G 42-45, cla and pebbles 45-58 ft
A-15	4232 58	7829 56	82-3 US	GS	1982	Aug	17	12	2		S&G	1,399	4.6	10-15-82	Yes	0	*; silty sand 0-7, fm.sand 7-12, S&G 12-17, fc.sand 17-22, silt and clay 22-33 ft
A-16	4233 03	7829 32	Во	l c	1967	Dr 1	47	47	6		S&G	1,440	23.0	5-20-82	No	D	S&G 0-47 ft
		7830 37			1982	Aug	46	36	2		SAG	1,425		10-19-82	Yes	ő	*; silt,gravel 0-16, gravelly sand 16-19, S&G 19-56, fm.sand 56-72
A-1 8	4233 12	7828 44	Lyı	nch	1962	Drl	42	42			S&G	1,448			Yes	С	silt and sand 72-78 ft Yield (r) 20 gal/min; S&G 0-42, clay 42 ft
A-1 G	4233 25	7828 44	C=	eatwood	1960	Drl	51		6		Sand	1,449	20.0	6-25-64	No	D	Yield (r) 40 gal/min
		7828 44	-	nce	1960	Dr 1	51	51	6		S&G	•	19.3	5-20-82	Yes	D	Yield (r) 20 gal/min; S&G

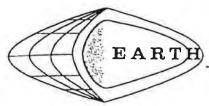
Table 9.--Records of selected wells in Erie County, N.Y. (continued)

								2 A									
Well		ation -Long	Loc wel No	1	Date drilled	Type of well	Well depth (fr)	Cas- ing depth (ft)	Cas- ing diam (in)	Depth to bed- rock (ft)	Aqui- fer type	Alti- tude sur- face (ft)	Water- level depth below land sur- face (ft)	Date measured	Geol. log	Water use	Remarks (Depths are in feer below land surface; * = chem. analysis)
	SARDINI	A AREA (co	ntinue	d)													
		7830 40 7828 42		Uhteg Lewis	1980	Drl Drl	41 69	41 69	6 6	55	S&G S&G	1,450 1,462		5-20-82 9-80	No Yes	D D	*. *; S&G 0-34, f.sand 34-42, clay 42-58, f.sand 58-67, S&G 67-70 ft; yield (r) 50 gal/min.
	4234 00 4234 08		C	haffee Water Sp Iroquois Gas		Dr1 Dr1	20		8 12	112	S&G Lock po Dolomi	1,460 rt1,465	13.5	2-11-63	No No	PS CT	Pumping rate ~ 100 gal/min Yield (r) 0.5-1.0 gal/min; Lockport Dolomite at 2.728'
SA-25	4234 27	7 <mark>8</mark> 29 38	82-1	USGS	1982	Aug	9 0	85	2):	S&G	1,444)	10-15-82 NAVD 6	Yes	0	*; yield (m) 7 gal/min; S&G 0-15, till 15-22, S&G 22-35, till 35-39, S&G and silt 39-70, clay and silt w/tr. pebbles (till) 70-85, S&G 85-93. Two other wells installed at depths of 27 and 60 ft.
SA-26	4234 29	7828 43		Phelps	19 44	Drl	194	194	6	==:	S&G	1,470	166	200	Yes	Ir,F	F Yield (e) 10 gal/min; S&G 0-60, layers of sand and clay 60-180, S&G 180-194 ft
SA-27	4234 30	7828 43		Phelps	7.22	Drl	46		6		S&G	1,480			No	D	212) 00 100, 220 100 177 12
SA-28	4234 38	7829 52	82-10		1982	Aug	50	48	1.5		S&G	1,459	15.9	5-12-83 NAVD38	Yes	0	*; till 0-7, S&G 7-32, till 32-43, S&G 43-51, till 51-60, S&G 60-74 ft. A sec
	4234 50 4234 52			Tavernier Wiedemann	 1980	Dr 1 Dr 1	90 65	- - 65	6 6		S&G S&C	1,480 1,478	34.4	5-20-82	No Yes	D D	ond well installed at 29 ft S&G 0-65 ft.
			₩-1	Chaffee Landfi	-	Aug	54	52	2		S&C	1,490	52.0	11-30-80	Yes	0	Sand clayey silt w/trace pebbles (till) 0-10, clayey silt 10-22, clayey silt wit tr. pebbles (till) 22-44, S&G 44-47, sandy silt 47-49 S&G 49-53, sandy silt 53-54
				Chaffee Landfi	11 1980	Aug	14	12	2	-	T1 11	1,494	9.8	11-30-80	Yes	0	Sandy clayey silt w/trace pebbles (till) 0-14 ft.
SA-33	4234 53	7829 57	₩-4	Chaffee Landfi.	11 1980	Aug	43	41	2		Till	1,476			Yes	0	Clayey silt w/tr. pebbles

Table 9.--Records of selected wells in Erie County, N.Y. (continued)


Well _	Loca Lat-1		Loca well No.	1	Date drilled	Type of well	Well depth (ft)	Cas- ing depth (ft)	Cas- ing diam (in)	De pt h to bed- rock (ft)	Aqui- fer type	Alti- tude sur- face (ft)	Water- level depth below land sur- face (ft)	Date measured	Geol. log	Water use	Remarks (Depths are in feet below land surface; * = chem, analysis)
S	ARDINIA	AREA (co	ntinued	1)													
		7829 17		Chaffee Equipment		Drl		-	6		S&G	1,485	-	-		С	*; S&G and silt and clay 0-12, till 12-18, S&G and and silt and clay 18-23, clay w/pebbles (till) 23-28 gravel, sand, silt and clay 28-52 ft.
6A-35 4	234 58	7829 47	₩-2 C	Chaffee Landfill	1980	Aug	14	12	2		Till	1,486	Dry		Yes	0	Clayey silt w/tr. pebbles (till) 0-14 ft.
SA-36 4	235 02	7829 48	W-8 C	Chaffee Landfill	1981	Aug	58	56	2	-	S&G	1,489			Yes	0	Clayey silt w/tr. pebbles (till) 0-34, sandy clayey silt w/tr. pebbles (till) 43-54, S&G 54-58 ft.
SA-37 4	235 03	7829 48	₩-7 (Chaffee Landfill	1981	Aug	58	56	2	-	S&G	1,494	55.0	8-27-81	Yes	0	Clayey silt w/tr. pebbles (till) 0-37, sand-silt-clay and gravel 37-39, sandy sil 39-42, clayey silt w/trace pebbles (till) 42-52, S&C 52-60 ft.
A-38 4	235 04	7829 42		Buncy	1966*	Drl	87	87	6		S&G	1,500	69	5-21-82	No	D	
		7829 49	82-11A		1982	Aug	69	67	1.5		S&G	1,502	61.3	12-17-82	Yes	0	Silty clay w/tr. pebbles (till) 0-63, S&G 63-73 ft.
A-40 4	-	7830 30		Mader	1979	Dr 1	35*	35	6		S&C	1,440		5-12-82	No	D	
A-41 4		7831 14		Raymond	1940	Drl	34	34	6	34	S&G	1,500		8-12-64	No	ប	
A-42 4		7829 57		Robins		Dr1	47	43	6		S&G	1,470	29.3	5-20-82	No	-	Yield (r) 20 gal/min.
A-43 4		7830 27 7827 51		Petrone Mitrowski	1959	Drl Drl	25 70		6 6		S&G S&G	1,440	16.6 38	8-12-64 5-20-82	No No	D	*. in ENB-3
A-44 4		7830 08		Sheridan		Drl	28*		6		S&G	1,320	38	3-20-82	No No	D	
7, 7		7830 18		Cook		Drl	31		6		S&G	1,443	17	2-22-83	No	D	*.

Wall!	Sample Remarks	Strat.	Geologic Description
50 3	Troot rece.		GRAVEL, SAND, SILT, probably ablating till, saturated (size analysis: pebbles 50.97), granules 8.9%, very course sand 8.0%, crouse sand 8.9% med. m sand 8.9%, fine sand a silt 14.3 %) GRAVEL, SAND, SILT, pebbler op to 1½ inch grey, saturated
55 40	rec.	1	
60 15		1	
	m	1	GRAVEL, SAND, w/ silt, pebbles pto 2 min
65 -20	enn	+	pebbles 44,4%, granules 11,3%, very compe Sound 10,5%, comme sand 12,9% medium Sound 8,9%, fine sand a silt 12,0%)
#	drilling	†	
70 23	harden no rec.		CLAY SILT, some pebbles, probably
75 -30		+	CLAY, SILT, some pebbles, probably lodgement till, grey, nonstructived
80 35	13- foot	+	CLAY, SILT some pebbles, Aprobably lodgement till, over
82	rec.		GRAVEL, SAND sme sitt (size
85 40		+	conse sand 7.070, medium sand 7.870, for
90 15		-	Sam) and sitt 7.17.)


Well Sample Rem	arks Strat.	Geologic Description
10 01	fort	GRAVEL, SAND some silt, saturated
9 5		bottom hale @ 93 feet (not retusal)
11	1 1	Well data:
10		82-10 2 pvc pipe from 3 feet above L.S.
T	1 1	2 inch puc screin 10 slot from 22 to]
<u> </u>	1 1	82-16 2 inch steel pipe from 3,2 feet
15		above L.S. to top of server
1		2 inch pre screen 10 slot from
20		49.6 to 59.6 - Feet below LS est, yield 28 9Pm
T		82-10 2 inch stul Pipe from 1,9 feet
<u> </u>		above LS to top of screen 2 inch galvonized steel screen
25		· 85 to 90 feet below LS
111		bentonite soul at \$72 70 75 feet below LS
30+	1 ±	note: 82-16 has a definite hydrogen
		suttile odor
	1 1	Wentworth Size classificating: max size(in) min size(in)
35	+	. Publes 2.52 1.57 L
	1 1	granules 1.57 .0787
+	1 +	very course san) ,0787 ,0394 ,0197
401	1 1	
1		
† []		fine sand, silt 1.0098
III	I	
45		

Location-Arcade quadrangle, 800 ft south of Chaffee Landfill, at foot of Valley Heads Moraine Well Sample Remarks Strat, Geologic Description Δ Till, brown (oxidized), silty clay matrix with some pebble Auger and cobble clasts, tr. organics, mottled, moist. cuttings Δ Δ cuttings Till, same as above, less organics. Δ Augering like dry sand and gravel. 0 . . D 10 3" rec. Stone stuck in opening of split spoon, 0 . 0 15 14" rec. Sand and gravel, tr. silt, brn, m-c sand, granules and f. pebbles, subrd-rd, moist. hit water 20 0 0 25 -Sand and gravel with tr. silt/clay, brn, poorly sorted, f.-c. sand, f.-c. pebbles, subrd-rd. 0 30 Drills like coarse cobbles between 30-32 ft. Δ Till, olive gray, silty clay matrix with tr. granule and 35. △ | pebble (1-2%), cohesive, dense, plastic. Δ Δ 40. Coarse sand and fine gravel, gray, well sorted, 60% sand, 40% gravel.

Location-

B.2 Pre-2019 Investigation Soil Boring, Piezometer, Monitoring Well logs and construction details in or near the Area 7/8 Development and Logs for Former West Borrow Area, Soil Borrow Area C, and South Borrow Area

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

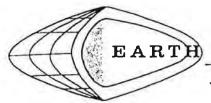
2A79ab

HOLE NO. MW A-00

SURF. ELEVATION 1461.58

PROJECT Chaffee Landfill Expansion

LOCATION See map


NY 16, Town of Sardinia, Frie County, NY

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 06/14/00 COMPLETED 06/14/00

DEPTH BLOWS ON IN FT SAMPLER

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	-	WATER TABLE AND REMARKS
1	1	7					0 0	Moist olive gray (CLAYEY-SILT) with	11 =	,,,,	1	Silty slack water sediment with
ì			11					10 to 15% gravel, little clay, very stiff	1		1	little clay and gravel to 4.0 feet
1		_	-11	1.0		29	-AA-	and hard, weakly thinly laminated,	1	1	1	over silty slack water sediment
1	-		_	18_	-		4-4-	(ML-CL).	11		1	with little clay to 8.0 feet over
1		_		_	14			(iii 00).	-	- 1	11	clayey slack water sediment to
_	2	9_					6 6 A		11 =	1	1	13.0 feet over coarse silty slack
	and the second		19			46			1	- 1	"11	water sediment with little sand
1				27	Υ	40	-AA-		1	ľ	15	and sand lenses to 14.0 feet
Ì					21		A	grades downward to 4.0	11	l.	11	over water sorted and deposited
Ì	-				1		0 _0 _			- 1	1	sand to 16.0 feet over water
ł	3	12	-		-		A - A -	Extremely moist olive gray	14	k	1	sorted and deposited sand with
-	_		14			24	00	(CLAYEY-SILT) with 5 to 10% gravel,	11		",1	some gravel to 36.5 feet over
1	-			10				little clay, very stiff and hard, weakly	1 =	1	1	silty slack water sediment with
		L			10		-AA-	thinly laminated, (ML-CL).	1		11	little clay to end of boring.
1	4	10					0 _ 0 _ 0		1	ľ	1	inthe ordy to end of burning.
1	100		14		7				14	k	4	
1			14	17		31	0 0		1		1	
1	-		-	-11				grades downward to 8.0	1 =	k	1	
1		-		-	21				11		2/	
3	5	11			ut a m			Extremely moist olive gray		1	5	
			16			33	9 A A	(CLAYEY-SILT) with 5 to 10% gravel,	11	cc 1	1	
1				17				some clay, hard, weakly thinly	-	SE	2.	
T					20		مد محد ه	laminaled, (CL).	1 1	PVC RISER	BELLINGLING	
+	6	14					4-4-		11	Ų.	511	(I) 4" x5' STEEL PROTECTIVE
t	-	-,	0.1				-AA-		101		W.	CASING
1	-	-	21			40	° ° ~		11	5	11	
1			-	19	-		-4-		1	f	Z	
1		_			15		0 0		1 =	l.	2	
1	7	13							1	13	3,,	
1			17			37		13.0	1 =	1	1	
1	-			20		31		Extremely moist distinctly mottled olive	11		"	
1				-60			- 2×	brown (SANDY-SILT) with little sand.		1		
+		15	-		18		0 9	dense, thinly bedded with thin sand	1 1	1	1	
1	8	10						lenses <1/16 inch thick and fine and	1		1,1	
1			14			33	0	medium sand lens 1/2 inch thick at 13.5	11 =	A.	4	
L				19)	1	feel, (ML).	"		1	
					25			14.0	1	1	11	
1	9	19			- 1		0.00		1	,	11	
1	~	.5	45				0.0.0	Moist light gray (SAND) with 5 to 10%	1	Į.	1,1	
+			45	F ^	-	97	0.00	fine size gravel, fine to very coarse	1 =	A	"	
+				52			0.0.0	size sand, dense in place, loose when	111		11	
L				1	00/4		0.00	disturbed, weakly stratified, (SW).	1 =	1		
L	10	23					0.0.0	grades downward to 16.0	11	1	11	
		ır	00/5				0.00		1	l'		
-							0.0.0	See next sheet	1 4	1	11	

EARTH DIMENSIONS, INC.

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ab

HOLE NO. MW A-OO

SURF. ELEVATION 1461.58

PROJECT Chaffee Landfill Expansion

LOCATION See map

NY 16, Town of Sardinia, Erie County, NY

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 06/14/00 COMPLETED 06/14/00

DEPTH BLOWS ON IN FT SAMPLER

	5N	0/ 6	6/	12/ 18	18/ 24	И	LITH	DESCRIPTION AND CLASSIFICATION		WEL	.L	WATER TABLE AND REMARKS
	11	00/4			617		0.0.C	Moist grayish brown gravelly (SAND)	1	1	11 =	
			1	30.1			0.0	with 30 to 40% mostly subrounded	1 1	4	11	
							0.0.0	gravel and occasional cobble, trace to	1	/	16RONT	
		(I V		-	i		0:00:	little silt, very fine to very coarse size	1		9	
	12	35					0.0.0	sand, very dense in place, loose when	1 2	4	1	
			30			57	0.00	disturbed, stratified, (SW)	1	,	NO.	
				27			0.0.0	grades downward to 23.5	5//		BEN	
			, A.		26		000	Wet grayish brown gravel and very	1 2	4 ~	(m)	
	13	24			1		000	gravelly (SAND) with 30 to 50% mostly	1	PVC RISER	CEMENT	
	5353		16			33	000	subrounded gravel and occasional	11	2	BW	
				17		0.5	0:00:	cobble, trace to little silt, very fine to	1 3	Ş	10	
					24		000	very coarse size sand, dense and very dense in place, loose when disturbed,	1	2:	11	+ 26.0'
	14	9					0.00.	stratified, (SM) tending towards (GW).	1	3	13	20.0
	Y		17			38	200		1	4	8	← (I) BENTONITE GROUT
	JC 0			21		20	000		1	1	71	· (I) BENTONTIE ONDOT
	0 = 1			1	20		500		1	3	1	← 28.0°
3	15	25					0.00		1:		127	. 20.0
			30			66	0.00		100	1	100	
				36	1	•	1000		100			
-					55		0.00		1:			÷ 30.0°
	16	37			-		000		1::	-	1:	30.0
1			44			84	0.00	21.5	1:	iii	1:	
1	-			40		0.4	200	31.5	1:	SCREEN	X.	
-1					45		0.00	Wet gray gravelly (SAND) with 15 to	1	PVC S	PA	
	17	28					0.0	40% mostly subrounded gravel, very		2	SAND PACK	
			22			45	0.0.0	fine to very coarse size sand, dense	100	5	S.	
				23		7.5	0.0	in place, loose when disturbed, stratified, (SW).	10	SLOT	GLOBAL.	
1					24		0.0.0	stratified, (3m).	1:	10 S	log.	
	18	17					0 00			2 1	#. 6.6	
1	1 Y		22			45	0.0.0		1:		#	← 35.0°
				23		73	000		1:		• • • •	33.0
					25		0.00		1:		411	
	19	17					000	36.5	1:		: :::	
1			19		hai	40		Wet gray (CLAYEY-SILT) with little	1::			
1				21		40	- 00	clay, hard, thinly laminated, (ML-CL).	1:			
					31			38.0	1			← 38.0'
1								Boring completed at 38.0 feet.				- J0.U
1								Borning completed at 30.0 feet.				
1												
1												

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 8-03

SURF. ELEVATION 1455.58

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8232.70

Town of Sardinia, Erie Co., NY

Easting 5799.94

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/18/03 COMPLETED 12/18/03

DEPTH IN FT

SI		6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
1	3					مممم	Wet brownish gray gravelly	
18		8			14	7.1	(SILTY-SAND) fill with 15 to 40%	Sandy soil fill with little to some
			R	Y-IT		= =	gravel, very fine to very coarse size	gravel, little silt to 0.4 feet over silty slack water with little clay
				10			sand, little silt, loose, massive soil	to 8.0 feet over clayey slack
2	5			The same			structure, (SM).	water sediment to 11.2 feet over
20		7			17		0.4	water sorted and deposited san
	111		10		"	1.01	Moist olive gray (CLAYEY-SILT) with 0	with little silt, trace to little
				13	K	T- T-	to 5% gravel, little clay, stiff, very stiff	gravel to end of boring.
3	6					* *	below 3.0 feet, weakly thinly laminated	
22	100	11			0.5		to massive soil structure, (ML-CL).	No water at completion.
			14		25	7- 7-	4	No water at completion,
	12.0			17		÷ ÷		
4	10	1				7		
, 24	_	12						
		1	15		27	÷ .÷		
	1	1111	13	40	8111	, ,	8.0	
5	8			19		-	Molek - the second of Avenue and Avenue	
24	10	1		-			Moist olive gray (CLAYEY-SILT) with	
	-	- 11		-	23	100	some clay, very stiff, thinly laminated with very thin coarse silt lenses and	
	+		12	-			nearly vertical gray desiccation	
	-	1	-	15	K 1		cracks, (CL).	
8	5			-			i i	
24	-	7			25		clear transition to 11.2	
-			18				Extremely moist grayish brown	
-	-		-	27			(SILTY-SAND) with 5 to 15% gravel,	Note: Bore hole tremmie grouted
	-	-		-	10		very fine to very coarse size sand,	with bentonite cement to surface
-	-			_			little silt, dense, loose when disturbed,	upon completion.
					I N	1	stratified, (SM).	,,
							12.0	
1						×	Boring completed at 12.0 feet.	
					1	10		
		12.4						
	0.71				3			
							1 10	
							l I	
							Y.	
		1					1	
	7	-	-	-				
-		-	-	-				
				- 1				

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MA 2-01

SURF. ELEVATION 1460.98

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Frie County, New York


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01_

COMPLETED 04/18/01

DEPTH IN FT

-	SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	j	WATER TABLE AND REMARKS
1	1	4					***********	Extremely moist dark brown	1		1	(I) 4" X 5' STEEL PROTECTIVE
			5			13	EE	(CLAYEY-SILT) topsoil with little clay,	1		1 4	CASING
				8		1.5		firm, massive soil structure, (ML-CL).	4 1		11	Sitty topsoil with little clay to 0.4
	111				11			0.4	11		1	feet over clayey slack water
1							= $=$	Extremely moist distinctly mottled olive	1		11	sediment to 5.0 feet over water
							•	brown (CLAYEY-SILT) with 3 to 5%	1		"	sorted and deposited sand with
							4_14_	gravel, some clay, stiff, with nearly vertical gray desiccation cracks.	11		11	little to some gravel, little silt and clay to 16.2 feet over claye
1	-			1			==	(CL).	1		1	slack water sediment to 17.0 fee
1								grades downward to 5.0	11		. 1	over water sorted and deposited
1							3 6	grades downward to 3.0	"		80,	sand and gravel with little sitt to
1	2	2	-				0000	Extremely moist becoming wet at 10.0	10		CEMENT BENTONITE SEAT	24.0 feet over water sorted and
-			4		-	6	0.00	feet distinctly mottled olive brown gravelly (SAND-SILT-CLAY) with 15 to	11		12	deposited sand and gravel to 28.0 feet over clayey slack
1		Y II		2			0.0.0	30% gravel, little silt and clay, loose.	11	-	13/	water sediment to end of boring
ŀ			-		7		0.00	weakly stratified, (SM) tending	11		BEI	
+							0000	towards (SC)	1/2		54	
1	_		ш.				0.00		1	Œ	9/	
1	-						0 0		10	RISER	Q.	
ŀ			-				1 ~ 0-4		11/2	C	1	
1	5.2		-		-		0, 0		"	PVC	1	
+					-		0.00		10	2.	101	
ŀ	3	7		-			0.00		11		1	
ŀ	-	-	10		-	21	0.00		11		1 /	
ŀ	-	-	-	11			0.000		11		1	
ŀ			-	-	13_		0.00		10		1	
+					-		DA O		11		14	
ŀ	-				-	X I	0. 00		1		1	← 13.0'
ŀ	-		-				D-0-0		1		[w]	
1		-		-			ō. 50				1	
1	-			-		0 1	0.00		1		27	
+	4	10			-		00.0				BEN TONIT	
1	4	ĮŲ.	10	_			0.00	16.2	1		1	
1		-	10	13		23	Dac				3.3	← 16.0′
+		-		IJ	15		三三	Extremely moist faintly mottled olive	- 13		100	
1					13		19880	gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, thinly			SAND	
+				-			() -() -1	laminated with very thin coarse silt	1,11		S.	
1				- 6			1000	lenses, (CL).	150		MORTE	← 18.0'
1		-	-	1			0000	17.0			M.	(A) #10 CLOT A!! BUC CCCCEN
1		- 7					000	See next sheet	133	(2)	.00	(2) #10 SLOT 2" PVC SCREEN
+							0000	COUNTY ON CONT	1			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MA 2-OL

SURF. ELEVATION 1460.98

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 C

COMPLETED 04/18/01

DEPTH BLOWS ON

	INFT		SAM	IPLER				
	SN	0/ 6	6/ 12	12/ 18	18/ 24	И	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
3	5	50		7.23.7			0000	Extremely moist faintly mottled olive
			17			35	10 00 of	brown very gravelly (SILTY-SAND)
	30.4			18] "	0000	with 40 to 60% mostly subrounded
					24		0000	gravel and cobble, very fine to very
Ц							0000	coarse size sand, little silt, dense,
					13		5000	stratified, (SM), (GM).
				7			0000	grades downward to 24.0
) b						0000	[N & [2]
	-						000	Wel brown very gravelly (SAND) with
5-	- A			-			0.00:	40 to 60% fine size gravel, very fine to very coarse size sand, compact,
	6_	4		_			1000	stratified, (SW), (GP).
	-	-	6	-		13	0.00	to very coarse size sand, compact, stratified, (SW), (GP).
		-	-	_7			000	
		-	-	-	7.		0.00	
	-						0.00:	grades downward to 28.0
							5.5	
	7	_7	-				드드	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% fine size
	-		10			24	==	gravel, some clay, very stiff, weak
	-			14				thinly laminated, (CL).
)	-		-	-	19			30.0 + 30.0'
		-						Boring completed at 30.0 feet No water at completion.
						1		
			-				1 1	
						1	1 1	
		7						
						1	1 1	
			131			1	1 1	
					5.55	1	1 1	
5_	1					1	1 1	
,_							1 1	
			50	7				
				1				
					L. Y			
							1 1	
	5.1				1		1	
)								

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

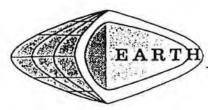
2A79ad

HOLE NO. MA 3-01

SURF. ELEVATION 1469.45

PROJECT Chaffee Landfill

LOCATION __


Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/19/01 COMPLETED 04/19/01

BLOWS ON DEPTH INFT SAMPLER

	SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WA	TER TABLE AND REMARK
	1	МН	?	4		6		(CLAYEY-SILT) topsoil with little clay,	4'x5' STEEL PROTECTIVE SING - Sampler penetration with
					5			Extremely moist distinctly mottled olive	ight of rods and hammer. ty topsoil with little clay to 0 et over clayey slack water
								gravel, some clay, firm, blocky soil	diment to 27.0 feet over wat rted and deposited sand and avel to end of boring.
-	2	3	6	g		15	• • •	Extremely moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravet, some clay, very stiff, with	
					10.		2	cracks, (CL).	
							0	grades downward to 10.0	
-	3	3	7			17		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel,	
				Ю	.11		9	some clay, very stiff to 15.0 feet, stiff below, weak thinly laminated, with very thin coarse silt lenses, (CL).	
							• •		
-	4	6					0 0		
			5	7	9	12			
				D.E.					
) BENTONITE PELLETS 19.5'

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MA 3-OL

SURF, ELEVATION 1469.45

PROJECT Chaffee Landfill

LOCATION

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/19/01

COMPLETED 04/19/01

DEPTH INFT

116	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	W	ELL	WATER TABLE AND REMARKS
5	2	4	.8_	9	12		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff and very stiff,	X-X-X-X	" PVC RISER	(2) BENTONITE PELLETS
6	4	. 7	10	12	17				2	÷ ← 24.5°
7	5_	9	-11	12	20	000000000000000000000000000000000000000	Moist distinctly mottled olive brown very gravelly (SAND) with 40 to 60% mostly subrounded gravel and cobble, very fine to very coarse size sand, trace silt, compact, stratified, (SW), (GW).		SLOT 2"	
8	3	5	7	2	12	000000	Boring completed at 35.0 feet.	0		← 34.5' ← 35.0'
	3	6 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 12 5 2 4 7 7 5 9 9 9 9 9 9 9 9 9	6 12 18 18 18 18 18 18 18	6 12 18 24 18 24 18 24 18 24 18 18 18 18 18 18 18 1	6 12 18 24 N 5 2	6 12 18 24 N 11	6 12 18 24 N 2	6 12 18 24 N CTM DESCRIT TRUM DESCRIT TO AND DESCRI	6 12 18 24 N

NOR' HORI VER'I	ZONTA	Not L DA DATU	_	Ά		NG: N		TION CE	NTE	RL			MW3 PAGE 1	R2
DATE CONT EQUIF AUGE HAMN WATE GENE	RACTO PMENT: R ID/OD MER TYF R LEVE	R: Ei Diec D: 4 2 PE: A EL DEP DTES: NS: ID OI	e: 6/11/20 arth Dime trich D-12 25 in / 8 in automatic THS (ft):	nsio	mmer Dry well dry	at 4pm or bpf = mpf =	DRILLER: CASING ID. HAMMER V n 6/11 and Blows per For Minute per Folit Spoon	/OD: 2 in VEIGHT (Ib 10am on 6/ ot (s): 15 J = Ur C = Ro	140	rubed Tube Sample WOR = Weight of Rods	Q _P = Po S _v = Po	ocket Torvar	rometer Strength te Shear Strength ear Strength
			ec = Recov	ery	Length	DP =	Direct Push S	sample S	SC = S	oni	Core OVM = Organic Vapor Meter			icable, Not Measu
Elev. (ft)	Depth (ft)	Casing Pen (bpf) or Core Rate (mpf)	Sample No.	П		Pen./ Rec. (in)	Blow Count or RQD	Field Test Data	GRAPHIC LOG		Sample Description & Classification		CO	WELL NSTRUCTION DETAILS
	- 5 10		2	X	3 to 5 8 to 10	24/0	3-72- 37-10 7-12- 17-21				(ML) Tan brown to brown stiff clayey silt with trace fine sand and fine subangular gravel, moist, low plasticity fines (TILL).	,		Complet as tempora
	- - - 15		3	X	13 to 15 15	24/24	12-15- 19-26 9-16- 18-21							well. No grout installed
			5	0	17 17 to	24/23	6-9-13- 15			1	(ML) Brown silt with fine to medium sand an little medium subrounded gravel. Locally saturated (perched).	d /		
	- - 20		6	V V	19 19 to	24/20	8-13- 17-24				(ML) Grey to dark grey stiff clayey silt with trace medium sand and medium subrounded gravel, moist, low plasticity fines (TILL).			
	-		7	X	21 to	24/23	4-7-13- 15							
			8	X	23 23 to 25	24/21	5-11- 18-27							
	— 25 –		9	X	25 to 27	24/22	4-8-11- 15							
			10	X	27 to 29	24/23	5-9-14- 19							
			11 approximat		29	24/24	7-13- WMNY					N G	El Consul	tants, Inc., P.
ooundar ransitior eadings	ies betwe ns may be s have bee	en soil ty gradua en made	ypes Actua I Water leve at times strent at other	l el ated	es C	PROJEC	T NAME: ATE: Sai	rdinia, Nev	v Yo	rk	GELCONSU	90 Su An		luir Drive

Boring Location

NORTHING: Not Surveyed EASTING: Not Surveyed STATION: N/A

OFFSET: N/A

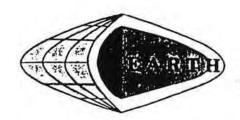
STATION CENTERLINE: N/A

VERTICAL DATUM: N/A LOCATION: Adjacent to MW3R

HORIZONTAL DATUM: N/A

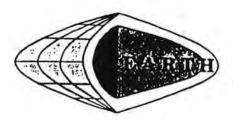
GROUND SURFACE ELEVATION (FT): Not Surveyed

MW3R2


BORING

PAGE 2 of 2

		Casing Pen		SAMPL	E INFO	RMATION		8		WELL
∃lev. (ft)	Depth (ft)	(bpf) or Core Rate (mpf)	Sample & No.	Depth (ft)	Pen./ Rec. (in)	Blow Count or RQD	Field Test Data	GRAPHIC LOG	Sample Description & Classification	CONSTRUCTION DETAILS
			12	to 31 31 to 33	24/23	15-21 4-11- 16-24			(ML) Till unit as above, with thin (0.01' thick) saturated fine sand lens at 30'bgs.	schedule 40 PVC
			13	33 to 35	24/22	5-9-14- 19			(MILATIN unit on about with this (O OAI think)	riser
	— 35 -		14	35 to 37	24/24	4-8-11- 16			(ML) Till unit as above, with thin (0.01' thick) saturated fine sand lens at 34.5' bgs.	
			15	37 to 39	24/24	6-11- 14-19			(ML) Till unit as above with saturated silty sand seam at 37.6-37.8' bgs.	
	— 40 -		16	39 to 41 41	24/24	5-8-16- 20 4-7-11-				choke
	1 1		18	to 43 43	24/24	15 5-13-				3/8" diamete hydrate
	– – 45		19	to 45 45 to	24/24	18-24 4-7-9- 13				bentoni chips choke sand
			20	47 47 to	24/24	7-17- 22-22			(MI) Till unit on above with estimated for	#00N filte
	— — 50		21	49 49 to 51	24/21	6-7-8- 10			(ML) Till unit as above with saturated fine sand, silt and trace fine angular shale gravel seam 48.9-49.4' bgs. (ML) Grey-brown stiff silt with little fine sand	sand
			22	51 to 53	24/24	4-8-10- 12			and fine subangular gravel, wet at ~51' bgs.	
	-		23	53 to 55	24/24	6-9-11- 13			(ML) Till unit (ML) Grey-brown firm silt with little fine sand I and fine subangular gravel, wet.	
	— 55 - -		24	55 to 57	24/23	8-12- 15-16		H	(ML) Till unit (ML) Grey stiff silt with little fine sand, wet.	0.006" sle continuot wire wrap schedule 40 PVC
									End of Boring at 57 5 feet	40 PVC well screen
	— 60 -									
	— 65 —									
	4									4
oundari ansition adings	ies betwe ns may be have bee	en soil ty gradual an made	approximate pes Actual Water level at times state ent at other times	. F	ROJEC		Chaffee L			GEI Consultants, Inc., P. 90B John Muir Drive Suite 104 Amherst, NY 14228

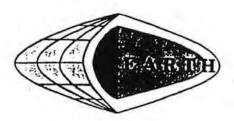


Test Borings and Loga East Aurora, New York 14052 • (716) 655-1717

MONITORING	WELL	R-4A
LETY TT TO THE		

SURF. ELEV. 1478.0

	PROJE 2A79K-							I installation LOCATION Near soum of Sardinia landfill	the	vest	corner of propos
344	CLIEN		_CI	D.F	?efı	lse	Ser				COMPLETED 8/21/84
4	DEPTH	WPLE		. :	LOWS	LER	7	DESCRIPTION & CLASSIFICATION	r _s n	ELL.	
WE .	feet	SA	1/6	1/1	2 12	1 /	4 N	Soom not a essantation	1	-4A	WATER TABLE & REMARKS
								Extremely moist distinctly mottled black mixed silty clay loam (CLAYEY-SILT) and silt loam (CLAYEY-SILT) topsoil, disturbed, firm 1.0 Moist distinctly mottled olive brown silty clay loam (CLAYEY-SILT), hard,		onite grout	Ground level R-4A is appro imately 1 foo higher than w
4	5		g					weak blocky soil structure grades downward to 2.0 Moist faintly mottled olive brown silty clay loam (CLAYEY-SILT) with 2 to 5% gravel & occasional cobble of mixed lithology, weakly thinly		Cement-bentonite	Silty lake se ment to 24.0 feet over wat sorted and de 5.00sited fine s
			les collecte					laminated with nearly vertical gray desiccation cracks	ter PVC pipe		and coarse si to 27.0 feet silty lake se ment to 30.5 over shaly si
			on samp	well R-4				Moist gray silty clay loam (CLAYEY-SILT) with 2 to 5% mostly black shale gravel & occasional cobble, hard, weakly thinly laminated clear transition to 8.0	inside diameter		glacial drift 36.5 feet ove water sorted deposited mos sand and grav
1	10		escription based	replacement				Moist distinctly mottled brownish gray silty clay loam (CLAYEY-SILT) with 2 to 5% fine size gravel and occasional cobble, hard, interlayered	Two inch in	backfill	to end of sampling.
21			SCL	_		-		with extremely moist graysih brown coarse silt lenses 1/16-1 inch thick	. ,	Soil }	
			8	for				$\frac{1}{2}$ clear transition to $\frac{10.0}{2}$		လိ	
	15	1	4	25	37_		62	Extremely moist dark gray silt loam (CLAYEY-SILT) with 2 to 5% subangular black shale gravel, hard, weakly			
1		2	10			50		thinly laminated			-


Test Borings and Logs
East Aurora, New York 14052 • (716) 655-1717

MONITORING I	WELL R-4A continued		SURF. ELEV.
PROJECT	Replacement MW installation	LOCATION	Near southwest corner of proposed

2A79K-1 Hand Road, Town of Sardinia landfill expansion

CLIENT CID Refuse Service DATE STARTED 8/20/84 COMPLETED 8/21/84

рерт н feet	를 6 교			AMP			PECCHINION A CARACTER STATE OF THE STATE OF			
feet	8 z	0/6	1/	2 12/18	18/24	И	DESCRIPTION & CLASSIFICATION		LL -4A	WATER TABLE & REMAR
					50	YE.				
	3	10		17			Extremely moist dark gray silt loam			
			24			68	(CLAYEY-SILT) with 2 to 5% subangular			
				44		00	black shale gravel, hard, weakly thinly laminated			1
20					49		clear transition to 20.0			1
	4	8					Clear Cransition to 2-2-1			
			24			65				9
	_		-	41		03	Extremely moist dark gray silt loam			
					59		(CLAYEY-SILT) with 2 to 5% subangular		1,-1	
	5	14					black shale gravel, hard, thinly laminated with coarse silt/fine sand			ŀ
			27			67	lenses			l
				40	-			a		ł
			1		48	-	$$ clear transition to $\frac{24.0}{}$	pipe		
25	6	17	_				Wet olive silt loam (SILT) interbedded			
25			27			64	with wet gray loamy sand (SAND) fine	PWC		
	-		-	37	-		to coarse size sand, very dense,		-	
					36	-	thinly bedded with a slight tendency to liquefy when distrubed	diameter	17	
								all a	backfi	
						=	grades downward to 27.0	Ġ.	g	
- 11	7	VR.					Extremely moist gray silt loam (CLAYEY	i inch inside	Soil	WR - sampler
			13				SILT) with 2 to 10% subangular black shale gravel, hard, thinly laminated	ısi	So	penetration
	1	1		22		35	with fine sand/coarse silt lenses	-7	No.	with weigh
	8	9	1					К		rods only.
30		-	16							
				13		29	grades dormand to 30.5	Two	1	
Ī					6	-	grades downward to	Н		
- 4	9	WR								
			8			24	Extremely moist to wet gray shaly			
				16	<u>a</u>	24	silt loam (CLAYEY-SILT) with 15 to			
					24		25% subangular black shale gravel and occasional cobble, hard with			
	10	7					occasional (SILTY-SAND)			
			26			767	grades downward to 34.0			1
-				50			grades dominate to	1		
35					80		See next sheet	?	Ç.	Cont. on sheet 3

Test Borings and Logs East Aurora, New York 14052 • (716) 655-1717

MONITOR:							400			F. ELEV.
PROJ. 2A79K-							installation LOCATION Near so	outh	west	corner of propose
CLIEN									7	
CLICIT	,						DATE STARTED 8	20/	84 (COMPLETED <u>8/21/84</u>
	la la			OWS AMPL				T		
DEPTH feet	SAMP	0/6	6/12	12/18	18/24	N	DESCRIPTION & CLASSIFICATION		WELL R-4A	WATER TABLE & REMARKS
	11	1.8					Extremely moist gray and olive gray	100		
	_		27	_		64	shaly silt loam (CLAYEY-SILT) with 25 to 40% mostly subangular shale			
	-			37	100	14	gravel and occasional cobble of mixed	a l		
	12	35		8	LUU	4.	lithology, hard, massive soil		backfil1	1
	12	100	100	/5"	H		structure clear transition to 36.5	5	봉	1
	13	42	-						l g	
			100				Moist faintly mottled brown very gravelly sandy loam (SILTY-SAND) with		Soil	
							40 to 50% mostly subangular gravel	1	%	
40	T		1	7	111		and occasional boulder of mixed			40.0
	H				=		lithology, very dense, appears to be cemented, weakly stratified	ه ا		
<u>'</u>	-			-		ليت	concrete, weakly stratified	pipe	6	
						/ o o o o	$-$ grades downward to $-\frac{43.0}{}$	PVC 1		
45	-						grades downward to			
	0					- 1		diameter		(1) Two inch #10
	R							l e		slotted PVC
	E							dia		screen.
	R			*						
	U						Wet gray very gravelly sandy loam	inside		
	N					_	(SILTY-SAND) with 40 to 50% mostly		100	
	#					_	subangular gravel and occasional boulder of mixed lithology, very	inch	tings	
	+						dense, appears to be cemented,		l n	
50	*					-	weakly stratified	Q.	g	(-
	1							[Pi gi	
									coring	
	0								1	
	R								117	
	E								Gravelly	
- 11	R								Gra	53.0
	U									
	N	-	54					(1)		
55	ۇ	\dashv	-	-		-		\		10,00
	4		- 1			- 1	Samfiling completed to EE 0 Fact		1	C C C

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-D-OL

SURF, ELEVATION 1496.50

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers P.C.

DATE STARTED 04/11/01 COMPLETED 04/13/01

DEPTH

BLOWS ON

L	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	Ľ	MELL		WATER TABLE AND REMARKS
F	L	2	2			8		Extremely moist dark brown gravelly (CLAYEY-SILT) topsoil with 3 to 5%			"	(1) 4"x 5' STEEL PROTECTIVE CASING
				5		1 8	0 0	fine size gravel, little clay, soft, granular soil structure, (ML-CL).	"		11	Silty topsoil with little clay to 0.
_					6		3_4	grandiar son structure, (ML-CL).	1		"	feet over clayey slack water sediment to 6.5 feet over water
H	2	_5	8	-			三三	Moist distinctly mottled olive brown		"	1	sorted and deposited sand with
			-0-	9		17	==	(CLAYEY-SILT) with 3 to 5% fine size	1	1	11	little to some gravel, little silt and clay to 7.5 feet over claye
					13		==	gravel, some clay, stiff, blocky soil structure, (CL).	1	1	"	stack water sediment to 22.5
L	3	4						grades downward to 2.0	1	1	1	feet over water sorted and
-	-	-	8	10		18		Maist distinctly mottled alive brown	"	- 1	"	deposited sand and gravel with little silt to 22.7 feet over claye
		107		10	15		•	(CLAYEY-SILT) with 3 to 5% mostly fine size gravel, some clay, very stiff,	1		1	stack water sediment to 24.0
	4	2					55	with nearly vertical gray desication		[111	feet over silty slack water sediment with little clay to 26.2
L			4_			12	00.0	cracks, (CL).		ľ	1	feet over water sorted and
	-			8_	8		5 0		11	1	"	deposited sand and gravel with little silt to 26.4 feet over silty
	5	2			-0		• •	Extremely moist distinctly mottled olive brown gravelly (SAND-SILT-CLAY)	1 "	N.	EA.	slack water sediment with little
			7		Ë.	18	9 19	with 15 to 40% mostly subrounded	11	a 1	W	clay to 27.0 feet over water sorted and deposited sand and
-	-	-		11			三三	gravel, little silt and clay, compact, weakly stratified, (SC).	1	RISER	Z	gravel with little silt to 27.3 fee
H	6	8			14			grades downward to 7.5	"	PVC F	CEMENT SENT ON NE SEAL	over silty slack water sedimen! with little clay to 30.0 feet over
		-0	6			14	2 2	Extremely moist distinctly mottled olive		2 P	9//	silty slack water sediment with
				8		"		brown (CLAYEY-SILT) with 3 to 5% mostly subrounded gravel, some clay,	11	Î	Z.	trace clay to 31.0 feet over silt slack water sediment with little
L	-		-		8		三生	very stiff, with nearly vertical gray	11 11	1	01	clay to 34.0 feet over silty sla
-	7	1	3				三三	desiccation cracks, (CL). ! grades downward to 10.0	1	1	"	water sediment with trace clay
-			2	5		8			11	,	1	to 46.6 feet over water sorted and deposited sand and gravel
					6			Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly	1		1	to 73.0 feet over silty slack
_	8	2			ST.		-==	subrounded gravel, some clay, sliff	1		111	water sediment with little clay t 82.0 feet over water sorted an
-	-		5_	10		15	2 0	and very stiff becoming firm below 18.0 feet, weak thinly laminated, (CL).	11	ľ	1	deposited sand and gravel to
			-	10	8				1	l'	1	92.5 feet over clayey slack water sediment to end of boring
	9	3					三三		14	,	"	water semiliant to end or borning
L			4			10	===		1 1	4	1	
	-			6			3 - 0		1		"	
-	10	2			7		0 0		11	1	111	
			2			6			1	ľ	1	
				4			三二		1 =	k	1	
L					6				//		11	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-D-01

SURF. ELEVATION 1496.50

PROJECT MW Installation - Chaffee Landfill

LOCATION See mao

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/11/01

COMPLETED 04/13/01

DEPTH BLOWS ON CAMPIED TALET

	INFT		SAM	IPLER							
	SN	0/ 6	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WEL	L	WATER TABLE AND REMARKS
ij	11	2			77			Futuarista relational activity		1	
1	- "		5			1	•	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly	11	11	
1		10000		7		12		subrounded gravel, some clay, stiff,	1,	11	
				-	10	1		weak thinly laminated, (CL).	11 =	11/2	
	-	-	-		10_	1		22.5	""	1	
-	_12_	. 3	-		-		0000			1	
		-	6			13	•	Moist faintly mottled brown very	1 4	1	
				7				gravelly (SILTY-SAND) with 40 to 60%	"11	1	
					12		Terra.	mostly subrounded gravel, very fine to	1	1	
	13	5						very coarse size sand, little silt,	"	11	
. 1			10	-			•	compact, stratified, (SM), (GM)	-	10	
-		100		12		22		22.7	1 4	11	
	-			12			00_	Extremely moist olive gray	= ,	1	
	-			-	15			(CLAYEY-SILT) with 3 to 5% mostly	11 =	1	
1	14	5	-			0.0	- 000	subrounded gravel, some clay, stiff	"11	11	
			43			76	0.000	and very stiff, thinly laminated, with		1	
				33			2 . 2 .	very thin coarse silt lenses, (CL).	1	11	
					20	1	* *	grades downward to 24.0	11	211	
	15	6		1 400				Extremely moist distinctly mottled ofive	1 =	EMENTURENT GUNT SEAL	
			6					gray (CLAYEY-SILT) with 3 to 5%	. 11	60/1	
				10		16		mostly fine size gravel, little clay, very	H. H.	N	
	-			-10			2	sliff, thinly laminated with very thin	A SIE	81	
) —					14			coarse silt lenses, (ML-CL).	PVC RISER	3,	
	16	4					Car Sec	26.2	A A	8	
			5			10	V310		7 2	1	
				5		1		Moist highly mottled olive brown very	11	A.	
					8	8	<u> </u>	gravelly (SILTY-SAND) with 40 to 60%	1	E S	
	17	2					1.5	mostly subrounded gravel, very fine to	-11	1	
-	-11		2				• •	very coarse size sand, little silt,	1/ =	1 =	
- 1		-	3			7		compact, stratified, (SM), (GM).	"	1	0
1	-	-		4	-		-	26.4		1	
- 8				-	6		1	Extremely moist distinctly mottled olive	1 1	1 "	
	18	3			-			gray (CLAYEY-SILT) with 3 to 5%	1	1	
5_		V	4			10	1. W.	gravel, little clay, hard, thinly	1 =	Les .	
		- 1		6			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	laminated with very thin coarse silt	"	11	
					9			lenses, (ML-CL).	11	1	Water level at 36.0 feet with
Ì	19	5					E. V. 17	27.0	1	11 11	augers at 64.0 feet at 7:30am
	13	J	6	- 1			5.44	Moist highly mottled olive brown very	11	1/1	on 4/13/01.
			0			15	180	gravelly (SILTY-SAND) with 40 to 60%	1	" "	VI. 17107 VI.
-		-	-	9	-			mostly subrounded gravel, very fine to	""	11	
	- 0				10		200 12.00	very coarse size sand, little silt, very	11	1	
	20	5		*			1000	dense, loose when disturbed.	11	1	
II.		0111	7		1	16		stratified, (SM), (GM)	1	1	
Ì				9	777	10	4.000	27.3	11 =	1 1	
		-	-	9	10		i See H	21.5	11	11	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-D-01

SURF, ELEVATION 1496.50

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/11/01 COMPLETED 04/13/01

BLOWS ON DEPTH

	INFT		SAM	PLER							
	SN	0/ 6	6/ 12	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WEL	L	WATER TABLE AND REMARKS
	21	7					Analytics.	Extremely moist distinctly mottled olive		T =	
			10					gray (CLAYEY-SILT) with 5 to 10%	11	11	
	y = 2			13	TT.	23	2019	mostly subrounded gravel, little clay,	"	1/1	
	13.5		CIC		14	1	/4 (Jess	hard, thinly laminated with very thin	11	1	
	22	7		6			\$3.3°	coarse silt lenses, (ML-CL).	1	11	
-	1	-4-	10			i	Contract of	grades downward to 28.0	11	1	
	1			10		20	A Sure	Extremely moist olive gray	1	1 "	
	-		75	-114	14		F - W	(CLAYEY-SILT) with 3 to 5% mostly	11	1	
	23	8			14		1275	subrounded gravel, little clay, very	-	1	
	-23	0	10				Cartain 1	stiff, thinly laminated with very thin coarse silt lenses, (ML-CL).	1 =	1/4	
45-			-iu	12	Contract of the Contract of th	22	7.5	grades downward to 30.0	11	1	
		-		12	9.0		N 58-3		1	11	
			-		14_		1 9° 4	Extremely moist olive gray (SILT), loose, thinly bedded, (ML).	1	1	
	24	12	0010				V.8V.	grades downward to 31.0	11	1	
			00/3				0.00		1	1	
-			-	_			0.00	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly	12	1 "	
	-				-		0.00	fine size subrounded gravel, little clay,	11	171	
	25	21		-	-		0.00	stiff, thinly laminated with very thin	1	35/	
		-	32	-		102	000	coarse silt lenses, (ML-CL),	1 1	MI	
- 3	22		300	70	-		00.0	grades downward to 34.0	RISER	ZII	
50-	-			-	22		2.00	Extremely moist olive gray (SILT),	1 U	NINGENT ON IN	
	26	13			-		0.0	loose, becoming compact below 36.0	. PVC	18F	
			22		5.67	76	0.00	feet, weakly bedded, (ML)	7 2 1	121	
				54			0.00	40.0	1	¥,	
		_			67		0:00:	Extremely moist olive gray (SILT)	1	19	
	27	28					1000	compact, thinly bedded with thin	11	11	
			00/2				0.00	(CLAYEY-SILT) interbeds, (ML).		1	
							2000	46.6	1 =	1	
						1 3	0.00	Extremely moist becoming wet below	"11	"	
	28	77					200	53.0 feet in layers 3 to 8 inches thick		11	
55_	000		72	Les,	-	128	02.0	olive gray and olive brown very	. 4	1	
				56			0.00	gravelly (SAND) with 40 to 60% mostly	1	"	
		T.			52		0.0	subrounded gravel and occasional		10	
	29	16					0.00	cobble, very fine to very coarse size	1	1/2	
	9 99 19		22			46	000	sand, trace silt, very dense, loose	-11	11	
				24		70	0.00	when disturbed layers with compact consistence, stratified, (SW), (GW).			
					28		0.00	consistence, stroutied, (an), (en).	1	1 "	
	30	11		1		1	0.00			"	
			10				000		11	11	
V			1.0	ii i		21	0.00		. "	1 1	
3	-			· II	16	1 3	200		11	11	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-D-OL

SURF. ELEVATION 1496.50

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/11/01 CO

COMPLETED 04/13/01

DEPTH BLOWS ON IN FT SAMPLER

	SN	0/ 6	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	WATER TABLE AND REMARKS
1	-	_			-		0.00.	Extremely moist becoming wet below			1
1	31	_6_	11				0.00	53.0 feet in layers 3 to 8 inches thick	11		<u>/</u>
Ŷ				13		24	0.00	olive gray and olive brown very	11		
1				-63	12		000	gravelly (SAND) with 40 to 60% mostly	11 =	1	
	32	13			12	1	000	subrounded gravel and occasional	11		//
	-1.7	1	20	7 = 5		40	0.00	cobble, very fine to very coarse size sand, trace silt, very dense, loose	"	-	1
7				29		49	1000	when disturbed layers with compact		10	: 1
					37		0.00	consistence, stratified, (SW), (GW),	" "		
	33	16					00		"		
5—		V	26			50	020		1	1	- 1
,	7 19	Y 1 -		24		30	0.00		1 =	1	
- 9					28		000		1	N.	
	34	13		-			0.00		11	1/	
			20			46	200		1	1	
				26			000		14	h.	앀
				11.1	24		0.00		11	A	1
	35	24					000			S	
- 3			26			58	0:00		1/ 1/2	E .	
	- 4			32		1	0.00		11	ISE	<i>y</i>
0-					21		0.00		1	PVC RISER	5,,,
	36	18					200		1 =	y A	
		234	21			43	1000		1	2" P	<u></u>
				24			0.00		11	i i	l _v
		-			24		000		1 =		7
-	37	25	-				0.00	73.	.0 1 4	1	<u>"</u>
- 8			18			40	2 31	Extremely moist olive gray	11	[=	
- 8			-	21				(CLAYEY-SILT) with 3 to 5% mostly		1/2	3 (
		-		-	22			fine size gravel, little clay, very stiff	1 "	1	
- 8	38	9		-			÷ -	and hard, weak thinly laminated.	11/2	1	
5—	-		12	10	-	27		(ML-CL).	1/	1/2	
	-			18	24		- 1		11	11	
4	20	8	-		24				1	1	
	39	0	15						11	1	
			13	19	-	34			1	1	
-	1			1st	21					N	
	40	5		- 4	1		± - ± -		1	1	"
	40	2	14		1	22				1	: (
			-14	19		33	5 7 7 7 7 7		11 11	M	/ ← 79.5'
0				,5	22		2 2		1.13		(I) # 4000 SIZE SAND PACK

2 20 20 2 20 700

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-D-01

SURF. ELEVATION 1496.50

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/11/01

COMPLETED 04/13/01

DEPTH BLOWS ON IN FT SAMPLER

	SN	0/ 6	6/	12/ 18	18/ 24	И	LITH	DESCRIPTION AND CLASSIFICATION		WELI		WATER TABLE AND REMARKS
	41	5					7-100-3	Extremely maist alive gray	1		17	(I) BENTONITE SEAL
	V.		14			31	• •	(CLAYEY-SILT) with 3 to 5% fine size			13	(I) BENTONITE SEAL
	8-3			17		31	7.77	gravel, little clay, hard, weak thinly	1		151	
					22		· ·	laminated, (ML-CL). 82.0	13	22	13	(2) #4000 SIZE SAND PACK
	42	33			ahi		000	\ \	1	315	1	(2) #4000 GIZE DAND / AGN
			22			40	0.0	Wet olive gray very gravelly (SAND)	1	PVC RISER	1	← 83.0'
				18			000	with 40 to 60% mostly subrounded gravel and occasional cobble, very	-	2" P	3	← 83.5°
	1				20		0.00	fine to very coarse size sand, trace	0.	Ň	:::	56.5
	43	_15_			1		0.00	silt, compact and dense, stratified,			13:	
85-			24			49	0.00	(SW), (GW).			1:	
7				25			500	1			1::	÷ 85.5°
					-21		1000	1	::		1::	
	44	17					0.00		:		1::1	
	110		19			40	000	-			1	
	7111			21_	DE X		0.00	1	1:		1::	
					23		0.00	1		E N	100	
	45	6					0.0.0	- 1		8		
- 13			12_			28	500	1		S	SAND	
				16			0.0	1	::	PVC	8	
90-	1.0		-		30		0:00:	1	::	5	MORIE	
	46	5_					0.00	1		8	M.	
			16			26	0.00		3	APP	0	()
			-	10			2000		: :	3	1::	
	200			-	13		000	92.5		#20 WIRE WRAPPED 2" PVC SCREEN	100	
	47	12			-		5000			3	100	
-			17	-	5-2	49		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly		#20	13:	
1			-	30				fine size gravel, some clay, hard, thinly			1:0	
-			-	-	19			laminated, (CL).	•		1::	
1	48	. 11	-					1			133	
95_		-	18	-		53			::		1::	
	-	-		35			· · ·	96.0			1:::	← 95.5 '
1		-			45			Dering completed at 00 0 feet			-	← 96.0'
			-					Boring completed at 96.0 feet				
			- 1	-								
			-									
1	-			-	-							
		لسنيا			1							
1	9 -	-			-							
	1						1 1					

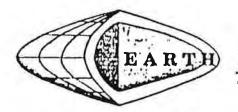
Test Borings and Logs Bast Aurora, New York 14002 . (710) 600-1711

IG WELL - R-1

RIA 1485.0 SURF. ELEVEID 1484.3

PROJECT

Replacement of MW Hand Road, Town of Samlinia


LOCATION Near southeast corner of

-proposed landfill expansion-

CLIENT CID Refuse Service

DATE STARTED 9/7/83 COMPLETED 9/12/83

perth feet	32	0/	1								
	-	10	K	1/	18/21	И	DESCRIPTION & CLASSIFICATION	M	EIL	• •	WELL
	1_	3					Slightly moist black silt loam	F	-LA		.R-11
			12		1	65	SANDI-SILT) topeoil loss-				
			_	53		L	Slightly moist brown silt loss		1		
	_				83		(SANDY-SILT), loose, blocky soil				
	2	21				J.R	amaceate				
			24			47	Moist faintly mottled brown gravelly				
		1		23	***		Total Control Strategies of the Strategies of th				141
				TT	25		25% gravel of mixed lithology	2			grout
	3	8					ratu, weak blocky soil atmospher				2 6
5			18				grades downward to 3.0	. 8			ple en
				24		42	Moist faintly mottled olive brown				1 44
					30		PATE TOTAL ICTUITS AND MITTER FOR	14		- 91	型 豆
	4	11			XY		15% mostly fine size black shale gravel, thinly laminated with thin				취
			19	1		-	ladid taketa	31	ea 1		出る
				27		46	4.0		. gg		diame ement,
	771	1		-	34		moist distinctly mottled olimin		出	100	diame! Cement,
	5	11	76,		37	-	DIOMI SLIEV CLAV TOAM (CLAVEV CTIM)	a	grout	· 1940	ام ا
			22			-	will 4 to 5% gravel, hard with	pipe			2
	-		-4	30		52	nearly vertical gray desiccation	D.	bentonite	1 0	异(2)
10	1			20	-	-	clear transition to - 10.0	M. M.	B		
-10			-	-	41	-	nu transition to		벍		4
	6	12	20	-	-	_	Extremely moist dark gray size.	욁	묊		
1		-	22	2.1		46	CLAY TOWN (CLAYEY-STIM) WITH 2 4-	dlameter	빌		
		-	-	24	-	-	in 34 Hostly fine gize gravel hand		Cement		sand
	-	-		-	32		weakly thinly laminated	ide	8		23
	1	щ		-	-		/ grades downward to 14.0	25.55	19.5	117 141,112 7	- e
		-	15		-	31	grades downward to = = = 12	'림		0;	감양
1	-	-	-	16		-	,	ਹੂ		1	r) 4
ł	-	-		_	27	_/		뒾			+
15	8	6	_	-						1	1
12	-	-	13	-		20	Extremely moist dark gray silty	A P			
	-	-1		19		32	Clay (CLAYEY-SILT) with 2 to 50		1	(1)	#10 £
	-	_	- 1		28		mostly line size gravel hand		1		PVC s
1	9_4						weakly thinly laminated with				Benta
-	-	_ 8	3_				very thin coarse silt lenses				seal
	_			13		21					•
- NUMI	-									Continue	d on

Test Borings and Logs East Aurora, New York 14052 • (716) 655-1717

ITORING	WELL	_R-1	_coni	Linued
---------	------	------	-------	--------

theast corner of

79k	PROJECT	Replacement of MW installation	
		Hand Road, Town of Sardinia	

LOCATION Near southeast corner of proposed landfill expansion

SURF. ELEV.

CLIENT CID Refuse Service

DATE STARTED 9/7/83 COMPLETED 9/12/83

perin feet	O FE		SA	MPLE	R		DESCRIPTION & CLASSIFICATION	WEI	J.	WATER TABLE & REMARKS
feet	32	/	/12	12/18	15/24	И		R-]		WATER TANKE & REMOXES
	9		-		20		See previous sheet transition to - 18.0_			Coarse silty lal
	10	6					Extremely moist dark gray silt loam			sediment to 1.2
	-		11		-	25	(CLAYEY-SILT), very stiff,			feet over water sorted and depo
	-			14	10		thinly laminated with very thin coarse silt lenses			ited mostly san
	11	6			18		\sim clear transition to $-\frac{20.0}{20.0}$			and gravel with
	-	<u> </u>	8	U.		25	Extremely moist dark gray silty			some silt and control to 3.0 feet over
		4		17		25	clay loam (CLAYEY-SILT) with 2 to			silty lake sedi
					23		5% mostly fine size gravel, very			to 14.0 feet ov
	12	5					stiff, thinly laminated with very thin coarse silt lenses			clayey lake sed
			9			23	Compo #110 13.200			to 18.0 feet ov silty lake sedi
ě.				14		_				ment to 28.0 fe
					19		, clear transition to		1	over clayey lak
	13	4						l g	1	sediment to 42.
25	Ш		7	12		22		pipe	Seal	feet over water sorted and depo
	-	_		15	1		/	M.	%	ited mostly sar
	-	-	-	-	20	-) / · · · · · · · · · · · · · · · · · ·	1	g	1 00 4210 xccc 01
	14	5	9	-			1	E	1 8	water sorted ar deposited most
			1	14		23	<i>f</i>	diameter	1 9	
				1	21		(df.	tont	with mostly sto
	10	5			-		÷ .	l e	1 5	free sand inter
			11			31		Inside	Cement/ben	layers to end of boring.
				20		31	Extremely moist dark gray silty		1 }	gate on
30					30		clay (CLAYEY-SILT) with 2 to 5%	that	١	
	16	7			1	_	mostly fine size gravel, hard,		1 6	3
			14		0	32	thinly laminated with very thin	2	1	1
	_	-		18		-	coarse silt lenses	H	1	1
	-	_	_	-	28	3		1		1
	17	8		-		-		1	1	
	-	-	116	120	_	36				1
	-	-	-	2		-				
	-	+	-	+	2	1	1	1	1	
	11	16		_	-	-				The state of the s

Test Borings and Logs East Aurora, New York 14082 • (716) 685-1717

RING WELL Rel continued

PROJECT

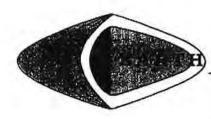
Replacement of MW installation LOCATION Near southeast corner of Hand Road, Town of Sardinia proposed landfill expansion

DIPTH	SE PER		øl. S	OWS	ON LER		The state of the s	-	_	COMPLETED 9/
feet	3	/	1	12/10	12/2	30	DESCRIPTION & CLASSIFICATION	W	ELL	WATER TABLE &
•	18		_	18		112.5	Extremely models deal	H.	-lA	
					24		Extremely moist dark gray silty clay (CLAYEY-SILT) with 2 to 5%			
	19	9					MOSCLY IIDA S170 Graval Laur			1
			21			1	thinly laminated with very thin	1	1	3
			1	24		45	coarse silt lenses	1	1000	
				-4	36	-	AND ASSESSMENT OF THE PARTY OF		~	1
	20	0		-	30	-	"" I MUSE CLISTINGT IV mottered by	1	Abentonite	
	-40	8	17	-	-	-	John John With 5 to 154	9	1 8	
14,1	-	-	17	_	-	39	1 Tourney years of the terms of the		1	
40	_			22			/ wiell disculbed		8	
40	_				33		42.8		t	7
	21	_7				4.0	Moist distinctly mottled brown very	2.7	وَّ	
			13			1.3	Ardaelly logith daug (Cynu) "iff		9	
	lo-1			18	100	31	/ 40 to 50% mostly rounded and	1		41.0
				18	20	-	// Subrounded gravel & occasional	1.1		
	22	1.4			28	-	cobble of mixed lithology,	******	(1)	42.0
	-44	14		-	-	-	stratified, loose when disturbed		77	42.0
	-	-	34			89	47 5	Lu		A . 10
	_			55		0,	Extremely moist distinctly mottled	pipe		
					25		brown fine sandy loam (SILTY-SAND) dense in place thinly bedded to			
	23	20				- 4		, A		(1) Bent
45			44				The same of the sa		12	seal
				-	'	94	with 40 to 50% mostly rounded and	2 7	1	(2) #10
1		-	-	50		-	subrounded gravel 4 occasional	diameter	i] PVC
	24	_	-	-	32	_	cobble of mixed lithology, strati-	: jā	:	scre
	24	A		-	-		// Lacus Illing Whon Alabamas 1		**	
-	-	-	17	_	**	44	/ C = = = Clear transition += 49.0	nside		
-	-	-	_	27			Wet faintly mottled grayish brown.	(). (Y	g	it wenny f
-	-	-			32		ACTA ALGASITA TOSMA BENY (CEVILLA)	14	San	
-	25	7					with 40 to 50% mostly rounded and	됬	0	
		1	17			2:	amiculated disable occasional	inch	size	
				17		34	comple of mixed lithology, gtrati-		S	
50			-		19	-	ried, 100se when disturbed	DAT.	4	1
	1	,	-	-	47	-	Clear transition to 50.5	٠,	L	1
1	26	-	-	-	-	-	wet grayish brown loamy sand toning		P	V /
-	-	4	16	_	_	43	madi J W 15% gravel, medium to		Mumbe	
				27		20	coarse size sand, stratified		[~	
				6	13		clear transition to			14.0
	27	18			-		See next sheet			52.0
Ū -								(2)		Continued

N - NUMBER OF BLOWS TO DRIVE

LOGGED DY

DIMENSIONS, INC


Test Borings and Logs East Aurora, New York 14062 . (716) 686-1717

"ALIC	RING WE	L R-1 continued	£
.79k	PROJECT	Replacement of MW installation	SURF, ELEV.
		Hand Road, Town of Sardinia	LOCATION Near southeast corner of

proposed landfill expansion CLIENT CID Refuse Service .: DATE STARTED 9/7/83 COMPLETED 9/12 BLOWS ON DIPTH SYNCE SAMPLER DESCRIPTION & CLASSIFICATION 12/ feet WELL WATER TABLE & REM Wet grayish brown gravelly loamy 35 sand (SAND) with 30 to 40% mostly (1) # 10 slo subangular gravel & occasional PVC well cobble, stratified, loose when (2) # 4 size disturbed 55 (1) (2) \sim - - clear transition to - 53.3Wet gray very gravelly loamy sand (SAND) with 40 to 50% mostly fine size subrounded gravel, loose when disturbed, stratified with fine sand lenses which tend to liquefy when disturbed Boring completed at 54.0 feet. ed good dry is ।মহা ১৯৮ Mar Sept 3 troped to 1 86 ore il garage 1.12 x 16 4:24 , 4 ... V . V. that the state of the second 1000 02000

" SPOON 12 " WITH 140 Ib. WT. FALLING

" PER BLOW.

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

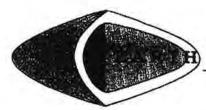
HOLE NO. Bore Hole SB6-08

SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 25.0 feet NW from original

Town of Sardinia, Erie Co., NY


staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/14/08

BLOWS ON DEPTH

1	SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	1	WELL (I)	1	WATER TABLE AND REMARKS
F		-					*********				14.3	
H	24	-	2	-				Extremely moist dark brown				(1) 2" PVC STICK UP WITH J PLU
H	24		-			5		(SANDY-SILT) topsoil with little sand	-		7.5	(2) BENTONITE SEAL
H				3			P-4 F-4	and organic matter, loose, granular soil				(2) BENTUNITE SEAL
H	-				5		0 10	structure, (ML).				Coarse silty topsoil with little
L	2	4						0.5	-		S.	sand and organic matter to 0.5
L	24		8			18	-	Moist highly mottled alive brown		100	SOULT INES	feet over clayey slack water
L				10		1	a	(CLAYEY-SILT) with some clay, firm,	-		E	sediment to 1.1 feet over clayey
L					11		-	blocky soll structure, (CL).			8	slack water sediment with trace
L	3	6					9 -4 9 -4	clear transition to 1.1	3.7			gravel to 22.9 feet over coarse
Γ	24		8			18		·	-	25	SOTH	slity slack water sediment with
T			E	10	PH	10		Moist highly mottled clive brown (CLAYEY-SILT) with 1 to 3% gravel,	-	RISER		little sand to 23.6 feet over
1	- 1	7.1			11			some clay, firm with nearly vertical		CF		water sorted and deposited sand
T	4	5					7	gray desiccation cracks, (CL).	-	PVC	-	and gravel, trace silt to end of
r	24	-	7		773		===	grades downward to 2.0	_	12		boring.
H	-	-				13	= $=$	grades downward to 2.0				1
+	-			8	-	1	* *	Moist faintly mottled olive brown	1		17	← 7.5 '
H	-		_		5		0	(CLAYEY-SILT) with 3 to 10% gravel,	1		11	
1	5	4			-	1		some clay, very stiff with nearly	1		19/	
F	24		9			19	9-49-4	vertical gray desiccation cracks,			1	
1				10				(CL).	1		1	÷ 9.5'
1					14		-	grades downward to 6.0				
L	6	6						Moist olive brown (CLAYEY-SILT) with	133		133	
	24		7			15	0	I to 3% gravel, some clay, stiff with	1.7			
r				8		1 13		nearly vertical gray desiccation	175			← 11.5°
T		2			10	1	0	cracks and extremely moist graylsh	1		1	1 4.0
t	7	8		75	-	1		brown mostly fine to coarse size sand	13		1.0	
+	22		5			1	4-4-	stringer from 7.4 to 7.8 foot depth,	13		ĮŽ.	P .
t			-3-	7		12		(CL).	116		E .	
1				1	А	1	·	grades downward to 8.0		z	Z.	
1		-		-	a	1		Moist olive brown (CLAYEY-SILT) with	100	I III	S	
1	8	6	-	-		1		3 to 10% gravel, some clay, very stiff,		SCREEN	SIZE MORIE SAND PACK.	
+	24		6	-	-	14	P-10-1	weakly thinly laminated to massive soil		PVC	9.	
-				8	-	1		structure, (CL).			3Z	
L	100				12	1	*	10.0		2	SI	l
1	9	4				1		! Moist to extremely moist gray	18.	SLOT	NOO#	
	24		8			1 17	·	(CLAYEY-SILT) with 3 to 10% gravel,	1:	छ	0	
				9			٠- يعين	some clay, very stiff, weakly thinly		9	18	
1					9			laminated, (CL).		0	1	
1	10	8					0	grades downward to 12.0			16	
1	22		12	1		1		grades downward to 12.0	150			
1			12	9	1	21	مد قمد ب		1	3	3	
1			-	1 8	a	+	4,4	See next sheet.	1		0.	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

HOLE NO. Bore Hole SB6-08

SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 25.0 feet NW from original

Town of Sardinia, Erie Co., NY

staked location due to access


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/14/08

DEPTH

BLOWS ON

ſ	SN	0/	6/	12/	18/		LITH	DESCRIPTION AND STARSTER ATTOM	WELL	WATER TARIE AND DENABLE
1	RET	6	12	18	24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	11	A					9 9	Maiat to automatic malatica	W 2	1
	24		9			19		Moist to extremely moist gray (CLAYEY-SILT) with 3 to 10% gravel,	(2)	
				10	LL	18		occasional cobble, some clay, stiff,	3	. 015
							9	weakly thinly laminated with wet	45.75	← 21.5'
	12	8		11.70			0 0	grayish brown gravelly sand stringer		← 22.0
1	24		14	-1	-	37		with 20 to 40% subrounded gravel,	11/2	(1) 0.010 SLOT 2" PVC SCREEN
1	_		1.8	23		٠,	3747	very fine to very coarse size sand, trace silt from 12.0 to 12.4 foot depth,	1-1-8]
ļ	E 11.			124	31		0.00	(CL).	レーン一型	(2) #00N SIZE MORIE SAND PACI
1	13	20					800	grades downward to 16.0	11/2	
4	20		20			48	0.0	Moist to extremely moist gray	1 () 3	
1				28			0:00:	(CLAYEY-SILT) with 3 to 10% gravel,	ンーンーダ	
1	-			_	24		1020	occasional cobble, some clay, very	11/1/	1 ← 26.0'
ŀ			-	_	_		1	stiff, weakly thinly laminated to		
ł								massive soil structure, (CL).		
+		-		-	-		1	22.9		
ł								Extremely moist brown (SANDY-SILT)		
ł							1 1	with little mostly very fine to fine size sand, dense, slight tendency to liquefy		
1							1 1	when disturbed, thinly bedded, (ML).		
ł								23.6		
+							1		į.	
1			+==				1 1	Extremely moist to moist grayish brown very gravelly (SAND) with a 40 to 60%		
1	1 4				1		1 1	mix of subrounded and subangular		
Ì			-		-32		1 1	gravel, very fine to very coarse size		
1						i	1	sand, trace silt, dense, loose when		
		7	. "					disturbed, stratified, (SW), (GW).		
[28,0		
				-				Boring completed at 28.0 feet,		
1					1					
4					100					
							N 1		1	
1										
				-		1				
-				-			1 3			
1					-					
1		-		-						
- 1						1				

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915

2A79bm

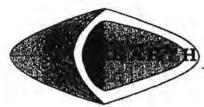
HOLE NO. Bore Hole SB7-08

SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 25.0 feet NE from original

Town of Sardinia, Erie Co., NY


staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/13/08 COMPLETED 08/13/08

DEPTH INFT

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
1	2			1			Extremely moist blackish gray	Coarse silty topsoil with little
20		2			6		(SANDY-SILT) topsoll with little sand	sand and organic matter to 0.2
1 10			4	4	U		and organic matter, loose, granular soil	feet over coarse silty slack
				5			structure, (ML).	water sediment with little sand,
2	A						0.2	trace organic matter to 0.9 feet
14		7	157		17		Extremely moist brown (SANDY-SILT)	over loamy glacial drift with
			10		17		with little mostly very fine size sand,	trace gravel to 4.0 feet over
				g		0 . 0 .	trace organic matter, loose, weakly	sitty glacial drift with trace gravel to 6.0 feet over loamy
3	5					Q Q	granular soil structure, (ML).	glacial drift with some gravel to
24		3			ال_اا		0.9	8.7 feet over clayey slack water
-	1	-	4	V	7			sediment to 10.0 feet over
			4	5		0.00	Moist faintly mottled grayish brown (SANDY-SILT) with 5 to 10% gravel,	clayey slack water sediment with
4	2		-1-	D.		2.00	little mostly very fine size sand, loose	trace gravel to 22.0 feet over
В		6			9	0.0	blocky soil structure, (ML).	sitty stack water sediment with
-0		0	5		- 11	200	clear transition to 2.0	little clay, trace gravel to 24.0
			-	_		20.7		feet over clayey slack water sediment with trace gravel to
-		-		6		000	Moist distinctly mottled olive grayish	39.6 feet over silty slack water
5	7	-				5 5	brown (SAND-SILT-CLAY) with 5 to	sediment with little clay, trace
18		5			12	100	stiff with nearly vertical gray	gravel to 43.7 feet over water
-			7	-		10.0	desiccation cracks, (ML-CL).	sorted and deposited sand with
			-	4		••	clear transition to 4.0	some gravel, little silt to 44.3
6_	2	-				==	1	feet over silty glacial till to end
12		4	-		11	*	Extremely moist faintly mottled grayish	of boring.
-	-		7	_		****	brown (CLAYEY-SILT) with 5 to 10% gravel, little clay, trace sand, firm with	
	-			6		==	nearly vertical gray desiccation	
7	5						cracks and occasional fine to coarse	
24	-	5	-		13		size sand lens less than 0.25 inches in	
-	-		8	_		==	thickness, (ML-CL).	
				9			clear transition to 6.0	
8	5				1	+ +	Extremely moist to wet olive grayish	
24		7			18		brown gravelly (SAND-SILT-CLAY)	
			11				with a 20 to 40% mix of subrounded	
				13	1	-	and subangular gravel, little sand and	
9	7				1		clay, stiff, massive soll structure,	
24		9			21		(sc).	
			12				8.7	
				13		==	Moist to extremely moist grayish brown	
10	7		-				(CLAYEY-SILT) with some clay, stiff,	
24		7			17		thinly laminated, (CL).	
		100	10		1 "		clear transition to 10.0	
			1	9		*	See next sheet.	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

HOLE NO. Bore Hole SB7-08

SURF. ELEVATION __

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 25.0 feet NE from original

Town of Sardinia, Erie Co., NY


staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/13/08 COMPLETED 08/13/08

DEPTH IN FT

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
11	А				-		ALCOHOLOGICAL CONTROL	
24	-	6	23			도도	Moist to extremely moist gray	T
7.3		-0	9		15		(CLAYEY-SILT) with 1 to 3% gravel, some clay, stiff becoming very stiff	
1 3			- 31	11		7-7-	below 14.0 feet, weakly thinly	
12	5					- 1	\ laminated, (CL).	N .
24	-	5	10			7.7	grades downward to 22.	ol
-24	1	0.00			15	7-17-		
	-		_10_		150	* *	Moist to extremely moist gray	
-		-		15		7 7 7 7	(CLAYEY-SILT) with 3 to 5% gravel, little clay, stiff, weakly thinly	
13	7	-					laminated, (ML-CL).	
24	-	9	-	-	20	·	grades downward to 24	0
-	-	-	_11_			0 0		~
-	-	-		12	1	•	Moist to extremely moist brownish gray	
14_	7	-					(CLAYEY-SILT) with 5 to 10% gravel, some clay, very stiff, weakly thinly	
24	-	.8_			18	9	laminated, (CL).	
	-		10				Charles and the second of the	0
			-	11		-AA-	grades downward to 28.	.0
15	8						Moist to extremely moist brownish gray	
24		9			24	0 min 0 min	(CLAYEY-SILT) with 5 to 10% gravel,	
			15			压压	some clay, very stiff, weakly thinly laminated with wet gray gravelly	
				18			(SAND) stringer with 20 to 40%	1
16	9					9-48-4	subrounded gravel, very fine to very	
4		12			30		coarse size sand from 26.5 to 26.7	
		1-24	18		1		foot depth, (CL).	
			1	18			grades downward to 28	0.0
17	7		10	60			Moist to extremely moist gray	· ·
24		-11			29		(CLAYEY-SILT) with 3 to 10% gravel,	T.
hand 4	n h. l.		18	12.7] -	9-48-4	some clay, very stiff, weakly thinly	
			1	11	-	4.4.	taminated, (CL).	
18	14			1			Control of States	V.
13	I mar	-11			28	0		
			17] 20			
				18				
19	5		-]		2	
24		11			25	4-1-		l l
		"	14		1 25			
			17	15	1	0 0		
20	3			10	1			1
24	3	8		-	1	1		2.1
	-	-	11		17	0	clear transition to 39	9.6
-	-		11	22	1	2000		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

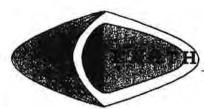
HOLE NO. Bore Hole SB7-08

SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 25.0 feet NE from original

Town of Sardinia, Erie Co., NY


_staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/13/08 COMPLETED 08/13/08

DEPTH INFT

IN F	- 1		SAM	PLER					
RE		3/	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
2		18			(100)	8	2.0		
2		-	22				A	Extremely moist olive gray	
			-	23		45		(CLAYEY-SILT) with 1 to 3% gravel, little clay, very stiff, weakly thinly	
	= 1	71		-2.1	13	k i	e e	laminated, (ML-CL).	
		5					2 2	40.0	
2		-			-				
2,	+		B	-		17		Moist to extremely moist olive gray	
-	-	-		Α.	-		2 . 2 .	CLAYEY-SILT) with 3 to 10% gravel,	
-	-	-			20_		0000	ntiltle clay, hard, weakly thinly thinly laminated with multiple extremely moist	
2	_	7					2 0	gray very fine to very coarse (SAND)	
24	4	-	13			24	0000	stringers less than 0.2 feet in	
_	-			_11_			-0-	thickness, (ML-CL).	
	_				17		F ~ 0 ~	clear transition to 42.0	
24	4	16					000		
8			23			49	0 0	Moist to extremely moist gray	
			1	26		70	CAC	(CLAYEY-SILT) with 3 to 10% gravel,	
					64		0 0	little clay, very stiff, weakly thinly laminated, (ML-CL).	
					-		M	10	No water at completion.
								43.7	
	_	1						Moist grayish brown gravelly	
-							1 1	(SILTY-SAND) with 20 to 40% mostly	
-	+	-	_		-		1	subrounded gravel, very fine to very	
\vdash	+	\rightarrow			-			coarse size sand, little silt, compact,	
	+	-						loose when disturbed, stratified, (SM).	
	-	-					1 1	clear transition to 44.3	
-		-					1	Moist olive gray gravelly	
_		_			-			(CLAYEY-SILT) with a 20 to 40% mix	
							1	of subrounded and subangular gravel,	
								little clay, trace sand, very stiff,	
					7	0.1		massive soil structure, (ML-CL).	
								48.0	
					1			Boring completed at 48.0 feet.	
								Sample and at the 1964	
				77.5				V .	
-	-	-							
-	+	-		-					
-	+	\dashv		-	-			l l	
-	+	-	-	-	-				
-	-	_	7		- 1			Y.	
_	-	-					1		
					4				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

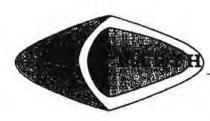
HOLE NO. Bore Hole SB8-08

SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 7.0 feet NW from original

Town of Sardinia, Erie Co., NY


staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/14/08

DEPTH IN FT

		_	PLER					
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
1	2		100				TExtremely moist dark brown (SILT)	Silty topsoil with little organic
24		3			-		topsoil with little organic matter, trace	matter, trace sand to 0.4 feet
		2.0	4	- 1	7		sand, loose, granular soll structure,	over clayey slack water sedimen
			-	5		***	(ML).	to 0.9 feet over clayey slack
_	Section 1		-	3		***	0.4	water sediment with trace grave
2	5.			-			0.4	to 26.0 feet over water sorted
24	-	A		-	14		Moist highly mottled brown	and deposited sand and gravel
-	-	-	8	_	11.0	· ·	(CLAYEY-SILT) with some clay, firm,	to end of boring.
	-			9			blocky soil structure, (CL).	
3	4				1	*	0.9	
24		5			- 11		Moist distinctly mottled brown	
			6		"		(CLAYEY-SILT) with 3 to 5% gravel,	
-				Ω		* *:	some clay, firm with nearly vertical	
4	8		-	100			gray desiccation cracks, (CL).	
24	1	R					grades downward to 2.0	
-		-0			19		[
	-	-	_11_			7	Moist faintly mottled brown	
	-		-	18_		三三	(CLAYEY-SILT) with 3 to 5% gravel,	
5	10					7	some clay, stiff with nearly vertical	
24		17			38		gray desiccation cracks, (CL).	
			21	2			grades downward to 6.0	
		1	Time!	22		*	Moist brown (CLAYEY-SILT) with 3 to	
8	8			1			5% gravel, some clay, very stiff	
24	7	6			15	•	becoming hard below 8.0 feet with	
			В		1 15		nearly vertical gray desiccation	
			-				cracks, (CL).	
-				111	1		9.1	
7	8_	-		-			L	
24	-	9		-	21		Moist gray (CLAYEY-SILT) with 3 to	
-	-		12		1		5% gravel, some clay, hard becoming	
	-			13	1		very stiff below 10.0 feet, weakly	
8	5				1		thinly laminated, (CL).	
24		6			13	• •	grades downward to 14.0	
			7		1 "		Moist to extremely moist gray	
1				8		F	(CLAYEY-SILT) with 3 to 10% gravel,	
1	4			-	1		some clay, stiff becoming very stiff	
24	_	7			1		below 16.0 feet, weakly thinly	
24	+	1			16	0	laminated, (CL).	
	-	-	9		1	1		
-	1	-	-	10	1	4		
10	7				1			
24		11			24			
11			13			5 ·		
7				13	1			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

HOLE NO. Bore Hole SB8-08

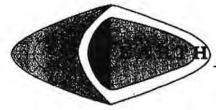
SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 7.0 feet NW from original

Town of Sardinia, Erie Co., NY

staked location due to access


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/14/08

DEPTH

BLOWS ON

SN	0/	6/	12/	18/			DECORPORATION AND STANSFIRM		MATER TARIC AND DENABLE
REC		12	18	24	N	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
11	5_		1				Moist to extremely moist gray		
24		6			15	0_0	(CLAYEY-SILT) with 3 to 10% gravel,		
			A		13		some clay, stiff becoming very stiff	1	
100				11		·	below 16.0 feet, weakly thinly		
12	1		10	V.T		0 -00-	laminated, (CL).		
24		7	1 - 1	A 14	17	1-1-			
			10		17	9			
/				14		* * *			
13	4							1	
24	-	9				*			
-	-	-	13		22				
			1.1	13	5 0	**************************************		26.0	
14	21			-13		0.00	Moist grayish brown very gravelly		
14	21			-		000	(SAND) with a 40 to 60% mix of		
-24		26			76	000	subrounded and subangular gravel,		
	-		50	100		20.5	very fine to very coarse size sand,	- 1	
			_	43		0.00	very dense, loose when disturbed,		
15	49				300	500	stratified, (SW), (GW).	1	
20		44			129	0.0			
		-	85			6:00		30.0	
	-	-		34		0.0	D 1	-	No water at completion.
_							Boring completed at 30.0 feet.		
_		-		-		8 1			
-									
		-		- 1				1	
						1 1			
	15.								
		-							
	1			100	1		V .		
				1					
= 1			L					4	
				VE.					
						1	1		
7					1				
				1	1		9		
					1				
-	1	1			1		Α :	180	
-			-		1			- W	
-	-	-	-	-	1		D.		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

HOLE NO. Bore Hole SB9-08

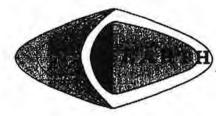
SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 10.0 feet N from original

Town of Sardinia, Erie Co., NY

staked location due to access


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/15/08

DEPTH **IN FT**

BLOWS ON SAMPLER

Ш	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	j	WATER TABLE AND REMARKS
A		5					*********		12.7		12.7	
-	24		2			2	T. T.	Extremely moist dark brown				(1) 2" PVC STICK UP WITH J PLU
-	24		-7	_	-	6		(SANDY-SILT) topsoil with little sand	-		-	
1	-			4	-			and organic mater, loose, granular soil			4.7	
H	-		_		2			structure, (ML).				Coarse silty topsoil with little
1	2	_5_					1	0.3	- /		-	sand and organic matter to 0.3
	24		5			12	7 may ma	Moist highly mottled brown				feet over silty slack water sediment with little clay to 1.4
L				7		, ,		(CLAYEY-SILT) with little clay, firm,	-			feet over clayey slack water
					A			blocky soil structure, (ML-CL).				sediment with trace gravel to 6.0
	3	8					0	grades downward to 1.4				feet over clayey glacial drift
	24		B			ا		1			-	with some gravel to 8.0 feet over
		_		7		15	0	Moist faintly mottled brown				clayey slack water sediment with
				-	8		0 0	(CLAYEY-SILT) with 1 to 3% gravel,				trace gravel to 12.0 feet over
-	4	Q			-		0-00	some clay, firm with nearly vertical gray desiccation cracks, (CL).	-		-	clayey slack water sediment to
-	24	-		100			000	14				16.0 feet over clayey slack
H	24	-	7			16	0-0-	clear transition to 2.0	T-1			water sediment with trace gravel
+	-	-		9			1000	Moist brown (CLAYEY-SILT) with 3 to				to 20.8 feet over loamy glacial
-	-	_		-	_15_		0.0	10% gravel, some clay, stiff, massive	1.5			drift with some shale to 22.6 feet
L	5	6_		1				ii soil structure, (CL).	-		-	over clayey slack water sedimen
	24		6			15	0	grades downward to 6.0		œ	07	with trace gravel to 28.7 feet
				9			-	Moist brown gravelly (CLAYEY-SILT)		PVC RISER	Soul cuttings.	over loamy glacial drift with trace gravel to 29.1 feet over
			7		11	1		with a 20 to 40% mix of subrounded		8	E	water sorted and deposited sand
	6	7					0 0	and subangular gravel, some clay, very	100	ZC.	Ø.	with trace silt to 29.7 feet over
F	24	7	R		-	1		stiff, massive soil structure, (CL).	-	- E	官	loamy glacial drift with trace
1	~			10		18	0	grades downward to 8.0	_	CA	Ø.	gravel to 34.0 feet over water
1		-			12		a . a .	grades downward to 6.0		(I		sorted and deposited sand and
۲	-	40			12		-	Moist brown (CLAYEY-SILT) with 3 to	-		-	gravel, trace slit to end of
+	7	10		-	-			10% gravel, some clay, very stiff,				boring.
H	24		9			16	100	weakly, thinly laminated, (CL).				
H	-	_	1111	7			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	clear transition to 12.0	÷.		-	
1			_		7	-	==	Extremely moist brownish gray	1			Morning of 8/15/08, water level
-	8	Ð	<u></u>					(CLAYEY-SILT) with some clay, very	-		-	at 10.4 feet below ground
1	24		4			9		stiff, weakly thinly laminated with	1		_	surface with augers left in over
L				5				occasional fine to coarse size sand			4.5	night at 14.0 feet.
		25			7			lens less than 0.1 feet in thickness,	7		-	
	9	В					* * ·	(CL).				
	8		7			1	- A	grades downward to 14.0	1			
1				9		16	1		<u>-</u> .		-	
1					10		9. 44.9.44	Extremely moist brownish gray				
1	-				10	1	4.4.	(CLAYEY-SILT) with some clay, stiff, weakly thinly laminated with very thin	-		-	
	10	6				1	, ,	coarse silt lenses, (CL).	_			
-	24	-	8	-	-	17	9					
1				9		1		clear transition to 16.0	-			
1		1			11		o	See next sheet	130		133	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

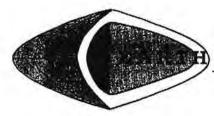
2A79bm

HOLE NO. Bore Hole SB9-08

SURF, ELEVATION _

PROJECT Chaffee Landfill -Borrow Area, (Proposed Mining)

LOCATION Boring moved 10.0 feet N from original


Town of Sardinia, Erie Co., NY

staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/15/08

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL		WATER TABLE AND REMARKS
		D					· ·					100
ì	20		22			100		Extremely moist gray (CLAYEY-SILT)			100	
ï			1	12		34	000	\ with 5 to 10% gravel, some clay, very \ \ stiff, weakly thinly laminated, (CL).	351			
ì	¢			-	16		ا ص ہ		-		-	
4	40				16	1	ond	clear transition to 20.8				
	12	_5_					a Yo	Extremely moist gray shaly	7.5			
	24		-11			18		(SAND-SILT-CLAY) with 20 to 40%			_	
1				7			06	shale fragments, little sand and clay,	1.54		88	
1		-			16			hard, massive soil structure, (ML-CL).			É.	
Ŋ	13	-11						22.8	_	1	ā.	
4	24		13	-		35	· ·	Moist to extremely moist gray	1.5		1	
ı	-	_		22				(CLAYEY-SILT) with 5 to 10% gravel,	-	or.	SOTI	No.
					28		-	some clay, very stiff and hard, massive		RISER	_	
13	14	-11					0	soil structure, (CL).		E C		
Ц	24		13			29			-	PVC	-	Vi
(0.3	16						2		
		-		1 -1	24		0. 40.0 40		1.52			
	15	23						clear transition to 28.7	-		- 1	
d	24		51			93		Majak araujah benua	7.			← 29.0'
9	71.			42		93	11.11.11	Moist grayish brown (SAND-SILT-CLAY) with 3 to 5%	13		13	20.0
)_					42	1	A	gravel, little sand and clay, hard,	1		6	(1) BENTONITE SEAL
7	18	12				1	F. F.	massive soli structure, (ML-CL).	1		17	(I) BENTONITE SEAL
	24		95			1	0.00	29.1	1		13	+ 31.0'
N				45		140	8.00		100		13.	+ 31.0
				10	80		1000	Moist brown (SAND), mostly fine to coarse size, trace silt, very dense,	100		1.	
J		-			-00	1	0:00:	loose when disturbed, stratified, (SW).				
				-	-	1	10.00	29.7	17.5		133	
						1	0.00	29.1			×.	← 33.0'
ı	-					1	1000	Moist graish brown	1		PAC.	
		70				1	OpO.	(SAND-SILT-CLAY) with 1 to 3%			5	
d	17	78				1	0.00	gravel, little sand and clay, hard,	1	N.	SAN	
_	24	-	26			102	0.00	massive soil structure, (ML-CL).	1.3	SCREEN	щ.	
ľ	-			76	-	1	500	30.4	133	8	8	
		-11			76	1	1000	Moist brownish gray very gravelly	10	PVC	SIZE MORIE SAND PACK	
H		-	-	-		1	8000	(SAND) with a 40 to 60% mix of	15	2.	215	
		-	-	-	-	1	1020	subrounded and subangular gravel,			The second second	
		-			-	1	600	very fine to very coarse size sand,		SLOT	*CON	
					-	1	1000	very dense, loose when disturbed, (SW), (GW).	133	0.00		
						1	0.00		13,	0.0	130	Water level at 38.4 feet below
		16					1000	grades downward to 34.0	1			ground surface at completion.
	18	16					1000	The Property of the Control of the C	1		150	
,	16	1	15	1			6.00	See next sheet.	100		120	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79bm

HOLE NO. Bore Hole SB9-08

SURF. ELEVATION _

PROJECT Chaffee Landfill -Borrow Area. (Proposed Mining)

LOCATION Boring moved 10.0 feet N from original

Town of Sardinja, Erie Co., NY

staked location due to access

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/14/08 COMPLETED 08/15/08

	SN	0/ 8	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
				14	16		000000000000000000000000000000000000000	Extremely moist brownish gray very gravelly (SAND) with a 40 to 60% mix of subrounded and subangular gravel, very fine to very coarse size sand, trace silt, very dense, loose when disturbed, stratified, (SW), (GW). grades downward to 39.0	(2) (Ø	(1) #00N SIZE MORIE SAND PACK (2) 0.010 SLOT 2" PVC SCREEN + 43.0'
15—								Wet brownish gray very gravelly (SAND) with a 40 to 60% mix of subrounded and subangular gravel, very fine to very coarse size sand, trace silt, compact, loose when disturbed, stratified, (SW), (GW).		÷ 43.5°
								Sampling terminated at 41.0 feet. Continued augering to 43.5 feet. Boring completed at 43.5 feet.		
0-										
5-										

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB=1-1Z

2A79cc

HOLE NO. DO THE

SURF. ELEVATION 1475.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939579.4

Town of Sardinia, Erie County, NY

Easting: 1171405.4

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17 COMPLETED 11/08/17

DEPTH IN FT BLOWS ON SAMPLER

4	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	21	8	72-				00	The state of the s	1 = 1 = 1 =	(1) Cement bentonite grout
t	20	n	12		-			Moist to extremely moist gray	1 = 1 = 1	(i) Cement bentonite grout
t	20		1/-	19		31	0000	(CLAYEY-SILT) with 3 to 7% gravel, some clay, trace sand, very stiff,		
1				_19_	00		0000	weakly thinly laminated to thinly	1 = 1 = 1 =	
ŀ	24	-			26		0 0	li laminated, (CL).	1111111	
+	22	_R_					0000	the clear transition to 40.	2 1 1 1 1 1	,
H	5	-	17	E 27		34	0 00 9		11 = 11 = 11 =	()
+				_17			0000	Moist brown (SANDY-SILT) with trace		
ŀ	-			-	21	1	0000	to little sand, trace clay, compact, massive soil structure, (ML).	11 -11 -11	· 44.0'
ŀ	-		-					14		
+				-				clear transition to 40.	J. /	
								Extremely moist to wet brown gravelly		
		, A	0.00					(SILTY-SAND) with 20 to 40% gravel,	1	
								trace to little silt, compact, stratified,		
			-					(SM).		
_[44.	.0	
1								Boring completed at 44.0 feet.		
							1 1	Donning completes at the test		
1						1				
1						1				
1						1				
+						1				
ŀ	-			-			1			
+										
+						1				
ŀ			-	-		1			1	
+	100			-	-	-				
+						1				
1						-				
-						-				
-						-				
						1				
				. 4						
	1									
			- 1							
				2]				
1			1			1				
t		77.7				1				
1										
-		-			-	1				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-2-17

SURF. ELEVATION 1450.1

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939153.0

Town of Sardinia, Erie County, NY

Easting: 1170989.2

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/06/17 COMPL

COMPLETED 11/06/17

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	2					° °	Extremely moist brownish gray		Coarse silty topsoil fill with little
17		2			9		(SANDY-SILT) topsoil fill with little	1 = 1 = 1 =	organic matter, trace to little
			7		9		organic matter, trace to little sand,		sand to 0.1 feet over clayey
				R		9-49-4	very loose, massive soil structure,		slack water sediment with trace
2	В			-0-	9	<u> </u>	(ML).	1 4 1 4 1 4	sand and gravel to 7.9 feet over
20	-0-	7					0.1		silty glacial drift with little clay,
20		-	_		13	0 -0 -0	And the second of the second		trace sand and gravel to 8.5
			-6				Moist to extremely moist light gray	1 4 1 4 1 4	feet over water sorted and
				10		00	(CLAYEY-SILT) with 3 to 7% gravel, some clay, trace sand, stiff, very stiff	11111	deposited sand with little to
3	_13_				5 9	0 .00 .0	below 4.0 feet, weakly thinly	1 = 1 = 1	some gravel, little silt, occasional
13		13			26		laminated, (CL).		cobble to end of boring.
			13			P	tommotody tody		Note: Advanced bore hole with 3
			_ \	14				// 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	1/4" ID x 7" OD hollow stem auge
4	4					-AA-			casing with continuous split
24		6		1 = 7	13	0 0			spoon sampling to end of boring
			7		15	-A	grades downward to 7.9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	at 15.7 feet. Bore hole was
				a	n .	0	grades downward to 7.0		tremie grouted to ground surface
5	6	(]			1		Moist olive brown (CLAYEY-SILT) with	ルデルデル	upon completion.
19	-	13				0000	1 3 to 7% gravel, little clay, trace sand,	11 11 11	
10		10	19		32	0.0	very stiff, massive soil structure,		Cement Bentonite Grout Mix
			19			0000	(ML-CL).		
			-	27		0 00 0	grades downward to 8.5	111111111	94 lb portland cement
6	14				-	0000	Moist brownish gray gravelly		5 lb bentonite 7.8 gal water
14		21		-	60	00000	(SILTY-SAND) with 20 to 40% gravel.	1 4 1 4 1 4	7.0 gai watei
			39			0 00 0	occasional cobble, little silt, dense,		No water at completion.
100		V.		100/1		0000	stratified, (SM).	1 = 1 = 1 =	The Mater at semple in the
7	11			1		0000		1111111	
13		24	1 7 1		45	0 0		111111	
	. 100	130	21			0000		1 = 11 = 11 =	
				29		0000		11 11 11	
8	13				1	0000			
12		21			54	0000		1 = 1 = 1	
			33		54	0 00 0	15.7	7 1 1 1 1 1	
			33	100/3		10000		11 = 11 = 11 =	← 15.7'
				100/3			Boring completed at 15.7 feet.		
	-								
					1	1 1		10	
	-		-						
4		-	-		1	1		19	
								1	
								1	
			1 -					-0	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>\$B-3-17</u>

SURF. ELEVATION 1465.4

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939165.9

Town of Sardinia. Erie County, NY

Easting: 1170624.5

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/06/17 COMPLETED 11/07/17

DEPTH IN FT BLOWS ON

SN REC 1 6 2 14 16 3 16	0/6	6/12	12/18	18/24	N 3	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS Moist to extremely moist dark gray to brown (SANDY-SILT) topsoil with little sand and organic matter, trace
2 14			ī	1	3		Moist to extremely moist dark gray to brown (SANDY-SILT) topsoil with little sand and organic matter, trace
14		7		1	1		sand and organic matter, trace root
14		7			1		fiber, very loose, granular soil silty glacial drift with little to some sand, trace to little gravel,
	.12		9		16	0000	grades downward to 1.9 Moist to extremely moist brown
16				.8		0000	(SANDY-SILT) with 5 to 15% gravel, little to some sand, trace organic cobble to end of boring.
		_14	11	10	25	0000	structure, (ML). grades downward to 2.3
7	100/5			12		0.00	Moist light brownish gray gravelly (SILTY-SAND) with 20 to 40% gravel,
							occasional cobble, trace to little silt, compact, stratified, (SM). 6,4 Note: Advanced bore hole with 3 1/4" ID x 7" OD hollow stem auger casing with continuous split spoon sampling to end of boring
							Boring completed at 6.4 feet. at 6.4 feet. Bore hole was tremie grouted to ground surface upon completion.
							Cement Bentonite Grout Mix
							94 lb portland cement 5 lb bentonite 7.8 gal water
							No water at completion.
	4 2	7-6-20-50		4 100/5	4 100/5	4 100/5	4 100/5

 $Soil\ and\ Hydrogeologic\ Investigations\ \bullet\ Wetland\ Delineations$

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-4-17

2A79cc HOLE NO. SB-4-17

SURF. ELEVATION 1455.1

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 938974.3


Town of Sardinia, Erie County, NY

Easting: 1170495.7

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/06/17 COMPLETED 11/07/17

SN	0/	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	WATER TABLE AND REMARKS
NCC.						*********		1		Occasion with tennel fill with little
12	- 1	2				***********	Moist to extremely moist dark brown	k	141414	Coarse silty topsoil fill with little organic matter and sand, trace
16	-	-	3		5	0. 0.	(SANDY-SILT) topsoil fill with 3 to 7% gravel, little organic matter and sand,		111111	clay and gravel to 0.7 feet over
			1			2 . 2 .	trace clay, very loose, granular soil	N.	1=1=1=	silty soil fill with little sand and
-	1190			6		0.00	structure, (ML).	Į.	1 1 1 1 1 1	clay, trace organic matter and
2	_3_				1	0000	11	0.7	1 41 41	gravel to 2.0 feet over sandy
12		4			7	0000		-		soil fill with some gravel, little silt,
	-	-	_3_	1-55		0 00	Moist to extremely moist light brown	1	111111	trace organic matter and clay to
-			-	_3		0000	(SAND-SILT-CLAY) fill with 3 to 7% gravel, little sand and clay, stiff,	ſ	11111	end of boring.
3	4	-				0000	massive soil structure, (ML-CL).	k	1 = 11 = 11 =	Note: Advanced bore hole with 3
14	-	3_		_	6	0 00 0	Y .	2.0		1/4" ID x 7" OD hollow stem auger
	-		_3		1	0000				casing with continuous split
-				4		0000	Moist, wet below 12.0 feet, brownish		1 = 1 = 15	spoon sampling to end of boring
4	8				-	0 00	gray gravelly (SILTY-SAND) fill with			at 16.0 feet. Bore hole was
12		5			10	0000	20 to 40% gravel, little silt, trace organic matter and clay, loose,	1	The second	tremie grouted to ground surface
			5_	h : -		0000	massive soil structure, (SM).	1	11年	upon completion.
100				6		0 0	massive son structure, (SM).		11 8	- 10 1 1 0 1 1 M
5	19					0000				Cement Bentonite Grout Mix
12		16			26	0000				94 lb portland cement
			10	3] 20	0000				5 lb bentonite
				10	1	0000		1		7.8 gal water
6	27					0.00			1 4 1 4 1	32
11		15			1	0000				Note: No water in bore hole after
		10	16		31	0000		2	1 = 11 = 11 =	leaving augers in overnight at
		1	10	9	1	0 00 0		4	1 4 1 4 1 4	14.0 feet.
7	15			-		0000			1 1 1	
3	15	19			1	00000			1 = 1 = 1	
-		19	7		26	. 0. 0			11 11 11	
			1			0000			11111	
-	-			8		0000			1 = 1 = 1	
8	3					0 00			11 11 11	
6	-	3			7	0000				
		-	4		4	0000		16.0	1 = 1 = 1	
				5	-	0.00	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	11111	← 16.0'
	-				-		Boring completed at 16.0 feet.			
					1					
					4					
						1 1				
			1							
									U	
			17-51	1 = 2.1						

 $Soil\ and\ Hydrogeologic\ Investigations \bullet Wetland\ Delineations$

1091 Jamison Road • Elma, NY 14059

2A79cc

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>SB-12-17</u>

SURF. ELEVATION 1458.0

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939164.4

Town of Sardinia, Erie County, NY

Easting: 1170723.1

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17

COMPLETED 11/07/17

/ 12/ 18/ 18 24 3 6 7 3 5 8 9 100/3	N LITH	Moist to extremely moist light brownish gray to olive brown, (CLAYEY-SILT) topsoil fill with little clay, trace sand and organic matter, firm, massive soil structure, (ML-CL). Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	WELL WATER TABLE AND REMARKS Silty topsoil fill with little clay, trace sand and organic matter to 0.4 feet over sandy soil fill with little silt and gravel, trace clay to 1.1 feet over clayey slack water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional cobble to 6.2 feet over silty
6 7 3 5 8 9	8	gray to olive brown, (CLAYEY-SILT) topsoil fill with little clay, trace sand and organic matter, firm, massive soil structure, (ML-CL). 0.4 Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	Silty topsoil fill with little clay, trace sand and organic matter to 0.4 feet over sandy soil fill with little silt and gravel, trace clay to 1.1 feet over clayey slack water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional
6 7 3 5 8 9	8	gray to olive brown, (CLAYEY-SILT) topsoil fill with little clay, trace sand and organic matter, firm, massive soil structure, (ML-CL). 0.4 Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	trace sand and organic matter to 0.4 feet over sandy soil fill with little silt and gravel, trace clay to 1.1 feet over clayey slack water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional
6 7 3 5 8 9	8	topsoil fill with little clay, trace sand and organic matter, firm, massive soil structure, (ML-CL). 0.4 Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	0.4 feet over sandy soil fill with little silt and gravel, trace clay to 1.1 feet over clayey slack water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional
7 3 5 8 9		and organic matter, firm, massive soil structure, (ML-CL). 0.4 Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	little silt and gravel, trace clay to 1.1 feet over clayey slack water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional
5 8 9 100/3		structure, (ML-CL). 0.4 Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	to 1.1 feet over clayey slack water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional
5 8 9 100/3		Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	water sediment with trace sand and gravel to 3.3 feet over water sorted and deposited san with little to some gravel, trace to little silt with an occasional
5 8 9 100/3		Extremely moist to wet brownish gray (SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	water sorted and deposited san with little to some gravel, trace to little silt with an occasional
9 100/3	0000	(SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact, massive soil structure, (SM).	with little to some gravel, trace to little silt with an occasional
9 100/3	0000	gravel, little silt, trace clay, compact, massive soil structure, (SM).	to little silt with an occasional
100/3	0 00 0	massive soil structure, (SM).	W = W = W =
100/3			cobble to 6.2 feet over silty
	0000	1,1	a n tall
	0 0		glacial drift with little sand and
	10000	Moist to extremely moist gray	clay, trace gravel to 7.5 feet over clayey slack water sedimer
	9 9 9	(SILTY-CLAY) with 3 to 7% gravel,	with trace sand and gravel to
5	0, 0,	trace sand, stiff, weakly thinly	10.7 feet over water sorted and
	23 4 4 4	laminated, (CL).	deposited sand with some grave
8	0 _0 0 -0	grades downward to 3.3	little silt with an occasional
8	<u> </u>	1	cobble to end of boring.
	0 _0 _0	Moist brown gravelly (SILTY-SAND)	『 , * ! , *
5	10	with 20 to 40% gravel, trace to little	Note: Advanced bore hole with
5	<u> </u>	it stratified, (SM).	1/4" ID x 7" 0D hollow stem aug
7	0 _ 0 _ 0	(U.2)	casing with continuous split
		grades downward to 6.2	W = W = shoot sampling to end of points
3	54 0000	Moist to extremely moist light brown	at 14.0 feet. Bore hole was
31	5 6 6	(SAND-SILT-CLAY) with 5 to 10%	tremie grouted to ground surfac
34	0000	ff gravel, little sand and clay, mostly	upon completion.
	0 00	very fine to fine size sand, very stiff,	
,,	0000	1 11	
	57	# grades downward to 7.5	
	0.0	Moist to extremely moist gray	
38	10000		## + 14.0°
-44			Connect Posterito Craut Min
			Cement Bentonite Grout Mix
		(ML-CL).	94 lb portland cement
	1 1	clear transition to 10.7	
			7.8 gal water
			7.0 gai water
			No water at completion.
	1 1	I A	
	1		
	1 1	14.0	,
	1	Boring completed at 14.0 feet.	
22	35 38	0.0	massive soil structure, (ML-CL). grades downward to 7.5 Moist to extremely moist gray (CLAYEY-SILT) with 3 to 7% gravel, some clay, trace sand, stiff, thinly laminated to weakly thinly laminated, (ML-CL). clear transition to 10. Moist brown gravelly (SILTY-SAND) with 20 to 40% gravel, little silt, occasional cobble, very dense, stratified, (SM).

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

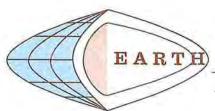
HOLE NO. SB-13-17

SURF. ELEVATION 1459.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939260.9

Town of Sardinia, Erie County, NY


Easting: 1170682.2

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17 COMPLETED 11/07/17

DEPTH IN FT BLOWS ON SAMPLER

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATE	ER TABLE AND REMARKS
,	2					**********	City	topsoil fill with little clay,
20		2					Moist to extremely moist dark gray to	e sand and organic matter t
20	-	-			5		grayish brown (CEATET SIET) topson	feet over silty soil fill with
		-	_3_	-		0 -00 -0	I III Mell mello ologi ti ado odina anto	e clay, trace sand to 1.3 fee
				4			organis matter, total metalic	clayey slack water sedimen
2	3					2 . 0 0	The state of the s	trace sand and gravel to 2.
20		4			10		0.5 1 // // //	over silty slack water
			6		10	0 0 0		ment with little sand and
				7			1 0 0 0 0 0	, trace gravel to 6.5 feet
3	2			7	0	a a		water sorted and deposite
100	-2		7			a . a .		d with some gravel, trace to
20		_5_			13	0 0	11 4 4 11	silt to 7.0 feet over silty
			8_		1	2 0 9 4	I A I A I Slace	k water sediment with some
	- 4		-	15			Moist to extremely moist grayish brown \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, trace sand and gravel to
4	6					_a _a .	(CLAYEY-SILT) with 3 to 7% gravel,	feet over silty slack water
22		8			16	10000	some clay, trace sand, stiff, weakly	ment with little clay, trace
		7.81	8	100	10	0 -0-00	thinly laminated, (CL).	vel to 15.7 feet over water
		ń i	-	12	1	0 0 0	grades downward to 2.3 sort	ed and deposited sand with
2				16		ے۔	Moist to extremely moist gray	e gravel, trace silt with an
5	-5	142				0 -0-0 -0	(SAND-SILT-CLAY) with 3 to 7%	asional cobble to end of
16		6	-52		14	-6-	gravel, little sand and clay, stiff, very	ng.
			8			0 _0 _0	weakly thinly laminated to massive soil	
				10			structure, (ML-CL).	e: Advanced bore hole with :
6	6			1.3				' ID x 7" OD hollow stem aug
2		8			17	0 -00 -0	Last III III Cas	ing with continuous split
			9		"		Thorat gray gratony tour.	on sampling to end of boring
	-1			13	1	· D · D	With 20 to 40% gravel, hade to little	8.0 feet. Bore hole was
-	-			13	1	9 9 9	Total deliced established for the	nie grouted to ground surfac
7	3				1		grades downward to 7.0 1 upo	n completion.
17		4	-	-	12	0	L 2, 32, 32, 32, 32, 32, 32, 32, 32, 32,	
-		-	8			-8-		nent Bentonite Grout Mix
				10		0, -0.0 -0	(CLAYEY-SILT) with 3 to 7% gravel,	
8	8					0 0		lb portland cement
20	7 6 4	8			25	- A: - A:	11 = 11 = 11 =	bentonite
		7.0	17		1 23	2. 0.2. 0	massive soil structure, weakly thinly laminated with very thin coarse silt	gal water
			1	40	1	V 0 0		water at completion.
				40	1	0000	k 2 n 2 n 2	water at completion.
9	23				1	0.00.0	grades downward to 15.2	
13		25		-	64	0.000	Moist to extremely moist brown	
			39			0000	(CLAYEY-SILT) with 3 to 7% gravel,	
	1			41		0.0	little clay, very stiff, weakly thinly	B.0'
			1				laminated, (ML-CL).	
							grades downward to 15.7	
-	-		1				L	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-13-17

2A79cc

SURF. ELEVATION 1459.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939260.9

Town of Sardinia, Erie County, NY

Easting: 1170682.2

CLIENT McMahon and Mann Consulting Engineers DATE STARTED 11/07/17

COMPLETED 11/07/17_

DEPTH IN FT

BLOWS ON SAMPLER

SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
							Moist light gray gravelly (SILTY-SAND) with 20 to 40% gravel, occasional cobble, dense, stratified, (SM).		
							Boring completed at 18.0 feet.		
							V		
							1		
									-1

Soil Investigations and Natural Resource Assessments

Roycroft Campus, 31 S. Grove St. • East Aurora, NY 14052 • (716) 655-1717

MONITOR	ING WELL
HOLE NO.	50-88

SURF. ELEV. 1459.85

PROJECT
2A790
E883

Monitoring well installation Adjacent parcel to CID Inc.

LOCATION 285 feet WNW of gully, along we: ern boundary line, approximatel 250 ft. south of Hand Road.

DATE STARTED 6/7/88 COMPLETED 6/8/88

CID LANDFILL INC. CLIENT

DEPTH WANTE	BLOWS ON SAMPLER	DESCRIPTION & CLASSIFICATION	WELL	WATER TABLE & REMARKS
1 2	2 4	Moist faintly mottled dark brown silt loam (SANDY-SILT) topsoil with little very fine size sand, loose, with numerous fine to coarse size roots	8	Topsoil to 0.6 fe over water sorted and deposited coa silt with little some sand to 3.0
3 3	4	Moist faintly mottled brown loam (SANDY-SILT) with 5 to 15% mostly fine size subangular gravel, little to some very fine size sand, loose, weak thinly bedded with occasional	·4 5,	feet over water sorted and deposi ed coarse silt an gravel with littl sand and some cla
4 3	5 5	thin very fine to fine size sand lenses inch thick clear transition to 3.0 Moist to extremely moist distinctly mottled dark brown gravelly loam	e diameter PVC r Cement-bentonite	to 4.0 feet over water sorted and posited coarse si and gravel with s sand to 8.0 feet
10 6 3	2 4	(SAND-SILT-CLAY) with 15 to 25% mostly subangular gravel, little very fine size sand, some clay, compact, weak blocky soil structure	inch inside c	over water sorted and deposited coa silt with little sand to 9.0 feet over water sorted and deposited san
7 4	14	Extremely moist faintly mottled dark brown gravelly silt loam (SAND) SILT) with 15 to 30% mostly subangular gravel, some very fine to medium size sand, loose, weakly stratified, with occasional thin seams that have	·	and gravel with little to some si to 10.5 feet over clayey lake sedi- ment to 12.5 feet over water sorted and deposited san
8 7	11	La high sand content clear transition to 8.0 Extremely moist faintly mottled brown silt loam (SANDY-SILT) with		over water sorted and deposited san and gravel with little to some si to 15.0 feet over
9 3	2 4	\ \ 3 to 5% mostly fine size subangular \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WC #10 ed screen	water sorted and deposited sand an gravel with little silt to 22.0 feet
10 3		Wet faintly mottled brown gravelly sandy loam (SILTY-SAND) with 20 to 40% mostly subangular to subrounded gravel, very fine to coarse size sand little to some silt, loose, stratefi	u, \\	over water sorted and deposited coa silt and gravel w Continued on shee
		clear transition to - 10.3 See next sheet.		

N = NUMBER OF BLOWS TO DRIVE _____ " SPOON _____ 12 " WITH ___ 140 Ib. WT. FALLING _____ 30 " PER BLOW.

Soil Investigations and Natural Resource Assessments

Roycroft Campus, 31 S. Grove St. • East Aurora, NY 14052 • (716) 655-1717

MONITORING WELL HOLENO. 50-88 continued

SURF. ELEV. __1459.85_

PROJECT Monitoring well installation Adjacent parcel to CID Inc. 2A790 E883 CLIENT CID LANDFILL INC. .

LOCATION 285 feet WNW of gully along wes ern boundary line, approximately ft. south of Hand Road. 6/7/88 COMPLETED 6/8/88 DATE STARTED

DEPTH	SAMPLE NO.	0 /	BL SA	OWS C	ON R	-	DESCRIPTION & CLASSIFICATION	WELL	WATER T	ABLE & REMARKS
feet	11		2	2	24 " - 4 5	1,1,1	Extremely moist faintly mottled brown silty clay loam (CLAYEY-SILT) with 3 to 5% mostly fine size subangular gravel, stiff, weak thinly	<u>sc</u>		some sand to 22. feet over silty lake sediment to 23.0 feet over
25		3	8	9	17		angular gravel, stiff, weak thinly laminated with very thin coarse sillenses, noticed thin very gravelly sandy loam (SILTY-SAND) lens betwee 11.0 to 11.2 foot depth clear transition to Extremely moist distinctly mottled	2" PVC #10 slotted #2 size	24.5	coarse silty lake sediment t 24.0 feet over silty lake sedi- ment to 28.0 fee over clayey lake
	E	4		11	11 12		dark brown very gravelly sandy loam (SILTY-SAND) with 40 to 60% mostly subangular gravel, occasional cobbl very fine to coarse size sand, little to some silt, dense in place,	(-)	26.0	sediment to end of boring.
- 30	E	3	5	10	9 15 3 25 9		Nose when disturbed, stratified grades downward to 15.0 Wet faintly mottled dark brown very gravelly sandy loam (SILTY-SAND) with 40 to 60% mostly subangular to subrounded gravel, very fine to coarse size sand, little silt, loose becoming very loose below	to 26.0 feet.		
39	18	5 6	7	22 2	35 26 19 14		16.0 foot depth, stratified 22.0 Extremely moist to wet highly mottled dark brown gravelly silt loam (SANDY-SILT) with 15 to 30% mostly subangular gravel, some very fine to coarse size sand, compact in place, loose when disturbed, stratified Extremely moist olive brown silt loam (CLAYEY-SILT) with 1 to 3%	Enviro plug	(1)	Bentonite pellet seal.
4		8 (8	11	18	20		 mostly fine size subangular gravel, stiff, thinly laminated23.0		Cont	inued on sheet 2;

	N = NUMBER	OF BLOWS TO DRIVE	" SPO	ON <u>12</u>	" WITH <u>140</u>	lb. WT. FALLING	30	" PER BLOW.
mn	LOGGED BY	Dale M. Gramza	'Geologist		;	SHEET2	OF2A	•

DIMENSIONS,

Soil Investigations and Natural Resource Assessments

Roycroft Campus, 31 S. Grove St. • East Aurora, NY 14052 • (716) 655-1717

MONITORING WELL HOLENO. 50-88 continued

SURF. ELEV. 1459.85

PROJECT	Mor
2A790	Ad-
E883 CLIENT	CII

nitoring well installation jacent parcel to CID Inc.

CID LANDFILL INC.

LOCATION 285 feet WNW of gully, along wes boundary

DEPTH feet	SAMPLE NO.	2/6	BLC SA	OWS C	N R		DESCRIPTION & CLASSIFICATION	WELL	WATER	TABLE & REMARKS
	11	_	2		4 5 -17		Extremely moist to wet gray silt loam (SILT) with 1 to 3% mostly fine size subangular gravel, compact, has a tendency to liquify when disturbed, thinly bedded 24.0	PVC #10 slotted screen size sand		•
25	-	3	6	11	0 17		Extremely moist gray silt loam (CLAYEY-SILT) with 1 to 3% mostly fine size subangular gravel, very stiff becoming stiff below 26.0 foot depth	(1) #2 sci	24.5	(1) Bentonite pellet sea
· ·			5	7	12		\sim grades downward to $\frac{28.0}{}$			
30		3	5	10	-15 3		Extremely moist gray silty clay loam (CLAYEY-SILT) with 1 to 3% mostly fine size subangular gravel, stiff, thinly laminated with very thin coarse silt lenses			
			9	16	25 9	``	\sim clear transition to - $-\frac{29.5}{2}$			
	17		13	22	35	·		26.0 feet		
35	_	6	7	12	17		Extremely moist brownish gray silty clay (CLAYEY-SILT), very	lug to 2		
	19	5	9	16	25		stiff, thinly laminated with very thin coarse silt lenses, noticed one (1) ½ inch extremely moist gray fine loamy sand (SAND) lens below 35.5 foot depth	Enviro plug to		
	20	8	11	18	8 - 29		40.0			<u>.</u>
40				2	0		Boring completed at 40.0 feet.			

	N = NUMBEF	R OF BLOWS TO DE	RIVE2	_ " SPOON .	12	' WITH <u>140</u>	_ lb. WT.	FALLING	30	." PER BLOW
n	LOGGED BY	Dale M. Gran	nza/Geologi:	st_			SHEET _	2A	OF <u>2/</u>	<i>4</i> •

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-OL

SURF. ELEVATION 1455.40_

LOCATION See map

PROJECT MW Installation - Chaffee Landfill

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01 COMPLETED 04/01/01

DEPTH INFT

BLOWS ON SAMPLER

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WELL	WATER TABLE AND REMARKS
	_11	_5_					÷÷	Wet olive gray very gravelly			to 67.0 feet over water sorted
			11		 	26		(CLAYEY-SILT) with 40 to 60% mostly	1//		and deposited sand with some silt to 68.0 feet, trace to little
			ļ	15	22	1	<u>.</u> .	subrounded gravel, little clay, very stiff, weakly stratified, (SM), (GM).	1	1	silt to 88.0 feet over water
	12	21		<u> </u>		1		20.0	1		sorted and deposited sand with
			17			١	200	Extremely moist olive gray			little silt to 90.0 feet over water
			11	24		41		! (CLAYEY-SILT) with 3 to 5% mostly	1		sorted and deposited sand with
					28	1	000	fine size gravel, little clay, very stiff,	1 4	<i>N</i> :	y some silt to 94.0 feet over coarse silty slack water sediment
	13	7]	<u> </u>	thinly laminated with very thin coarse	1		with some sand to 98.0 feet over
25—			13			32	<u> </u>	silt lenses, (ML-CL).			silty slack water sediment with
23-				19		عد ا	1,	grades downward to 22.5	5 / 4	1	little clay to 98.3 feet over
					21			Extremely moist olive gray gravelly	1		coarse silty slack water sediment with some sand to 100.0 feet
	14	5					<u> </u>	(CLAYEY-SILT) with 15 to 20% gravel,			1
			_13	ļ		30		<pre>! little clay, hard, massive soil structure, ! (ML-CL).</pre>		1	very fine size sand with some silt
				17			·- ·-	grades downward to 24.0	0/1 =	i 10	to 106.0 feet over water sorted
					23_			L		GROUTN.	and deposited sand to 108.0 feet
	15_	6					, <u>.</u>	Extremely moist olive gray		105	over water sorted and deposited sand with little gravel to 108.5
			13_			33	7 7	(CLAYEY-SILT) with 3 to 5% mostly fine size gravel, little clay, hard, thinly	1/2	ER (F)	feet over water sorted and
				20			• •	laminated with very thin coarse silt		ISE (I)	deposited sand to 115.0 feet over
30					13_		2 2	lenses, (ML-CL)		PVC RISER ENTONITE	water sorted and deposited sand
	16	6			ļ		7.		11		WILL SOME SHE TO HOLD TEEL OVER
			8			21			1	نا ہا	silty slack water sediment wth little clay to 123.0 feet over silty
				13	ļ		· · · ·	32.0	1/	(AEN)	y slack water sediment with trace
	<u> </u>			····	20		5.50			(A)	clay to 124.0 feet over silty
	17	12			ļ		10.00	Wet olive gray very gravelly (SAND)	1	1	slack water sediment with little
	ļ		19		 	50	0.00	with 40 to 60% mostly subrounded gravel, fine to very coarse size sand,	1		clay to 132.0 feet over silty
	 			31			1757	compact in place, loose when	1		slack water sediment to 139.0
					47		00	√ disturbed, stratified, (SW), (GW).	1 1		deposited sand to 140.0 feet
	18	12			-		6.00	33.5	5 //		over alternating water sorted
35	\vdash		19		ļ	35	0.00	Extremely moist olive gray			and deposited sand and silt to
				16				(CLAYEY-SILT) with 3 to 5% gravel,	1	1 4	142.0 feet over water sorted and
	 				18		1525	some clay, very stiff, thinly laminated	1		el avar citty clack water sediment
	19	21	30				6:00	with very thin coarse silt lenses, (CL).	1/2		
	 		30	37		67	1000				
				31	40		0.00	See next sheet.	1/2	1	
	20	17			40		1200		1		About 1.0 foot plug prior to securing sample 25, therefore no
	20		27				500		1		hinw counts were recorded.
			21	24		51	65.63		1 1		4

* PER BLOW * SPOON 12 * WITH 140 Ib. WT. FALLING 30 N=NUMBER OF BLOWS TO DRIVE 2_

CHEET 2 OF R

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-01

SURF. ELEVATION 1455.40

AND REMARKS

PROJECT

MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01 COMPLETED 04/01/01

DEPTH BLOWS ON IN FT SAMPLER

	IN FT	-	SAN	MPLEF	₹			
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE
	1	3	_5_	8		13		Extremely moist dark brown (SANDY-SILT) topsoil with little sand, loose, granular soil structure, (ML). Extremely moist dark brown (SANDY-SILT) topsoil with little sand, sand to 1.4 feet
				-6	10		20-0	1.4 \\ = \\ \ = \ \ = \ \ = \ \ = \ \ \ = \ \ \ \ \ \ \ \ \ \ \ \ \
	2	3	6	8		14		brown gravelly (CLAYEY-SILT) with 15 to 20% mostly subrounded gravel, some Slack water sediment
	3	4			12		200	clay, stirr, blocky soil structure, (CL).
5-			_5_	9_		14		little clay to 22.
	4	4			11_			grades downward to
• • • • • • • • • • • • • • • • • • • •			_5	9		14		brown (CLAYEY-SILT) with 3 to 10% water sorted an mostly fine size gravel, some clay, wery stiff, with nearly vertical gray
	5	2			11_		0 0	desiccation cracks, (CL).
			5	10		15	° - ° -	41.0 feet over s
10-	6_	_3			9		• • •	deposited silt ar
			5	10		15		1// = 1 ¹¹ //
<u> </u>	7	4			12			with little clay to water sorted an and gravel with and sand interb
			6	9	13	15		54.5 feet over of water sediment
15	8	3	9			•	••	to 55.5 feet ove
15 —				10	13	19	•	grades downward to 16.0 water sediment
	9	5	9			20		Extremely moist olive gray very gravelly (CLAYEY-SILT) with 3 to 10% mostly fine size gravel, some clay. and gravel with feet over claye sediment to 63.5
	10	4		11	13			very stiff, weak thinly laminated, (CL). gravel to 63.8 f
			5	12		17	•	feet over coars
20					22	<u> </u>	0 0 A 9 A	See next sheet.

soil with little over clayey liment with little et over clay to layey slack to 19.5 feet over nd deposited silty timent and gravel o 20.0eet over r sediment with .5 feet over silty liment with little to 24.5 feet over r sediment with .0 feet over nd deposited sand 3.5 feet over ater sediment to water sorted and and gravel to silty slack water ttle clay to 43.2 sorted and ind gravel with clay to 43.7 feet water sediment to 44.5 feet over nd deposited sand trace to little silt eds and layers to coarse silty slack with some sand er water sorted sand and gravel er clayey slack to 61.0 feet over nd deposited sand little silt to 61.5 y slack water 5 feet over water osited sand and leet over clayey diment to 65.0 se silty slack with some sand

thurst

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-01

SURF. ELEVATION 1455.40

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

	CLIEN					onsul	ting Engine	eer	S. P.C. DATE STARTED 03/1	19/	01_	COM	PLETED <u>04/01/01</u>
	DEPTI IN FT			WS ON									
	SN	0/ 6	6/ 12	12/ 18	13/ 24	N	LITH		DESCRIPTION AND CLASSIFICATION		WEL	.L	WATER TABLE AND REMARKS
	21	19					0.00		Wet olive gray very gravelly (SAND)	1			Water level at 23.0 feet at
:			23			49	<u> </u>	_	with 40 to 60% mostly subrounded	1	"		8:15am on 3/20/01 with augers at
			ļ	26	<u> </u>		Ţ-,		gravel, fine to very coarse size sand,	1	4	\ \ \ \	36.0 feet.
			ļ		31	-	<u>-</u> -	۱۱	dense and very dense in place, loose when disturbed, stratified with very	-	"	[]	
	22	_13_	20				•_ •_	$ \ $	gravelly (SILTY-SAND) interbeds,	1/2			
			720	35		55	الله الله	h'	(SW), (GW).		; [,
					41]	O	H		W	<u>"</u>		
	23	12					, ,	Ц	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly	\\\	"	1	
45-			35	ļ	ļ	74	0.00		fine size subrounded gravel, little clay,			1	2.0 foot plug inside augers prior
			ļ	39_	ļ. <u></u>	-	0:00:		hard, thinly laminated with very thin	1/2	;		to sample #24. Not using plug
			 	 	40_	1	000		coarse silt lenses, (ML-CL). 43.2		<u>/</u>		below 46.0 feet while augering.
	24	8	22		 		1000			1	4	1	
			-22-	50	 	77	0:00		Wet olive gray very gravelly (SAND-SILT-CLAY) with 40 to 60%		<u></u>		
					75]	0.00		mostly subrounded gravel, little sand		<i>,</i>		
	25	NO		<u> </u>			0.00		and clay, very dense, stratified,	1	7	GROUM	
			BLOW	1	ļ		0.00		(SM), (GM). 43.7	7	4 6	(A)	
			ļc	OUNT	5	{	0.00		Extremely moist olive gray		RISER	BEIN NOINI KE	
50				 		1	0.00		(CLAYEY-SILT) with 3 to 5% mostly	-	PVC F	2/ 1/2/	Water level at 17.0 feet on
	26	_15	23		<u> </u>	1			fine size subrounded gravel, little clay,		·] -	BE.	3/21/01 with last spoon taken at 50-52.0' the previous day.
			2.3	19	 	42	0.00		hard, thinly laminated with very thin coarse silt lenses, (ML-CL).	1		EMENT	
				'	21	1	0.00		44.5	- 1	"	W.	
	27	9]	000		Extremely moist olive gray very	1	//		
			1.3		<u> </u>	32	0.00		gravelly (SAND) with 40 to 60% mostly	_ _		1	
			<u> </u>	19	ļ		0.00		subrounded gravel, very fine to very	//	"		
			ļ	ļ	14		0.00		coarse size sand, trace to little silt, very dense in place, loose when	1/	낔	1 4	
	28	16	 	<u> </u>	-	1	ray.	h	disturbed, stratified with possible fine	-	//	1	
55			7_	13		20		$ \ $	to coarse size sand interbeds and			1	
				13	18	1	0.00	\prod	layers with little fine size gravel, (SW), (GW) tending towards (SM), (GM).	1			
	29	10				1	000		(3M), (6M) tending towards (3M), (6M).	5 /	4	\ _"	
			16			32	0.00	11	Extremely moist olive gray		//		
				16					(SANDY-SILT) with some sand,		,	1	
			ļ	ļ	16				compact, thinly bedded, (ML).	1			
	30	6		ļ		-			55.5	1/	4		
			10			25			See next sheet.		"		
				15	00	-				1			
60 l		L	L	l	20	L	<u> </u>	<u> </u>		-	<u> </u>	<u></u>	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-01

SURF. ELEVATION 1455.40

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01 COMPLETED 04/01/01

DEPTH BLOWS ON INFT SAMPLER

	INFI		SAM	PLEK				
٠	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
	31	6					•—•—	Extremely majet clive gray yeary
			20				-	Extremely moist olive gray very gravelly (SAND) with 40 to 60% mostly
			Z.U	31		51	70000	
					33			subrounded gravel, very fine to very // // // // coarse size sand, trace silt, compact
	30							in place, loose when disturbed,
	32	6_	12					A stratified (SW) (SW)
			12			27	•	57.0 \\ = \\
	<u> </u>			_15	4.5		<u>∇.¿</u> ∇.	Extremely moist olive gray
					_16			(CLAVEV ENT) with 3 to 54 mostly
	33	-6_					• •	subrounded gravel, some clay, hard,
65-		ļ	8			19	 	thinly laminated with very thin coarse
	<u> </u>	 		11				sit lenses, (CL).
		ļ			10			61.0
	34	WH_						Wet olive gray very gravelly (// WH - Sampler penetration with
	ļ	<u> </u>	_1_			6		(SILTY-SAND) with 40 to 60% mostly () weight of hammer and rods.
		ļ		5	-			subrounded gravel, little silt, very
		ļ		ļ	6			dense in place, loose when disturbed, stratified, (SM), (GM).
	_35	6					: : : :	stratified, (SM), (GM).
			_17		<u> </u>	40		Extremely maist alive gray
				23		1		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly
70-		<u> </u>			27			CLAYEY-SILT) with 3 to 5% mostly CLAYEY-SILT) w
	36	8						subrounded gravel, some clay, hard,
			17			37		thinly laminated with very thin coarse silt lenses, (CL).
				20				silt lenses, (CL).
					28			
	37	6				Ì		Wet olive gray very gravelly (SAND) with 40 to 60% mostly subrounded
*****			9			20		1 orayol madium ta yayu caarea siza
				11		20		sand, dense in place, loose when
					10			disturbed, stratified, (GW).
	38	1						63.8
75-		<u> </u>	8			19	1	Extremely maintain alive gray
15-		İ		11		19		(CLAYEY-SILT) with 3 to 5% mostly
					12	[i subrounded graver, some clay, hard, 1/1 1/1
	39	7			\ <u>'</u>			thinly laminated with very thin coarse \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
	23	· · · · · · · · · · · · · · · · · · ·	13		<u> </u>			sit ienses, (CL).
	 		13	16		29		65.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		 		10	100			Wet olive gray (SANDY-SILT) with
				 -	20	İ		some very fine size sand compact
	40	6		ļ	 			liquifies when disturbed, thinly bedded,
	<u> </u>	<u> </u>	13_		 	38		(ML)
	<u> </u>	ļ	ļ	25				grades downward to 67.0
80	L	L	L	l	29	<u> </u>	<u> </u>	See next sheet:

N=NUMBER OF BLOWS TO DRIVE 2 "SPOON 12 "WITH 140 Ib. WT. FALLING 30 "PER BLOW

LOCOTO DV Denald II Oceano Contar Call Calcaliat | Thurst

CHECT A DE 8

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-OL

SURF. ELEVATION 1455.40

LOCATION See map

PROJECT <u>MW Installation - Chaffee Landfill</u>

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01 COMPLETED 04/01/01

BLOWS ON DEPTH SAMPLER IN FT

	TIA L. I		JAN	IFLEN							
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	W	ELL	WATER TABLE AND REMARKS
						ļ	10 5 12 15 5 1	1	1/3	1	
	41_	18	<u> </u>	ļ				Wet olive gray (SILTY-SAND), very		" ,,	
			23_		 	54		fine size sand with some silt, loose,			
				31				liquifies when disturbed, thinly bedded,	. "	. 4	
					35			(SM).		1/1	
	42	9						grades downward to 68.0	1 1	N =	
			17			20		Wet olive gray (SAND) tending towards		11	
				19		36		(SILTY-SAND), very fine size sand			
				19				with little silt, compact to very dense	. "	. 4	
					22_			in place, liquifies when disturbed, thinly	11	-//	·
	43	_17		 	<u> </u>			bedded, (SM).	" "	<i>N</i> =	
85-			_18	ļ	ļ	46		,	11	//	
				28							
					24						
	44	9								[/ _"	
	77		14			ĺ			1. 4	// =	
			14			29			1/1		
•				_15	ļ			grades downward to 88.0			
			 	ļ	_15		ļ		1	5/1	
	45	8		ļ				Wet olive gray (SILTY-SAND), very		GRO!	
			12			32		fine size sand with little silt, dense,	N 41		
				20				liquifies when disturbed, thinly bedded,	1/1	SE I	
00					21			(SM).		PVC RISER	
90-	46×	18						grades downward to 90.0	[//		Samples 46, 48 and 50 obtained
	40*	10	<u> </u>	 				Wet olive gray (SILTY-SAND), very	1//1	. 100	
	<u> </u>		15			32		fine size sand with some silt, compact		~ 怪	with 3" split spoon.
	ļ		 	17				to very dense, liquifies when disturbed,	1/1	MENT	
					19			thinly bedded, (SM) tending towards	1	<u> </u>	
	47	8]		(ML).	11	1. //	
			10		İ	23					
				13		23			1 4	/ =	
				T	14			grades downward to 94.0	11	1/1	
	100	<u> </u>	-	 	1-1-	1		Wet olive gray (SANDY-SILT) with			
	48×	21		 	 	1		some very fine size sand, compact,	11	1	
95			20_		 	38		liquifies when disturbed, thinly bedded,			
			<u> </u>	18		1		(ML) tending towards (SM).	\ 4	\ _{\ \ _{\ \ _{\ \ }}	
				<u> </u>	20			the following to the factor	11		
	49	10	<u> </u>		<u> </u>]					
			10			19			1/1	1	
				9	[] '5				1	
-			 	<u> </u>	8	1		98.0	/ ⁴	/ =	
			 	+	 ° -	1		¬ Wet olive gray (CLAYEY-SILT) with	1	1/1	
	50×	16		ļ	ļ	1		fittle clay, very stiff, thinly laminated,	W =	V ==	
			25	ļ	<u> </u>	51		(ML-CL). 98.3		1	
				26	L						
100		<u> </u>	<u> </u>		29	L	<u> </u>	See next sheet.			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-01

SURF. ELEVATION 1455.40

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01 COMPLETED 04/01/01

BLOWS ON DEPTH

	INFT			PLER	•						
	SN	0/ 6	6/ 12	12/ 18	18/ 24	И	LITH	DESCRIPTION AND CLASSIFICATION		MELL	WATER TABLE AND REMARKS
	51×	28						Wet olive gray (SILTY-SAND), very			Samples 51, 53, 55, 56 and 60
		- Z.L.	73			1		fine size sand with some silt, compact	(4	1	obtained with 3 inch split spoon.
				43		116		to very dense, liquifies when disturbed,	//	1/1	
					30	1		thinly bedded. (SM) tending towards			
	.52	12				ĺ		(ML).	1, 4	1, 4	
	1	****	10			1			//		
				16		26					
					24	1		grades downward to 104.0	\ 4	\ \ \ \	
	53×	32]		Wet ofive gray (SANDY-SILT) with	//	["//	
10 -			33					little to some very fine size sand, very			
10 5-				33		66		dense in place, liquifies when	1 4	\ 4	
					28	1		disturbed, thinly bedded with very thin	1/1		
	54	13				1		very fine sand lenses, (ML)			
	7-	Li-l	23					', grades downward to 106.0	/、	. 4	
				28		51		Wet olive gray (SAND), very fine to	1/1	["	
	 				29			medium size, very dense in place,			
	55×	38			23_		4	1 liquifies when disturbed, thinly bedded,	V 4	GROUT	
	1.332		45	•		1]\ (S₩).		85//	
			_ 	44		89		108.0		HE THE	
				44	39			Wet olive gray gravelly, (SAND) with 15	1	" PVC RISER BENTONINE	
1 10-		^ 7			39_			to 20% mostly fine size subrounded	"//	PVC	
	56×	23_	^7					gravel, fine to very coarse size sand,		2" P	
			27	2.4	 -	61		very dense in place, loose when	\ \ \ \	2.	
				34	20		1.1.1.1	disturbed, (SW).		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	-				32					191	
	57	88	••					Wet olive gray (SAND), fine and very	\ \ \ \ \		
			12			28		fine size, very dense, liquifies when	//		
	-			16				disturbed, thinly bedded, (SP).			
					16				1	1 4	
	58×	23						clear transition to 115.0	["]		
1 15-	-		17			41		Wet olive gray (SILTY-SAND), very	1		
				24				fine size sand with some silt, dense,	\ 4		
					25			liquifies when disturbed, thinly bedded,			
	59	7					<u> </u>	↑ (SM).			
			9			16	, ,	116.5	1	. 4	
				7			-	Extremely moist olive gray (CLAYEY-SILT)		["//	
				·	12		<u>[_`</u> '	with 3 to 5% mostly fine size gravel,			
	60×	10		•			, ,	little clay, very stiff and hard, thinly	1	\ 4	
			18			39		laminated with very thin coarse silt			
				21			· ·	lenses, (ML) tending towards (ML-CL).			
120					31			120.0			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-01

SURF. ELEVATION 1455.40

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01 COMPLETED 04/01/01

	INFI		SAM	PLER								
	SN	0/ 6	6/ 12	12/ 18	18/ 24	И	LITH	DESCRIPTION AND CLASSIFICATION		WELL		WATER TABLE AND REMARKS
	61 ×	. 12	29			69		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly				Samples 61, 63, 65, 67 and 69 obtained with 3 inch split spoon.
				40	43	09		fine size gravel, little clay, hard, thinly thinly laminated with very thin coarse				obtained mitt o men spirt spoon.
	62	10	15			34		silt lenses, (CL). grades downward to 123.0		1	ROUT	
				.19	22	34		Extremely moist olive gray (SILT), very dense, thinly bedded, (ML).			NITE	
125—	63×	10	21_			57	• • • • • • • • • • • • • • • • • • •	grades downward to 124.0 Extremely moist olive gray		i	BENIONITE GROUT	
1				36	45		<u>.</u> .	(CLAYEY-SILT) with 3 to 5% mostly fine size gravel, little clay, hard, thinly			CEMENT.	
	64_	19	_15_			36	•	laminated with very thin coarse silt lenses and very thin very fine sand lenses below 126.0 feet, (ML) tending		1.5		
				21	33			towards (ML-CL).		1:		
	65×	33	32	37		69						← 128.5' (I) BENTONITE PELLETS
1 ³⁰ -	66	15		3/_	59							
	-00	13	17	33		50	<u>.</u>					(2) #4000 SAND PACK
	67×	21			31			grades downward to 132.0 Extremely moist olive gray (SILT),)		(5)	← 131.5' ← 132.0'
			21	30		51		compact to very dense, thinly bedded with very thin very fine sand lenses,				
	68	6			32			(ML).			්: ප්:	← 134.0'
135			7	11		18					DON SAND PACK	
	69×	19			15						.S.NO0	(1) 2" 20 SLOT CONTINUOUS WRAP PVC SCREEN
			15	23		38				0	MORIE	
	70	7		•	34			grades downward to 139.0)			
			9	21	20	30		See next sheet.				
1 40		L	L	L	29	L			_ 		<u> </u>	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW E-D-OL

SURF. ELEVATION 1455.40

LOCATION See map

PROJECT MW Installation - Chaffee Landfill Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/19/01

COMPLETED 04/01/01

BLOWS ON IN FT SAMPLER

	SN	0/	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
		6	12	18	24	IN IN	11.311 WAT	
	.71×	_21_	-					Wet olive gray (SAND), very fine and
			.36_	33		69		fine size sand, dense, liquifies when disturbed, thinly bedded, (SP). (1) 2" 20 SLOT CONTINUOUS WRAP PVC SCREEN
		·-··-			45			
	72	7	İ					grades downward to 140.0 ∴ ≘ (2) MORIE OON SAND PACK
			7			17		inch layers very fine and fine size
				10		"		I sand with (SILT) layers dense thinly
					18			bedded, (SP) and (ML).
								142.0
145-					<u> </u>			Wet olive gray (SAND), very fine and
1								fine size, compact, liquifies when disturbed, thinly bedded. (SP).
			ļ		ļ			disturbed, thinly bedded, (SF).
			ļ					Wet olive gray (SILT), compact, thinly
				ļ	ļ			bedded with very thin very fine sand
		· · · · · · · · · · · · · · · · · · ·	 -					lenses, (ML).
								144.0
			 					Boring completed at 144.0 feet.
						1		
150-					 -			
;			<u> </u>		İ	İ		
					1			
						1		
								·
							1	
155			<u></u>	ļ				
				ļ		[
			ļ		ļ			
			ļ		ļ			
			<u> </u>	ļ	ļ		[
			ļ		ļ			
			ļ			1		
			ļ	ļ <u>`</u>	ļ			
		ļ	ļ		ļ	1		
			}		ļ	-		
160	L	L	L	<u> </u>	l	L	I	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW J-D-01

SURF. ELEVATION 1462.20

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Iown of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/28/01 COMPLETED 04/09/01

DEPTH

BLOWS ON SAMPLER

	INFT			MPLEF									
	SN	0/ 6	6/	12/ 18	18/ 24	1 44	LITH	DESCRIPTION AND CLASSIFICATION			WELI	 -	WATER TABLE AND REMARKS
	1	_1	1	8.	16	9		Extremely moist olive gray (CLAYEY-SILT) fill with little clay, very soft to 1.0 foot, very stiff below, massive soil structure, (ML-CL).					(1) 4"x 5' STEEL PROTECTIVE CASING Silty soil fill with little clay to 2.0 feet over silty slack water
	2	-6	28_	29	26	57		Extremely moist olive gray (SILT), very dense, thinly bedded, (ML).	2.0				sediment with trace clay to 4.5 feet over silty slack water sediment with little clay to 5.0 feet over water sorted and
5-	_3	4	.8.	13	14	21		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly fine size gravel, little clay, very stiff,	4.5	11 = 11 = 11			deposited sand with little silt to 5.2 feet over silty slack water sediment with little clay to 6.5 feet over water sorted and deposited sand to 7.0 feet over
	4	8	8	9		17	• •	thinly laminated with very thin coarse silt lenses, (ML-CL). Wet olive gray (SILTY-SAND), fine	5.0				silty slack water sediment with fittle clay to 26.0 feet over clayey slack water sediment to 34.0 feet over water sorted and
	5	3	3	. 9	12	12	<u>o</u> <u>o</u> <u>o</u> .	and very fine size sand with little silt, compact, thinly bedded, (SM). Extremely moist olive gray	5.2		RISER	ONNE SEAL	deposited sand and gravel to 37.5 feet over silty slack water sediment with little clay to 42.0 feet over water sorted and
10 –	6	3	7	9	12	16	0 0	(CLAYEY-SILT) with 3 to 5% mostly fine size gravel, little clay, very stiff, thinly laminated with very thin coarse silt lenses, (ML-CL).	6.5		2" PVC RI	ENEIGTHEMO	deposited sand and gravel to 44.0 feet over water sorted and deposited sand and gravel with little silt to 47.5 feet over silty slack water sediment with little
O thermone.	7	3.	5	7	10	12	• •	Moist olive gray (SAND), very fine size, compact, thinly bedded, (SP).	7.0				clay to 48.0 feet over water sorted and deposited sand and gravel to 51.0 feet over clayey slack water sediment to 54.0 feet over water sorted and
15	8	4	6	7	10	13		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mos(ly fine size gravel, little clay, very stiff and hard, thinly laminated with very thin coarse silt lenses, (ML-CL).					deposited sand and gravel with little silt to 64.0 feet over clayey slack water sediment to 73.5 feet over water sorted and deposited sand to 74.0 feet
***************************************	9	12	17	24	21	41					, ,		over water sorted and deposited silt with little sand and clay to 75.0 feet over water sorted and deposited sand with little silt, little to some gravel to 76.5 feet
20	10	4	4	10	12	14	• •				ķ		over water sorted and deposited sand to 78.0 feet over water sorted and deposited sand with some gravel to end of boring.

N=NUMBER OF BLOWS TO DRIVE 2. SPOON 12 WITH 140 ID. WT. FALLING 30 PER BLOW

LOGGED BY Donald W. Owens, Senior Snil Scientist . . (hvv)

CUCCTIACE

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW J-D-01

SURF. ELEVATION 1462.20

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/28/01 COMPLETED 04/09/01

	SN	0/ 6	6/ 12	12 / 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
	11_	3					•••••	Extremely moist olive gray
		ļ	_5_		<u> </u>	14	• •	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% mostly
	ļ	ļ	ļ	9	ļ] ''		fine size gravel, little clay, very stiff
	ļ	ļ <u>.</u>	ļ	ļ	10	4		and hard, thinly laminated with very
	12	12_	ļ	ļ	ļ	1	.	thin coarse silt lenses, (ML-CL).
		ļ	16	 	 	33	<u>.</u>	
			 	17_	 	-		
		-	 	 	17_		- - -	
	13	16_	 		 	-		
25-	 	 	19_	 	 	40		
		 	<u> </u>	21_	 	1	Ţ- Ţ-	grades downward to 26.0 // //
	14	6	 	 	22	1		
	14		9		†	1		(CLAYEY-SILT) with 3 to 5% mostly
			3	15		24		fine size gravel comp clay year stiff
				''	21			thinly laminated with very thin coarse
	15	4	Ī		1		• •	silt lenses, (CL).
			10		1	27		[씨 [남 <u>)</u>
				17		21		
30-					11			N N N N N N N N N N N N N N N N N N N
	16	6						2" PVC RISE
			12			29		5
				17		20	·	
					16		==	
	17	8						
					[24		
				13				34.0
					15		J.00	
	18	_5					0.00	Wet olive gray very gravelly (SAND)
35-			7			15	0.00	with 40 to 60% mostly fine to medium size subrounded gravel, very fine to
ļ				-8			0.0.0	very coarse size sand, compact, loose
}					9	j	V.0.0	when disturbed stratified (SW) (SW)
ŀ	19	.5					62.5	which distanced, Stratified, (SW), (SW).
ł				-		23	0.7.0	37.5
				12			= -	
ŀ	20	3			14	İ	, , ,	See next sheet.
ŀ	- 4U	->	7					
<u> </u>				10		17	••	
<u>,</u> }				10	14	ľ	•	
40 L				1	14	<u>_</u>		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

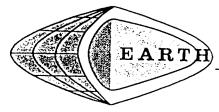
HOLE NO. MW J-D-01

SURF. ELEVATION 1462.20

LOCATION See map

PROJECT MW Installation - Chaffee Landfill

Town of Sardinia, Erie County, New York


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/28/01 COMPLETED 04/09/01

DEPTH BLOWS ON INFT SAMPLER

	INFT		SAM	PLER				
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
						· · · · · · · · · · · · · · · · · · ·	• •	
	21	5					, ,	Extremely moist distinctly mothed only [7]
			8	 		16	- <u>-</u>	gray (CLATET-SILT) with 3 to 5%
				8			<u>.</u>	mostly fine size gravel, little clay, very
	ļ				11		V-00	stiff, thinly laminated with very thin
	22_	32		ļ			0.70	coarse silt lenses. (ML-CL).
			43			63	6:00	
				20			0.70	Wet olive gray very gravelly (SAND)
					19		0:00	with 40 to 60% mostly subrounded \(\hat{\gamma} = \hat{\gamma}\)
	23	21		<u> </u>			0000	gravel and occasional cobble, fine to
	-23-			 				, very coarse size saild, very defise in
45-			23			45	0000	place, loose when disturbed, stratified,
		 		_22			0000	(SW), (GW).
	-			ļ	_28_		0000	grades downward to 44.0
	24_	8_					0000	Wet olive gray very gravelly
	ļ	ļ				27	12000	(SILTY-SAND) with 40 to 60% mostly
				16			0000	subrounded gravel, very fine to very
					31_		7 7	coarse size sand, little silt, very dense
	25	26					0.00	in place, loose when disturbed,
			29			۱	3.00	in place, loose when disturbed, stratified, (SM), (GM).
		i	1	14		44	0.0	47.5
	ļ		-	 '''-	21		6.00	Extremely moist olive gray (CLAYEY-SILT) with 5 to 10% gravel, little clay, very stiff, thinly laminated with very thin coarse silt lenses. (ML-CL).
50-	 			 	21_		0.0	(CLAYEY-SILT) with 5 to 10% gravel,
	26_	17	ļ	 			6.00	little clay, very stiff, thinly laminated
	ļ		24	ļ. <u> </u>		61		with very thin coarse silt lenses.
		ļ	<u> </u>	37_			====	(ML-CL).
		<u> </u>			46		•	48.0 1 7
	27	24	<u> </u>					Wet olive gray very gravelly (SAND)
			25		İ	49		with 40 to 60% mostly subrounded
				24		'`		gravel and occasional cobbles, fine to \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			ļ		28			very coarse size sand, dense in place,
	28	28			1	İ	0000	loose when disturbed, stratified,
	20	20	40				0000	(SW), (GW).
55	 	 	49	 	ļ	98	$P \cap P \cap V$	51.0
		ļ		48	ļ	}	0000	N = N =
		ļ			27	1	0000	(CLAYEY-SILT) with 3 to 5% fine size
	29	23	ļ	ļ	ļ		0000	gravel some clay hard thinly
			27	ļ		63	0000	laminated with very thin coarse silt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			<u> </u>	36		ļ	0000	lenses, (CL).
					34		500000000000000000000000000000000000000	54.0
	30	30	1				0000	
	1	1	48	 	 			Wet olive gray very gravelly
		 	1-40	20	 	86	0000	(SILTY-SAND) with 40 to 60% mostly subrounded gravel, little silt, very
				38	1	1	0000	dense in place, loose when disturbed,
60	L	L	L	1	40	l	<u> </u>	stratified, (SM), (GM).
								and the state of t

 PER BLOW * WITH 140 * SPOON 12 Ib. WT. FALLING 30 N=NUMBER OF BLOWS TO DRIVE 2_ SHEET 3 OF 5

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW J-D-01

SURF. ELEVATION 1462.20

PROJECT

MW Installation - Chaffee Landfill

LOCATION See map

Iown of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/28/01 COMPLETED 04/09/01

	IN F	Γ	SA	MPLE	R			
	SN	0/ 6	6/	12 <i>1</i> 18	/ 18	1	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
	31	9_	34	31		65	000	3 and a grater, here she, very
	32	46	52	34	45	86	0000	dense in place, loose when disturbed, stratified, (SM), (GM).
65	33	10	20		36	47		Extremely moist clive gray (CLAYEY-S!LT) with 3 to 5% fine size gravel, some clay, hard, weak thinly laminated, (CL).
	34	WR	12	27	33			gravel, some clay, hard, weak thinly laminated, (CL). WR - Sampler penetration with
*	.35	10	12	22	44	34		WR - Sampler penetration with weight of the rods only.
70—			14	24	30	38		
	36	10	24	53		77		\[\begin{align*} \lambda \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
	37	9	19	44	38	63	• • •	73.5 (2) #4000 SIZE SAND PACK (3) BENTONITE SEAL (73.0'
75_	38	2	4		26	18	2 . 4 .	Wet olive gray (SAND), fine size, dense, liquifies when disturbed, stratified, (SP). Wet olive gray (SAND), fine size, (2) #4000 SIZE SAND PACK
ļ-	39	9		14	25		0000	Wet olive gray (SAND-SILT-CLAY) with 5 to 10% mostly subrounded gravel, little sand and clay, loose, 74.0 EY F 75.8' 75.8'
	40	9	19	44	26	63		weakly stratified, (ML) tending towards (SC). 75.0 : : : : : : : : : : : : : : : : : : :
80			22	25	22	47	0.0.0	See next sheet. ** WRAPPED SCREEN
								Francisco

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW J-D-01

SURF. ELEVATION 1462.20

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 03/28/01 COMPLETED 04/09/01

	SN	0/	6/	12/	18/	····-			1	LIATED TADLE AND DENADIC
		6	12	18	24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
	41	ß					0.0.0	Wet olive gray gravelly (SILTY-SAND)		
			28		ļ	58	; ÷;	with 15 to 40% mostly subrounded		
			<u> </u>	_30_	ļ		1.000 d	gravel, little silt, compact, stratified,	[::] [\tilde{\ti	
				ļ	_32_		0.00	(SM). 76.5	:: E.	
	42	12	<u> </u>			•	0.0.0			(1) #20 SLOT 2" PVC WIRE
		·····	_16_	ļ	ļ	37	0.0.0	Wet olive gray (SAND), fine size,	:: S 13:	WRAPPED SCREEN
			ļ	_21_	ļ		6 - 61	dense, stratified, (SP).	Mar.	
					_19		0.0.0		[[]	
	43	9	ļ	ļ			$\phi : \phi :]$	Wet olive gray gravelly (SAND) with 20	(1) #6-GLOBAL: SAND, PACK	
85-			17			28	0.0.0	to 40% mostly subrounded gravel, fine to very coarse size sand, trace to		
	ļ		ļ	11	ļ		0.0.0	little silt, very dense and dense in	1::	← 85.8′
		· · · · · · · · · · · · · · · · · · ·	ļ	ļ <u></u>	_22_	}	1.0.0.0	T place, loose when disturbed, stratified,		J ← 86.0
				ļ	ļ			(SW) tending towards (SM).		
			ļ	ļ		ł		86.0		
					ļ		1	Boring completed at 86.0 feet.		
			ļ		ļ	-				
					 				İ	
	<u> </u>			<u> </u>	 	ļ				
	ļ		ļ	ļ	ļ					
90-									İ	
	ļ			<u> </u>	ļ					
				ļ	ļ					
				<u> </u>	ļ					
	ļ									
			ļ							
			ļ	ļ	ļ					
			ļ <u>.</u>	ļ	ļ	1				
95					ļ					
••										
]			1	
						1				
]				
						j				
				١.	T	1				
						1	[
						1				
100			<u> </u>	<u> </u>	1	1				
100	Ll	<u> </u>	1	ı	1	1	L			

Sheet 1 of 1 Project: Chaffee Landfill Well Inst. Well No.: MWR-1BR 023-9340 Drilling Method: 4.25" I.D. H.S.A. Ground Elev.: 1485.1 Water Depth: N/A Insp.: GOC Drilling Company: SJB Services Riser Elev.: 1487.63 Date: 12/11-12/12/02 Weather: RAIN Time Started: 1520 Time Completed: 0940 Drill Rig: CME 550X Temp: 18° F Monitoring Point (well stickup=2.53') Anodized Aluminum Vent Hole 8 Inch Diameter Locking Protective Casing **Ground Surface** Drain Hole ~4.0 Feet thick Concrete Surface Seal 36 Inch Diameter Bentonite Cement Grout Fine Grained Choker Sand 1.0 Foot thick 3.0 Feet thick Bentonite Seal 2.4 Foot thick Fine Grained Choker Sand 3.88 Feet .20 Feet Schedule 40 PVC 2" Riser Pipe 2-Inch Diameter Schedule 40 PVC Continuous Wire Wrap .006 Slot Screen Screened Interval: 19.52 Feet Morie #00 Sand End Cap 0.5 Feet 0.5 Feet ~8-Inch " Borehole Total depth of soil boring: 35' b.g.s. Thickness of sandpack: 24.6' Well Bottom: 34.5' b.g.s. Golder Associates Inc. **CHAFFEE LANDFILL** MWR-1BR Monitoring Well Detail Buffalo, N.Y. Clay Till Unit CHAFFEE, NEW YORK Drawn by: Checked by: Date: NKW 7/25/2003 AJN Job No. 023-9340

MONITURING WELL INSTALLATION DIAGRAM

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-S-OL

SURF. ELEVATION 1496.60

PROJECT MW Installation - Chaffee Landfill

LOCATION See map


Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

BLOWS ON DEPTH INFT SAMPLER

				Augered to 30.0 feet with 4 1/4" I.D. hollow stem augers without split spoon	(1)		(1) 4" x 5' STEEL PROTECTIVE
		Ł		sampling.			CASING
						= = =	
	•				ISER	LIKE GROUN	
					2" PVC R	EMENT BENTO	
	•						

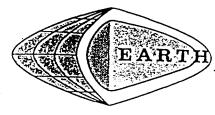
Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW.K-S-01

SURF. ELEVATION 1496.60

PROJECT MW Installation - Chaffee Landfill


LOCATION See map

Iown of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

SN	0/ 6	6/	12 18		1 44	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND RE	MARKS
]		Augered to 30.0 feet with 4 1/4" I.D.	
 	 		<u> </u>		_	1	hollow stem augers without split spoon	
<u> </u>	J	 	4		4		sampling.	
ļ	-		 		4			
ļ	-	ļ	 		-	İ		
ļ	┼	ļ	ļ	-	-			
 -	+	 						
	 	 -	 		-{			
 	 	 	 		-{		(A) (A) (A) (A) (A) (A) (A) (A) (A) (A)	
	 	ļ	-		-			
ļ	 	 	 	+	1		N = N ==	
	†	 	†	 	1			
	<u> </u>		-	+	1			
	<u> </u>	1		 	1	1		
	1		<u> </u>	1	1		PVC RISER	
				1	1			
]			
				-	1		30.0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
1_	88			ļ			Extremely moist olive gray	
	ļ	12	ļ	ļ	27		(CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinty (1) # 4000 SAND PACK	
	ļ		15	ļ	1		some clay, very stiff, weak thinly (1) #4000 SAND PACK laminated with very thin coarse silt	
		_		16			lenses, (CL).	
2	3			-			\ grades downward to 32.0 + 32.5'	
		-6		 	14	• •		
			8_	 			Extremely moist olive gray (SILT), trace clay, compact, thinly bedded, (2) BENTONITE PELLET	·s
-				11			1. (ML).	
3	_6_	12		 			grades downward to 33.0	
		-14-	10	-	22		Extremely moist olive gray	
			<u> </u>	12			(CLAYEY-SILT) with 3 to 5% gravel.	
4	5			'-			little clay, very stiff, thinly laminated \$\frac{1}{20} \cdot 36.0'	
		7			16		with very thin coarse silt lenses, (ML-Ct). ← 36.5'	
			9		10		grades downward to 34.0 $\stackrel{?}{\sim}$ $\stackrel{?}{\simeq}$	
				15			grades downward to 34.0	
5	6		•				Extremely moist olive gray (SILT).	UOUS WA
		10			25		grades downward to 34.0 Extremely moist olive gray (SILT). trace clay, compact, thinly bedded with very fine sand lenses, (ML).	
			15		23			
				17				

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MW K-S-01

SURF. ELEVATION 1496.60

PROJECT MW Installation - Chaffee Landfill

LOCATION See map

Town of Sardinia, Erie County, New York CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

DEPTH IN FT

BLOWS ON SAMPLER

	214 1		J A 1	irten						
	SN	0/ 6	6/ 12	12/ 18	18/ 24		LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
	_6	6	13	_13	_15_	26		Extremely moist olive gray (SILT), trace clay, compact, thinly bedded with very fine sand lenses, (ML). 42.0 Boring completed at 42.0 feet.	8	(1) 2" 20 SLOT CONTINUOUS WRAP PVC SCREEN + 41.5' + 42.0
:								- 1 mg 00 mp.c. (cd dt 42.0 feet.		
45—										
				·		-				
50_									·	
55										
60										

CLAY TILL UNIT CLAY TILL UNIT CLAY TILL UNIT CLAY TILL UNIT CLAY TILL UNIT CLAY TILL UNIT Auger with no sampling from 0 to 4' bgs. Auger with continuous sampling 4' to 14' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with continuous sampling 14' to 36' bgs. Auger with no sampling from 0 to 4' bgs. Auger with standard sampling 4' to 14' bgs. Auger with no sampling from 0 to 4' bgs. Auge	DEPTH DEPTH NO. C DEPTH	H HOLE 36' JOB NO H SOIL DRILL 36' GA INS H ROCK CORE N/A WEATH DIST. N/A US. N/A TEMP. H WL N/A HRS. F WL N'A HRS. C	SPG ER_RAII 36_F PROD	SC N T N/A N/A	_DRIL _DRIL _DRIL _WT. _WT.	LING METHI LING COS L RIG_CME SAMPLER F CASING HA	OD_4.2 SJB_SE 550 HAMME	RMCES X R 140	HSA _INCDRILLERD.MLBDROP30"_(AUTO)DROPN/A	SHEET 1_OF_3 SURFACE EL. 1485.1 DATUMN/A STARTED1520/12-11-02 COMPLETED0940/12-12-02
CLAY TILL UNIT CLAY TILL UNIT CLAY TILL UNIT CLAY TILL UNIT Stiff to hard, gray, SILTY CLAY, trace to little fine to neclum graves and considered a sub-rounded, neclum plasticity, thinly lownbaced, occasional wet sit and sand layers. (CL) 3 3 20° S' to 5' bgs. Med., stiff, brown, SiLTY CLAY, trace fine m Grov to medium, SAND, little clayey sit dilatoney quick, occasional fine grove. (Mtcl.) S' to 5' bgs. Med., stiff, brown, SiLTY CLAY, trace fine m Grov to medium, SAND, little clayey sit dilatoney quick, occasional fine grove. (SM) Silf, gray CLAYEY SiLT, trace, f. to m. gravel thinly lominated, more prenounced at 10.5' – 11.0' bgs, med. plasticity (CL)			ROWN DARSE USING AY AYEY NE RAGMENTS RAVEL LYERED	MESON CONTRACTOR	MEDIU MICACI MOTE NORANI DRANI PRESS	MEOUS EOUS PLASTIC E IIC URE-HYDRAULIC URE-WANUAL	A TANK TO SEE THE PROPERTY OF		"TRACE" - "UTILE" - "SOME" - "AND" -	- 0-5x - 5-12x - 12-30x - 30-30x TENCY
CLAY TILL UNIT Stiff to hard, groy, SILTY CLAY, trace to Little fine to nedlum gravel, gravel sub-nangular to	ELEV. DEPTH	DESCRIPTION			NO. TY		REC/AT	DEPTH	SAMPLE DESCRIPTION	AND BORING NOTES
Stiff, gray CLAYEY SiLT, trace, f. to m. gravel thinly laminated, more pronounced at 10.5' – 11.0' bgs, med. plasticity (CL)	1 2 3 4 4 5 5	Stiff to hard, gray, SILTY CLAY, trace to little fine to medium gravel, gravel sub-angular to sub-rounded, medium plasticity, thinly laminated, occasional wet silt and sand	6			3	20"		Auger with standard samp Auger with continuous san Auger with continuous san 4' to 5' bgs Med., stiff, brown, SILTY (to medium gravel, mod-lated) 5' to 5.7' bgs Loose, fine to medium, Sidilatancy quick, occasional	CLAY, trace fine m Grave plasticity, wet. (ML-CL) CAND, little clayey silt
1	7 8 8 9 9		10		2		16"		Stiff, gray CLAYEY SILT, t	onounced

Golder Associates

FIELD BORING LOG

	1 HOLE 36'	IOP NO	023-9	9340	PRO	UECT	CHAFF	EE_LA	NDFILL	_WELL_INST&_DECOMM.	BORING NO. MWR-1BR
DECT	SOU DRUL 36'	CA INSP.	G		_ DRII	LING	METHO	D <u>4.25</u>	5"_ID_	HSA	_SHEET
DEDE	BOOK CORE N/A	WEATHER	RAIN	l	_DRII	LING	: co <u>SJ</u>	B_SEF	MICES,	_INC.	_SURFACE EL_1485.1 _DATUMN/A
NO. D	N/A 110 N/A	TEMP	36F		DRII	 RI 	G CML	<u>_550X</u>		DRILLER D.M. LB. DROP 30" (AUTO)	STARTED_1520/12-11-02
		HRS. PRO	OD	N/A	_WT.	SAM	INC HAN	AMMER IMFR	N/A	DROP N/A	_COMPLETED 0940/12-12-02
TIME	WLN'A	HRS. DEL	AYED.	11/0	_ W I -	CAS	ING TIAN	1141		<u> </u>	
SAN	IPLE TYPES			ABBR	REVIA	TIONS	S			SOIL DESCRIPTION - R	ANGE OF PROPORTION
A.S.	AUGER SAMPLE	BL BLACE	(N	M MIC	MEDIL	EOUS		SA SAT	SAMPLE SATURATE	"TRACE" "LITTLE" "O "SOME" "AND"	5-12X 12-30X 30-50X
A.S.O.S.S.C.T.Q.P.S.	AUGER SAMPLE CHUNK SAMPLE DRIVE OPEN DENISON SAMPLE PITCHER SAMPLE	BL BLACH BR BROW C COAR CA CASIN CL CLAY	SE IG	MIC MIDT NP ORG PM PM RES RX	MOTI	TED YELL	:	A MANAGE BOOK	SAND		
R.C. Ş.T.	FILTER SAME ROCK CORE SLOTTED TUBE THIN-WALLED, OPEN THEN-WALLED, PISTON WASH SAMPLE	CLY CLAYE F FINE FRAG FRAG	EY Ments	ORG PH PM	PRES PRES	NIC SURE-H SURE-M	YDRAULIC IANUAL	.TR WL	TRACE WATER LE		S SOFT FM FIRM ST STIFF
T.P. W.S.	THIN-WALLED, PISTON	CA GASM CL CLAY CLY CLAY CLY CLAY FF FINE FRAG FRAG GL GRAW LYD LAYE U UTTU	N SE SE SE SE SE SED SED SED	RES RX	RED RESIG	UAL		WiRi	WEIGHT O	F HAMMER CP COMPACT F ROOS DN DENSE V VERY	ST STIFF H HARD
						SA	MPLES				MO BODING NOTES
ELEV. DEPTH	DESCRIPTION	Į.	FT.		NO. T	YPE P	IM. BLOWS FORCE)	REC/ATI	DEPTH	SAMPLE DESCRIPTION	AND BORING NOTES
			$\overline{}$	-		Τ,	0.1347				
13				7		1			_		
Εl	CLAY TILL UN	<u> </u>			$ egthinspace{1.5em} olimits$						
E.,]		\nearrow	/		-		
E 13	Stiff to hard, gro	y,]	 	1					
E	SILTY CLAY, trace								-		
E	gravel, gravel										
<u> </u>	sub-angular to sub-rounded, mediu	in l		-	H	十				Stiff, gray, CLAYEY SILT,	little fine to med. gravel.
F	plasticity, thinly laminated, occasion			=		-				thinly laminated, moist, n gravel sub-angular to sul	noderate plasticity,
F	wet silt and sand layers, (CL)			=			3	1		graver sub-difigurar to sur	7 100.100.1
F	layers, lour	İ	11	ء ا	3		5	14"	_		
F 15		Į	ΤŢ	=	ľ		6	1		14.4.	
E		1		-			8		-		
Ė	•			=			- 5	l			
16					\vdash	\dashv	·····		<u> </u>	Stiff-mod stiff, gray SILT	Y CLAY, fine to medium
E	. •	. [:			_	1	ļ	gravel, moist, gravel sub-	-angular to sub-rounded
F						Ì	2 3 5		_	(cr)	
Ė]	4		3 -	23"	_		
F 17			8		<u> </u>		5	ĺ			
E I] =	1	1	7	ļ	-		
F				:	1		·	1	1		
18				├-:	H	+		\vdash	 	Stiff, gray, SILTY CLAY, II	ttle f—m, gravel
L I					1 1	•			1	thinly laminated, medium	plasticity, moist. (CL)
-				1 :	1		4	1	· •		
E			10		5		4	16"	١.		
E 19			10	:]°		6	"			
Ē	:			:	1		4 6 6	1 .	١.		
E					1		•				
19				1	1-	$\vdash \vdash$		+	\vdash	Stiff, gray, SILTY CLAY,	trace, f-m, gravel
E					1					thinly laminated, medium	plasticity, moist.
-				-	1		3		'	gravel sub-rounded to s	ab—angular (CL)
Ė			١.].		3 4 6 8	16"	.[
21			10	1	6		ė.	'0	'		· · · · · · · · · · · · · · · · · · ·
E					=		Q		Ι.		
E				7	d		. 0				
22			<u> </u>	-	 	$\vdash \vdash$			 	Stiff, gray, SILTY CLAY,	trace, f-m, gravel
= "	1				7					thinly laminated, medium	n plasticity, moist. (CL)
E				.	=		2	1	1 .		
E	1				1		2356				
- 23			8	'	1 7		5	20"	'		
Ē				1	Ė		2				
E 24			ļ	'	7		0	İ	1		
E 24			<u></u>	<u>L</u>	1_	$\sqcup \bot$			<u> </u>		

Golder Associates

FIELD BORING LOG

DEPTH HOLE 36' JOB NO. 023-9340 PROJECT CHAFFEE LANDFILL WELL INST. & DECOMM.	BORING NO. MWR-1BR
SOULDPUT 36' GA INSP. GC. DRILLING METHOD 4.25" ID HSA	_SHEET3_OF_3
DEBTH BOCK CORE N/A WEATHER RAIN DRILLING CO. SJB_SERVICES, INC.	_SURFACE EL. 1485.1
DRILLER D.M. DRILLER D.M.	_DATUM_N/A
DEPTH W DRY HRS PROD N/A WT. SAMPLER HAMMER 140 LB. DROP 30"_(AUTO)	_STARTED_1520/12-11-02
TIME WL. 0810 HRS. DELAYED N/A WT. CASING HAMMER N/A DROP N/A	_COMPLETED 0940/12-12-02

SAMPLE TYPES	ABBREVIATIONS	SOIL DESCRIPTION - RANGE OF PROPORTION
A.S. AUGER SAUPLE C.S. CHAIN SAUPLE C.S. CHAIN SAUPLE C.S. DENISON SAUPLE P.S. PITCHER SAUPLE R.C. ROCK CORE S.T. SOTTED TUBE T.O. TIRK-WALLED, PISTON W.S. WASH SAMPLE	BR BROWN MIC MIGACEOUS C COARSE MOT MOTTED CA CASHG NP HON-PLASTIC CA CASHG OF ARAGE CLY CASTS OR ORGANIC CLY CASTS OR ORGANIC CLY CASTS OR ORGANIC	SA SAMPLE "TRACE" - 0-5% SAT SATURATED "SONE - 12-10X SO SAND "NO" - 30-50X SI SILTY SOL SONE - 12-50X SI SOL SONE - 12-10X SONE - 12-10X SONE - 12-10X SONE - 12-10X SONE - 10X

W.3.	WASH SAWLEL	UTILE	RX	RO	CK		<u> </u>	AETTOM	A AFKL IL UVAN
ELEV. DEPTH	DESCRIPTION	BLOWS/ FT.		NO.	TYPE	SAMPLES HAMIN. BLOWS PEORGE (FORCE)	REC/ATT	DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
25	Stiff to hard, gray, SILTY CLAY, trace to little fine to medium gravel, gravel sub-angular to sub-rounded, medium	6		8		1 2 4 4	20*		Mod., stiff, gray, SILTY CLAY, trace, fine gravel, thinly laminated, gravel sub-angular to sub-rounded. (CL) Two fine SAND and SILT lenses ©25.2' and 25.5' medquick dilatancy (saturated) (SM)
27	plasticity, thinly laminated, occasional wet silt and sand layers. (CL.)	9	111111111111111111111111111111111111111	9		2368	17*	- -	Stiff, gray, SiLTY CLAY, trace, fine gravel, thinly laminated, mod. plasticity, moist, gravel sub-rounded to sub-angular, occ. med. gravel. (CL)
29		12		10	-	3 5 7 9	21*	-	Stiff, gray, SILTY CLAY, little, f-m gravel, thinly laminated, gravel sub-angular to sub-rounded, moist. (CL)
31		14		11		5 7 7 8	21*	-	Stiff, gray, SILTY CLAY, trace, fine gravel, gravel sub-rounded to sub-angular, moist, occ. m. gravel (CL)
33		16	111111111111111111111111111111111111111	12		4 7 9 12	10*	-	Stiff, gray, SILTY CLAY, trace, fine gravel, occ. med. gravel, moist, med. plasticity. (CL)
34		22		13		6 9 13 14	24"	- -	Hard, gray, SILTY CLAY, trace, fine, gravel med. plasticity, moist. (CL)
- 36 <u>-</u>	END OF BORING	L			·	Golder As	sociat	98	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79at

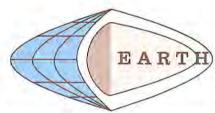
HOLE NO. <u>P3-03</u>

SURF. ELEVATION 1448.9

PROJECT Chaffee Landfill - Piezometer & gas probe install.

LOCATION Northing 6932.9 Easting 5808.5

Town of Sardinia, Erie Co., NY


CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 08/26/03 COMPLETED 08/27/03

DEPTH	BLOWS ON
INFT	SAMPLER

	NFT			IPLER				
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
f		10					WWW.	Extremely moist dark brown (1) 4" locking steel protective
Ī	18		19			24	0000	(SANDY-SILT) topsoil fill with 5 to 10% \$ casing installed in concrete.
				15		34	0000	gravel little sand and organic matter
					13		0000	compact, granular soil structure, (ML).
	2	9					0 00	0.3 5 5
	12		9			20	0000	Moist brown gravelly (SILTY-SAND) fill 4 + 3.0
				11		20	0000	with 15 to 40% gravel, very fine to
[11		0 00 0	very coarse size sand, little silt,
Ī	3	18						dense, massive soil structure, (SM). Moist grayish brown gravelly (STI TY-SAND) with 15 to 40% gravel
_ [10		6			14	0000	dense, massive son structure, (SM).
5-				8		1-4	000	Moist grayish brown gravelly
					16		600	(OLE) CANON MICH TO TO TON GLOVE OF COURT
	4	20					0000	occasional cobble, very fine to very coarse size sand, little silt, compact,
٠,	4		8			19	0.00	stratified, (SM).
				11		19		8.0
					11		0000	
Ì	5	37					6000	Moist grayish brown very gravelly
	8		00/3				0000	(SILTY-SAND) with 40 to 60% gravel,
							000	occasional cobble, very fine to very
10-							0000	coarse size sand, little silt, very dense, loose when disturbed, + 10.0
10	6	54					0.00.0	stratified, (SW), (GM).
	14		20			40	10000	\ clear transition to 10.5
				20		70	0000	Coarse silty topsoil fill with little
					17	Ì	0000	Coarse silty topsoil fill with little sand and organic matter with trace gravel to 0.3 feet over sandy soil fill with little to some gravel, little silt, dense, loose when disturbed, stratified, (SM), (GM). Coarse silty topsoil fill with little sand and organic matter with trace gravel to 0.3 feet over sandy soil fill with little to some gravel, little silt to 1.5 feet over water sorted and deposited sand with little to some gravel, little silt to 8.0 feet over water sorted
	7	23					6000	(SILTY-SAND) with 40 to 60% gravel, coccasional cobble, very fine to very sandy soil fill with little to some
	17		21			31	0000	coarse size sand, little silt, dense,
				10		٠,	000	loose when disturbed, stratified,
į					9		6000	coarse size sand, little silt, dense, loose when disturbed, stratified, (SM), (GM).
	8	14					0000	Silt to 8.0 feet over water sorted and deposited sand and gravel
15—	12		15			32	500	and deposited sand and gravel to end of boring.
				17			0000	$\frac{1}{2}$ to end of boring.
					20]	0000	SLOT
	9	12				}	0000	S O
	20		16			32	0000	
_				16		"-	10 x 0 x 1	
					18		6.00.3	
	10	13]	0000	
	20		17			31	0000	
٠.,			Γ	14]	00000 0000 00000	
20					11]	0000	Boring completed at 20.0 feet. + 20.0
20		<u> </u>						

Soil Borrow Area Logs

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 HOLE NO. SB-1-17 • FAX (716) 655-2915

HOLE NO. SB-1-1/

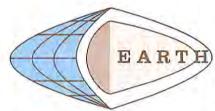
SURF. ELEVATION 1475.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939579.4

Town of Sardinia, Erie County, NY

Easting: 1171405.4


CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17 COMPLETED 11/08/17

DEPTH BLOWS ON IN FT SAMPLER

2A79cc

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	1					********	in the second control of the second		Silty topsoil fill with some clay
19	TT	2			0	*******	Moist to extremely moist brown (CLAYEY-SILT) topsoil fill with little	1 4 1 4 1 4	trace to little organic matter,
		-	3		5		clay, trace to little organic matter,		trace sand to 0.9 feet over
		11		3		0 _0 _	trace sand, firm, massive soil structure,		clayey slack water sediment,
2	4	-		1867	1		(ML-CL).	1 4 1 4 1 4	trace sand and gravel to 8.0
18	-4	7	1 11	-	1.0	00	0.9		feet over silty slack water
10		-	9		16	0 000	Extremely moist to moist gray		sediment with little sand, trace
			8	10		<u> </u>	(CLAYEY-SILT) with 3 to 7% gravel,	1 4 1 4 1 4	clay and gravel to 9.0 feet over clayey slack water sediment with
3	3			10	1	0 -00 -0	some clay, trace sand, stiff, weakly		trace sand and gravel to 31.9
13	-3-	5				0 -00 -0	thinly laminated, (CL).		feet over silty slack water
12		2	8		13	حمد حمد	WINDS AND SAND	1 4 1 4 1 4	sediment with little clay, trace
			d	10					sand and gravel to 34.0 feet
-	5			10		0 000			over clayey slack water sedimen
4	_5_	7				-AA-		1 4 1 4 1 4	with trace sand and gravel to
20	+	-	-		15	0 -a-0 -a			40.2 feet over coarse silty glacial drift with trace to little
-	-		-8	10		9	grades downward to 8.0		sand, trace clay to 40.7 feet
-	1/2	-	-	12	1	0 . 0 . 0	Moist gray (SANDY-SILT) with 3 to 7%	11 11 11 11 11	over water sorted and deposited
5	10					5 + 5 +	gravel, little sand, trace clay,	1 1 5	sand with some gravel, trace to
24		14	100	_	29	0 -00 -0	compact, massive soil structure, (ML).		little silt to end of boring.
_	-	-	15	2	100	-66-	grades downward to 8.5	1 4 1 4 1 2 1	
	-	-		9	1	· ·			Note: Advanced bore hole with 3 1/4" ID x 7" OD hollow stem auge
6	5	7		-	100	0 - 0 - 0	Moist gray (SILTY-SAND) with 3 to 7% gravel, trace to little silt, compact,		casing with continuous split
18	-	-			16		stratified, (SM).	1 = 11 = 11	spoon sampling to end of boring
-	-	-	9	14			grades downward to 9.0		at 44.0 feet. Bore hole was
-	-	-	-	14	1	0 _0 0 _0	L		tremie grouted to ground surface
7	6	-					Moist to extremely moist gray	" = " = " =	upon completion.
21	+	8			19		(CLAYEY-SILT) with 3 to 7% gravel, some clay, trace sand, very stiff and		Country Country
_	-		-11	74	-	0 000	stiff, weakly thinly laminated to thinly		Cement Bentonite Grout Mix
-	-	-		13	-	7	laminated with very thin coarse silt	1 = 1 = 1	94 lb portland cement
8	7					-AA-	lenses from 13.0 to 16.0 feet, (CL).		5 lb bentonite
21	-	6	- 6		14	0 -0 -0			7.8 gal water
-	-	-	8		4			1 = 11 = 11	A SALVE OF THE SAL
-	-	-		13	-				
9	5		-		1	0 0 0			
22		9			23			" = " = " = " = " = " = " = " = " = " =	
1.1			14						
11		-		14	1	0 0 0			
10	4				1			11 4 11 4 11 4	
23		8		-	18				
11.1	i i	(14)	10	11/	1	0 0 0			
	100		1.00	13		AB. AB.		11 11 11	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

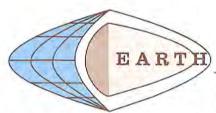
2A79cc HOLE NO. SB-1-17 • FAX (716) 655-2915

SURF. ELEVATION 1475.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939579.4

Town of Sardinia, Erie County, NY


Easting: 1171405.4

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17 COMPLETE

COMPLETED 11/08/17

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
11	2					9 o	11-4-1-1. Communication and a second		
19		6	7		, Value	a - a -	Moist to extremely moist gray	1 4 1 4 1 4	
10		- 0	12		18		(CLAYEY-SILT) with 3 to 7% gravel, some clay, trace sand, very stiff and	111111	
			12	-		0	stiff, weakly thinly laminated to thinly		
160	-			24			laminated with very thin coarse silt	11 4 11 4 11 4	
12	6_	112.1			153	+	lenses from 13.0 to 16.0 feet, (CL).		
22	-	8			24	0 -0 -0			
	-		_16	14		-		1 4 1 4 1 4	
		_		19		-4-		1 1111	
13	7					0			
20		_10_	-		27	<u> </u>		111111	
		-	17	-	100	-AA-			
	-			23	-	0		1 = 1 = 1	
14	- 6		-	-	1	***			
24	La de la	8		-	21	00		11111	
79-1	1 1		13_			0 0 0		1 = 1 = 1	
	-44			14				111151	
_15	4			- 100	1	00		B	
24	1 241	7			17	0 40 4		1 = 1 = 1	
7.11	-	1	10						
-1				12		0		1 2	
16	5		_			0 0 0		1 = 1 = 12	
24	-	8			20				
1			12		20	0 0	grades downward to 31.9		
				17	1			/ ニュージ	
17	5					* **	Moist to extremely moist brown		
24		7	2. 1		18	Q Q	(CLAYEY-SILT) with 3 to 7% gravel.		A
			11		1 10		little clay, trace sand, very stiff, thinly laminated with very thin coarse silt	11 = 11 = 11 =	
-				9	1		lenses, (ML-CL).		1
18	4				1	0, -00, -0	grades downward to 34.0		
24		6			100	0 00 0	L	11 = 11 = 11 =	
-			10		16		Moist to extremely moist gray		
1			10	12		0 -0 -0	(CLAYEY-SILT) with 3 to 7% gravel,	1 = 1 = 1 =	
19	5			12		0 0	some clay, trace sand, very stiff, weakly thinly laminated to thinly	11 11 11	
23		8	1		1	-	laminated, (CL).		
20		10	14		19	0	laminated, (OC).		
-	-	-	- 11	1	-	0 0		14141	
-	-	-		14	1				
20	6		-		1	0 -0 -0		1 = 1 = 1	
24	-	7	17.2	-	16			14 11 11 11	Water level at 40.0 feet below
	-	-	9	190	-			1 1 1 1	ground surface upon completion
-				10		، ه . ه		, , , , , , ,	S. Odroż sani przy skrzy. Zprobygory

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-1-17

2A79cc HOLE NO. SB-1-17

SURF. ELEVATION 1475.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939579.4

Town of Sardinia, Erie County, NY

Easting: 1171405.4

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17 CO

COMPLETED 11/08/17

		-	(0.1	10.1			The second of Asiana areas Asiana and Asiana	
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
21	8					0 0 0	Moist to extremely moist gray	(1) Cement bentonite grout
20		12				000	(CLAYEY-SILT) with 3 to 7% gravel,	1 = 1 = 1
			19		31	0000	some clay, trace sand, very stiff,	
				26		0000	weakly thinly laminated to thinly	
55.7	4	_	_	-26		0 0	laminated, (CL).	
5	_ R	164				0000	clear transition to 40.2	
5		17	1000		34	0000		
	-	-	17	13.6		0000	Moist brown (SANDY-SILT) with trace	1 4 1 4 1 4
_			-	21		00	to little sand, trace clay, compact,	+ 44.0'
			_				massive soil structure, (ML).	
							clear transition to 40.7	
			-				Extremely moist to wet brown gravelly	A / [1]
							(SILTY-SAND) with 20 to 40% gravel,	
							trace to little silt, compact, stratified,	
							(SM).	
					1		44.0	1
					1		Boring completed at 44.0 feet.	
					1		buring completed at 44.0 feet.	
	-		-	-	1			
_	-	-		-	1			
					1			
		_			-			
	-			-	4			
					1			
4 7								
1								
1 1				-	1			
					1			
				1	1			
			-		1			
-	_		-		1			
					1			
-			-	10000	1			
		_	-	-	4			
					-			
			-					
1		-						
			-					
				-	4			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-2-17

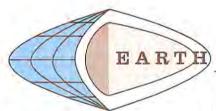
2A79cc

SURF. ELEVATION 1450.1

Chaffee Landfill Expansion - 10860 Olean Road PROJECT

LOCATION Northing: 939153.0

Town of Sardinia, Erie County, NY


Easting: 1170989.2

CLIENT McMahon and Mann Consulting Engineers DATE STARTED 11/06/17

COMPLETED 11/06/17

BLOWS ON DEPTH SAMPLER IN FT

SN	0/ 6	6/	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
KEU	- 0.1	-					The state of the s	1 = 11 = 11 =	
1	2	-	-	-		-4-	Extremely moist brownish gray		Coarse silty topsoil fill with little
17		2			9	0, -0, -0	(SANDY-SILT) topsoil fill with little		organic matter, trace to little
		-	7				organic matter, trace to little sand,	1 4 11 4 11 4	sand to 0.1 feet over clayey
			100	8		0 -00 -0	very loose, massive soil structure,	1 1 1 1 1	slack water sediment with trace
2	8					A	(ML).	1 = 11 = 11 =	sand and gravel to 7.9 feet over
20		7	100		10.2	- B-	0,1		silty glacial drift with little clay,
20	=	-			13	0 0 0	se sin in a service of the control field words		trace sand and gravel to 8.5
			6_				Moist to extremely moist light gray	11 4 11 4 11 4	feet over water sorted and
-	-	-		10		0 0	(CLAYEY-SILT) with 3 to 7% gravel,	- 1- 1-	deposited sand with little to
3	13					<u> </u>	some clay, trace sand, stiff, very stiff below 4.0 feet, weakly thinly	11 = 11 = 11 =	some gravel, little silt, occasional
13		13			26				cobble to end of boring,
7 4		-11	13			0 -00 -0	laminated, (CL).		Makes Advanced have halo (AM 2
- 1		-		14				1 1 1 1 1 1 1	Note: Advanced bore hole with 3
4	4		-	15.		0 -00 -0		1118	1/4" ID x 7" OD hollow stem auge
24	-4	-						11 = 11 = 110=	casing with continuous split spoon sampling to end of boring
24		6			13			11 21	at 15.7 feet. Bore hole was
_		-	7_			0 0 0	grades downward to 7.9	11 = 18=	tremie grouted to ground surface
				9		2. 9.2. 9	TO LATE OF THE PARTY OF TAXABLE	11 11 12/1	upon completion.
5	6					*	Moist olive brown (CLAYEY-SILT) with	- B	upon completion.
19		13			32	0000	3 to 7% gravel, little clay, trace sand,	1 = 1 = 1=	Cement Bentonite Grout Mix
-		120	19		32	0 0	very stiff, massive soil structure,	//////////	Cellent Bentonite Grout Mix
			-10	27		0000	(ML-CL).	リデルデー	94 lb portland cement
12	Wall			21		0,000	grades downward to 8.5	11 11 11	5 lb bentonite
6_	14			-	1.7	0000	Moist brownish gray gravelly		7.8 gal water
14		21		_	60	0000	(SILTY-SAND) with 20 to 40% gravel,	1 4 1 4 1 4	7.0 gar water
		-	39			0 0	occasional cobble, little silt, dense,		No water at completion.
				100/1		0000	stratified, (SM).	1 = 1 = 1 =	no nater at completion
7	11	-	-	1		0.000	1000000 200	11 11 11	
13		24			45	0000			
		-	21		45	0000		1 1 1 1 1	
-			-21	00		0 0		1 1 1 1	
17.0	-		-	29		0000		1 = 1 = 1	
8	13					0000		11 11 11	
12		21	-		54	0000	25.2		
1	11		33	1 1 11	17.	00000	15.7	1 4 1 4 1 4	÷ 15.7'
1.4.				100/3			Boring completed at 15.7 feet.	Tayana	- 10.7
		-		000			Botting completed at lost feet		
					1				
-				1					
			-						
		E						141	
10.1			-						

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-3-17

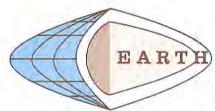
SURF. ELEVATION 1465.4_

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939165.9

Town of Sardinia, Erie County, NY

Easting: 1170624.5


CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/06/17

COMPLETED 11/07/17_

DEPTH IN FT BLOWS ON SAMPLER

SI		6	6/	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	-		1 1				********	11.301 10 0.11.200000 multiple album accept 12.		Coarse silty topsoil with little
6	1		2			13.	********	Moist to extremely moist dark gray to brown (SANDY-SILT) topsoil with little	121211	sand and organic matter, trace
				1.1		3	*******	sand and organic matter, trace root	- 3	root fiber to 1.9 feet over coarse
_	+	-	-	-				fiber, very loose, granular soil	1, 三1, 三店三	silty glacial drift with little to
-	-	-	_	-	_1_		0 0 0	, loer, very loose, grandlar son	11 11 11 11	some sand, trace to little gravel,
2	+	11					0000			trace organic matter to 2.3 feet
14	_	_	7			16	0000	grades downward to 1.9	11 = 11 = 112=	over water sorted and deposited
				9			0000	Moist to extremely moist brown	1 2	sand with some gravel, trace to
					8		0 00 0	(SANDY-SILT) with 5 to 15% gravel,		little silt with an occasoinal
3		12					0000	little to some sand, trace organic	1 1 1 1 1 1 1 1 1 1 1 1 1	cobble to end of boring.
16			14			25	0000	matter, compact, massive soil	// × ×	
				11		20	0 00	structure, (ML).	1 = 10=	
				17.4	12		0000	grades downward to 2,3	111111	
4	10	00/5			11 47 1	1	0000	Moist light brownish gray gravelly	11111	÷ 6.4'
2		10/0				1		(SILTY-SAND) with 20 to 40% gravel,	Carl act	
- 2	+		_			1		occasional cobble, trace to little silt,		Note: Advanced bore hole with 3
	+	-	_			1		compact, stratified, (SM).		1/4" ID x 7" OD hollow stem auge
_	-		_					6.4		casing with continuous split
	+	-	_	-	-	-		Deller remaining at 0.4 feet		spoon sampling to end of boring
-	-	-				-		Boring completed at 6.4 feet.		at 6.4 feet. Bore hole was
	+									tremie grouted to ground surfac
	-								1	upon completion.
			_							Cement Bentonite Grout Mix
				-					1	Cellent Bentonite Groot Mix
									N .	94 lb portland cement
										5 lb bentonite
	1					1				7.8 gal water
					1	1			Al .	110-21-111
						1				No water at completion.
	+	-				1				
-	+		-			1				
-	-		-			1			4	
-	-		-			1				
_			_			1				
_				1	1.7	4				
				1	-					
		. 1.								
		7 1	1							
						1				
	1	-				1				
-	+		-	-	1	1				
1					1				1	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. <u>SB-4-17</u>

2A79cc

1000

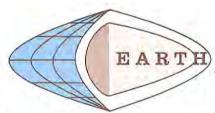
SURF. ELEVATION 1455.1

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 938974.3

Town of Sardinia, Erie County, NY

Easting: 1170495.7


CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/06/17

COMPLETED 11/07/17

DEPTH IN FT BLOWS ON SAMPLER

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	1					*********	AND A CONTROL COME AND POLICE		Coarse silty topsoil fill with little
12		2			2	Q . Q .	Moist to extremely moist dark brown (SANDY-SILT) topsoil fill with 3 to 7%	1 4 1 4 1 4	organic matter and sand, trace
14		-	3		5	• •	gravel, little organic matter and sand,	10 00 00	clay and gravel to 0.7 feet over
				6		9 0 0 0	trace clay, very loose, granular soil		silty soil fill with little sand and
2	_			-		0000	I structure, (ML).	11 4 11 4 11 4	clay, trace organic matter and
12	_3_	i de	_			0000	grades downward to 0.7	10 40 10	gravel to 2.0 feet over sandy
12	_	4_	-		7	0000			soil fill with some gravel, little silt
			3	-			Moist to extremely moist light brown (SAND-SILT-CLAY) fill with 3 to 7%	11 4 11 4 11 4	trace organic matter and clay to
-	-			3			gravel, little sand and clay, stiff,	1/1/1/1/1	end of boring.
3_	_4_				100	0000	massive soil structure, (ML-CL).		Note: Advanced bore hole with 3
14	-	3.		_	6	0 00 0	2.0	11 = 11 = 11 =	1/4" ID x 7" OD hollow stem auge
		A	_3_	-		V-0 0 -0 4			casing with continuous split
				4		0000	Moist, wet below 12.0 feet, brownish		spoon sampling to end of boring
4	8					0.00	gray gravelly (SILTY-SAND) fill with	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	at 16,0 feet. Bore hole was
12		_5_			10		20 to 40% gravel, little silt, trace organic matter and clay, loose,	1 9 9 16	tremie grouted to ground surface
			5		1	0000	massive soil structure, (SM).		upon completion.
				6		0 0	massive son structure, your	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Consider Country His
5	19					0000		Nage Nage	Cement Bentonite Grout Mix
12		16			26	0000		11 = 11 = 11	94 lb portland cement
		10.00	10			0.0			5 lb bentonite
	1			10		0000			7.8 gal water
6	27					0000		1 = 1 = 1	
11	197	15			31	0000			Note: No water in bore hole after
	7 1		16		31	0000			leaving augers in overnight at
	-		1	9	1	0 00 0		1 = 1 = 1 =	14.0 feet.
7	15				1	0000			
3	10	19			1.2	0.00.00		1 = 1 = 1 =	
-		19	7		26	0 00 0		11 11 11 11 11	
				8		0000		1 1 1 1	
_	-		-	-6		0000		1 = 1 = 1	I.
8	3	-				0 00 0		1 2 1 2 1 2	
0		3		-	7	0000			
-		-	4	-	1	0000	16.0	0 1 4 1 4 1 4	1 6 5.
-	-			5	4	~ ~ ~ ~ ~ ~	Device accordated at 16 0 tool	11111	← 16.0'
1		-		-	-		Boring completed at 16.0 feet.		
			-						
1	-	-	-						
-		-	-		-				
					1				
					1				
					1				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

HOLE NO. SB-5-1717 • FAX (716) 655-2915

SURF. ELEVATION 1459.5

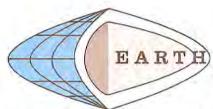
PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 937441.8

Town of Sardinia, Erie County, NY

Easting: 1170578.9

McMahon and Mann Consulting Engineers CLIENT


DATE STARTED 11/13/17

COMPLETED 11/13/17

DEPTH

BLOWS ON IN FT SAMPLER

SI	3.11	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1		2		-			********	AND A STREET AND ADDRESS OF THE STREET		Coarse silty disturbed topsoil
16			4	-11	V* - 1	100	*******	Moist to extremely moist brown disturbed (SANDY-SILT) topsoil with 3	1 2 1 2 1 2	with little sand and organic
-10			_4_	5		9	0000	to 7% gravel, little sand and organic		matter, trace gravel to 1.1 feet
			-		8		0000	matter, loose, massive soil structure,		over water sorted and deposited
	-	7	_		- 6			(ML).	1 1 1 1 1 1	sand with some gravel, little silt
2	_	7	12		-			1.1		to 6.0 feet over clayey slack
15	-	-	_5_	1 500		8	10000		11 - 11 -	water sediment with trace sand
-	-		_	3	100		0000	Moist brown gravelly (SILTY-SAND)		and gravel to 6.4 feet over
-	+		_	-	3		0 0	with 20 to 40% gravel, little silt, loose,	2 4 2 4 2	water sorted and deposited sand
_3		5					0000	stratified, (SM).		with some gravel, little silt with an occasional cobble to end of
13			4			7	0,000			boring.
			1	3		1	0.000	grades downward to 6.0	2 4 2 4 2	Donnig
					4		0000			Note: Advanced bore hole with 3
4		9	7.1	-			0000	, Extremely moist brownish gray		1/4" ID x 7" OD hollow stem auge
18	3		16			30	0000	(CLAYEY-SILT) with 3 to 7% gravel,	111111	casing with continuous split
				14] 30		some clay, trace sand, stiff, weakly	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	spoon sampling to end of boring
				200	17]	0 0	thinly laminated, (CL).	10 10 10 10 10 1	at 12.0 feet. Bore hole was
5		9		- 1	115	1	0000	clear transition to 6.4		tremie grouted to ground surfac
20		-	12			1	0.00	Moist brown gravelly (SILTY-SAND)	1 4 1 4 1 4	upon completion.
-			16	10		22	0 0	with 20 to 40% gravel, occasional	1 1 1 1 1 1 1	Cement Bentonite Grout Mix
	_	_		10_	8		0000	cobble, little silt, compact, stratified,		Cement Bentonite Glout Mix
1		3			0	1	0 00 0	(SM).	1 4 1 4 1 4	94 lb portland cement
15		3	5		-		0000		00000	5 lb bentonite
- 15	+	-	5_	-	-	12	0000		1 4 1 4 1 4	7.8 gal water
\vdash	+			7	1 2		0 000	12.0		
-	-				6	-	המהמה	Butter constituted at 10.0 feet	11 = 11 = 11 =	← 12.0'
-	-	_			-	-	17 17	Boring completed at 12.0 feet.		No codes at aspectation
-					-	-				No water at completion.
	_		_		-	-				
			-	-	-	-				
1				_		-			A.	
		91				1				
		- 1								
-										
	-1									
	-									
						1				
						1				
	+			1		1				
	+					1				
-	-		-	-	1	1				
-	-		-	-	-	+				
			1	1						

Soil and Hydrogeologic Investigations • Wetland Delineations

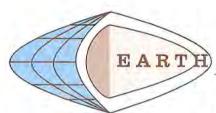
1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-6-17

2A79cc HOLE

SURF. ELEVATION 1469.0

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 937318.1


Town of Sardinia, Erie County, NY

Easting: 1169445.5

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/09/17 COMPLETED 11/09/17

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1766	2					***********			Coarse silty disturbed topsoil
17	-/-						Extremely moist brown disturbed	121111	with little sand, trace to little
1/_		4	-		9	××××××××××××××××××××××××××××××××××××××	(SANDY-SILT) topsoil with 3 to 7%	11 11 11	organic matter, trace clay and
-			_5_			9 0	gravel, little sand, trace to little	1 4 1 4 1 4	gravel to 1.2 feet over coarse
-	-			7		00.0	organic matter, trace clay, loose, massive soil structure, (ML).	12121	silty slack water sediment with
2	4			-		0 00		10 10 10 1	little sand, trace clay to 1.5 feet
12		4	100		9	0000	1.2	1 = 1 = 1	over silty glacial drift with some
			5			0.00	Extremely moist distinctly mottled	11 11 11	gravel, little sand and clay to 6.
				6		700 d	grayish brown (SANDY-SILT) with	4 1 4 1 1	feet over clayey slack water
3	4	10-00	-			O- 0	little sand, trace clay, loose, blocky	1 4 1 4 1 4	sediment with trace sand and
18		5			10	-00 O	soil structure, (ML).	10000	gravel to 16.7 feet over silty
10			7		12	0,00	1.5	1 = 1 = 1 =	slack water sediment with little
				14		00-0	Extremely moist grayish brown gravelly	1 4 1 4 1 4	sand, trace clay to 17.1 feet ove
4	3			14	1	9 9	(SAND-SILT-CLAY) with 20 to 40%	1 11 11	clayey slack water sediment with trace sand and gravel to 26.5
16	3	7					gravel, little sand and clay, stiff,	1 4 1 4 1 4	feet over water sorted and
10		1	F 0.5	-	17	-00-	weakly stratified to massive soil		deposited sand with some grave
_		-	10			0 0 0	structure, (ML-CL).		trace to little silt to end of
		-		13	1		grades downward to 6.0	1414	boring,
5	4					000		E	Softing,
18	1 11	8			19	0 _0 0 _0	Moist to extremely moist grayish brown	1 = 1 = 1	Note: Advanced bore hole with 3
	1 = 1	1000	_11		Le.		to brownish gray (CLAYEY-SILT) with	1 1 1 1 1 1 1 1 1 1 1 1	1/4" ID x 7" OD hollow stem augs
	100			15		0 -00 -0	3 to 7% gravel, some clay, trace sand, very stiff, weakly thinly laminated to	1 2	casing with continuous split
6	3						thinly laminated, (CL).	1 = 1 = 12	spoon sampling to end of boring
17	Thirt	7	-		17		thinly laminated, (oc).		at 30.0 feet. Bore hole was
1,000			10		1 "	0 -0 -0			tremie grouted to ground surfac
			10	14	1				upon completion.
7	5			14		0 -0 0 -0		1 1 1 1 1 1	a section and the
20	5	7	_	_		0 0		1 = 1 = 1 =	Cement Bentonite Grout Mix
20		1		-	- 16	+ <u>b-</u> + <u>b-</u>		11 11 11 11	Od lb postland coment
-	-	+	9	T.0.5	1	0 _ 0 _ 0			94 Ib portland cement 5 Ib bentonite
	-	-	-	11	-	0 0		1 = 1 = 1	7.8 gal water
8	3		_	100	4				The Sai Water
22	-	5	-		- 11	0			No water at completion.
	-		6			-AA		11 11 11 11	10-2 (13-12) 24 - 24 (15-12)
	1	1		8		00		1 1 1 1	
9	5					0 0 0	grades downward to 16.7	1 = 1 = 1 =	
22		8			15	MARKER	. Moist to extremely moist gray	1 4 11 11	
			7	100	15	00	(SANDY-SILT) with little mostly very		
			1	9	7		! fine to fine size sand, trace clay,	1 = 1 = 1 =	
10	3	1	100	0			compact, massive soil structure, (ML).	"""""	
10	3	1			1	0 -0 -0	grades downward to 17.1	2020	
23	-	4		-	- 11		Grades downward to 11/3		
_	-	+	7		-	0 -0 -0	See next sheet		
				17		- y	222 U.S. 2022.	, ,, ,, ,, ,,	

Soil and Hydrogeologic Investigations • Wetland Delineations

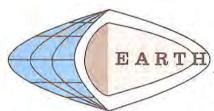
1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-6-17

2A79cc HOLE NO. SB-6-17

SURF. ELEVATION 1469.0

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 937318.1


Town of Sardinia, Erie County, NY

Easting: 1169445.5

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/09/17 COMPLETED 11/09/17

SN		B/ 12	12/ 18	18/ 24	Z	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
11	2		7			0	Mater to automobile molet error	
23	-	4			131	0 0	Moist to extremely moist gray (CLAYEY-SILT) with 3 to 7% gravel,	1 4 1 4 1 4
		- "	5		9	- B B-	some clay, trace sand, very stiff,	
	1					0	weakly thinly laminated to thinly	
			-	-8		حمد حمد	laminated, (CL).	
12	- 3	E.L.V.			14	خد مد م	Tomin action 100%	
23	-	6		-	17	0 00 0		1 = 1 = 1 = 1
	_	_	_11			-A-		
-	-	-		13		0 0		
13	4					0 000		V = V = V=
22		7			17	-aa-		
			10		1 46	00		
			7714	14			An Annual III	// // // ///
14	7					-AA-	grades downward to 26.	.5
20		20			10	0000	Moist brown gravelly (SILTY-SAND)	
	7		26		46	0000	with 20 to 40% gravel, trace to little	
				23		0000	silt, dense, stratified, (SM).	
15	11			-23		0000		1 1 1 1
18	u_	19				0000		
10		18			38	0000		
	+	1	19	2.50		0000	30.	0 2 4 1
-	-		-	24	1	0.00.00	Boring completed at 30.0 feet.	- 30.0°
-	-	-	-		1		Boring completed at 50.0 reet.	
-	-	-	_		1			
		-			1			
			-	-				
				-				
					1			
1	- 1	1	-	24-				
			_					
	11							
	-							
					1			
					1			
	1	1	1		1		10.00	
-	1				1			
	-	+		-	1			
-	-	+						
-		-		-				
		1						

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

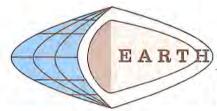
HOLE NO. SB-7-17 • FAX (716) 655-2915

SURF. ELEVATION 1455.5

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 937307.3

Town of Sardinia, Erie County, NY


Easting: 1169790.8

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/13/17

COMPLETED 11/13/17

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	4			-			Moist to extremely moist brown		Coarse silty disturbed topsoil
16	1. 6.1	6) T	13		disturbed (SANDY-SILT) topsoil with	1414	with little sand and organic
		-1.4-	7		13	0	little sand and organic matter, loose,		matter to 1.0 feet over clayey
		1	EV.	8		0 0 0	massive soil structure, (ML).		slack water sediment with trace
2	8	-				0 -0 -0	1.0	141414	sand and gravel to 11.8 feet over
22	20	8			17	0 0	Moist to extremely moist distinctly		water sorted and deposited sand with some gravel, trace to little
- 11		111	9		ı,	-4-	mottled light grayish brown	2020	silt with an occasional cobble to
1	1			10		مد مده	(CLAYEY-SILT) with 3 to 7% gravel,	121111	end of boring.
3	4				1. 1	0 0 0	some clay, trace sand, stiff, weakly		
20		6			15		blocky soil structure, (CL).	11 11 11	Note: Advanced bore hole with 3
			9		15	مد ممد م	grades downward to 2.0	12121	1/4" ID x 7" OD hollow stem auge
			- 64	11		0 -0 0 -0	Moist to extremely moist brown		casing with continuous split
4	3		V-1	- "			(CLAYEY-SILT) with 3 to 7% gravel,	0 10 12	spoon sampling to end of boring at 16.0 feet. Bore hole was
20		4			100	مد مصر	some clay, trace sand, very stiff,	1 1 1 E	tremie grouted to ground surface
		-	В		12	0 0	weakly thinly laminated with very thin	1111111111	upon completion.
				14			coarse silt lenses and nearly vertical		
5	4			10 -		-0-0-	gray desiccation cracks, weakly thinly laminated below 8.0 feet, (CL).	10000000000000000000000000000000000000	Cement Bentonite Grout Mix
21	7 -	8				0	laminated below 6.6 feet, (CE).		
			12		20				94 Ib portland cement 5 Ib bentonite
			16	17					7.8 gal water
6	4					0 - 0 - 0		1 1 1 1 1 1	7.0 gai water
22	- 1	9			00				No water at completion.
			19		28	-4-	clear transition to 11.8		
	1		10	36		200		11 11 11 11	
7	9	-		-		0000	Moist brown gravelly (SILTY-SAND)		
14		17	1		-	0000	with 20 to 40% gravel, occasional cobble, little silt, dense to very dense,		
	100	11	34		51	0000	stratified, (SM).	11 11 11 11	
	3.5		24	100/4		0000	stratified, (3M).		
8	4			100/4	1	0000			
17		21	9.14	1	200	0000		1 = 11 = 11 =	
	-	-61	18		39	0000	N	100000	
			,,,	21	1	0000	16.0		r 16.0°
- 1							Boring completed at 16.0 feet.	1 3 3 7 6 5	- 10.0
							Proceeding administration of page (Appen)	Maria San	
	1								
1					1			1	
				_					
					1				
1	6	133			1				
			-		1				

Soil and Hydrogeologic Investigations • Wetland Delineations

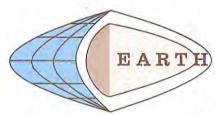
1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-B-17

2A79cc HOLE NO

SURF. ELEVATION 1450.6

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 936950.7


Town of Sardinia, Erie County, NY

Easting: 1169803.5

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/13/17 COMPLETED 11/13/17

SN	0/ 6	6/	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	4					**********	District Control of the Falls		Coarse silty disturbed topsoil
16	10	2	7.1		-2		Moist to extremely moist brown disturbed (SANDY-SILT) topsoil with		with little sand and organic
,0		-	7	7	9		little sand and organic matter, trace		matter, trace clay to 1.2 feet
				_		9 9	clay, very loose, massive soil structure,		over water sorted and deposited
	7.5			6_		-	(ML).	1 4 1 4 1 4	sand with little silt, trace gravel
2	4		_				1.2	1 11 11	to 2.0 feet over silty slack water
17		6			14	7_ (7_		1 4 1 4 1 4	sediment with little clay, trace
		_	8			10.00 m	Moist to extremely moist light brown		sand to 3.6 feet over water
				11		0000	(SILTY-SAND) with 3 to 7% gravel.		sorted and deposited sand with
3	3					0 0	mostly fine size sand, little silt, loose,	1 4 1 4 1 4	little gravel, trace to little silt to
16		4			7	0, _0, _0	weakly blocky soil structure, (SM).	11111	4.5 feet over clayey slack water
		175	3	100	1 '	0 0 0	grades downward to 2.0	1 = 1 = 1	sediment with trace sand and
			100	4	1	0000	Moist to extremely moist distinctly	11 11 11 11	gravel to 5.5 feet over water
4	4				1	0 0	mottled to highly mottled, light	- S- 3	sorted and deposited sand with
2	-4	4				0000	brownish gray, (CLAYEY-SILT) with	11 美原	little gravel, trace to little silt to 8.0 feet over clayey slack water
- 6		4	-		9	0 00 0	little clay, trace sand, stiff, weakly		sediment with trace sand and
			5		4	0000	blocky soil structure, (ML-CL).		gravel with an occasional thin
	-	-	_	5	-	0 0	clear transition to 3.6	1414	silty sand interbed to 9,8 feet
5	3					==			over water sorted and deposited
19		4			- 11		Moist brown (SILTY-SAND) with 10 to	ルデルデル	sand with little gravel, trace to
			7		100		20% gravel, trace to little silt, loose,		little silt to end of boring.
				10		0 . 6 0 . 6	stratified, (SM).		a mand on the corporational and
6	4						clear transition to 4,5	1 = 1 = 1 =	Note: Advanced bore hole with 3
17	7 100	7		-	18	0 60 6	Moist to extremely moist light brown		1/4" ID x 7" OD hollow stem auge
			- 11		1 10	0 60 6	(CLAYEY-SILT) with 3 to 7% gravel,		casing with continuous split
	1 1		-"-	10		3. 3.	some clay, trace sand, firm, weakly	111111	spoon sampling to end of boring
7	-			10		0 60 6	thinly laminated, (CL).		at 16.0 feet. Bore hole was
_	6	14	-	-	H.		clear transition to 5.5	1 = 1 = 1	tremie grouted to ground surface
14		6		-	13	9 9	White have a COLLEY CAND WILL TO be		upon completion.
		-	7		-	0 60 6	Moist brown (SILTY-SAND) with 10 to		Walter of Company
				9	1	9	20% gravel, trace to little silt, loose, !! stratified. (SM).	1 4 1 4 1 4	No water at completion.
8	- 11	_				0 60 6		11111111	
14		7			17		grades downward to 8.0	1 = 1 = 1 =	
17 11			10		W.	9. 9.	Extremely moist light brown	141414	
				9		0 60 6	(CLAYEY-SILT) with some clay, trace	11111	÷ 16.0'
					1	The state of	sand, stiff, thinly laminated with very		10.0
			F	11			thin coarse silt lenses and occasional thin (SILTY-SAND) lense, (CL) with an		Cement Bentonite Grout Mix
	-		-		1		occasional thin (SM) interbed.		94 lb portland cement
-	-	-			-		clear transition to 9.8		5 lb bentonite
-		-			-				7.8 gal water
	_	-			-				
		-		-	1		Con your shoot		
	7						See next sheet	1	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road · Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-8-17

SURF. ELEVATION 1450.6

Chaffee Landfill Expansion - 10860 Olean Road PROJECT

LOCATION Northing: 936950.7

Town of Sardinia, Erie County, NY

Easting: 1169803.5

McMahon and Mann Consulting Engineers CLIENT

DATE STARTED 11/13/17

COMPLETED 11/13/17

DEPTH IN FT

2A79cc

BLOWS ON SAMPLER

SN REC	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
							Moist brown (SILTY-SAND) with 10 to 20% gravel, trace to little slit, compact, stratified, (SM). Boring completed at 16.0 feet.	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

HOLE NO. SB-9-1717 • FAX (716) 655-2915

SURF. ELEVATION 1455.7_

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 937136.9

Town of Sardinia, Erie County, NY

Easting: 1170260.4

McMahon and Mann Consulting Engineers CLIENT

DATE STARTED 11/13/17

COMPLETED 11/14/17

DEPTH IN FT BLOWS ON SAMPLER

SN	0/ 6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	2				17.6	********	Molet to extremely malet brown		Coarse silty disturbed topsoil
18		2		j.	10		Moist to extremely moist brown disturbed (SANDY-SILT) topsoil with 3	1 4 1 4 1 4	with little sand and organic
			3		5	0000	to 7% gravel, little sand and organic		matter, trace gravel to 1.0 feet
	-		-3-	7		000	matter, loose, massive soil structure,		over water sorted and deposited
100				-	1		(ML).	121211	sand with some gravel, little silt,
13	7	10				0 00 0	1.0		trace clay with an occasional
13		5_	100	-	14	0000		1 1 1 1 1 1 1 1 1 1 1 1	cobble to 6.0 feet over water
_		_	9_			0000	Moist brown gravelly (SILTY-SAND)	111111111111111111111111111111111111111	sorted and deposited sand and
	-	-		8		0 000	with 20 to 40% gravel, occasional cobble, little silt, trace clay, loose,		gravel with trace silt and an occasional cobble to 8.0 feet
3	3	_			1	0000	stratified, (SM).		over water sorted and deposited
10		2			4	0000	stratified, (SM).	11 11 11	sand with some gravel, little silt,
_			2			0 00	grades downward to 6.0		trace clay with an occasional
				6	1	0000		1 = 1 = 1	cobble to end of boring.
4	16				4	0.0	Moist brownish gray very gravelly		
8		22			35	6:00	(SAND) with 40 to 60% gravel,		Note: Advanced bore hole with 3
			13		30	000	occasional cobble, trace silt, dense,	1 4 1 4 1 4	1/4" ID x 7" OD hollow stem auge
				10		0:00:	stratified, (GM).		casing with continuous split
5	3		-	hu.		0000	grades downward to 8.0	1 = 1 = 1	spoon sampling to end of boring
12		6			1	0 00	Moist brown gravelly (SILTY-SAND)	1 4 1 4 1 4	at 10.0 feet. Bore hole was
	1 -		12	-	18	00.00	with 20 to 40% gravel, occasional	1 1 1 1 1	tremie grouted to ground surface upon completion.
			16	8		0 00	cobble, little silt, trace clay, compact,	1 = 1 = 1	
				10			↑ stratified, (SM),		← 10.0'
-					1		10.0	1	Cement Bentonite Grout Mix
-				+	-		Boring completed at 10.0 feet.		Cement Bentonite Grout Mix
-	-	-		-	-		Botting completed at loss forti		94 lb portland cement
-	-	-	-	-	-				5 lb bentonite
-			-	-	-				7.8 gal water
		-			-				
			_	-	-				No water after augers left in
			-	-	4				overnight at 8.0 feet.
11)						1	
147			= 1						
			1						
			1						
-				1					
-		1		1					
-	-	-		1	-				
-	-	-	-	-	-				
	-	-		-	-				
			11-	44.	4				
				4		14			

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 HOLE NO. SB-10-17 • FAX (716) 655-2915

SURF. ELEVATION 1471.3

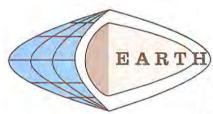
Chaffee Landfill Expansion - 10860 Olean Road PROJECT

LOCATION Northing: 936420.0

Town of Sardinia, Erie County, NY

Easting: 1169470.0

McMahon and Mann Consulting Engineers CLIENT


DATE STARTED 11/09/17

COMPLETED 11/10/17

BLOWS ON DEPTH SAMPLER INFT

2A79cc

SN	0/ 6	6/	12/ 18	18/ 24	Z	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
1	2			-		********	M. (A Day of Black of CANDY CILT)		Coarse silty disturbed topsoil
17		4			1.5		Moist brown disturbed (SANDY-SILT) topsoil with little sand and organic	1 4 1 4 1	with little sand and organic
		-4	6		10	*********	matter, trace clay, loose, massive soil	11 11 11	matter, trace clay to 1.3 feet
			b	q		0 -00 -0	structure, (ML).		over clayey slack water sedimen
ri a Ti	100			9		0 000	1.3		with trace sand and gravel to
2	2	-50		-	14	<u> </u>			16.7 feet over water sorted and
20	-	4			8	0 -00 -0	Extremely moist to moist brown	2 0 2 0 2 1	deposited sand with little silt to
-	-		4	70.0		0 00 0	(CLAYEY-SILT) with 3 to 7% gravel,		17.3 feet over clayey slack wate
	-	-		-6			some clay, trace sand, firm to stiff, very stiff below 6.0 feet, blocky soil	0 00 00	sediment, trace sand and gravel
3	4					0 _0 _0	structure, (CL).	V == 1/ == 1/ ==	to 22.1 feet over coarse silty glacial drift with some sand,
19		8			17	9 9	structure, (CL).		trace silt to 22.5 feet over wate
			9	100	1				sorted and deposited sand with
		1_1	a dan	12	1	0 -00 -0			some gravel, trace to little silt to
4	5		_	100					end of boring.
19		8			20	عد بعد			5117 TO 11717
			12		20	0 _0 _0		121211	
				19			grades downward to 8.4		
5	7			100	1	0 _0_0	grades downward to 0.4	1 = 1 = 1B=	
16		8.			14	0	Moist to extremely moist gray	11 11 15/1	
10		10	9		17	0 0 0	(CLAYEY-SILT) with 3 to 7% gravel,		
_			9	100	1	<u> </u>	some clay, trace sand, very stiff,	1 = 1 = 18	
	12.1			12	1	9 0	weakly thinly laminated to thinly	" " Z/I	PART OF THE STATE OF THE STATE OF
6	3				1	0 0 0	laminated, (CL).		Note: Very thin coarse brown sil
18		4	1.01	-	9			1/11/11/11/11/11/11	lense at 10.5 feet.
	-	-	5		4	0 -00 -0			Note: Advanced bore hole with 3
_		-		7					1/4" ID x 7" OD hollow stem augs
7	2							141414	casing with continuous split
18		4			10	0			spoon sampling to end of boring
			6		(3)			1 = 1 = 1	at 26.0 feet. Bore hole was
- 1		100	-	7				1 1 1 1 1	tremie grouted to ground surfac
8	3					0 0 0			upon completion.
21		4			10	+		1 = 11 = 11 =	
			6		10	0 0			Cement Bentonite Grout Mix
			×	9	1	0 0			AA M SSSHOOT SSS
9	7				1		grades downward to 16.7	1 4 1 4 1 4	94 lb portland cement
18	-				100	0 0			5 lb bentonite
10	-	9			- 20	1000	Moist gray (SILTY-SAND) with mostly	1 = 11 = 11	7.8 gal water
-	-	+-	11	1 100	+	0 -0 -0	very fine to fine size sand, little silt,	1111111	No water at completion.
1			-	12	-	0 0	compact, massive soil structure, (SM).		The moter of completions
10	5	Mary -	_		-	-AA-	17.3		
0	15	8			20	0 -00 -0			
400			12				was tank atan		
11 = 1			1	15			See next sheet	11 11	

Soil and Hydrogeologic Investigations • Welland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

HOLE NO. SB-10-17 • FAX (716) 655-2915

SURF. ELEVATION 1471.3

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 936420.0

Town of Sardinia, Erie County, NY

Easting: 1169470.0

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/09/17

COMPLETED 11/10/17

SN REC	6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
11	5					0 -00 -0	Moist to extremely moist gray	
19	7	7			18	0 0 0	(CLAYEY-SILT) with 3 to 7% gravel,	1 = 11 = 11 = 11
			11	-	10		some clay, trace sand, very stiff,	
			0.1	13		0	weakly thinly laminated to thinly	1 1 1 5
12	16		-			(BED) CONTRACTOR	\ laminated, (CL).	/ = // = /E
20	11.7	19				0000	clear transition to 22.1	[[,,,,],,,,,]
		181	25		44	0000	Moist to extremely moist brown	
			-25	41		1.0000	(SANDY-SILT) with some mostly very	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				41		0000	fine to fine size sand, trace silt,	
13	_16_	20				0.00	dense, massive soil structure, (ML).	
13		30			83	0000	clear transition to 22.5	51, 4, 4, 4, 24
-	-		53	20			Male A provide Brown to brownish orange	
				39		0.000	Moist grayish brown to brownish gray gravelly (SILTY-SAND) with 20 to 40%	+ 26.0'
		-		-	1		gravel, trace to little silt, dense to	
-				_			very dense, stratified, (SM).	
_					1		26.0	
		-		-				
	_				1		Boring completed at 26.0 feet.	11
					1			
	1							
	1-1					1 1		
-								
-								
-								
			-		1			
17					1			1
					1			
		-			1			
					1			
	-	-	1		1			
	-	-		-	1		N. C. C. C. C. C. C. C. C. C. C. C. C. C.	
-	-	1	-		4			
-	-	-			-			
-				-	-		N I	
	-	-			-			
	-							
11 -								
	1		7 -					
	7 -							

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79cc

SURF. ELEVATION 1445.0

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 936533.4

Town of Sardinia, Erie County, NY

Easting: 1169820.3

McMahon and Mann Consulting Engineers CLIENT

DATE STARTED 11/10/17

COMPLETED 11/10/17

BLOWS ON DEPTH SAMPLER IN FT

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		ATER TABLE AND REMARKS
	5	-		1500		***************************************		C	oarse silty disturbed topsoil
14		1.7			10		Frozen to extremely moist dark brown	111111111111111111111111111111111111111	ith little sand and organic
14		_4_	-		9	**********	disturbed (SANDY-SILT) topsoil with		atter, trace clay to 1.2 feet
-			_5_			MAKKEE	little sand and organic matter, trace clay, loose, massive soil structure,	" " " " " " " " " " " " " " " " " " "	ver disturbed silty slack water
	-			_6_		000	(ML).	1 41 41 0	ediment with little sand, trace
2	_5_					0000	M 72700		rganic matter and clay to 2.0
18		6			11	0000	1.2	121111111111111111111111111111111111111	eet over water sorted and
		1	5			0 0	Moist to extremely moist brown		eposited sand with little to
-				- 11		0000	disturbed (SANDY-SILT) with little	S S	ome gravel, little silt, trace clay
3	7	-				0 00 0	sand, trace organic matter and clay.	S S S S	o end of boring.
17		8			1 6	0000	loose, blocky soil structure, (ML).	1 20 00	
		1 4	7		15	0000	grades downward to 2.0	" " " " " " " " N	lote: Advanced bore hole with 3
				9	1	0 0			/4" ID x 7" OD hollow stem auge
- 1	-			9_	1		Moist brown (SILTY-SAND) with 15 to 30% gravel, little silt, trace clay,	/ / / / / / /	asing with continuous split
4	7	-					compact stratified (SM)	/ 1 / 1 / BL S	poon sampling to end of boring
19	-	7		_	16	0000	compact, stratified, tom.	THE THE T	it 12.0 feet. Bore hole was
			9		1	0000		t	remie grouted to ground surfac
				8_		0 0			pon completion.
5	3	-	1	- 1		0000		12 12 11	Secret Perfection Count Will
10	1 1	4			10	0000		1 = 1 = 1 = 1	Cement Bentonite Grout Mix
			6		IO	0000		100001	04 lb portland cement
			-	8		0000			i Ib bentonite
6	4			-	1	0 00 0		1 - 11 - 17	'.8 gal water
12	4	-			1	0000			io gai mater
12		5			- 11	0000		1 4 1 4 1 4	lo water at completion.
		-	6		-	0 00	12.0		
-	1	-		5	4	0000	4-20-20-20-20-20-20-20-20-20-20-20-20-20-	1 = 11 = 11 = 1	- 12.0'
	-	_			-	1 - 1 - 1 - 1	Boring completed at 12.0 feet.	10000	
1	1								
1 - Y	1								
					1				
					1				
-		-			1				
-	-	-			1				
-		-	-	-	-				
1	-		-		-				
11.					1				
	-								
1			1						
					1				
					1				

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059

2A79cc

HOLE NO. SB-12-17 • FAX (716) 655-2915

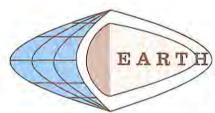
SURF. ELEVATION 1458.0

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939164.4

Town of Sardinia, Erie County, NY

Easting: 1170723.1


CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17_

COMPLETED 11/07/17

DEPTH BLOWS ON SAMPLER IN FT

SN	6	6/	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
Y.C.	2			111		********	CONTRACTOR CONTRACTOR AND AND AND AND AND AND AND AND AND AND		City tennal fill with little alay
17	-	3			Į į	0000	Moist to extremely moist light brownish	1 4 1 4 1 1	Silty topsoil fill with little clay, trace sand and organic matter to
-V		_3_	1		9	6_6_6	gray to olive brown, (CLAYEY-SILT) topsoil fill with little clay, trace sand	0.4 feet over sandy soil fill with	
-		_	-6-	-	11	<u> </u>	and organic matter, firm, massive soil		little silt and gravel, trace clay
7.1	10.0	_	-	_7		8 6	structure, (ML-CL).		"" " to 1.1 feet over clayey slack
2	2	-				8 8 8	0.4		water sediment with trace sand
22		3			8	I+ II+ I			and gravel to 3.3 feet over
			_5	. V		00000	Extremely moist to wet brownish gray	1 2 11 2 11 2	water sorted and deposited sand
-		-	-	_8_			(SILTY-SAND) fill with 10 to 20% gravel, little silt, trace clay, compact,		with little to some gravel, trace to little silt with an occasional
3	_17_		-	-		b 0 0 0 d	massive soil structure, (SM).	1 = 1 = 1	cobble to 6.2 feet over silty
<1		39	1000			O O O O I MOSSITE SOM STITUTE TO THE	11 11 51	glacial drift with little sand and	
-		-	100/3	-		0 00	1.1	1 86/1	clay, trace gravel to 7.5 feet
						0000	Moist to extremely moist gray	1 3 m	over clayey slack water sedimen
4	12					4 04 0	(SILTY-CLAY) with 3 to 7% gravel,	11 - 11 - 11	with trace sand and gravel to
20	W.F. (15			23		trace sand, stiff, weakly thinly laminated, (CL).		10.7 feet over water sorted and
- 19		11 12	8		1 6	0 0	J. M. B. B. B. B. B. B. B. B. B. B. B. B. B.	1 = 11 = 11	deposited sand with some gravel
				8			grades downward to 3.3		little silt with an occasional
5	3			+ 1 +		0 _0 0 _0	Moist brown gravelly (SILTY-SAND)		cobble to end of boring.
7	1	5			10	<u> </u>	with 20 to 40% gravel, trace to little		Note: Advanced bore hole with 3
			5			-00-	silt, occasional cobble, dense,		1/4" ID x 7" OD hollow stem auge
1			-	7		0 0 0	stratified, (SM).		casing with continuous split
6	77					<u> </u>	grades downward to 6.2 Moist to extremely moist light brown	1 = 1 = 1 =	spoon sampling to end of boring
17		23			54	1 0000			at 14.0 feet. Bore hole was
	- 1	-	31		34	0.0	(SAND-SILT-CLAY) with 5 to 10%		tremie grouted to ground surfac upon completion.
			100	34		0000	gravel, little sand and clay, mostly		
7	13					0000	very fine to fine size sand, very stiff,		
19		22			57	0.0	massive soil structure, (ML-CL).		
p-A		-	35		5/	0000	grades downward to 7.5	1 4 1 4 1 4	
				38		0 00 0	Moist to extremely moist gray		+ 14.01
				30	1		(CLAYEY-SILT) with 3 to 7% gravel,		17.0
							some clay, trace sand, stiff, thinly		Cement Bentonite Grout Mix
							laminated to weakly thinly laminated,		
_							(ML-CL).	.1	94 lb portland cement
-		-	100		1		clear transition to 10.7	6	5 lb bentonité
		1	-		1		Moist brown gravelly (SILTY-SAND)		7.8 gal water
-	-	1			1		with 20 to 40% gravel, little silt,		Ma crates at assessment
					1		occasional cobble, very dense,		No water at completion.
		-	-	-	-		stratified, (SM).		
			-	-	-		14.0)	
		-		-	-		Boring completed at 14.0 feet.		
	1			1	1		20 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IV.	

Soil and Hydrogeologic Investigations • Wetland Delineations

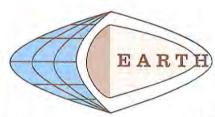
1091 Jamison Road • Elma, NY 14059 HOLE NO. SB-13-17 • FAX (716) 655-2915

2A79cc Chaffee Landfill Expansion - 10860 Olean Road SURF. ELEVATION 1459.9

PROJECT

LOCATION Northing: 939260.9

Town of Sardinia, Erie County, NY


Easting: 1170682.2

McMahon and Mann Consulting Engineers CLIENT

DATE STARTED 11/07/17 COMPLETED 11/07/17

BLOWS ON DEPTH SAMPLER IN FT

SN	6	6/	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
1	2					*********	Majed to putromply majed dark gray to		Silty topsoil fill with little clay,
20		2		1 - 1	1.0		Moist to extremely moist dark gray to grayish brown (CLAYEY-SILT) topsoil		trace sand and organic matter to
		-	3		5		fill with little clay, trace sand and		0.5 feet over silty soil fill with
			,	4		مد مب	organic matter, soft, massive soil	100000	some clay, trace sand to 1.3 feet over clayey slack water sediment
				4		0 -0 -0	structure, (ML-CL).	1 4 1 4 1 4	
20	3_	2.0	_		100	0 00	0.5	100001	with trace sand and gravel to 2.3
20		4	I book		10	0 00			feet over silty slack water
		-	6_			4 4	Moist to extremely moist gray to dark	1 4 1 4 1 4	sediment with little sand and
		_			1	a . a	gray (CLAYEY-SILT) fill with some	1 2 4 2 4 2	clay, trace gravel to 6.5 feet
3	2						clay, trace sand, firm, massive soil structure, (CL).	1 4 1 4 11 4	over water sorted and deposited sand with some gravel, trace to
20	-	5			13	•	AL MAN DESCRIPTION OF STATE	11 11 11	little silt to 7.0 feet over silty
			8			<u>a</u> . a .	1.3	100000	slack water sediment with some
-			11-71	15			Moist to extremely moist grayish brown	11 21 21 2	clay, trace sand and gravel to
4	6					0 0	(CLAYEY-SILT) with 3 to 7% gravel,		15.2 feet over silty slack water
22	-	8			16	10000	some clay, trace sand, stiff, weakly		sediment with little clay, trace
			8] "	-00-	thinly laminated, (CL).	1 4 1 4 104	gravel to 15.7 feet over water
				12		0 -0 0 -0	grades downward to 2.3		sorted and deposited sand with
5	5		1				Moist to extremely moist gray	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	some gravel, trace silt with an
16	1	6			14	0 -0-0 -0	(SAND-SILT-CLAY) with 3 to 7%		occasional cobble to end of
		-	8		14	0 00 0	gravel, little sand and clay, stiff, very	/ N/ Z	boring.
	-			10	1		weakly thinly laminated to massive soil	1 = 1 = 100	Note: Advanced bore hole with 3
6	6				1	0 _ 0 _ 0	structure, (ML-CL).	1414	1/4" ID x 7" OD hollow stem auge
2	-	8			1 2	0 0	grades downward to 6.5		casing with continuous split
-		0	9		17	<u> </u>	Moist gray gravelly (SILTY-SAND)		spoon sampling to end of boring
-			9	13	1	0 0	with 20 to 40% gravel, trace to little	1111111	at 18.0 feet. Bore hole was
	-			13	1	0 0	silt, dense, stratified, (SM).	11111	tremie grouted to ground surfac
7	3	-				-44-	grades downward to 7.0	1 4 1 4 1 4	upon completion.
17		4	-	-	12	0,	L		Conset Bastonite Count the
-	-	-	8		-		Moist to extremely moist gray (CLAYEY-SILT) with 3 to 7% gravel.	00000	Cement Bentonite Grout Mix
				10	-		little to some clay, trace sand, very	1 = 1 = 1 =	94 lb portland cement
8	6	-		-	-	0 -0 -0	stiff, very weakly thinly laminated to		5 lb bentonite
20		8			25		massive soil structure, weakly thinly	100000	7.8 gal water
	11	-	17		-	6 a 6 a	laminated with very thin coarse silt	"""""	
				40		0000	lenses below 9.0 feet, (ML-CL).		No water at completion.
9	23			100		0.0	grades downward to 15.2	5 11 = 11 =	
13		25			64	0000	Moist to extremely moist brown	1 4 1 4 1 1	
-		Victor	39	1	04	0000	(CLAYEY-SILT) with 3 to 7% gravel.		
			112	41	1	0000	little clay, very stiff, weakly thinly	11 = 11 = 11 =	← 18.0'
					1	2	laminated, (ML-CL).	11/10/	17.18
		-					grades downward to 15.1	7	
	1						L		
-	-	+	-	-	-		See next sheet	V .	

Soil and Hydrogeologic Investigations • Wetland Delineations

1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915 HOLE NO. SB-13-17

2A79cc HOLE NO. SB-13-17

SURF. ELEVATION 1459.9

PROJECT Chaffee Landfill Expansion - 10860 Olean Road

LOCATION Northing: 939260.9

Town of Sardinia, Erie County, NY

Easting: 1170682.2

CLIENT McMahon and Mann Consulting Engineers

DATE STARTED 11/07/17 COMPL

COMPLETED 11/07/17

DEPTH IN FT BLOWS ON SAMPLER

SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL WATER TABLE AND REMARKS
							Moist light gray gravelly (SILTY-SAND) with 20 to 40% gravel, occasional cobble, dense, stratified, (SM). 18.0 Boring completed at 18.0 feet.	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MA 1-01

SURF. ELEVATION __

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED <u>04/18/01</u> COMPLETED <u>04/18/01</u>

DEPTH BLOWS ON SAMPLER IN FT

	INFI		SAM	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	1	1	_2	3_	3	5		Extremely moist dark gray (CLAYEY-SILT) topsoil with little clay, soft, granular soil structure, (ML-CL). 0.8	Silty topsoil with little clay to 0.8 feet over clayey slack water sediment to 29.0 feet over water sorted sand and gravel to end of boring.
-								Extremely moist highly mottled olive brown (CLAYEY-SILT) with some clay, stiff, blocky soil structure, (CL). grades downward to 3.0 Extremely moist distinctly mottled olive	Dolling.
5	2	7	7	12		19		brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, with nearly vertical gray desiccation cracks, (CL).	
					13				
10	3	7	11			21		grades downward to 11.0	
				10	13			Extremely moist olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff, weak thinly laminated, (CL).	
15—	4	2							
•			4	7	7	11			
20									

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MA 1-01

SURF. ELEVATION __

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

DEPTH BLOWS ON

	INFT		SAM	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	5	2	_3_	7	8	10	• • •	Extremely moist olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff, weak thinly laminated, (CL).	
25-	6	3	5	9	10	14	0 0		
20				•			11 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	29. Moist olive brown very gravelly (SAND) with 40 to 60% mostly subrounded	0
30-	7	33	30	32	34	62	0000	gravel and occasional cobble, very fine to very coarse size sand, very dense, stratified, (SW), (GW).	0 No water at completion.
								Boring completed at 32.0 feet.	
35—									

40	Ĺ	<u> </u>	<u></u>	L	<u> </u>	L			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 1-01

SURF. ELEVATION 1475.17

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/16/01

COMPLETED <u>04/16/01</u>

BLOWS ON DEPTH IN FT SAMPLER

	114 F I		٠,	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	,	1						Extremely moist dark brown	Silty topsoil with little clay to 0.6
		L	,			1	• • •	(CLAYEY-SILT) topsoil with 3 to 5%	feet over clayey slack water
				 . 		2	==	gravel, little clay, very soft, granular	sediment to 18.0 feet over
				1		1		soil structure, (ML-CL).	clayey glacial till to 22.0 feet
				 	2_		-	0.6	over water sorted and deposited
								Extremely moist distinctly mottled olive	sand and gravel with little silt to
				ļ	ļ			brown (CLAYEY-SILT) with 3 to 5%	28.0 feet over clayey slack
	2	11		ļ				fine size gravel, some clay, soft,	water sediment to 44.0 feet over
			12	<u> </u>		27		blocky soil structure, (CL).	water sorted and deposited sand
				15		''		grades downward to 2.5	and gravel with little silt to 44.5
-					20]			feet over silty slack water
5						1	===	Extremely moist distinctly mottled olive	sediment with little clay to 56.0
							°	brown (CLAYEY-SILT) with 3 to 5%	feet water sorted and deposited
				 				fine size gravel, some clay, very stiff,	sand and gravel with little silt to end of boring.
								with nearly vertical gray desiccation	end of boring.
				ļ				cracks, (CL).	
							• •	grades downward to 8.5	
	3	7						grades downward to 6.5	
			9			19		Extremely moist olive gray	
				10		19	•	(CLAYEY-SILT) with 3 to 5% gravel,	
				1	17			some clay, very stiff, weak thinly	
10					1/	İ	·	laminated, (CL).	·
						i			
		·	ļ						
						ŀ	•		
						ļ			
							••		
	4	9							
		· · ·	10						
				11		21			i
			L	''-					
15			L		16				
				ļ					
							•		
							= = =		
								grades downward to 18.0	
	5	15		 				See next sheet.	
		- 12	٠	-					
			15_			31	<u></u>		
				16			EXOLU EXOLU		
2٤ - ا				L	17	L			

N=NUMBER OF BLOWS TO DRIVE 2_ " SPOON 12 " WITH 140 Ib. WT. FALLING 30 " PER BLOW SHEET 1 OF 3

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 1-01

SURF. ELEVATION 1475.17

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/16/01 COMPLETED 04/16/01

DEPTH

BLOWS ON

1	NFT		SAM	PLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
25—	6	. 13	17	20	22	37		Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel and occasional channer, some clay, little sand, hard, massive soil structure, (CL). grades downward to 22.0 Wet olive gray very gravelly (SILTY-SAND) with 40 to 60% mostly subrounded gravel and occasional cobble, very fine to very coarse size sand, little silt, dense, stratified, (SM), (GM).	
30-	7	9	11	. 17	20	28		grades downward to 28.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff and hard, weak thinly laminated, (CL).	
	8	10	10	17	20	27			
35	9	8	13	. 19	22	32			•

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 1-01

SURF. ELEVATION 1475.17

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/16/01 COMPLETED 04/16/01

BLOWS ON DEPTH SAMPLER INFT

114 1-1		O /	ruch					
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
						• • •	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff and hard, weak thinly laminated, (CL).	
10	_ 3	11	15		26		44.0 Wet olive gray very gravelly	
45				25			(SILTY-SAND) with 40 to 60% mostly subrounded gravel, fine to very coarse size sand, little silt, stratified, (SM), (GM).	
11	20	25			45	0 0	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	
50			20	22	1			
12	15							
55-		17	25	23	42		grades downward to 56.0	
						V-0V-0	Wet olive gray very gravelly (SILTY-SAND) with 40 to 60% mostly subrounded gravel, little silt, very dense in place, loose when disturbed, stratified, (SM), (GM).	
13	25	50	102		152	00000000000000000000000000000000000000	59.5 Boring completed at 59.5 feet.	No water at completion.

Ib. WT. FALLING 30 * PER BLOW N=NUMBER OF BLOWS TO DRIVE 2 " SPOON 12 " WITH 140 SHEET 3 OF 3

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 2-01

SURF. ELEVATION 1490.20

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

BLOWS ON DEPTH INFT SAMPLER

	IN FT		SAM	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	1	1	3	_5	7	8		Extremely moist dark brown (CLAYEY-SILT) topsoil with little clay, very soft, granular soil structure, (ML-CL). 0.3	Silty topsoil with little clay to 0.3 feet over clayey slack water sediment to 8.0 feet over silty slack water sediment with little clay to 13.0 feet over clayey
	2	_8	11	11	10	22		Extremely moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, firm, blocky soil structure, (CL). grades downward to 3.0	slack water sediment to 29.0 feet over water sorted and deposited sand and gravel with little silt to 29.3 feet over silty slack water sediment with little clay to 34.0 feet over clayey
5-					. 16			Moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, with nearly vertical gray desiccation cracks, (CL).	slack water sediment to 36.0 feet over clayey glacial till to 48.3 feet over water sorted and deposited gravel and silt with little to some sand to 53.0 feet over clayey slack water sediment
10-	3	5	5	9	10	14	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	grades downward to 8.0 Moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, little clay, stiff, with nearly vertical gray desiccation cracks, (ML-CL).	to end of boring.
15	4	15	13	15	17	28		grades downward to 13.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff and very stiff, weak thinly laminated, (CL).	
20	5	5	5	. 12	12	17		grades downward to 20.0	

See next sheet.

" SPOON 12 " WITH 140 Ib. WT. FALLING 30 * PER BLOW N=NUMBER OF BLOWS TO DRIVE 2_

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 2-01

SURF. ELEVATION 1490.20

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

IN F1	Т	SAM	IPLER								
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS			
							Extremely moist olive gray				
		<u> </u>	ļ 	ļ. 		• •	(CLAYEY-SILT) with 3 to 5% gravel,				
		 		ļ			some clay, very stiff and hard, weak				
	-	 			1		thinly laminated, (CL).				
	 -	 	 			三三					
6	. 11_	1									
0	11-	15			35	•					
			20		33						
		ļ	ļ	22							
	ļ	ļ	ļ		ļ						
		 									
	-				1	==					
_	+	 	 			• •					
7	8										
		13	·		28		29.0				
			15		20	0	Wet distinctly mottled ofive gray				
ļ		ļ	ļ	14			gravelly (SILTY-SAND) with 40 to 60%				
		ļ	ļ				mostly subrounded gravel, little silt, dense, stratified, (SM), (GM).				
		ļ	ļ	ļ			29.3				
		 	 	ļ			Extremely moist olive gray				
			 	ļ			(CLAYEY-SILT) with little clay, very				
	 	-	 	<u> </u>			stiff, thinly laminated with very thin				
8	12	1	l				coarse silt lenses, (ML-CL).				
1	15-15-	16	l		38		grades downward to 34.0				
			22		ا ا		Extremely moist olive gray				
				25		••_	(CLAYEY-SILT) with 3 to 5% gravel,				
	_	ļ					some clay, hard, weak thinly laminated, (CL).				
	 	ļ	ļ	ļ		- 	grades downward to 36.0				
		 		ļ		000	Extremely moist olive gray gravelly				
	-	 	 	 			(CLAYEY-SILT) with 15 to 40% mostly				
		1		<u> </u>			subangular gravel and occasional	¥ Water level at 37.9 feet below			
9	00/5	 	 -			000	cobble, some clay, hard, massive soil structure, (CL).	ground surface at completion.			
9	100/0	1				<u></u> — •	Structure, (CL).				
}						0-0					
	1		1			700					

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 2-01

SURF. ELEVATION 1490.20

PROJECT Chaffee Landfill

LOCATION

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED <u>04/18/01</u>

BLOWS ON DEPTH IN FT SAMPLER

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
								Extremely moist olive gray (CLAYEY-SILT) with 15 to 40% mostly subangular gravel and occasional cobble, some clay, hard, massive soil	
	10	11	19			45		structure, (CL).	
45—				26	26				
	- 11	45						48.3	
50—			61	70	24	121	00000	Wet distinctly mottled olive brown very gravelly (SANDY-SILT) with 40 to 60% mostly subrounded gravel and occasional cobble, little to some sand, very dense in place, loose when disturbed, stratified, (GM).	
							00000	grades downward to 53.0	
55	12	56	40	25	30	65		Extremely moist olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, hard, weak thinly laminated, (CL).	
	13	22	35	,		57			
60				22	22		•	60.0 Boring completed at 60.0 feet.	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 3-01

SURF. ELEVATION 1487.10

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01

COMPLETED 04/18/01

BLOWS ON DEPTH SAMPLER INFT

IN FT		SAMP	LER					
SN	0/	6/ 12		18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
1.	2	2	3	7	5		Extremely moist dark brown (CLAYEY-SILT) topsoil with little clay, soft, granular soil structure, (ML-CL). 0.5	Silty topsoil with little clay to 0.5 feet over clayey slack water sediment to 29.0 feet over water sorted and deposited sand with
				7			Extremely moist highly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff, blocky soil tructure, (CL). Grades downward to 3.0	little to some gravel, some silt to 35.5 feet over clayey slack water sediment to 37.0 feet over water sorted and deposited silt with little to some gravel, little sand to 40.0 feet over clayey
5 2	5	9	13	14	22		Moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, with nearly vertical gray desiccation cracks, (CL).	slack water sediment to 47.0 feet over water sorted and deposited gravel with silt, little sand and clay to end of boring.
							grades downward to 10.0	
10 3	9	14	17	13_	31		Extremely moist olive gray (CLAYEY-SILT) with 3 to 10% gravel, some clay, hard, weak thinly laminated, (CL).	
15 4	7							¥ Water level at 12.7 feet below ground surface at completion.
		12	14	14	26			
20 5	6							

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 3-01

SURF. ELEVATION 1487.10

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

BLOWS ON DEPTH

I	NFT		SAM	PLER					
	SN	0/ 6	6/ 12	12 / 18	18/ 24	И	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	5		9			21		Extremely moist olive gray	
				12	ļ] -		(CLAYEY-SILT) with 3 to 10% gravel,	
ļ			ļ		13			some clay, hard, weak thinly laminated,	
-				ļ	ļ			(CL).	
				ļ					
ŀ									
-									
}					 	İ			ţ.
	6	WR			 -	1			ND Constant and the with
25-			10			20			WR - Sampler penetration with weight of rods and hammer.
				20		30		1	Height of 1000 and hammer.
					17.]			
ļ					ļ				
ĺ							===		
1								grades downward to 29.0	
}				<u> </u>			3 3 0		
}					 		0000	Wet olive gray gravelly (SILTY-SAND) with 15 to 40% mostly subrounded	
30-	7	20	22		 -		6000	gravel, very fine to very coarse size	
}			22_	21		41	0000	sand, some silt, dense, stratified,	
Ì					23		6 0	(SM).	
							0000		
							0000		
							0 00 0		
							0 0		
			<u> </u>	ļ			0000		!
			ļ <u>.</u>	ļ	ļ		0000		
35	8	1_		ļ	ļ		0.00	35.5	•
			11		 	37	0000		: :
}				26	30			Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel,	
ł			ļ		30			some clay, hard, thinly laminated.	
ļ					 		000	((CL).	}
							0000	grades downward to 37.0	1
				 		I	000	Wet olive gray (SANDY-SILT) with 15	
Ì							0 0	to 40% gravel, little sand, very dense,	
!							000	stratified, (SM).	
40	9	12					00	40.0	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 3-01

SURF. ELEVATION 1487.10

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/18/01 COMPLETED 04/18/01

DEPTH BLOWS ON IN FT SAMPLER

	INFI		JAN	PLER					
•	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	9		23			56	••	Full and a second all and a second	
		-		33		20	•	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel,	
					35			some clay, hard, thinly laminated,	
								(CL).	
							==		
45	10	. 8							
70			12_			30			
				18					
					26			47.0	
							• •	47.0	
							620	Wet olive gray very gravelly	
								(SAND-SILT-CLAY) with 40 to 60%	
							000	mostly subrounded gravel and occasional cobble, little sand and clay,	
							0.00	very dense, stratified, (GM) tending	
							$\mathcal{O}_{\mathcal{O}}$	towards (GC).	
50	11	20					0.00		
			36			76			
				40			0-0		
					40		0 %		
							0.00		
							0.00		
				<u>.</u>			0.00		
	 						5 9		
	-						000		
55	12	24	ļ				0 00		
			44			94	000		
				50			[Q 00]		
					55		0.00		
					ļ		4.00		
							6.20		
				ļ		!	0,0		
	13	57		<u> </u>			6.00		
			85			143	000 Oc		
				58			$\bigcirc \circ \bigcirc$	20.0	
60	L	L	L	L	66	i 	ひこり	Boring completed at 60.0 feet.	

Boring completed at 60.0 feet.

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 4-01

SURF. ELEVATION 1484.63

SOCIECT OLD

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 04/23/01

	IN FT		SAM	IPLER				
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
	1	1	2	4	_8	6		Extremely moist dark brown (SANDY-SILT) topsoil with little sand, very loose, granular soil structure, (ML). O.3 (I) 4"x 5' STEEL PROTECTIVE CASING. Coarse silty topsoil with little sand to 0.3 feet over clayey slack water sediment to 25.5
5	2	4	7	12		19		Moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% fine size gravel, some clay, firm, blocky soil structure, (CL). grades downward to 2.5 Moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, with nearly vertical gray desiccation cracks, Metal to deposited sand with little silt to 25.8 feet over clayey slack water sediment to 30.5 feet over coarse silty slack water sediment with some sand to 31.0 feet over water sorted and deposited sand with little silt and gravel to 31.8 feet over clayey slack water sediment to 38.0 feet over water
10—	3	9	16			36		sorted and deposited sand and gravel with little silt and clay to 44.0 feet over water sorted and deposited sand with little silt to 45.5 feet over water sorted and deposited sand and gravel to 50.0 feet over water sorted and deposited sand and gravel with little silt and clay to 58.4 feet over clayer slack water sediment
15 —	4	3	5	7	18	. 12		grades downward to 11.5 Extremely moist olive gray (CLAYEY-SILT) with 3 to 10% gravel, some clay, stiff, weak thinly laminated, (CL).
20							0 0	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 4-01

SURF. ELEVATION 1484.63

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 04/23/01

BLOWS ON DEPTH SAMPLER IN FT

	INFI		J	FLEN							
	SN	0/ 6	6/ 12	12/ 18	18/ 24	Ν	LITH	DESCRIPTION AND CLASSIFICATION		WELL	WATER TABLE AND REMARKS
	5	2					·				
	5	/_						Extremely moist olive gray	1/1	,	//
			3		 	7		(CLAYEY-SILT) with 3 to 10% gravel,		[]	
				4_				some clay stiff, weak thinly laminated,	1 4	//	
					7			(CL).	//	:	
							•		1/4	<i>(</i> /	=
							•			<u>\</u>	
										1/2	//
					 						/ !
	,								1/4	//	"
25—								25.5	1//	[*	
23	6	4					•	23.3	N. H	1/	
			6			15	: 0: 0	Wet olive gray gravelly (SILTY-SAND)	1/1	I.	//
	-			9	1	15		with 15 to 20% gravel, very fine to		,	/ 1
				9	1.0			medium size sand, little silt, compact,	\ 4	<i>k</i> /	4
					10_			stratified, (SM).	//	1	
					ļ			25.8	1/2	//	
									///	į	<u></u>
		:						Extremely moist olive gray		13	5// 05 5//
								(CLAYEY-SILT) with 3 to 5% gravel,	1	~ \[\langle \]	5//
								some clay, very stiff, weak thinly		SEP.	<u> </u>
								laminated, with very thin coarse silt	1 4	RISER	24
30				 				lenses, (CL).		PVC	2//
	7	8						grades downward to 30.5		<u>a</u>	
			10			21	J	Wet olive gray (SANDY-SILT) with	11	÷ [
				11			0000	some sand, compact, thinly bedded,		f)	
					13		å•	((ML).	1	N	<u> </u>
							-	grades downward to 31.0	1/1	15	
					<u> </u>		·	<u></u>	1/2	//	· =
					ļ			Wet olive gray gravelly (SILTY-SAND)		I.	"
								with 15 to 25% mostly fine size gravel,	//	"	
				<u> </u>	ļ		-	very fine to very coarse size sand,	//	Ι.	//
								little silt, compact, stratified, (SM).	1/1	[]	
35_			:				•	31.8	V =	//	
JJ	8	6			T		==	Extremely moist olive gray	1/1	1	
		٠	14	 				(CLAYEY-SILT) with 3 to 5% gravel,		1	
			14_	 	-	3 2		some clay, very hard, weak thinly	11	1.	// \
				18	ļ			laminated, with very thin coarse silt		N	
	L				22			lenses, (CL).	1 4	<i>\</i>	
					,			38.0) // ,,	1	
							• •		11	1/1	<u>"</u>
							Koy	See next sheet.	["]	1	" //
					 		PY 0:0		/ =	//	
							A. 0.7		1	/	//
				ļ	 		500V			[]	"
40	L	L		<u> </u>	L	L			<u> </u>	<u>l</u>	"]

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MB 4-01

SURF, ELEVATION 1484.63

PROJECT Chaffee Landfill

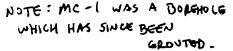
LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 04/23/01

DEPTH BLOWS ON IN FT SAMPLER


	IN FT		SAM	IPLER				
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
	9	18.	33			68	0.00	Extremely moist distinctly mottled olive (1) CEMENT BENTONITE GROUT brown very gravelly
		•		_35	37		000	(SAND-SILT-CLAY) with 40 to 60% mostly subrounded gravel and
							0.00	occasional cobble, little silt and clay, very dense, stratified, (SC), (GM).
								grades downward to Extremely moist faintly mottled olive 44.0 (2) BENTONITE SEAL
45								Extremely moist faintly mottled olive brown (SILTY-SAND), very fine size
,,,	_10	_10	_21_			48	V.0V.	sand, little silt, compact, thinly bedded / 1 / 45.5' with thin coarse silt lenses, (SM). 45.5 45.5'
				27	29		0.00	Extremely moist faintly mottled olive brown very gravelly (SAND) with 40 to
							0.00	60% mostly subrounded gravel and occasional cobble, very fine to very
							0.00	coarse size sand, dense, stratified, (SW), (GW).
50—	11	8					0.00	grades downward to 50.0
			22	32		54	0.00	brown very gravelly (SAND-SILT-CLAY) with 40 to 60% (발 분)
				02	35		000	mostly subrounded gravel and 이 있다. 이 있다. 이 있다. 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이
							000000000000000000000000000000000000000	SLOT
į							0.00	2. 10 2
55—	12	12					0.00	
			18	20		38	000	
					19		0.00	← 57.5'
	13	14	18				0,0	Extremely moist olive gray (CLAYEY-SILT) No water at completion.
60			10	24	41	42		with 3 to 5% gravel, some clay, hard, weak thinly laminated, (CL).

Boring completed at 60.0 feet.

N=NUMBER OF BLOWS TO DRIVE 2 "SPOON 12" WITH 140 Ib. WT. FALLING 30 "PER BLOW

LOGGED BY Donald W. Owens, Senior Soil Scientist (byy)

SHEET 3 OF 3

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 1A-01

SURF. ELEVATION ___

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01

COMPLETED 04/23/01

DEPTH

BLOWS ON

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 1A-01

SURF. ELEVATION _

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 04/23/01

	INFI		JAN	PLER								
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	I	WE	ILL	WATER TABLE AND REMARKS
								Augered with 4 1/4 inch inside diameter hollow stem augers without split spoon sampling to 33.0 feet.				
25-												
30											NCEMENTABENTONNE SEAL	
	1	10	11	10		21	• • •	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly	33.0			
35—					14			laminated, (CL).				1
40	2	5	10	13	17	23						

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 1A-01

SURF. ELEVATION __

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 04/23/01

IN F	ſ	SAM	PLER							
SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL		WATER TABLE AND REMARKS
3.45	10	13	13	15	26		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL).	C RISER	SENTONITE SEAL	(1) CEMENT BENTONITE SEAL ← 43.5' ← 46.5'
50	14	13	17	18	30		Wet distinctly mottled brown gravelly (SILTY-SAND) with 20 to 40% mostly subrounded gravel, very fine to very coarse size sand, little silt, dense, stratified, (SM). 49.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, very stiff, weak thinly laminated, (CL). grades downward to 51.0 Wet olive gray very gravelly (SAND)	2" 20 SLOT PVC SCREEN	#.8.GLOBAL SAND PAC	← 48.5' Water level at 49.0 feet after augering to 53.0 feet. ← 53.5'
55	00/0	,	,			0:50:	wet onve gray very gravelly (SAND) with apparent 40 to 60% gravel, cobbles and channers, very dense, (SW), (GW). 54.0 Refusal at 54.0 feet.			← 53.5 ← 54.0'
60								 		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 1-01

SURF. ELEVATION 1499.73

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 05/01/01

	INFT		SAM	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	1	мн	2	3		5	0.00.0	Wet dark brown (SANDY-SILT) topsoil with 10 to 15% gravel, little sand, loose, granular soil structure, (ML). 0.5	WH — Sampler penetration with weight of rods and hammer.
	2	3			5		•	Extremely moist highly mottled olive brown (CLAYEY-SILT) with 3 to 10% gravel, some clay, firm, blocky soil structure, (CL)	Coarse silty topsoil with little sand and gravel to 0.5 feet over clayey slack water sediment to 1.9 feet over water sorted and deposited sand with little silt to
5			4	4	. 8.	8		grades downward to 1.9 Wet distinctly mottled olive brown (SILTY-SAND), very fine size sand with little silt, loose, thinly bedded, (SM).	3.5 feet over clayey slack water sediment to end of boring.
-								grades downward to 3.5 Extremely moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff, with nearly vertical gray desiccation cracks.	
10-	3	5	9	10	14	19		(CL). grades downward to 5.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, thinly laminated,	
								(CL). Noticed more gravel fragments while augering between 12.5 and 15.0 foot depths.	Water level at 11.5 feet with augers at 22.0 feet at 9am on 05/01/01.
15 —	4	22	17	13	13_	30	• •		
20	5	11	9	10		19			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 1-01

SURF. ELEVATION 1499.73

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 04/23/01 COMPLETED 05/01/01

BLOWS ON DEPTH SAMPLER IN FT

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	5				16			Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, thinly laminated, with very thin coarse silt lenses, (CL).	
******								With very thin codise six teness, year.	
25—	6	4	8	11	15	19	0		
*									
30	7	17	10	5	9	15		30.0	
30								Boring completed at 30.0 feet.	
35-									
				,					

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 2-01

SURF. ELEVATION 1499.87

PROJECT Chaffee Landfill

LOCATION __

DIDITIO EMISTIN

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C. DATE STARTED 05/01/01

COMPLETED 05/01/01

1	IN FT		SAM	PLER					
į	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	1	2	2	7	6	9	0.0.0 0.00 0.00 0.00	Moist dark brown (SANDY-SILT) topsoil with 10 to 15% gravel, little sand, very loose, granular soil structure, (ML).	Coarse silty topsoil with little sand and gravel to 0.5 feet over water sorted and deposited sand with little to some gravel, little silt and clay to 2.5 feet over
	2	9	14_	14		28		Moist distinctly mottled olive brown gravelly (SAND-SILT-CLAY) with 15 to 30% mostly subrounded gravel, little silt and clay, loose, blocky soil structure, (ML)	clayey slack water sediment to 13.0 feet over silty slack water sediment with little clay to 28.0 feet over clayey slack water sediment to end of boring.
5-				14	15			grades downward to 2.5 Moist distinctly mottled olive brown (CLAYEY-SILT) with 3 to 5% gravel, some clay, hard, with nearly vertical gray desiccation cracks, (CL).	5
10—	3	10	17	19	27	36			
15—	4	6	9	13	14	22	o o o	grades downward to 13.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, very stiff, thinly laminated with SILT interbeds, (ML-CL).	0
20	5	5	7	. 10		17			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 2-01

SURF. ELEVATION 1499.87

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/01/01 COMPLETED 05/01/01

,	NFT		SAM	PLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	5				13			Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, very stiff, thinly laminated with SILT interbeds, (ML-CL).	
25—	6_	2	7	9	9	16			·
								grades downward to 28.0	
30-	7	6	13	. 13	14	26	0 0	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). 30.0	No water at completion.
Ju								Boring completed at 30.0 feet.	
35-									
discussion in the second									
40									

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 3-01

SURF. ELEVATION 1502.56

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/01/01

COMPLETED 05/01/01

DEPTH BLOWS ON

]	INFT		SAM	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
- 1		6					2020	n Moist brown very gravelly	Sand and gravel fill with little silt
		0	6					(SILTY-SAND) fill with 40 to 60%	to 0.3 feet over clayey slack
			<u> </u>	8.		14		gravel, little silt,	water sediment to 5.5 feet over
					10]		0.3	water sorted and deposited sand with little silt to 8.0 feet over
]	==	Moist distinctly mottled olive brown	clayey slack water sediment to
								(CLAYEY-SILT) with 3 to 5% gravel,	23.5 feet over silty slack water
								\ some clay, stiff, blocky soil structure, \ (CL).	sediment with little clay to end of
	2	7						grades downward to 2.5	boring.
			8_			18		Moist distinctly mottled olive brown	
5			ļ	10				(CLAYEY-SILT) with 3 to 5% gravel,	
		ļ		<u> </u>	_10_			n some clay, very stiff, with nearly	
			ļ	-		-		vertical gray desiccation cracks,	
		ļ	<u> </u>	ļ		-		(CL).	
				<u> </u>	ļ	}		5.5	
	<u> </u>		 	ļ	 	-		Extremely moist distinctly mottled olive	
	ļ		-		 		•	brown (SILTY-SAND), fine and very	
	<u> </u>	-	 	├	 	-		fine size sand with little silt, compact, thinly bedded with thin silt lenses,	
	3	3	<u> </u>		 		E	(SM).	
			10	10		20	••	grades downward to 8.0	
10-			1	1-19-	12	1		L	
		·····					===	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel,	
			 -	 		1	-	some clay, very stiff becoming stiff	
		 	 	1			-	below 13.5 feet, weak thinly laminated	
		†- 		<u> </u>				with very thin coarse silt lenses, (CL).	
					1	ĺ	<u></u>		
		ļ	1				•		
	4	3							
			5			10			
15				5] .	••		
10					7		••_		
				ļ <u>.</u>	<u> </u>				
			<u> </u>	ļ	<u> </u>		• • • • • • • • • • • • • • • • • • • •		
		ļ							
		ļ		ļ					
	L			ļ <u>.</u>	ļ	-	•		
	5	2		<u> </u>	ļ	-			
	ļ	ļ	4_	 	ļ	12			
20		<u> </u>		8	<u> </u>	<u> </u>	• •		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 3-01

SURF, ELEVATION 1502.56

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/01/01

COMPLETED 05/01/01

DEPTH BLOWS ON

I	NFT		SAM	IPLER					
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
-	5	6			12			Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff becoming stiff below 13.5 feet, weak thinly laminated with very thin coarse silt lenses, (CL).	
25-			7	9	8	16	· · · · · · · · · · · · · · · · · · ·		
	7	6	9	9		18	o o o	grades downward to 23.5 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel,	
30					11			little clay, very stiff, thinly laminated with coarse silt and very fine sand lenses 1/8-1/4 inch thick, (ML-CL). Boring completed at 30.0 feet.	No water at completion.
35—									
						describeration of the second s			
40			<u> </u>			-			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad HOLE NO. MC 4-01 SURF. ELEVATION 1497.67

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/02/01 COMPLETED 05/02/01

DEPTH BLOWS ON IN FT SAMPLER

grades downward to 18.0 5 6 13 18 Grades downward to 18.0 Extremely moist clive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	IN F	FT		SAM	IPLER					
Sand to 0.3 feet over coarse silty slock water sediment with little sand, or coarse silty slock water sediment with little sand and gravel to 3.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over sity slack water sediment to 10.0 feet over sity slack water sediment with 10.0 feet over sity slack water sediment to 10.0 feet over sity slack water sediment with 10.0 feet over sity slack water sediment with 10.0 feet over si	S	N			•	1	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
Sand to 0.3 feet over coarse silty slock water sediment with little sand, or coarse silty slock water sediment with little sand and gravel to 3.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over loamy glacial with 10.0 feet over sity slack water sediment to 10.0 feet over sity slack water sediment with 10.0 feet over sity slack water sediment to 10.0 feet over sity slack water sediment with 10.0 feet over sity slack water sediment with 10.0 feet over si				ļ			 		n Extremely moist dark brown	Coarse silty topsoil with little
Extremely moist distinctly mottled brown (SAND+SLT) with 0 to 15% gravel, little sand and gravel to 3.0 feet over loamy glacial drift with little sand and gravel to 3.0 feet over loamy glacial drift with little sand and gravel to 3.0 feet over loamy glacial drift with little sand and gravel to 3.0 feet over loamy glacial drift with little sand and gravel to 3.0 feet over loamy glacial drift with little sand and gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift with little sand sand gravel to 3.0 feet over loamy glacial drift in 10.0 feet over loamy glacial drift in 10.0 feet over loamy glacial drift in 10.0 feet over loamy glacial drift in 10.0 feet over loa				1		1	1 ,	0 0		
[MI]. [MI]. [MI]. [MI]. [MI]. [Itite sand and grave to 3.0 reet loany glacial tift to 10.0 feet over loany glacial tift to 10.0 feet over clayey stack water sediment to 15% graves. Little sand, loads blocky soil structure. [MI] tending towards (SC). [MI]. [MI]. [MI]. [MI]. [MI]. [Itite sand and grave to 3.0 reet loany graves loany glacial tift to 10.0 feet over clayey stack water sediment to 15% graves. Little sand and clay, loose, blocky soil structure. [MI] tending towards (SC). [MI]. [6		1 ′	0 0 0	, · · -	•
Extremely moist distinctly mottled brown (SANDY-5ILT) with 10 to 15% gravel, tittle sand and clay, compact, massive soil structure, (ML) tending towards (SC). Extremely moist distinctly mottled brown (SANDS-SILT-CLAY) with 10 to 15% gravel, tittle sand and clay, toose, blocky soil structure, (ML) tending towards (SC). Extremely moist distinctly mottled brown (SAND-SILT-CLAY) with 10 to 15% gravel, tittle sand and clay, towards (SC). Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel intitle sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 6.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thirdly laminated, (CL). Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, fittle sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thirdly laminated, (ML)-CL), (ML-CL), (5]	0 00		
Extremely moist diskinctly motited (SADV-SELT) with 10 to 15% gravel, little sand and clay, compact, maskive soil structure, (ML) tending towards (SC). Grades downward to 6.0 Extremely moist olive gray gravelly (SAND-SELT-CLAY) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay to end of the clay the clay to end of the clay to end of the clay the clay the clay the clay the clay the clay that the clay to end of the clay the c										
gravel, little sand, loose, blocky soil structure, (ML) graved downward to 3.0 Extremely moist distinctly mottled brown (SAND-SILT-CLAY) with 10 to 15% gravel, little sand and clay, cose, blocky soil structure, (ML) tending 1 towards (SC). grades downward to 6.0 Extremely moist office gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist office gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist office gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). Grades downward to 16.0 Extremely moist office gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). Extremely moist office gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (MCL). Extremely moist office gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (MCL).					<u></u>	<u> </u>		0 0 0		•
structure, (ML) sediment with little clay to end of boring. Extremely moist distinctly mottled brown (SAND-SILT-CLAY) with 10 to 15% gravet, little sand and clay, loose, blocky soil structure, (ML) tending towards (SC). grades downward to 6.0 Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravet, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravet, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravet, some clay, very stiff, weak thinly laminated, (CL). Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravet, sittle clay, hard, weak thinly laminated, (ML-CL).	_2	,	_3		ļ			- · · · · ·	1	
Section Sect				_5_		ļ	10	<u>a</u>		
Extremely moist distinctly motitled brown (SAND-SILT-CLAY) with 10 to 15 (Signavel, little sand and clay, cospect of the sand and clay, cospection (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil structure, (ML) tending towards (SC). [SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil soil subangular gravel, with soil subangular gravel, with soil soil subangular gravel, with soil subangular gravel, with soil soil subangular gravel	<u> </u>				5	ļ			grades downward to 3.0	
brown (SAND-SILT-CLAY) with 10 to 15% gravel, little sand and clay, loose, blocky soil structure, (ML) tending towards (SC). Grades downward to 8.0 Extremely moist olive gray gravely (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). Grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (ML-CL).	5——					10_	-		Extremely moiet distinctly mottled	pormy.
15% gravet, little sand and clay, loose, blocky soil structure, (ML) tending towards (SC). grades downward to 6.0 Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). [Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	-	_		ļ <u>.</u>	ļ	 -	-	0000		
Dibocky soil structure, (ML) tending towards (SC). grades downward to 6.0 Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL).	ļ	-		ļ		ļ		0 0	1	
grades downward to 6.0 Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (ML-CL).	ļ	\dashv		ļ	 	 	-	100.d		
Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	-	\dashv				 	-		· ·	
Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 40% mostly subangular gravel, little sand and clay, compact, massive soil structure, (ML) tending towards (SC), grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).				 	 	 	1	r. • • • • • • • • • • • • • • • • • • •	grades downward to 6.0	
10		+		-	ļ		1	1 . 0		
mostry student gray soil structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).		1	_Б_	-	 	<u> </u>	-			
structure, (ML) tending towards (SC). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).		$\neg \dagger$			10	 	18	D. O O		
grades downward to 10.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).		_	·····		1 10	13	1	0.00		
Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL). 28 grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	10 —	$\neg \uparrow$			ļ —	13	1		-1	
CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, weak thinly laminated, (CL).								•		
Some clay, very stiff, weak thinly laminated, (CL).							1			
4 5										
grades downward to 18.0 5 6 . 13 . 18 . 18 . 19 . 10 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 19 . 10 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 19 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 19 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 19 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 18 . 19 . 10 . 10 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 17 . 18 . 18 . 18 . 19 . 10 .								••	laminated, (CL).	
grades downward to 18.0 5 6 . 13 . 18 . 18 . 19 . 10 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 19 . 10 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 19 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 19 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 19 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 18 . 18 . 18 . 19 . 10 . 10 . 10 . 10 . 11 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 17 . 18 . 18 . 18 . 19 . 10 .				<u> </u>	ļ					
grades downward to 18.0 5 6		4	5	ļ	ļ <u>.</u>	ļ				
grades downward to 18.0 5 6 . 13 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).				10	ļ		28			
grades downward to 18.0 5 6 13 18 Grades downward to 18.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).					18	ļ		-		
Extremely moist olive gray 13	15	_			ļ	13	-			
Extremely moist olive gray 13		_			ļ	ļ	-	= =		
Extremely moist olive gray 13	_			ļ		 	-	•		
Extremely moist olive gray 13					-	 				
Extremely moist olive gray 13	-			 	-	 	-			
(CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).				ļ —		 	-	••_	grades downward to 18.0	
(CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	-	_			 	+	1	• •	Extremely moist olive gray	
little clay, hard, weak thinly laminated, (ML-CL).		2	б	12	 :	 	1		- · · · · · · · · · · · · · · · · · · ·	
	-	\dashv		13	10	 	31			
	20	\dashv		-	18	20	1		(ML-CL).	

N=NUMBER OF BLOWS TO DRIVE 2 SPOON 12 WITH 140 Ib. WT. FALLING 30 PER BLOW LOGGED BY Donald W. Owens, Senior Soil Scientist (byy). SHEET 1 OF 2

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 4-01

SURF. ELEVATION 1497.67

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/02/01 COMPLETED 05/02/01

INFI		JAM	PLEK					
SN	0/ 6	6/ 12	12/ 18	18/ 24	Ν	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
25	18	. 17	23	24	40		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (ML-CL).	
30		20	14	20	34		30.0 Boring completed at 30.0 feet.	No water at completion.
35								
46					<u> </u>			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 5-01

SURF. ELEVATION 1499.22_

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/02/01 COMPLETED 05/03/01

DEPTH BLOWS ON

	IN FT			IPLER	•									
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH		DESCRIPTION AND CLASSIFICATION			ELL 1)		WATER TABLE AND REMARKS
	1	1							Extremely moist dark brown					(I) 4"x 5' PROTECTIVE STEEL
						3		٦	(CLAYEY-SILT) topsoil with 3 to 5%	k	\"		\ 4	CASING
				2		,	==	1	gravel, little clay, very soft, granular			Į	//	Silty topsoil with little clay to 0.8
					6			1	soil structure, (ML-CL).	۱۵۱		ľ	/	feet over clayey slack water
								. 1		N	\		\ 4	sediment to 25.0 feet over silty
									Moist distinctly mottled alive brown					slack water sediment with little
	2	4						1	(CLAYEY-SILT) with 3 to 5% gravel, some clay, stiff, blocky soil structure,	ſ			1	clay to 33.0 feet over water
			4			10		1	(CL)	k		}		sorted and deposited sand and gravel with little silt to 38.0 feet
			<u> </u>	6] "		1	grades downward to 3.0	- 1		į	""	over silty slack water sediment
5—			<u> </u>		9			,			/		//	with little clay to 43.0 feet over
5									Moist distinctly mottled olive brown	ľ	1	,		clayey slack water sediment to
							==		(CLAYEY-SILT) with 3 to 5% gravel, some clay, firm, with nearly vertical	k		ļ	""	49.0 feet over water sorted and
									gray desiccation cracks, (CL).	ĺ	1/1	ĺ	11	deposited sand to 49.2 feet over
							·		3.0, 10.0	ľ		1		silty slack water sediment with little clay to 58.0 feet over
				ļ					aradas dauguard ta	,	\"	ļ		clayey slack water sediment to
]			grades downward to 8.0	١				62.0 feet over apparent loamy
	3	4		<u> </u>					Extremely moist olive gray	ľ		1	CEMENT/BENJONINE SEAL	glacial till to 64.0 feet over
			6	<u> </u>		16	-		(CLAYEY-SILT) with 3 to 5% gravel,	ŀ	//	~ \		water sorted and deposited sand
			<u> </u>	10] "			some clay, very stiff, thinly laminated			RISER	[]	and gravel to 68.0 feet over
10-					18				with SILT interbeds 1 to 2 foot thick spaced 5 to 12 inches apart below 18.0	X		<u>a</u>	D	water sorted and deposited sand
10 —							• -		feet, (CL).	Į,	(4)	PVC		with little to some gravel, little silt to end of boring.
									1001, 100).		<i>o</i> 1 .	2".	2//	sit to end or borning.
										, N				
							•			k	1			
							• • • • • • • • • • • • • • • • • • •			N	1	1		
	4	5					•			k	\"		\ 4	
		Ī	8			18					//		///	
				10		1 '0				,				
15				1	18	ĺ	••_			k	\ <u>\</u>		4	
15						1					//		//	
		<u> </u>		İ		1				N	1		\	
		 				1				k	\ 4		\ 4	
		 				1					1/1	1	//	
					<u> </u>	1				K				
		 				1	•			k	\ 4	,	4	
	5	3		-		1					1		//	
	2	13	0	 						X		1		
		 	8	14	 	22				k	\"	ļ	"	
		-	 	14		1				ľ	//		//	
20	L	L	.l	i	16	L	L	L					لت	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 5-01

SURF. ELEVATION 1499.22

PROJECT Chaffee Landfill

LOCATION __

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/02/01 COMPLETED 05/03/01

DEPTH INFT

BLOWS ON SAMPLER

	114 7 1			FLEN				
	SN	0/ 6	6/ 1 2	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION WELL WATER TABLE AND REMARKS
:								Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, thinly laminated with SILT interbeds 1 to 2 foot thick spaced 5 to 12 inches apart.
25—	. 6	.4	6	_9_	17	15		grades downward to 25.0
								Extremely moist olive gray (CLAYEY-SILT) with 3 to 10% gravel, little clay, very stiff, weak thinly laminated, with very thin coarse silt lenses, (ML-CL).
	7	_5	11_	. 13		24		
30					14			2" PVC P
							6	grades downward to 33.0 // //
	8	61	31	34		65		Extremely moist olive gray very gravelly (SILTY-SAND) with 40 to 60% mostly subrounded gravel and occasional cobble, very fine to very
35—					25		00000 00000 00000	coarse size sand, little silt, very dense in place, loose when disturbed, stratified, (SM), (GM).
							0000 0000 0000 0000	grades downward to 38.0
	9	9	10	10		20	<u>.</u> .	Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, very stiff, weak thinly laminated, (ML-CL).
40°	LJ		<u> </u>	L	10	L		<u> </u>

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 5-01

SURF. ELEVATION 1499.22

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/02/01 COMPLETED 05/03/01

II	١F٢		SAM	PLER					 		
	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WELL		WATER TABLE AND REMARKS
								Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, very stiff, weak thinly laminated, (ML-CL). grades downward to 43.0	1		
45-	10	WR	8	14	14	22		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, very stiff, thinly laminated, (CL).	i i	TE SEAT	WR - Sampler penetration with weight of the rods only.
50-	11	WR	15	. 18	15.	33	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	grades downward to 48.0 Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, little clay, hard, weak thinly laminated, (CL). 49.0	VC RISER	CEMENT BENTON	
	12	14	13			28		Extremely moist to wet (SAND), very fine size, dense thinly bedded, (SP). 49.2 Extremely moist olive gray (CLAYEY-SILT) with 3 to 10% gravel, little clay, hard, thinly laminated, (ML-CL).	2".		
55				15	18	20		grades downward to 58.0			← 54.5' (1) BENTONITE SEAL ← 56.5' (2) #6 GLOBAL SAND PACK
6 U	13	14	16	28	28	44		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, hard, thinly laminated, (ML-CL).		(2)	← 59.5' (3),2" #6 SLOT PVC SCREEN

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ad

HOLE NO. MC 5-01

SURF. ELEVATION 1499.22

PROJECT Chaffee Landfill

LOCATION _

Town of Sardinia, Erie County, New York

CLIENT McMahon & Mann Consulting Engineers, P.C.

DATE STARTED 05/02/01 COMPLETED 05/03/01

DEPTH

BLOWS ON

IN F	Т	SA	MPLER						
SN	1 0	6/	12/ 18	18/ 24	Ν	LITH	DESCRIPTION AND CLASSIFICATION	WELL	WATER TABLE AND REMARKS
14 65	24	1 20	26	27	46		Extremely moist olive gray (CLAYEY-SILT) with 3 to 5% gravel, some clay, hard, thinly laminated, (ML-CL). ' grades downward to 62.0 Extremely moist olive gray gravelly (SAND-SILT-CLAY) with 15 to 25% gravel, little sand and clay, dense, massive soil structure, (ML) tending towards (SC). 64. Wet olive gray very gravelly (SAND) with 40 to 60% mostly subrounded gravel and occasional cobble, very fine to very coarse size sand, dense, loose when disturbed, stratified, (SW), (GW). grades downward to 68.0 Wet olive gray gravelly (SILTY-SAND) with 15 to 40% mostly subrounded gravel, very fine to very coarse size sand, little silt, dense, stratified, (SM). 70. Boring completed at 70.0 feet.	2" 6 SLOT	Water level at 60.7 feet at 8am on 5/03/01 with augers at 68.0 feet. WR - Sampler penetration with weight of the rods only. + 69.5' + 70.0' No water at completion.
75									•

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 1-03

SURF. ELEVATION 1481.56

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9133,83

Town of Sardinia, Erie Co., NY

Easting 5280.13

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/24/03 COMPLETED 12/26/03

l	SN	0/ 6	6/ 12	12/	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
R	EC	0	12	10	24	<u> </u>			
	1	_1_						Full complete and all the second seco	
19	9		2	-			***************************************	Extremely moist dark brown (SILT)	Silty topsoil with little organic
				3		5	T- T-	topsoil with little organic matter, trace	matter, trace sand and clay to
					3		L. L.	sand and clay, very loose, granular soil structure, (ML).	0.7 feet over silty slack water
-				 	1-3-	1	1.5	0.7	sediment with little sand and clay
***************************************	2	_3_		ļ	 	1			to 3.0 feet over silty slack water
1_2	21		3			9	3.44	Extremely moist to moist distinctly	sediment with little to some clay
	_			6		Į		mottled brown (SAND-SILT-CLAY)	to 12.0 feet over silty slack
					8			with little clay and very fine size sand,	water sediment with trace to
3	3	4]		firm, blocky soil structure, (ML-CL).	little gravel and clay to 14.5 feet
5 2	4		5			١		clear transition to 3.0	over clayey slack water sediment to 22.0 feet over cobble to 22.5
5-1-4				8		13		Moint brown (CLAVEY CTLT) with 0 1-	feet over clayey slack water
	-+			<u> </u>		ł		Moist brown (CLAYEY-SILT) with 0 to 3% gravel, little to some clay, stiff,	sediment to 32.0 feet over silty
ļ 	_				8	1		thinly laminated with very thin coarse	slack water sediment with little
<u> </u>	4	5				ł		silt lenses and nearly vertical gray	clay, trace to little gravel to
2.	4		5			11		desiccation cracks, (ML-CL) tending	36.0 feet over silty slack water
				6		``	===	towards (CL).	sediment with little to some clay
<u> </u>					9			towards (ob).	to 42.2 feet over water sorted
, F	5	4				1			and deposited sand with some
	8		6						gravel, little silt to end of
1 <u>3</u>	_			8		14		:	boring.
 	_								
10-	_				10				
	6	5							
2.	4		_5_			13			
				8					
					_ 11			grades downward to 12.0	
7	7	5					2	Moist brown (CLAYEY-SILT) with 5 to	
20	0		7			l		10% gravel, trace to little clay, very	
 `	<u> </u>			10		17		stiff, thinly laminated with very thin	·
	-			10				coarse silt lenses, (ML-CL).	
-	_				13			clear transition to 14.5	
_8		7					P		
15 18	8		9			18		Moist gray (CLAYEY-SILT) with 0 to	
				9				3% gravel, some clay, very stiff,	
					11			weakly thinly laminated, (CL).	·
8	9	7					? ? :		
2.			8						
-	+		٧			16			
	\dashv			8				grades downward to 18.0	
ļ	_				10		**** *********************************		
_10		5						Extremely moist gray (CLAYEY-SILT)	
24	4		6			12	-	with 3 to 10% gravel, some clay, stiff,	
	[I	Ī	6				weakly thinly laminated, (CL).	
20					9		* *	1	
20					<u> </u>				

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 1-03

SURF. ELEVATION 1481.58

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9133.83

Town of Sardinia, Erie Co., NY

Easting 5280.13

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/24/03 COMPLETED 12/26/03

DEPTH

BLOWS ON

IN FT SAMPLER

	······································			,			· · · · · · · · · · · · · · · · · · ·			
	SN	0/	6/	12/	18/		LITH	DESCRIPTION AND CLASSIFICATION		WATER TARKE AND REMARKS
	REC	6	12	18	24	N	```	DESCRIPTION AND CEASSIFICATION	ĺ	WATER TABLE AND REMARKS
							° °			
	11	_5_						Extremely moist gray (CLAYEY-SILT)		
	20		<u>. 6</u>			13	0 0	with 3 to 10% gravel, some clay, stiff,	1	
				7				weakly thinly laminated, (CL).		
					9		" " 		22.0	
	12	_51_							_	
	0		42					Cobble.		No recovery sample number 12.
			4/	4.5		85	==		22.5	
				43				Moist to extremely moist gray	_	
					38			(CLAYEY-SILT) with 0 to 3% gravel,	1	
	13	-8						some clay, very stiff, weakly thinly		
25	24		_11_			26		laminated to massive soil structure,		
				15				(CL).	l	
					19			•		
	14	11								
11	16									
	10		_12_			28				
				16					1	
					21				}	
	15	8								
	24		- 11		Ì	25				·
				14		25	•			
				13	17				i	
30	40									
,	16	10							i	
	17		_11_			25				
				14				aradan dayayınıdık	32.0	
					15			grades downward to	32.0	
	17	9					Q Q	Moist gray (CLAYEY-SILT) with 5 to	_	
	20		10					15% mostly subangular gravel, little	- 1	
						20	* *	clay, trace sand, very stiff, massive	ł	
				10			ا ف ف	soil structure, (ML-CL).		
					_14		*			
	18	8					2 0 0 0			
35	24		_11_			24				
		l		13				and the state of t		•
					18		è . è .	grades downward to	36.0	
	19	12						Moist gray (CLAYEY-SILT) with 0 to	-	
	24	-16-	-,,-				三三	3% gravel, little to some clay, very		į
			12			27		stiff, weakly thinly laminated, (ML-CL)		
				15				tending towards (CL).	1	
					15		==	tonding tending (Och		
	20	8	l							
	21	Ţ	10			23	三三			
				13		23	*			
				- 12	- <u></u> -	3			-	
40 l			1	i	15					

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 1-03

SURF. ELEVATION 1481.58

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9133.83

Town of Sardinia, Erie Co., NY

Easting 5280.13

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/24/03 COMPLETED 12/26/03

DEPTH IN FT BLOWS ON SAMPLER

	SN	0/ 8	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	21 24	.8	8	_11		19		Moist gray (CLAYEY-SILT) with 0 to 3% gravel, little to some clay, very stiff, weakly thinly laminated, (ML-CL)	
·	22	25	T		.14		0000	tending towards (CL). clear transition to 42.2	
	20		66	58	70	124		Moist brownish gray gravelly (SILTY-SAND) with 25 to 40% gravel, very fine to very coarse size sand,	
45	23 18	51	48		7.0	94		little silt, very dense, loose when disturbed, stratified, (SM).	
70				48	25	54		clear transition to 48.5.	Water level at 45.5 feet below ground surface at completion
	14	29	30	20		62		Wet grayish brown gravelly (SILTY-SAND) with 25 to 40% mostly	•
				32	34			subrounded gravel, very fine to very loose size sand, little silt, very dense, loose when disturbed, stratified, (SM).	Note: Bore hole tremmie grouted with bentonite cement to surface
								Boring completed at 48.0 feet.	upon completion.
50								Towns to make the contract.	
55									
60									

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 2-03

SURF. ELEVATION 1489.61

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8679.19

Town of Sardinia, Erie Co., NY

Easting 5285.71

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/19/03 COMPLETED 12/22/03

	TIALL		JAI	4F L C.F	'				
	SN	0/	6/	12/	18/	Ī	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND DEMARKS
	REC	6	12	18	24	N		SECONI FION AND CEASSIFICATION	WATER TABLE AND REMARKS
	1	1				<u> </u>	*********		
	12		3				•	Extremely moist dark brown	Coarse silty topsoil with little
	15-15-		1	3	· · · · · · · · · · · · · · · · · · ·	6		(SANDY-SILT) topsoil with little sand	sand and organic matter to 0.4
			<u> </u>		3	1	==	and organic matter, loose, granular soil structure, (ML).	feet over clayey slack water
	2	4			-3-	ĺ		0.4	sediment to 3.0 feet over silty slack water sediment with little
	1	- 4						<u></u>	clay to 10.0 feet over water
	24		_5_			11	\$ 3	Extremely moist to moist faintly	sorted and deposited sand with
			 	6			7 7	mottled brown (CLAYEY-SILT) with 0 to 3% gravel, some clay, firm, blocky	little silt to 11.0 feet over silty
		_			I		* *	soil structure, (CL).	slack water sediment with trace
	3	_3						1	clay to 12.0 feet over silty slack
5	22		3_			9	7 7	grades downward to 3.0	water sediment with little clay,
				6				Extremely moist faintly mottled brown	trace gravel to 13.8 feet over
			ļ		7			(CLAYEY-SILT) with 0 to 3% gravel,	cobble to 15.0 feet over silty
. ,	4	6	<u></u>					little clay, stiff, weakly thinly laminated	slack water sediment with little
	24		8_			21	2 2	with nearly vertical gray desiccation	clay to 21.0 feet over silty slack
				13		۱ ک		cracks, (ML-CL).	water sediment with little clay to 26.5 feet over coarse silty slack
					15			grades downward to 6.0	water sediment with little to some
	5	6						Moist brown (CLAYEY-SILT) with 0 to	sand to 27.0 feet over silty slack
	24		12			00	7. 7.	3% gravel, little clay, very stiff weakly	water sediment with little clay to
				16		28		thinly laminated, (ML-CL).	29.0 feet over clayey slack
				10	20			clear transition to 10.0	water sediment to 32.5 feet over
10	6	8			-20			Extremely moist brown (SILTY-SAND)	water sorted and deposited sand
	20	_0	12					with 0 to 5% gravel, mostly fine to	with little to some gravel, little
	20		14			29		medium size sand, little silt, compact,	silt to end of boring.
				17				loose when disturbed, weakly	
					18		2 - 2	stratified, (SM).	
	7	7					* *	clear transition to 11.0	
	24		10			27	2 2	Extremely moist brown (SILT), trace	
				_17				clay, compact, thinly bedded, (ML).	1
	 				_18		MIIIIII	clear transition to 12.0	
15								Moist gray (CLAYEY-SILT) with 5 to 10% gravel, little clay, very stiff,	
. 🛥	8	17]]			weakly thinly laminated with very thin	
	0		18			30	4 4 4	coarse silt lenses, (ML-CL).	
				12		50	7 7	13.8	ì
				_	15			<u> </u>	
	9	7						Cobble.	
	14	'	11					15.0	}
			_"-	17		28	* *	Moist gray (CLAYEY-SILT) with 0 to	
				-1/			Y	3% gravel, little clay, very stiff, thinly	
					_17			laminated, (ML-CL).	
	10	5					4		
20			8	1		22			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 2-03

SURF. ELEVATION 1489.61

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8679.19

Town of Sardinia, Erie Co., NY

Easting 5285.71

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/19/03 COMPLETED 12/22/03

DEPTH

BLOWS ON

IN FT SAMPLER

	SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
	10			14			÷	Maint and AMENA COLUMN	 	
					18]		Moist gray (CLAYEY-SILT) with 0 to 3% gravel, little clay, very stiff, thinly		
	_11	8					C - C -	\ laminated, (ML-CL).	-	
	24		12			30	0 0 0		21.0	
-				18] 30	* .	Moist gray (CLAYEY-SILT) with 5 to	·-	
		ļ ļ			20_			10% mostly subangular gravel, little		
	12	9_					<u> </u>	clay, hard, weakly thinly laminated,		
	19		16	ļ	ļ	38		(ML-CL).		
			ļ	22		**				
25-			ļ	ļ	22		c. • c. •			
	13	8_	ļ		ļ		2.2.		- 1	
	20		_15_	ļ	ļ	31	* 0	clear transition to	20 5	
	ļ		ļ	16			2 - 2 - 4		26.5	·
					16		*	Extremely moist gray (SANDY-SILT)	l	
	14	9				İ		with little to some mostly very fine size sand, dense, thinly bedded, (ML).		
	24		11_			24	* *.		27.0	
				13			2 2	<u> </u>	-	
					_17		•=•=	Moist gray (CLAYEY-SILT) with 0 to 3% gravel, little clay, very stiff, weakly		
	15	12					三二	thinly laminated, (ML-CL).		
30-	24		_17	l		34	• •	.	29.0	
				17			==	Moist gray (CLAYEY-SILT) with 0 to	-	
	- (6)	9		-	_17			3% gravel, some clay, hard, weakly	-	
	16 21	y	13					thinly laminated, (CL).		
			19	19		32		clear transition to	32.5	
				l is	30		3000	Extremely moist faintly mottled brown	-	
	17	23			30			gravelly (SILTY-SAND) with 15 to 40%		
	20	20	49				0000	gravel, very fine to very coarse size		
			70	53		102		sand, little silt, very dense, loose when		
26				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	57		0 0 3	disturbed, stratified, (SM).		
35	18	41					0000			
	14	,	76				0000			
				100/4			0 00			
							0000			
	19	69					0000			
	22		66			149	0,00,4			
				83		148	0000			
					20	j	0009			
- 1	20	49								
40			58			142	0.00			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 2-03

SURF. ELEVATION 1489.61

PROJECT Chaffee Landfill. Western Expansion Area

LOCATION Northing 8679.19

Town of Sardinia, Erie Co., NY

Easting 5285.71

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/19/03

COMPLETED 12/22/03

	SN	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	20			.84	90		00000	Extremely moist faintly mottled brown gravelly (SILTY-SAND) with 15 to 40% gravel, very fine to very coarse size sand, little silt, very dense, loose when disturbed, stratified, (SM).	Note: Bore hole tremmie grouted
				*				Boring completed at 41.0 feet.	with bentonite cement to surface upon completion.
45—									Water level at 9.8 feet below ground surface after leaving augers at 17.0 feet for two days.
									No water at completion.
50									
55—									
						:		·	
60									

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 3-03

SURF. ELEVATION 1464.93

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9710.74

Town of Sardinia, Erie Co., NY

Easting 5661.89

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/15/03 COMPLETED 12/18/03

DEPTH IN FT

BLOWS ON SAMPLER

	SN	0/ 6	6/ 12	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS	· · · · · · · · · · · · · · · · · · ·
	1	3					/////////	7		
	16		В		1	1		Extremely moist to moist brown to dark brown (CLAYEY-SILT) topsoil fill with	Silty topsoil fill with little to so	ne
				Я		15		little to some clay, trace to little	clay, trace to little organic	
			1	1	9	1		organic matter, firm, granular soil	matter to 0.3 feet over clayey soil fill to 1.5 feet over silty	
	2	4				1	÷ -	structure, (ML-CL) tending towards	topsoil with little to some clay,	
	20		7	i	1	1		(CL).	little organic matter and wood	
			1	11	†	18		0.3	fiber to 2.0 feet over clayey	
			†	ļ ¹¹	15	1	A A	Moist faintly mottled brown	slack water sediment to 23.0	
	3	3			1 15	1		(CLAYEY-SILT) fill with some clay,	feet over water sorted and	
	21	-,-	5		 	1	[- T-]	very stiff, massive soil structure, (CL).	deposited sand with little silt to	
5			-5-		 	12	>	1.5	25.0 feet over silty slack water	
				7_	 	1		Moist olive gray (CLAYEY-SILT)	sediment with little clay to end boring.	OT:
			 	 	9	1	内。然外	topsoil with little to some clay, little	Doring.	
	4	5_	l			ĺ		organic matter and wood fiber, very		
	24		7	 -	 	20		stiff and stiff, granular soil structure,		
*******				13_				(CL).		
				ļ	_15	ļ	4	clear transition to 2.0		
	5	4					7	Moist olive brown becoming olive gray		
	17		5		ļ	15		below 7.0 feet (CLAYEY-SILT) with 0		
				10			7 7	to 3% gravel, some clay, very stiff,		
10-					14		7	thinly laminated with very thin coarse	Water level at 9.9 feet below	
	6	5						silt lenses, (CL).	ground surface at completion.	
	24		6			17	2 2			
				_!!			,			
					19					
	7	5								
	24		7			18				
				11		ū				
					16					
	8	5			-		7			ĺ
15_	21		8			40				
10-				11		19				
				J.I.	14			grades downward to 15.9		
	9	4						Moist olive gray (CLAYEY-SILT) with		
	24							some clay, very stiff, stiff below 20.0		Ì
	=			11		18		feet, thinly laminated with very thin		ļ
				!!		Ì		coarse silt lenses, and thin sandy		
	-,- +				14			ienses, (CL).		l
ŀ	10	5								ļ
Ì	~~		7			17				
-				10						
20 L				1	12					

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 3-03

SURF. ELEVATION 1484.93

PROJECT Chaffee Landfill. Western Expansion Area

LOCATION Northing 9710.74

Town of Sardinia, Erie Co., NY

Easting 5661.89

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/15/03 COMPLETED 12/16/03

	SN REC	0/ 6	6/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	11	2						Maint allies are (CLAVEY CTLT) with	
•	24		4			10		Moist olive gray (CLAYEY-SILT) with some clay, stiff, thinly laminated with	
				В		10		very thin coarse silt lenses, and thin	
					10			sandy lenses, (CL).	
	12	٦						clear transition to 23.0	
	21		5			40			
				11		16		Wet gray (SILTY-SAND) with very fine	
		,			13			to very coarse size sand, little silt,	
	13	4						compact, tends to liquify when	
	22	4	6					disturbed, stratified, (SM).	
25-			0	9	 	15		25.0	
				9				Extremely moist gray (CLAYEY-SILT)	
	.				13		T-175-1	with little clay, very stiff, thinly	
	14				 			laminated with very thin coarse silt	
	15		9			21		lenses, (ML-CL).	
			ļ	12		Ì		28.0	
			ļ		19	ł			Note: Bore hole tremmie grouted
			 					Boring completed at 28.0 feet.	with bentonite cement to surface
			ļ	ļ	ļ	ļ			upon completion.
			<u> </u>			Į.			
30-						}			
			<u> </u>		ļ		;		
]			
						1			
						1			
						1			
		·				1			
	 		†		 	j			
35	l		 	 	 	1			
			 	 					
	 		 	 	 	1			
		 	 	 	 				
	 	<u> </u>			 	1			
	ļ	 	ļ		 				
	ļ	ļ ——		 	<u> </u>				
								-	
	l	<u> </u>							
40						<u> </u>			

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 4-03

SURF. ELEVATION 1489.91

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9149.33

Town of Sardinia, Erie Co., NY

Easting 5877.39

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/17/03 COMPLETED 12/18/03

1	игі		JAF	IFEEN					
	SN	0/ 6	6/ 12	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
-	REC				ļ <u> </u>	<u> </u>			
Ļ		_2_	ļ	ļ	ļ			Wet brown (CLAYEY-SILT) topsoil with	Silty topsoil with little clay and
-	14		4	<u> </u>		10		little clay and organic matter, trace to	organic matter to 0.7 feet over
L				8		.		little sand, soft, granular soil structure,	clayey slack water sediment to
					8			(ML-CL).	11.0 feet over water sorted and
Γ	2	7				1	•	0.7	deposited sand with little silt to
	18		7	<u> </u>			==		14.2 feet over silty slack water
r						16		Extremely moist to moist faintly	sediment with little clay to 22.0
F				9			•	mottled brown (CLAYEY-SILT) with 0	feet over silty slack water
-					_13_		一	to 3% gravel, some clay, stiff, blocky soil structure to weakly thinly	sediment with little to some clay,
 -	_3_	6_			ļ			laminated, (CL).	trace to little gravel to 24.0 feet
5-	24		7_			20		2.0	over clayey slack water sediment
				13				<u> </u>	to 25.8 feet over silty slack
					17			Moist brown (CLAYEY-SILT) with 0 to	water sediment with trace to
ľ	4	5	[•	3% gravel, some clay, very stiff, thinly	little clay to 29.7 feet over
	24		7					laminated with very thin coarse silt	clayey slack water sediment to
Γ						17	+11	lenses and nearly vertical gray	34.0 feet over silty slack water
				10				desiccation cracks, (CL).	sediment with little clay to 37.5
-			ļ		_15_		===	grades downward to 6.0	feet over silty slack water
-	_5	_3_	ļ				•	Moist to extremely moist olive brown	sediment with little clay, trace to
	22	·····	5			12		CLAYEY-SILT) with 0 to 3% gravei,	little gravel to 41.0 feet over
L				7		,		some clay, very stiff, thinly laminated	water sorted and deposited sand
10					8			with very thin coarse silt lenses and	with little to some gravel, little
10-	8	5					==	nearly vertical gray desiccation	silt to end of boring.
r	20		8				•	cracks and thin (SILTY-SAND) lenses,	
F			-8			19		11 (CL).	
}-	+							clear transition to 9.0	
-					13				
	_7							Extremely moist olive gray	
	20		7			18		(CLAYEY-SILT) with 0 to 5% gravel,	
				9				some clay, stiff, thinly laminated with	
Γ					9		• • • • • • • • • • • • • • • • • • •	very thin coarse silt lenses, (CL).	
	8	5					2 2	clear transition to 11.0	
	20		6					Moist grayish brown (SILTY-SAND)	
15			-0			14	* *	with mostly fine size sand, little silt,	
}-				8				compact, loose when disturbed, thinly	
-					_8_			bedded, (SM).	
L	9	4						clear transition to 14.2	
	24		_5_	<u> </u>		12		Extremely moist olive gray	
				7		۱۲.	*	(CLAYEY-SILT) with 0 to 5% gravel,	
					8			little clay, stiff, thinly laminated with	
r	10	3					* _ *_	very thin coarse silt lenses and	
-	24	J	-, 					occasional thin (SILTY-SAND) lens,	
'-	24		_4			11		(ML-CL).	
-				7				· - •	
20 L			i	l	9				

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 4-03

SURF. ELEVATION 1489.91

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9149.33

Town of Sardinia, Erie Co., NY

Easting 5877.39

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/17/03 COMPLETED 12/18/03

DEPTH IN FT BLOWS ON SAMPLER

	SN	0/	6/	12/	18/				T	
	311	ŀ	1		1	N	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
	REC	6	12	18	24					
	11	2					÷ .			
				 		1		Extremely moist olive gray		
	24	ļ	4		 	10	*_ *_	(CLAYEY-SILT) with 0 to 5% gravel,		
		ļ	ļ	6_				little clay, stiff, thinly laminated with		
					10			very thin coarse silt lenses and	1	
	12	3]	°	occasional thin (SILTY-SAND) lens,		
***************************************	24		5		<u> </u>	1		(ML-CL).	l	
			-5-		ļ	16		grades downward to	22.0	
			 -	11		ł		<u> </u>		
					13			Moist to extremely moist gray		
	13	4						(CLAYEY-SILT) with 5 to 15% gravel,		
٥.	21		6					little to some clay, very stiff, weakly	I	
25—				_		15		thinly laminated to massive soil	-	
				99			-	structure, (ML-CL).	- 1	
					_13		- $ -$	grades downward to	24.0	
4.73	14	7						Moist gray (CLAYEY-SILT) with 0 to		
	24		9			-			ı	
				12		21		5% gravel, some clay, very stiff, thinly	ł	
				12			75	laminated with very thin coarse silt	1	
					19			lenses, (CL).		
	_15	9						clear transition to	25.8	
	24		12			29		Extremely moist olive gray		•
				17		23		(CLAYEY-SILT) with trace to little	- 1	
					17			i clay, compact, thinly laminated,	l.	
30	40				1/			(ML-CL) tending towards (ML).	1	j
	16	_8_						clear transition to	29.7	ł
	24		_10			25	**	L		
	1			15_			F-4-5-4	Moist gray (CLAYEY-SILT) with 5 to		
					15			10% gravel, some clay, very stiff,	i	
- 1	17	6					°	weakly thinly laminated to massive soil	- 1	
	24							structure, (CL).	- 1	į
}	-24		10			20	بهد بهد			İ
- 1				10				manadas discussos disc		
			l		_12_			grades downward to	34.0	ļ
	18	3						Extremely moist gray (CLAYEY-SILT)	-	1
	22		в					with 0 to 5% gravel, little clay, stiff	l	
35-			- P	 -		12		and very stiff, weakly thinly laminated	}	
ŀ				-6				with very thin coarse silt lenses.		
					9			(ML-CL).		
1	19	6					\$: \$:	Mic Och		
	24		в							
ŀ			~			16	* : * : .	clear transition to	37.5	
				10			2 - 2		-	
ļ					14		(m) (m)	Extremely moist gray to olive gray		
<u>[</u>	20	6				- 1	2 - 2 -	(CLAYEY-SILT) with 5 to 15% gravel,	İ	
ſ	24		7				*	little clay, stiff, weakly thinly laminated		
ç				7		14	و ، و ،	to massive soil structure, (ML-CL).		
- 1							**************************************		40.0	
40 L		L	L		9				<u>- 1</u>	
								See Next Sheet		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059

(716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 4-03

SURF. ELEVATION 1489.91

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 9149.33

Town of Sardinia, Erie Co., NY

Easting 5877.39

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/17/03 COMPLETED 12/18/03

DEPTH IN FT BLOWS ON SAMPLER

	SN	0/	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	Rec	6	12	18	24				
								Wet gray (CLAYEY-SILT) with little to	
	-21_	30						some clay, firm, weakly thinly laminated	
	20		21_				0000	with very thin coarse silt lenses,	
				27			0,00	(ML-CL) tending towards (CL).	
	22	31			L			clear transition to 41.0	
	19		35			73	0000	Extremely moist gray gravelly	
				38		/3	р °° °	(SILTY-SAND) with 15 to 40% gravel,	
					38			very fine to coarse size sand, little	
	23	32					0000	silt, very dense, loose when disturbed,	
			40				0 0	stratified, (SM).	
45-				51		91	0000		
				- 31	59		0000	46.0	
					프			Boring completed at 46.0 feet.	No water at completion.
	-							Borning completed at 40.0 feet.	
,									Note: Born tole tones's and tole
									Note: Bore hole tremmie grouted with bentonite cement to surface
									upon completion.
									apon completion.
}								·	
50-									
							ł		
55-									
}									
- 1	 								
-					——				
}									
[
**]		i		
. 1				T					
e0									ļ
60									

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 5-03

SURF. ELEVATION 1492.67

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8504.39

Town of Sardinia, Erie Co., NY

Easting 5712.37

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/23/03 COMPLETED 12/24/03

	714 5 1								
	SN	0/	6/	12/	18/		LITH	DESCRIPTION AND CLASSIFICATION	WATER TARLE AND DEMARKS
	REC	6	12	18	24	N	LIIN	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	KEC		 	<u> </u>					
	-1-	_2	ļ	ļ				Wet brown (SANDY-SILT) topsoil with	Coarse silty topsoil with little
	20		_3_	ļ		6		little organic matter, trace to little	organic matter, trace to little
				3		l	-	sand, very loose, granular soil	sand to 0.6 feet over clayey
				<u> </u>	5_	Į		structure, (ML).	slack water sediment to 16.0 feet
	2	3						0.6	over silty slack water sediment
	22		3			8		Extremely moist gray (CLAYEY-SILT)	with little clay to 41.0 feet over
				5		°		with 0 to 3% gravel, some clay, firm,	coarse silty slack water sediment
					8		••	thinly laminated with very thin coarse	with little sand to 45.0 feet over
	3	٦			1			silt lenses, (CL).	silty slack water sediment with
	h								trace sand and clay to 48.0 feet
5-	24		3_			8			over water sorted and deposited
				5				grades downward to 6.0	sand with little to some gravel, little silt to end of boring.
					6_				intie sint to end or borning.
	4	_3_			ļ			Moist gray (CLAYEY-SILT) with 0 to	
	24		4			10	* **	3% gravel, some clay, stiff, becoming	No water at completion.
				6		10	三三	very stiff below 11.0 feet, thinly	The mater of completions
					11		·	laminated with very thin coarse silt	
	5	4						lenses and occasional thin	
	24		5		ļ		===	(SILTY-SAND) lenses below 12.0 feet,	·
	57					14		(CL).	
			 -	9					
10			ļ		12				
	6	4	<u> </u>						
	24		6			15	===		
				8					
					13				
	7	5							
*******	18		8						
			٦	12		20			
			 						
					15				1
	8	7_	ļ						
15	12		10		ļ	22	**		
				12				grades downward to 16.0	
					15			Aigas dominain fo 100	
	9	8						Moist gray (CLAYEY-SILT) with 0 to	
	24		11			05	3 3 3	3% gravel, little clay, very stiff, weakly	
			, , , , , , , , , , , , , , , , , , ,	14		25		thinly laminated, (ML-CL).	
				- ' -			*		
	 . 				17				
	10	7	ļ						
	24		- 11			28	22		
. 1				15					
20					19		* *		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 5-03

SURF. ELEVATION 1492.67

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8504.39

Town of Sardinia, Erie Co., NY

Easting 5712.37

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/23/03 COMPLETED 12/24/03

DEPTH IN FT BLOWS ON SAMPLER

	SN Rec	0/ 8	6/ 12	12/ 18	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
			 		 	 	<u>\$ 5.8 5</u>		
	24	_8_	14	 	 	1	7	Moist gray (CLAYEY-SILT) with 0 to	
	-27		14	ا	 	29		3% gravel, little clay, very stiff, weakly	
			 	15	 	1		thinly laminated, (ML-CL).	
		9	 	 	16_	ł			
	12 24	9_			 				
	-24		9	 		22			
			 	13					
			 	 	16			clear transition to 24.3	
	13 19	8_		 	 		2 2	Moist olive gray (CLAYEY-SILT) with 5	
25—	l la		10		 	22	2 . 2 .	to 10% gravel, little clay, very stiff,	
				12			*	weakly thinly laminated to massive soil	
	 			 -	_14		2 0 0	- structure, (ML-CL).	
	14	_10_						\ clear transition to 26.0	
	24		10			27	2.02.	Moist gray (CLAYEY-SILT) with 0 to	
				17			2.2.	3% gravel, little clay, very stiff, weakly	
;					_17_			thinly laminated to massive soil	
	15				<u> </u>			structure, (ML-CL).	
	20		9			22	و و و		
				_13			*		
30-					15		2 2		1
	16	_7					e e		
	24		10			24	*		
				_14			0.00		
					15		ف ف		
	_17	10					* *		
	24		_11_			25	2	ļ	
				14					
					16			l.	
	18	8					2 0 0 0		İ
35_	21		9			23	e e		
				14					İ
ļ		l			15				
į	19	8					2		
Ĺ	22		11			25			
				14		23	2 . 2		
					15				
ſ	20	9					(* √*)		
Ī	20		11						
				11		22			
40			$\neg \dagger$		13				
40 L		ــــــــــــــــــــــــــــــــــــــ			17 1		لىنىدىنىد		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 5-03

SURF. ELEVATION 1492.67

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8504.39

Town of Sardinia, Erie Co., NY

Easting 5712.37

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/23/03 COMPLETED 12/24/03

1	REC	6	12	18	24	N	LITH	DESCRIPTION AND CLASSIFICATION		WATER TABLE AND REMARKS
1	_21_	-5					Q . Q	Moist gray (CLAYEY-SILT) with 0 to		
ŀ	21		7	 	 	17	<u> </u>	-, 3% gravel, little clay, very stiff, weakly	,	
}			 	10_				thinly laminated to massive soil		
ŀ			 -	 	11			structure, (ML-CL). clear transition to	44.0	
	22 24	_11	11	 					41.0	
f				17		28		Extremely moist gray (SANDY-SILT) with little mostly very fine size sand,		
				"-	18			compact, thinly bedded, (ML).		
	23	12						, , , , , , , , , , , , , , , , , , ,		
45			14			44		clear transition to	45.0	
, ,				30		44		Extremely moist to wet gray (SILT)		
-			 		30			with trace very fine size sand and		
	24	_33_	ļ				0000	clay, very dense with slight		
r	16		41		•	89	0 00 0	liquification when disturbed, thinly bedded, (ML).	1	
				48			0 0		46.0	
}					52		0000	Extremely moist brownish gray gravelly	-	
-	25	_31_					0000	(SILTY-SAND) with 15 to 40% gravel,		
 	14		37_	100/5			0,000	very fine to very coarse size sand,		
}				100/5				little silt, very dense, loose when	ĺ	
50	26	39					0000	disturbed, stratified, (SM).	ļ	Note: Bore hole tremmie grouted
	~	30	44						Ì	with bentonite cement to surface
				48		92	0 00 0			upon completion.
[60				52.0	
								Boring completed at 52.0 feet.	-	•
L							ł			
-						1	Ī			·
L						- 1	l			
-						ĺ				
55						- 1	•		l	
-						l				
-	-+					1	ļ			
-				-+						
F						1				
-	+									
-	\dashv	\neg				l				
-	\dashv	-			-+	- 1				
F										
60 E					\neg	1	ĺ		1	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 8-03

SURF. ELEVATION 1455.58

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8232.70

Town of Sardinia, Erie Co., NY

Easting 5799.94

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/16/03 COMPLETED 12/16/03

DEPTH IN FT BLOWS ON SAMPLER

				T			·		
	SN	0/	6/	12/	18/	١.,	LITH	DESCRIPTION AND CLASSIFICATION	MATER TARIE AND REMARKS
	REC	6	12	18	24	N		TEGORIA TON AND DEAGON TON TON	WATER TABLE AND REMARKS
	1	3			1		0000		
	16		В			1		Wet brownish gray gravelly	Sandy soil fill with little to some
				8		14	3	(SILTY-SAND) fill with 15 to 40% gravel, very fine to very coarse size	gravel, little silt to 0.4 feet over
					10	1	7.7	sand, little silt, loose, massive soil	silty slack water with little clay to 8.0 feet over clayey slack
	2	5				1		structure, (SM).	water sediment to 11.2 feet over
	20		7			17	4 4	0.4	water sorted and deposited sand
				10] "	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Moist olive gray (CLAYEY-SILT) with 0	with little silt, trace to little
					13			to 5% gravel, little clay, stiff, very stiff	gravel to end of boring.
	3	6					÷.	below 3.0 feet, weakly thinly laminated	
5	22		_11			25		to massive soil structure, (ML+CL).	No water at completion.
Ü				14		25	7		No water at completion.
					17		£. £.		
	4	10]			
	24		12			27	,		
				15] [* _**_		
					19	}		8.0	
	5	8						Moist olive gray (CLAYEY-SILT) with	
	24		11			23		some clay, very stiff, thinly laminated	
				12		23	三三	with very thin coarse silt lenses and	
10-					15			nearly vertical gray desiccation	
	6	5						cracks, (CL).	
	24		7			25		clear transition to 11.2	
				18		25	0 . 60 . 6		
					27			Extremely moist grayish brown (SILTY-SAND) with 5 to 15% gravel,	
								very fine to very coarse size sand,	Note: Bore hole tremmie grouted with bentonite cement to surface
								little silt, dense, loose when disturbed,	upon completion.
								stratified, (SM).	apon completion.
								12.0	
ļ				I				Boring completed at 12.0 feet.	
15_									
				I					·
ļ									
							1		
							1		
						ļ			
1									
t.						İ			
20				$\neg \uparrow$		-			
۷ -								<u> </u>	

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 7-03

SURF. ELEVATION 1465.82

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8677.37

Town of Sardinia, Erie Co., NY

Easting 6156.35

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/26/03 COMPLETED 12/26/03

DEPTH **IN FT**

BLOWS ON SAMPLER

	4111	•	<u> </u>	- CL					
	SN	ء ا	6/	12/	18/	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	REC	10	12	10	24				
	1	_5_		<u> </u>			9	Moint orang (CLAVEV CULT) and a second	
	20		9			20	0	Moist gray (CLAYEY-SILT) with 3 to 10% gravel, little to some clay, very	Silty slack water sediment with
				11] 20		stiff, weakly thinly laminated to	little to some clay to 4.0 feet
					10	1	7	massive soil structure, (ML-CL)	over silty slack water sediment with little clay to 12.0 feet over
	2	6				1	·	tending towards (CL).	water sorted and deposited sand
	24		8			1			with some gravel to 14.0 feet
			1	8	 	16	9 9		over silty slack water sediment
					10	1		grades downward to 4.0	
	3	5	 	 	1 10	1		Moint to outromate match arms	water sorted and deposited sand
		<u> </u>	5		 	1		Moist to extremely moist gray (CLAYEY-SILT) with 0 to 3% gravel,	with some gravel, little silt to end
5	22		-2-		 	12		little clay, stiff, weakly thinly	of boring.
				1	 	ł		laminated, (ML-CL).	
	l		 	ļ	1-7-	ł	, , , , , , , , , , , , , , , , , , ,		No water at completion
	4	6_	ļ	ļ	 	}	* *		No water at completion.
i P	24		6	ļ	<u> </u>	13			·
	ļi		ļ	7_	ļ		, ,		
	ļļ		ļ	ļ	_10_		* *.		
	5	5			<u> </u>				
	24		5_			13	7		
				88		'`	* *		
10					10				
10	6	5					7-7-		
	20		6						
			-	8		14			
i					11			12.0	
	7	12					0	Moist brownish gray gravelly (SAND)	
	16		14				0.0.0	with 20 to 40% gravel, very fine to	
	-10		14	•0		30	0.00	very coarse size sand, trace to little	
	 			16			14.0.4 14.0.4	silt, dense, loose when disturbed,	
					16		¥ 2	stratified, (SW) tending towards (SM).	
	8						17.75	clear transition to 14.0	
15	21		. 9		\vdash	24	7. 7.	Moist gray (CLAYEY-SILT) with 0 to	
				15			[7] [4]	3% gravel, little clay, very stiff, weakly	
					20			thinly laminated, (ML-CL).	
	9	27					0000	16.0	
	15		42			98	0000	Moist brownish gray gravelly	
				56			0000	(SILTY-SAND) with 25 to 40% gravel,	
l					81		1000	very fine to very coarse size sand,	
	10	39]			0.00.0	little silt, very dense, loose when	
-	20]	51			107		disturbed, stratified, (SM).	
				56		101	0000		
ا م					62		0.00.9		
20 l					<u> </u>		[المتنتمين		

Soil and Hydrogeologic Investigations • Wetland Delineations 1091 Jamison Road • Elma, NY 14059 (716) 655-1717 • FAX (716) 655-2915

2A79ax

HOLE NO. Bore Hole SB 7-03

SURF. ELEVATION 1465.82

PROJECT Chaffee Landfill, Western Expansion Area

LOCATION Northing 8677.37

Town of Sardinia, Erie Co., NY

Easting 6156.35

CLIENT McMahon & Mann Consulting Engineers

DATE STARTED 12/26/03 COMPLETED 12/26/03

	SN REC	0/ 6	8/ 12	12/ 18	18/ 24	N	LITH	DESCRIPTION AND CLASSIFICATION	WATER TABLE AND REMARKS
	11 16	_31_	41			00		Moist brownish gray gravelly (SILTY-SAND) with 25 to 40% gravel,	
				58		99	0000	very fine to very coarse size sand,	
					49		0000	little silt, very dense, loose when	Note: Deep hale has a fire a
					ļ			disturbed, stratified, (SM).	Note: Bore hole tremmie grouted with bentonite cement to surface
								22.0	upon completion.
								Boring completed at 22.0 feet.	
					ļ				
								1	
25									
i									
							ļ		
						İ			
30									
							İ		
							-		
Ì							ŀ		
							ļ		
35_									
						1			
]						1			
-									
								-	
ŀ				\longrightarrow					·
ŀ				-+		- 1	1		
; •					-		-		
40 [- 				1		

FIELD BORING LOG

DEPTH HOLEJOB_NO. 093-89169 PROJECT WMNY/West Borrow Area Wells / NY	BORING NO. MW-BA-1
DEPTH SOIL DRILL 30' GA INSP. AJN DRILLING METHOD 4-1/4" ID Hollow Stem Augere	SHEET 1 of 2
DEPTH ROCK CORE N/A WEATHER CLEAR DRILLING CO. NOTHNAGLE DRILLING	SURFACE EL. 1464.18
NO. DIST. 15 US. N/A TEMP. 40° F DRILL RIG CME-850 DRILLER T. MANGEFRIDA	ADATUM SITE
DEPTH WL. N/A HRS. PROD. N/A WT. SAMPLER HAMMER 140 Jb. DROP 30"	STARTED 0945/11-2-09
TIME WL. N/A HRS. DELAYED_N/A WT. CASING HAMMER_N/A DROP_N/A	_COMPLETED 1130/11-3-09

SAMPLE TYPES	ABBREVIATIONS	SOIL DESCRIPTION - RANGE OF PROPORTION
AS AUGRESHPE DA CHINESHPE DA CHINESHPE DA CHINESHPE PA FITTER SAMPLE R. SAMPLE R. SAMPLE T. THILLIPALED, OPEN T. THILLIPALED, PISTON W.S. WASH SAMPLE	BE BLACK WILDING MEDUM BE BROWN WILDING WILDIN	SAURIE - C-25% SATURATED STORM - 5-12% SATURATED SATURAT

ELEV.	DESCRIPTION	BLOWS/				SAMPLES	1	DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
DEPTH	DESCRIPTION	FT.		NO.	TYPE	HAMM, BLOWS (FORCE)	REC/ATT	D 1,1	
-			=	1					SA-1 0.0-1.25 ft. Firm, dark brown SILTY CLAY topsoil,
:		10	=		n.	2-3-	10*		some organic matter, trace fine sand, very moist,
-		10	-	1	DO	7-11	1 <u>6</u> 24	_	1.25-2.0 ft. Compact, olive brown SILT, little to trace plant matter, little fine sand, trace fine gravel, moist.
=	CLAY TILL UNIT		=			7-11	27		(CL-ML)
2				-					SA-2 2.0-4.0 ft. Compact, oilve brown SILT, some clay, little
:	0-18.7		=				an*		plant matter, trace coarse gravel, moist. (ML)
_		28	_	2	DO	7-14-	2D" 24"	_	
:		20	=	-		14-17	27		
4			-						
- 4			=						SA-3 4.0-6.0 ft. Compact, brown to mottled gray-brown
:		1	=			5-5-	1 <u>4</u> 24		CLAYEY SILT, trace fine sand, trace gravel, moist.
.		10	=	3	DO	5-5	24	_	(ML)
:			-			U-U			
-6		<u> </u>		 	\vdash		-		SA-4 6.0-8.0 ft. Compact, brown CLAYEY SILT, little fine
:			_				000		sand, trace coarse gravel, moist. (ML)
-		23	_	4	DO	8-9-	2 <u>2</u> 24	_	Santa, trace course graver, mode (WE)
:		23	-	7	יסק	14-15			
ا ہ									
- 8			-	_					SA-5 8.0-10.0 ft. Compact, brown CLAYEY SILT to
:			=			4-7-	14"		SILTY CLAY, trace coarse gravel, trace fine sand,
-		15	-	5	DO	8-10	24"	-	molst, (ML-CL)
:			-						
-10			-						C. C. 40.0 40.0 % DUS (
.			=						SA-6 10.0-12.0 ft. Stiff, brown CLAYEY SILT to SILTY
-		16	_			3-6-	18" 24"		CLAY, trace to little coarse gravel, trace fine sand, molst, (ML-CL)
<u> </u>		10	-	6	DO	10-11	24"	_	nioist, (ML-CL)
			-						
12			_						SA-7 12.0-14.0 ft. Dense, gray-brown to mottled orange,
-			_			11_15_	24		CLAYEY SILT, trace to little fine to coarse gravel,
- [43	_	7	DO	11-15-	2 <u>4</u> 24	-	trace fine sand, molst. (ML)
.		'	=			28-33	_`		
-14									
: '			-						SA-8 14.0-16.0 ft. Compact, gray to bray-brown CLAYEY
:		l	_			3-6-	22° 24°		SILT, trace to little fine to coarse gravel, trace fine
-		15	=	8	DO	0.40	24"	_	sand, molst. (ML)
			=			9-10			
16		-			\vdash		<u> </u>		SA-9 16.0-18.0 ft. Dense, gray, CLAYEY SILT, trace fine to
:			_		li		<u>. </u>		coarse gravel, trace fine sand, moist. Thin layer of
-		40	_	9	DO	10-12-	2 <u>4</u> " 24"	-	gray fine sand at bottom of Interval. (ML)
-		'	=	,	اکا	28-31	24		
-18			=		Ш				
10			=						SA-10 18.0-18.7 ft. Very loose, orange-brown SILT, some
: }			Ξ			3-2-	18"		fine sand, moist; then 0.3 ft compact, gray-brown
- 1	SAND & GRAVEL	4	=	10	DO	2. 1	24	-	m-c SAND, very molst.
:	UNIT		=			2-1			19,0-20,0 ft. Very loose, brown fine to medium
20				_					sand, trace clay, saturated, (ML-SM)
.	18.7-28.0		Ξ				_		SA-11 20.0-21.1 ft. Very loose, brown fine to medium SAND, trace clay, saturated,
<u>.</u> I		1	Ξ	,,		WH-WH-	1 <u>6</u> 24	_	21.1-22.0 ft. Very loose, brown, medium to coarse
:		'	=	''	DO	1-1	24		SAND, trace clay, wet. (SM)
:			=					}	
									SA-12 22.0-22.8 ft. Loose, brown coarse SAND and fine
22		1	-				_		GRAVEL, wet.
-22			_			7 7	1 0 0	1	GRAVEL, Well
-22		14	Ξ	12	DO	37	16	-	22.8-24.0 ft. Compact, brown medium to coarse
-22		14	-	12	DO	37 7-4	1 <u>6</u> 24	-	·

Golder Associates

FIELD BORING LOG

DEPTH HOLE 30'	_ JOB NO. 093-B9169	PROJECT WMNY/	West Borrow Area V	Vells / NY	BORING NO. MW-BA-1
DEPTH SOIL DRILL 30'	GA INSP. AJN	_DRILLING METHOD	4-1/4" ID Hollo	w Stem Augers	SHEET2 of 2
DEPTH ROCK CORE N/A	WEATHERCLEAR	_DRILLING CO	NOTHNAGLE DRILLING	3	
NO. DIST15_USN/A					
DEPTH WL. N/A	HRS. PRODN/A	_WT. SAMPLER HA	MMER140_lbDR	OP30*	STARTED0945/11-2-09
TIME WL. N/A	_HRS. DELAYED_N/A	WT. CASING HAM	MER <u>N/A</u> DRI	OPN/A	COMPLETED <u>1130/11-3-09</u>

SAMPLE TYPES	ABBREVIATIONS	SOIL DESCRIPTION - RANGE OF PROPORTION
AS AUGR SAIPLE GENERAL PROPERTY OF THE PROPERT	CÓARSE MOY MOTTLED S A CASING NP NON-PLASTIC S LY CLAY OR OR ORANGE LY CLAYEY ORG ORGANIC S FILE ORGANIC S PLAYEY ORG ORGANIC S PLAYER SPESSIRE—MANUAL IN RAG PRAGNENTS PU PRESSURE—MANUAL IN	TABLE TO ROOS DISTENCY SOME COMPANY OF ROOS DISTENCY SUBJECT OF ROOS

		i .				SAMPLES			
ELEV. DEPTH	DESCRIPTION	BLOWS/ FT.		NO.	ТҮРЕ	HAMM. BLOWS	REC/ATT	DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
24		_	-		-	(FORCE)			SA-13 24.0-24.9 ft. Loose, brown fine GRAVEL,some silt,
-			-	1		4-4-			wet; 24.9-25.2 ft. compact, brown SILTY fine
- 1		9	-	13	DO	4-4-	1 <u>B</u> "		SAND, trace coarse sand, wet.
-			_	1		5-4	24		25.2-26.0 ft. Loose, brown medium SAND, little
26			-						coarse sand, trace silt, very moist to wet, (GM-SM)
E20			_						SA-14 26.0-28.0 ft. Compact, brown, medium SAND, some
E			-			7-8-	14"		coarse sand, trace silt, very moist. (SP)
- 1		19	_	14	DO		14" 24"	-	
_	•	. •	_	1		11-13			
-28			-						
- 20		1	-	1					SA-15 28.0-29.2 ft. Compact, gray, CLAYEY SILT, trace
<u> </u>	CLAY TILL UNIT		-			3-18-	10" 24"		fine to medium sand, moist.
- 1	CLAT HEL UNH	38	-	15	DO	20-16	24"	-	29.2-30.0 ft. Compact, brown, SILTY GRAVEL,
- 1			_			20-16			trace clay, very moist. (ML-GW)
30		ļ			ļ				
- "	30.0 FT. END OF BOREHOLE		_	1					(Composite Geotechnical Laboratory Sample Collected
=			-						between 18.7 and 28,0 ft. bgs.)
=			_	1				_	
-			-	1					
-			-					-	
	•	:	-						
-			-	1				_	
=			-	1					
:			-						
-			-					_	
:			_						
_			_					_	_
-			-						
=			-						
-			-	1				_	
=			=						
-								-	-
=			-						
E I			_	1				_	
-			-						
<u> </u>			_						
-			-					-	
:			-						
-			-	1				-	
-			=						
-			=	}				_	
=		1	-		ŀ				
-			-	1					
-			-					-	
=			-	1					
_			-						
:			-						
-			_	1					
-			_						
:			_	1					
-			_	1					
-			_	1			.		
:			_	1					
-			_	1					
-			_	1					
-			_	1				-	
F			_	1					
-			_	1					
					•				

MONITORING WELL INSTALLATION LOG

		ST BORROW AREA WELLS/NY WELL NO. —										
		4 1/4" I.D. HOLLOW STEM AUGERS GROUND ELEV	. 1456.40 WATER DEPTH N/A									
	CLEAR DRILLING COMPANY		1457.65 DATE/TIME N/A									
		O DRILLER T. MANGEFRIDA STARTED 1	200 / 11-3-09 COMPLETED 1100 / 11-4-09 TIME / DATE									
LOCATION /	COORDINATESN938980.00	E1171539.30	in a first party and									
	2.2	MATERIALS INVENTORY	7 /0º DENTANTE OURS									
WELL CASIN	G <u> </u>	1,f, WELL SCREEN 2.0 in, dig. 10 l.f. BEN	TONITE SEAL 3/8 BENTONITE CHIES									
	CASING TYPE SCH. 40 PVC SCREEN TYPE CONTINUOUS WRAP PVC INSTALLATION METHOD POUR THROUGH AUGERS FLUSH THREADED 2.5 BAGS											
	JOINT TYPE FLUSH THREADED SLOT SIZE 0.010" FILTER PACK QTY. 2.5 BAGS GROUT QUANTITY											
	GROUT QUANTITY CENTRALIZERS NOT USED FILTER PACK TYPE #00N QUARTZ SAND GROUT TYPE CEMENT/BENTONITE DRILLING MUD TYPE NOT USED WISTALLATION METHOD TREMIE											
GROUT TTPE	UNICE THE MODIFIE MODIFIE MODIFIE MODIFIED MODIF											
	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES									
		SLIP CAP	AUGERED WITH 4 1/4 I.D. HOLLOW									
-		DRAIN -7.35 6" # ANODIZED	STEM AUGER TO 30.0 FT. BELOW									
		HOLES PROTECTIVE	GROUND SURFACE (BGS). SAMPLED									
- 1456.40 - 0.0	GROUND SURFACE	CASING	O.0-30.0 FT BGS. SAND POURED THROUGH AUGERS 30.0-29.5 FT									
		CONCRETE	BGS. WELL MATERIALS PLACED IN									
:		PAD	BOREHOLE USING 10 FT. OF WELL									
: <u>.</u> .		4.0 - CEMENT/	SCREEN, END CAP, 20.85 FT. OF									
- 5.0		- GEMENTONITE - GROUT	WELL RISER AND SLIP TOP CAP FOR									
:	01.14 701 7007		OVERALL LENGTH OF 30.85 FT. WELL									
[CLAY TILL UNIT	PVC RISER	MATERIALS PLACED TO 29.5 FT. BGS									
10.0	0-18.7*	BENTONITE	WITH 1.35 FT, STICKUP. SAND									
. 10.0		SEAL	POURED THROUGH AUGERS 29.5 -									
_		11.5 (1.7 -	17.3 FT. BGS WHILE REMOVING									
<u> </u>			AUGERS AT 0.5-1.0 FT.									
15.0		CHOKER SAND	INCREMENTS, CHOKER SAND PLACED									
-		16.5 -	17.3-16.5 FT BGS. BENTONITE CHIP									
-		17.3 -	SEAL PLACED 16.5—11.7 FT. BGS.									
<u>-</u>		8"ø BOREHOLE	CHOKER SAND PLACED 11.7—11.5 FT.									
20.0		19.5 - [6]	BGS. CEMENT/BENTONITE GROUT ADDED 11.5-0.0 FT. BGS.									
-	SAND & GRAVEL		REMAINING AUGERS REMOVED.									
-	UNIT	FILTER SAND	6-INCH DIAMETER ANODIZED									
	18.7-28.0'	I SEM	ALUMINUM CASING PLACED IN 3-FT.									
25.0	1017-2010	2"¢ continuous	<u> </u>									
<u> </u>		WRAP PVC 0.010" SLOT	PAD. DRAINHOLES DRILLED INTO									
	A. 1.7. This	月 - 楊二勝	PROTECTIVE CASING.									
30.0	CLAY TILL UNIT	29.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	NYSDEC CONCURRED WITH THE									
	END OF BORING		LOCATION OF THE SCREENED									
_	30' BGS		INTERVAL.									
-	:	-1 -1	-									
:		-1										
			-									
:												
-			WELL DEVELOPMENT NOTES									
			DATE DEVELOPED: 11/9-11/2009									
[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									
.		-	DEVELOPMENT METHOD:									
-			STAINLESS STEEL BAILER									
_		_										
			VOLUME PURGED: 78 GALS.									
_												
:												
<u>. </u>												
.		-	ri I									

FIELD BORING LOG

DEPTH HOLE 30'	JOB NO. 093-89169	PROJECT WMNY/V	Vest Borrow Area	a Wells / NY	BORING NO. MW-BA-2
DEPTH SOIL DRILL 30'_	GA INSP. AJN	DRILLING METHOD.	4-1/4" ID Ho	ollow Stem Augera	SHEET 1 of 2
DEPTH ROCK CORE_N/A	WEATHER CLOUDY	_DRILLING CO. N	OTHNAGLE DRILL	ING	
NO. DIST. 15 US. N/A					
DEPTH WL. N/A	_HRS. PRODN/A_	_WT. SAMPLER HAM	MER <u>140 lb.</u>	DROP30*	_STARTED_0930/11-4-09
TIME WL. N/A	_HRS. DELAYED_N/A	_WT. CASING HAMM	ER <u>N/A</u>	DROP N/A	COMPLETED 1030/11-5-09

SAMPLE TYPES	A	BBREVIATIONS		SOIL D	DESCRIPTION - RANGE OF PROPORTION
S.T. SLOTTED TUBE LO. THIN-WALLED, OPEN	BL BLACK MI BR BROWN MI C COLARSE MI GA CASING NI GL CLAY OF GLY CLAYEY OF GLY CLAYEY OF FRAGUENTS PL GARRIED REACHED RE LYD LAYERED RE LYD LAYERED RE	RED	A SAN SAN SAN SAN SAN SAN SAN SAN SAN SA	SAMPLE SATURATED SATUR SAND SET SET TRACE WATER LEVEL WEIGHT OF HAMMER WEIGHT OF RODS YELLOW	TANGE - 9-524 TOTALE - 12-205 SOUR - 12-305 CONSISTENCY GOOGRACT PARTY ON PERSON STORY UN PERSON STORY ON PERSON STORY

ELEV.	PERMITAN	BLOWS/				SAMPLES		DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
DEPTH	DESCRIPTION	FT.		NO.	TYPE	HAMM, BLOWS FER B IN. (FORCE)	REC/ATT	DEPIN	
-			=				ļ		SA-1 0.0-0.5 ft. Compact, dark brown CLAYEY SILT
:		40	=			3-6-	0.4*		topsoil, some plant matter, trace fine sand, trace fine
-		12	_	1	DO	6-8	2 <u>4</u> "		gravel, moist. 0,5-2,0 ft. Compact, it brown, mottled gray CLAYEY
:	CLAY TILL UNIT		=			0-0	24		SILT, trace to little f. gravel, trace f. sand, moist. (ML)
2		}			\vdash				SA-2 2.0-4.0 ft. Stiff, light brown, mottled gray, CLAYEY
	0-16.9	1 :	_		i		×		SILT to SILTY CLAY, trace to little fine to coarse
<u>.</u>		15	=	2	DO	8-7-	8" 24"		gravel, trace fine sand, moist. (ML-CL)
:		13	_	1	٦	8–7	24		
: .			_						
- 4			-						SA-3 4.0-6.0 ft. Compact, light brown-gray CLAYEY SILT,
.			_		'	6-8-	22" 24"		little fine to coarse gravel, trace fine sand, moist. (ML)
-		18	_	3	DO		24"	-	-
			_		1	10-14			
6			-						
:			_						SA-4 6,0-8,0 ft. Dense, light brown-gray CLAYEY SILT, little
:		١	i -			14-18-	20" 24"		fine to coarse gravel, trace fine sand, molst. (ML)
.		40	-	4	DO	22-28	24"	-	1
			_			22-20			
8							 	l	SA-5 8.0-10.0 ft. Compact, light brown-gray CLAYEY
:			_			3-6-			SILT, little fine to coarse gravel, trace fine sand,
<u>.</u>		15	_	5	DO		22" 24"	_	moist. (ML)
:		13	_	-		9-14	24		· · · · · · · · · · · · · · · · · · ·
: , ,		1	=						
10									SA-6 10.0-10.9 ft. Compact, light brown-gray CLAYEY
.			-			1 4_11_	23"		SILT, little fine to coarse gravel, trace fine sand, moist.
-		22	_	6	DO	4-11- 11-13	23" 24"	-	10.9-12.0 ft. Firm, gray CLAYEY SILT to SILTY
:			_		-	1,-,5			CLAY, slightly plastic, little fine to coarse gravel, moist,
12			-		<u> </u>		1		(ML-CL)
: -			_				1		SA-7 12.0-14.0 ft. Stiff, gray SILTY CLAY, moderately
:		00	=	_		12-17-	2 <u>4</u> "	_	plastic, trace fine gravel, moist. (CL)
:		36	-	/	DO	19-28	24"		
:			-			'		}	
14			-	_	\vdash		 	-	SA-8 14.0-15.5 ft, Stiff, gray SiLTY CLAY, moderately
.			-			4-7	24"		ρlastic, trace fine gravel, moist.
-		21	_	В	ро		24" 24"	-	15.5-16.0 ft. Dense, brown, CLAYEY SILT, little fine
:			=]		14-19			to coarse gravel, slightly moist. (ML-CL)
16			-				<u> </u>		
: ''			=	1					SA-9 16.0-16.9 ft. Dense, brown SILT and very fine SAND,
:			=	ĺ		15-21-	18"		little clay, moist.
· [SAND & GRAVEL	46	-	9	DO		1 <u>B</u> "	_	 16.9-18.0 ft. Dense, gray-brown coarse GRAVEL and coarse SAND, trace to little clay, very moist. (SM-GW)
:			-	}		25-30			coarse SAIND, trace to little day, very moist, (SIM-OVV)
18	UNIT				├	<u> </u>	+		SA-10 18.0-20.0 ft. Loose to compact, brown to gray fine
.	16.9-30.0		-			40.45			to coarse GRAVEL, little to some fine sand, trace to
:	, 5.0	30	_	10	lνν	16-15-	12"	_	little clay, saturated. (GW)
:		100	-	١''	DO	15-15	24"		
			_ =	L	L				
20			_						SA-11 20.0-22.0 ft. Loose to compact, brown to gray fine
.			=			25-22-	12"		to coarse GRAVEL, little to some fine sand, trace
-		42	=	11	DO		12" 24"	-	to little clay, saturated. (GW)
:] =	1		20-14			
-22		<u> </u>	<u> </u>	_			-	<u> </u>	O4 40 00 0 00 0 0 4 As ab
: -			-	1					SA-12 22.0-22.8 ft. As above. 22.8-24.0 ft. Compact, gray CLAYEY SILT, trace
:		26	=	10	DO	12-14-	<u>18"</u>	_	to little fine sand, trace fine gravel, moist.
-		26	=	12	الالا	12-15	24"	-	(GW-ML)
24		-	=	1		12-13		-	CALME
47			Ь		_		1	intes	Continued on next page.

FIELD BORING LOG

DEPTH HOLE 30'	JOB NO. 093-89169 PROJECT WMNY/West Borrow Area Wells / NY	BORING NO MW-BA-2
DEPTH SOIL DRILL 30'	_GA_INSPAJNDRILLING_METHOD4-1/4" ID Hallow Stem_Augers	SHEET 2 of 2
DEPTH ROCK CORE N/A	_ WEATHER_CLOUDY DRILLING CONOTHNAGLE DRILLING	SURFACE EL
NO. DIST15_USN/A	TEMP. 42° F DRILL RIG CME-850 DRILLER T. MANGEFRI	DADATUM SITE
DEPTH WL. N/A	HRS. PROD. N/A WT. SAMPLER HAMMER 140 lb. DROP 30"	STARTED_0830/11-4-09
TIME WL. N/A	_HRS. DELAYED_N/A_WT. CASING HAMMERN/ADROPN/A	COMPLETED 1030/11-5-09

SAMPLE TYPES	ABBREVIATIONS	SOIL DESCRIPTION - RANGE OF PROPORTION
A.S. AUGER SAMPLE BL. C.G. CHUNK SAMPLE B. D.O. OF ONLY COPEN D.O. OF	FINE PH PRESSURE—HYDRAULC TI RAG FRACMENTS PM PRESSURE—MANUAL W	A SAUPLE THE THE THE THE THE THE THE THE THE TH

	U LT		RX	RO			Y	AETTOM	A AEKA 14 HWMD
ELEV. DEPTH	DESCRIPTION	BLOWS/ FT.		NO.	TYPE	SAMPLES HAMIN, BLOWS (FORCE)	REC/ATT	DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
24	SAND & GRAVEL UNIT	26	-	13	DO	12 – 13– 13–18	1 <u>4"</u> 24"	_	SA-13 24.0-24.8 ft. Very stiff, gray SILTY CLAY, some fine sand, very moist. 24.8-26.0 ft. Loose, brown-gray coarse GRAVEL, some fine gravel, some coarse sand, trace to little silt, saturated. (CL-GW)
26	16.9–30.0	38		14	DO	21-22- 15-18	16" 24"	_	SA-14 26.0-28.0 ft. Dense, dark gray to black, medium to coarse SAND, little silty clay, molst, grading to fine to coarse GRAVEL, well sorted, broken angular rock fragments, very moist. (SM-GW)
-28		39	-	15	DO	12-15- 24-30	18" 24"	_	SA-15 28.0-30.0 ft. Loose, dark gray to black, fine to coarse GRAVEL, well sorted, broken angular rock fragments, very moist. (SM-GW)
30	30.0 FT. END OF BOREHOLE							-	(Composite Geotechnical Laboratory Sample Collected between 18.0 and 30.0 ft. bgs.)

MONITORING WELL INSTALLATION LOG

JOB NO. 093-89169 PROJECT WMNY/WEST BORROW AREA WELLS/NY WELL NO. MW-BA-2 SHEET 1 of 1										
	GA INSP. AJN DRILLING METHOD 4 1/4" I.D. HOLLOW STEM AUGERS GROUND ELEV. 1454.84 WATER DEPTH N/A									
WEATHER F		NOTHNAGLE DRILLING RISER ELEV.	1457.04 DATE/TIME N/A							
TEMP. 40°	F DRILL RIG CME-850	DRILLER T. MANGEFRIDA STARTED 11	00 / 11-5-09 COMPLETED 1430 / 11-5-09							
	COORDINATES N938960.83,		TIME / DATE TIME / DATE							
		MATERIALS INVENTORY								
WELL CASING 2.0 in. dig. 20.7 i.f. Well screen 2.0 in. dig. 10 i.f. bentonite seal 3/8" BENTONITE CHIPS										
CASING TYPI	CASING TYPE SCH. 40 PVC SCREEN TYPE CONTINUOUS WRAP PVC INSTALLATION METHOD POUR THROUGH AUGERS									
JOINT TYPE	FLUSH THREADED	SLOT SIZEO.010"FILTE	R PACK QTY. 2.5 BAGS							
		CENTRALIZERS NOT USED FILTE	R PACK TYPE #00N QUARTZ SAND							
GROUT TYPE		DRILLING MUD TYPE NOT USED INST								
			450							
			NATUL CTOU NATES							
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES							
-		SLIP CAP	AUGERED WITH 4 1/4 I.D. HOLLOW							
-		DRAIN = 2.28 6" # ANODIZED	STEM AUGER TO 30.0 FT. BELOW							
:		HOLES PROTECTIVE	GROUND SURFACE (BGS). SAMPLED							
1454.84	GROUND SURFACE	CASING	0.0-30.0 FT BGS. SAND POURED							
0.0		3'¢ CONCRETE	THROUGH AUGERS 30.0-28.5 FT							
_		PAD PAD	BGS. WELL MATERIALS PLACED IN							
		40 - 40 -	BOREHOLE USING 10 FT, OF WELL							
- 5.0		T CEMENT/	SCREEN, END CAP, 20.7 FT. OF							
		BENTONÍTE GROUT	WELL RISER AND SLIP TOP CAP FOR							
-	CLAY TILL UNIT	2"ø SCH, 40	OVERALL LENGTH OF 30.7 FT. WELL							
-	0-16.9	PVC RISER	MATERIALS PLACED TO 28.5 FT. BGS							
10.0	0-10.9	BENTONITE	WITH 1.35 FT. STICKUP, SAND							
- 10.0		SEAL 11.0 - 441	POURED THROUGH AUGERS 28.5 -							
		11.7 -	15.8 FT. BGS WHILE REMOVING							
-		CHOKER SAND	AUGERS AT 0.5-1.0 FT.							
15.0		15.7. []	INCREMENTS. CHOKER SAND PLACED							
- 13.0		15.2 - 15.8 -	15.8-15.2 FT BGS. BENTONITE CHIP							
			SEAL PLACED 15.2-11.7 FT. BGS.							
-		18.5 – 8"ø BOREHOLE	CHOKER SAND PLACED 11.7-11.0 FT.							
20.0			BGS. CEMENT/BENTONITE GROUT							
20.0			ADDED 11.0-0.0 FT. BGS. 6-INCH							
- 1	SAND & GRAVEL	FILTER SAND	DIAMETER ANODIZED ALUMINUM							
-	UNIT		CASING PLACED IN 3-FT, DIAMETER							
25.0	16.9-30.0'		BY 4 FT. DEEP CONCRETE PAD.							
20,0		2"® CONTINUOUS - WRAP PVC	DRAINHOLES DRILLED INTO							
-		WRAP PVC 0.010" SLOT	PROTECTIVE CASING.							
-		28.5 -	NYSDEC CONCURRED WITH THE							
30.0		28.5 - (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	LOCATION OF THE SCREENED							
-	END OF BORING	<u> </u>	INTERVAL.							
	30' BGS	[
-		[
-		[
<u> </u>		<u>[</u>								
		<u> </u>								
-		-								
[<u></u> [
-	-		WELL DEVELOPMENT NOTES							
-	· ·		DATE DEVELOPED: 11/10-11/2009							
- 1		[-] [-]								
[DEVELOPMENT METHOD:							
-		[-] [-]	STAINLESS STEEL BAILER							
-		[VOLUME PURGED: 59.7 GALS.							
_		[]								
-		<u>[</u>								
		E								
-										
t l		<u>[</u>]								

FIELD BORING LOG

DEPTH HOLE 19' JOB NO. 093-89169 PROJECT WMNY/West Borrow Area Wells / NY	_BORING NO.MW-BA-3
DEPTH SOIL DRILL 19' GA INSP. AJN DRILLING METHOD 4-1/4" ID Hollow Stem Augers	SHEET 1 of 1
DEPTH ROCK CORE N/A WEATHER CLOUDY DRILLING CO. NOTHNAGLE DRILLING	
NO. DIST. 10 US. N/A TEMP. 38' F DRILL RIG CME-850 DRILLER T. MANGEFRID.	
DEPTH WL. N/A HRS. PROD. N/A WT. SAMPLER HAMMER 140 lb. DROP 30"	_STARTED_0905/11-6-09
TIME WL. N/A HRS. DELAYED N/A WT. CASING HAMMER N/A DROP N/A	_COMPLETED 1035/11-6-09

SAMPLE TYPES	ABBREVIATIONS	SOIL DESCRIPTION - RANGE OF PROPORTION
A.S. AUGER SAMPLE C.S. CHUNK S	BIT BLACK II MEDUM TO THE PROPERTY OF THE PROP	A SAMPLE "TRUE" - 0-5% AT SAMPLE 127-05% AT SAMPLE 12-30%

ELEV. DEPTH	DESCRIPTION	BLOWS/		NO.	TYPE	SAMPLES HAMM, BLOWS (FORCE)	REC/ATT	DEPTH	SAMPLE DESCRIPTION AND BORING NOTES
_			_			(FURUE)			SA-1 0.0-0.5 ft. Loose, dark brown CLAYEY SILT topsoil,
-		_	=			2-3-			some plant matter, trace fine sand, trace fine gravel,
-		10	_	1	DO		1 <u>2</u> 24	_	molst.
.			-			7-4	24"		0.5-2.0 ft. Compact, It brown, CLAYEY SILT, trace
2	CLAY TILL UNIT		=						to little f. gravel, trace f. sand, moist. (CL-ML)
	0'-8.0'		-						SA-2 2.0-4.0 ft. Stiff, light brown, mottled gray, CLAYEY
	0 -8.0		-			7-7-	18"		SILT to SILTY CLAY, little fine to coarse gravel, trace
-		14	_	2	DO	' '	1 <u>8</u> "	-	fine to coarse sand, very moist. (ML-CL)
.		' '	=	ł		7-8			
4			-						
·			-						SA-3 4.0-4.8 ft. Soft to firm, brown to mottled gray SILTY
:			-	ł		11	20" 24"		CLAY, little fine to coarse gravel, trace fine to coarse
-		7	_	3	DO		24"	_	sand, very moist.
.			-	}		6-5			4.8-6.0 ft. Compact, gray CLAYEY SILT, trace fine
- 6			_						gravel, trace fine sand, moist. (ML-CL)
. 6			-						SA-4 6.0-8.0 ft. Compact, gray-brown, trace orange
.		l i	=	}		7-9-	20"		mottling, CLAYEY SILT, trace fine gravel, trace fine
-		20	_	4	סמ	1-9-	20" 24"	_	sand, moist. (ML)
:		20	=	'	-	11-15			
			_ =	L	L				
- 8	SAND & GRAVEL		-						SA-5 8,0-10.0 ft. Loose to compact, gray-brown fine to
:			=	1		6-6-	10*		medium SAND, little coarse sand, trace fine to
-	UNIT	13	_	5	ро		1 <u>8</u> "	_	coarse gravel, trace clay, moist. (SM)
:	B.0'-19.0'	'	=	-		フーフ	24		
10	8.0 -19.0		=		Ι.				
10			_						SA-6 10.0-10.9 ft. Compact, brown-gray fine to medium
.			=				16"		SAND, little clay, trace fine to coarse gravel, moist
-		16	_	6	DO	4-5-	16" 24"	_	to very moist.
:		'	=	Ĭ		11-21	24		10.9-12.0 ft. Compact, brown-gray coarse GRAVEL,
10			=						little clay, little fine sand, v. moist to wet. (GW)
12			-						SA-7 12.0-12.5 ft. Compact, brown-gray fine to medium
-			=			04 30	22*		SAND, saturated.
- 1		69	_	7	DO	24-30-	22" 24"		12.5-14.0 ft. Very dense, brown-gray coarse
:		09	_	′	00	39-45	2 4		GRAVEL as rock fragments, little medium to coarse
: , ,			-						sand, trace to little clay, slightly moist.
14		~ .					K#		SA-8 14.0-15.0 ft. Loose, gray-brown c GRAVEL as shaly
:		94	-	8	DO	50-44	<u>5"</u> 12"		rx fragments, some silt, tr c sand, sl moist.
_			-				'-		
:			-						SA-9 15.0-17.0 ft. Compact, gray-brown medium to coarse
		40	_			11-21-	13"		SANDY GRAVEL, little silt, broken angular rock
-16		42	_	9	DO		1 <u>3</u> " 24"	_	fragments, moist, (GW)
•			-			24-21			
-		<u> </u>		<u> </u>	<u> </u>				
:			=						SA-10 17.0-19.0.0 ft. Loose to compact, gray-brown coarse
			_		-	1416	1 <u>3</u> " 24"		SANDY GRAVEL, trace to little silt, trace clay,
-18		42	_	10	DO	26-40	24"	_	angular shale and limestone fragments, slightly
.			_			20-40			moist to moist. (GW)
-		 		ļ					
	19.0 FT. END OF BOREHOLE		=						(Composite Geotechnical Laboratory Sample Collected
20			=						between 8.0 and 19.0 ft. bgs.)
-20			-						· · · · · · · · · · · · · · · · · · ·
:			=						
-			=					-	
:			_					ļ	
. , ,			_						
-22			_					T	
:			~					i	
<u>.</u>			_					_	
24			=					i	
24			_						
- 1									Continued on next page.

Golder Associates

MONITORING WELL INSTALLATION LOG

JOB NO. 093-89169 PROJECT WMNY/WEST BORROW AREA WELLS/NY WELL NO. MW-BA-3 SHEET 1 of 1										
GA INSP		1/4" I.D. HOLLOW STEM AUGERS GROUND ELEV.	1456.90 WATER DEPTH N/A							
	PART SUN DRILLING COMPANY		1450.40							
		DRILLER T. MANGEFRIDA STARTED 10	045 / 11-6-09 COMPLETED 1400 / 11-6-09							
	LOCATION / COORDINATES N938954.21, E1170987.10									
	MATERIALS INVENTORY									
		I.f. WELL SCREEN2.0in. dia10I.f. BEN								
CASING TYP		SCREEN TYPE CONTINUOUS WRAP PVC INST	ALLATION METHOD POUR THROUGH AUGERS							
	FLUSH THREADED	SLOT SIZEO.010" FILΠ	ER PACK QTY. 2.5 BAGS							
GROUT QUA	NTITY	CENTRALIZERS NOT USEDFILTI	ER PACK TYPE #00N QUARTZ SAND							
GROUT TYPE	CEMENT/BENTONITE	DRILLING MUD TYPE NOT USED INST	ALLATION METHOD TREMIE							
ELEV./DEPTH	SOIL/ROCK DESCRIPTION	WELL SKETCH	INSTALLATION NOTES							
-	33.27.103.1.22.31.11.11.1	SLIP CAP	AUGERED WITH 4 1/4 I.D. HOLLOW							
		-3.98	STEM AUGER TO 18.9 FT. BELOW							
-		DRAIN 6" Ø ANODIZED ALUMINUM ANODIZED	GROUND SURFACE (BGS). SAMPLED							
1456.90	GROUND SURFACE	PROTECTIVE CASING	0.0-18.9 FT BGS. SAND POURED							
- 0.0			THROUGH AUGERS 18.9-18.3 FT							
[]		3'¢ CONCRETE PAD								
- 1			BOREHOLE USING 10 FT. OF WELL							
[CLAY TILL UNIT	CEMENT/	SCREEN, END CAP, 10.8 FT. OF							
5.0	0'-8.0'	.l [∕ ∕ GROUT L	WELL RISER AND SLIP TOP CAP FOR							
:		BENTONITE SEAL CHOKER SAND	OVERALL LENGTH OF 20.8 FT. WELL							
		7.8 -	MATERIALS PLACED TO 18.3 FT. BGS							
		8.3 - 8"ø BOREHOLE	WITH 2.5 FT, STICKUP, SAND							
10.0			POURED THROUGH AUGERS 18.3 -							
		FILTER SAND	8.3 FT. BGS WHILE REMOVING							
	SAND & GRAVEL		AUGERS AT 0.5-1,0 FT.							
:	UNIT	2"ø SCH. 40	INCREMENTS, CHOKER SAND PLACED							
15.0	8.0'-18.9'	PVC RISER	8.3-7.8 FT BGS. BENTONITE CHIP							
		2"# CONTINUOUS WRAP PVC U.O.10" SLOT	SEAL PLACED 7.8-4.8 FT. BGS.							
-		. 1 15.00 (100 - 10	CHOKER SAND PLACED 4.8-4.3 FT.							
	FUD OF BORING	18.9	BGS. CEMENT/BENTONITE GROUT							
20.0	END OF BORING 18.9' BGS		ADDED 4.3-0.0 FT. BGS.							
-	10.9 503	-	REMAINING AUGERS REMOVED.							
-			·							
-		-	6-INCH DIAMETER ANODIZED							
-			ALUMINUM CASING PLACED IN 3-FT. DIAMETER BY 4 FT. DEEP CONCRETE							
-		-								
			PAD, DRAINHOLES DRILLED INTO PROTECTIVE CASING.							
-		:	<u> </u>							
-		-	NYSDEC SUGGESTED REDUCING THE							
-		[THICKNESSES OF THE WELL							
-		-	MATERIAL SECTIONS DUE TO							
-		:	SHORTER-THAN-EXPECTED WELL							
-	}	-	DEPTH.							
]		:[
-		-[
-		:								
-	Ė		WELL DEVELOPMENT MOTEC							
:			WELL DEVELOPMENT NOTES							
-		-	DATE DEVELOPED: 11/11/2009							
-		<u> </u>	DEVELOPMENT METHOD:							
:		:	STAINLESS STEEL BAILER							
-										
		[VOLUME PURGED: 0.15 GALS.							
<u>:</u>		-								
-		[
-		;								
		[
. 1		.լ	į l							

B.3 Western Landfill Area Compiled Hydraulic Conductivity Data and Geotechnical Testing Data from 2005 Permit Application

Soil Borrow Area Logs

Table 2 - Monitoring Well Construction Details and Hydraulic Conductivity Data - Expansion Area Wells

							T
Monitoring	Ground Surface	Well Depth from	Well Depth from	Bottom of	Top of	Monitoring	Hydraulic Conductivity
Well/Borehole	Elevation (ft.)	Ground Surface (ft.)	Ground Surface (ft.)	PVC Screen	PVC Screen	Well Screen	(cm/s)
Location	(See Note 1)	(See Note 2)	at Time of Drilling	Elevation (ft.)	Elevation (ft.)	Location	
MW-15	1453.66	38.6	39.0	1415.06	1420.06	Sand and gravel unit	1.18x10-2
MW-16(S)	1453.50	13.5	13,5	1440.00	1445.00	Clay till	3.32x10-6
MW-16	1453.70	27.4	28.0	1426.26	1431.26	Sand and gravel unit	5.27x10-3
MW-17	1459.30	39.4	39.8	1419.86	1424.86	Sand and gravel unit	3.20x10-2
MW-18	1458.80	19.4	20.0	1439.36	1444.36	Clay till	3.47x10-7
MW-18A	1460.40	24.5	24.5	1436 (approx)	1441 (approx)	Clay till	2.48x10-7
MW-30	1471.00	43.8	44.0	1427.21	1437.21	Sand and gravel unit	5.31x10-3
MW-31	1470.40	27.9	28.5	1442.50	1447.50	Clay till	dry
MW-32	1470.25	10.8	11.0	1459.40	1464.40	Clay till	1.69x10-6
MW-33(S)	1443.70	12.5	12.5	1431.20	1436.20	Clay till	4.72x10-6
MW-33	1443.70	30.0	30.0	1413.73	1428.73	Sand and gravel unit	2.62x10-3
MW-50	1460.30	25.0	24.5	1435.35	1445.35	Sand and gravel unit	1.30x10-3
MW-A(S)	1461.50	10.5	10.5	1451.00	1456.00	Clay till	dry
MW-A(I)	1461.60	35.0	35.0	1426.58	1431.58	Sand and gravel unit	2.46x10-3
MW-B(S)	1495.10	40.0	40.0	1455.07	1465.07	Clay till	dry
MW-B(I)	1495.10	59.3	59.5	1435.77	1445.77	Sand and gravel unit	1.54x10-2
MW-C(S)	1466.20	19.5	19.5	1446.70	1456.70	Clay till	3.15x10-6
MW-C(I)	1465.60	33.6	33.6	1431.99	1436.99	Sand and gravel unit	1.06x10-3
MW-C(D)	1465.10	73.0	73.0	1392.10	1402.10	Sand and gravel unit	2.25x10-3
MW-D(S)	1482.00	31.5	31.5	1450.50	1460.50	Clay till	2.07x10-6
MW-D(I)	1482.50	49.0	49.0	1433.52	1438.52	Sand and gravel unit	4.79x10-3
MW-D(D)	1481.80	80.0	80.0	1401.77	1406.77	Sand and gravel unit	1.06x10-2
MW-E(S)	1456.40	27.5	27.5	1428,90	1438,90	Clay till	1.27x10-6
MW-E(I)	1455.56	40.0	40.0	1415.56	1420.56	Sand and gravel unit	3.41x10-2
MW-E(D)	1455.40	144.0	144.0	1311.40	1321,40	Sand and gravel unit	1.04x10-4
MW-H(S)	1477.10	42.0	42.0	1435,10	1445.10	Clay till	3.13x10-6
MW-H(I)	1477.50	64.0	64.0	1413,50	1423.50	Sand and gravel unit	1.09x10-3
MW-H(D)	1477.32	97.5	97.5	1379.82	1384.82	Sand and gravel unit	2.95x10-3
MW-H(D)R	1475.90	98.0	98.0	1377.90	1382.90	Sand and gravel unit	2.552.10-5
MW-I(S)	1496.40	48.0	48.0	1448.40	1458.40	Clay till	dry
MW-I(I)	1496.30	78.0	78.0	1418.30	1428.30	Sand and gravel unit	2.68x10-3
MW-J(S)	1462.20	27.5	27.5	1434.70	1439.70	Clay till	Insufficient Water
MW-J(I)	1462.12	50.5	50.5	1411.62	1421.62	Sand and gravel unit	9.82x10-4
MW-J(D)	1462.20	85.8	85.8	1376.40	1386.40	Sand and gravel unit	9.18x10-5
MW-K(S)	1496.60	41.5	41.5	1455.10	1460.10	Clay till	dry
MW-K(I)	1496.70	59.5	59.5	1437,20	1447.20	Sand and gravel unit	2.42x10-3
MW-K(D)	1496.70	95.5	95.5	1437.20	1411.00	Sand and gravel unit	2.42x10-3 2.32x10-2
PW-1	1455.6	41.0	41.0	1414.60	1429.60	Sand and gravel unit	2.323 10-2
PW-2B	1450.3	33,2	33.2	1417.10	1429.60	Sand and gravel unit	
OW-1(S)	1450.3	33.2 14.5	33.2 14.5	1417.10	1427.10	Sand and gravei unit Clay till	1.35x10-7
OW-1(3)	1452.9	32.0	32.0	1438.40	1448.40	Sand and gravel unit	1.358 10-7
OW-1(i)	1452.7	22.0	22.0	1420.70	1430.70	Sand and gravel unit	1.61x10-5
OW-2(f) OW-3(S)	1457.0	19.0	19.0	1431.20	1441.20	Clay till	1.01x10-5
OW-3(3)	1457.0	41.0	41.0	1438.00	1448.00	Sand and gravel unit	1.13.10-0
OW-3(I)	1456.9	23.0	23.0				
MA-2	1453.8	28.0	23.0	1430.80	1440.80	Sand and gravel unit	6.8x10-4
				1433.00	1443.00	Sand and gravel unit	
MA-3	1469.45	34.5	34.5	1434.95	1444.95	Sand and gravel unit	1.5x10-4
P3-03	1448.9	20.0	20.0	1428.90	1438.90	Sand and gravel unit	3.3x10-3
P4-03	1440.4	18.0	18.0	1422.40	1432.40	Sand and gravel unit	1.2x10-2

Notes:

- 1. Monitoring well elevation data based on survey completed by Deborah A. Nabor, PLS, PC in March 2001 and July 2001 unless otherwise noted below: Monitoring well MW-E(I) elevation data based on survey completed by Deborah A. Nabor, PLS, PC. and submitted in "Data Report Hydrogeologic Studies, Chaffee Landfill Facility, Chaffee, New York," prepared by McMahon and Mann Consulting Engineers, P.C. dated September 2000. Wells MA-2 and MA-3 elevation data based on survey completed by M.J.R. Land Surveyor, PC on June 11, 2001. Monitoring well MW-H(D)R elevation data based on survey completed by Wendel Duchsherer Survey on September 25, 2002. Pump and observation well elevation data based on survey completed by Wendle Dushcherer Survey on November 27, 2001. Wells P3-03 and P4-03 elevation based on survey completed by Wendel Duchscherer Survey dated August 28, 2003.
- Well depth refers to the measured ground surface elevation minus the bottom of screen elevation. The bottom of screen elevation was calculated by subtracting the well depth contained on the log from the ground surface elevation at the time of drilling.

Table 3 - Summary of Geotechnical Testing Data

Shading indicates sample collected from clay till.

							7	Atterberg Lir	nits		
			l			Percent					
Test Boring/	Sample		Natural Moisture	Percent	Percent	Silt &			1 '		
Piezometer	Number	Depth (ft)	Content (%)	Gravel ¹	Sand ²	Clay ³	LL (%)	PL (%)	PI (%)	USCS Symbol	Laboratory-based Soil Description
											The state of the s
MW-8	S-9	16-18		0.00	2.57	97.43	34	20	14	CL	GRAY LEAN CLAY
MW-8	S-18	34-36		0.12	13.43	86.45	20	15	5	CL-ML	GRAY SILTY CLAY
MW-8	S-19	36-38	Name N. A.A.	0.00	21.33	78.67	18	14	4	CL-ML	GRAY SILTY CLAY WITH SAND
MW-8	S-29	56-58		28.58	58.60	12.83				SM	BROWNISH GRAY SILTY SAND WITH GRAVEL
MW-13	S-25	48-50	-	38.02	53.84	8.13				SP-SM	BROWNISH GRAY POORLY GRADED SAND WITH SILT AND GRAVEL
MW-13	S-27	52-54		52.65	36.77	10.58				GP-GM	LIGHT BROWN POORLY GRADED GRAVEL WITH SILT AND SAND
MW-13	S-30	58-60		48.40	44.72	6.88				GW-GM	GRAY WELL GRADED GRAVEL WITH SILT AND SAND
MW-13	S-1	64-65.8		42.62	45.87	11.51				SP-SM	GRAY POORLY GRADED SAND WITH SILT AND GRAVEL
MW-15	S-8	14-16	da jaka 174.	2.71	18.98	78.33	26	18	8	CL III	BROWN LEAN CLAY WITH SAND
MW-15	S-10	18-20		35.87	52.73	11.40			1	SW-SM	BROWN WELL GRADED SAND WITH SILT AND GRAVEL
MW-15	S-13	24-26		3.21	44.80	51.98	17	12	5	CL-ML	GRAY SANDY SILTY CLAY
MW-15	S-14	26-28		16.66	61.97	21.36	16	13	3	SM	BROWNISH GRAY SILTY SAND WITH GRAVEL
- ANA/ D/I)	0.0	ر دورو اداد	00.2	0.05	9.00	01.05	34	19	15	CL	GRAYISH BROWN LEAN CLAY
MW-B(I)	S-2 S-7	2-4 12-14	22.3 17.8	0.95	8.00 10.32	91.05 89.58	23	14	9	CLASSIC	BROWN LEAN CLAY
MW-B(I)	S-16	30-32	14.5	4.93	16.42	78.66	23	16	7	CL-ML	GRAYISH BROWN SILTY CLAY WITH SAND
MW-B(I)	S-24	46-48	3.0	4.90	10.42	74.00	20	10		OC-NIC.	PROCESSOR HIS CONTROL AND AND AND AND AND AND AND AND AND AND
MW-B(I)	S-25	48-50	4.5	41.80	34.30	23.90			 	GC	BROWN CLAYEY GRAVEL WITH SAND
MW-B(I)	S-27	52-54	6.3	777.00	04.00	20.00			1		
MW-B(I)	S-28	54-56	2.1	64.03	25.93	10.04				GP-GC	BROWN POORLY GRADED GRAVEL WITH CLAY AND SAND
MW-B(i)	S-29	56-58	6.7	56.08	32.91	11.01				GP-GC	BROWN POORLY GRADED GRAVEL WITH CLAY AND SAND
MW-B(I)	S-30	58-60	7.2								
							Ĺ		\vdash		DROWN CLAVEY CRAVEL WITH SAME
MW-D(I)	S-4	36-38	6.3	41.42 26.30	38.55	20.04	-		\vdash	GC SC	BROWN CLAYEY GRAVEL WITH SAND BROWN CLAYEY SAND WITH GRAVEL
MW-D(I) MW-D(I)	S-5 S-6	38-40 40-42	6.4 4.2	45.74	49.71 42.15	12.11			 	GC	BROWN CLAYEY GRAVEL WITH SAND
MW-D(I)	S-8	44-46	8.3	47.74	38.60	13.66			-	GC	BROWN CLAYEY GRAVEL WITH SAND
MW-D(I)	S-9	46-48	10.3	43.29	41.00	15.71				GC	BROWN CLAYEY GRAVEL WITH SAND
MW-D(D)	S-2	2-4	22.7	Arrest San	8 15 18 14 1		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	19-14 No. 12-14		25.02 Re20100959	
MW-D(D)	S-4	6-8	20.6	0.91	10.34	88.75	26	21	5	CL-ML	BROWN SILTY CLAY
MW-D(D)	S-5	8-10	20.5	0.23	8.11	91.66	24	18	8	CL-ML	BROWN SILTY CLAY
MW-D(D)	S-6	10-12	15.4	0.41	9.13	90.46			25.40	CL	BROWN LEAN CLAY BROWN LEAN CLAY WITH SAND
MW-D(D)	S-7 S-9	12-14 16-18	16.6 15.2	7.13 6.89	13.31 13.31	79.57 79.79	28	18	10	- 	GRAYISH BROWN LEAN CLAY WITH SAND
MW-D(D) MW-D(D)	S-9 S-12	22-24	14.5	1.51	17.23	81.27			N. A.	CL CL	GRAYISH BROWN LEAN CLAY WITH SAND
MW-D(D)	S-14	26-28	17.7	11.57	6.25	82.18	23	17	6	CL-ML	GRAYISH BROWN SILTY CLAY WITH GRAVEL
MW-D(D)	S-15	28-30	16.4	0.74	5.47	93.79	25	18	7	CL-ML	GRAYISH BROWN SILTY CLAY
MW-D(D)	S-16	30-32	17.4	0.67	4.88	94.45	24	17	7	CL-ML	SECTION OF THE SECTIO
MW-D(D)	S-18	34-36	21.2	27.74	32.45	39.81			1	sc	BROWN CLAYEY SAND WITH GRAVEL
MW-D(D)	S-20	38-40	7.4	50.56	27.36	22.09			\Box	GC	BROWN CLAYEY GRAVEL WITH SAND
MW-D(D)	S-21	40-42	6.0								
MW-D(D)	S-23	44-46	10.6	27.14	33.33	39.53				SC	GRAYISH BROWN CLAYEY SAND WITH GRAVEL
MW-D(D)	S-24	46-48	8.5								
MW-D(D)	S-25	48-50	6.8								
MW-D(D)	S-28	54-56	12.6	8.21	22.82	68.97	21	14	7	CL-ML	GRAYISH BROWN SANDY SILTY CLAY
MW-D(D)	S-30	58-60	15.4	2.76	11.40	85.84	إسا			CL	GRAYISH BROWN LEAN CLAY
MW-D(D)	S-31	60-62	14.4	4.22	11.19	84.59	ا ـــــا		\vdash	CL	GRAYISH BROWN LEAN CLAY WITH SAND
MW-D(D)	S-34	66-68	15.0	4.98	10.94	84.08	25	16	9	CL	GRAYISH BROWN LEAN CLAY WITH SAND
MW-D(D)	S-36	70-72	18.6	1.93	7.72	90.35	 		\vdash	CL	GRAYISH BROWN LEAN CLAY
MW-D(D)	\$-37	72-74	13.3	 					 		
MW-D(D)	S-38	74-76	12.0	 					$\vdash \vdash \vdash$		
MW-D(D)	S-39	76-78	12.1	12.65	20.75	57.60	21	14	7	CL-ML	GRAYISH BROWN SANDY SILTY CLAY
MW-D(D)	\$-40 \$-43	78-80 84-86	10.2 21.4	12.65 4.45	29.75 11.83	83.72	31	18	13	CL-ML	GRAYISH BROWN SANDY SILTY CLAY GRAYISH BROWN LEAN CLAY WITH SAND
MW-D(D)	S-43 S-44	86-88	41.4	21.75	23.49	54.76	31	10	- 	CL	GRAYISH BROWN SANDY LEAN CLAY WITH GRAVEL
1V1 V V ~ U (U)	U-44	00-00	5.7	50.54	36.49	12.97	 1		1	GC	GRAY CLEYEY GRAVEL WITH SAND

Table 3 - Summary of Geotechnical Testing Data

Atterberg Limits Percent Natura Test Boring/ Sample Moisture Gravel1 Sand² Clay³ PL (%) USCS Symbol Laboratory-based Soil Description Depth (ft) MW-E(D) S-2 11.48 18.13 70.39 25 16 9 BROWN LEAN CLAY WITH SAND MW-E(D) 5-4 16.3 5.85 12.40 81.75 25 17 8 BROWN LEAN CLAY WITH SAND S-9 16-18 17 BROWNISH GRAY LEAN CLAY WITH SAND MW-E(D) 15.6 13.00 83.48 25 8 CL MW-E(D) S-11 20-22 14.0 1.76 11.25 86.99 22 16 6 CL-ML **GRAY SILTY CLAY** MW-E(D) S-12 22-24 13.2 10.89 17 BROWNISH GRAY SILTY CLAY WITH GRAVEL 9.82 79.30 23 6 CL-ML MW-E(D) GRAY SILTY, CLAYEY SAND WITH GRAVEL S-15 28-30 13.2 21.62 32.92 45.46 21 15 6 CL-ML MW-E(D) 36-38 •• sc S-19 7.7 50.01 12.60 GRAY CLAYEY SAND WITH GRAVEL 37.39 MW-E(D) S-25 48-50 9.7 64.64 13.83 GRAY CLAYEY SAND WITH GRAVEL 21.53 58-60 15 9 GRAY LEAN CLAY WITH SAND MW-E(D) S-30 15.7 2.58 12.69 84.73 24 CL ** ML MW-E(D) 53.06 GRAY SANDY SILT S-43 84-86 13.8 0.00 46.94 ** ML MW-E(D) S-46 90-92 17.4 **BROWNISH GRAY SILT** 0.45 1.56 97.99 BROWNISH GRAY SILT (NON-PLASTIC FINES) MW-E(D) ML S-49 96-98 16.9 0.00 2.15 97.85 MW-E(D) S-51 100-102 18.1 0.00 2.91 97.09 ** MI BROWNISH GRAY SILT MW-E(D) S-53 106-108 14.9 0.14 78.50 21.36 **SM BROWNISH GRAY SILTY SAND MW-E(D) S-56 110-112 15.0 0.20 63.26 36.54 **SM GRAYISH BROWN SILTY SAND MW-E(D) S-61 120-122 18.5 0.28 4.70 95.02 27 17 10 CL BROWNISH GRAY LEAN CLAY MW-E(D) S-64 126-128 16.7 1.52 13.11 85,36 22 16 6 CL-ML **BROWNISH GRAY SILTY CLAY** MW-E(D) S-68 134-136 99.17 ML BROWNISH GRAY SILT (NON-PLASTIC FINES) 24.9 0.00 0.83 MW-E(D) S-71 140-142 0.00 8.82 91.18 ML BROWNISH GRAY SILT (NON-PLASTIC FINES) MW-G(D) S-3 4-6 16.9 23.37 35.84 40.79 16 SC-SM BROWN SILTY, CLAYEY SAND WITH GRAVEL 21 5 MW-G(D) S-7 12-14 21.9 7.35 18 16 GRAY LEAN CLAY 2.51 90.15 34 CL MW-G(D) S-11 14.4 GRAY LEAN CLAY 20-22 3,44 9.85 86.70 26 16 10 CL S-12 47.93 18.67 MW-G(D) 22-24 3.4 33.40 GRAY CLAYEY SAND WITH GRAVEL SC MW-G(D) S-13 5.9 GRAY CLAYEY SAND WITH GRAVEL 24-26 42.92 43.43 13.65 SC 19 MW-G(D) S-20 38-40 24.0 1.73 5.21 93.06 39 20 CL GRAY LEAN CLAY MW-G(D) **GRAY SANDY LEAN CLAY** S-22 42-44 15.7 4.58 33.00 62,42 25 16 9 CL MW-G(D) S-23 44-46 16.6 4.23 23.65 72 12 25 17 8 CL GRAY LEAN CLAY WITH SAND MW-G(D) S-25 48-50 13.8 28.47 29.52 42.01 SC GRAY CLAYEY SAND WITH GRAVEL MW-G(D) S-27 52-54 5.9 44 97 44 73 10.30 GP-GM GRAY POORLY GRADED GRAVEL WITH SILT AND SAND MW-G(D) \$-35 68-70 13.6 18.13 17 64 64.23 CL GRAY GRAVELLY LEAN CLAY WITH SAND MW-G(D) S-40 78-80 27.25 57.60 15.15 SM GRAY SILTY SAND WITH GRAVEL 8.2 MW-G(D) S-42 82-84 7.9 22.38 62.37 15.24 SM GRAY SILTY SAND WITH GRAVEL MW-H(D) S-2 22.5 MW-H(D) S-3 4-6 23.1 MW-H(D) * 5-2 & 3 2-6 0.00 90.17 36 17 CL BROWN LEAN CLAY 9.83 19 MW-H(D) S-7 12-14 24.2 98.55 17 **BROWN LEAN CLAY** 0.00 1.45 38 21 CL MW-H(D) 16-18 S-9 16.6 0.60 87.34 " CL-ML **BROWN SILTY CLAY** 12.06 " CL-ML MW-H(D) S-10 18-20 17.8 0.00 12.32 87.68 **BROWN SILTY CLAY** MW-H(D) S-11 15.3 20-22 MW-H(D) 17.0 S-12 22-24 MW-H(D) S-13 15.2 24-26 4.95 18.67 25 17 CL **BROWN LEAN CLAY WITH SAND** MW-H(D) S-11,12 & 20-26 76.38 8 8.9 MW-H(D) S-17 32-34 MW-H(D) S-18 34-36 14.0 MW-H(D) * S-17 & 18 32-36 3.58 17.36 79.05 25 16 9 CL BROWN LEAN CLAY WITH SAND MW-H(D) S-20 38-40 13.9 MW-H(D) S-21 40-42 13.2 MW-H(D) * S-20 & 2 0.88 86.45 CL-ML 38-42 12.67 24 **BROWN SILTY CLAY** MW-H(D) S-22 42-44 7.5 0.94 33.01 66.05 22 6 CL-ML GRAYISH BROWN SANDY SILTY CLAY MW-H(D) S-24 46-48 5.2 MW-H(D) S-25 48-50 6.2 MW-H(D) S-24 & 2 46-50 56.49 9.69 ** GP-GM GRAYISH BROWN POORLY GRADED GRAVEL WITH SILT AND SAND 33.82 MW-H(D) 8.7 ** SW-SM GRAYISH BROWN WELL GRADED SAND WITH SILT AND GRAVEL S-31 60-62 34.31 59.40 6.29 MW-H(D) 13 5 GRAYISH BROWN SANDY SILTY CLAY S-33 64-66 11.0 6.42 18 CL-ML 31.93 61.65

** GP-GM

** CL-ML

** CL-ML

CI

** SW-SM

** SP-SM

MW-H(D)

MW-H(D)

MW-H(D)

MW-H(D)

MW-H(D)

MW-H(D)

MW-H(D)

MW-H(D)

S-35

S-40

S-41

S-42

S-43

* S-42-43

S-47

S-48

68-70

78-80

80-82

82-84

84-86

82-86

92-94

94-96

8.6

16.9

16.6

16.0

18.2

10.1

10.3

54.24

6.39

1.89

2.19

27.49

15.94

34.62

10.22

13.62

14.79

66.43

73.25

11.14

83.39

84.49

83.03

6.08

10.81

25

16

9

GRAYISH BROWN POORLY GRADED GRAVEL WITH SILT AND SAND

GRAYISH BROWN SILTY CLAY WITH SAND

GRAYISH BROWN SILTY CLAY WITH SAND

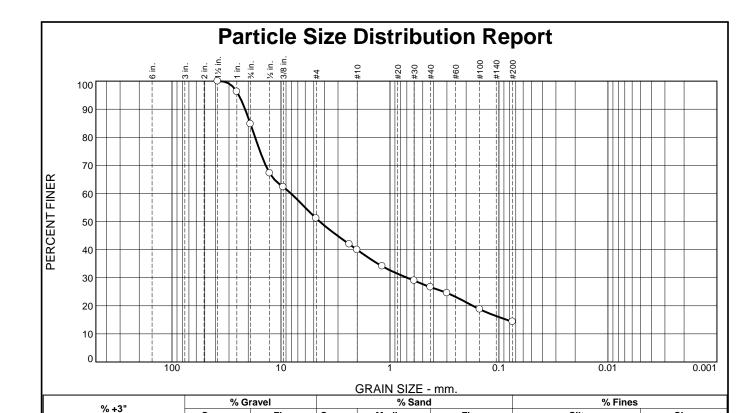
GRAYISH BROWN LEAN CLAY WITH SAND

GRAYISH BROWN WELL GRADED SAND WITH SILT AND GRAVEL

GRAYISH BROWN POORLY GRADED SAND WITH SILT AND GRAVEL

Table 3 - Summary of Geotechnical Testing Data

								Atterberg Lin	nits		
Fest Boring/ Piezometer	Sample Number	Depth (ft)	Natural Moisture Content (%)	Percent Gravel ¹	Percent Sand ²	Percent Silt & Clay ³	LL (%)	PL (%)	PI (%)	USCS Symbol	Laboratory-based Soil Description
MW-F	S-7	12-14	20.4	0.00	6.38	93.62	38	20	18	CL	BROWN LEAN CLAY
MW-F	S-8	14-16	21.5	0.00	5.73	94.27	37	20	17	CL The control of the	BROWN LEAN CLAY
MW-F	S-11	20-22	9.7	41.72	39.92	18.37				GC	BROWN CLAYEY GRAVEL WITH SAND
MW-F	S-12	22-24	6.5	53.56	38.09	8.35				GP-GC	GRAYISH BROWN POORLY GRADED GRAVEL WITH CLAY
MW-K(D)	S-2	2-4	see Note 4	0.00	5.99	94.01	39	21	18	CL A	BROWN LEAN CLAY
MW-K(D)	S-5	8-10	19.8	0.78	6.04	93.18	32	20	12	CL	BROWN LEAN CLAY
MW-K(D)	S-7	12-14	15.9	0.00	15.91	84.09	26	16	10	CL	BROWN LEAN CLAY WITH SAND
MW-K(D)	S-10	18-20	9.5	0.69	18.33	80.97	25	15	10	CL CL	BROWN LEAN CLAY WITH SAND
MW-K(D)	S-13	24-26	6.1	0.21	16.66	83.13	21	15	6	CL-ML	BROWN SILTY CLAY WITH SAND
MW-K(D)	S-15	28-30	6.6	0.00	13,64	86.36	25	16	9	CL.	BROWN LEAN CLAY
MW-K(D)	S-17	32-34	see Note 4	0.00	6.72	93.28	24	19	5	CL-ML	BROWN SILTY CLAY
MW-K(D)	S-19	36-38	8.1	0.40	6.92	92.68	21	18	3	ML parame	BROWN SILT
MW-K(D)	S-23	44-46	10.1	0.00	6,43	93.57	23	18	5	CL-ML	BROWN SILTY CLAY
MW-K(D)	S-25	48-50	1.5	45.65	43.27	11.08				GP-GM**	BROWN POORLY GRADED GRAVEL WITH SILT AND SAND
MW-K(D)	S-30	56-60	see Note 4	82.14	12.32	5,54				GP-GM**	BROWN POORLY GRADED GRAVEL WITH SILT
MW-K(D)	S-36	70-72	5.6	39.42	47.38	13.20				SM**	GRAYISH BROWN SILTY SAND WITH GRAVEL
MW-K(D)	S-38	74-76	12.4	0.62	18.79	80.59	23	16	7	CL-ML	BROWN SILTY CLAY WITH SAND
MW-K(D)	S-43	84-86	see Note 4	67.64	22.33	10.03				GP-GM**	GRAYISH BROWN POORLY GRADED GRAVEL WITH SILT AND SAI
MW-K(D)	S-45	88-90	5.5	54.10	36.73	9,17				GP-GM**	BROWN POORLY GRADED GRAVEL WITH SILT AND SAND
MW-K(D)	S-48	94-96	11.0	0.41	10.77	88.82	30	18	12	CL	BROWN LEAN CLAY
SB3-02	SN-8	14-16	see Note 5	0.00	1.46	98.54	37	20	17		GRAY LEAN CLAY
SB3-02	\$N-9	16-18	see Note 5	0.00	3.85	96.15	35	19	16	CL	GRAY LEAN CLAY
SB3-02	SN-10	18-20	see Note 5	4.45	42.83	52.72	18	14	⊌ r 4 ∭	CL-ML	BROWN SANDY SILTY CLAY
SB3-02	SN-11	20-22	see Note 5	0.00	10.45	89.55	31	18	13	- CL	GRAY LEAN CLAY
SB3-02	SN-12	22-24	see Note 5	2.41	16.60	80.99	25	17	8	CL	GRAY LEAN CLAY WITH SAND
SB2-03	S-2	2-4	18.8	0.00	13.52	86.48	29	18	11	CL	BROWN LEAN CLAY
SB2-03	S-4	6-8	16.7	1,42	9.54	89.04	26	19	7	CL-ML	GRAYISH BROWN SILTY CLAY
SB2-03	S-6	10-12	22.5	0,00	6.46	93.54	23	20	3	ML + William	BROWN SILT
SB2-03	S-7	12-14	13.7	3,05	13.69	83.26	23	16	- 7	CL-ML	GRAYISH BROWN SILTY CLAY WITH SAND
SB2-03	*S-9/10	17-21	15.9	4.26	13.23	82.50	24	17.	A 712	CL-ML	GRAY SILTY CLAY WITH SAND
SB2-03	S-13	25-27	16.9	3.75	20.00	76.24	19	16	3	ML	GRAY SILT WITH SAND
SB2-03	S-15	29-31	16.0	0.53	4.03	95.44	26	18	8:0	CL	GRAY LEAN CLAY
SB2-03	*S-18/19	35-39	7.0	39.30	39.66	21.04				SM**	GRAYISH BROWN SILTY SAND WITH GRAVEL
SB4-03	\$-3	4-6	24.7	0.00	10.23	89.77	37	20	17	CL	BROWN LEAN CLAY
SB4-03	S-6	8-10	22.0	1.26	9.70	89.04	32	19	13	CE -	GRAYISH BROWN LEAN CLAY
SB4-03	S-7	12-14	9.0	0.00	60.08	39.92	filmer 1999	yriyaniy	1/1990	SM**	BROWN SILTY SAND
SB4-03	S-8	14-16	18.9	5.53	17.03	77.45	27	170	10	CL	GRAY LEAN CLAY WITH SAND
SB4-03	S-11	20-22	14.9	11.64	23.07	65.30	22	15	7	CL-ML	GRAY SANDY SILTY CLAY
SB4-03	S-14	26-28	16.1	1.42	17.43	81.15	21	16	5	CL-ML	GRAY SILTY CLAY WITH SAND
SB4-03	S-17	32-34	16.1	3.05	12.04	84.90	22	16	8 -	CL-ML	GRAY SILTY CLAY WITH SAND
SB4-03	S-20	38-40	13.6	15.95	14.49	69.56	24	17	7	CL-ML	GRAY GRAVELLY SILTY CLAY
SB4-03	*S-22/23	44-46	11.8	61.12	23.49	15.39	21	16	5	GC-GM	GRAYISH BROWN SILTY, CLAYEY GRAVEL WITH SAND


Notes

- 1. Percent Gravel based on Percent Sieve Size (mm) Greater than #4.
- 2. Percent Sand based on Percent Sieve Size (mm) #4 to #200.
- 3. Percent Silt & Clay based on Percent Finer than #200.
- 4. Unable to measure water contents due to broken jars.
- 5. Did not measure due to sample drying while archived.
- * Combination of samples to ensure enough product for testing.
- ** assumed USCS symbol

Appendix C

Soils Geotechnical Testing Laboratory Reports

Shallow Borings Geotechnical Laboratory Reports (April & May 2019)

	TEST RESULTS (ASTM D6913)							
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1.5"	100.0							
1	96.2							
.75	84.7							
.5	67.2							
.375	62.3							
#4	51.1							
#8	41.9							
#10	39.9							
#16	34.1							
#30	29.0							
#40	26.6							
#50	24.6							
#100	18.8							
#200	14.3							

15.3

Fine

33.6

Coarse

11.2

Medium

13.3

Fine

12.3

Material Description							
ID#19-292							
	berg Limits (AST						
PL=	LL=	PI=					
	Classification						
USCS (D 2487)=	AASHTO) (M 145)=					
	Coefficients						
D₉₀= 21.3499 D₅₀= 4.4113	D ₈₅ = 19.1554	D₆₀= 8.1106					
D ₁₀ = 4.4113	D ₃₀ = 0.6972 C ₁₁ =	D₁₅= 0.0843 C_c=					
10	u	- 0					
Used entire sample	Remarks	commends a larger amount					
*	U	he result may skew the					
gravel % to be large		no result may show the					
Date Received: 5/	2/19 Date	Tested: 6/13/19					
Tested By: E	DC						
i esteu by. <u>E</u>	ມວ						
Checked By: JN	MA						
Title: L	M						

Silt

14.3

Clay

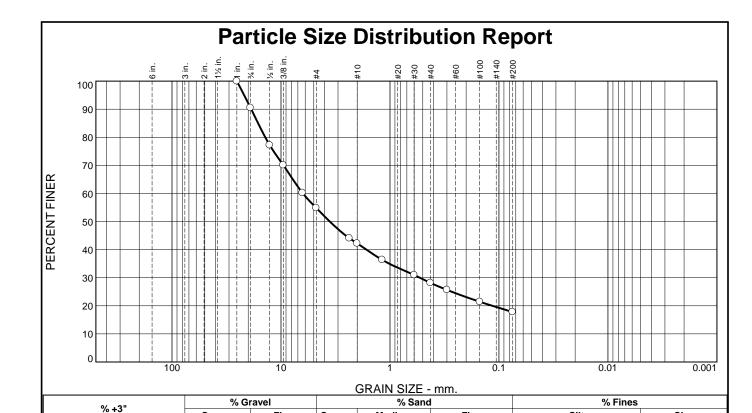
Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: MWSE-1

(no specification provided)

0.0

Depth: 16-26'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

TEST RESULTS (ASTM D6913)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1"	100.0						
.75	90.5						
.5	77.2						
.375	70.1						
.25	60.2						
#4	54.8						
#8	44.1						
#10	42.2						
#16	36.4						
#30	31.0						
#40	28.2						
#50	25.7						
#100	21.4						
#200	17.8						
* (no spec	cification provide	(d)					

9.5

0.0

Fine

35.7

Coarse

12.6

Medium

14.0

Fine

10.4

Mater	ial Description
ID#19-293	
Atterhera I	imits (ASTM D 4318)
PL= LL=	PI=
	assification
USCS (D 2487)=	AASHTO (M 145)=
D ₉₀ = 18.7594 D ₈₅ =	oefficients 16.2249
D ₅₀ = 3.5638 D ₃₀ = C _u =	0.5323 D ₁₅ = C _c =
	Remarks
• •	d for testing.ASTM recommends a larger
amount for samples with par the gravel % to be larger tha	rticles of this size. The result may skew
Date Received: 5/2/19	Date Tested: 6/11/19
	Date resteu. 0/11/19
Tested By: EBS	
Checked By: JMA	
Title: LM	

Silt

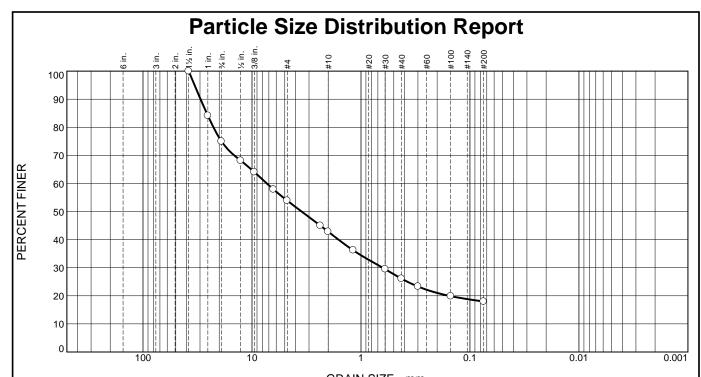
17.8

Clay

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: MWSE-2

Depth: 16-24'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

	GRAIN SIZE - mm.								
	% +3"	% Gr	avel	% Sand			% Fines		
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	25.0	21.1	11.1	16.7	8.1	18.0		

TEST RESULTS (ASTM D6913)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1.5"	100.0						
1	84.1						
.75	75.0						
.5	68.2						
.375	64.1						
.25	57.9						
#4	53.9						
#8	45.0						
#10	42.8						
#16	36.2						
#30	29.5						
#40	26.1						
#50	23.3						
#100	19.9						
#200	18.0						
* /		D.					

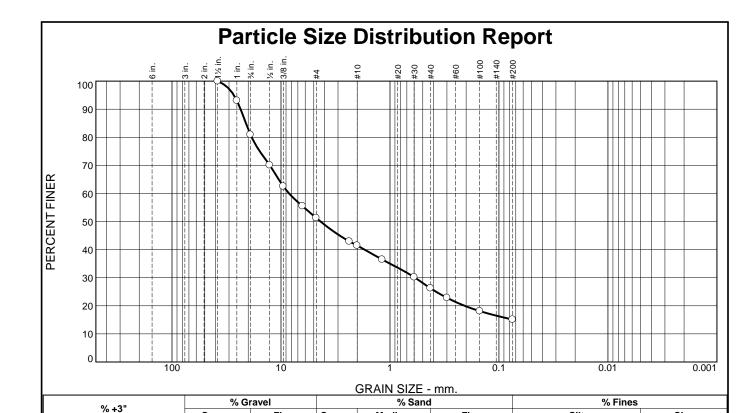
Material Description							
D#19-294							
Atterberg Limits (ASTM D							
PL= LL=	PI=						
<u>Classification</u>							
USCS (D 2487)= AASHTO (M	145)=						
<u>Coefficients</u>							
D ₉₀ = 29.6493 D ₈₅ = 25.9983 D ₃₀ = 0.6326	P₆₀= 7.3120						
D ₅₀ = 3.5044 D ₃₀ = 0.6326 D ₁₀ = 0.6326	D ₁₅ = C _c =						
	oc-						
Remarks	N. 1 1						
Used entire sample provided for testing.AST	· ·						
amount for samples with particles of this size	e. The result may skew						
the gravel % to be larger than actual.							
Date Received: 5/2/19 Date Tes	ted: <u>6/11/19</u>						
Tested By: EBS							
Checked By: JMA							
Title: LM							

* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: MWSE-3

Depth: 18-28'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

	TEST RESULTS (ASTM D6913)								
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
1.5"	100.0								
1	93.1								
.75	80.9								
.5	70.1								
.375	62.5								
.25	55.5								
#4	51.3								
#8	42.9								
#10	41.5								
#16	36.5								
#30	30.2								
#40	26.3								
#50	22.9								
#100	18.1								
#200	15.1								
* (no spe	ecification provide	d)							

19.1

0.0

Fine

29.6

Coarse

9.8

Medium

15.2

Fine

11.2

	Material [Description	<u>on</u>				
ID#19-358	D#19-358						
Att	erberg Limit	s (ASTM	D 4318))			
PL=	LĽ=	•	PI=				
USCS (D 2487)=		fication AASHTO (M 145)=				
D ₉₀ = 23.4749 D ₅₀ = 4.3333 D ₁₀ =	Coeff D ₈₅ = 20. D ₃₀ = 0.5 C _u =	icients 9774 899	D ₆₀ = D ₁₅ = C _c =	8.4368			
III		narks		- 1			
Used entire samples with a	_			a larger amount y skew the gravel			
% to be larger tha		s size. The	icsuit ilia	y skew the graver			
Date Received:	5/9/19	Date T	ested:	6/11/19			
Tested By:	EBS						
Checked By:	JMA						
Title:	LM						

Silt

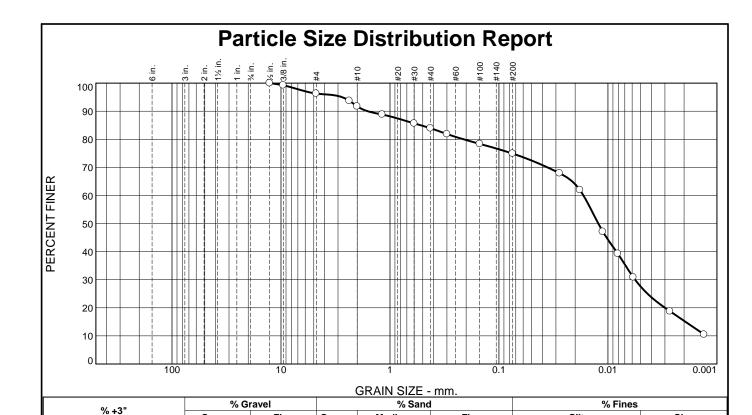
15.1

Clay

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: MWSE-4

Date Sampled:

3rd Rock, LLC


Client: GEI Consultants, Inc.

Depth: 8-18'

Project: Chaffee

East Aurora, NY

Project No: 19-028

% +3		Coarse	Fine	Coarse	Medium	Fine	Silt	
0.0		0.0	3.7	4.6	7.8	9.0	47.4	2
-	TEST RESULT	TS (ASTM D6	913)			Mater	rial Description	_
Opening	Percent	Spec.	Pass	?	ID#19-296			
Size	Finer	(Percen	nt) (X=Fa	nil)	Lean clay w	ith sand		
0.5"	100.0							
.375	99.2					Atterbera L	imits (ASTM D 4318)	i
#4	96.3				PL= 16	LL=		
#8	93.7							
#10	91.7						assification (
#16	88.8				USCS (D 24	87)= CL	AASHTO (M 145)=	A-4(4)
#30	85.7					C	oefficients	
#40	83.9				D ₉₀ = 1.605			0.0168
#50	81.9				D ₅₀ = 0.012	23 D3n =	0.5242 D₆₀= 0.0056 D₁₅=	0.0019
#100	78.4				D ₁₀ =	C _u =	C _C =	
		1	1	I .	10	u	· ·	

Remarks

Date Received: 5/2/19 Date Tested: 6/13/19

Tested By: EBS

Checked By: JMA

Title: LM

(no specification provided)

74.9

67.9

62.0

47.1

39.3

30.9

18.8

10.5

#200

0.0278 mm.

0.0181 mm.

0.0111 mm.

0.0081 mm.

0.0059 mm.

0.0027 mm.

0.0013 mm.

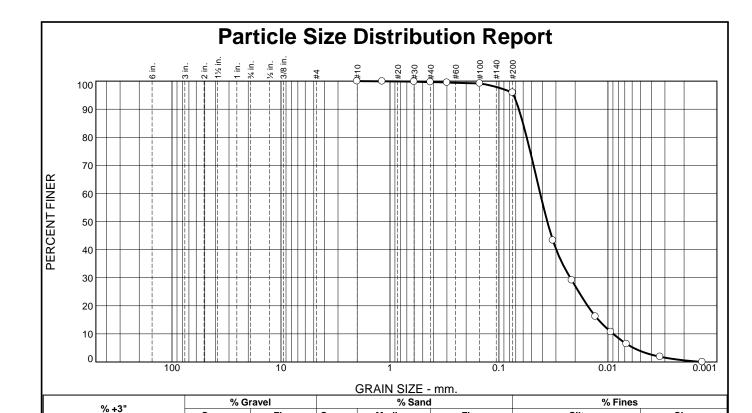
Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZ05D-19

Depth: 40-42'

Date Sampled:

3rd Rock, LLC

Client: GEI Consultants, Inc.


Project: Chaffee

East Aurora, NY

Project No: 19-028

Figure

Clay 27.5

TEST RESULTS (ASTM D 422)				
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#10	100.0			
#16	99.9			
#30	99.8			
#40	99.6			
#50	99.5			
#100	99.2			
#200	95.9			
0.0320 mm.	43.3			
0.0215 mm.	29.1			
0.0130 mm.	16.2			
0.0094 mm.	10.7			
0.0068 mm.	6.4			
0.0033 mm.	1.9			
0.0014 mm.				
* (no spec	cification provide	ed)		

0.0

0.0

Fine

0.0

Coarse

0.0

Medium

0.4

Fine

3.7

	Material Description
ID#19-297	
Atter	berg Limits (ASTM D 4318)
PL=	LL= PI=
USCS (D 2487)=	Classification AASHTO (M 145)=
D ₉₀ = 0.0657 D ₅₀ = 0.0360 D ₁₀ = 0.0089	Coefficients D ₈₅ = 0.0602 D ₆₀ = 0.0418 D ₃₀ = 0.0222 D ₁₅ = 0.0122 C _u = 4.68 C _c = 1.31
	Remarks
Deta Bassivada 5	(0/10 Pete Toeted)
Date Received: 5/	
Tested By: $\underline{\mathrm{E}}$	BS
Checked By: J	MA
Title: L	M

Silt

92.0

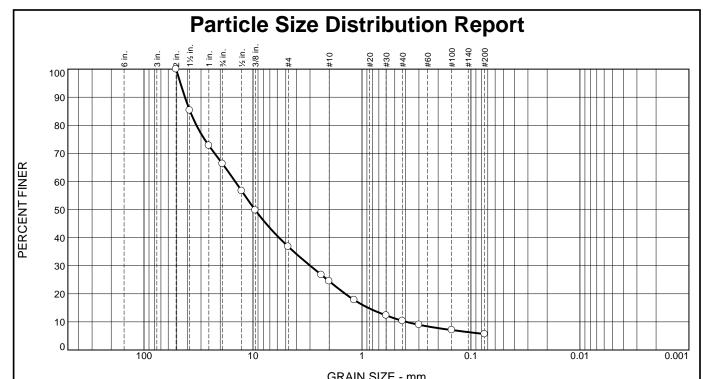
Clay

3.9

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZ05D-19

Depth: 62.5-68'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

	GRAIN SIZE - IIIII.						
0/ .3"	% G	avel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	33.7	29.5	12.3	14.1	4.7	5.7	

TEST RESULTS (ASTM D6913)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
2"	100.0					
1.5	85.3					
1	72.8					
.75	66.3					
.5	56.6					
.375	49.8					
#4	36.8					
#8	26.8					
#10	24.5					
#16	17.8					
#30	12.3					
#40	10.4					
#50	9.0					
#100	7.1					
#200	5.7					

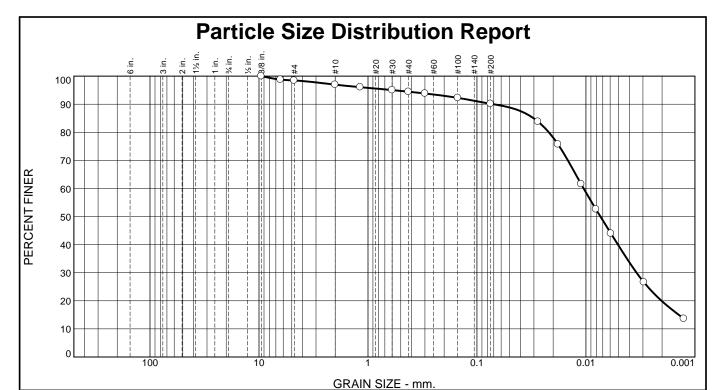
		Mater	ial Des	criptio	<u>n</u>	
ID#19	-295					
	<u>Att</u>	erberg L	imits (ASTM)
PL=		LL=			PI=	
		<u>CI</u>	assifica			
USCS	(D 2487)=		AAS	HTO (N	VI 145)=	
_	40.000	_ <u>C</u>	oefficie	<u>ents</u>	_	4.504.
D ₉₀ =	42.0985 9.6151	D ₈₅ =	37.795	5	D ₆₀ =	14.5814
D ₅₀ = D ₁₀ =	0.3910	C _u =	37.795 2.9849 37.29		C _C =	14.5814 0.8763 1.56
			Remarl	ks		
						ommends a larger
	t for sample vel % to be	_			ze. The	result may skew
	Received:			Date Te	ested:	6/13/19
Te	ested By:	EBS				
Che	cked By:	JMA				
	Title:	LM				

* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZ05S-19

3rd Rock, LLC

Depth: 22.5-24.5'


Client: GEI Consultants, Inc. **Project:** Chaffee

East Aurora, NY

Project No: 19-028

Figure

Date Sampled:

% +3"		% Gravel			% Sand		% Fines	
ı	7 ₀ +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	1.5	1.5	2.6	4.2	50.6	39.6
	TEST RESULTS (ASTM D 422)					Mater	ial Description	
		*	_	_	l			I

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375"	100.0		
.25	98.8		
#4	98.5		
#10	97.0		
#16	96.1		
#30	95.0		
#40	94.4		
#50	93.8		
#100	92.3		
#200	90.2		
0.0275 mm.	83.8		
0.0181 mm.	75.8		
0.0111 mm.	61.6		
0.0081 mm.	52.6		
0.0059 mm.	44.0		
0.0029 mm.	26.7		
0.0013 mm.	13.6		

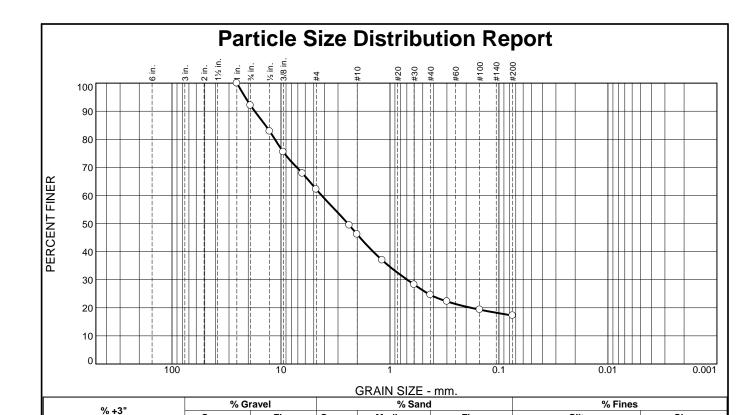
	Material Description	
ID#19-301		
Δ++	erberg Limits (ASTM D 4318)	
PL= 17	LL= 27 PI= 10	
USCS (D 2487)=	CL CL AASHTO (M 145)= A-	4(7)
D ₉₀ = 0.0708 D ₅₀ = 0.0074 D ₁₀ =	$\begin{array}{c cccc} \textbf{Coefficients} & & & \\ \textbf{D_{85}} & 0.0302 & & \textbf{D_{60}} & 0.01 \\ \textbf{D_{30}} & 0.0034 & & \textbf{D_{15}} & 0.00 \\ \textbf{C_{u}} & & & \textbf{C_{c}} \\ \end{array}$	05 14
	Remarks	
Date Received:	5/2/19 Date Tested: <u>6/1</u>	7/19
Tested By:	JJZ	
Checked By:	JMA	
Title:	LM	

(no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB03-19

Depth: 38-40'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

7	TEST RESULTS (ASTM D6913)						
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1"	100.0						
.75	92.1						
.5	82.9						
.375	75.5						
.25	67.9						
#4	62.2						
#8	49.4						
#10	46.2						
#16	37.0						
#30	28.3						
#40	24.6						
#50	22.3						
#100	19.3						
#200	17.2						

7.9

Fine

29.9

Coarse

16.0

Medium

21.6

Fine

7.4

	Material Description
ID#19-300	
	atterberg Limits (ASTM D 4318)
PL=	LL= PI=
USCS (D 2487	Classification = AASHTO (M 145)=
D ₉₀ = 17.4412 D ₅₀ = 2.4365 D ₁₀ =	Coefficients D ₈₅ = 13.8973 D ₆₀ = 4.2346 D ₃₀ = 0.6947 D ₁₅ = C _c =
	Remarks
Date Receive	d: 5/2/19
Tested B	y: JJZ
Checked B	y: JMA
Titl	e: LM

Silt

17.2

Clay

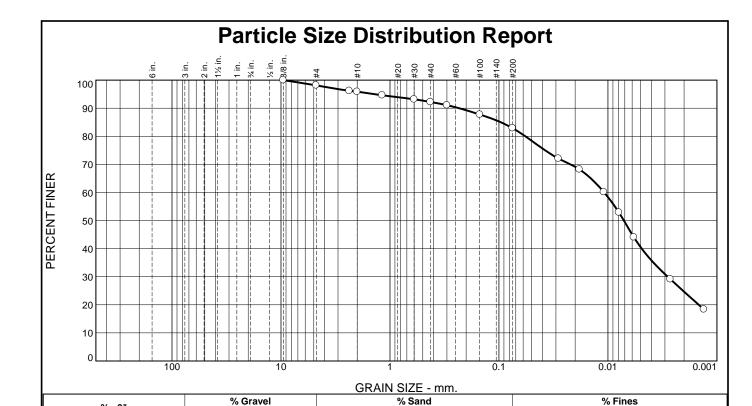
(no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB04-19

0.0

Depth: 10-13'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

TEST RESULTS (ASTM D 422)					
Opening Percent Spec.* Pass?					
Size	Finer	(Percent)	(X=Fail)		
.375"	100.0				
#4	98.1				
#8	96.2				
#10	95.9				
#16	94.6				
#30	93.2				
#40	92.2				
#50	91.1				
#100	87.8				
#200	82.9				
0.0284 mm.	72.1				
0.0183 mm.	68.2				
0.0109 mm.	60.2				
0.0079 mm.	52.9				
0.0058 mm.	44.1				
0.0027 mm.	29.1				
0.0013 mm.	18.4				
* (no spec	cification provide	ed)			

0.0

Fine

1.9

Coarse

2.2

Medium

3.7

Fine

9.3

% +3"

0.0

Lean clay with sand Atterberg Limits (ASTM D 4318)
Atterberg Limits (ASTM D 4318) PL= 16 LL= 26 Pl= 10 Classification USCS (D 2487)= CL AASHTO (M 145)= A-4(6) Coefficients D90= 0.2326 D85= 0.0961 D60= 0.0108 D50= 0.0071 D30= 0.0028 D15=
PL= 16 LL= 26 Pl= 10 Classification USCS (D 2487)= CL AASHTO (M 145)= A-4(6) Coefficients D90= 0.2326 D50= 0.0071 D30= 0.0028 D15=
PL= 16 LL= 26 Pl= 10 Classification USCS (D 2487)= CL AASHTO (M 145)= A-4(6) Coefficients D90= 0.2326 D50= 0.0071 D30= 0.0028 D15=
USCS (D 2487)= CL
USCS (D 2487)= CL AASHTO (M 145)= A-4(6) Coefficients D ₉₀ = 0.2326 D ₈₅ = 0.0961 D ₆₀ = 0.0108 D ₅₀ = 0.0071 D ₃₀ = 0.0028 D ₁₅ =
D₉₀ = 0.2326
510- 5u- 5c-
Remarks
Date Received: 5/9/19
Tested By: EBS
Checked By: JMA
Title: LM

Silt

42.4

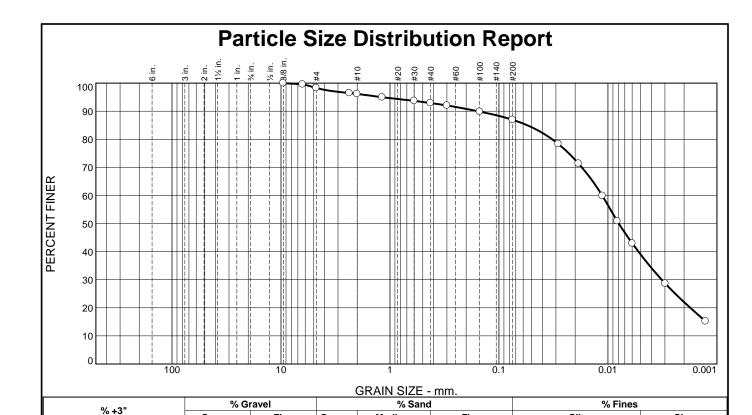
Clay

40.5

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB05-19

Depth: 6-8'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

		(ASTM D 422)	TEST RESULTS	•
l I	Pass?	Spec.*	Percent	Opening
	(X=Fail)	(Percent)	Finer	Size
			100.0	.375"
			99.6	.25
F			98.3	#4
			96.5	#8
Ι.			96.2	#10
(95.0	#16
			93.7	#30
[92.9	#40
[92.0	#50
[89.9	#100
			86.9	#200
			78.3	0.0285 mm.
			71.4	0.0186 mm.
			59.9	0.0112 mm.
			50.9	0.0082 mm.
			42.9	0.0060 mm.
-			28.6	0.0030 mm.
			15.2	0.0013 mm.

0.0

0.0

Fine

1.7

Coarse

2.1

Medium

3.3

Fine

6.0

TD #40 0 FF
ID#19-357
Atterberg Limits (ASTM D 4318)
PL= 16
USCS (D 2487)= CL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Remarks
Date Received: 5/9/19 Date Tested: 6/13/19
Tested By: EBS
Checked By: JMA
Title: LM

Silt

48.0

Clay

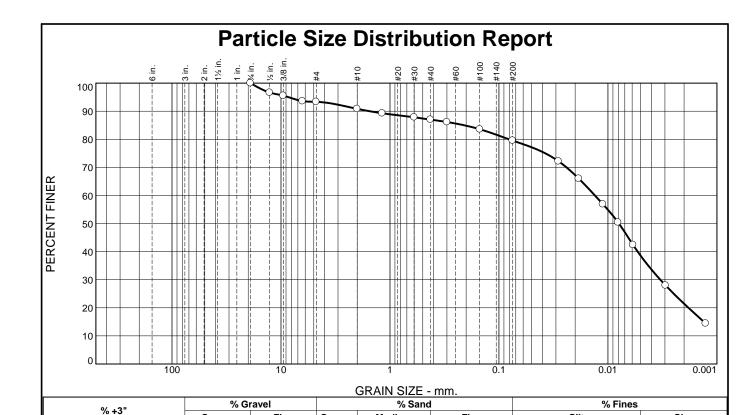
38.9

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB08-19

(no specification provided)

Depth: 4-6'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5	96.6		
.375	95.5		
.25	93.6		
#4	93.3		
#10	90.8		
#16	89.3		
#30	87.8		
#40	87.0		
#50	86.1		
#100	83.6		
#200	79.6		
0.0284 mm.	72.2		
0.0185 mm.	66.0		
0.0111 mm.	56.9		
0.0081 mm.	50.4		
0.0059 mm.	42.4		
0.0030 mm.	28.0		
0.0013 mm.	14.5		

0.0

Fine

6.7

Coarse

2.5

Medium

3.8

Fine

7.4

	Material Description	
ID#19-298		
Atte	erberg Limits (ASTM D 4318) LL= 27 PI= 11	
. =	Classification	
USCS (D 2487)=	CL AASHTO (M 145)= A-6(7)	
D ₉₀ = 1.5430 D ₅₀ = 0.0079 D ₁₀ =	Coefficients D85= 0.2089 D60= 0.0132 D30= 0.0033 D15= 0.0013 Cu= Cc=	
	Remarks	
Date Received:	5/2/19 Date Tested: 6/17/19	
Tested By:	IJZ	
Checked By:	JMA	
Title:	LM	

Silt

41.1

Clay

38.5

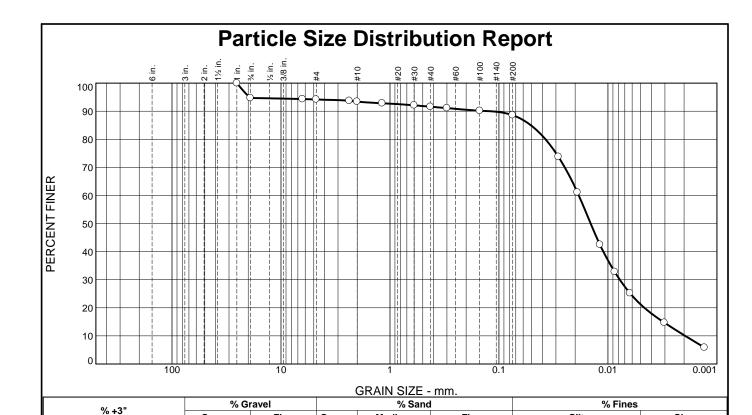
(no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB09-19

0.0

Depth: 6-9'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

TEST RESULTS (ASTM D 422)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1"	100.0							
.75	94.7							
.25	94.3							
#4	94.2							
#8	93.7							
#10	93.4							
#16	92.8							
#30	92.1							
#40	91.6							
#50	91.1							
#100	90.2							
#200	88.6							
0.0285 mm.	73.8							
0.0191 mm.	61.1							
0.0119 mm.	42.5							
0.0087 mm.	32.8							
0.0063 mm.	25.2							
0.0030 mm.	14.7							
0.0013 mm.	5.8							
* (no spec	cification provide	ed)						

5.3

0.0

Fine

0.5

Coarse

0.8

Medium

1.8

Fine

3.0

	Material Description
ID#19-299	
	erberg Limits (ASTM D 4318)
PL= 16	LL= 22 PI= 6
USCS (D 2487)=	CL-ML AASHTO (M 145)= A-4(3)
D ₉₀ = 0.1218 D ₅₀ = 0.0144 D ₁₀ = 0.0020	Coefficients D ₈₅ = 0.0509 D ₆₀ = 0.0185 D ₃₀ = 0.0078 D ₁₅ = 0.0031 C _u = 9.48 C _c = 1.67
	Remarks
Date Received:	5/2/19 Date Tested: 6/14/19
Tested By:	IJZ
Checked By:	JMA
Title:	LM

Silt

67.4

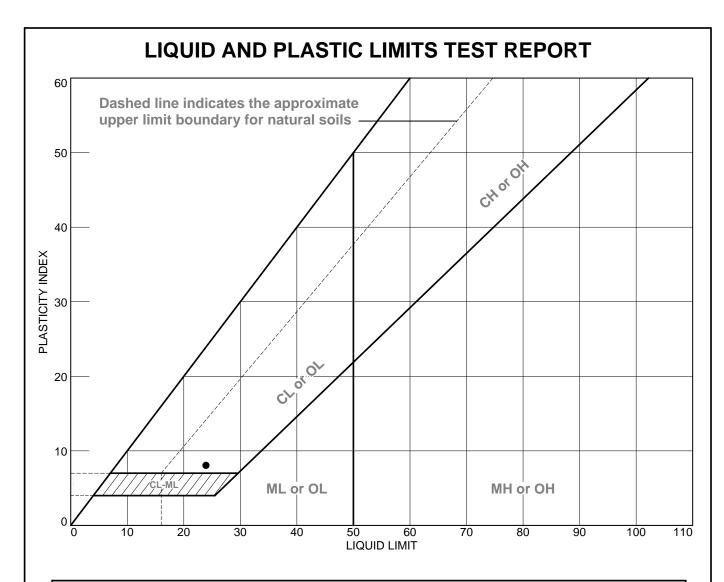
Clay

21.2

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB09-19

Depth: 42-44'

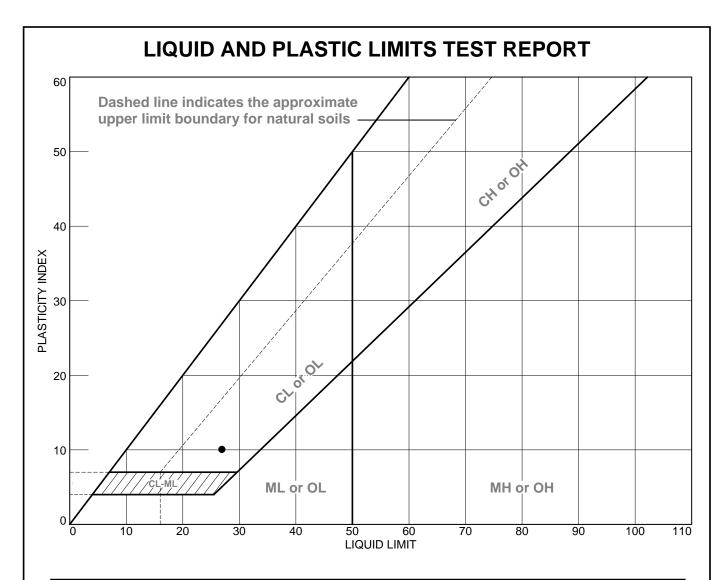
Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

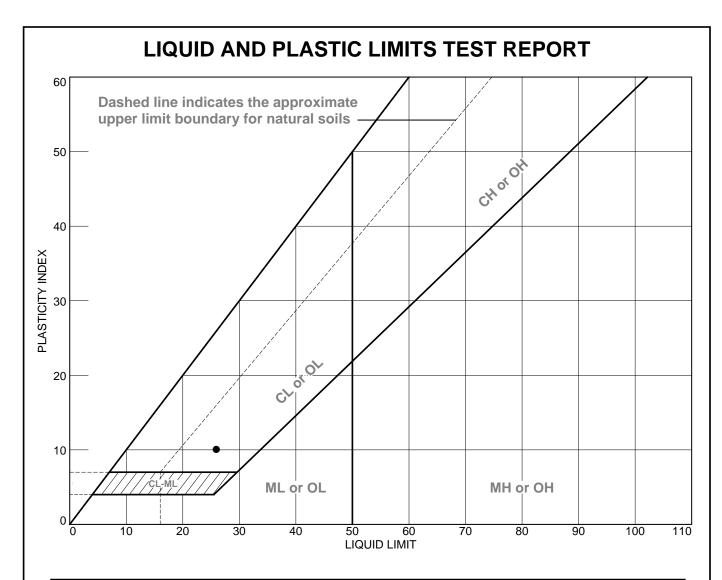
Project: Chaffee

East Aurora, NY


Project No: 19-028

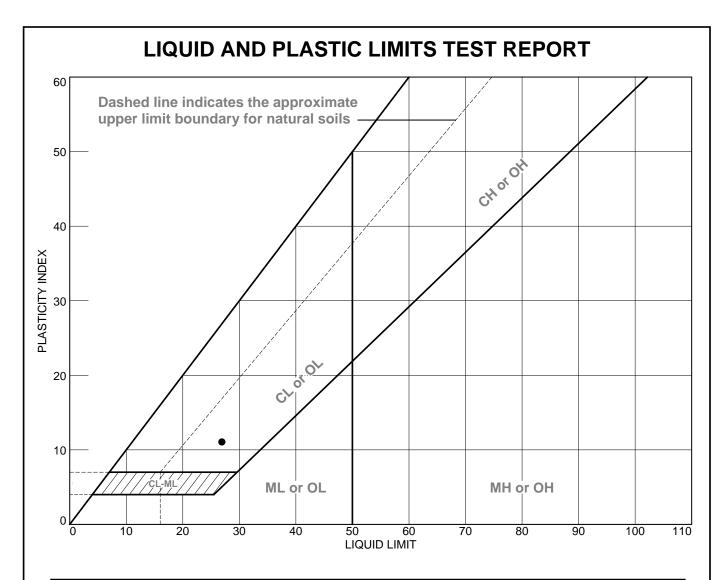
	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	Chaffee Landfill Hydrogeo. Inv.	PZ05D-19	40-42'		16	24	8	CL	

East Aurora, NY Project No.: 19-028 Figure


Tested By: JJZ 6/13/19 Checked By: JMA

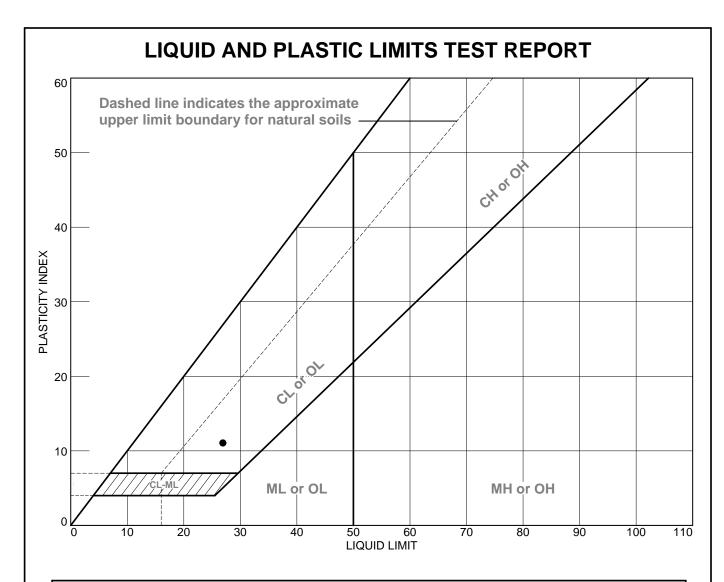
	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	Chaffee Landfill Hydrogeo. Inv.	SB03-19	38-40'		17	27	10	CL	

East Aurora, NY Project No.: 19-028 Figure


Tested By: JJZ 6/17/19 Checked By: JMA

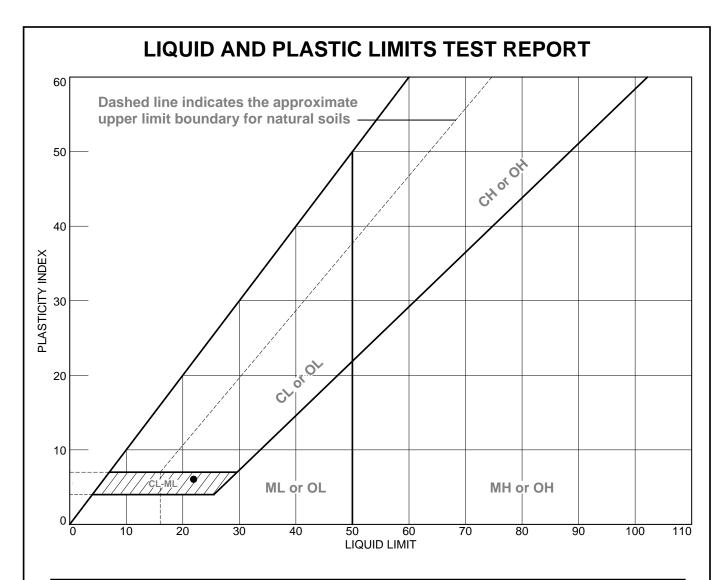
	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	Chaffee Landfill Hydrogeo. Inv.	SB05-19	6-8'		16	26	10	CL	

East Aurora, NY Project No.: 19-028 Figure


Tested By: JJZ 6/13/19 Checked By: JMA

	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	Chaffee Landfill Hydrogeo. Inv.	SB08-19	4-6'		16	27	11	CL	

East Aurora, NY Project No.: 19-028 Figure


Tested By: JJZ 6/14/19 Checked By: JMA

	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	Chaffee Landfill Hydrogeo. Inv.	SB09-19	6-9'		16	27	11	CL	

East Aurora, NY Project No.: 19-028 Figure

Tested By: JJZ 6/14/19 Checked By: JMA

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	SB09-19	42-44'		16	22	6	CL-ML

3rd Rock, LLC

Client: GEI Consultants, Inc.
Project: Chaffee

Project No.: 19-028

Figure

Tested By: JJZ 6/17/19 Checked By: JMA

Project Name: GEI Chaffee Hydrogeologic Invest.

Project No.: 19-028
Sample No.: SB03-19, 5-7'
Sample I.D.: 19-303
Laboratory Method: ASTM D5084, Method C, Shelby tube Sample
Comments: None

Date:	05/31/19	
Tested By:	JJZ	
Check By:	JMA	
Date of Test:	05/13/19	
Date Test Complete	e:	05/18/19
CELL NO.:		1

INITIAL SAMPLE DATA:

Height, in.: 2.497 Wet Density, pcf: 132.7
Diameter, in.: 2.790 Dry Density, pcf: 112.7
Moisture Content,%: 17.80 Target Density,pcf: NA

FINAL SAMPLE DATA:

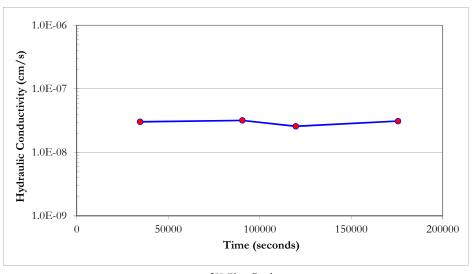
Height, in.: 2.507 Wet Density, pcf: 132.4

Diameter, in.: 2.796 Dry Density, pcf: 111.0

Moisture Content,%: 19.30

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 98%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3	, ,	` ' /
1	85	80.3	79.8	6.64E-06	3.0E-08
2	85	80.3	79.8	6.98E-06	3.2E-08
3	85	80.3	79.8	5.64E-06	2.6E-08
4	85	80.3	79.8	6.80E-06	3.1E-08

Average K 3.0E-08
Average K , ft/day 8.4E-05

Project Name: GEI Chaffee Hydrogeologic Invest.

Project No.: 19-028
Sample No.: SB05-19, 4-6'
Sample I.D.: 19-360
Laboratory Method: ASTM D5084, Method C, Shelby tube Sample
Comments: None

Date:	05/31/19	
Tested By:	JJZ	
Check By:	JMA	
Date of Test:	05/14/19	
Date Test Complete	e:	05/18/19
CELL NO.:		5B

INITIAL SAMPLE DATA:

Height, in.: 2.374 Wet Density, pcf: 137.0 Diameter, in.: 2.883 Dry Density, pcf: 118.8 Moisture Content,%: 15.30 Target Density,pcf: NA

FINAL SAMPLE DATA:

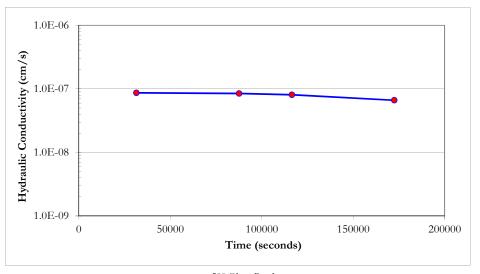
Height, in.: 2.417 Wet Density, pcf: 137.5

Diameter, in.: 2.864 Dry Density, pcf: 119.1

Moisture Content,%: 15.50

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 98%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3	, ,	(, ,
1	85	80.3	79.9	1.65E-05	8.7E-08
2	85	80.3	79.9	1.61E-05	8.5E-08
3	85	80.3	79.9	1.54E-05	8.1E-08
4	85	80.3	79.9	1.26E-05	6.6E-08

Average K 8.0E-08
Average K, ft/day 2.3E-04

Project Name: GEI Chaffee Hydrogeologic Invest.

Project No.: 19-028
Sample No.: SB08-19, 4-6'
Sample I.D.: 19-304
Laboratory Method: ASTM D5084, Method C, Shelby tube Sample
Comments: None

Date:	05/31/19	
Tested By:	JJZ	
Check By:	JMA	
Date of Test:	05/13/19	
Date Test Complet	e:	05/18/19
CELL NO.:		2

INITIAL SAMPLE DATA:

Height, in.: 2.486 Wet Density, pcf: 139.9
Diameter, in.: 2.788 Dry Density, pcf: 120.6
Moisture Content,%: 16.00 Target Density,pcf: NA

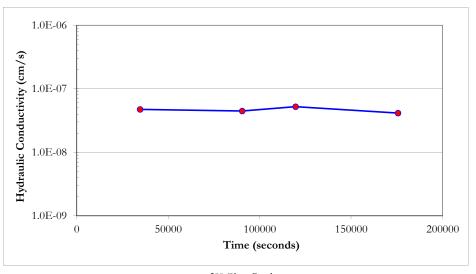
FINAL SAMPLE DATA:

Height, in.:2.476Wet Density, pcf:140.2Diameter, in.:2.789Dry Density, pcf:123.0

Moisture Content,%: 14.00

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 95%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3	, ,	(, ,
1	85	80.1	79.9	4.19E-06	4.8E-08
2	85	80.1	79.9	3.94E-06	4.5E-08
3	85	80.1	79.9	4.62E-06	5.2E-08
4	85	80.1	79.9	3.66E-06	4.2E-08

Average K 4.7E-08
Average K, ft/day 1.3E-04

Project Name: GEI Chaffee Hydrogeologic Invest.

Project No.: 19-028
Sample No.: SB09-19, 4-6'
Sample I.D.: 19-305
Laboratory Method: ASTM D5084, Method C, Shelby tube Sample
Comments: None

Date:	05/31/19	
Tested By:	JJZ	
Check By:	JMA	
Date of Test:	05/13/19	
Date Test Complete	:	05/19/19
CELL NO.:		5A

INITIAL SAMPLE DATA:

 $\begin{array}{cccc} Height, in.: & 2.350 & Wet Density, pcf: & 134.1 \\ Diameter, in.: & 2.819 & Dry Density, pcf: & 113.5 \\ Moisture Content, \%: & 18.10 & Target Density, pcf: & NA \end{array}$

FINAL SAMPLE DATA:

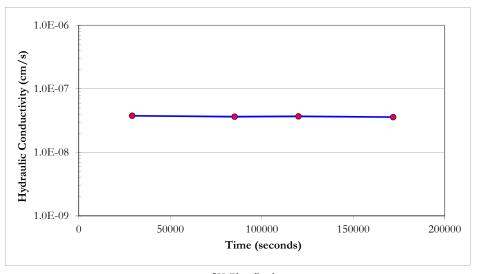
Height, in.: 2.329 Wet Density, pcf: 136.0

Diameter, in.: 2.813 Dry Density, pcf: 115.8

Moisture Content,%: 17.40

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 98%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3	, ,	(, ,
1	85	80.2	79.8	7.19E-06	3.8E-08
2	85	80.2	79.8	6.97E-06	3.7E-08
3	85	80.2	79.8	7.03E-06	3.7E-08
4	85	80.2	79.8	6.85E-06	3.6E-08

Average K 3.7E-08
Average K , ft/day 1.0E-04

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.
Project No.:	19-028
Sample No.:	TP03-19, 3.5-5'
Sample I.D.:	19-623
Laboratory Method	d: ASTM D5084, Method C, Reconstituted
Remarks:	None

Date:	08/29/19	
Tested By:	EBS	
Check By:	JMA	
Date of Test:	08/22/19	
Date Test Complete	e:	08/27/19
CELL NO.:		5B

INITIAL SAMPLE DATA:

Height, in.: 2.998 Wet Density, pcf: 118.4
Diameter, in.: 2.803 Dry Density, pcf: 108.6
Moisture Content,%: 9.00 Compaction, %: NA

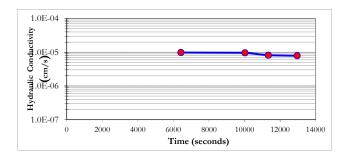
FINAL SAMPLE DATA:

Height, in.:2.694Wet Density, pcf:140.2Diameter, in.:2.814Dry Density, pcf:119.9

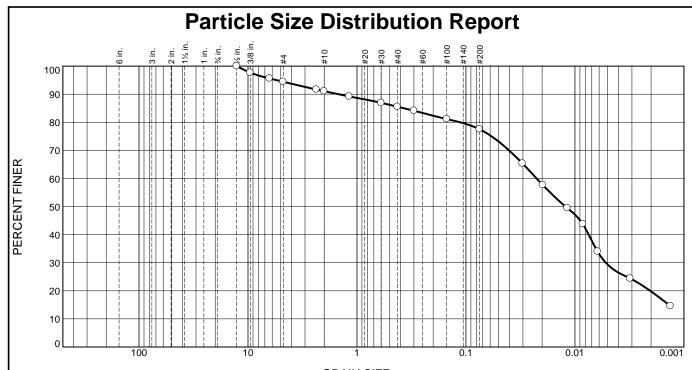
Moisture Content,%: 16.90

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 86 psi


Backpressure: 80 psi

Saturation (B parameter): 100%


AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Testing Pressures (psi)			Q (ml/sec)	Final K (cm/s)
	1	2	3	, ,	, , ,
1	86.7	80	80	9.12E-04	9.8E-06
2	86.7	80	80	4.56E-04	9.7E-06
3	86.7	80	80	2.80E-04	8.2E-06
4	86.7	80	80	2.31E-04	7.9E-06

Average K 8.9E-06
Average K, ft/day 2.5E-02

Deeper Borings Geotechnical Laboratory Reports (October 2019)

				(<u> GRAIN SIZE -</u>	· mm.		
	% +3"	% Gı	Gravel % Sand		I	% Fines		
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	5.6	3.3	5.6	8.0	48.2	29.3

	TEST RESULTS	S (ASTM D 422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.5"	100.0		
.375	97.7		
.25	95.6		
#4	94.4		
#8	91.7		
#10	91.1		
#16	89.2		
#30	86.9		
#40	85.5		
#50	84.1		
#100	81.1		
#200	77.5		
0.0303 mm.	65.3		
0.0197 mm.	57.7		
0.0117 mm.	49.5		
0.0085 mm.	43.8		
0.0062 mm.	34.0		
0.0031 mm.	24.4		
0.0013 mm.	14.6		

<u>Material Description</u>
LAB ID# 19-791
PL= 17
USCS (D 2487)= CL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Remarks F.M.=0.75
Date Received: 10/15/19 Date Tested: 10/18/19
Tested By: EBS
Checked By: JMA
Title: LM

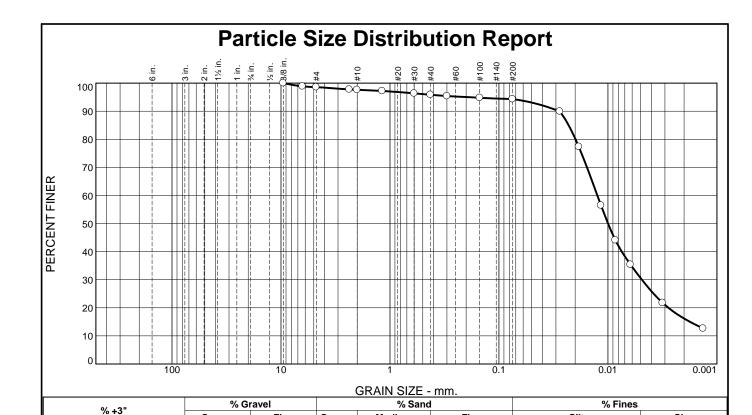
* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SBPZ01D-19

3rd Rock, LLC

Client: GEI Consultants, Inc.

Depth: 36-38'


Project: Chaffee

East Aurora, NY

Project No: 19-028

Figure

Date Sampled:

1	TEST RESULTS	S (ASTM D 422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375"	100.0		
.25	98.9		
#4	98.6		
#8	97.8		
#10	97.6		
#16	97.2		
#30	96.4		
#40	95.8		
#50	95.4		
#100	94.8		
#200	94.3		
0.0277 mm.	89.9		
0.0185 mm.	77.3		
0.0116 mm.	56.5		
0.0085 mm.	44.1		
0.0062 mm.	35.4		
0.0031 mm.	21.8		
0.0013 mm.	12.7		
* (no spec	cification provide	ed)	

0.0

0.0

Fine

1.4

Coarse

1.0

Medium

1.8

Fine

1.5

	Material Description
LAB ID# 19-793	
-	
PL= 19	erberg Limits (ASTM D 4318) LL= 26 PI= 7
15	11
USCS (D 2487)=	CL-ML AASHTO (M 145)= A-4(5)
	Coefficients
D₉₀= 0.0279 D₅₀= 0.0100	D₈₅= 0.0229
D ₅₀ = 0.0100 D ₁₀ =	D ₃₀ = 0.0049 D ₁₅ = 0.0018 C _c =
	Remarks
F.M.=0.20	Remarks
Date Received:	10/15/19 Date Tested: 10/18/19
Tested By:	EBS — — —
Checked By:	MA
Title:	LM

Silt

63.8

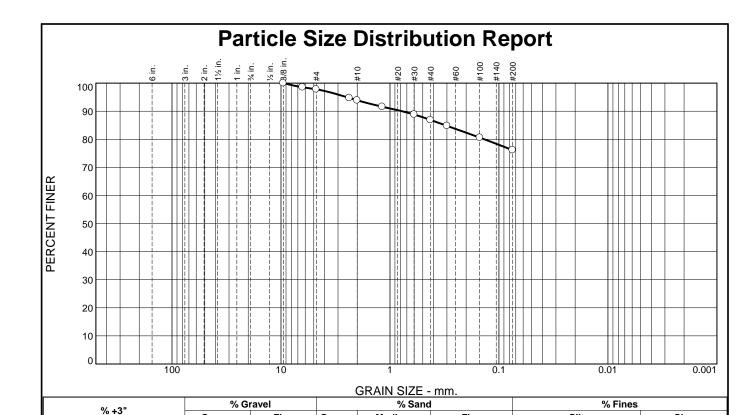
Clay

30.5

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SBPZ01D-19

Depth: 56-58'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375"	100.0		
.25	98.5		
#4	97.8		
#8	94.7		
#10	93.9		
#16	91.6		
#30	88.8		
#40	86.9		
#50	84.8		
#100	80.6		
#200	76.2		

0.0

0.0

Fine

2.2

Coarse

3.9

Medium

7.0

Fine

10.7

	<u>Material</u>	Description	
LAB ID# 19-8	02		
	Atterhera I im	its (ASTM D 4318	3)
PL= 17	LL= 25	Pl=	
USCS (D 2487		sification AASHTO (M 145)=	- A-4(4)
D ₉₀ = 0.7779 D ₅₀ = D ₁₀ =	D ₈₅ = 0. D ₃₀ = C _u =	fficients 3105 D ₆₀ = D ₁₅ = C _c =	
F.M.=0.62	Re	emarks	
Date Receive	d : 10/15/19	Date Tested:	10/18/19
Tested B	y: EBS		
Checked B	y: JMA		
Titl	e: LM		

Silt

76.2

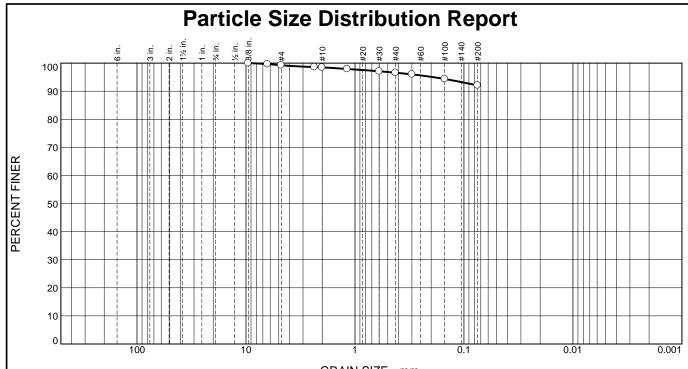
Clay

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZSB11-19

(no specification provided)

Depth: 36-44'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

	GRAIN SIZE - mm.							
% +3"		% Gı	Gravel % Sand		% Fines			
ı	% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.8	0.7	1.9	4.5	92.1	

1	EST RESULTS	S (ASTM D6913)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375"	100.0		
.25	99.7		
#4	99.2		
#8	98.6		
#10	98.5		
#16	97.9		
#30	97.1		
#40	96.6		
#50	96.0		
#100	94.3		
#200	92.1		

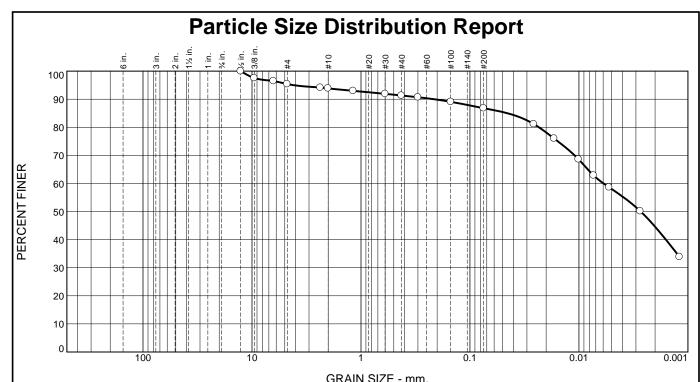
	<u>Material</u>	l Description	
LAB ID# 19-79	97		
PL= 19	atterberg Lim	nits (ASTM D 4318)	! 12
USCS (D 2487)		sification AASHTO (M 145)=	A-6(10)
	Coe	efficients	
D ₉₀ = D ₅₀ =	D ₈₅ = D ₃₀ =	D ₆₀ = D ₁₅ =	
D ₁₀ =	C _u =	C _c =	
	R	emarks	
F.M.=0.17			
Date Received	d: 10/15/19	Date Tested:	10/18/19
Tested By	y: <u>EBS</u>		
Checked By	y: JMA		
Title	e: LM		

(no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: SB12-19

Depth: 28-37.5'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

1	ORAIN SIZE - IIIII.							
ı	% +3"	% Gı	ravel % Sand		% Fines			
ı		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	4.6	1.5	2.6	4.5	28.8	58.0

	TEST RESULTS (ASTM D 422)							
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
.5"	100.0							
.375	97.5							
.25	96.5							
#4	95.4							
#8	94.1							
#10	93.9							
#16	93.0							
#30	91.9							
#40	91.3							
#50	90.7							
#100	89.1							
#200	86.8							
0.0260 mm.	81.2							
0.0169 mm.	76.0							
0.0101 mm.	68.6							
0.0073 mm.	62.9							
0.0053 mm.	58.6							
0.0027 mm.	50.2							
0.0012 mm.	33.9							
*								

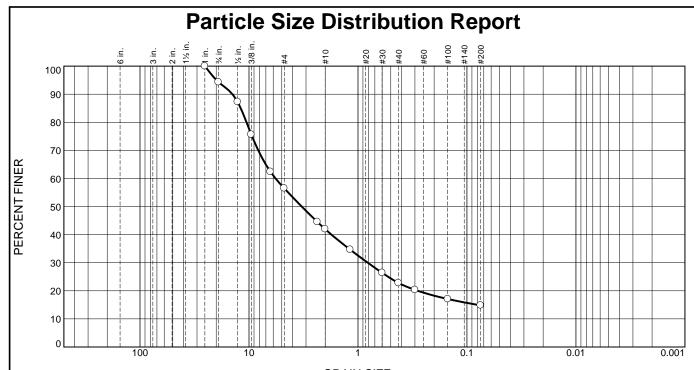
<u>Material Description</u>						
LAB ID# 19-803						
PL= 20 Atterberg Limits (ASTM D 4318) Pl= 11						
USCS (D 2487)= CL						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Remarks F.M.=0.48						
Date Received: 10/17/19 Date Tested: 10/23/19						
Tested By: JJZ						
Checked By: JMA						
Title: LM						

* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZBA2D-19

Depth: 34-43.5'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

GRAIN SIZE - mm.							
% +3"	% G	avel % Sand		% Fines			
76 +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	5.7	37.8	14.5	19.2	8.0	14.8	

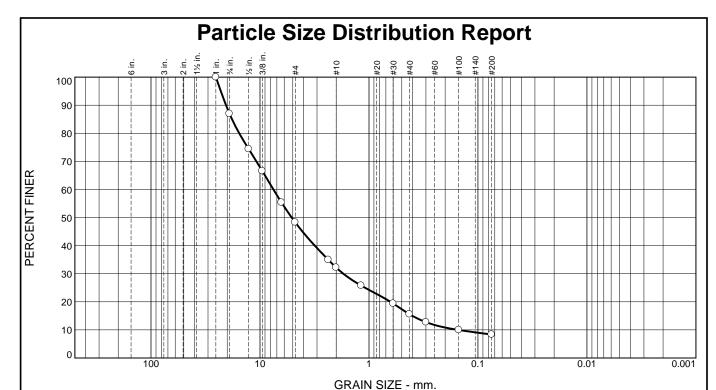
TEST RESULTS (ASTM D6913)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
1"	100.0								
.75	94.3								
.5	87.3								
.375	75.6								
.25	62.4								
#4	56.5								
#8	44.6								
#10	42.0								
#16	34.7								
#30	26.4								
#40	22.8								
#50	20.3								
#100	17.1								
#200	14.8								
* (no sp	ecification provide	d)							

Material Description							
LAB ID# 19-806							
Atter	rberg Limits (ASTM	D 4318)					
PL=	LL=	PI=					
	Classification						
USCS (D 2487)=	AASHTO (M 145)=					
	Coefficients						
D₉₀= 14.1693	D ₈₅ = 11.8921	D₆₀= 5.7046					
D₅₀= 3.2796	D₃₀= 0.8133	D₁₅= 0.0797					
D ₁₀ =	C _u =	c ^c =					
	Remarks						
-	provided for testing.						
F.M.=4.30	F.M.=4.30						
D. 4. D							
Date Received: <u>10/17/19</u> Date Tested: <u>10/23/19</u>							
Tested By: JJZ							
Checked By: JMA							
Title: LM							

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZBA2D-19

Date Sampled:

3rd Rock, LLC


Client: GEI Consultants, Inc.

Depth: 44-48'

Project: Chaffee

East Aurora, NY

Project No: 19-028

0.0 0.22								
% +3"	% Gravel			% Sand		% Fines		
/ ₆ +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	13.0	38.7	16.1	16.6	7.2	8.4		

TEST RESULTS (ASTM D6913)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
1"	100.0								
.75	87.0								
.5	74.4								
.375	66.6								
.25	55.4								
#4	48.3								
#8	35.0								
#10	32.2								
#16	25.8								
#30	19.4								
#40	15.6								
#50	12.8								
#100	10.0								
#200	8.4								

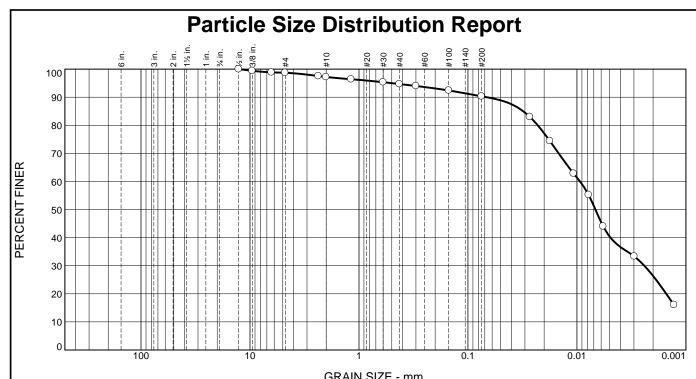
<u>Material Description</u>						
LAB ID# 19-805						
Atter	rberg Limits (ASTM D 4318)					
PL=	LL= PI=					
	Classification					
USCS (D 2487)=	Classification AASHTO (M 145)=					
0000 (D 2401)=	AAOITTO (NI 143)-					
a 20 4005	<u>Coefficients</u>					
D₉₀= 20.4985	D₈₅= 18.0825					
D₅₀= 5.1152 D₁₀= 0.1515	D30 = 1.7191					
210- 0.1313	u v					
	Remarks					
Used entire sample	for testing.					
F.M.=4.95						
Date Received: <u>10/17/19</u> Date Tested: <u>10/23/19</u>						
Tested By: JJZ						
Checked By: JMA						
Title: L	M					
1100						

* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZBA2D-19

Depth: 52-58'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

GRAIN SIZE - IIIII.								
% +3"	% G	% Gravel % Sand % Fines						
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	1.3	1.5	2.5	4.4	50.0	40.3	

	TEST RESULTS (ASTM D 422)					
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
.5"	100.0					
.375	99.4					
.25	98.9					
#4	98.7					
#8	97.5					
#10	97.2					
#16	96.4					
#30	95.3					
#40	94.7					
#50	94.0					
#100	92.4					
#200	90.3					
0.0270 mm.	83.0					
0.0177 mm.	74.4					
0.0107 mm.	62.8					
0.0078 mm.	55.2					
0.0057 mm.	44.0					
0.0030 mm.	33.3					
0.0013 mm.	16.0					
*						

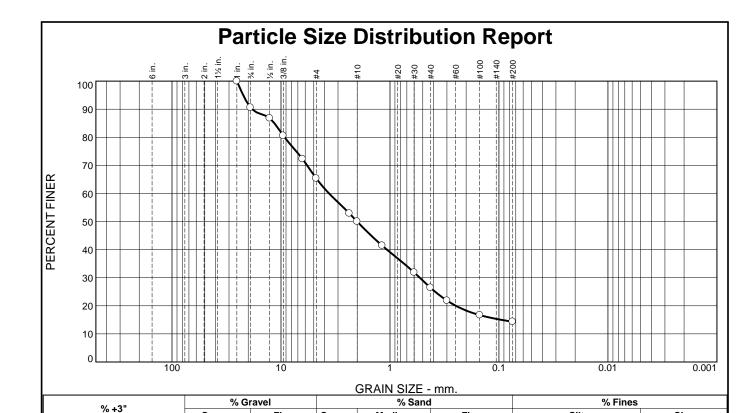
	Material Descript	tion
LAB ID# 19-799		
Atte	erberg Limits (ASTI	M D 4318)
PL= 18	LL= 25	PI= 7
	Classification	
USCS (D 2487)=	CL-ML AASHTO	
	Coefficients	
D₉₀= 0.0675	D ₈₅ = 0.0311	D₆₀= 0.0094
D₅₀= 0.0068	D₃₀= 0.0024	D ₁₅ =
D ₁₀ =	c _u =	C _C =
	Remarks	
F.M.=0.26		
	10/15/10	
Date Received:	10/15/19 Date	Tested: 10/18/19
Tested By:	EBS	
Checked By:	JMA	
Title:	LM	

* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZMWSE3D-19

Depth: 41.7-46'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

TEST RESULTS (ASTM D6913)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
1"	100.0					
.75	90.6					
.5	86.8					
.375	80.6					
.25	72.3					
#4	65.4					
#8	52.9					
#10	50.0					
#16	41.5					
#30	31.9					
#40	26.4					
#50	21.9					
#100	16.7					
#200	14.3					
* (no spe	cification provide	ed)				

9.4

Fine

25.2

Coarse

15.4

Medium

23.6

Fine

12.1

Material Description							
LAB ID# 19-800							
Atter	rberg Limits (ASTM II=	D 4318) PI=					
rt=		ri=					
USCS (D 2487)=	Classification AASHTO (M 145)=					
	Coefficients						
D ₉₀ = 18.4116	D ₈₅ = 11.4900	D₆₀= 3.6204					
D ₅₀ = 2.0012 D ₁₀ =	D ₃₀ = 0.5328 C ₁₁ =	D ₁₅ = 0.0948 C _C =					
- 10-	u						
Haad antina samula	Remarks						
Used entire sample F.M.=3.99	provided.						
1W13.99							
Date Received: 1	0/15/19 Date T	ested: 10/18/19					
Tested By: E	BS						
Checked By: JMA							
Title: <u>L</u>	M						
	·						

Silt

14.3

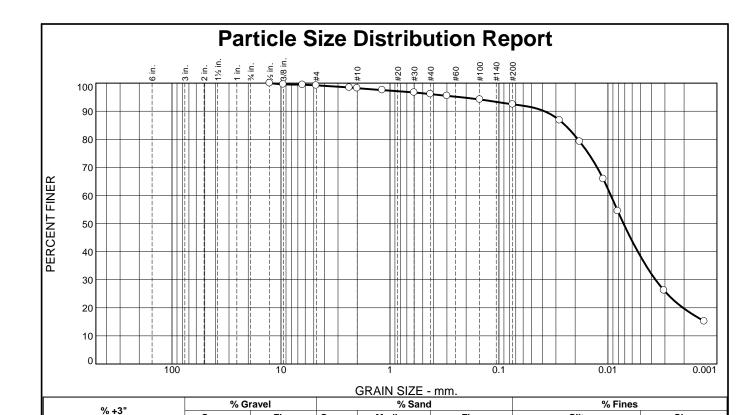
Clay

0.0

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZMWSE3D-19

Depth: 49-53'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

TEST RESULTS (ASTM D 422)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
.5"	100.0					
.375	99.6					
.25	99.4					
#4	99.2					
#8	98.4					
#10	98.2					
#16	97.5					
#30	96.7					
#40	96.1					
#50	95.5					
#100	94.2					
#200	92.5					
0.0278 mm.	86.8					
0.0182 mm.	79.2					
0.0110 mm.	65.9					
0.0081 mm.	54.5					
0.0031 mm.	26.2					
0.0013 mm.	15.2					
* (no spec	cification provide	d)				

0.0

0.0

Fine

0.8

Coarse

1.0

Medium

2.1

Fine

3.6

Material Description							
LAB ID# 19-801							
A 44		I D 4040)					
PL= 18	erberg Limits (ASTN LL= 25	PI= 7					
USCS (D 2487)=	Classification CL-ML AASHTO	(M 145)= A-4(5)					
D ₉₀ = 0.0383 D ₅₀ = 0.0072 D ₁₀ =	Coefficients D ₈₅ = 0.0247 D ₃₀ = 0.0037 C _u =	D ₆₀ = 0.0094 D ₁₅ = C _c =					
	Remarks						
F.M.=0.19							
Date Received:	10/15/19 Date 1	Tested: <u>10/18/19</u>					
Tested By: 1	EBS						
Checked By:	Checked By: JMA						
Title:	LM						

Silt

54.3

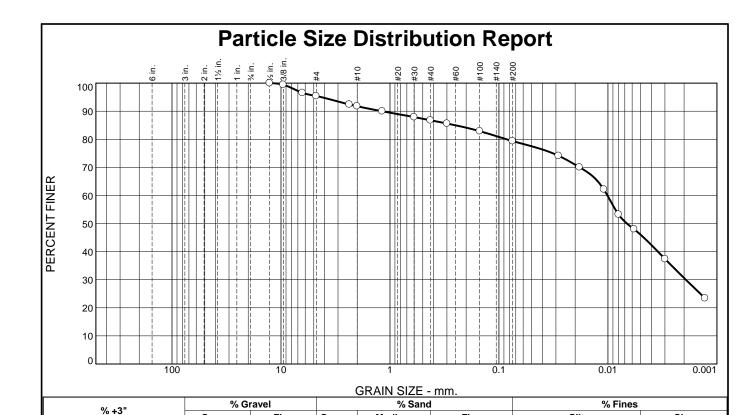
Clay

38.2

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZMWSE3D-19

Depth: 58-60'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

TEST RESULTS (ASTM D 422)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
.5"	100.0					
.375	99.4					
.25	96.6					
#4	95.4					
#8	92.4					
#10	91.8					
#16	90.0					
#30	87.9					
#40	86.8					
#50	85.6					
#100	82.9					
#200	79.4					
0.0283 mm.	74.1					
0.0182 mm.	70.1					
0.0109 mm.	62.1					
0.0080 mm.	53.2					
0.0058 mm.	48.0					
0.0030 mm.	37.4					
0.0013 mm.	23.4					

0.0

0.0

Fine

4.6

Coarse

3.6

Medium

5.0

Fine

7.4

Material Description						
LAB ID# 19-795						
Attack and Limite (ACTM D 4040)						
Atterberg Limits (ASTM D 4318) PL= 18 LL= 27 Pl= 9						
Classification						
USCS (D 2487)= CL AASHTO (M 145)= A-4(5)						
Coefficients						
D_{90} = 1.1879 D_{85} = 0.2517 D_{60} = 0.0101						
D ₅₀ = 0.0067 D ₃₀ = 0.0019 D ₁₅ = D ₁₀ = C _u = C _c =						
Remarks F.M.=0.66						
1.1410.00						
Date Received: 10/15/19 Date Tested: 10/18/19						
Tested By: EBS						
Checked By: JMA						
Title: LM						
HUG. LIVI						

Silt

33.4

Clay

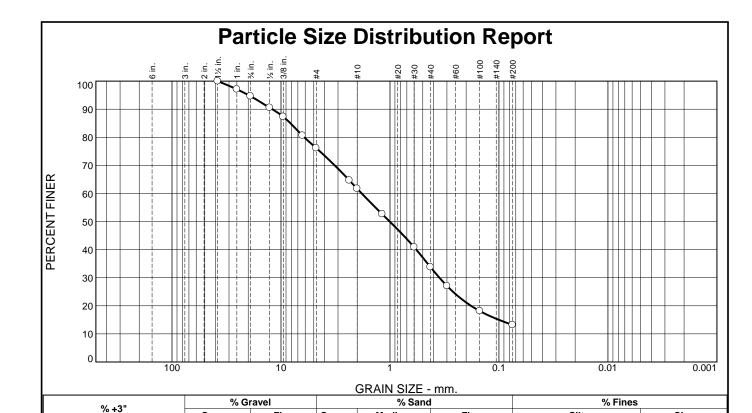
46.0

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZ04D-19

(no specification provided)

Depth: 36.5-42'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

	TEST RESULTS (ASTM D6913)						
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1.5"	100.0						
1	97.1						
.75	94.6						
.5	90.5						
.375	87.3						
.25	80.6						
#4	76.2						
#8	64.7						
#10	61.7						
#16	52.6						
#30	40.9						
#40	33.8						
#50	27.1						
#100	18.1						
#200	13.2						

5.4

Fine

18.4

Coarse

14.5

Medium

27.9

Fine

20.6

	Material Descrip	<u>otion</u>	
LAB ID# 19-796			
	<u>terberg Limits (AST</u>		
PL=	LL=	PI=	
	Classification		
USCS (D 2487)=	AASHTO	O (M 145)=	
	Coefficients		
D₉₀= 12.0426	D ₈₅ = 8.1942	D ₆₀ = 1.8154	
D ₅₀ = 1.0057 D ₁₀ =	D ₃₀ = 0.3516 C ₁₁ =	D ₁₅ = 0.0999 C _c =	
10	Remarks	· ·	
Used entire samp			
F.M.=3.38	re provided.		
Date Received:	10/15/19 Date	Tested: 10/23/19	
Tested By:	JJZ		_
Checked By:	JMA		_
Title:	LM		_

Silt

13.2

Clay

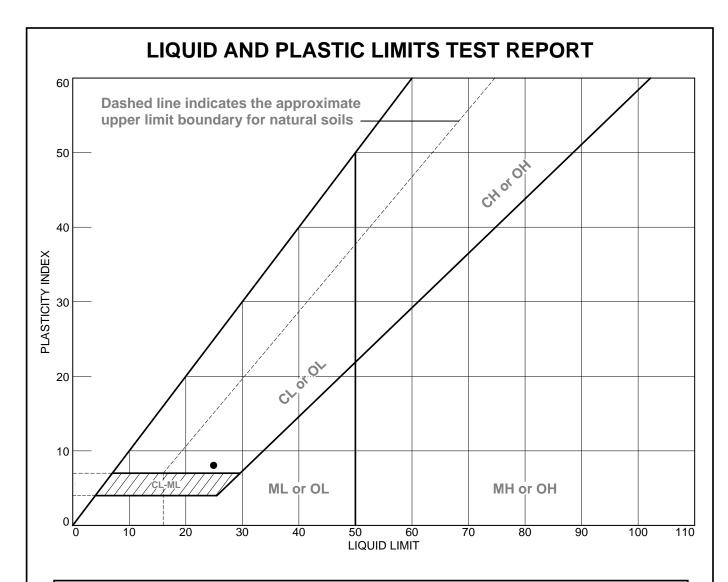
Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: PZ04D-19

(no specification provided)

0.0

Depth: 43.3-60'

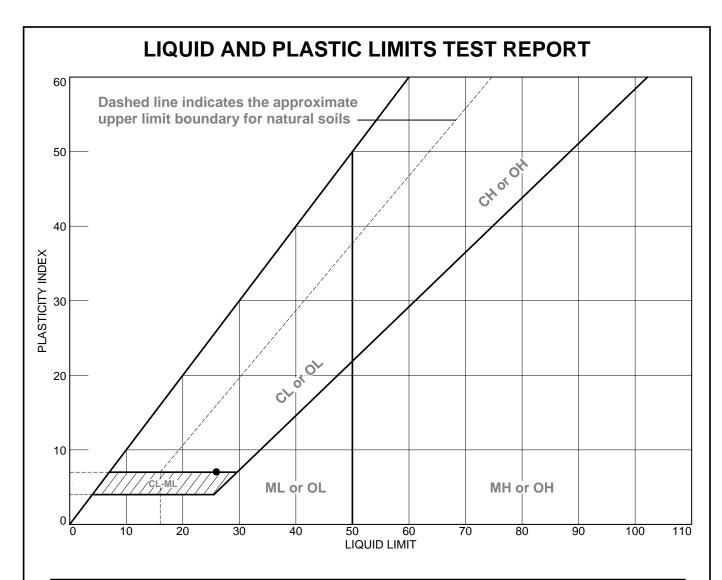
Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

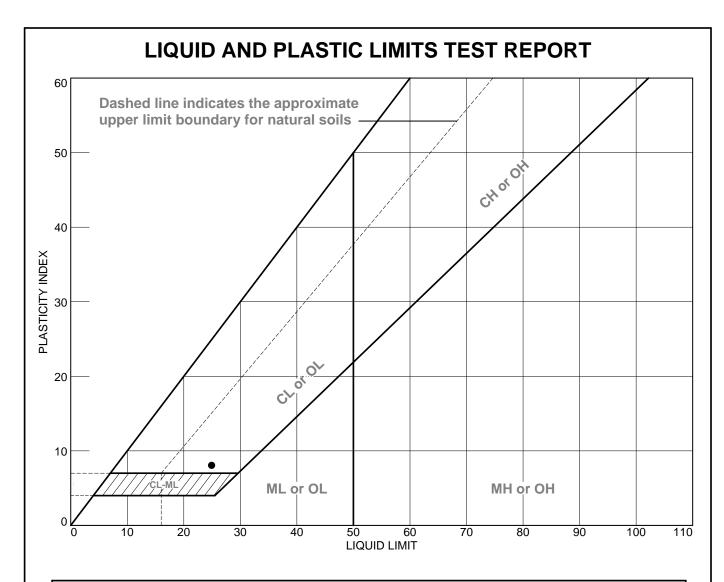
Project: Chaffee

East Aurora, NY


Project No: 19-028

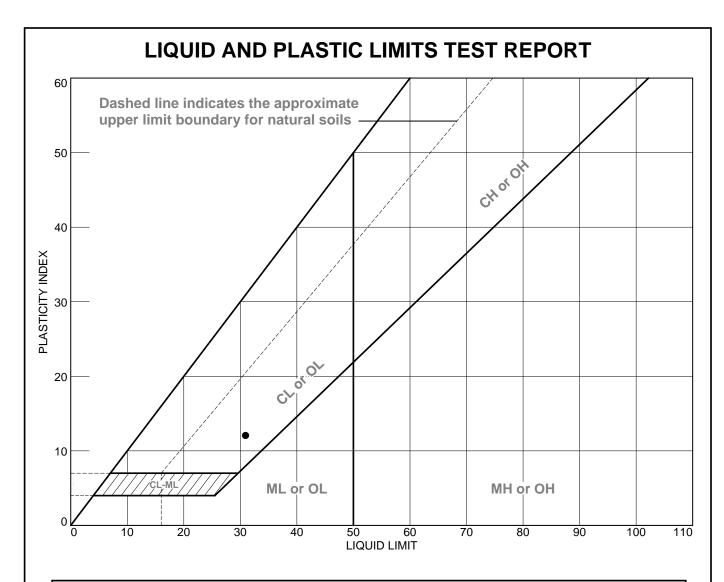
	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	SBPZ01D-19	36-38'		17	25	8	CL

East Aurora, NY Project No.: 19-028 Figure


Tested By: EBS 10/22/19 Checked By: JMA

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	SBPZ01D-19	56-58'		19	26	7	CL-ML

East Aurora, NY Project No.: 19-028 Figure

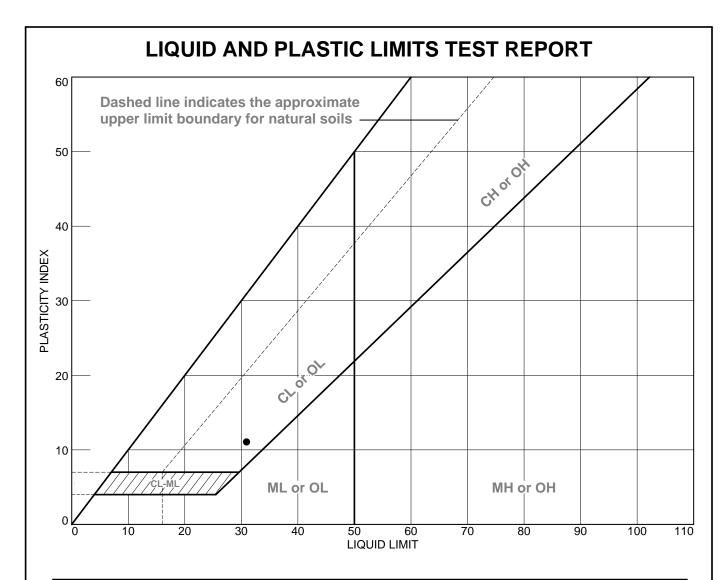

Tested By: EBS

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	PZSB11-19	36-44'		17	25	8	CL

East Aurora, NY Project No.: 19-028 Figure

Tested By: EBS 10/18/19 Checked By: JMA

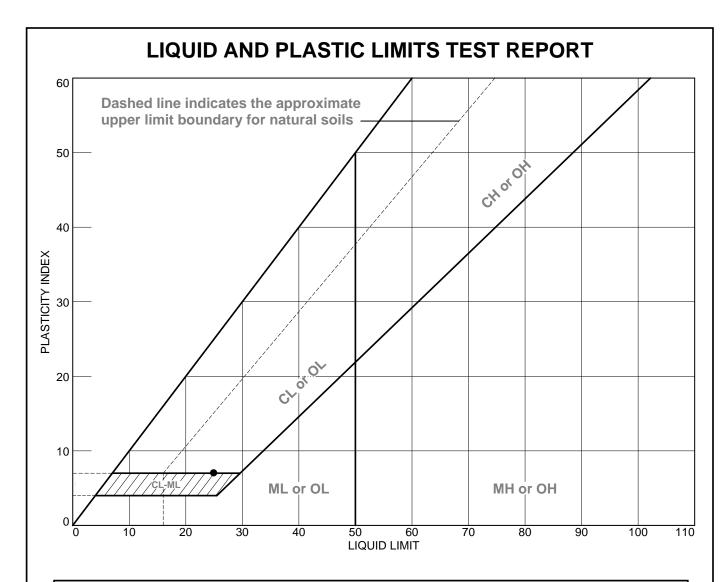
	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	SB12-19	28-37.5'		19	31	12	CL


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

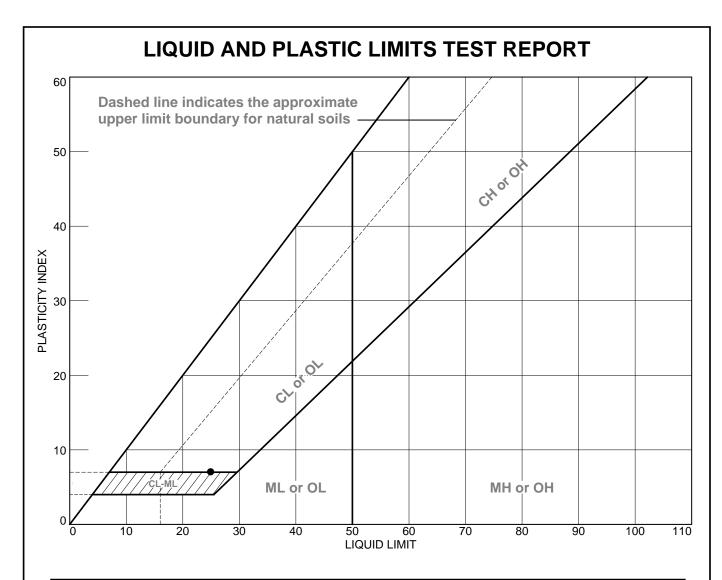

Project No.: 19-028

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	PZBA2D-19	34-43.5'		20	31	11	CL

East Aurora, NY Project No.: 19-028 Figure

Tested By: EBS 10/23/19 Checked By: JMA

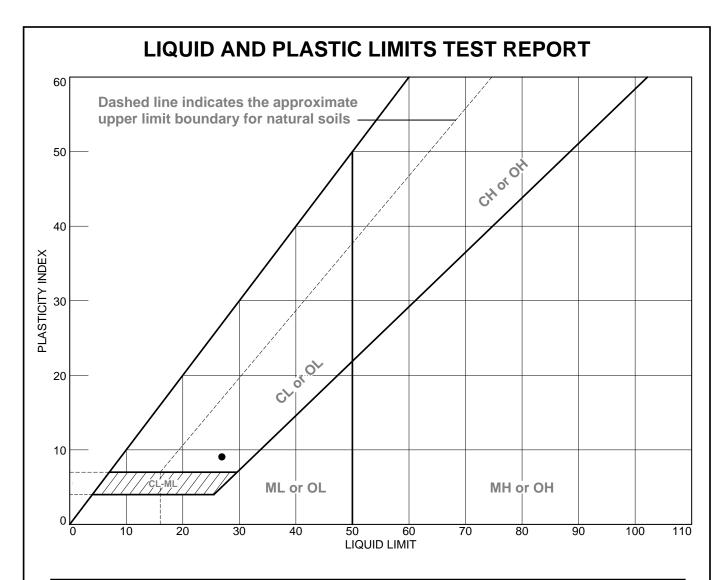
	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee	PZMWSE3D-	41.7-46'		18	25	7	CL-ML
	Landfill	19						
	Hydrogeo. Inv.							


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY


Project No.: 19-028

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee	PZMWSE3D-	58-60'		18	25	7	CL-ML
	Landfill	19						
	Hydrogeo. Inv.							

East Aurora, NY Project No.: 19-028 Figure

Tested By: EBS

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	Chaffee Landfill Hydrogeo. Inv.	PZ04D-19	36.5-42'		18	27	9	CL

East Aurora, NY Project No.: 19-028 Figure

Tested By: EBS

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.				
Project No.:	19-028				
Sample No.:	SBPZB01D-19, 38-38.5'				
Sample I.D.:	19-792				
Laboratory Method: ASTM D5084, Method C, Shelby Tube Sample					
Remarks:	None				

Date:	10/29/19		
Tested By:	EBS		
Check By:	JMA		
Date of Test:	10/21/19		
Date Test Complet	te:	10/25/19	
CELL NO.:		1	

INITIAL SAMPLE DATA:

Height, in.: 2.787 Wet Density, pcf: 140.7
Diameter, in.: 2.863 Dry Density, pcf: 126.8
Moisture Content,%: 11.00 Compaction, %: NA

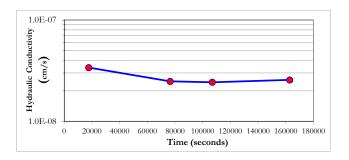
FINAL SAMPLE DATA:

Height, in.:2.769Wet Density, pcf:141.8Diameter, in.:2.851Dry Density, pcf:125.1

Moisture Content,%: 13.40

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 98%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	, ,		
1	85.2	80.2	79.9	8.50E-06	3.4E-08	
2	85.2	80.2	79.9	6.20E-06	2.5E-08	
3	85.2	80.2	79.9	5.91E-06	2.4E-08	
4	85.2	80.2	79.9	6.17E-06	2.6E-08	

Average K 2.7E-08
Average K, ft/day 7.7E-05

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.
Project No.:	19-028
Sample No.:	PZBA2D-19, 36-38'
Sample I.D.:	19-804
Laboratory Method	: ASTM D5084, Method C, Shelby Tube sample
Remarks:	None

Date:	10/29/19	
Tested By:	EBS	
Check By:	JMA	
Date of Test:	10/21/19	
Date Test Complete	e:	10/25/19
CELL NO.:		5A

INITIAL SAMPLE DATA:

Height, in.: 2.901 Wet Density, pcf: 129.8
Diameter, in.: 2.836 Dry Density, pcf: 104.4
Moisture Content,%: 24.30 Compaction, %: NA

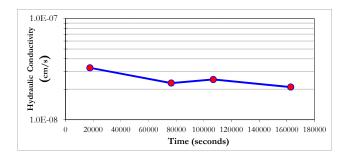
FINAL SAMPLE DATA:

Height, in.:2.879Wet Density, pcf:130.8Diameter, in.:2.841Dry Density, pcf:106.1

Moisture Content,%: 23.30

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 97%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	(, ,	(- , -)	
1	85	80.2	79.9	7.65E-06	3.3E-08	
2	85	80.2	79.9	5.36E-06	2.3E-08	
3	85	80.2	79.9	5.75E-06	2.5E-08	
4	85	80.2	79.9	4.74E-06	2.1E-08	

Average K 2.5E-08
Average K, ft/day 7.2E-05

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.
Project No.:	19-028
Sample No.:	PZMWSE3D-19, 44-46'
Sample I.D.:	19-798
Laboratory Method	l: ASTM D5084, Method C, Shelby Tube sample
Remarks:	None

Date:	10/29/19		
Tested By:	EBS		
Check By:	JMA		
Date of Test:	10/21/19		
Date Test Complet	e:	10/25/19	
CELL NO.:		3	•

INITIAL SAMPLE DATA:

Height, in.: 2.860 Wet Density, pcf: 144.3
Diameter, in.: 2.847 Dry Density, pcf: 121.8
Moisture Content,%: 18.40 Compaction, %: NA

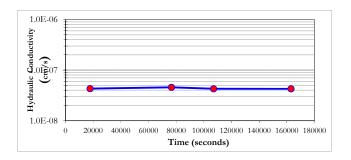
FINAL SAMPLE DATA:

Height, in.:2.861Wet Density, pcf:138.5Diameter, in.:2.851Dry Density, pcf:117.9

Moisture Content,%: 17.50

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 99%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	, ,	(, , -,	
1	85	80.2	79.9	9.57E-06	4.3E-08	
2	85	80.2	79.9	9.85E-06	4.6E-08	
3	85	80.2	79.9	8.88E-06	4.3E-08	
4	85	80.2	79.9	8.75E-06	4.3E-08	

Average K 4.4E-08
Average K, ft/day 1.2E-04

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.	Date:	10/29/19
Project No.:	19-028	Tested By:	EBS
Sample No.:	PZ04D-19, 38-40'	Check By:	JMA
Sample I.D.:	19-794	Date of Test:	10/21/19
Laboratory Method	l: ASTM D5084, Method C, Shelby tube sample	Date Test Comple	te: 10/25/19
Remarks:	None	CELL NO.:	2

INITIAL SAMPLE DATA:

Height, in.: 2.838 Wet Density, pcf: 132.9
Diameter, in.: 2.876 Dry Density, pcf: 114.3
Moisture Content,%: 16.20 Compaction, %: NA

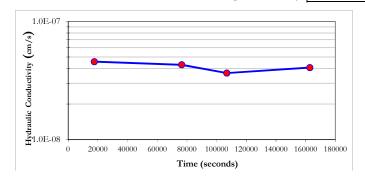
FINAL SAMPLE DATA:

Height, in.:2.841Wet Density, pcf:136.2Diameter, in.:2.850Dry Density, pcf:114.1

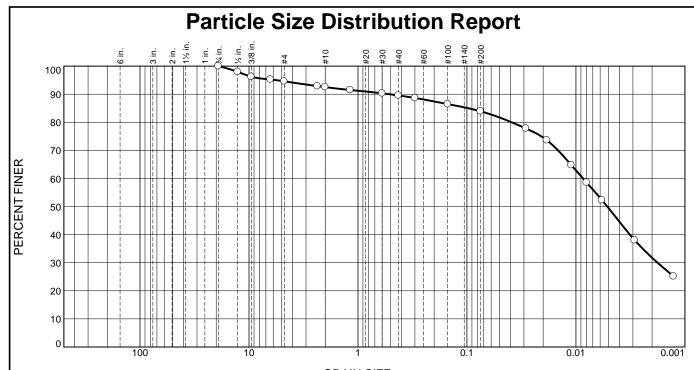
Moisture Content,%: 19.40

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 100%


AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	, ,	(- , -,	
1	85	80.2	79.9	1.11E-05	4.6E-08	
2	85	80.2	79.9	1.00E-05	4.3E-08	
3	85	80.2	79.9	8.38E-06	3.7E-08	
4	85	80.2	79.9	9.02E-06	4.1E-08	

Average K 4.2E-08
Average K, ft/day 1.2E-04

2019 Test Pit Geotechnical Laboratory Reports

GRAIN SIZE - mm.							
% +3"	% G	ravel	avel % Sand		% Fines		
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	5.4	2.1	2.9	5.7	34.5	49.4

	TEST RESULTS	(ASTM D 422)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5	98.0		
.375	96.2		
.25	95.3		
#4	94.6		
#8	92.9		
#10	92.5		
#16	91.5		
#30	90.3		
#40	89.6		
#50	88.7		
#100	86.5		
#200	83.9		
0.0288 mm.	77.8		
0.0185 mm.	73.6		
0.0110 mm.	64.8		
0.0080 mm.	58.5		
0.0058 mm.	52.3		
0.0029 mm.	38.1		
0.0013 mm.	25.2		

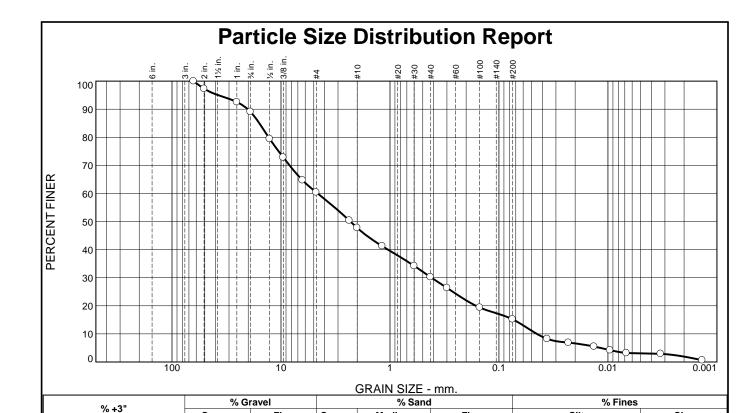
	Material Descrip	<u>otion</u>			
ID#19-621					
Δtte	erberg Limits (AST	'M D 4318\			
PL=	LL=	Pl=			
USCS (D 2487)=	Classificatio AASHT	<u>n</u> O (M 145)=			
D ₉₀ = 0.5154 D ₅₀ = 0.0052 D ₁₀ =	D ₈₅ = 0.0969 D ₃₀ = 0.0018 C _u =	D ₆₀ = 0.0086 D ₁₅ = C _c =			
	Remarks				
F.M.=0.59					
Date Received:	7/30/19 Date	* Tested: 8/20/19			
Tested By: JJZ					
Checked By: JMA					
Title: LM					

* (no specification provided)

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: TP-01-19

Depth: 4.5'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

Opening Percent Spec.* Pa						
Size	Finer	(Percent)	(X=Fail)			
2.5"	100.0					
2	97.3					
1	92.6					
.75	89.1					
.5	79.4					
.375	72.8					
.25	64.7					
#4	60.4					
#8	50.4					
#10	47.8					
#16	41.3					
#30	34.2					
#40	30.2					
#50	26.4					
#100	19.4					
#200	15.2					
0.0361 mm.	8.2					
0.0230 mm.	6.9					
0.0134 mm.	5.5					
0.0096 mm.	4.2					
0.0068 mm.	3.2					
0.0033 mm.	2.9					
0.0014 mm.	0.6					
		1				

10.9

0.0

Fine

28.7

Coarse

12.6

Medium

17.6

Fine

15.0

	Material Description					
ID#19-622						
Λ++	erberg Limits (ASTI	M D 4219)				
PL=	LL=	PI=				
USCS (D 2487)=	Classification AASHTO	-				
D₉₀= 20.1582 D₅₀= 2.3060 D₁₀= 0.0449	D_{50} = 2.3060 D_{30} = 0.4163 D_{15} = 0.0733					
	Remarks					
F.M.=4.11	F.M.=4.11					
Date Received:	<u>7/30/19</u> Date	Tested: <u>8/16/19</u>				
Tested By: JJZ						
Checked By:	Checked By: JMA					
Title:	Title: LM					

Silt

12.1

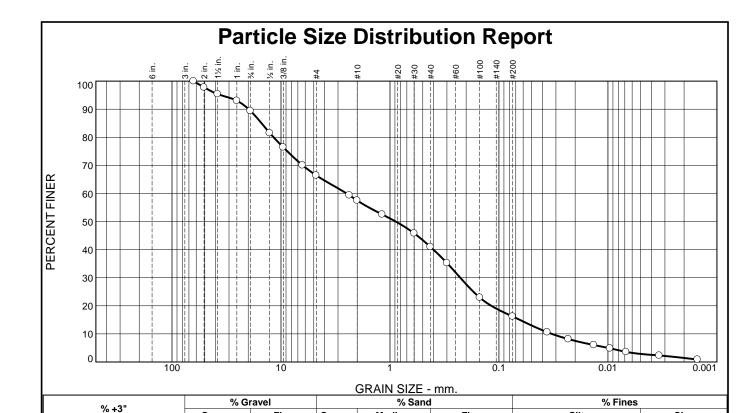
Clay

3.1

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: TP-02-19

Depth: 5-7'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

	TEST RESULTS (ASTM D 422)					
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
2.5"	100.0					
2	97.8					
1.5	95.4					
1	93.0					
.75	89.4					
.5	81.6					
.375	76.4					
.25	70.1					
#4	66.4					
#8	59.4					
#10	57.5					
#16	52.5					
#30	45.8					
#40	41.0					
#50	35.2					
#100	22.9					
#200	16.2					
0.0360 mm.	10.6					
0.0231 mm.	8.2					
0.0135 mm.	6.0					
0.0096 mm.	4.9					
0.0068 mm.	3.6					
0.0034 mm.	2.3					
0.0015 mm.	0.9					
* .		1				
(no spe	ecification provide	ed)				

10.6

0.0

Fine

23.0

Coarse

8.9

Medium

16.5

Fine

24.8

Material Description							
ID#19-623							
A 44 :		• D 4040)					
PL=	rberg Limits (ASTN LL=	<u>I D 4318)</u> Pl=					
	Classification						
USCS (D 2487)=	Classification AASHTO	(M 145)=					
, ,	Coefficients	. ,					
D₉₀= 19.7573	D ₈₅ = 15.0866	D₆₀= 2.5016					
D₅₀= 0.8855 D₁₀= 0.0328	D₃₀= 0.2265 C_u= 76.38	D₁₅= 0.0644 C_c= 0.63					
D ₁₀ = 0.0320		0 C- 0.03					
Remarks F.M.=3.56							
1.1415.50							
Date Received: 7/30/19 Date Tested: 8/16/19							
Tested By: JJZ							
Checked By: JMA							
Title: L	.M						

Silt

13.3

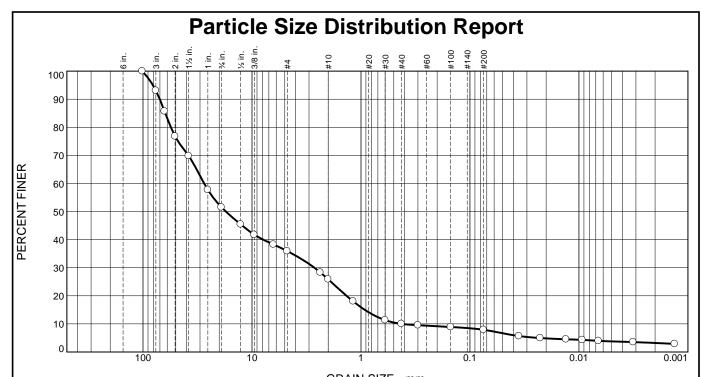
Clay

2.9

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: TP-03-19

Depth: 3.5-5'

Date Sampled:


3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

GRAIN SIZE - mm.							
% +3"	% Gı	ravel % Sand		% Fines			
% +3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
6.9	41.6	15.6	10.0	15.9	2.1	4.1	3.8

Opening Size 4" 3" 2.5 2 1.5 1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200 0.0355 mm.	Percent Finer 100.0 93.1 85.7 76.8 69.8 57.7 51.5 45.5 41.8 38.3 35.9	Spec.* (Percent)	Pass? (X=Fail)
4" 3" 2.5 2 1.5 1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	100.0 93.1 85.7 76.8 69.8 57.7 51.5 45.5 41.8 38.3 35.9	(Percent)	(X=Fail)
3" 2.5 2 1.5 1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	93.1 85.7 76.8 69.8 57.7 51.5 45.5 41.8 38.3 35.9		
2.5 2 1.5 1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	85.7 76.8 69.8 57.7 51.5 45.5 41.8 38.3 35.9		
2 1.5 1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	76.8 69.8 57.7 51.5 45.5 41.8 38.3 35.9		
1.5 1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	69.8 57.7 51.5 45.5 41.8 38.3 35.9		
1 .75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	57.7 51.5 45.5 41.8 38.3 35.9		
.75 .5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	51.5 45.5 41.8 38.3 35.9		
.5 .375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	45.5 41.8 38.3 35.9		
.375 .25 #4 #8 #10 #16 #30 #40 #50 #100 #200	41.8 38.3 35.9		
.25 #4 #8 #10 #16 #30 #40 #50 #100 #200	38.3 35.9		
#4 #8 #10 #16 #30 #40 #50 #100 #200	35.9		
#8 #10 #16 #30 #40 #50 #100 #200			1
#10 #16 #30 #40 #50 #100 #200			
#16 #30 #40 #50 #100 #200	28.3		
#30 #40 #50 #100 #200	25.9		
#40 #50 #100 #200	18.0		
#50 #100 #200	11.3		
#100 #200	10.0		
#200	9.5		
	8.9		
0.0355 mm.	7.9		
	5.7		
0.0226 mm.	5.0		
0.0132 mm.	4.5		
0.0093 mm.	4.3		
0.0066 mm.			
0.0032 mm.	4.0		1
0.0013 mm.	4.0 3.5		

Material Description							
ID#19-624							
Atte	rberg Limits (ASTN LL=	1 D 4318) Pl=					
Classification USCS (D 2487)= AASHTO (M 145)=							
D₉₀= 70.2058 D₅₀= 17.3688 D₁₀= 0.4233	Coefficients D₈₅= 62.4785 D₃₀= 2.6782 C_u= 64.90	D₆₀= 27.4715 D₁₅= 0.9214 C_c= 0.62					
Remarks							
F.M.=6.32							
Date Received: 7/30/19 Date Tested: 8/15/19							
Tested By: CF							
Checked By: J	MA						
Title: I	LM						
	<u> </u>						

Source of Sample: Chaffee Landfill Hydrogeo. Inv. Sample Number: TP-03-19

Depth: 11-11.5'

Date Sampled:

3rd Rock, LLC

Client: GEI Consultants, Inc.

Project: Chaffee

East Aurora, NY

Project No: 19-028

^{* (}no specification provided)

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.	Date:
Project No.:	19-028	Tested 1
Sample No.:	TP01-19, 4.5'	Check I
Sample I.D.:	19-625	Date of
Laboratory Metl	nod: ASTM D5084, Method C	Date Te
Remarks:	None	CELLN

Date:	08/22/19	
Tested By:	CF	_
Check By:	JMA	_
Date of Test:	08/12/19	_
Date Test Complet	e:	08/20/19
CELL NO.:		5A

INITIAL SAMPLE DATA:

Height, in.: 2.312 Wet Density, pcf: 125.2
Diameter, in.: 2.800 Dry Density, pcf: 105.7
Moisture Content,%: 18.50 Compaction, %: NA

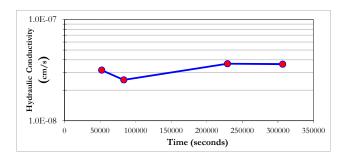
FINAL SAMPLE DATA:

Height, in.:2.314Wet Density, pcf:129.6Diameter, in.:2.798Dry Density, pcf:105.7

Moisture Content,%: 22.60

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 97%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	(, ,	(, ,	
1	85	80.3	80	5.75E-06	3.2E-08	
2	85	80.3	80	4.49E-06	2.5E-08	
3	85	80.3	80	6.18E-06	3.7E-08	
4	85	80.3	80	5.73E-06	3.6E-08	

Average K 3.2E-08
Average K, ft/day 9.2E-05

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.	Date:	06/17/07
Project No.:	19-028	Tested By:	EBS
Sample No.:	TP02-19, 7'	Check By:	JMA
Sample I.D.:	19-626	Date of Test:	08/06/19
Laboratory Metho	od: ASTM D5084, Method C	Date Test Comple	ete: 08/10/19
Remarks:	None	CELL NO.:	6

INITIAL SAMPLE DATA:

Height, in.: 2.912 Wet Density, pcf: 125.6
Diameter, in.: 2.797 Dry Density, pcf: 108.5
Moisture Content,%: 15.80 Compaction, %: NA

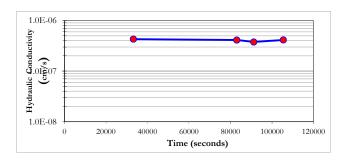
FINAL SAMPLE DATA:

Height, in.:2.826Wet Density, pcf:131.2Diameter, in.:2.814Dry Density, pcf:112.0

Moisture Content,%: 17.10

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi

Saturation (B parameter): 97%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	, ,	(, ,	
1	85	80	80	1.85E-05	4.3E-07	
2	85	80	80	1.43E-05	4.1E-07	
3	85	80	80	1.10E-05	3.8E-07	
4	85	80	80	1.16E-05	4.1E-07	

Average K 4.1E-07
Average K, ft/day 1.2E-03

Project Name:	GEI, WMNY Chaffee LF Hydrogeo.
Project No.:	19-028
Sample No.:	TP03-19, 8.5'
Sample I.D.:	19-627
Laboratory Method	: ASTM D5084, Method C
Remarks:	None

Date:	08/22/19	
Tested By:	EBS	
Check By:	JMA	_
Date of Test:	08/05/19	_
Date Test Complete	e:	08/07/19
CELL NO.:		5A

INITIAL SAMPLE DATA:

Height, in.: 2.179 Wet Density, pcf: 116.2
Diameter, in.: 2.870 Dry Density, pcf: 104.0
Moisture Content,%: 11.70 Compaction, %: NA

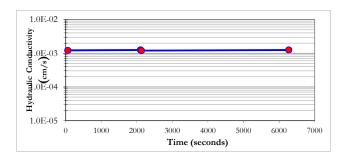
FINAL SAMPLE DATA:

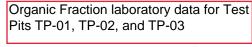
Height, in.: 2.110 Wet Density, pcf: 118.8 Diameter, in.: 2.888 Dry Density, pcf: 105.1

Moisture Content,%: 13.00

SATURATION AND CONSOLIDATION DATA:

Consolidation Pressure: 85 psi


Backpressure: 80 psi


Saturation (B parameter): 95%

AVERAGE PERMEABILITY RESULT (average of last 4 readings, K, cm/s):

Trial #	Tes	ting Press (psi)	ures	Q (ml/sec)	Final K (cm/s)	
	1	2	3	, , ,	(, ,	
1	85	80	80	8.43E-02	1.2E-03	
2	85	80	80	1.28E-01	1.3E-03	
3	85	80	80	4.50E-02	1.2E-03	
4	85	80	80	1.11E-01	1.3E-03	

Average K 1.2E-03
Average K, ft/day 3.5E+00

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-156995-1

Client Project/Site: Chaffee Landfill-Solid Walkly black

For:

🗱 eurofins

Waste Management Chaffee Landfill 10860 Olean Road Chaffee, New York 14030-9799

Attn: Christopher Chapman

notily tergisan

Authorized for release by: 8/8/2019 4:48:55 PM

Katelyn Ferguson, Project Management Assistant I katelyn.ferguson@testamericainc.com

Designee for

Denise Giglia, Project Manager I (716)691-2600

denise.giglia@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

<u>ي</u>

5

7

8

4.0

11

13

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	21

-5

4

8

46

11

Definitions/Glossary

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Glossary

O. O O O Ca.	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

Minimum Detector lo Activity (Padi

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

4

5

0

Q

9

11

10

Case Narrative

Client: Waste Management

Project/Site: Chaffee Landfill-Solid Walkly black

Job ID: 480-156995-1

Job ID: 480-156995-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-156995-1

Comments

No additional comments.

Receipt

The samples were received on 7/31/2019 9:43 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.9° C.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Waste Management Job ID: 480-156995-1

1470

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP0	1-19-4.5					Lab San	nple ID: 480)-156995-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Total Organic Carbon	2970		1280		mg/Kg	1 🔻	Walkley Black	Total/NA
Client Sample ID: TP0	2-19-5-7					Lab San	nple ID: 480)-156995-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Total Organic Carbon	2820		1360		mg/Kg	<u> </u>	Walkley Black	Total/NA
Client Sample ID: TP0	2-19-9.5					Lab San	nple ID: 480)-156995-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Total Organic Carbon	2130		1220		mg/Kg		Walkley Black	Total/NA
Client Sample ID: TP0	3-19-3.5-5					Lab San	nple ID: 480)-156995-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type

1270

mg/Kg

Client Sample ID: TP03-19-11-11.5

No Detections.

Total Organic Carbon

This Detection Summary does not include radiochemical test results.

3

7

10

11

Total/NA

1 Walkley Black

Lab Sample ID: 480-156995-5

15

Client Sample Results

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP01-19-4.5 Lab Sample ID: 480-156995-1

Date Collected: 07/30/19 10:30 Matrix: Solid
Date Received: 07/31/19 09:43 Percent Solids: 79.2

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2970		1280		mg/Kg			08/07/19 12:19	1

2

4

8

9

11

13

Client Sample Results

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP02-19-5-7 Lab Sample ID: 480-156995-2

Date Collected: 07/30/19 12:30 **Matrix: Solid**

Date Received: 07/31/19 09:43 Percent Solids: 73.4

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2820		1360		mg/Kg	₩ -		08/07/19 12:25	1

Client Sample Results

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP02-19-9.5 Lab Sample ID: 480-156995-3

Date Collected: 07/30/19 12:30 Matrix: Solid
Date Received: 07/31/19 09:43 Percent Solids: 82.6

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	2130		1220		mg/Kg	₩ -		08/07/19 12:37	1

5

7

8

10

12

13

14

Client Sample Results

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP03-19-3.5-5 Lab Sample ID: 480-156995-4

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	1470		1270		mg/Kg	 		08/07/19 12:42	1

4

8

10

40

13

14

Client Sample Results

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP03-19-11-11.5 Lab Sample ID: 480-156995-5

Date Collected: 07/30/19 14:20 Matrix: Solid
Date Received: 07/31/19 09:43 Percent Solids: 83.6

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon	ND		1210		mg/Kg			08/07/19 12:48	1

4

5

6

8

10

111

13

14

QC Sample Results

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Method: Walkley Black - Organic Carbon, Total (TOC)

Lab Sample ID: MB 240-394846/4 **Client Sample ID: Method Blank**

Matrix: Solid

Analysis Batch: 394846

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 992 08/07/19 11:17 Total Organic Carbon ND mg/Kg

Lab Sample ID: LCS 240-394846/5 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 394846

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 1920 51 - 126 Total Organic Carbon 1934 mg/Kg 101

Client Sample ID: TP02-19-9.5 Lab Sample ID: 480-156995-3 DU

Matrix: Solid

Analysis Batch: 394846

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit D RPD Limit ₩ Total Organic Carbon 2130 15 20 2473 mg/Kg

Prep Type: Total/NA

Prep Type: Total/NA

QC Association Summary

Client: Waste Management

Project/Site: Chaffee Landfill-Solid Walkly black

General Chemistry

Analysis Batch: 394418

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-156995-1	TP01-19-4.5	Total/NA	Solid	Moisture	
480-156995-2	TP02-19-5-7	Total/NA	Solid	Moisture	
480-156995-3	TP02-19-9.5	Total/NA	Solid	Moisture	
480-156995-4	TP03-19-3.5-5	Total/NA	Solid	Moisture	
480-156995-5	TP03-19-11-11.5	Total/NA	Solid	Moisture	

Analysis Batch: 394846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-156995-1	TP01-19-4.5	Total/NA	Solid	Walkley Black	
480-156995-2	TP02-19-5-7	Total/NA	Solid	Walkley Black	
480-156995-3	TP02-19-9.5	Total/NA	Solid	Walkley Black	
480-156995-4	TP03-19-3.5-5	Total/NA	Solid	Walkley Black	
480-156995-5	TP03-19-11-11.5	Total/NA	Solid	Walkley Black	
MB 240-394846/4	Method Blank	Total/NA	Solid	Walkley Black	
LCS 240-394846/5	Lab Control Sample	Total/NA	Solid	Walkley Black	
480-156995-3 DU	TP02-19-9.5	Total/NA	Solid	Walkley Black	

Job ID: 480-156995-1

5

4

5

0

9

10

12

13

4 /

Client: Waste Management

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP01-19-4.5

Date Collected: 07/30/19 10:30

Date Received: 07/31/19 09:43

Batch Batch Dilution Batch **Prepared**

Prep Type Method or Analyzed Type Run Factor Number **Analyst** Lab Total/NA 08/05/19 10:26 AJO TAL CAN Analysis Moisture 394418

Client Sample ID: TP01-19-4.5

Date Collected: 07/30/19 10:30

Date Received: 07/31/19 09:43

Lab Sample ID: 480-156995-1

Lab Sample ID: 480-156995-2

Lab Sample ID: 480-156995-3

Lab Sample ID: 480-156995-4

Lab Sample ID: 480-156995-1

Matrix: Solid Percent Solids: 79.2

Job ID: 480-156995-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Dilution **Prepared** Batch Batch Batch **Prep Type** Type Method Run **Factor** Number or Analyzed **Analyst** Lab 394846 Total/NA Analysis Walkley Black 08/07/19 12:19 TPH TAL CAN

Client Sample ID: TP02-19-5-7

Date Collected: 07/30/19 12:30

Date Received: 07/31/19 09:43

Dilution Batch **Batch Batch** Prepared Type Prep Type Method Run Factor Number or Analyzed Analyst I ab 394418 AJO TAL CAN Total/NA Analysis Moisture 08/05/19 10:26

Client Sample ID: TP02-19-5-7

Date Collected: 07/30/19 12:30

Date Received: 07/31/19 09:43

Lab Sample ID: 480-156995-2 Matrix: Solid Percent Solids: 73.4

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Walkley Black 394846 08/07/19 12:25 TPH TAL CAN

Client Sample ID: TP02-19-9.5

Date Collected: 07/30/19 12:30

Date Received: 07/31/19 09:43

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL CAN Total/NA 394418 08/05/19 10:26 AJO Analysis Moisture

Client Sample ID: TP02-19-9.5

Lab Sample ID: 480-156995-3 Date Collected: 07/30/19 12:30 Matrix: Solid Date Received: 07/31/19 09:43 Percent Solids: 82.6

Batch Batch Dilution Batch Prepared Type Method Run Factor Number or Analyzed **Prep Type** Analyst Lab Total/NA Analysis Walkley Black 394846 08/07/19 12:37 TPH TAL CAN

Client Sample ID: TP03-19-3.5-5

Date Collected: 07/30/19 13:10

Date Received: 07/31/19 09:43

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	394418	08/05/19 10:26	AJO	TAL CAN

Eurofins TestAmerica, Buffalo

Lab Chronicle

Client: Waste Management Job ID: 480-156995-1

Project/Site: Chaffee Landfill-Solid Walkly black

Client Sample ID: TP03-19-3.5-5

Lab Sample ID: 480-156995-4 Date Collected: 07/30/19 13:10 Matrix: Solid

Percent Solids: 77.9

Matrix: Solid

Batch Batch Dilution Batch Prepared Method Factor or Analyzed Run Number Lab

Prep Type Type Analyst TAL CAN Total/NA 08/07/19 12:42 TPH Analysis Walkley Black 394846

Client Sample ID: TP03-19-11-11.5 Lab Sample ID: 480-156995-5

Date Collected: 07/30/19 14:20 Date Received: 07/31/19 09:43

Date Received: 07/31/19 09:43

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis TAL CAN Moisture 394418 08/05/19 10:50 AJO

Client Sample ID: TP03-19-11-11.5 Lab Sample ID: 480-156995-5 Date Collected: 07/30/19 14:20 **Matrix: Solid**

Date Received: 07/31/19 09:43 Percent Solids: 83.6

Dilution Batch **Batch Batch** Prepared **Prep Type** Туре Method Factor Number Run or Analyzed Analyst Lab 394846 TAL CAN Total/NA Analysis Walkley Black 08/07/19 12:48 TPH

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Accreditation/Certification Summary

Client: Waste Management

Project/Site: Chaffee Landfill-Solid Walkly black

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Author	rity	Program	EPA Region	Identification Number	Expiration Date
New Yo	ork	NELAP	2	10026	03-31-20

Laboratory: Eurofins TestAmerica, Canton

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
California	State		2927	02-23-20
California	State Program	9	2927	02-23-20
Connecticut	State		PH-0590	12-31-19
Connecticut	State Program	1	PH-0590	12-31-19
Florida	NELAP	4	E87225	06-30-20
Florida	NELAP		E87225	06-30-20
Georgia	State Program	4	N/A	02-23-20
Illinois	NELAP	5	200004	07-31-20
Iowa	State Program	7	421	06-01-21
Kansas	NELAP	7	E-10336	04-30-20
Kansas	NELAP		E-10336	04-30-20
Kentucky (UST)	State Program	4	58	02-23-20
Kentucky (WW)	State		KY98016	12-31-19
Kentucky (WW)	State Program	4	98016	12-31-19
Minnesota	NELAP	5	039-999-348	12-31-19 *
Minnesota	NELAP		OH00048	12-31-19
Minnesota (Petrofund)	State Program	1	3506	07-31-21
New Jersey	NELAP	2	OH001	06-30-20
New Jersey	NELAP		OH001	06-30-20
New York	NELAP	2	10975	03-31-20
New York	NELAP		10975	03-31-20
Ohio VAP	State		CL0024	06-05-21
Ohio VAP	State Program	5	CL0024	06-05-21
Oregon	NELAP	10	4062	02-23-20
Oregon	NELAP		4062	02-23-20
Pennsylvania	NELAP	3	68-00340	08-31-19 *
Pennsylvania	NELAP		68-00340	08-31-19
Texas	NELAP	6	T104704517-19-11	08-31-20
Texas	NELAP		T104704517-18-10	08-31-19
USDA	Federal		P330-16-00404	12-28-19
Virginia	NELAP	3	460175	09-14-19 *
Virginia	NELAP		010101	09-14-19
Washington	State		C971	01-12-20
Washington	State Program	10	C971	01-12-20 *
West Virginia DEP	State		210	12-31-19
West Virginia DEP	State Program	3	210	12-31-19

Job ID: 480-156995-1

2

4

5

7

9

10

12

14

Eurofins TestAmerica, Buffalo

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

corectification retrieval periality according and retrieval periality according to the control of the control o

Method Summary

Client: Waste Management

Project/Site: Chaffee Landfill-Solid Walkly black

Method	Method Description	Protocol	Laboratory
Moisture	Percent Moisture	EPA	TAL CAN
Walkley Black	Organic Carbon, Total (TOC)	MSA	TAL CAN

Protocol References:

EPA = US Environmental Protection Agency

MSA = "Methods Of Soil Analysis, Chemical And Microbiological Properties", Part 2, 2nd Ed., 1982 And Subsequent Revisions.

Laboratory References:

TAL CAN = Eurofins TestAmerica, Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Job ID: 480-156995-1

Sample Summary

Client: Waste Management Project/Site: Chaffee Landfill-Solid Walkly black

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-156995-1	TP01-19-4.5	Solid	07/30/19 10:30	07/31/19 09:43	
480-156995-2	TP02-19-5-7	Solid	07/30/19 12:30	07/31/19 09:43	
480-156995-3	TP02-19-9.5	Solid	07/30/19 12:30	07/31/19 09:43	
480-156995-4	TP03-19-3.5-5	Solid	07/30/19 13:10	07/31/19 09:43	
480-156995-5	TP03-19-11-11.5	Solid	07/30/19 14:20	07/31/19 09:43	

Job ID: 480-156995-1

Ver. 01/16/2019

Months

: eurofins

M - Hexane
N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
T - TSP Dodecatydrate
U - Acetione

W - pH 4-5 Z - other (specify)

.... ייישוופווכמ, שumalo

Amherst, NY 14228-2298

10 Hazelwood Drive

5 Samples Collected Special Instructions/Note: Sample Disposal (A fee maybe assessed if samples are retained longer than 1 month) 480-133483-30067.1 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid Page: Page 1 of 1 Job #: Archive For 2 Total Number U 480-156995 Chain of Custody ethod of Shipmen Disposal By Lab # Analysis Requested ooler Temperature(s) °C and Other Remarks. Special Instructions/QC Requirements: denise.giglia@testamericainc.com Return To Client Received by: Lab PM: Giglia, Denise L E-Mail: Noisture, WalkleyBlk_Calc Time: RHI Purchase Order Requested WM Chafface Preservation Code Matrix Solid Company Solid Solid Solid Solid Contact Derisa Gistin WO #. Invoice to Chaffur Li Radiological (C=comp, G=grab) Sample Type 943 0 0 716 204.7156 V 1030 12:30 Sample 1330 13:10 14.30 R. F. CAPPA Date Unknown TAT Requested (days): Due Date Requested: Sample Date 130/19 Project #: 48002636 SSOW#: Poison B Skin Irritant Deliverable Requested: I/II, III, IV, Other (specify) -11-11,5 Custody Seal No 5-7 Phone: 716-691-2600 Fax: 716-691-7991 Flammable 716-863-3438(Tel) 204-7/51 Possible Hazard Identification PO1-19 TP 62-19 TP \$ 2-19 TP03-19 P 43-19 100 Sylvan Parkway Suite 400 frappa@geiconsultants.com Empty Kit Relinquished by: Custody Seals Intact: Sample Identification Client Information GEI Consultants, Inc. Chaffee Landfill Client Contact: Richard Frappa linquished by: nquished by: Relinquished by NY, 14228 City: Amherst New York state, Zip: Page 18 of 21

Ver: 01/16/2019

Chain of Custody Record 11.6/11.7

seurofins Environment Testing Testamenica

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

nriect, ig/Receiving Infrica Laboratories, Inc. huffel Street NW, 2anton 720 7-9396(Tel) 330-497-0772(Fax)	Phone: Oue Date Requested:			E-Mail.							
rerica Laboratories, Inc. huffel Street NW, canton 720 7-9396(Tel) 330-497-0772(Fax)	e Requested:			1				State of Origin	Page		
s, Inc.	e Requested:			Demse	.giglia@	testameri	denise giglia@testamericainc.com	New York	Page	Page 1 of 1	
huffel Street NW, anton 720 7-9396(Tel) 330-497-0772(Fax)	e Requested:			4 2	ccreditatio	Accreditations Required (See note)	(See note)		Job #.	Job #:	
huffel Street NW, 2anton 720 7-9396(Tel) 330-497-0772(Fax)	e requested:			1					-	00000	
Canton p 4720 37-9396(Tel) 330-497-0772(Fax)	19						Analysi	Analysis Requested	View of the second	Preservation codes:	
р. 4720 97-9396(Tel) 330-497-0772(Fax) Name:	quested (days)	22			20.50				B - NaOH		
37-9396(Tel) 330-497-0772(Fax)					1001				D - N	D - Nitric Acid P - Na2O45 E - NaHSO4 Q - Na2SO3	υ e
IST-8380(Tel) 330-487-0772(TaX) Name:									F - MeOH G - Amchlor		R - Na2S2O3 S - H2SO4
Name: near landfill				T		72	_	-	H-Asc	corbic Acid	decahydrate
					(oN				_	Water	
	536				10 59/				K-EDA L-EDA	NA Z - other (specify)	pecify)
Site. Chaffee Landfill (formerly CID)) asv				oo to		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=crab)	Matrix (wwwater, Secold, Owwasteroll,	Field Filtered Perform MS/N NatkleyBlk_Ca	oresture/ Perc			nedmuM lstoT	Special Instructions/Note:	Note:
	1	X		ion Code:		-			X		
TP01-19-4.5 (480-156995-1)	7/30/19	10.30 Fastern		Solid	×	×			-		
TP02-19-5-7 (480-156995-2)	7/30/19 E	12.30 Eastern		Solid	×	×			-		
TP02-19-9,5 (480-156995-3)	7/30/19 E	12:30 Eastern		Solid	×	×					
TP03-19-3.5-5 (480-156995-4)	7/30/19 E	13.10 Eastern		Solia	×	×			-		
TP03-19-11-11.5 (480-156995-5) 7/30	7/30/19 E	14:20 Eastern		Solid	×	×			-		
									(40)		

currently mantain accreditation in the State of Ongo inspired above for analysis/lests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratories, will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, inc. Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Possible Hazard Identification

Unconfirmed

Months

Archive For

Disposal By Lab

Return To Client

Deliverable Requested, I, II, III, IV, Other (specify)	Primary Deliverable Rank 2	tank 2		Special Instructions/QC Requirements			
Empty Kit Relinquished by:	Date			Time:	Method of Shipment.		
Relinquished by Relinquished by Marketing Control of the Control o	Date/Time: 7.31-19	1630	1630 COMPAG	Received by	Date/Time: 8-2-/9	516	Company E7
Relinquished by:	Date/Time,		Company	Received by	Date/Time		Company
Relinquished by	Date/Time		Company	Received by	Date/Time:		Сотралу
Custody Seals Intact. Custody Seal No.:				Cooler Temperature(s) "C and Other Remarks	ırks:		

Page 19 of 21

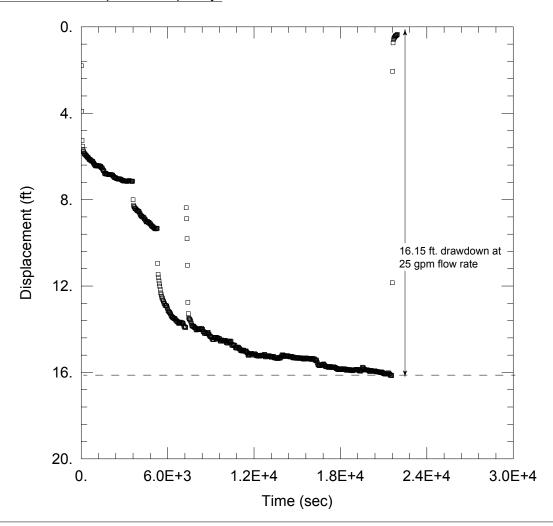
Eurofins TestAmerica Canton Sample Receipt Form/Narrative Canton Facility	Login # :		
Client ETA Site Name	Cooler unpacked by:		
Cooler Received on 8-2-19 Opened on 8-2-19	Ryan Coblex		
FedEx: 1st Grad Exp UPS FAS Clipper Client Drop Off TestAmerica Courier	Other		
Receipt After-hours: Drop-off Date/Time Storage Location			
	The second secon		
Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water None			
1. Cooler temperature upon receipt IR GUN# IR-8 (CF +0.1 °C) Observed Cooler Temp. // © °C Corrected Cooler Temp. R GUN #36 (CF +0.6 °C) Observed Cooler Temp. °C Corrected Cooler Temp. °C Corrected Cooler Temp. °C Corrected Cooler Temp.	Pemp°C mp°C		
-Were tamper/custody seals on the bottle(s) or bottle kits (LLHg/MeHg)? -Were tamper/custody seals intact and uncompromised? 3. Shippers' packing slip attached to the cooler(s)? 4. Did custody papers accompany the sample(s)? 5. Were the custody papers relinquished & signed in the appropriate place? 6. Was/were the person(s) who collected the samples clearly identified on the COC? 7. Did all bottles arrive in good condition (Unbroken)? 8. Could all bottle labels be reconciled with the COC? 9. Were correct bottle(s) used for the test(s) indicated? 10. Sufficient quantity received to perform indicated analyses? 11. Are these work share samples? If yes, Questions 12-16 have been checked at the originating laboratory. 12. Were all preserved sample(s) at the correct pH upon receipt? 13. Were VOAs on the COC? 14. Were air bubbles >6 mm in any VOA vials? 15. Was a VOA trip blank present in the cooler(s)? Trip Blank Lot #	S No NA S No NA S No S No S No S No S No S No S No S No		
17. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES	Samples processed by:		
18. SAMPLE CONDITION	3' 4' 1 1 1 1 1		
Sample(s) were received after the recommended hold Sample(s) were received	d in a broken container		
Sample(s) were received with bubble >6 mm	in diameter (Notify PM)		
	in diameter. (riving 114)		
19. SAMPLE PRESERVATION			
Sample(s)	urther preserved in the laboratory.		
Sample(s) were full Time preserved: Preservative(s) added/Lot number(s):	article preserved in the laboratory.		
VOA Sample Preservation - Date/Time VOAs Frozen:			

Client: Waste Management

Job Number: 480-156995-1

Login Number: 156995

List Number: 1


Creator: Harper, Marcus D

List Source: Eurofins TestAmerica, Buffalo

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	GEI
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	

Appendix D

Hydraulic Testing: Slug Tests and Pumping Test Data

PROJECT INFORMATION

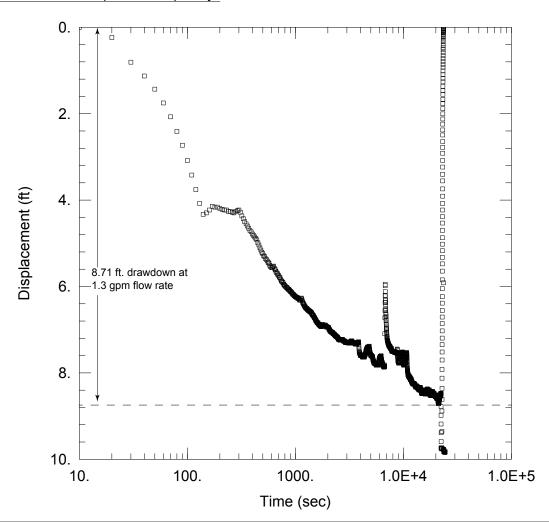
Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill

Test Well: PZ-05D Test Date: 7/9/19

AQUIFER DATA

Saturated Thickness: <u>17.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA


Pumping Wells			Observation Wells		
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
PZ-05D	0	0	□ PZ-05D	0	0

CALCULATION OF SPECIFIC CAPACITY

$$S_c = Q / (h_o - h)$$

 $S_c = 25 \text{ gpm} / 16.15 \text{ ft.}$
= 1.5 gpm/ft

Where:

Sc = Specific capacity in gallons /min / foot Q = Discharge rate in gallons/min (h_0-h) = Total drawdown in feet

PROJECT INFORMATION

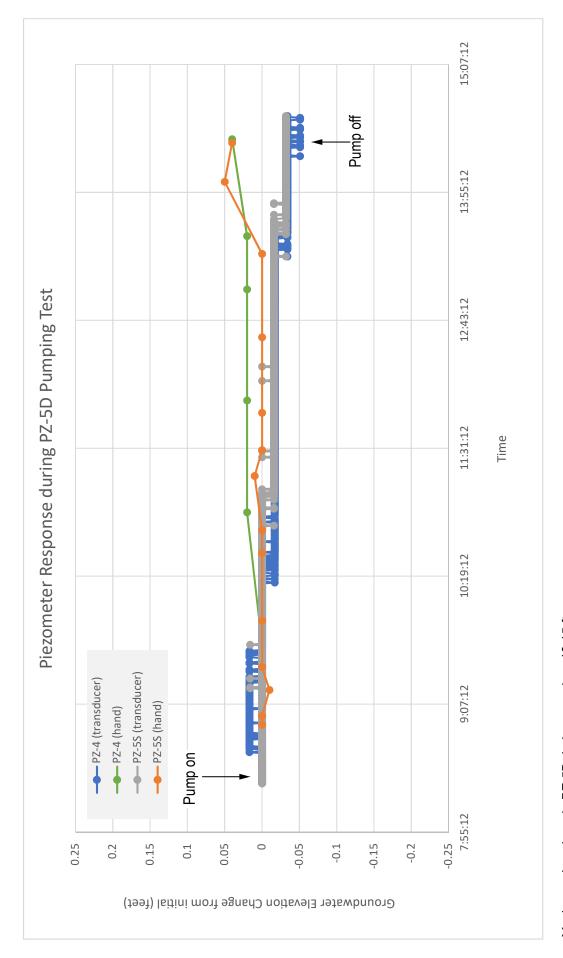
Company: <u>GEI Consultants, Inc.</u> Client: <u>Waste Management</u> Location: Chaffee Landfill

Test Well: PZ-05S Test Date: 8/23/19

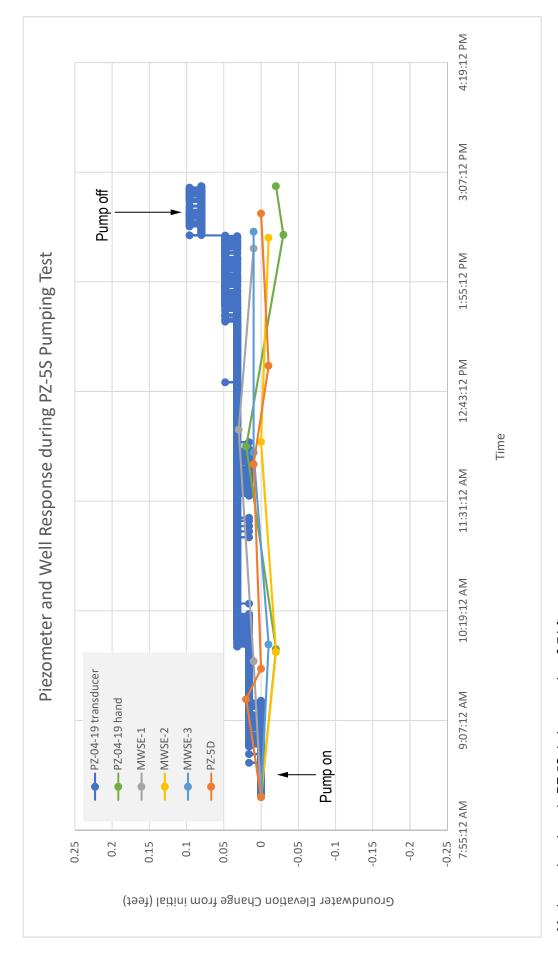
AQUIFER DATA

Saturated Thickness: <u>15.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA

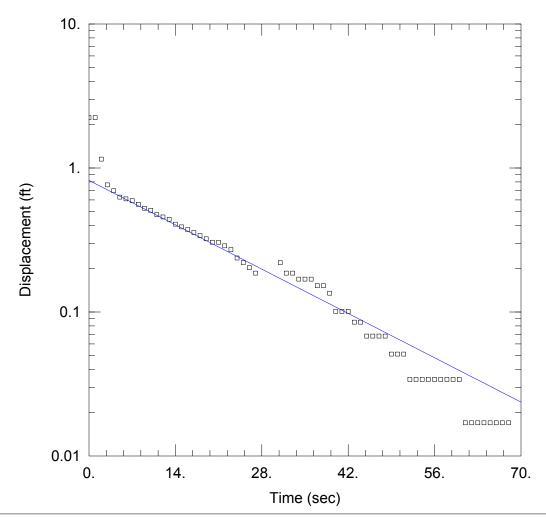

Pumping Wells		Observation Wells			
Well Name	X (ft)	Y (ft)	Well Name	X (ft)	Y (ft)
PZ-05S	0	0	□ PZ-05S	0	0

CALCULATION OF SPECIFIC CAPACITY


$$S_c = Q / (h_o - h)$$

 $S_c = 1.3 \ gpm / 8.71 \ ft.$
= 0.15 \ gpm/ft

Where:


Sc = Specific capacity in gallons / min / foot Q = Discharge rate in gallons/min (h₀-h) = Total drawdown in feet

Maximum drawdown in PZ-5D during pumping=16.15 ft.

Maximum drawdown in PZ-5S during pumping=8.71 ft.

Data Set: B:\...\MWSE-1(in).aqt

Date: 06/18/19 Time: 11:27:35

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: MWSE-1 Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

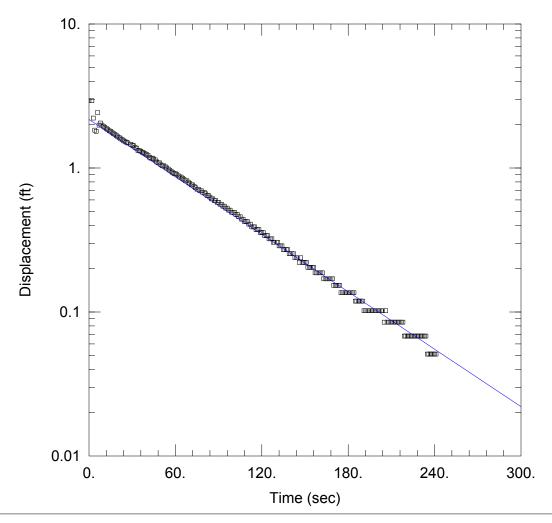
WELL DATA (MWSE-1)

Initial Displacement: 2.237 ft Total Well Penetration Depth: 25. ft

Static Water Column Height: 8.95 ft

Casing Radius: 0.08 ft

Screen Length: 10. ft Well Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0003624 cm/sec

y0 = 0.8193 ft

Data Set: B:\...\MWSE-1(out).aqt

Date: <u>06/18/19</u> Time: <u>11:30:08</u>

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: MWSE-1

Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MWSE-1)

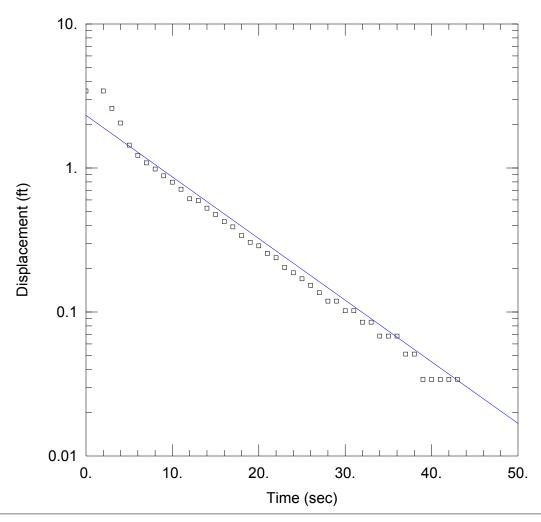
Initial Displacement: 2.932 ft

Static Water Column Height: 8.95 ft

Total Well Penetration Depth: 25. ft

Screen Length: 10. ft Well Radius: 0.33 ft

Casing Radius: 0.08 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001095 cm/sec

y0 = 2.172 ft

Data Set: B:\...\MWSE-2(out).aqt

Date: <u>06/18/19</u> Time: <u>10:56:50</u>

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: MWSE-2

Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MWSE-2)

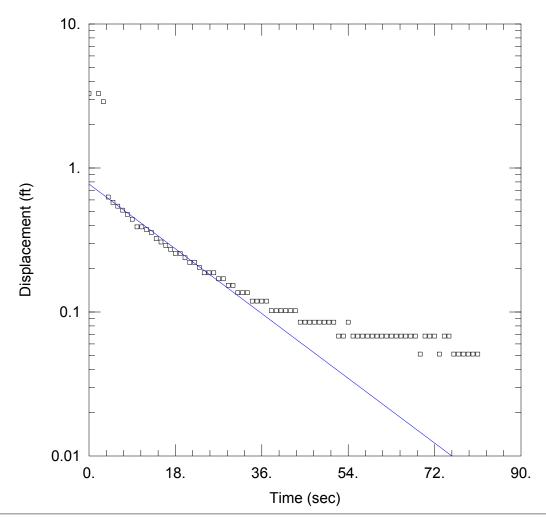
Initial Displacement: 3.424 ft

Static Water Column Height: 12.83 ft

Total Well Penetration Depth: 25. ft

Screen Length: 10. ft Well Radius: 0.33 ft

Casing Radius: 0.08 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0007051 cm/sec

y0 = 2.32 ft

Data Set: B:\...\MWSE-3(in).aqt

Date: 08/02/19 Time: 12:53:02

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: MWSE-3

Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MWSE-3)

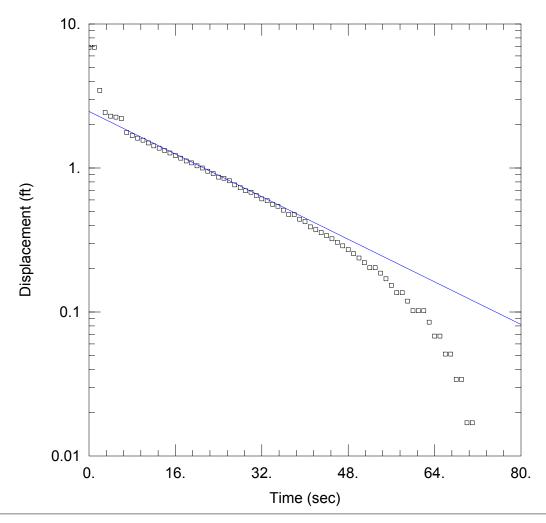
Initial Displacement: 3.289 ft

Total Well Penetration Depth: 25. ft

Casing Radius: 0.08 ft

Static Water Column Height: 4.11 ft

Screen Length: 10. ft Well Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0004115 cm/sec

y0 = 0.7728 ft

Data Set: B:\...\MWSE-3(out).aqt

Date: <u>06/18/19</u> Time: <u>10:48:50</u>

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: MWSE-3

Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

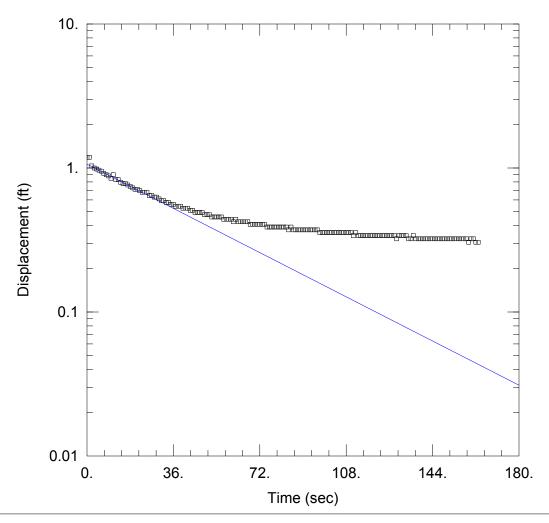
WELL DATA (MWSE-3)

Initial Displacement: 6.881 ft

Total Well Penetration Depth: 28. ft

Casing Radius: 0.08 ft

Static Water Column Height: 4.11 ft


Screen Length: 10. ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0003109 cm/sec y0 = 2.468 ft

Data Set: B:\...\MWSE-4(in).aqt

Date: 06/18/19 Time: 11:02:49

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: MWSE-4

Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MWSE-4)

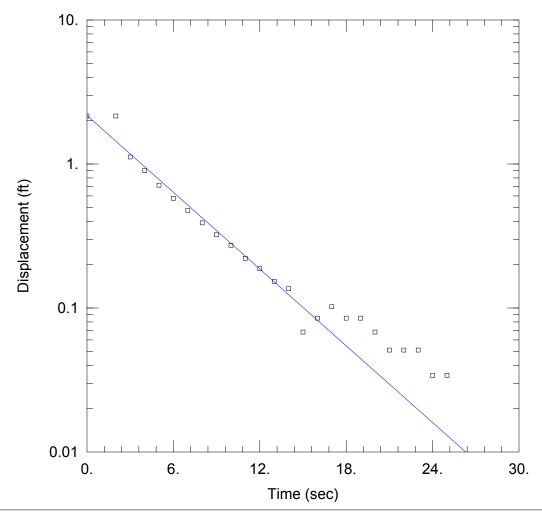
Initial Displacement: 1.186 ft

Total Well Penetration Depth: 20. ft

Casing Radius: 0.08 ft

Static Water Column Height: 5.57 ft

Screen Length: 10. ft Well Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0001347 cm/sec

y0 = 1.063 ft

Data Set: B:\...\PZ-01(out).aqt

Date: 06/18/19 Time: 10:51:28

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-01 Test Date: 6/12/19

AQUIFER DATA

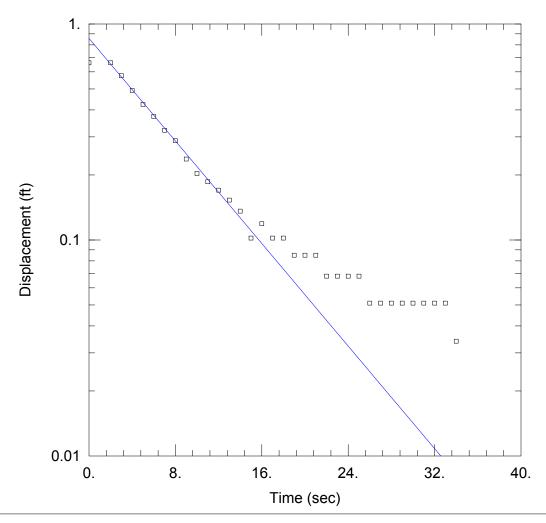
Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ-01)

Initial Displacement: 2.153 ft
Total Well Penetration Depth: 25 ft

Total Well Penetration Depth: 25. ft

Casing Radius: 0.08 ft


Static Water Column Height: 5.28 ft

Screen Length: 10. ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001464 cm/sec y0 = 2.17 ft

Data Set: B:\...\PZ-02(out).aqt

Date: 06/18/19 Time: 10:46:40

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-02 Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ-02)

Initial Displacement: 0.661 ft

Total Well Penetration Depth: 28. ft

Casing Radius: 0.08 ft

Static Water Column Height: 5.12 ft

Screen Length: 10. ft Well Radius: 0.33 ft

SOLUTION

Aquifer Model: Unconfined

K = 0.0009978 cm/sec

Solution Method: Bouwer-Rice

y0 = 0.8571 ft

Data Set: B:\...\PZ-03(out).aqt

Date: 06/18/19 Time: 10:54:04

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-03 Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ-03)

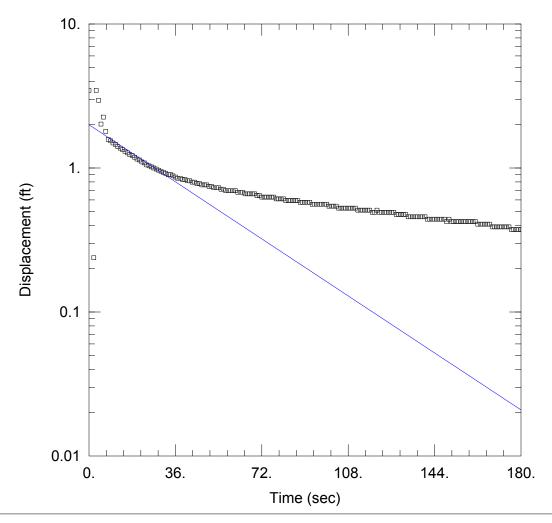
Initial Displacement: 1.441 ft

Total Well Penetration Depth: 25. ft

Casing Radius: 0.08 ft

Static Water Column Height: 5.14 ft

Screen Length: 10. ft Well Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0007889 cm/sec

y0 = 1.927 ft

Data Set: B:\...\PZ-04(out).aqt

Date: 06/18/19 Time: 11:05:09

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-04
Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ-04)

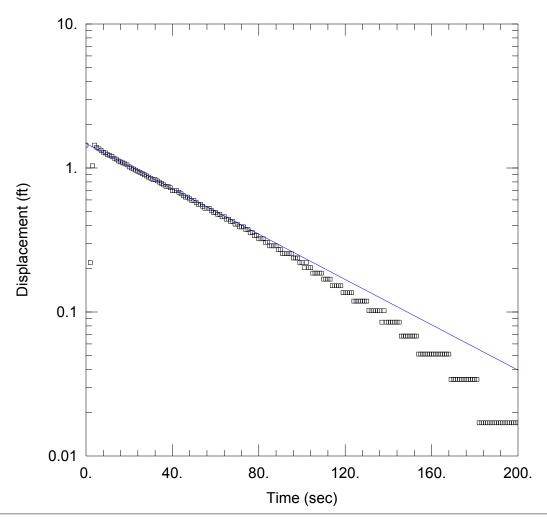
Initial Displacement: 3.458 ft

Total Well Penetration Depth: 28. ft

Casing Radius: 0.08 ft

Static Water Column Height: 6.5 ft

Screen Length: 10. ft Well Radius: 0.33 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.000185 cm/sec

y0 = 1.995 ft

Data Set: B:\...\PZ-05S(out).aqt

Date: 06/18/19 Time: 11:20:12

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-05S Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: <u>15.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (PZ-05S)

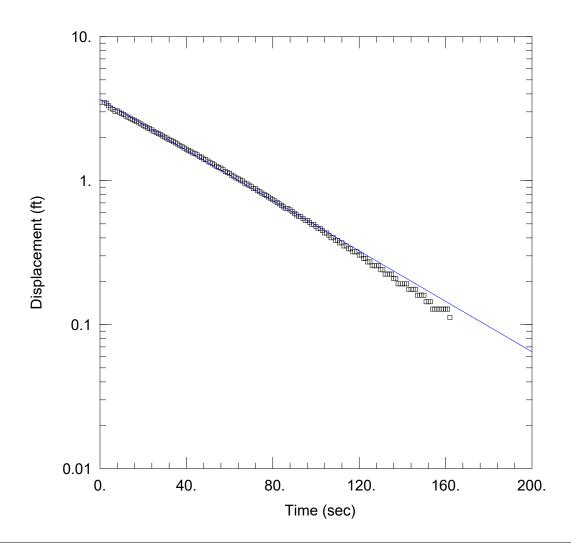
Initial Displacement: 1.441 ft
Total Well Penetration Depth: 28 ft

Total Well Penetration Depth: 28. ft

Casing Radius: 0.166 ft

Static Water Column Height: 9.85 ft

Screen Length: 10. ft Well Radius: 0.66 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0005593 cm/sec

y0 = 1.479 ft

Data Set: B:\...\PZMWSE3D-19 (out).aqt

Date: 10/21/19 Time: 11:39:06

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: PZMWSE3D-19

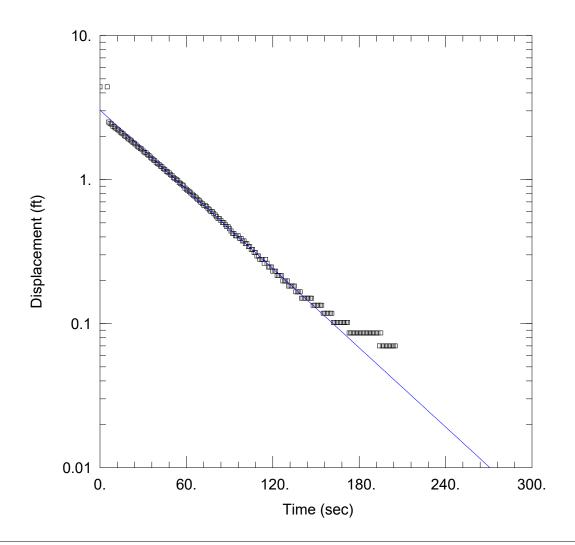
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZMWSE3D-19)

Initial Displacement: 3.497 ft Static Water Column Height: 25.86 ft


Total Well Penetration Depth: 58. ft Screen Length: 5. ft Well Radius: 0.33 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0002954 cm/sec y0 = 3.652 ft

Data Set: B:\...\PZMWSE3D-19 (in).aqt

Date: 10/21/19 Time: 11:43:13

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: PZMWSE3D-19

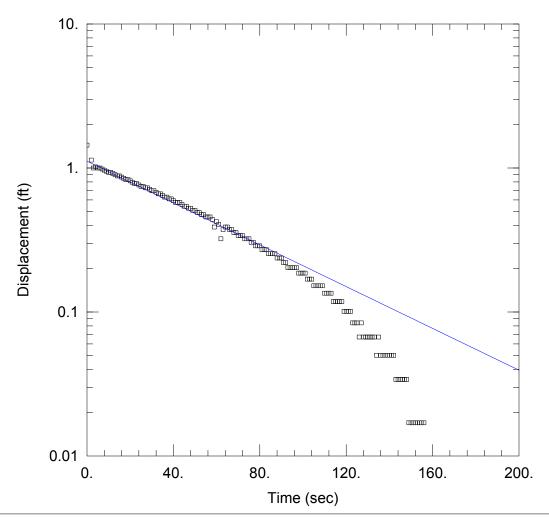
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZMWSE3D-19)

Initial Displacement: 4.402 ft Static Water Column Height: 25.86 ft


Total Well Penetration Depth: 58. ft Screen Length: 5. ft Casing Radius: 0.08 ft Well Radius: 0.33 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0003094 cm/secy0 = 3.038 ft

Data Set: B:\...\PZ-05D(in).aqt

Date: 06/18/19 Time: 11:23:07

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-05D Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ-05D)

Initial Displacement: 1.441 ft

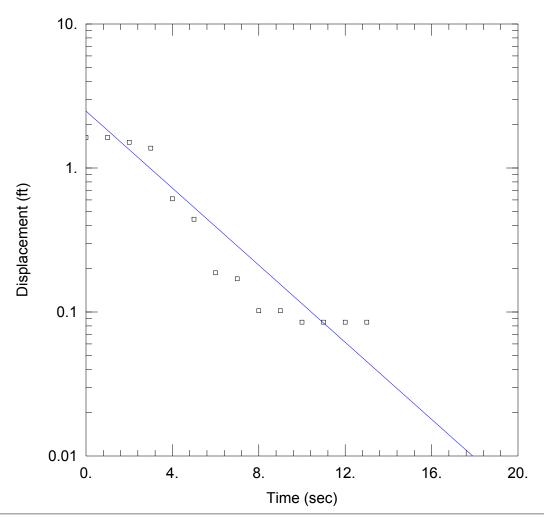
Caraca Lana

Static Water Column Height: 45.57 ft

Total Well Penetration Depth: 62.5 ft Casing Radius: 0.166 ft

Screen Length: 10. ft

Well Radius: 0.66 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0005942 cm/sec

y0 = 1.114 ft

Data Set: B:\...\PZ-05D(out).aqt

Date: 06/18/19 Time: 10:59:51

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill

Test Well: PZ-05D Test Date: 6/12/19

AQUIFER DATA

Saturated Thickness: 15. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ-05D)

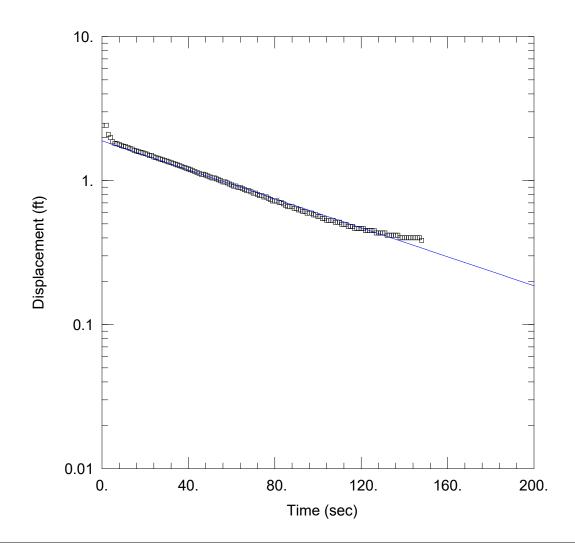
Initial Displacement: 1.63 ft

Static Water Column Height: 45.57 ft

Total Well Penetration Depth: 62.5 ft

Screen Length: 10. ft Well Radius: 0.66 ft

Casing Radius: 0.166 ft


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.01095 cm/sec

y0 = 2.483 ft

Data Set: B:\...\PZBA02D(out).aqt

Date: 10/21/19 Time: 12:50:01

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: PZBA02D-19
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZBA02D-19)

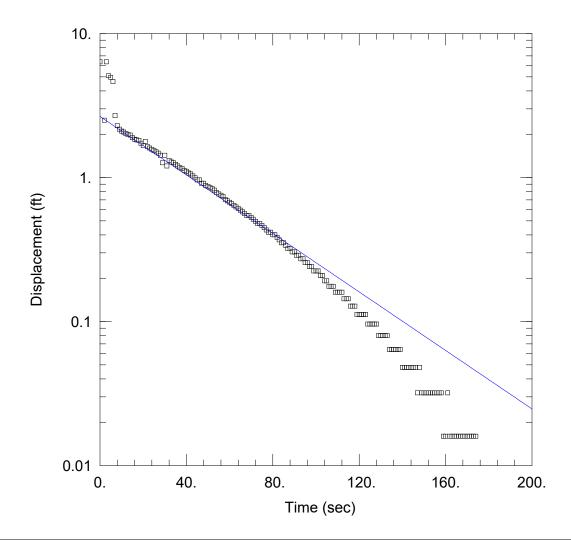
Initial Displacement: 2.423 ft

Static Water Column Height: 36.41 ft

Total Well Penetration Depth: 60. ft

Screen Length: 10. ft
Well Radius: 0.33 ft
Gravel Pack Porosity: 0.3

Casing Radius: 0.08 ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 9.637E-5 cm/sec

y0 = 1.886 ft

Data Set: B:\...\PZBA02D(in).aqt

Date: 10/21/19 Time: 12:43:33

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: PZBA02D-19
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZBA02D-19)

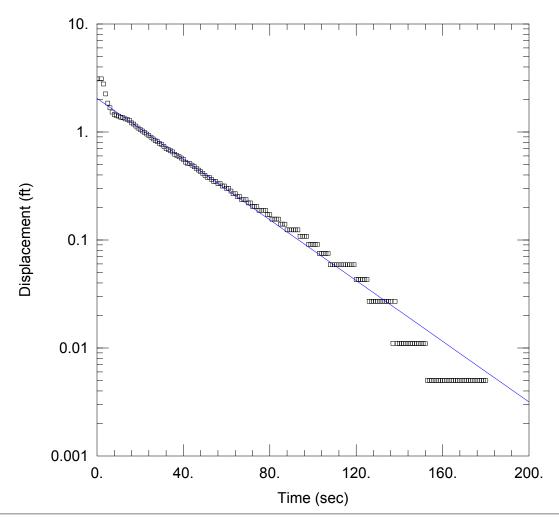
Initial Displacement: 6.369 ft

Static Water Column Height: 36.41 ft

Total Well Penetration Depth: 60. ft

Screen Length: 10. ft
Well Radius: 0.33 ft
Gravel Pack Porosity: 0.3

Casing Radius: <u>0.08</u> ft


SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.0001946 cm/sec

y0 = 2.658 ft

Data Set: B:\...\PZ04D-19(in).aqt

Date: <u>10/22/19</u> Time: <u>09:38:20</u>

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: PZ04D-19
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

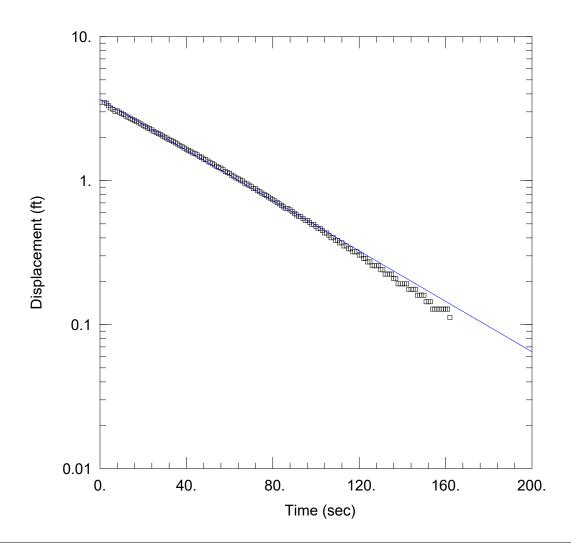
WELL DATA (PZ04D-19)

Initial Displacement: 3.102 ft

Total Well Penetration Depth: 58. ft

Casing Radius: 0.08 ft

Static Water Column Height: 33.91 ft


Screen Length: 10. ft
Well Radius: 0.33 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 0.0002674 cm/sec y0 = 2.047 ft

Data Set: B:\...\PZMWSE3D-19 (out).aqt

Date: 10/21/19 Time: 11:39:06

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: PZMWSE3D-19

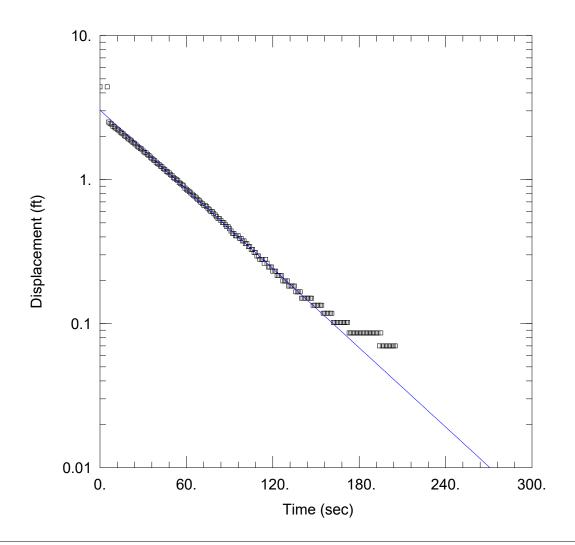
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZMWSE3D-19)

Initial Displacement: 3.497 ft Static Water Column Height: 25.86 ft


Total Well Penetration Depth: 58. ft Screen Length: 5. ft Well Radius: 0.33 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0002954 cm/sec y0 = 3.652 ft

Data Set: B:\...\PZMWSE3D-19 (in).aqt

Date: 10/21/19 Time: 11:43:13

PROJECT INFORMATION

Company: GEI Consultants, Inc. Client: Waste Management Location: Chaffee Landfill Test Well: PZMWSE3D-19

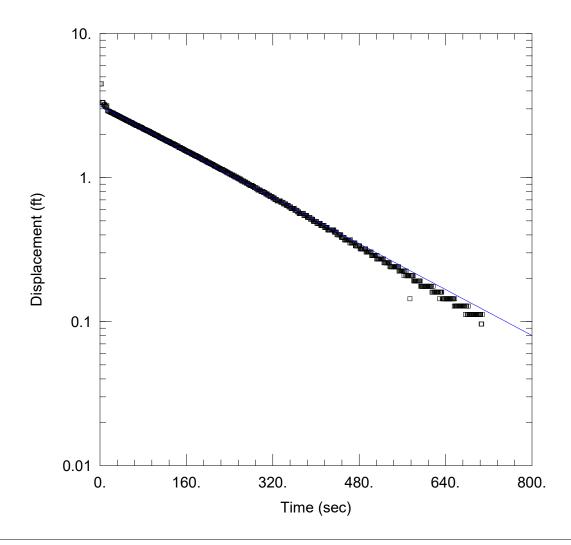
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 5. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZMWSE3D-19)

Initial Displacement: 4.402 ft Static Water Column Height: 25.86 ft


Total Well Penetration Depth: 58. ft Screen Length: 5. ft Casing Radius: 0.08 ft Well Radius: 0.33 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined Solution Method: Bouwer-Rice

K = 0.0003094 cm/secy0 = 3.038 ft

Data Set: B:\...\PZ04D-19(out).aqt

Date: 10/21/19 Time: 13:13:13

PROJECT INFORMATION

Company: GEI Consultants, Inc.
Client: Waste Management
Location: Chaffee Landfill
Test Well: PZ04D-19
Test Date: 10/18/19

AQUIFER DATA

Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (PZ04D-19)

Initial Displacement: 4.475 ft

Total Well Penetration Depth: 58. ft

Casing Radius: 0.08 ft

Static Water Column Height: 33.91 ft

Screen Length: 10. ft
Well Radius: 0.33 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Confined

Solution Method: Bouwer-Rice

K = 3.794E-5 cm/sec

y0 = 3.154 ft

Appendix E

Groundwater Laboratory Reports (on enclosed CD) and Data Validations

Site: Waste Management Chaffee Landfill New Wells Groundwater Monitoring Laboratory: Test America, Amherst, NY, Pittsburgh, PA, and West Sacramento, CA

Eberline Analytical, Oak Ridge, TN

Report No.: 480-155710-1 and 480-155710-2 **Reviewer:** Lorie MacKinnon/GEI Consultants

Date: January 15, 2020

Samples Reviewed and Evaluation Summary

Groundwater samples were collected July 2, 3, 12, and 13, 2019 from the Chaffee Landfill located in Chaffee, NY. Analytical results for samples MWSE-4, representing a minimum of 5% of groundwater samples, were reviewed based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, January 2017 (USEPA-540-R-2017-002) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2017 (USEPA-540-R-2017-001), as well as by the methods referenced by the data package and professional and technical judgment.

The sample and analyses included in this review are listed below:

FIELD ID	LAB ID	Sampling Date	FRACTIONS VALIDATED
		R	EPORT 480-155710-1
MWSE-4	SE-4 480-155757-2	07/03/19	VOC, SVOC, 1,4-Dioxane, PFAS, Pesticides, PCB, Herbicides,
WWSE-4			Metals, General Chemistry
MWSE-4	480-156080-4	07/12/19	Thionazin, Hexavalent chromium
		R	EPORT 480-155710-2
MWSE-4	480-155757-2	07/03/19	Radium-226, Radium-228, Uranium

Associated QC Samples:

Trip Blanks: Trip Blank

The above-listed aqueous sample was analyzed for volatile organic compounds (VOCs) by SW-846 method 8260C, semivolatile organic compounds (SVOCs) by SW-846 method 8270D, 1,4-dioxane by SW-846 method 8270DSIM Isotope Dilution, pesticides by SW-846 method 8081B, polychlorinated biphenyls (PCBs) by SW-846 method 8082A, herbicides by SW-846 method 8151A, perfluorinated alkyl substances (PFAS) by modified EPA method 537, metals by SW-846 methods 6010C/7470A, hardness by calculation method SM 2340B, hexavalent chromium by SW-846 method 7196A, SVOC compound thionazin by EPA method 625.1, Radium-226 by EPA method 903.0, Radium-228 by EPA method 904.0, Uranium by EPA method 908.0, and general chemistry parameters which included bromide by EPA method 300.0, sulfate by SW-846 method 9038, chloride by SW-846 method 9251, ammonia as nitrogen by EPA method 350.1, total kjeldahl nitrogen (TKN) by EPA method 351.2, chemical oxygen demand (COD) by EPA method 410.4, total recoverable phenolics by SW846 method 9065, total cyanide by SW-846 method 9012B, nitrate by EPA method 353.2, color by Standard Methods (SM) 2120B, alkalinity by EPA method 350.1, total dissolved solids (TDS) by SM 2540C, biochemical oxygen demand (BOD) by SM 5210B, and total organic carbon (TOC) by SM 5310C.

The data were evaluated based on the following parameters:

Report Nos.: 480-155710-1 and 480-155710-2

Date: January 15, 2020

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Laboratory and Trip Blanks
- Surrogate Recoveries
- Isotope Dilution Analyte (IDA) Recoveries
- Tracer Yield (Radiochemistry)
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- ICP Serial Dilution Results
- Quantitation Limits

In general, the data appear usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers.

The validation findings were based on the following information. Validation qualifiers are defined in Attachment 1 at the end of this report.

Data Completeness

The data packages were complete as received by the laboratory. It should be noted that the samples were received at the laboratory with cooler temperatures recorded at 13.6° and 10.2° Celsius with ice. The samples were not adversely affected as the last sample collection time was recorded as 13:15, the samples were received at the laboratory at 17:00 the same day, and there is evidence that the sample chilling process had begun.

Holding Times and Sample Preservation

All hold time and sample preservation criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All initial and continuing calibration criteria were met except where noted below.

Report Nos.: 480-155710-1 and 480-155710-2

Date: January 15, 2020

VOC, SVOC, Pesticides, and PCBs

Analytes that did not meet criteria in the calibrations are summarized in the following table.

Instrument/ Calibration Standard	Compound	Calibration Exceedance	Validation Qualifier
		VOCs	
HP5975T CCAL 07/12/19 9:16	Isobutyl alcohol	21.7 %D	Estimate (UJ) the nondetect result for isobutyl alcohol in sample MWSE-4.
Associated sample: MW	SE-4		
		SVOCs	
	N-nitroso-dimethylamine	43.9 %D	
	4-Nitrophenol	45.3 %D	
	p-Phenylene diamine	28.5 %D	
HP5973Y CCAL	Pentachloronitrobenzene	34.4 %D	Estimate (UJ) the nondetect results for the
07/10/19 15:21/16:17/17:13	3,3'-Dimethylbenzidine	35.2 %D	affected compounds in sample MWSE-4.
15:21/16:17/17:13	Famphur	29.1 %D	
	Kepone	84.1 %D	
	o-Toluidine	21.1 %D	
Associated sample: MW	SE-4		
•		Pesticides	
HP6890-5 CCAL	Endosulfan sulfate (col 1)	22.2 %D	Estimate (UJ) the nondetect result for
07/09/19 09:06	Endosulfan sulfate (col 2)	24.7 %D	endosulfan sulfate in sample MWSE-4.
Associated sample: MW	SE-4		
•		PCBs	
CCAL 07/10/19 11:43	Aroclor 1260	22.0 %D	Estimate (UJ) the nondetect result for Aroclor 1260 in sample MWSE-4.
Associated sample: MW	/SE-4		

Initial calibration (ICAL) relative standard deviation (%RSD) > 20%; Estimate (J) positive and blank-qualified (UJ) results only.

Continuing calibration (CCAL) percent difference (%D) > 20%; estimate (J/UJ) positive and nondetect results.

Response factor (RF) < 0.05; Estimate (J) positive results and reject (R) nondetect results.

Laboratory and Trip Blanks

Contamination was not detected in the associated laboratory method and instrument blank samples and trip blank samples except where noted below.

General Chemistry

The following table summarizes the contamination and validation actions taken.

Report Nos.: 480-155710-1 and 480-155710-2

Date: January 15, 2020

Analyte	Blank ID/ Associated Samples	Concentration Detected	10X Action Level	Validation Actions
Sulfate	Method MB480-483565: MWSE-4	3.78 mg/L	37.8 mg/L	Validation action was not required.

Blank Actions:

If the sample result is <5x blank contamination detected; report the result as nondetect (U) at the reported value or RL.

If the sample result is 5x blank contamination and < 10x blank contamination detected; professional judgment was taken to report the sample result as estimated (J); biased high.

If the sample result is nondetect or > 10x blank contamination detected; validation action is not required.

Surrogate Recoveries

All criteria were met.

Isotope Dilution Analyte Recoveries (PFAS and 1,4-Dioxane)

All isotope dilution recoveries were within the laboratory control limits.

Tracer Yield (Radionuclides)

For Uranium isotopes by alpha spectroscopy and Radium isotopes by GFPC, chemical carriers and/or isotopic tracers were added to monitor efficacy of chemical separation techniques. All tracer yields were acceptable. No qualifications were required based on tracer yield.

MS/MSD Results

MS/MSD analyses were performed on project sample MWSE-2 for bromide, alkalinity, ammonia, and chloride, sample MWSE-3 for alkalinity, hexavalent chromium, cyanide, and chloride, and sample MWSE-1 for mercury and hexavalent chromium. All recovery and precision criteria were met.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample MWSE-2 for hexavalent chromium, color, and total dissolved solids, sample MWSE-1 for color and uranium, and sample MWSE-4 for hexavalent chromium and total dissolved solids. All criteria were met.

LCS Results

All criteria were met except where noted below.

Report Nos.: 480-155710-1 and 480-155710-2

Date: January 15, 2020

SVOC, Pesticides, Cyanide, and Radiochemistry

The following table lists the compounds recovered outside of control limits in the LCS and the resulting actions.

LCS ID	Compound	Recovery (%)	RPD (%)	Control Limits (%)	Validation Action/Bias
		Thio	nazin by M	ethod 625	
LCS180- 285394	Thionazin	Not present	NA	NA	A second source standard was not available for this compound. The nondetect result is estimated (UJ) due to lack of verification.
			SVOC		
LCS 480- 480988	4-Nitrophenol	LCSD 121	-	45-120	Validation action was not required as the result for 4-nitrophenol was nondetect in sample MWSE-4 and therefore was not affected by the potential high bias.
			Pesticid	es	
	Endosulfan sulfate	138, 142	-	66-136	Validation action was not required as the
LCS480-	Dieldrin	-	37	24	affected results were nondetect in sample MWSE-4 and therefore were not affected
481166	Endosulfan I	-	33	30	by the potential high bias and precision
	4,4'-DDD	-	26	23	results.
			Total Cya	nide	
LCS480- 481527	Total cyanide	82	-	90-110	Estimate (UJ) the nondetect result for total cyanide in sample MWSE-4; Low bias.
			Radiochem	istry	
LCS 160- 434862	Radium-226	-	1.15	1	Validation action was not required as the affected results were nondetect in sample
LCS 160- 434867	Radium-228	-	1.21	1	MWSE-4 and therefore were not affected by the high precision results.
Associated Sar	mple: MWSE-4				
- Criteria met.					

Internal Standards

All criteria were met.

Serial Dilution Results

A serial dilution analysis was performed on sample MWSE-1 for mercury. Criteria were met.

Quantitation Limits

Sample results were reported down to the reporting or quantitation limit (QL). All quantitation limit criteria were met, except where noted below. The following table lists the requested project

Report Nos.: 480-155710-1 and 480-155710-2

Date: January 15, 2020

specific reporting limits which were less than the laboratory standard quantitation limits but greater than the laboratory method detection limits.

Analyte	Project Reporting Limits	Laboratory PQL	Validation Assessment
Alkalinity	5.0 mg/L	10 mg/L	Validation action was not required as all affected project results were greater than the laboratory PQL of 10 mg/L.
Total Kjeldahl Nitrogen	0.15 mg/L as N	0.20 mg/L	The low point calibration standard analyzed was at the laboratory PQL level, therefore accuracy was not confirmed at the lower project reporting limit. The nondetect result for total kjeldahl nitrogen in sample MWSE-4 was estimated (UJ).
Chemical Oxygen Demand	5 mg/L	10 mg/L	A standard level of 5 mg/L was utilized in the calibration curve and curve linearity criteria were met, therefore accuracy at the project reporting limit of 5 was demonstrated and results are accepted without qualification.
Total Recoverable Phenolics	0.005 mg/L	0.010 mg/L	The low point calibration standard analyzed was at the laboratory PQL level, therefore accuracy was not confirmed at the lower project reporting limit. The nondetect result for total recoverable phenolics in sample MWSE-4 was estimated (UJ).
Sulfate	1.5 mg/L	5.0 mg/L	Validation action was not required as the result for MWSE-4 was greater than the laboratory PQL of 5.0 mg/L.

General Chemistry

Sample MWSE-4 was analyzed at dilutions for bromide (2-fold), alkalinity (2-fold), and sulfate (5-fold). Bromide was not detected in sample MWSE-4 and the reporting limit was therefore elevated.

Attachments: MWSE-4 validated data sheets

Report Nos.: 480-155710-1 and 480-155710-2

Date: January 15, 2020

Attachment 1

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-1

Client Sample ID: MWSE-1 Date Collected: 07/03/19 13:05

Matrix: Water

Job ID: 480-155710-1

Date Received: 07/03/19 17:00

Method: 6010C - Metals (ICP) (Continued								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.025		mg/L		07/08/19 07:30	07/09/19 00:31	7
Silver	ND		0.0060		mg/L		07/08/19 07:30	07/09/19 00:31	1
Sodium	4.4		1.0		mg/L		07/08/19 07:30	07/09/19 00:31	
hallium	ND		0.020		rng/L		07/08/19 07:30	07/09/19 00:31	
Zinc	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:31	
/anadium	ND		0.0050		mg/L		07/08/19 07:30	07/09/19 00:31	
Γin	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:31	
Method: 7470A - Mercury (CVA	(A)					-	/		
Analyte	Result	Qualifier	RL	MDL	Unit	0	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L	-	07/08/19 11:51	07/08/19 16:08	
Method: SM 2340B - Total Hard					/			art second	
Analyte	1272 117	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fa
Calcium and Magnesium Hardness	362		0.50	/	mg/L			07/10/19 11:29	
General Chemistry			/						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sromide	ND		0.40		mg/L			07/08/19 19:24	
Alkalinity, Total	192	1	10.0		mg/L			07/14/19 14:57	
Ammonia (as-N)	ND	1	0.020		mg/L as N			07/10/19 09:50	
Fotal Kjeldahl Nitrogen	ND	/	0.15		mg/L as N		07/18/19 09:10	07/21/19 10:22	
Vitrate	ND	/	0.050		mg/L as N			07/03/19 21:26	
Chemical Oxygen Demand	NE		5.0		mg/L			07/14/19 09:32	
Cyanide, Total	ND	1+1	0.010		rng/L		07/10/19 15:50	07/11/19 13:16	
Sulfate	136	В	15.0		mg/L			07/24/19 12:55	
Phenolics, Total Recoverable	ND		0.0050		mg/L		07/11/19 19 18	07/12/19 14:51	
Chloride	8.5		1.0		mg/L			07/14/19 14:39	
Total Dissolved Solids	480		10.0		mg/L			07/09/19 07:49	
Biochemical Oxygen Demand	ND		2.0		mg/L			07/04/19 09:11	
Total Organic Carbon	1.4		1.0		mg/L			07/13/19 07:54	
Analyte	Result	Qualifier	RL	RL		D	Prepared	Analyzed	Dil Fa
Color	10.0		5.00		Color Units			07/05/19 09:12	
Method: Field Sampling - Field		Qualifier	NONE	NONE	linit	D	Prepared	Analyzed	DIF
Field pH	7.23		HOME	HONE	SU		richainn	07/03/19 13:05	Dir C
	692				umhos/cm			07/03/19 13:05	
Specific Conductance					Degrees C			07/03/19 13:05	
Temperature	11.9				millivolts			07/03/19 13:05	
Oxidation Reduction Potential	79				Himvorts			01109119 13:00	

Client Sample ID: MWSE-4

Turbidity

Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-2

07/03/19 13:05

Matrix: Water

Method: 8260C - Volatile Or	ganic Compounds by GC/	MS						
Analyte	Result Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0		ug/L			07/12/19 11:50	1
1,1.1-Trichloroethane	ND	1.0		ug/L			07/12/19 11:50	1

NTU

6.8

Eurofins TestAmerica, Buffalo

09/06/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Client Sample ID: MWSE-4 Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	DII Fa
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	_		07/12/19 11:50	
1,1,2-Trichloroethane	ND	1.0	ug/L			07/12/19 11:50	
1.1-Dichloroethane	ND	1.0	ug/L			07/12/19 11:50	
1,1-Dichloroethene	D	1.0	ug/L			07/12/19 11:50	
1,1-Dichloropropene	ND	1.0	ug/L			07/12/19 11:50	
2.3-Trichloropropane	ND	1.0	ug/L			07/12/19 11:50	
.2-Dibromo-3-Chioropropane	ND.	1.0	ug/L			07/12/19 11:50	
,2-Dichlorobenzene	ND	1.0	ug/L			07/12/19 11:50	
,2-Dichloroethane	ND	1.0	ug/L			07/12/19 11:50	
,2-Dichloropropane	ND	1.0	ug/L			07/12/19 11:50	
,3-Dichloropropane	ND	1.0	ug/L			07/12/19 11:50	
4-Dichlorobenzene	ND	1.0	ug/L			07/12/19 11.50	
2-Dichloropropane	ND	1.0	ug/L			07/12/19 11:50	
-Butanone (MEK)	ND	10	ug/L				
-Hexanone	ND	5.0	ug/L			07/12/19 11:50	
-Methyl-2-pentanone (MIBK)	ND	5,0	ug/L			07/12/19 11:50	
cetone	ND	10	ug/L			07/12/19 11:50	
cetonitrile	ND	15				07/12/19 11:50	
crolein	ND	20	ug/L			07/12/19 11:50	
crylonitrile	ND	5.0	ug/L			07/12/19 11:50	
ilyl chloride	ND	1.0	ug/L			07/12/19 11:50	
enzene	ND	1.0	L/g/L			07/12/19 11:50	
hlorobromomethane	ND		ug/L			07/12/19 11:50	
romodichloromethane	ND ND	1.0	Lig/L			07/12/19 11:50	
romoform	ND	1.0	ug/L			07/12/19 11:50	
romomethane	ND	1.0	ug/L			07/12/19 11:50	
arbon disulfide	ND	1.0	ug/L			07/12/19 11:50	
arbon tetrachloride		1.0	ug/L			07/12/19 11:50	
Norobenzene	ND	7.0	ug/L			07/12/19 11:50	
bramochloromethane	ND	1.0	ug/L			07/12/19 11:50	
noroethane	ND	1.0	ug/L			07/12/19 11:50	
nioroform	ND	1.0	ug/L			07/12/19 11:50	
	ND	1.0	ug/L			07/12/19 11:50	
Noromethane	ДИ	1.0	ug/L			07/12/19 11:50	
s-1,2-Dichloroethene	ND	1.0	ug/L			07/12/19 11:50	
s-1,3-Dichloropropene	ND	1.0	ug/L			07/12/19 11:50	
nloroprene	ND	1,0	ug/L			07/12/19 11:50	
bromomethane	ND	1.0	ug/L			07/12/19 11:50	
chlorodifiuoromethene	ND	1.0	ug/L			07/12/19 11:50	
hyl methacrylate	NO	1.0	ug/L			07/12/19 11:50	
hylbenzene	ND	1.0	ug/L			07/12/19 11:50	
2-Dibromoethane	ND	1.0	ug/L			07/12/19 11:50	
xachlorobutadiene	ND	2.0	ug/L			07/12/19 11:50	
Iomethane	ND	1.0	ug/L			07/12/19 11:50	
butyl alcohol	NO UT	25	ug/L			07/12/19 11:50	
thacrylonitrile	ND	5.0	ug/L			07/12/19 11:50	
thyl methacrylate	ND	1.0	ug/L			07/12/19 11:50	
athylene Chloride	ND	1.0	ug/L			07/12/19 11:50	
phthalene	ND	1.0	ug/L			07/12/19 11:50	
opionitrile	NĐ	10	ug/L			07/12/19 11:50	

Eurofins TestAmerica. Buffalo 09/06/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Client Sample ID: MWSE-4 Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00

Analyte	Result	Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0		ug/L			07/12/19 11:50	1
Tetrachloroethene	ND		1.0		ug/L			07/12/19 11:50	1
Toluene	ND		1.0		ug/L			07/12/19 11:50	
rans-1,2-Dichloroethene	ND		1.0		ug/L			07/12/19 11:50	7
trans-1,3-Dichloropropend	ND		1.0		ug/L			07/12/19 11:50	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/12/19 11:50	1
Trichloroethene	ND		1.0		ug/L			07/12/19 11:50	
Trichlorofluoromethane	ND		10		ug/L			07/12/19 11:50	1
Vinyl acetate	ND		5.0		ug/L			07/12/19 11:50	1
Vinyi chloride	ND		1.0		ug/L			07/12/19 11:50	1
Xylenes, Total	ND		2.0		ug/L			07/12/19 11:50	7
o-Xylene	ND		1.0		ug/L			07/12/19 11:50	1
m,p-Xylene	ND		2.0		ug/L			07/12/19 11:50	1
1.2-Dichloroethene, Total	ND		2.0		ug/L			07/12/19 11:50	T
1.3-Dichlorobenzene	ND		1.0		ng/L			07/12/19 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					07/12/19 11:50	7
4-Bromofluorobenzene (Surr)	105		73-120					07/12/19 11:50	. 7
Toluene-d8 (Surr)	97		80 - 120					07/12/19 11:50	7
Dibromofluoromethane (Surr)	101		75-123					07/12/19 11:50	1

Method: 8270D SIM ID	- Semivolatile Org	anic Comp	ounds (GC/N	AS SIM	Isotope	Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
1,4-Dioxane	ND		0.20		ug/L		07/05/19 15:22	07/10/19 03:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1.4-Dioxane-d8	33	-	15.110				07/05/19 15:22	07/10/19 03:01	7

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
1,2,4-Trichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
1,2-Dichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
1,3,5-Trinifrobenzene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
1,3-Dichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
1,3-Dinitrobenzene	ND	20	ug/L		07/05/19 15:02	07/11/19 00:12	1
1,4-Naphthoquinone	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	Ť
1,4-Dichlarobenzene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	T
1-Naphthylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
2.3,4.6-Tetrachlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	t
2.4.5-Trichlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00 12	1
2.4,6-Trichlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
2.4-Dichlorophenal	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
2.4-Dimethylphenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4-Dinitrophenal	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
2.4-Dinitrotoluene	NO	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	T
2.6-Dichlorophenal	NO	40	ug/L		07/05/19 15:02	07/11/19 00:12	1
2.6-Dinitrotoluene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
2-Acetylaminofluorene	NO	40	ug/L		07/05/19 15:02	07/11/19 00:12	1
2-Chloronaphthalene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1

Eurofins TestAmerica, Buffalo

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00 Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Method: 8270D - Semivolatile (Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
2-Chlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Methylnaphthalene	ND	5:0	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Methy/phenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Naphthylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Nitroaniline	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	- 7
2-Nitrophenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
o-Toluidine	ND UJ	10	ug/L		07/05/19 15:02	07/11/19 00:12	
3-Methylphenol	ND.	10	ug/L		07/05/19 15:02	07/11/19 00:12	- 17
4-Methylphenol	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	- 10
3,3'-Dichlorobenzidine	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
3.3'-Dimethylbenzidine	NO UJ-	40	ug/L		07/05/19 15:02	07/11/19 00:12	
3-Methylcholanthrene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
3-Nitroaniline	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	- 5
4,6-Dinitro-2-methylphenol	NO	10	ug/L		07/05/19 15:02	\$2,400 kg (4,500 mg/s) 75.	
4-Aminobiphenyl	NO	10	ug/L			07/11/19 00:12	
4-Bromophenyl phenyl ether	ND	5.0	ug/L		07/05/19 15:02	Lattice of constraint and	- 3
4-Chloro-3-methylphenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	- 5
p-Chloroaniline	ND	5.0	ug/L		07/05/19 15:02		- 6
4-Chlorophenyl phenyl ether	ND	5.0	ug/L		07/05/19 15:02		- 3
4-Nitroanlline	ND	10	ug/L			07/11/19 00:12	
4-Nitrophenal	ND UT -	10	ug/L		07/05/19 15:02		- 3
7.12-Dimethylberiz(a)anthracene	ND.	10	ug/L			07/11/19 00:12	- 2
Acenaphthene	ND	5.0	ug/L			07/11/19 00:12	
Acenaphthylene	ND	5.0	ug/L		07/05/19 15:02	G () 1 los (4 / 4 / 1) 140	
Acetophenone	ND	5.0	ug/L		07/05/19 15:02		
Anthracene	ND	5.0	ug/L			07/11/19 00:12	- 4
Benzo[a]anthracene	ND	5.0	ug/L		07/05/19 15:02	The second second	
Benzo[a]pyrene	ND	5.0	ug/L				- 2
Benzo[b]fluoranthene	ND	5.0	ug/L		07/05/19 15:02		- 0
Benzo(g.h.i)perylene	ND	5.0	ug/L		07/05/19 15:02		- 0
Benzo[k]fluoranthene	ND	5.0	ug/L		07/05/19 15:02		- 3
Benzyi alcohol	ND	20	ug/L		07/05/19 15:02		- 3
Bis(2-chloroethoxy)methane	ND	5.0	ug/L		07/05/19 15:02	7110 3 27 7 7 7 7	
Bis(2-chloroethyl)ether	ND	5.0			07/05/19 15:02		- 3
Bis(2-ethylhexyl) phthalate	ND	5.0	ug/L		07/05/19 15:02		9
Dis(2 chloro-1-methylethyl) ether	ND		ug/L		07/05/19 15:02		
		5,0	ug/L		07/05/19 15:02	Children of the State of Towns	. 1
Butyl benzyl phthalate	ND	5.0	ug/L		07/05/19 15:02		. 1
Chrysene Diallate	ND	5.0	ug/L		07/05/19 15:02		- 9
Signer and the second s	ND	10	ug/L		07/05/19 15:02		- 1
Dipenz(a,h)anthracene	ND	5.0	ug/L		07/05/19 15:02		1
Dibenzofuran	ND	10	ug/L		07/05/19 15:02		1
Diethyl phthalate	ND:	5.0	ug/L		07/05/19 15:02		4
Dimethoate	ND	10	ug/L		07/05/19 15:02		1
Dimethyl phthalate.	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
Di-n-butyl phthalate	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
Di-n-octyl phthalate	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	3
Dinoseb	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	-
Diphenylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	+
Disulfoton	ND	10	ug/t		07/05/19 15:02	07/11/19 00:12	1

Eurofins TestAmerica, Buffalo

Client: Waste Management Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Client Sample ID: MWSE-4 Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00

Analyto		Qualifier	RL	MDL U	Init	D	Prepared	Analyzed	Dil Fac
Ethyl methanesulfonate	ND		10	U	g/L		07/05/19 15:02	07/11/19 00:12	1
Famphur	ND	UJ.	40	j.	g/L		07/05/19 15:02	07/11/19 00:12	1
Fluoranthene	ND		5.0	u	g/L		07/05/19 15:02	07/11/19 00:12	- 4
Fluorene	ND		5.0	u	ig/L		07/05/19 15:02		1
Hexachlorobenzene	NO		5.0		g/L		07/05/19 15:02	07/11/19 00:12	-
Hexachlorobutadiene	NO		5.0	u	g/L		07/05/19 15:02		-
Hexachlorocyclopentadiene.	ND		5.0		g/L		07/05/19 15:02		-
Hexachloroethane	NO		5.0		g/L		07/05/19 15:02		- 9
Hexachloropropene	ND		10		g/L			07/11/19 00:12	- 4
Indeno[1,2,3-cd]pyrene	ND		5:0		g/L			07/11/19 00:12	
Isodrin	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	3
Isophorone	ND		5.0		g/L			07/11/19 00:12	-
Isosafrole	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	- 4
Kepone	ND	V.T.	50		g/L		07/05/19 15:02		3
Methapyrilene	ND		50		g/L		07/05/19 15:02		3
Methyl methanesulfonate	ND		10		g/L			07/11/19 00:12	
Safrole	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	- 1
Thionazin	ND		10				07/05/19 15:02		1
Naphthalene	ND		5:0		g/L		07/05/19 15:02		9
Nitrobenzene	ND.		5.0		g/L		07/05/19 15:02	07/11/19 00:12	1
5-Nitro-o-toluidine	ND				g/L		07/05/19 15:02	07/11/19 00:12	1
N-Nitrosodiethylamine	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	1
Chlorobenzilate	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	- 3
N-Nitrosodimethylamine	16.3	120	20		g/L		07/05/19 15:02		
N-Nitrosodi-n-butylamine	ND	UI.	10		g/L		07/05/19 15:02		
The second state of the second	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	
N-Nitrosodipropylamine	ND		5.0		g/L		07/05/19 15:02	07/11/19 00:12	7
N-Nitrosodiphenylamine	ND		5.0		g/L		07/05/19 15:02		7
N-Nitrosomethylethylamine	ND		10		g/L		07/05/19 15:02	07/11/19 00:12	1
N-Nitrosopiperidine	ND		10	ni	g/L		07/05/19 15:02	07/11/19 00:12	1
N-Nitrosopyrrolidine	ND		10	uş	g/L		07/05/19 15:02	07/11/19 00:12	1
Triethyl phosphorothioate	ND		10	Lig	g/L		07/05/19 15:02	07/11/19 00:12	
Parathion	ND		10	uç	g/L		07/05/19 15:02	07/11/19 00:12	1
Parathion methyl	ND		10	uş	g/L		07/05/19 15:02	07/11/19 00 12	1
p-Dimethylamino azobenzene	ND		10	Ug	g/L		07/05/19 15:02	07/11/19 00:12	1.1
Pentachiorobenzene	NO		10	ug	g/L		07/05/19 15:02	07/11/19 00:12	1
Pentachloronitrobenzene	ND	UT.	10	Lig	a/L		07/05/19 15:02	07/11/19 00:12	- 1
Pentachlorophenol	ND		10	ug	3/L		07/05/19 15:02	07/11/19 00:12	1
Phenacetin	ND		10		3/L		07/05/19 15:02		1
Phenanthrene	ND		5.0		g/L		07/05/19 15:02		1
Phenol	NO		5.0		g/L		07/05/19 15:02	Through a war and a second	
Phorate	ND		10	ug			07/05/19 15:02		
p-Phenylene diamine	ND	UT.	800	ນດ			07/05/19 15:02		
Pyrene	ND.		5.0	ug			07/05/19 15:02		4
Pronamide	ND		10	ug			07/05/19 15:02	C. T. Filler, W.D. L.	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
2-Fluorabiphenyl	84		48 - 120
2-Fluorophenol (Surr)	54		35-120
2,4,6-Tribromophenol (Surr)	70		41-120
Nitrobenzene-d5 (Surr)	80		46-120

Prepared	Analyzed	Dil Fac
07/05/19 15:02	07/11/19 00:12	7
07/05/19 15:02	07/11/19 00:12	1
07/05/19 15:02	07/11/19 00:12	1
07/05/19 15:02	07/11/19 00:12	1

Eurofins TestAmerica, Buffalo

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Client Sample ID: MWSE-4 Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
Phenol-d5 (Surr)	40		22-120				07/05/19 15:02	07/11/19 00:12	1
p-Terphenyl-d14 (Surr)	84		59 - 136				07/05/19 15:02	07/11/19 00:12	1
Method: 8081B - Organo	chlorine Pesticio	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4.4'-DDD	ND	1	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
4.4'-DDE	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15.18	1.
4.4'-DDT	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Aldrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
alpha-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
beta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Chiordane (technical)	ND		0.50		ug/L		07/08/19 15:10	07/09/19 15:18	1
delta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Dielonn	ND	*	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endosulfan I	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endosulfan II	ND		0.050		ug/L			07/09/19 15:18	-1
Endosulfan sulfate	ND	UT:	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	- 1
Endrin aldehyde	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	
gamma-BHC (Lindane)	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	- 3
Heptachlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	- 1
Methoxychlor	ND.		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Toxaphene	ND		0.50		ug/L		07/08/19 15:10	The state of the s	- 1
Heptachlor epoxide	ND		0.050		ug/L		07/08/19 15:10		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	50		20 . 120				07/08/19 15:10	07/09/19 15:18	1
Tetrachioro-m-xylene	55		44 - 120						7
Method: 8082A - Polychic	orinated Biohen	Is (PCBs)	by Gas Chro	matour	anhy				
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0,60		ug/L	- 3	07/05/19 DB:16	07/10/19 19:23	1
PCB-1221	NO:		0.60		ug/L		07/05/19 08 16	07/10/19 19:23	- 1
PCB-1232	NO.		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	- 1
PCB-1242	ND:		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	- 1
PCB-1248	NO		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	7
PCB-1254	ND:		0.60		ug/L			07/10/19 19:23	- 4
PCB-1260	ND	UJ.	0.60		ug/L		07/05/19 08 16		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	58		39-121				07/05/19 08:16	The second secon	Ť
DCB Decachlorobiphenyl	49		19-120					07/10/19 19:23	Ť
Method: 8151A - Herbicid	es (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2.4,5-T	ND		0.52	-	ug/L	- ~	07/09/19 09:24	07/10/19 15:33	- 1
2,4-D	ND		0.52		ug/L		07/09/19 09:24	07/10/19 15:33	9

Client: Waste Management Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Client Sample ID: MWSE-4 Date Collected: 07/03/19 13:15

Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
2.4-Dichlorophenylacetic acid	62		48 - 132			07/09/19 09:24		UII P
Method: 537 (modified) - Fluo Analyte								
	7 7 7 7 7 7 7	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	DILF
Perfluorobutanoic acid (PFBA)	16		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoropentanoic acid (PFPeA)	19		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorohexanoic acid (PFHxA)	23		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoroheptanoic acid (PFHpA)	7.3		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorooctanoic acid (PFOA)	11		1.8	ng/L		07/08/19 05 43	07/10/19 01:04	
Perfluoronomanoic acid (PFNA)	ND		1.8	ng/L		07/08/19 05 43	07/10/19 01:04	
Perfluorodecanoic acid (PFDA)	ND		1.8	ng/L		07/08/19 05:43		
Perfluoroundecanoic acid (PFUnA)	ND		1.8	ng/L		07/08/19 05:43		
Perfluorodogecanoic acid (PFDoA)	ND		1.8	ng/L		07/08/19 05:43		
Perflubrotridecanolic acid (PFTriA)	ND		1.8	ng/L		07/08/19 05:43		
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	ng/L		07/08/19 05:43		
Perfluorobutanesulfonic acid (PFBS)	4.7		1.8	ng/L		07/08/19 05:43		
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoroheptanesulfonic Acid PFHpS)	ND.		1.8	ng/L		07/08/19 05:43	The state of the s	
Perfluorooctanesulfonic acid PFOS)	2.1		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorodecanesulfonic acid (PFDS)	ND		1.8	ng/L		07/08/19 05:43	07/10/19 01:04	
erfluorooctanesulfonamide (FOSA)	ND		1.8	ng/L		07/08/19 05:43		
l-methylperfluorooctanesulfonamidoa etic acid (NMeFOSAA)	ND		18	ng/L		07/08/19 05:43		
l-ethylperfluorooctanesulfonamiqoac tic acid (NEtFOSAA)	ND		18	ng/L		07/08/19 05:43	07/10/19 01:04	
2 FTS	ND		18	ng/L		07/08/19 05:43	07/10/19 01:04	
2 FTS	ND		18	ng/L		07/08/19 05:43	Control of the second second	
sotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	0.15
3C4 PFBA	66		25 - 150			King San Carlo San San San San San San San San San San	07/10/19 01:04	DII Fa
3C5 PFPeA	89		25 - 150			The second secon	07/10/19 01:04	
3C2 PFHxA	99		25-150			07/08/19 05:43	The state of the s	
3C4 PFHpA	100		25-150			07/08/19 05:43		
3C4 PFOA	96		25 - 150			07/08/19 05:43		
3C5 PFNA	95		25 - 150					
3C2 PFDA	94		25 - 150			07/08/19 05:43		
3C2 PFUnA	96		25 - 150			07/08/19 05:43	The state of the s	
3C2 PFDoA	90		25 - 150			07/08/19 05:43		- 6
3C2 PFTeDA	93					07/08/19 05:43		
GC3 PFBS	93		25 - 150			07/08/19 05:43		- 3
BO2 PFHxS			25 - 150			07/08/19 05:43		1
3C4 PFOS	102		25 - 150			07/08/19 05:43		,
3C8 FOSA	91		25 - 150			07/08/19 05:43		
3-NMeFOSAA	82		25 - 150			07/08/19 05:43		1
Control of the Contro	.96		25 - 150		(77/08/19 05:43	07/10/19 01:04	
5-NEIFOSAA	97		25 - 150		(77/08/19 05 43	07/10/19 01:04	3
12-6·2 FTS	121		25 - 150			77/08/19 05:43		,
12-8:2 FTS	101		25 - 150			77/08/19 05:43		,

Client: Waste Management

Client Sample ID: MWSE-4

Date Collected: 07/03/19 13:15

Date Received: 07/03/19 17:00

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Method: 6010C - Metals (ICP	**	- Pas V							
Analyte	3073	Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	DII Fa
Aluminum	NO		0.20		mg/L		07/08/19 07:30	07/09/19 00:35	
Antimony	ND		0.020		rng/L		07/08/19 07:30	07/09/19 00:35	. 7
Arsenio	ND		0.015		mg/L		07/08/19 07:30		1 3
Barium	0.055		0.0020		mg/L		07/08/19 07:30	07/09/19 00:35	
Beryllium	ND		0.0020		mg/L		07/08/19 07:30	07/09/19 00:35	- 1
Boron	0.052		0.020		mg/L		07/08/19 07:30		
Cadmium	ND		0.0020		mg/L		07/08/19 07:30	07/09/19 00:35	- 0
Calcium	69.9		0.50		mg/L		07/08/19 07:30		1
Chromium	ND		0.0040		mg/L		07/08/19 07:30		
Cobalt	ND		0,0040		mg/L		07/08/19 07:30		
Copper	ND		0.010		mg/L		07/08/19 07:30	2112212 2000	
Iron	0.32		0.050		mg/L		07/08/19 07:30	07/09/19 00:35	
ead	NO		0.010		rng/L		07/08/19 07:30	07/09/19 00:35	- 1
Magnesium	12.3		0.20		mg/L		07/08/19 07:30	07/09/19 00:35	
Manganese	0.13		0.0030		mg/L		07/08/19 07:30	07/09/19 00:35	
Vickel	NO		0.010		mg/L		07/08/19 07:30		
Potassium	1.8		0.50		mg/L		The State of the S	07/09/19 00:35	
Selenium	ND		0.025				07/08/19 07:30	07/09/19 00:35	
Silver	ND		0.000		mg/L		07/08/19 07:30		
Sodium	14.0		1.0		mg/L		07/08/19 07:30		
hallium	ND.		4.70		mg/L		07/08/19 07:30		1
linc	ND		0.020		mg/L		07/08/19 07:30		
/anadium	1,500		0.010		mg/L		07/08/19 07:30	07/09/19 00:35	
in .	ND		0.0050		mg/L		07/08/19 07:30	07/09/19 00:35	1
	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:35	. 1
Method: 7470A - Mercury (C)	The second secon		20	87.X					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
Mercury	ND		0.00020		mg/L		07/08/19 11.51	07/08/19 16:13	1
Method: SM 2340B - Total Ha			calculation						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium and Magnesium Hardness	225		0.50		mg/L			07/10/19 11:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fac
romide.	ND.		0.40		mg/L	- 3	, reparca	07/08/19 19:38	
Alkalinity, Total	139		10.0		mg/L			07/14/19 14:57	2
Ammonia (as N)	ND		0.020		mg/L as N				2
otal Kjeldahl Nitrogen		UJ	0.15		mg/L as N		07110110 00 10	07/10/19 09:50	4
litrate	ND		0.050				07/18/19.09:10	07/21/19 10:22	
hemical Oxygen Demand	6.3		5.0		mg/L as N			07/03/19 21.28	
yanide, Total		UTI			mg/L		Washing at 1 year	07/14/19 09:32	1
ulfate			0.010		mg/L		07/10/19 15:50	07/11/19 13:17	1
henolics, Total Recoverable	97.1		7.5		mg/I		water the second	07/24/19 12:43	5
		'VJ	0.0050		mg/L		07/11/19 19:18	07/12/19 14:51	1
hloride	22.0		1.0		mg/L			07/14/19 14:39	1
otal Dissolved Solids	441		10.0		mg/L			07/09/19 08:53	1
Blochemical Oxygen Demand	ND		2.0		mg/L			07/04/19 09:11	1
Total Organic Carbon	2.0		1.0		mg/L			07/13/19 08:09	1

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix; Water

Job ID: 480-155710-1

Client Sample ID: MWSE-4
Date Collected: 07/03/19 13:15
Date Received: 07/03/19 17:00

Analyte	Result	Qualifier	RL	RE	Unit	D	Prepared	*******	644 B 1
Color	5,00		5.00		Color Units	-	rrepared	Analyzed 07/05/19 09:12	Dil Fac
Method: Field Sampling - Field Analyte		Qualifier	NONE	NONE		D	Prepared		-
Field pH	7.52		10000	110111	20113		Prepared	Analyzed	Dil Fac
Specific Conductance	516				SU			07/03/19 13:15	1
Temperature	25.15				umhos/cm			07/03/19 13:15	. 1
	16.2				Degrees C			07/03/19 13:15	
Oxidation Reduction Potential	70.0				millivolts				1
Turbidity	6.9				1111111111111			07/03/19 13:15	1
V 40 2000	0,5				NTU			07/03/19 13:15	- 1

Client Sample ID: TRIP BLANK

Date Collected: 07/03/19 09:00 Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-3 Matrix: Water

Method: 8260C - Volatile Org Analyte	Result		RL	MDL	Unit	.0	Prepared	Analyzed	Dii Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L		Toporeu	07/12/19 12:14	Dirac
1.1,1-Trichloroethane	ND		1.0		ug/L_			07/12/19 12:14	
1,1,2,2-Tetrachloroethane	ND.		1.0		ug/L			07/12/19 12:14	/
1,1,2-Trichloroethane	ND		1.0		ug/L			07/12/19 12:14	
1,1-Dichloroethane	ND		1.0		ug/L			07/12/19 12:14	1
1,1-Dichloroethene	ND:		1.0		ug/L			07/12/19 12:14	1
1,1-Dichloropropene	ND		1.0		ug/L			and the second s	4
1,2,3-Trichloropropane	ND		1.0		ug/L		1	07/12/19 12:14	1
1,2-Dibromo-3-Chloropropane	ND.		1.0		lig/L		1	07/12/19 12:14	1
1.2-Dichlorobenzene	ND.		1.0		ug/L	-		07/12/19 12:14	1
1.2-Dichloroethane	ND		1.0		ug/L	/		07/12/19 12:14	
1.2-Dichloropropane	ND.		0.1		ug/L			07/12/19 12:14	
1.3-Dichloropropane	ND		1.0		Lig/L			07/12/19 12:14	
1.4-Dichlorobenzene	ND		0	2	ug/L			07/12/19 12:14	1
2,2-Dichloropropane	ND		0	/	ug/L			07/12/19 12 14	- 1
2-Butanone (MEK)	ND		10 /		ug/L			07/12/19 12:14	1
2-Hexanone	ND		0		ug/L			07/12/19 12:14	1
4-Methyl 2-pentanone (MIBK)	ND		.0		ug/L			07/12/19 12:14	-1
Acetone	ND		10		-			07/12/19 12:14	- 1
Acetonitrile:	ND		15		ug/L			07/12/19 12:14	1
Acrolein	ND		20		ug/L			07/12/19 12:14	1
Acrylonitrile	ND		.0		ug/L			07/12/19 12:14	1
Allyl chloride	NO		0		ug/L			07/12/19 12:14	7
Benzene	ND		0		ug/L			07/12/19 12:14	1
Chlorobromomethane	ND.		.0		ug/L			07/12/19 12:14	t
Bromodichloromethane	ND				ug/L			07/12/19 12:14	1
Bromoform	ND	1			ug/L			07/12/19 12:14	1
3romomethane	ND	1			ug/L			07/12/19 12:14	t
Carbon disulfide	NO	1.5			ug/L			07/12/19 12:14	1
Carbon tetrachloride	ND	4			ug/L			07/12/19 12:14	3
Chlorobenzene	ND	4			Jg/L			07/12/19 12:14	14
Dibromochloromethane		1			ug/L			07/12/19 12:14	1
Chloroethane	ND	1.			ig/L			07/12/19 12:14	1
Chloroform	ND	1			ıg/L			07/12/19 12:14	1
Chloromethane	ND	1			ıg/L			07/12/19 12:14	1
A HAI CATIGUISHING	ND	1	0	1	ıg/L			07/12/19 12:14	3

Eurofins TestAmerica, Buffalo 09/06/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Lab Sample ID: 480-156080-1

Matrix: Water

Client Sample ID: MWSE-1
Date Collected: 07/12/19 13:40
Date Received: 07/12/19 15:40

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fac
Nitrobenzene-d5 (Surr)	70		43-110				and the second second	07/24/19 14:40	Dir Fac
Phénol-d5 (Surr)	54		40-108					07/24/19 14:40	9
Terphenyl-d14 (Surr)	72		45-120					07/24/19 14:40	- 1
General Chemistry	waren.	ar violator		2777			/		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		0.010		mg/L		7	07/13/19 10:30	1

Client Sample ID: MWSE-2 Date Collected: 07/12/19 12:30

Date Received: 07/12/19 15:40

Lab Sample ID: 480-156080-2

Matrix: Water

Analyte	Result	Qualifier	RL MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thionazin	ND		0.94	ug/L		07/19/19 20:48	07/24/19 15:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61		45-106			07/19/19 20:48	07/24/19 15:07	7
2-Fluorophenol (Surr)	47	/	39 - 105			07/19/19 20:48	07/24/19 15:07	1
2,4,6-Tribromophenol (Surr)	36	x /	39 - 125				07/24/19 15:07	1
Nitrobenzene-d5 (Surr)	76	/	43 - 110				07/24/19 15:07	7
Phenol-d5 (Surr)	46		40 - 108				07/24/19 15:07	7
Terphenyl-d14 (Surr)	/74		45_120			ALCOHOLD TO THE STATE OF	07/24/19 15:07	

Client Sample ID: MWSE-3 Date Collected: 07/12/19 12:10

Date Received: 07/12/19 15:40

Lab Sample ID: 480-156080-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dii Fac
Thionazin	ND		0.94		ug/L		07/19/19 20:48	07/24/19 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	65		45 - 106				07/19/19 20:48	07/24/19 15:35	4
2-Fluorophenol (Surr)	73		39 - 105					07/24/19 15:35	4
2,4,6-Tribramophenol (Surr)	69		39 - 125					07/24/19 15:35	7
Nitrobenzene-d5 (Surr)	82		43.110					07/24/19 15:35	
Phenol-d5 (Surr)	71		40 - 108					07/24/19 15:35	1
Terphenyl-d14 (Surr)	79		45 120					07/24/19 15:35	4

Client Sample ID: MWSE-4

Date Collected: 07/12/19 11:05 Date Received: 07/12/19 15:40 Lab Sample ID: 480-156080-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thionazin	ND	nl.	0.94		ug/L		07/19/19 20:48	07/24/19 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	56		45-106				07/19/19 20:48	07/24/19 16:03	1
2-Fluorophenal (Surr)	49		39 - 105					07/24/19 16:03	3

Eurofins TestAmerica, Buffalo 09/06/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Client Sample ID: MWSE-4 Date Collected: 07/12/19 11:05 Date Received: 07/12/19 15:40

Lab Sample ID: 480-156080-4

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared		-
2,4,6-Tribromophenol (Surr)	41		39 - 125					Analyzed 07/24/19 16:03	Dil Fac
Nitrobenzene-d5 (Surr)	7.5		43-110					and the second second	,
Phenol-d5 (Surr)	54		40 - 108					07/24/19 16:03	7
Terphenyl-d14 (Surr)	74		45-120				The second secon	07/24/19 16:03	7
A STATE OF THE STA	6.7		40- IEU				07/19/19 20:48	07/24/19 16:03	7
General Chemistry	4000								
Child at the control of the control	200427	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		0,010		mg/L	Sec. Sec.		07/13/19 10:30	1

Client: Waste Management Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-2

Client Sample ID: MWSE-1 Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-1

Matrix: Water

Date Received: U	7/03/19 17:00	U									
Method: 903.0 -	Radium-226	(GFPC)	2007								
			Count	Total							
American	25.78	2000	Uncert.	Uncert.						-	
Analyte Radium-226		Qualifier	(20+/-)	(20+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fa
Naulum-226	0.120	n.	0.0939	0.0945	1.00	0.137	pCI/L		07/45/19 14:52	08/20/19 20:42	
Carrier	%Yield	Qualifier	Limits				-	-	-	20040000	worm'
Ba Carrier	60.5		40-110			/			Prepared 07/15/19 14:52	Analyzed	Dil Fa
			No. of the last		1				91/10/19 14:02	08/20/19 20:42	
Method: 904.0 -	Radium-228	(GFPC)									
			Count	Total							
100 pp			Uncert.	Uncert							
Analyte	1,500,700	Qualifier	(20+/-)	(20+/-)	RL	MDC	Unit		Prepared	Analyzed	DII Fa
Radium-228	-0.138	U.	0.393	0.394	1.00	0.724	pCi/L		07/15/19 15:55	07/29/19 10:12	-
Carrier	%Yield	Qualifier	Limits						Despessed		nii e
Ba Carrier	60.5	3	40 - 110						Prepared 07/15/19 15:55	Analyzed 07/29/19 10:12	Dil Fa
Y Carrier	E0.4		40-110						07/15/19 15:55	07/29/19 10:12	
									0.77.147.18 14.00	01/23/13 10:12	
Method: 908.0 -	Uranium, To										
Analyte		107474	t Qualifier	RL		RL Unit		D	Prepared	Analyzed	Dil Fac
u		0.116	3	0.135		pCi/I				07/29/19 00:00	
Client Sample	ID: MWSE	-4					-	1.	h Comple	ID. 400 4EE	757 5
Date Collected: 0								Lo	in Sample	ID: 480-155	
Date Received: 0										Matrix	: Wate
Mathad one o		ususeo.									
Method: 903.0 -	Radium-226	(GFPC)	Later and	200							
			Count	Total							
Analyte	Result	Qualifier	Uncert.	Uncert_	-	400 -	Value .		(Armonator)		
Radium-226	0.0584	U	(2 0+/-) 0.103	(2 0+/-) 0.103	1.00		Unit		Prepared	Analyzed	Dil Fac
Constitution of the Consti	0.0004	9	0:100	0.103	1.00	0.181	pCI/L		07/15/19 14:52	08/20/19 20:42	-

Method: 903.0 - F	Radium-226	(GFPC)									
		981. 15. 1	Count	Total							
			Uncert.	Uncert_							
Analyte	Result	Qualifier	(20+/-)	(20+/-)	RL	MD	Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.0584	U	0.103	0.103	1.00	0.18	1 pCI/L		07/15/19 14:52		1
Carrier	%Yield	Qualifier	Limits						Prepared	Analyzed	Dil Fac
Ba Carrier	49.7		40-110						07/15/19 14:52	and the second s	Un rac
Method: 904.0 - F Analyte Radium-228 Carrier	Result 0.600	Qualifier	Count Uncert. (2σ+/-) 0.570	Total Uncert. (20+/-) 0,573	RL 1.00	MD0			Prepared 07/15/19 15:55	Analyzed 07/29/19 10:13	Dit Fac
Ba Carrier		Quantier	Limits						Prepared	Analyzed	Dil Fac
- The County of the County of	49.7		40-110						07/15/19 15:55	07/29/19.10:13	1
Y Carrier	75.5		40-110						07/15/19 15:55	07/29/19 10:13	7
Method: 908.0 - L	Jranium, To	tal									
Method: 908.0 - L Analyte	Jranium, To	tal Result	Qualifier	RL		RL Un	it	D	Prepared	Analyzed	Dil Fac

Seurofins.

Chain of Custody Record

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amheret NY 14228-2298 Prone (718) 691-7991

	Client Information	VS/OS/8T			Para Para Para Para Para Para Para Para	Giote Donge	100						Carrer Tracking Alaks	Lage.	9 1/0(5			200	No	
10 10 10 10 10 10 10 10	Chert Cortact	Phore			100	The second			1	1	ı	T						480	131844-297	48.1
10 10 10 10 10 10 10 10	Timplify Bly				ger	ise get	e Cite	stame	HES.	mos :								Pap	0.1052	
10 10 10 10 10 10 10 10	TestAmenta Laboratores, Inc.									Analy	50	Rea	leste	Pe				100		
17 17 17 17 17 17 17 17	Address 10 Hazewood Drive	Dive Date Anguest	· D4			100		-	-	L			-	1	-			Pres	ervation Coc	des
Comparison Com	Cay. Amherst	TAT Requested (4	:(ske						_	_			-	_	_			4.00	ರಕ್	25.
2010 2010	State 20- NV 14228					Di				(4			*	_				422	The Acid	D - ARNHOZ P - NAZOAS
170 19 190	Prese 716-863-3438(Tel)	Port	Requested			(4	soje		-	atylani	- enoto	_	PHIERO!					2 5 4	POH MCHILII	A Nu25202
	Email funciby bly@testamencainc.com	WOR					PEON P	-	_	1151 1	orA -1		wwe :	_			-		ACONDIC ACID	T - TSP Dodecatydram U - Acotore
1900 1900	Posed Have Chaffee Landfill NY 05 Event Desc. 2019 Part 363 Expand	Project # 19002636					sapurd		Here i	er's part	popued	_	pepued			- 1	-	A F.A. Santa Co.	JT A.	W-pH 4.5
Sample Date Sample Date Type Watch W	Este New York	*WOSS					10 Ex	-		_	×3 090	_	_	7.		30+621	_			
7/3/19 0/900 G Water 3 2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1	Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix		SEEC - NY PAR	Mark Control of			C M49 YM - ACRO		The State State State	The second second		M2 , A071, 30 M	-	o Jagmen 1830		
7018 0900 G Water 3 2 1 2 2 2 1 1 1 1 1	n Si	\ \	X	Preserva	tion Code		_	10-	1	+8	H 2	. 1	-	10		$\overline{}$			Special Int	Special Instructions/Note:
7/3/19 13/5 G Water 3 2 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	TRIP BLANK	91/0/1	0960	9	Water	E	1	-							2		2	1		
Trans. T	MWSE-1	7/3/19	1305	9	Water			+	-	-	6	0	-	+		1	1.	1		
Sample Disposal 1 A fee may be assessed if samples are retained longer than 1 mm Special mistractoristic Requirements Time Special mistractoristic Requirement Date The Company Reasoned by Disposal 8 Lac Larbine For Special mistractoristic Requirement Date The Company Reasoned by Disposal 8 Lac Larbine For Special mistractoristic Requirement Company Reasoned by Disposal Research Disposal 8 Lac Larbine For Special mistractoristic Company Reasoned by Disposal Research Company Reasoned by Disposal Research Company Reasoned by Disposal Reasone	MWSE-4	7/3/19	1315	5	Water	H	10	+	-	-	14	0	-	+	9.8		-	1		
Skin Instant Posion B Linkhown Readilings Sample Disposal (A fee may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed if samples are retained longer than 1 mm Cannamy Becal in the may be assessed in the manual in the may be assessed in the manual in the man						-	Ť	+	+	+		1	+	+	1	-	+	-		
Sample Disposal (A fee may be assessed if samples are richared foreign than 1 mm Special branchotts (C. Concert) Sample Disposal (A fee may be assessed if samples are richared foreign than 1 mm Special branchotts (C. Concert) Special branc						-	1	-	+	1			1			1			Title sammen.	de santos
Sample Disposed (A fee may be assessed if samples are retained longer than 1 mm. Shed all historic and the may be assessed if samples are retained longer than 1 mm. Shed all historic and the may be assessed if samples are retained longer than 1 mm. Shed all historic and the may be assessed if samples are retained longer than 1 mm. Shed all historic and the may be assessed if samples are retained longer than 1 mm. Shed in the manual and the manual								-	-			Ħ								
Sample Disposal (A fee may be assessed if samples are retained longer than 1 mm Sample Disposal (A fee may be assessed if samples are retained longer than 1 mm Special Instructions/QC Requirement Date Special Instructions/QC Requirement Date Date Date Date Desir																				
Samithol Design the Company of Section 1 of								-	H			-	T	4	0-15	1575 1757				
Date: Special Posson B								+	+	L		+	1		1		0	20	stody	
Skin initialit Dosion B Unknown Radiologicali Sample Disposal (A fee may be assessed if samples are retained longer than 1 m. Prescribing Special instructions/QC Requirements Page								-	+				+	-		1	+	1	1	1
Sample Disposal (A fee imay be assessed if samples are retained longer than 1 miles (Special Institutions) (Specia																-				
Skin Initialit Doson B Unknown Redicilogical Processor Skin Initialit Doson B Unknown Redicilogical Instructional October Conservation													-				-			
The Specify Sp	Skin lentant	П		and and an arrange		San) apde	Sispor	() jes	fee !	nay b	9 455	9550	111 89	mple	s are	retair	ed lang	er than 1 m	ionth)
Time Society Britished by The Company Received by Distriction Company Received by Distriction Distriction Company Received by Distriction Distriction Company Received by Distriction Distriction Company Received by Distriction Distriction Company Received by Distriction Distriction Company Received by Distriction Distriction Company	Other (specify)		1	#SECURIOR #		Spe	CIAL P	struct	ons/C	C Re	oure	Chis	Nosal.	By:La		1	Anc	Ne For		Months
TAY Company Received by Desistran Desistran Company Received by Desistran Desistran Company Received by Desistran Desistran Desistran Desistran Company Received by Desistran Desistran Desistran Desistran TOO 75.6	Emoty Kit Relindusted by		David Control		1	-							1	1	1					
The Content of Content	Bellement of the Control of the Cont	-1	Date.			_ 1			И	n		8	Ma	(hode)	Shipma	TL.				
Halls Militar Gustody Seal No. Substance Concern Received by Concern Described Concerns Conc	10	7-3-19/	To	9	7.47		Pools	a la					1	ï	CastaC	D.				Оэтралу
alls Intakt Custody Seal No. Designer Concust, Rechaustral Cand Designer 7-3 leg 1700.	Ad suitable and	Dearlos			Company		Vectory.	40 Ev							Dann	Diag.				Cotropacy
Custody Seit No.	Reiorgius/aid by	Das/Tere.			Computery		Section	100		1	1		1	1	Dans	2			1420	U Water
3							Stocker	(e70e	Shares	12	AC P	1860	nkx.			3		1	100	2
						1	1		1	1										(C. A

Chain of Custody Record

Eurofins TestAmerica, Buffalo
10 Hazelwnos Drive
Amherst. NY 14228-2298

Phone (716) 691-2600 Fax (716) 691-7991

サンプ Special Instructions/Note M. Name
O. Assistant
O. Assistant
O. Assistant
O. Na2503
S. Na2504
S. Na2504
V. Assistant
V. Wilco,
W. pH 4.5 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) 480-131844 29748 2 A HCL B - NeOH C - 2" Acetale D - Neon Acetale F - NeOH G - Amethor H - Accosor Ac Page 2 of 2 Cr Water 3.5 Archive For Total Number of containers 51-5-19 Disposal By Lab STG 2 - Albailnity, Total Analysis Requested 196A - Chromiumi, hexavalent + 21 208. 353.3 353.2 Minnie, 9036, 9251, Aufrate, Calc 77 13 special Instructions/OC Requirements sorzB - Cyanide, Total Field Sampling - (MOD) PH, Cond, Temp, DO, ORP, GWEIV 0 0 Lab Rit Giglia Dense L E-Mar dense giglia@testamencainc.com -+ sbiloč beviosaid lato? - bale3_30441 Return To Client bnamed negyzQ kalmertacke - Botts r¥. BITEROTO-P.T - CI EM MIS GOTER PV Sararag Dr 114 sebibidasi babnaqx3 C8C hsq YN - A1818 0 nocheD sinegsO lateT - dorcama N di (on to set) USM\SM miohes Field Filtered Sample (Yes or No) STATISTICS, A-Mr. Preservation Code Water Water Water Radiological G=grab) (C=Cump, Type U D. 0 Purchase Order Requested Work Sample Time 1305 1315 0900 Unknown TAT Requested (days. Due Date Requested Sample Date PINENT. 7/3/19 713/19 Project # 48002636 S50we TB/SC/ZV 20年1年 Poison B Chaffee Landfil NY05 Event Desc. 2019 Part 363 Expanded -Q2 Skin Imtant Other (specify) Custody Seat No. Flammable eiverable Requested | | | | | | | | Possible Hazard Identification nothy ply@destamencaing.com estAmerica Laboratones, Inc. mpty Kk Relinquished by Custody Seals Intact
A Ves 3 No Client Information Sample Identification O Hazelwood Drive 16-863-3438(Tel) Noo-Hazard vibred by TRIP BLANK imothy Bry Size 20 NY 14226 New York MINSELL MWSE-4 Amherst

Seurolins Economism Intam

Chain of Custody Record

curonns restAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (715) 691-2600 Fax (716) 691-7991

Special Instructions/Note: 0 - AANSOS P - NAZOS R - NAZOS R - NAZSZOS S - HZSOS T TSP Dodnostry U - Accessor W - Accessor W - Accessor Nove Ashistor Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client

Special Instructions/OC Requirements CCC No 480-131844-29748.1 SAID JCE E A - MCL B - NaO+ C - 27 Assate D - Natice Acid E - NaFisCA F - MeCH G - Amerike H - Ascerbic M Page 1 of 2 61/211 1 # 812 stoT X 480-156080 Chain of Custody "MAD DANTIME Method of Shipstert arrer Tracking No(s) Analysis Requested Cooler Temperature(s) *C and Other Remarks Lab Pw Gigta, Denise I. E. war denise giglia@estamericanic.com S25.1 LL PREC - Thionasin N Received by Hecewed by 7196A - Chromium, hexavalent a 0 0 + -0 (ow to set) GSWSM nitoling Preservation Code: Matrix Weter Water Water Water Conpany Company Company TAL Sample Type (C=comp, G=grab) Radiological 0 0 O 0 Purchase Order Requested Wole Sample 1340 230 012 105 Date 17-19/ Unknown TAT Requested (days): Due Date Requested: Sample Date 7/12/19 27/27/9 7/12/19 7/12/19 Project Name.
Chaffee Landfill/NY05 Event Desc. 2019 Part 363 Expanded -02 48002e36
Silver Date/Time Date/Time Poison B Skin Imtant Deiwerable Requested I, II, IV, Other (specify) Custody Seal No. limothy bly@testamencainc.com Possible Hazard Identification TestAmerica Laboratories, Inc. Empty Kit Relinquished by Custody Seals Intact. A Yes A No Client Information Sample Identification 10 Hazelwood Drive 715-863-3438(Tel) Cleri Contact Timothy Biy pushed by. State 20 NY, 14228 New York MWSE ! MWSE-2 Amherst MWSES MWSE-4

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-155710-1

Client Project/Site: Chaffee Landfill-New Wells Sampling Event: 2019 Part 363 Expanded -Q2

For:

Waste Management 425 Perinton Parkway Fairport, New York 14450

Attn: Martin Miller

Authorized for release by: 9/6/2019 6:48:01 PM

Denise L'Aiglia

Denise Giglia, Project Manager I (716)691-2600

denise.giglia@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

<u>/</u>

9

10

12

15

45

18

LR

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	8
Client Sample Results	11
Surrogate Summary	49
Isotope Dilution Summary	52
Tracer Carrier Summary	54
QC Sample Results	55
QC Association Summary	91
Lab Chronicle	102
Certification Summary	108
Method Summary	113
Sample Summary	114
Detection Limit Exceptions Summary	115
Chain of Custody	116
Field Data Sheets	125
Receipt Checklists	130

3

6

8

10

11

13

15

-

18

19

Definitions/Glossary

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Qualifiers

GC/MS Semi VOA

Qualifier Qualifier Description

* LCS or LCSD is outside acceptance limits.

X Surrogate is outside control limits

GC Semi VOA

Qualifier Qualifier Description

* RPD of the LCS and LCSD exceeds the control limits

* LCS or LCSD is outside acceptance limits.

General Chemistry

Qualifier	Qualifier Description

LCS or LCSD is outside acceptance limits.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

B Compound was found in the blank and sample.

Rad

Qualifier Qualifier Description

* RPD of the LCS and LCSD exceeds the control limits

U Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviation	s may or may not be p	resent in this report.
--------------	----------------------------------	-----------------------	------------------------

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Net Calculated

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

5

6

9

10

12

13

15

10

18

Ш

9/6/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-155710-1

Receipt

The samples were received on 7/2/2019 6:30 PM, 7/3/2019 5:00 PM and 7/12/2019 3:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 5 coolers at receipt time were 2.8° C, 4.4° C, 7.2° C, 10.2° C and 13.6° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-481743 recovered above the upper control limit for Acetonitrile, Vinyl chloride and Propionitrile. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MWSE-2 (480-155710-1) and MWSE-3 (480-155710-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 625.1: Surrogate recovery for the following sample(s) was outside control limits. Client only requesting one BN compound and all of the BN surrogates were well within criteria thus report as measured: MWSE-2 (480-156080-2). Evidence of matrix interferences is not obvious.

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-481493 recovered outside acceptance criteria, low biased, for 3,3'-Dimethylbenzidine, Kepone and N-Nitro-o-toluidine. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following samples are impacted:MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2).

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-481493 recovered above the upper control limit for Famphur, 4-Nitrophenol and Pentachloronitrobenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2).

Method 8270D: The laboratory control sample duplicate (LCSD) for preparation batch 480-480988 and analytical batch 480-481493 recovered outside control limits for the analyte 4-Nitrophenol. This analyte was biased high in the LCSD and was not detected in the associated samples; therefore, the data have been reported. The following samples are impacted MWSE-2 (480-155710-1) and MWSE-3 (480-155710-2).

Method 8270D: The laboratory control sample duplicate (LCSD) for preparation batch 480-480988 and analytical batch 480-481493 recovered outside control limits for the analyte 4-Nitrophenol. This analyte was biased high in the LCSD and was not detected in the associated samples; therefore, the data have been reported. The following samples are impacted:MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method 300.0: The following samples were diluted due to the abundance of non-target analytes: MWSE-2 (480-155710-1), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8081B: The continuing calibration verification (CCV) associated with batch 480-481221 recovered above the upper control limit for Endosulfan sulfate. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2).

Method 8081B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 480-481166

Job ID: 480-155710-1

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

and analytical batch 480-481221 recovered outside control limits for the following analytes: Endosulfan sulfate. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. The following samples are impacted:MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2).

Method 8081B: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch preparation batch 480-481166 and analytical batch 480-481221 recovered outside control limits for the following analytes: 4,4'-DDD, Dieldrin and Endosulfan I.

Method 8082A: The following samples are associated with a continuing calibration verification (CCV 480-481474/5 and 480-481474/31) that had recoveries for the surrogate Decachlorobiphenyl that were below acceptance limits: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2). The secondary surrogate Tetrachloro-m-xylene is within limits. Therefore, the data has been reported.

Method 8081B: All primary data for analytical batch 481221 is reported from the RTX-CLPI column.

Method 8082A: All primary data for analytical batch 481474 is reported from the ZB-35 column.

Method 8082A: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

Method 8151A: All primary data for analytical batch 480962 is reported from the RTX-CLPI column.

Method 8081B: All primary data for analytical batch 481221 is reported from the RTX-CLPI column.

Method 8082A: All primary data for analytical batch 481474 is reported from the ZB-35 column.

Method 8082A: The percent difference in a multi-component continuing calibration verification is assessed on the basis of the total amount, individual peak calculations are only listed for completeness.

Method 8151A: All primary data for analytical batch 481461 is reported from the RTX-CLPI column.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

LCMS

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method 420.1, 9065, 9066: The laboratory control sample (LCS) for preparation batch 480-481746 and analytical batch 480-481919 recovered outside control limits for the following analytes: Total Recoverable Phenolics. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. MWSE-2 (480-155710-1) and MWSE-3 (480-155710-2)

Method 335.4, 9012B: The LCS recovered outside of the method acceptance limits of 90 - 110% for samples: MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2).

Method 9038: The method blank for analytical batch 480-483565 contained Sulfate above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-analysis of samples was not performed. MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

J

Job ID: 480-155710-1

7

10

12

13

15

17

18

19

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Job ID: 480-155710-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method 625: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 180-285394.

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-306095 for PFC's.

Method 3535: The following sample contains non-settleable particulate matter which plugged the solid-phase extraction column: MWSE-3 (480-155710-2) for PFC method in batch: 320-306095.

Method 3535: The following sample was observed to contain sediment prior to extraction: MWSE-3 (480-155710-2) for PFC method in preparation batch 320-306095.

Method 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 480-480799.

Method 8151A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-481261.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Narrative

Job Narrative 480-155710-2

Receipt

The samples were received on 7/2/2019 6:30 PM and 7/3/2019 5:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 4 coolers at receipt time were 4.4° C, 7.2° C, 10.2° C and 13.6° C.

RAD

Method 903.0: Ra-226 Prep Batch 160-434862: The following samples have an RER (replicate error ratio) result outside of the acceptance criteria of 1 (1.15) for Ra-226. Duplicate precision is demonstrated by acceptable relative percent difference (RPD), within the limit of 40% (24%). The data have been reported with this narrative: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1), MWSE-4 (480-155757-2), (LCS 160-434862/1-A), (LCSD 160-434862/2-A) and (MB 160-434862/7-A).

Method 903.0: Ra-226 Prep Batch 160-434862: Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1), MWSE-4 (480-155757-2), (LCS 160-434862/1-A), (LCSD 160-434862/2-A) and (MB 160-434862/7-A).

Method 904.0: Ra-228 Prep Batch 160-434867: The following samples have an RER (replicate error ratio) result outside of the acceptance criteria of 1 (1.21) for Ra-228. Duplicate precision is demonstrated by acceptable relative percent difference (RPD), within the limit of 40% (30%). The data have been reported with this narrative: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1), MWSE-4 (480-155757-2), (LCS 160-434867/1-A), (LCSD 160-434867/2-A) and (MB 160-434867/7-A).

Method 904.0: Ra-228 Prep Batch 160-434867: Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative. Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1), MWSE-4 (480-155757-2), (LCS 160-434867/1-A), (LCSD 160-434867/2-A) and (MB 160-434867/7-A).

Method 904.0: Ra-228 Prep Batch 160-434867: The detector on which the sample was counted failed its background count for the gross beta daily background check, indicating a potential high bias to the sample result. The sample result (-0.138 pCi/L) was a factor of more than 5 times below the MDC achieved (0.724 pCi/L), indicating this excursion did not adversely affect the data: MWSE-1 (480-155757-1).

Method PrecSep 0: Radium 228 Prep Batch 160-434867: Insufficient sample volume was available to perform a sample duplicate for the following samples: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Job ID: 480-155710-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

Method PrecSep STD: Radium 226 Prep Batch 160-434862: Insufficient sample volume was available to perform a sample duplicate for the following samples: MWSE-2 (480-155710-1), MWSE-3 (480-155710-2), MWSE-1 (480-155757-1) and MWSE-4 (480-155757-2). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2 Lab Sample ID: 480-155710-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	1.4		0.20		mg/L	1	_	6010C	Total/NA
Barium	0.12		0.0020		mg/L	1		6010C	Total/NA
Boron	0.046		0.020		mg/L	1		6010C	Total/NA
Calcium	122		0.50		mg/L	1		6010C	Total/NA
Iron	2.5		0.050		mg/L	1		6010C	Total/NA
Magnesium	27.8		0.20		mg/L	1		6010C	Total/NA
Manganese	0.30		0.0030		mg/L	1		6010C	Total/NA
Potassium	4.6		0.50		mg/L	1		6010C	Total/NA
Sodium	12.7		1.0		mg/L	1		6010C	Total/NA
Zinc	0.017		0.010		mg/L	1		6010C	Total/NA
Calcium and Magnesium Hardness	420		0.50		mg/L	1		SM 2340B	Total/NA
Alkalinity, Total	186		10.0		mg/L	2		310.2	Total/NA
Total Kjeldahl Nitrogen	0.22		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.058		0.050		mg/L as N	1		353.2	Total/NA
Sulfate	217	В	15.0		mg/L	10		9038	Total/NA
Chloride	14.1		1.0		mg/L	1		9251	Total/NA
Color	10.0		5.00		Color Units	1		SM 2120B	Total/NA
Total Dissolved Solids	587		10.0		mg/L	1		SM 2540C	Total/NA
Total Organic Carbon	1.5		1.0		mg/L	1		SM 5310D	Total/NA
Field pH	7.45				SU	1		Field Sampling	Total/NA
Specific Conductance	832				umhos/cm	1		Field Sampling	Total/NA
Temperature	13.2				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	111				millivolts	1		Field Sampling	Total/NA
Turbidity	30.9				NTU	1		Field Sampling	Total/NA
U	0.235		0.147		pCi/L	1		908.0	Total/NA

Client Sample ID: MWSE-3

Lab Sample ID: 480-155710-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	2.8		0.20		mg/L	1	_	6010C	Total/NA
Barium	0.061		0.0020		mg/L	1		6010C	Total/NA
Calcium	12.3		0.50		mg/L	1		6010C	Total/NA
Iron	4.0		0.050		mg/L	1		6010C	Total/NA
Magnesium	3.0		0.20		mg/L	1		6010C	Total/NA
Manganese	0.20		0.0030		mg/L	1		6010C	Total/NA
Potassium	1.8		0.50		mg/L	1		6010C	Total/NA
Sodium	1.3		1.0		mg/L	1		6010C	Total/NA
Zinc	0.041		0.010		mg/L	1		6010C	Total/NA
Vanadium	0.0050		0.0050		mg/L	1		6010C	Total/NA
Calcium and Magnesium Hardness	43.1		0.50		mg/L	1		SM 2340B	Total/NA
Alkalinity, Total	25.9		5.0		mg/L	1		310.2	Total/NA
Total Kjeldahl Nitrogen	0.23		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	2.4		0.050		mg/L as N	1		353.2	Total/NA
Sulfate	14.5	В	1.5		mg/L	1		9038	Total/NA
Color	40.0		5.00		Color Units	1		SM 2120B	Total/NA
Total Dissolved Solids	57.0		10.0		mg/L	1		SM 2540C	Total/NA
Field pH	5.98				SU	1		Field Sampling	Total/NA
Specific Conductance	104				umhos/cm	1		Field Sampling	Total/NA
Temperature	13.0				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	288				millivolts	1		Field Sampling	Total/NA
Turbidity	29.2				NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

9/6/2019

Page 8 of 136

9

Job ID: 480-155710-1

3

4

6

0

10

12

14

15

17

10

1

Detection Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3 (Continued) Lab Sample ID: 480-155710-2

Analyte	Result Qualifier	RL	RL Unit	Dil Fac D Method	Prep Type
11	0.0765	0.161	nCi/l	1 908.0	Total/NA

Client Sample ID: MWSE-1

Lab Sample ID: 480-155757-1

Analyte	Result	Qualifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Perfluorobutanoic acid (PFBA)	2.5	1.9	·	ng/L	1	537 (modified)	Total/NA
Barium	0.10	0.0020)	mg/L	1	6010C	Total/NA
Boron	0.023	0.020	1	mg/L	1	6010C	Total/NA
Calcium	102	0.50		mg/L	1	6010C	Total/NA
Iron	0.061	0.050)	mg/L	1	6010C	Total/NA
Magnesium	26.4	0.20)	mg/L	1	6010C	Total/NA
Manganese	0.059	0.0030		mg/L	1	6010C	Total/NA
Potassium	1.2	0.50)	mg/L	1	6010C	Total/NA
Sodium	4.4	1.0)	mg/L	1	6010C	Total/NA
Calcium and Magnesium Hardness	362	0.50		mg/L	1	SM 2340B	Total/NA
Alkalinity, Total	192	10.0)	mg/L	2	310.2	Total/NA
Sulfate	136	B 15.0)	mg/L	10	9038	Total/NA
Chloride	8.5	1.0		mg/L	1	9251	Total/NA
Color	10.0	5.00)	Color Units	1	SM 2120B	Total/NA
Total Dissolved Solids	480	10.0)	mg/L	1	SM 2540C	Total/NA
Total Organic Carbon	1.4	1.0		mg/L	1	SM 5310D	Total/NA
Field pH	7.23			SU	1	Field Sampling	Total/NA
Specific Conductance	692			umhos/cm	1	Field Sampling	Total/NA
Temperature	11.9			Degrees C	1	Field Sampling	Total/NA
Oxidation Reduction Potential	79			millivolts	1	Field Sampling	Total/NA
Turbidity	6.8			NTU	1	Field Sampling	Total/NA
U	0.116	0.135		pCi/L	1	908.0	Total/NA

Client Sample ID: MWSE-4

Lab Sample ID: 480-155757-2

Analyte	Result (Qualifier F	RL MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	16		.8	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	19	1	.8	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	23	1	.8	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	7.3	1	.8	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	11	1	.8	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	4.7	1	.8	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.1	1	.8	ng/L	1		537 (modified)	Total/NA
Barium	0.055	0.00	20	mg/L	1		6010C	Total/NA
Boron	0.052	0.0	20	mg/L	1		6010C	Total/NA
Calcium	69.9	0.	50	mg/L	1		6010C	Total/NA
Iron	0.32	0.0	50	mg/L	1		6010C	Total/NA
Magnesium	12.3	0	20	mg/L	1		6010C	Total/NA
Manganese	0.13	0.00	30	mg/L	1		6010C	Total/NA
Potassium	1.8	0.	50	mg/L	1		6010C	Total/NA
Sodium	14.0	1	.0	mg/L	1		6010C	Total/NA
Calcium and Magnesium Hardness	225	0.	50	mg/L	1		SM 2340B	Total/NA
Alkalinity, Total	139	10	.0	mg/L	2		310.2	Total/NA
Chemical Oxygen Demand	6.3	5	.0	mg/L	1		410.4	Total/NA
Sulfate	97.1 E	3 7	.5	mg/L	5		9038	Total/NA
Chloride	22.0	1	.0	mg/L	1		9251	Total/NA
Color	5.00	5.	00	Color Units	1		SM 2120B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 9 of 136

Job ID: 480-155710-1

Detection Summary

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Dissolved Solids	441		10.0		mg/L	1	_	SM 2540C	Total/NA
Total Organic Carbon	2.0		1.0		mg/L	1		SM 5310D	Total/NA
Field pH	7.52				SU	1		Field Sampling	Total/NA
Specific Conductance	516				umhos/cm	1		Field Sampling	Total/NA
Temperature	16.2				Degrees C	1		Field Sampling	Total/NA
Oxidation Reduction Potential	70.0				millivolts	1		Field Sampling	Total/NA
Turbidity	6.9				NTU	1		Field Sampling	Total/NA
U	0.175		0.148		pCi/L	1		908.0	Total/NA

Client Sample ID: TRIP BLANK	Lab Sample ID: 480-155757-3

No Detections.

Client Sample ID: MWSE-1 Lab Sample ID: 480-156080-1

No Detections.

Client Sample ID: MWSE-2 Lab Sample ID: 480-156080-2

No Detections.

Client Sample ID: MWSE-3 Lab Sample ID: 480-156080-3

No Detections.

Client Sample ID: MWSE-4 Lab Sample ID: 480-156080-4

No Detections.

This Detection Summary does not include radiochemical test results.

3

F

7

8

10

13

14

15

18

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2

Date Collected: 07/02/19 13:00 Date Received: 07/02/19 18:30 Lab Sample ID: 480-155710-1

Matrix: Water

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			07/11/19 23:25	
1,1,1-Trichloroethane	ND	1.0	ug/L			07/11/19 23:25	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			07/11/19 23:25	
1,1,2-Trichloroethane	ND	1.0	ug/L			07/11/19 23:25	
1,1-Dichloroethane	ND	1.0	ug/L			07/11/19 23:25	
1,1-Dichloroethene	ND	1.0	ug/L			07/11/19 23:25	
1,1-Dichloropropene	ND	1.0	ug/L			07/11/19 23:25	
1,2,3-Trichloropropane	ND	1.0	ug/L			07/11/19 23:25	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/11/19 23:25	
1,2-Dichlorobenzene	ND	1.0	ug/L			07/11/19 23:25	
1,2-Dichloroethane	ND	1.0	ug/L			07/11/19 23:25	
1,2-Dichloropropane	ND	1.0	ug/L			07/11/19 23:25	
1,3-Dichloropropane	ND	1.0	ug/L			07/11/19 23:25	
1,4-Dichlorobenzene	ND	1.0	ug/L			07/11/19 23:25	
2,2-Dichloropropane	ND	1.0	ug/L			07/11/19 23:25	
2-Butanone (MEK)	ND	10	ug/L			07/11/19 23:25	
2-Hexanone	ND	5.0	ug/L			07/11/19 23:25	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L			07/11/19 23:25	
Acetone	ND	10	ug/L			07/11/19 23:25	
Acetonitrile	ND	15	ug/L			07/11/19 23:25	
Acrolein	ND	20	ug/L			07/11/19 23:25	
Acrylonitrile	ND	5.0	ug/L			07/11/19 23:25	
Allyl chloride	ND	1.0	ug/L			07/11/19 23:25	
Benzene	ND	1.0	ug/L			07/11/19 23:25	
Chlorobromomethane	ND	1.0	ug/L			07/11/19 23:25	
Bromodichloromethane	ND	1.0	ug/L			07/11/19 23:25	
Bromoform	ND	1.0	ug/L			07/11/19 23:25	
Bromomethane	ND	1.0	ug/L			07/11/19 23:25	
Carbon disulfide	ND	1.0	ug/L			07/11/19 23:25	
Carbon tetrachloride	ND	1.0	ug/L			07/11/19 23:25	
Chlorobenzene	ND	1.0	ug/L			07/11/19 23:25	
Dibromochloromethane	ND	1.0	ug/L			07/11/19 23:25	
Chloroethane	ND	1.0	ug/L			07/11/19 23:25	
Chloroform	ND	1.0	ug/L			07/11/19 23:25	
Chloromethane	ND	1.0	ug/L			07/11/19 23:25	
cis-1,2-Dichloroethene	ND	1.0	ug/L			07/11/19 23:25	
cis-1,3-Dichloropropene	ND	1.0	ug/L			07/11/19 23:25	
Chloroprene	ND	1.0	ug/L			07/11/19 23:25	
Dibromomethane	ND	1.0	ug/L			07/11/19 23:25	
Dichlorodifluoromethane	ND	1.0	ug/L			07/11/19 23:25	
Ethyl methacrylate	ND	1.0	ug/L			07/11/19 23:25	
Ethylbenzene	ND	1.0	ug/L			07/11/19 23:25	
1,2-Dibromoethane	ND	1.0	ug/L			07/11/19 23:25	
Hexachlorobutadiene	ND ND	2.0	ug/L ug/L			07/11/19 23:25	
Iodomethane	ND ND	1.0	ug/L ug/L			07/11/19 23:25	
	ND	25	.			07/11/19 23:25	
Isobutyl alcohol			ug/L				
Methacrylonitrile	ND ND	5.0	ug/L			07/11/19 23:25	
Methyl methacrylate	ND	1.0	ug/L			07/11/19 23:25	
Methylene Chloride	ND	1.0	ug/L			07/11/19 23:25	

Eurofins TestAmerica, Buffalo

Page 11 of 136

A

5

<u>'</u>

10

12

4 4

13

10

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2 Lab Sample ID: 480-155710-1

Date Collected: 07/02/19 13:00 Matrix: Water
Date Received: 07/02/19 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		1.0		ug/L			07/11/19 23:25	1
Propionitrile	ND		10		ug/L			07/11/19 23:25	1
Styrene	ND		1.0		ug/L			07/11/19 23:25	1
Tetrachloroethene	ND		1.0		ug/L			07/11/19 23:25	1
Toluene	ND		1.0		ug/L			07/11/19 23:25	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/11/19 23:25	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/11/19 23:25	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/11/19 23:25	1
Trichloroethene	ND		1.0		ug/L			07/11/19 23:25	1
Trichlorofluoromethane	ND		1.0		ug/L			07/11/19 23:25	1
Vinyl acetate	ND		5.0		ug/L			07/11/19 23:25	1
Vinyl chloride	ND		1.0		ug/L			07/11/19 23:25	1
Xylenes, Total	ND		2.0		ug/L			07/11/19 23:25	1
o-Xylene	ND		1.0		ug/L			07/11/19 23:25	1
m,p-Xylene	ND		2.0		ug/L			07/11/19 23:25	1
1,2-Dichloroethene, Total	ND		2.0		ug/L			07/11/19 23:25	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/11/19 23:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		77 - 120					07/11/19 23:25	1
4-Bromofluorobenzene (Surr)	95		73 - 120					07/11/19 23:25	1
Toluene-d8 (Surr)	100		80 - 120					07/11/19 23:25	1
Dibromofluoromethane (Surr)	94		75 - 123					07/11/19 23:25	1

Method: 8270D SIM ID - Semi	volatile Orga	anic Comp	ounds (GC/I	MS SIM /	Isotop	e Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20		ug/L		07/05/19 15:22	07/10/19 01:48	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	30		15 - 110				07/05/19 15:22	07/10/19 01:48	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,2,4-Trichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,2-Dichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,3,5-Trinitrobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,3-Dichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,3-Dinitrobenzene	ND	20	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,4-Naphthoquinone	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
1,4-Dichlorobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
1-Naphthylamine	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,3,4,6-Tetrachlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,4,5-Trichlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,4,6-Trichlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,4-Dichlorophenol	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,4-Dimethylphenol	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,4-Dinitrophenol	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,4-Dinitrotoluene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,6-Dichlorophenol	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
2,6-Dinitrotoluene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1

Eurofins TestAmerica, Buffalo

Page 12 of 136

2

3

6

8

10

12

14

15

17

18

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2

Lab Sample ID: 480-155710-1 Date Collected: 07/02/19 13:00

Matrix: Water Date Received: 07/02/19 18:30

ND								
		10		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		10		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		10		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		10		-		07/05/19 15:02	07/10/19 22:49	
ND		10				07/05/19 15:02	07/10/19 22:49	
ND		10				07/05/19 15:02	07/10/19 22:49	
ND		5.0		_		07/05/19 15:02	07/10/19 22:49	
ND		40				07/05/19 15:02	07/10/19 22:49	
				-				
				-				
				_				
				-				
				_				
				-				
	*							
				-				
				-				
				-				
				-				
				-				
				-				
				.				
				-				
				•				
				-				
ND		10		ug/L				
ND		5.0		ug/L				
ND		10		ug/L				
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		5.0		ug/L		07/05/19 15:02	07/10/19 22:49	
ND		10		ug/L		07/05/19 15:02	07/10/19 22:49	
	ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 5.0 ND 5.0 ND 5.0 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 5.0 ND	ND 5.0 ND 5.0 ND 5.0 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 10 ND 5.0 ND	ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L	ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 40 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 10 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 10 ug/L ND 5.0 ug/L ND 5.0 ug/L ND 5.0 ug/L	ND 5.0 ug/L 07/05/19 15:02 ND 5.0 ug/L 07/05/19 15:02 ND 5.0 ug/L 07/05/19 15:02 ND 10 ug/L 07/05/19 15:02 ND 5.0 ug/L 07/	ND 5.0 ug/L 07/05/19 15:02 07/10/19 22:49 ND 5.0 ug/L 07/05/19 15:02 07/10/19 22:49 ND 5.0 ug/L 07/05/19 15:02 07/10/19 22:49 ND 10 ug/L 07/05/19 15:02 07/10/19 22:49 ND 5.0 ug/

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2

Date Collected: 07/02/19 13:00

Lab Sample ID: 480-155710-1

Matrix: Water

Date Received: 07/02/19 18:30

Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Diphenylamine	ND ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	-
Disulfoton	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	
Ethyl methanesulfonate	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	
Famphur	ND	40	ug/L		07/05/19 15:02	07/10/19 22:49	•
Fluoranthene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	•
Fluorene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	,
Hexachlorobenzene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	
Hexachlorobutadiene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
Hexachlorocyclopentadiene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	• • • • • • • • • • • • • • • • • • • •
Hexachloroethane	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
Hexachloropropene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Indeno[1,2,3-cd]pyrene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
Isodrin	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Isophorone	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
Isosafrole	ND	10	ug/L			07/10/19 22:49	
Kepone	ND	50	ug/L			07/10/19 22:49	1
Methapyrilene	ND	50	ug/L			07/10/19 22:49	1
Methyl methanesulfonate	ND	10	ug/L			07/10/19 22:49	
Safrole	ND ND	10	ug/L			07/10/19 22:49	,
Thionazin	ND ND	10	ug/L			07/10/19 22:49	1
Naphthalene	ND	5.0	ug/L			07/10/19 22:49	············ 1
Nitrobenzene	ND ND	5.0	-			07/10/19 22:49	1
	ND ND	10	ug/L			07/10/19 22:49	1
5-Nitro-o-toluidine			ug/L				
N-Nitrosodiethylamine	ND	10	ug/L			07/10/19 22:49	1
Chlorobenzilate	ND	20	ug/L			07/10/19 22:49	1
N-Nitrosodimethylamine	ND	10	ug/L			07/10/19 22:49	1
N-Nitrosodi-n-butylamine	ND	10	ug/L			07/10/19 22:49	1
N-Nitrosodipropylamine	ND	5.0	ug/L			07/10/19 22:49	1
N-Nitrosodiphenylamine	ND	5.0	ug/L			07/10/19 22:49	1
N-Nitrosomethylethylamine	ND	10	ug/L			07/10/19 22:49	1
N-Nitrosopiperidine	ND	10	ug/L			07/10/19 22:49	1
N-Nitrosopyrrolidine	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Triethyl phosphorothioate	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Parathion	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Parathion methyl	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
p-Dimethylamino azobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Pentachlorobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Pentachloronitrobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Pentachlorophenol	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Phenacetin	ND	10	ug/L		07/05/19 15:02	07/10/19 22:49	1
Phenanthrene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 22:49	1
Phenol	ND	5.0	ug/L			07/10/19 22:49	1
Phorate	ND	10	ug/L			07/10/19 22:49	1
p-Phenylene diamine	ND	800	ug/L		07/05/19 15:02	07/10/19 22:49	1
Pyrene	ND	5.0	ug/L			07/10/19 22:49	1
Pronamide	ND	10	ug/L			07/10/19 22:49	1
Surrogate	%Recovery Q	ualifier Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl		48 - 120				07/10/19 22:49	1
2-Fluorophenol (Surr)	64	35 - 120			07/05/19 15:02	07/10/19 22:49	1

Eurofins TestAmerica, Buffalo

Page 14 of 136

2

3

O

8

10

12

10

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2 Lab Sample ID: 480-155710-1

Date Collected: 07/02/19 13:00 **Matrix: Water** Date Received: 07/02/19 18:30

Method: 8270D	- Semivolatile (Organic Com	nounds (GC/MS)	(Continued)	
Method. 027 0D	- Sellil Volatile	Ji gariic coiii	poullus (CONTRICT	(Continued)	

Surrogate	%Recovery	Qualifier Limit	ts	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	85	41 - 1	20	07/05/19 15:02	07/10/19 22:49	1
Nitrobenzene-d5 (Surr)	94	46 - 1	20	07/05/19 15:02	07/10/19 22:49	1
Phenol-d5 (Surr)	46	22 - 1	20	07/05/19 15:02	07/10/19 22:49	1
p-Terphenyl-d14 (Surr)	94	59 - 1	36	07/05/19 15:02	07/10/19 22:49	1

Method: 8081B - Organochlorine Pesticides (GC)	Method: 8081B -	Organochlorine	Pesticides	(GC)
--	-----------------	----------------	-------------------	------

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD		*	0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
4,4'-DDE	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
4,4'-DDT	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Aldrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
alpha-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
beta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Chlordane (technical)	ND		0.50		ug/L		07/08/19 15:10	07/09/19 14:19	1
delta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Dieldrin	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Endosulfan I	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Endosulfan II	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Endosulfan sulfate	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Endrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Endrin aldehyde	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
gamma-BHC (Lindane)	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Heptachlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Methoxychlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1
Toxaphene	ND		0.50		ug/L		07/08/19 15:10	07/09/19 14:19	1
Heptachlor epoxide	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:19	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl	74		20 - 120	07/08/19 15:10 07/09/19 14:19	1
Tetrachloro-m-xylene	91		44 - 120	07/08/19 15:10 07/09/19 14:19	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
PCB-1221	ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
PCB-1232	ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
PCB-1242	ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
PCB-1248	ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
PCB-1254	ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
PCB-1260	ND	0.54	ug/L		07/05/19 08:16	07/10/19 18:07	1
Surrogato	% Rocovery Qualifier	Limite			Propared	Analyzod	Dil Esc

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	62		39 - 121	07/05/19 08:16	07/10/19 18:07	1
DCB Decachlorobinhenyl	52		19 - 120	07/05/19 08:16	07/10/19 18:07	1

Barrier and Company of the Company o	04544	The state of the s	100
wetnod:	8151A -	Herbicides	(GC)

	~ /						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND	0.49	ug/L		07/03/19 14:11	07/05/19 17:11	1
2,4-D	ND	0.49	ug/L		07/03/19 14:11	07/05/19 17:11	1
Silvex (2,4,5-TP)	ND	0.49	ug/L		07/03/19 14:11	07/05/19 17:11	1

Eurofins TestAmerica, Buffalo

Page 15 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2

Lab Sample ID: 480-155710-1 Date Collected: 07/02/19 13:00

Date Received: 07/02/19 18:30

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	57		48 - 132				07/03/19 14:11	07/05/19 17:11	1
=									
Method: 537 (modified) - Fluor		/I Substan Qualifier		MDL	Unit	n	Dronorod	Anglyzad	Dil Ess
Analyte Perfluorobutanoic acid (PFBA)	ND	Qualifier		MIDL		D	Prepared 07/08/19 05:43	Analyzed 07/10/19 01:12	Dil Fac
• • •	ND ND		1.8		ng/L			07/10/19 01:12	1
Perfluoropentanoic acid (PFPeA)	ND ND		1.8		ng/L			07/10/19 01:12	1
Perfluorohexanoic acid (PFHxA)					ng/L				
Perfluoroheptanoic acid (PFHpA)	ND		1.8		ng/L			07/10/19 01:12	1
Perfluorooctanoic acid (PFOA)	ND		1.8		ng/L			07/10/19 01:12	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L			07/10/19 01:12	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L			07/10/19 01:12	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L			07/10/19 01:12	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L			07/10/19 01:12	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:12	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		07/08/19 05:43	07/10/19 01:12	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		07/08/19 05:43	07/10/19 01:12	1
6:2 FTS	ND		18		ng/L		07/08/19 05:43	07/10/19 01:12	1
8:2 FTS	ND		18		ng/L		07/08/19 05:43	07/10/19 01:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	83		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C5 PFPeA	100		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C2 PFHxA	106		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C4 PFHpA	102		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C4 PFOA	101		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C5 PFNA	99		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C2 PFDA	103		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C2 PFUnA	100		25 - 150				07/08/19 05:43	07/10/19 01:12	1
13C2 PFDoA	97		25 - 150					07/10/19 01:12	1
13C2 PFTeDA	106		25 - 150					07/10/19 01:12	1
13C3 PFBS	94		25 - 150					07/10/19 01:12	1
1802 PFHxS	102		25 - 150 25 - 150					07/10/19 01:12	1
13C4 PFOS	96		25 - 150 25 - 150					07/10/19 01:12	
13C8 FOSA	90 87		25 - 150 25 - 150					07/10/19 01:12	1
	100		25 - 150 25 - 150					07/10/19 01:12	1
d3-NMeFOSAA									
d5-NEtFOSAA	100		25 - 150					07/10/19 01:12	1
M2-6:2 FTS	132		25 - 150					07/10/19 01:12	1
M2-8:2 FTS 	104		25 - 150				07/08/19 05:43	07/10/19 01:12	1
Method: 6010C - Metals (ICP) Analyte	Recult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Buffalo

Page 16 of 136

Job ID: 480-155710-1

Matrix: Water

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2 Lab Sample ID: 480-155710-1

Date Collected: 07/02/19 13:00 **Matrix: Water** Date Received: 07/02/19 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		0.020		mg/L		07/05/19 07:47	07/05/19 19:18	1
Arsenic	ND		0.015		mg/L		07/05/19 07:47	07/05/19 19:18	1
Barium	0.12		0.0020		mg/L		07/05/19 07:47	07/05/19 19:18	1
Beryllium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 19:18	1
Boron	0.046		0.020		mg/L		07/05/19 07:47	07/05/19 19:18	1
Cadmium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 19:18	1
Calcium	122		0.50		mg/L		07/05/19 07:47	07/05/19 19:18	1
Chromium	ND		0.0040		mg/L		07/05/19 07:47	07/05/19 19:18	1
Cobalt	ND		0.0040		mg/L		07/05/19 07:47	07/05/19 19:18	1
Copper	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:18	1
Iron	2.5		0.050		mg/L		07/05/19 07:47	07/05/19 19:18	1
Lead	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:18	1
Magnesium	27.8		0.20		mg/L		07/05/19 07:47	07/05/19 19:18	1
Manganese	0.30		0.0030		mg/L		07/05/19 07:47	07/05/19 19:18	1
Nickel	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:18	1
Potassium	4.6		0.50		mg/L		07/05/19 07:47	07/05/19 19:18	1
Selenium	ND		0.025		mg/L		07/05/19 07:47	07/05/19 19:18	1
Silver	ND		0.0060		mg/L		07/05/19 07:47	07/05/19 19:18	1
Sodium	12.7		1.0		mg/L		07/05/19 07:47	07/05/19 19:18	1
Thallium	ND		0.020		mg/L		07/05/19 07:47	07/05/19 19:18	1
Zinc	0.017		0.010		mg/L		07/05/19 07:47	07/05/19 19:18	1
Vanadium	ND		0.0050		mg/L		07/05/19 07:47	07/05/19 19:18	1
Tin	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:18	1
Method: 7470A - Mercury (C'	VAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		07/05/19 11:55	07/05/19 15:49	1
Method: SM 2340B - Total Ha									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium and Magnesium Hardness	420		0.50		mg/L			07/16/19 09:25	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		1.0		mg/L			07/08/19 17:56	5
Alkalinity, Total	186		10.0		ma/L			07/14/19 14:57	2

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		1.0		mg/L			07/08/19 17:56	5
Alkalinity, Total	186		10.0		mg/L			07/14/19 14:57	2
Ammonia (as N)	ND		0.020		mg/L as N			07/10/19 09:35	1
Total Kjeldahl Nitrogen	0.22		0.15		mg/L as N		07/18/19 09:10	07/21/19 10:22	1
Nitrate	0.058		0.050		mg/L as N			07/03/19 21:42	1
Chemical Oxygen Demand	ND		5.0		mg/L			07/18/19 09:44	1
Chromium, hexavalent	ND		0.010		mg/L			07/03/19 11:45	1
Cyanide, Total	ND		0.010		mg/L		07/09/19 14:15	07/10/19 15:16	1
Sulfate	217	В	15.0		mg/L			07/24/19 12:52	10
Phenolics, Total Recoverable	ND	*	0.0050		mg/L		07/11/19 19:10	07/12/19 14:38	1
Chloride	14.1		1.0		mg/L			07/14/19 14:39	1
Total Dissolved Solids	587		10.0		mg/L			07/08/19 08:38	1
Biochemical Oxygen Demand	ND		2.0		mg/L			07/04/19 04:48	1
Total Organic Carbon	1.5		1.0		mg/L			07/13/19 06:12	1

Eurofins TestAmerica, Buffalo

Page 17 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2

Lab Sample ID: 480-155710-1

Matrix: Water

Date Collected: 07/02/19 13:00 Date Received: 07/02/19 18:30

U

Analyte		Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color		10.0		5.00		Color Units	_		07/03/19 17:25	1
Method: 903.0 - Ra	dium-226	(GFPC)								
		(0.1.5)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.131	U *	0.103	0.104	1.00).153 pCi/L	_	07/15/19 14:52	08/20/19 20:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	58.2		40 - 110					07/15/19 14:52	08/20/19 20:42	1
Method: 904.0 - Ra	dium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit		Prepared	Analyzed	Dil Fac
Radium-228	0.590	U *	0.481	0.484	1.00).766 pCi/L		07/15/19 15:55	07/29/19 10:12	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	58.2		40 - 110					07/15/19 15:55	07/29/19 10:12	1
Y Carrier	79.6		40 - 110					07/15/19 15:55	07/29/19 10:12	1
Method: Field Sam	pling - Fie	eld Sampling								
Analyte		Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH		7.45				SU			07/02/19 13:00	1
Specific Conductance	•	832				umhos/cm			07/02/19 13:00	1
Temperature		13.2				Degrees C			07/02/19 13:00	1
Oxidation Reduction I	Potential	111				millivolts			07/02/19 13:00	1
Turbidity		30.9				NTU			07/02/19 13:00	1
Method: 908.0 - Ur	anium, To									
Analyte		Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac

0.147

pCi/L

0.235

08/05/19 00:00

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3

Date Collected: 07/02/19 12:20 Date Received: 07/02/19 18:30

Lab Sample ID: 480-155710-2

Matrix: Water

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane		1.0	ug/L		•	07/11/19 23:48	
1,1,1-Trichloroethane	ND	1.0	ug/L			07/11/19 23:48	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			07/11/19 23:48	
1,1,2-Trichloroethane	ND	1.0	ug/L			07/11/19 23:48	
1,1-Dichloroethane	ND	1.0	ug/L			07/11/19 23:48	
1,1-Dichloroethene	ND	1.0	ug/L			07/11/19 23:48	
1,1-Dichloropropene	ND	1.0	ug/L			07/11/19 23:48	
1,2,3-Trichloropropane	ND	1.0	ug/L			07/11/19 23:48	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/11/19 23:48	
1,2-Dichlorobenzene	ND	1.0	ug/L			07/11/19 23:48	
1,2-Dichloroethane	ND	1.0	ug/L			07/11/19 23:48	
1,2-Dichloropropane	ND	1.0	ug/L			07/11/19 23:48	
1,3-Dichloropropane	ND	1.0	ug/L			07/11/19 23:48	
1,4-Dichlorobenzene	ND	1.0	ug/L			07/11/19 23:48	
2,2-Dichloropropane	ND	1.0	ug/L			07/11/19 23:48	
2-Butanone (MEK)	ND	10	ug/L			07/11/19 23:48	
2-Hexanone	ND	5.0	ug/L			07/11/19 23:48	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L			07/11/19 23:48	
Acetone	ND	10	ug/L			07/11/19 23:48	
Acetonitrile	ND	15	ug/L			07/11/19 23:48	
Acrolein	ND	20	ug/L			07/11/19 23:48	
Acrylonitrile	ND	5.0	ug/L			07/11/19 23:48	
Allyl chloride	ND	1.0	ug/L			07/11/19 23:48	
Benzene	ND	1.0	ug/L			07/11/19 23:48	
Chlorobromomethane	ND	1.0	ug/L			07/11/19 23:48	
Bromodichloromethane	ND	1.0	ug/L			07/11/19 23:48	
Bromoform	ND	1.0	ug/L			07/11/19 23:48	
Bromomethane	ND	1.0	ug/L			07/11/19 23:48	
Carbon disulfide	ND	1.0	ug/L			07/11/19 23:48	
Carbon tetrachloride	ND	1.0	ug/L			07/11/19 23:48	
Chlorobenzene	ND	1.0	ug/L			07/11/19 23:48	
Dibromochloromethane	ND	1.0	ug/L			07/11/19 23:48	
Chloroethane	ND	1.0	ug/L			07/11/19 23:48	
Chloroform	ND	1.0	ug/L			07/11/19 23:48	
Chloromethane	ND	1.0	ug/L			07/11/19 23:48	
cis-1,2-Dichloroethene	ND	1.0	ug/L			07/11/19 23:48	
cis-1,3-Dichloropropene	ND	1.0	ug/L			07/11/19 23:48	
Chloroprene	ND	1.0	ug/L			07/11/19 23:48	
Dibromomethane	ND	1.0	ug/L			07/11/19 23:48	
Dichlorodifluoromethane	ND	1.0	ug/L			07/11/19 23:48	
Ethyl methacrylate	ND	1.0	ug/L			07/11/19 23:48	
Ethylbenzene	ND	1.0	ug/L			07/11/19 23:48	
1,2-Dibromoethane	ND	1.0	ug/L			07/11/19 23:48	
Hexachlorobutadiene	ND	2.0	ug/L			07/11/19 23:48	
Iodomethane	ND	1.0	ug/L			07/11/19 23:48	
Isobutyl alcohol	ND	25	ug/L			07/11/19 23:48	
Methacrylonitrile	ND	5.0	ug/L			07/11/19 23:48	
Methyl methacrylate	ND	1.0	ug/L			07/11/19 23:48	
Methylene Chloride	ND ND	1.0	ug/L			07/11/19 23:48	

Eurofins TestAmerica, Buffalo

Page 19 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3 Lab Sample ID: 480-155710-2

Date Collected: 07/02/19 12:20 Matrix: Water
Date Received: 07/02/19 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		1.0		ug/L			07/11/19 23:48	1
Propionitrile	ND		10		ug/L			07/11/19 23:48	1
Styrene	ND		1.0		ug/L			07/11/19 23:48	1
Tetrachloroethene	ND		1.0		ug/L			07/11/19 23:48	1
Toluene	ND		1.0		ug/L			07/11/19 23:48	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/11/19 23:48	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/11/19 23:48	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/11/19 23:48	1
Trichloroethene	ND		1.0		ug/L			07/11/19 23:48	1
Trichlorofluoromethane	ND		1.0		ug/L			07/11/19 23:48	1
Vinyl acetate	ND		5.0		ug/L			07/11/19 23:48	1
Vinyl chloride	ND		1.0		ug/L			07/11/19 23:48	1
Xylenes, Total	ND		2.0		ug/L			07/11/19 23:48	1
o-Xylene	ND		1.0		ug/L			07/11/19 23:48	1
m,p-Xylene	ND		2.0		ug/L			07/11/19 23:48	1
1,2-Dichloroethene, Total	ND		2.0		ug/L			07/11/19 23:48	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/11/19 23:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120			-		07/11/19 23:48	1
4-Bromofluorobenzene (Surr)	98		73 - 120					07/11/19 23:48	1
Toluene-d8 (Surr)	104		80 - 120					07/11/19 23:48	1
Dibromofluoromethane (Surr)	97		75 - 123					07/11/19 23:48	1

Method: 8270D \$	SIM ID - Semivolatile Org	anic Com	pounds (GC	MS SIM /	Isoto	pe Dilut	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20		ug/L		07/05/19 15:22	07/10/19 02:12	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	30		15 - 110				07/05/19 15:22	07/10/19 02:12	1

Analyte	Result Qu	ualifier RL	MDL Ur	nit D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,2,4-Trichlorobenzene	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,2-Dichlorobenzene	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,3,5-Trinitrobenzene	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,3-Dichlorobenzene	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,3-Dinitrobenzene	ND	20	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,4-Naphthoquinone	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1,4-Dichlorobenzene	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
1-Naphthylamine	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,3,4,6-Tetrachlorophenol	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,4,5-Trichlorophenol	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,4,6-Trichlorophenol	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,4-Dichlorophenol	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,4-Dimethylphenol	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,4-Dinitrophenol	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,4-Dinitrotoluene	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,6-Dichlorophenol	ND	10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
2,6-Dinitrotoluene	ND	5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1

Eurofins TestAmerica, Buffalo

Page 20 of 136

2

3

6

8

10

12

14

15

17

4.0

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3

Lab Sample ID: 480-155710-2

Date Collected: 07/02/19 12:20 **Matrix: Water** Date Received: 07/02/19 18:30

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
2-Acetylaminofluorene	ND	10	ug/L	07/05/19 15:02	07/10/19 23:17	
2-Chloronaphthalene	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
2-Chlorophenol	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
2-Methylnaphthalene	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
2-Methylphenol	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
2-Naphthylamine	ND	10	ug/L	07/05/19 15:02	07/10/19 23:17	
2-Nitroaniline	ND	10	ug/L	07/05/19 15:02	2 07/10/19 23:17	
2-Nitrophenol	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:17	
o-Toluidine	ND	10	ug/L	07/05/19 15:02	07/10/19 23:17	
3-Methylphenol	ND	10	ug/L	07/05/19 15:02	07/10/19 23:17	
4-Methylphenol	ND	10	ug/L	07/05/19 15:02	07/10/19 23:17	
3,3'-Dichlorobenzidine	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:17	
3,3'-Dimethylbenzidine	ND	40	ug/L	07/05/19 15:02	2 07/10/19 23:17	
3-Methylcholanthrene	ND	10	ug/L	07/05/19 15:02	2 07/10/19 23:17	
3-Nitroaniline	ND	10	ug/L	07/05/19 15:02	07/10/19 23:17	
4,6-Dinitro-2-methylphenol	ND	10	ug/L	07/05/19 15:02	2 07/10/19 23:17	
4-Aminobiphenyl	ND	10	ug/L	07/05/19 15:02	2 07/10/19 23:17	
4-Bromophenyl phenyl ether	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
4-Chloro-3-methylphenol	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
p-Chloroaniline	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
4-Chlorophenyl phenyl ether	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
4-Nitroaniline	ND	10	ug/L	07/05/19 15:02	2 07/10/19 23:17	
4-Nitrophenol	ND *	10	ug/L	07/05/19 15:02	2 07/10/19 23:17	
7,12-Dimethylbenz(a)anthracene	ND	10	ug/L		2 07/10/19 23:17	
Acenaphthene	ND	5.0	ug/L		2 07/10/19 23:17	
Acenaphthylene	ND	5.0	ug/L	07/05/19 15:02	2 07/10/19 23:17	
Acetophenone	ND	5.0	ug/L		2 07/10/19 23:17	
Anthracene	ND	5.0	ug/L		2 07/10/19 23:17	
Benzo[a]anthracene	ND	5.0	ug/L		2 07/10/19 23:17	
Benzo[a]pyrene	ND	5.0	ug/L		2 07/10/19 23:17	
Benzo[b]fluoranthene	ND	5.0	ug/L		2 07/10/19 23:17	
Benzo[g,h,i]perylene	ND	5.0	ug/L		2 07/10/19 23:17	
Benzo[k]fluoranthene	ND	5.0	ug/L		2 07/10/19 23:17	
Benzyl alcohol	ND	20	ug/L		2 07/10/19 23:17	
Bis(2-chloroethoxy)methane	ND	5.0	ug/L		2 07/10/19 23:17	
Bis(2-chloroethyl)ether	ND	5.0	ug/L		2 07/10/19 23:17	
Bis(2-ethylhexyl) phthalate	ND	5.0	ug/L		2 07/10/19 23:17	
bis(2 chloro-1-methylethyl) ether	ND	5.0	ug/L		2 07/10/19 23:17	
Butyl benzyl phthalate	ND	5.0	ug/L		2 07/10/19 23:17	
Chrysene	ND	5.0	ug/L		2 07/10/19 23:17	
Diallate	ND	10	ug/L		2 07/10/19 23:17	
Dibenz(a,h)anthracene	ND	5.0	ug/L		2 07/10/19 23:17	
Dibenzofuran Dibenzofuran	ND	10	ug/L		2 07/10/19 23:17	
Diethyl phthalate	ND ND	5.0	_		2 07/10/19 23:17	
Dietriyi primalate Dimethoate	ND ND	10	ug/L		2 07/10/19 23:17	
			ug/L			
Dimethyl phthalate	ND ND	5.0	ug/L		2 07/10/19 23:17	
Di-n-butyl phthalate	ND ND	5.0	ug/L		2 07/10/19 23:17	
Di-n-octyl phthalate Dinoseb	ND ND	5.0 10	ug/L ug/L		2 07/10/19 23:17 2 07/10/19 23:17	

Eurofins TestAmerica, Buffalo

Page 21 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3 Lab Sample ID: 480-155710-2

Date Collected: 07/02/19 12:20 Matrix: Water Date Received: 07/02/19 18:30

Analyte	Result	Qualifier	ŔĹ	MDL Un	it D	Prepared	Analyzed	Dil Fac
Diphenylamine	ND		10	ug.	/L	07/05/19 15:02	07/10/19 23:17	1
Disulfoton	ND		10	ug.		07/05/19 15:02	07/10/19 23:17	1
Ethyl methanesulfonate	ND		10	ug.	/L	07/05/19 15:02	07/10/19 23:17	1
Famphur	ND		40	ug.	/L	07/05/19 15:02	07/10/19 23:17	1
Fluoranthene	ND		5.0	ug		07/05/19 15:02	07/10/19 23:17	1
Fluorene	ND		5.0	ug		07/05/19 15:02	07/10/19 23:17	1
Hexachlorobenzene	ND		5.0	ug.		07/05/19 15:02	07/10/19 23:17	1
Hexachlorobutadiene	ND		5.0	ug		07/05/19 15:02	07/10/19 23:17	1
Hexachlorocyclopentadiene	ND		5.0	ug.		07/05/19 15:02	07/10/19 23:17	1
Hexachloroethane	ND		5.0	ug.		07/05/19 15:02	07/10/19 23:17	1
Hexachloropropene	ND		10	ug.		07/05/19 15:02	07/10/19 23:17	1
Indeno[1,2,3-cd]pyrene	ND		5.0	ug			07/10/19 23:17	1
Isodrin	ND		10	ug.			07/10/19 23:17	1
Isophorone	ND		5.0	ug.			07/10/19 23:17	1
Isosafrole	ND		10	ug			07/10/19 23:17	
Kepone	ND		50	ug.			07/10/19 23:17	1
Methapyrilene	ND		50	ug.			07/10/19 23:17	1
Methyl methanesulfonate	ND		10	ug			07/10/19 23:17	
Safrole	ND		10	ug.			07/10/19 23:17	1
Thionazin	ND		10	ug.			07/10/19 23:17	1
Naphthalene	ND		5.0	ug			07/10/19 23:17	
Nitrobenzene	ND ND		5.0	ug.			07/10/19 23:17	1
5-Nitro-o-toluidine	ND		10	ug.			07/10/19 23:17	1
N-Nitrosodiethylamine	ND		10	ug.			07/10/19 23:17	
Chlorobenzilate	ND ND		20	ug. ug.			07/10/19 23:17	1
N-Nitrosodimethylamine	ND ND		10	_			07/10/19 23:17	
	ND ND			ug				1
N-Nitrosodi-n-butylamine	ND ND		10 5.0	ug			07/10/19 23:17 07/10/19 23:17	1 1
N-Nitrosodipropylamine				ug				
N-Nitrosodiphenylamine	ND		5.0	ug			07/10/19 23:17	1
N-Nitrosomethylethylamine	ND		10	ug			07/10/19 23:17	1
N-Nitrosopiperidine	ND		10	ug			07/10/19 23:17	1
N-Nitrosopyrrolidine	ND		10	ug			07/10/19 23:17	1
Triethyl phosphorothioate	ND		10	ug			07/10/19 23:17	1
Parathion	ND		10	ug			07/10/19 23:17	1
Parathion methyl	ND		10	ug			07/10/19 23:17	
p-Dimethylamino azobenzene	ND		10	ug			07/10/19 23:17	1
Pentachlorobenzene	ND		10	ug			07/10/19 23:17	1
Pentachloronitrobenzene	ND		10	ug			07/10/19 23:17	1
Pentachlorophenol	ND		10	ug			07/10/19 23:17	1
Phenacetin	ND		10	ug			07/10/19 23:17	1
Phenanthrene	ND		5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
Phenol	ND		5.0	ug	/L	07/05/19 15:02	07/10/19 23:17	1
Phorate	ND		10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
p-Phenylene diamine	ND		800	ug	/L	07/05/19 15:02	07/10/19 23:17	1
Pyrene	ND		5.0	ug	L	07/05/19 15:02	07/10/19 23:17	1
Pronamide	ND		10	ug	/L	07/05/19 15:02	07/10/19 23:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	95		48 - 120			07/05/19 15:02	07/10/19 23:17	1
2-Fluorophenol (Surr)	64		35 - 120			07/05/19 15:02	07/10/19 23:17	1

Eurofins TestAmerica, Buffalo

9/6/2019

Page 22 of 136

2

3

C

8

10

13

15

17

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3 Lab Sample ID: 480-155710-2

Date Collected: 07/02/19 12:20 Matrix: Water Date Received: 07/02/19 18:30

Method: 8270D - 9	Semivolatile Or	ganic Comi	nounds (GC/MS)	(Continued)	
Mictiloa. OE1 OD - C	Jenni volutile Oi	gaine com	poullus ((Oontiniaca)	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	82	41 - 120	07/05/19 15:02	07/10/19 23:17	1
Nitrobenzene-d5 (Surr)	93	46 - 120	07/05/19 15:02	07/10/19 23:17	1
Phenol-d5 (Surr)	45	22 - 120	07/05/19 15:02	07/10/19 23:17	1
p-Terphenyl-d14 (Surr)	94	59 - 136	07/05/19 15:02	07/10/19 23:17	1

Method: 8081B - Organochlorine Pesticides (G
--

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ⁻	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
4,4'-DDE	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
4,4'-DDT	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Aldrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
alpha-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
beta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Chlordane (technical)	ND		0.50		ug/L		07/08/19 15:10	07/09/19 14:39	1
delta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Dieldrin	ND 3	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Endosulfan I	ND '	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Endosulfan II	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Endosulfan sulfate	ND 3	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Endrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Endrin aldehyde	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
gamma-BHC (Lindane)	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Heptachlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Methoxychlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1
Toxaphene	ND		0.50		ug/L		07/08/19 15:10	07/09/19 14:39	1
Heptachlor epoxide	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:39	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
DCB Decachlorobiphenyl	59		20 - 120	07/08/19 15:10 07/09/19 14:39	1
Tetrachloro-m-xylene	80		44 - 120	07/08/19 15:10 07/09/19 14:39	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1
PCB-1221	ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1
PCB-1232	ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1
PCB-1242	ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1
PCB-1248	ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1
PCB-1254	ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1
PCB-1260	ND	0.56	ug/L		07/05/19 08:16	07/10/19 18:45	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	59		39 - 121	07/05/19 08:16	07/10/19 18:45	1
DCB Decachlorobinhenyl	33		19 - 120	07/05/19 08:16	07/10/19 18:45	1

Method: 8151A - Herbicides (GC)

	~ /						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND	0.51	ug/L		07/03/19 14:11	07/05/19 17:40	1
2,4-D	ND	0.51	ug/L		07/03/19 14:11	07/05/19 17:40	1
Silvex (2,4,5-TP)	ND	0.51	ug/L		07/03/19 14:11	07/05/19 17:40	1

Eurofins TestAmerica, Buffalo

Page 23 of 136

5

3

6

8

10

40

13

15

10

18

Client: Waste Management

Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3 Lab Sample ID: 480-155710-2

Date Collected: 07/02/19 12:20 Matrix: Water Date Received: 07/02/19 18:30

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	54		48 - 132			07/03/19 14:11	07/05/19 17:40	1
Method: 537 (modified) - Fluor	rinated Alky	/I Substan	ces					
Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluoropentanoic acid (PFPeA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorohexanoic acid (PFHxA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorooctanoic acid (PFOA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorononanoic acid (PFNA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorodecanoic acid (PFDA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	ng/L			07/10/19 01:20	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	ng/L			07/10/19 01:20	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	ng/L			07/10/19 01:20	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	ng/L			07/10/19 01:20	
	ND		2.0	ng/L			07/10/19 01:20	,
Perfluoroheptanesulfonic Acid (PFHpS)	140		2.0	iig/L		37700/10 00.40	37710/10 01.20	
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	
Perfluorooctanesulfonamide (FOSA)	ND		2.0	ng/L		07/08/19 05:43	07/10/19 01:20	
N-methylperfluorooctanesulfonamidoa	ND		20	ng/L			07/10/19 01:20	
cetic acid (NMeFOSAA)				9				
N-ethylperfluorooctanesulfonamidoac	ND		20	ng/L		07/08/19 05:43	07/10/19 01:20	· · · · · · · · ·
etic acid (NEtFOSAA)								
6:2 FTS	ND		20	ng/L			07/10/19 01:20	•
8:2 FTS	ND		20	ng/L		07/08/19 05:43	07/10/19 01:20	•
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
13C4 PFBA	76		25 - 150			07/08/19 05:43	07/10/19 01:20	•
13C5 PFPeA	84		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C2 PFHxA	96		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C4 PFHpA	93		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C4 PFOA	91		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C5 PFNA	87		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C2 PFDA	88		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C2 PFUnA	83		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C2 PFDoA	74		25 - 150			07/08/19 05:43	07/10/19 01:20	
13C2 PFTeDA	72		25 - 150				07/10/19 01:20	
13C3 PFBS	87		25 - 150				07/10/19 01:20	
1802 PFHxS	92		25 ₋ 150				07/10/19 01:20	
13C4 PFOS	85		25 - 150 25 - 150				07/10/19 01:20	
13C8 FOSA	66		25 - 150 25 - 150				07/10/19 01:20	
d3-NMeFOSAA	84		25 - 150 25 - 150				07/10/19 01:20	
d5-NEtFOSAA	87		25 - 150 25 - 150				07/10/19 01:20	
			25 - 150 25 - 150				07/10/19 01:20	
M2-6:2 FTS	128							
M2-8:2 FTS	106		25 - 150			07/08/19 05:43	07/10/19 01:20	
Method: 6010C - Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	2.8		0.20	mg/L			07/05/19 19:22	1

Eurofins TestAmerica, Buffalo

Page 24 of 136

2

3

5

0

10

12

14

16

18

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Biochemical Oxygen Demand

Total Organic Carbon

Client Sample ID: MWSE-3 Lab Sample ID: 480-155710-2

Date Collected: 07/02/19 12:20 **Matrix: Water** Date Received: 07/02/19 18:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.020		mg/L		07/05/19 07:47	07/05/19 19:22	
Arsenic	ND		0.015		mg/L		07/05/19 07:47	07/05/19 19:22	
Barium	0.061		0.0020		mg/L		07/05/19 07:47	07/05/19 19:22	
Beryllium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 19:22	
Boron	ND		0.020		mg/L		07/05/19 07:47	07/05/19 19:22	
Cadmium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 19:22	
Calcium	12.3		0.50		mg/L		07/05/19 07:47	07/05/19 19:22	
Chromium	ND		0.0040		mg/L		07/05/19 07:47	07/05/19 19:22	
Cobalt	ND		0.0040		mg/L		07/05/19 07:47	07/05/19 19:22	
Copper	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:22	
Iron	4.0		0.050		mg/L		07/05/19 07:47	07/05/19 19:22	
Lead	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:22	
Magnesium	3.0		0.20		mg/L		07/05/19 07:47	07/05/19 19:22	
Manganese	0.20		0.0030		mg/L		07/05/19 07:47	07/05/19 19:22	
Nickel	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:22	
Potassium	1.8		0.50		mg/L		07/05/19 07:47	07/05/19 19:22	
Selenium	ND		0.025		mg/L		07/05/19 07:47	07/05/19 19:22	
Silver	ND		0.0060		mg/L		07/05/19 07:47	07/05/19 19:22	
Sodium	1.3		1.0		mg/L		07/05/19 07:47	07/05/19 19:22	
Thallium	ND		0.020		mg/L		07/05/19 07:47	07/05/19 19:22	
Zinc	0.041		0.010		mg/L		07/05/19 07:47	07/05/19 19:22	
Vanadium	0.0050		0.0050		mg/L		07/05/19 07:47	07/05/19 19:22	
Tin	ND		0.010		mg/L		07/05/19 07:47	07/05/19 19:22	
Method: 7470A - Mercury (C	VAA)								
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		07/05/19 11:55	07/05/19 15:51	
Method: SM 2340B - Total Ha						_			
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Calcium and Magnesium Hardness	43.1		0.50		mg/L			07/16/19 09:25	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.20		mg/L			07/08/19 19:09	
Alkalinity, Total	25.9		5.0		mg/L			07/14/19 14:41	
Ammonia (as N)	ND		0.020		mg/L as N			07/10/19 09:37	
Total Kjeldahl Nitrogen	0.23		0.15		mg/L as N		07/18/19 09:10	07/21/19 10:22	
Nitrate	2.4		0.050		mg/L as N			07/03/19 21:44	
Chemical Oxygen Demand	ND		5.0		mg/L			07/18/19 09:44	
Chromium, hexavalent	ND		0.010		mg/L			07/03/19 11:45	
Cyanide, Total	ND		0.010		mg/L		07/09/19 14:15	07/10/19 15:17	
Sulfate	14.5	В	1.5		mg/L			07/24/19 12:31	
Phenolics, Total Recoverable	ND	*	0.0050		mg/L		07/11/19 19:10	07/12/19 14:40	
Chloride	ND		1.0		mg/L			07/14/19 14:39	
					-				

2.0

1.0

ND

ND

mg/L

mg/L

07/04/19 04:48

07/13/19 06:26

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3

Lab Sample ID: 480-155710-2

Matrix: Water

Date Collected: 07/02/19 12:20 Date Received: 07/02/19 18:30

Method: 908.0 - Uranium, Total

Analyte

U

Analyte		Result	Qualifier	RL	R	L Uni	t	D	Prepared	Analyzed	Dil Fac
Color		40.0		5.00		Col	or Units	_		07/03/19 17:25	1
- Method: 903.0 - Radi	um-226	(GFPC)									
		` ,	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.0768	U *	0.0671	0.0675	1.00	0.101	pCi/L		07/15/19 14:52	08/20/19 20:42	1
Carrier	%Yield	Qualifier	Limits						Prepared	Analyzed	Dil Fac
Ba Carrier	82.8		40 - 110						07/15/19 14:52	08/20/19 20:42	1
_ Method: 904.0 - Radi	ium_228	(GEPC)									
Wethou. 304.0 - Itaui	u111-220	(0110)	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-228	0.108	U *	0.352	0.352	1.00	0.605	pCi/L		07/15/19 15:55	07/29/19 10:12	1
Carrier	%Yield	Qualifier	Limits						Prepared	Analyzed	Dil Fac
Ba Carrier	82.8		40 - 110						07/15/19 15:55	07/29/19 10:12	1
Y Carrier	80.7		40 - 110						07/15/19 15:55	07/29/19 10:12	1
Method: Field Samp	ling - Fig	ld Sampling									
Analyte	iiig - i ic		Qualifier	NONE	NON	E Uni	t	D	Prepared	Analyzed	Dil Fac
Field pH		5.98				SU		_		07/02/19 12:20	1
Specific Conductance		104	•			uml	hos/cm			07/02/19 12:20	1
Temperature		13.0				Deg	grees C			07/02/19 12:20	1
Oxidation Reduction Po	tential	288				mill	ivolts			07/02/19 12:20	1
Turbidity		29.2				NTI	1			07/02/19 12:20	1

RL

0.161

RL Unit

pCi/L

Prepared

Result Qualifier

0.0765

9/6/2019

Dil Fac

Analyzed

08/05/19 00:00

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1

Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00 Lab Sample ID: 480-155757-1

Matrix: Water

Method: 8260C - Volatile Orga Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane		1.0	ug/L		•	07/12/19 11:26	
1,1,1-Trichloroethane	ND	1.0	ug/L			07/12/19 11:26	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			07/12/19 11:26	
1,1,2-Trichloroethane	ND	1.0	ug/L			07/12/19 11:26	
1,1-Dichloroethane	ND	1.0	ug/L			07/12/19 11:26	
1,1-Dichloroethene	ND	1.0	ug/L			07/12/19 11:26	
1,1-Dichloropropene	ND	1.0	ug/L			07/12/19 11:26	
1,2,3-Trichloropropane	ND	1.0	ug/L			07/12/19 11:26	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/12/19 11:26	
1,2-Dichlorobenzene	ND	1.0	ug/L			07/12/19 11:26	
1,2-Dichloroethane	ND	1.0	ug/L			07/12/19 11:26	
1,2-Dichloropropane	ND	1.0	ug/L			07/12/19 11:26	
1,3-Dichloropropane	ND	1.0	ug/L			07/12/19 11:26	
1,4-Dichlorobenzene	ND	1.0	ug/L			07/12/19 11:26	
2,2-Dichloropropane	ND	1.0	ug/L			07/12/19 11:26	
2-Butanone (MEK)	ND	10	ug/L			07/12/19 11:26	
2-Hexanone	ND	5.0	ug/L			07/12/19 11:26	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L			07/12/19 11:26	
Acetone	ND	10	ug/L			07/12/19 11:26	
Acetonitrile	ND	15	ug/L			07/12/19 11:26	
Acrolein	ND	20	ug/L			07/12/19 11:26	
Acrylonitrile	ND	5.0	ug/L			07/12/19 11:26	
Allyl chloride	ND	1.0	ug/L			07/12/19 11:26	
Benzene	ND	1.0	ug/L			07/12/19 11:26	
Chlorobromomethane	ND	1.0	ug/L			07/12/19 11:26	
Bromodichloromethane	ND	1.0	ug/L			07/12/19 11:26	
Bromoform	ND	1.0	ug/L			07/12/19 11:26	
Bromomethane	ND	1.0	ug/L			07/12/19 11:26	
Carbon disulfide	ND	1.0	ug/L			07/12/19 11:26	
Carbon tetrachloride	ND	1.0	ug/L			07/12/19 11:26	
Chlorobenzene	ND	1.0	ug/L			07/12/19 11:26	
Dibromochloromethane	ND	1.0	ug/L			07/12/19 11:26	
Chloroethane	ND	1.0	ug/L			07/12/19 11:26	
Chloroform	ND	1.0	ug/L			07/12/19 11:26	
Chloromethane	ND	1.0	ug/L			07/12/19 11:26	
cis-1,2-Dichloroethene	ND	1.0	ug/L			07/12/19 11:26	
cis-1,3-Dichloropropene	ND	1.0	ug/L			07/12/19 11:26	
Chloroprene	ND	1.0	ug/L			07/12/19 11:26	
Dibromomethane	ND	1.0	ug/L			07/12/19 11:26	
Dichlorodifluoromethane	ND	1.0	ug/L			07/12/19 11:26	
Ethyl methacrylate	ND	1.0	ug/L			07/12/19 11:26	
Ethylbenzene	ND	1.0	ug/L			07/12/19 11:26	
1,2-Dibromoethane	ND	1.0	ug/L			07/12/19 11:26	
Hexachlorobutadiene	ND	2.0	ug/L			07/12/19 11:26	
Iodomethane	ND	1.0	ug/L			07/12/19 11:26	
Isobutyl alcohol	ND	25	ug/L			07/12/19 11:26	
Methacrylonitrile	ND	5.0	ug/L			07/12/19 11:26	
Methyl methacrylate	ND	1.0	ug/L			07/12/19 11:26	
Methylene Chloride	ND	1.0	ug/L			07/12/19 11:26	

Eurofins TestAmerica, Buffalo

Page 27 of 136

3

5

8

10

12

1 1

15

17

IO

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-1 **Client Sample ID: MWSE-1**

Date Collected: 07/03/19 13:05 **Matrix: Water** Date Received: 07/03/19 17:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		1.0		ug/L			07/12/19 11:26	1
Propionitrile	ND		10		ug/L			07/12/19 11:26	1
Styrene	ND		1.0		ug/L			07/12/19 11:26	1
Tetrachloroethene	ND		1.0		ug/L			07/12/19 11:26	1
Toluene	ND		1.0		ug/L			07/12/19 11:26	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/12/19 11:26	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/12/19 11:26	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/12/19 11:26	1
Trichloroethene	ND		1.0		ug/L			07/12/19 11:26	1
Trichlorofluoromethane	ND		1.0		ug/L			07/12/19 11:26	1
Vinyl acetate	ND		5.0		ug/L			07/12/19 11:26	1
Vinyl chloride	ND		1.0		ug/L			07/12/19 11:26	1
Xylenes, Total	ND		2.0		ug/L			07/12/19 11:26	1
o-Xylene	ND		1.0		ug/L			07/12/19 11:26	1
m,p-Xylene	ND		2.0		ug/L			07/12/19 11:26	1
1,2-Dichloroethene, Total	ND		2.0		ug/L			07/12/19 11:26	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/12/19 11:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		77 - 120					07/12/19 11:26	1
4-Bromofluorobenzene (Surr)	105		73 - 120					07/12/19 11:26	1
Toluene-d8 (Surr)	97		80 - 120					07/12/19 11:26	1
Dibromofluoromethane (Surr)	100		75 - 123					07/12/19 11:26	1
Method: 8270D SIM ID - Sen	nivolatile Orga	anic Comp	ounds (GC/N	IS SIM /	Isotope	Diluti	on)		
		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Analyte									
Analyte 1,4-Dioxane	ND		0.20		ug/L		07/05/19 15:22	07/10/19 02:36	1

Method: 8270D SIM ID - Semi	volatile Orga	anic Comp	ounds (GC/I	MS SIM /	Isotop	e Diluti	on)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20		ug/L		07/05/19 15:22	07/10/19 02:36	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	31		15 - 110				07/05/19 15:22	07/10/19 02:36	1

Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND -	5.0	ug/	L _	07/05/19 15:02	07/10/19 23:44	1
1,2,4-Trichlorobenzene	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1,2-Dichlorobenzene	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1,3,5-Trinitrobenzene	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1,3-Dichlorobenzene	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1,3-Dinitrobenzene	ND	20	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1,4-Naphthoquinone	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1,4-Dichlorobenzene	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
1-Naphthylamine	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,3,4,6-Tetrachlorophenol	ND	5.0	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,4,5-Trichlorophenol	ND	5.0	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,4,6-Trichlorophenol	ND	5.0	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,4-Dichlorophenol	ND	5.0	ug/	Ĺ	07/05/19 15:02	07/10/19 23:44	1
2,4-Dimethylphenol	ND	5.0	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,4-Dinitrophenol	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,4-Dinitrotoluene	ND	5.0	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,6-Dichlorophenol	ND	10	ug/	L	07/05/19 15:02	07/10/19 23:44	1
2,6-Dinitrotoluene	ND	5.0	ug/	L	07/05/19 15:02	07/10/19 23:44	1

Eurofins TestAmerica, Buffalo

Page 28 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1

Date Collected: 07/03/19 13:05
Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
2-Acetylaminofluorene	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
2-Chloronaphthalene	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
2-Chlorophenol	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	•
2-Methylnaphthalene	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	· · · · · · · · ·
2-Methylphenol	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
2-Naphthylamine	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	•
2-Nitroaniline	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	•
2-Nitrophenol	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	•
o-Toluidine	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	•
3-Methylphenol	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
4-Methylphenol	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
3,3'-Dichlorobenzidine	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
3,3'-Dimethylbenzidine	ND	40	ug/L	07/05/19 15:02	07/10/19 23:44	• • • • • • • •
3-Methylcholanthrene	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
3-Nitroaniline	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
4,6-Dinitro-2-methylphenol	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
4-Aminobiphenyl	ND	10	ug/L		07/10/19 23:44	
4-Bromophenyl phenyl ether	ND	5.0	ug/L		07/10/19 23:44	
4-Chloro-3-methylphenol	ND	5.0	ug/L		07/10/19 23:44	· · · · · · .
p-Chloroaniline	ND	5.0	ug/L		07/10/19 23:44	
4-Chlorophenyl phenyl ether	ND	5.0	ug/L		07/10/19 23:44	
4-Nitroaniline	ND	10	ug/L		07/10/19 23:44	
4-Nitrophenol	ND *	10	ug/L		07/10/19 23:44	
7,12-Dimethylbenz(a)anthracene	ND	10	ug/L		07/10/19 23:44	
Acenaphthene	ND	5.0	ug/L		07/10/19 23:44	,
Acenaphthylene	ND	5.0	ug/L		07/10/19 23:44	
Acetophenone	ND ND	5.0	ug/L ug/L		07/10/19 23:44	
-	ND	5.0			07/10/19 23:44	
Anthracene	ND ND		ug/L			
Benzo[a]anthracene	ND ND	5.0	ug/L		07/10/19 23:44	
Benzo[a]pyrene		5.0	ug/L		07/10/19 23:44	
Benzo[b]fluoranthene	ND	5.0	ug/L		07/10/19 23:44	•
Benzo[g,h,i]perylene	ND	5.0	ug/L		07/10/19 23:44	•
Benzo[k]fluoranthene	ND	5.0	ug/L		07/10/19 23:44	
Benzyl alcohol	ND	20	ug/L		07/10/19 23:44	
Bis(2-chloroethoxy)methane	ND	5.0	ug/L		07/10/19 23:44	•
Bis(2-chloroethyl)ether	ND	5.0	ug/L		07/10/19 23:44	
Bis(2-ethylhexyl) phthalate	ND	5.0	ug/L		07/10/19 23:44	
bis(2 chloro-1-methylethyl) ether	ND	5.0	ug/L		07/10/19 23:44	
Butyl benzyl phthalate	ND	5.0	ug/L		07/10/19 23:44	
Chrysene	ND	5.0	ug/L		07/10/19 23:44	
Diallate	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
Dibenz(a,h)anthracene	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
Dibenzofuran	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
Diethyl phthalate	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
Dimethoate	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	
Dimethyl phthalate	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
Di-n-butyl phthalate	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
Di-n-octyl phthalate	ND	5.0	ug/L	07/05/19 15:02	07/10/19 23:44	
Dinoseb	ND	10	ug/L	07/05/19 15:02	07/10/19 23:44	• • • • • • • • • • • • • • • • • • • •

Eurofins TestAmerica, Buffalo

-

3

5

0

12

14

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1

Lab Sample ID: 480-155757-1 Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diphenylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Disulfoton	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Ethyl methanesulfonate	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Famphur	ND		40		ug/L		07/05/19 15:02	07/10/19 23:44	1
Fluoranthene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
Fluorene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
Hexachlorobenzene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
Hexachlorobutadiene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
Hexachlorocyclopentadiene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
Hexachloroethane	ND		5.0		ug/L			07/10/19 23:44	1
Hexachloropropene	ND		10		ug/L			07/10/19 23:44	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L		07/05/19 15:02		· · · · · · · · · · · · · · · · · · ·
Isodrin	ND		10		ug/L			07/10/19 23:44	1
Isophorone	ND		5.0		ug/L			07/10/19 23:44	
Isosafrole	ND		10					07/10/19 23:44	
	ND ND		50		ug/L			07/10/19 23:44	1
Kepone Mothanyrilono	ND ND		50 50		ug/L			07/10/19 23:44	1
Methapyrilene					ug/L				
Methyl methanesulfonate	ND		10		ug/L			07/10/19 23:44	1
Safrole	ND		10		ug/L			07/10/19 23:44	1
Thionazin	ND		10		ug/L			07/10/19 23:44	
Naphthalene	ND		5.0		ug/L			07/10/19 23:44	1
Nitrobenzene	ND		5.0		ug/L			07/10/19 23:44	1
5-Nitro-o-toluidine	ND		10		ug/L		07/05/19 15:02		1
N-Nitrosodiethylamine	ND		10		ug/L			07/10/19 23:44	1
Chlorobenzilate	ND		20		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosodimethylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosodi-n-butylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosodipropylamine	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosodiphenylamine	ND		5.0		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosomethylethylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosopiperidine	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
N-Nitrosopyrrolidine	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Triethyl phosphorothioate	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Parathion	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Parathion methyl	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
p-Dimethylamino azobenzene	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Pentachlorobenzene	ND		10		ug/L			07/10/19 23:44	1
Pentachloronitrobenzene	ND		10		ug/L		07/05/19 15:02		1
Pentachlorophenol	ND		10		ug/L			07/10/19 23:44	1
Phenacetin	ND		10		ug/L			07/10/19 23:44	1
Phenanthrene	ND		5.0		ug/L			07/10/19 23:44	1
Phenol	ND		5.0					07/10/19 23:44	
					ug/L				
Phorate	ND		10		ug/L			07/10/19 23:44	1
p-Phenylene diamine	ND		800		ug/L			07/10/19 23:44	1
Pyrene	ND		5.0		ug/L			07/10/19 23:44	1
Pronamide	ND		10		ug/L		07/05/19 15:02	07/10/19 23:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	93		48 - 120				07/05/19 15:02	07/10/19 23:44	1
2-Fluorophenol (Surr)	62		35 - 120				07/05/19 15:02	07/10/19 23:44	1

Eurofins TestAmerica, Buffalo

Page 30 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1 Lab Sample ID: 480-155757-1

Date Collected: 07/03/19 13:05

Matrix: Water

Date Received: 07/03/19 17:00

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	88		41 - 120	07/05/19 15:02	07/10/19 23:44	1
Nitrobenzene-d5 (Surr)	91		46 - 120	07/05/19 15:02	07/10/19 23:44	1
Phenol-d5 (Surr)	45		22 - 120	07/05/19 15:02	07/10/19 23:44	1
p-Terphenyl-d14 (Surr)	92		59 - 136	07/05/19 15:02	07/10/19 23:44	1

Method, 600 fb - Organiochioffile Festicides (GC)	Method: 8081B	- Organochlorine Pesticides ((GC)
---	---------------	-------------------------------	------

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND ,	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
4,4'-DDE	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
4,4'-DDT	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Aldrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
alpha-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
beta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Chlordane (technical)	ND		0.50		ug/L		07/08/19 15:10	07/09/19 14:58	1
delta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Dieldrin	ND '	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Endosulfan I	ND '	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Endosulfan II	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Endosulfan sulfate	ND '	*	0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Endrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Endrin aldehyde	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
gamma-BHC (Lindane)	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Heptachlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Methoxychlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1
Toxaphene	ND		0.50		ug/L		07/08/19 15:10	07/09/19 14:58	1
Heptachlor epoxide	ND		0.050		ug/L		07/08/19 15:10	07/09/19 14:58	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzo	ed Dil Fac
DCB Decachlorobiphenyl	56		20 - 120	07/08/19 15:10 07/09/19 1	4:58 1
Tetrachloro-m-xylene	73		44 - 120	07/08/19 15:10 07/09/19 1	4:58 1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1
PCB-1221	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1
PCB-1232	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1
PCB-1242	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1
PCB-1248	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1
PCB-1254	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1
PCB-1260	ND	0.53	ug/L		07/05/19 08:16	07/10/19 19:11	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	58		39 - 121	07/05/19 08:16	07/10/19 19:11	1
DCB Decachlorobinhenyl	58		19 - 120	07/05/19 08:16	07/10/19 19:11	1

Method: 8151A - Herbicides (GC)

Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		0.48		ug/L		07/09/19 09:24	07/10/19 15:03	1
2,4-D	ND		0.48		ug/L		07/09/19 09:24	07/10/19 15:03	1
Silvex (2,4,5-TP)	ND		0.48		ug/L		07/09/19 09:24	07/10/19 15:03	1

Eurofins TestAmerica, Buffalo

9/6/2019

Page 31 of 136

2

3

5

7

a

1 U

12

14

13

17

18

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-1 **Client Sample ID: MWSE-1 Matrix: Water**

Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00

Job ID: 480-155710-1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4-Dichlorophenylacetic acid	55		48 - 132				07/09/19 09:24	07/10/19 15:03	1
: 									
Method: 537 (modified) - Fluor				MDI	1114	_	B	A	D" F
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	2.5		1.9		ng/L			07/10/19 00:56	1
Perfluoropentanoic acid (PFPeA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluorohexanoic acid (PFHxA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluorooctanoic acid (PFOA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L			07/10/19 00:56	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		07/08/19 05:43	07/10/19 00:56	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		07/08/19 05:43	07/10/19 00:56	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		07/08/19 05:43	07/10/19 00:56	1
6:2 FTS	ND		19		ng/L		07/08/19 05:43	07/10/19 00:56	1
8:2 FTS	ND		19		ng/L		07/08/19 05:43	07/10/19 00:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	90		25 - 150				07/08/19 05:43	07/10/19 00:56	1
13C5 PFPeA	99		25 - 150				07/08/19 05:43	07/10/19 00:56	1
13C2 PFHxA	102		25 - 150				07/08/19 05:43	07/10/19 00:56	1
13C4 PFHpA	101		25 - 150				07/08/19 05:43	07/10/19 00:56	1
13C4 PFOA	102		25 - 150				07/08/19 05:43	07/10/19 00:56	1
13C5 PFNA	94		25 - 150				07/08/19 05:43	07/10/19 00:56	1
13C2 PFDA	99		25 - 150					07/10/19 00:56	1
13C2 PFUnA	97		25 - 150					07/10/19 00:56	1
13C2 PFDoA	96		25 ₋ 150					07/10/19 00:56	1
13C2 PFTeDA	109		25 ₋ 150					07/10/19 00:56	
13C3 PFBS	98		25 - 150 25 - 150					07/10/19 00:56	1
1802 PFHxS	105		25 - 150 25 - 150					07/10/19 00:56	1
13C4 PFOS	98		25 - 150 25 - 150					07/10/19 00:56	
								07/10/19 00:56	1
13C8 FOSA	85		25 ₋ 150						1
d3-NMeFOSAA	97		25 - 150					07/10/19 00:56	1
d5-NEtFOSAA	102		25 ₋ 150					07/10/19 00:56	1
M2-6:2 FTS	137		25 - 150					07/10/19 00:56	1
M2-8:2 FTS	127		25 - 150				07/08/19 05:43	07/10/19 00:56	1
Method: 6010C - Metals (ICP) Analyte		Qualifier	RL	MDL	1114	D	Prepared	Analyzed	Dil Fac

Eurofins TestAmerica, Buffalo

Page 32 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1 Lab Sample ID: 480-155757-1

Date Collected: 07/03/19 13:05 **Matrix: Water** Date Received: 07/03/19 17:00

Analyte	(Continued) (Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	ND		0.020		mg/L		07/08/19 07:30	07/09/19 00:31	
Arsenic	ND		0.015		mg/L		07/08/19 07:30	07/09/19 00:31	
Barium	0.10		0.0020		mg/L		07/08/19 07:30	07/09/19 00:31	
Beryllium	ND		0.0020		mg/L		07/08/19 07:30	07/09/19 00:31	
Boron	0.023		0.020		mg/L		07/08/19 07:30	07/09/19 09:50	
Cadmium	ND		0.0020		mg/L		07/08/19 07:30	07/09/19 00:31	
Calcium	102		0.50		mg/L		07/08/19 07:30	07/09/19 00:31	
Chromium	ND		0.0040		mg/L		07/08/19 07:30	07/09/19 00:31	
Cobalt	ND		0.0040		mg/L		07/08/19 07:30	07/09/19 00:31	
Copper	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:31	
Iron	0.061		0.050		mg/L		07/08/19 07:30	07/09/19 00:31	
Lead	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:31	
Magnesium	26.4		0.20		mg/L		07/08/19 07:30	07/09/19 00:31	
Manganese	0.059		0.0030		mg/L		07/08/19 07:30	07/09/19 00:31	
Nickel	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:31	
Potassium	1.2		0.50		mg/L		07/08/19 07:30	07/09/19 00:31	
Selenium	ND		0.025		mg/L		07/08/19 07:30	07/09/19 00:31	
Silver	ND		0.0060		mg/L		07/08/19 07:30	07/09/19 00:31	
Sodium	4.4		1.0		mg/L		07/08/19 07:30	07/09/19 00:31	
Thallium	ND.		0.020		mg/L		07/08/19 07:30	07/09/19 00:31	
Zinc	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:31	
Zinc Vanadium	ND ND		0.0050		mg/L		07/08/19 07:30	07/09/19 00:31	
vanadidiii Tin	ND		0.0030		mg/L			07/09/19 00:31	
Analyte Mercury	ND	Qualifier	0.00020	WIDE	mg/L	_ D	Prepared 07/08/19 11:51	Analyzed 07/08/19 16:08	Dil Fa
Method: SM 2340B - Total Ha	ırdness (as (CaCO3) by	calculation						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Calcium and Magnesium	362		0.50		mg/L			07/10/19 11:29	
Uardnasa									
naruness									
General Chemistry	Popult	Qualifier	DI	MDI	l lait	ь	Bronored	Analyzad	Dil Ea
General Chemistry Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
General Chemistry Analyte Bromide	ND	Qualifier	0.40	MDL	mg/L	_ D	Prepared	07/08/19 19:24	Dil Fa
General Chemistry Analyte Bromide Alkalinity, Total	ND 192	Qualifier	0.40 10.0	MDL	mg/L mg/L	_ <u>D</u>	Prepared	07/08/19 19:24 07/14/19 14:57	Dil Fa
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N)	ND 192 ND	Qualifier	0.40 10.0 0.020	MDL	mg/L mg/L mg/L as N	_ <u>D</u>		07/08/19 19:24 07/14/19 14:57 07/10/19 09:50	Dil Fa
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen	ND 192 ND ND	Qualifier	0.40 10.0 0.020 0.15	MDL	mg/L mg/L mg/L as N mg/L as N	_ <u>D</u>	Prepared 07/18/19 09:10	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22	Dil Fa
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen Nitrate	ND 192 ND ND ND	Qualifier	0.40 10.0 0.020 0.15 0.050	MDL	mg/L mg/L as N mg/L as N mg/L as N	_ <u>D</u>		07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26	Dil Fa
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand	ND 192 ND ND ND ND		0.40 10.0 0.020 0.15 0.050 5.0	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N	_ <u>D</u>	07/18/19 09:10	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32	Dil Fa
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total	ND 192 ND ND ND ND	*	0.40 10.0 0.020 0.15 0.050 5.0	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L	<u>D</u>		07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16	
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total Sulfate	ND 192 ND ND ND ND ND	*	0.40 10.0 0.020 0.15 0.050 5.0 0.010	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L	_ <u>D</u>	07/18/19 09:10 07/10/19 15:50	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16 07/24/19 12:55	
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Fotal Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total Sulfate Phenolics, Total Recoverable	ND 192 ND ND ND ND ND ND	В	0.40 10.0 0.020 0.15 0.050 5.0 0.010 15.0 0.0050	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L	_ <u>D</u>	07/18/19 09:10	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16 07/24/19 12:55 07/12/19 14:51	
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Fotal Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total Sulfate Phenolics, Total Recoverable Chloride	ND 192 ND ND ND ND ND ND ND 136 ND	В	0.40 10.0 0.020 0.15 0.050 5.0 0.010 15.0 0.0050	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	07/18/19 09:10 07/10/19 15:50	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16 07/24/19 12:55 07/12/19 14:51 07/14/19 14:39	
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Fotal Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total Sulfate Phenolics, Total Recoverable Chloride Fotal Dissolved Solids	ND 192 ND ND ND ND ND 136 ND 8.5	В	0.40 10.0 0.020 0.15 0.050 5.0 0.010 15.0 0.0050 1.0	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	07/18/19 09:10 07/10/19 15:50	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16 07/24/19 12:55 07/12/19 14:51 07/14/19 14:39 07/09/19 07:49	
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total Sulfate Phenolics, Total Recoverable Chloride Total Dissolved Solids Biochemical Oxygen Demand	ND 192 ND ND ND ND 136 ND 8.5 480 ND	ъ	0.40 10.0 0.020 0.15 0.050 5.0 0.010 15.0 0.0050 1.0 10.0 2.0	MDL	mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	07/18/19 09:10 07/10/19 15:50	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16 07/24/19 12:55 07/12/19 14:51 07/14/19 14:39 07/09/19 07:49 07/04/19 09:11	
General Chemistry Analyte Bromide Alkalinity, Total Ammonia (as N) Total Kjeldahl Nitrogen Nitrate Chemical Oxygen Demand Cyanide, Total Sulfate Phenolics, Total Recoverable Chloride Total Dissolved Solids Biochemical Oxygen Demand Total Organic Carbon	ND 192 ND ND ND ND 136 ND 8.5 480 ND	ъ	0.40 10.0 0.020 0.15 0.050 5.0 0.010 15.0 0.0050 1.0		mg/L mg/L as N mg/L as N mg/L as N mg/L as N mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ D	07/18/19 09:10 07/10/19 15:50	07/08/19 19:24 07/14/19 14:57 07/10/19 09:50 07/21/19 10:22 07/03/19 21:26 07/14/19 09:32 07/11/19 13:16 07/24/19 12:55 07/12/19 14:51 07/14/19 14:39 07/09/19 07:49	

Eurofins TestAmerica, Buffalo

Page 33 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-1 **Client Sample ID: MWSE-1**

Matrix: Water

Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.120	U *	0.0939	0.0945	1.00	0.137	pCi/L	07/15/19 14:52	08/20/19 20:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	60.5		40 - 110					07/15/19 14:52	08/20/19 20:42	1
Mothod: 004.0	Dadium 220	(CEDC)								
Method: 904.0 -	Radium-226	(GFPC)	Count	Total						

Wietilou. 304.0 -	Madiaiii-220	(0110)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.138	U *	0.393	0.394	1.00	0.724	pCi/L	07/15/19 15:55	07/29/19 10:12	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	60.5		40 - 110					07/15/19 15:55	07/29/19 10:12	1
Y Carrier	80.4		40 - 110					07/15/19 15:55	07/29/19 10:12	1

Analyte	Result Qua	alifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Field pH	7.23				SU			07/03/19 13:05	1
Specific Conductance	692				umhos/cm			07/03/19 13:05	1
Temperature	11.9				Degrees C			07/03/19 13:05	1
Oxidation Reduction Potential	79				millivolts			07/03/19 13:05	1
Turbidity	6.8				NTU			07/03/19 13:05	1

Method: 908.0 - Uranium, Total									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
U	0.116		0.135		pCi/L			07/29/19 00:00	1

9/6/2019

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00 Lab Sample ID: 480-155757-2

Matrix: Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND —	1.0	ug/L			07/12/19 11:50	
1,1,1-Trichloroethane	ND	1.0	ug/L			07/12/19 11:50	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			07/12/19 11:50	
1,1,2-Trichloroethane	ND	1.0	ug/L			07/12/19 11:50	
1,1-Dichloroethane	ND	1.0	ug/L			07/12/19 11:50	
1,1-Dichloroethene	ND	1.0	ug/L			07/12/19 11:50	
1,1-Dichloropropene	ND	1.0	ug/L			07/12/19 11:50	
1,2,3-Trichloropropane	ND	1.0	ug/L			07/12/19 11:50	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/12/19 11:50	
1,2-Dichlorobenzene	ND	1.0	ug/L			07/12/19 11:50	
1,2-Dichloroethane	ND	1.0	ug/L			07/12/19 11:50	
1,2-Dichloropropane	ND	1.0	ug/L			07/12/19 11:50	
1,3-Dichloropropane	ND	1.0	ug/L			07/12/19 11:50	
1,4-Dichlorobenzene	ND	1.0	ug/L			07/12/19 11:50	
2,2-Dichloropropane	ND	1.0	ug/L			07/12/19 11:50	
2-Butanone (MEK)	ND	10	ug/L			07/12/19 11:50	
2-Hexanone	ND	5.0	ug/L			07/12/19 11:50	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L			07/12/19 11:50	
Acetone	ND	10	ug/L			07/12/19 11:50	
Acetonitrile	ND	15	ug/L			07/12/19 11:50	
Acrolein	ND	20	ug/L			07/12/19 11:50	
Acrylonitrile	ND	5.0	ug/L			07/12/19 11:50	
Allyl chloride	ND	1.0	ug/L			07/12/19 11:50	
Benzene	ND	1.0	ug/L			07/12/19 11:50	
Chlorobromomethane	ND	1.0	ug/L			07/12/19 11:50	
Bromodichloromethane	ND	1.0	ug/L			07/12/19 11:50	
Bromoform	ND	1.0	ug/L			07/12/19 11:50	
Bromomethane	ND	1.0	ug/L			07/12/19 11:50	
Carbon disulfide	ND	1.0	ug/L			07/12/19 11:50	
Carbon tetrachloride	ND	1.0	ug/L			07/12/19 11:50	
Chlorobenzene	ND	1.0	ug/L			07/12/19 11:50	
Dibromochloromethane	ND	1.0	ug/L			07/12/19 11:50	
Chloroethane	ND	1.0	ug/L			07/12/19 11:50	
Chloroform	ND	1.0	ug/L			07/12/19 11:50	
Chloromethane	ND	1.0	ug/L			07/12/19 11:50	
cis-1,2-Dichloroethene		1.0				07/12/19 11:50	
cis-1,3-Dichloropropene	ND ND	1.0	ug/L ug/L			07/12/19 11:50	
Chloroprene	ND	1.0	ug/L			07/12/19 11:50	
Dibromomethane	ND	1.0				07/12/19 11:50	
Dichlorodifluoromethane			ug/L			07/12/19 11:50	
	ND ND	1.0 1.0	ug/L			07/12/19 11:50	
Ethyl methacrylate	ND	1.0	ug/L			07/12/19 11:50	
Ethylbenzene			ug/L				
1,2-Dibromoethane	ND ND	1.0	ug/L			07/12/19 11:50	
Hexachlorobutadiene	ND ND	2.0	ug/L			07/12/19 11:50	
lodomethane	ND	1.0	ug/L			07/12/19 11:50	
Isobutyl alcohol	ND	25	ug/L			07/12/19 11:50	
Methacrylonitrile	ND	5.0	ug/L			07/12/19 11:50	
Methyl methacrylate Methylene Chloride	ND ND	1.0 1.0	ug/L ug/L			07/12/19 11:50 07/12/19 11:50	

Eurofins TestAmerica, Buffalo

9/6/2019

Page 35 of 136

3

5

9

12

14

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4 Lab Sample ID: 480-155757-2

Date Collected: 07/03/19 13:15

Date Received: 07/03/19 17:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	MD		1.0		ug/L			07/12/19 11:50	1
Propionitrile	ND		10		ug/L			07/12/19 11:50	1
Styrene	ND		1.0		ug/L			07/12/19 11:50	1
Tetrachloroethene	ND		1.0		ug/L			07/12/19 11:50	1
Toluene	ND		1.0		ug/L			07/12/19 11:50	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/12/19 11:50	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/12/19 11:50	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/12/19 11:50	1
Trichloroethene	ND		1.0		ug/L			07/12/19 11:50	1
Trichlorofluoromethane	ND		1.0		ug/L			07/12/19 11:50	1
Vinyl acetate	ND		5.0		ug/L			07/12/19 11:50	1
Vinyl chloride	ND		1.0		ug/L			07/12/19 11:50	1
Xylenes, Total	ND		2.0		ug/L			07/12/19 11:50	1
o-Xylene	ND		1.0		ug/L			07/12/19 11:50	1
m,p-Xylene	ND		2.0		ug/L			07/12/19 11:50	1
1,2-Dichloroethene, Total	ND		2.0		ug/L			07/12/19 11:50	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/12/19 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					07/12/19 11:50	1
4-Bromofluorobenzene (Surr)	105		73 - 120					07/12/19 11:50	1
Toluene-d8 (Surr)	97		80 - 120					07/12/19 11:50	1
Dibromofluoromethane (Surr)	101		75 - 123					07/12/19 11:50	1

Method: 8270D SIM ID - Semiv	_	•	•		•	_	•		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	ND		0.20		ug/L		07/05/19 15:22	07/10/19 03:01	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	33		15 - 110				07/05/19 15:22	07/10/19 03:01	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,2,4-Trichlorobenzene	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,2-Dichlorobenzene	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,3,5-Trinitrobenzene	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,3-Dichlorobenzene	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,3-Dinitrobenzene	ND		20		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,4-Naphthoquinone	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
1,4-Dichlorobenzene	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
1-Naphthylamine	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,3,4,6-Tetrachlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4,5-Trichlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4,6-Trichlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4-Dichlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4-Dimethylphenol	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4-Dinitrophenol	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,4-Dinitrotoluene	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,6-Dichlorophenol	ND		10		ug/L		07/05/19 15:02	07/11/19 00:12	1
2,6-Dinitrotoluene	ND		5.0		ug/L		07/05/19 15:02	07/11/19 00:12	1

Eurofins TestAmerica, Buffalo

Page 36 of 136

S

3

5

2

10

12

14

10

17

10

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Lab Sample ID: 480-155757-2 Date Collected: 07/03/19 13:15

Matrix: Water Date Received: 07/03/19 17:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
2-Acetylaminofluorene	ND	10	ug/L			07/11/19 00:12	
2-Chloronaphthalene	ND	5.0	ug/L			07/11/19 00:12	
2-Chlorophenol	ND	5.0	ug/L			07/11/19 00:12	
2-Methylnaphthalene	ND	5.0	ug/L			07/11/19 00:12	
2-Methylphenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Naphthylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Nitroaniline	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
2-Nitrophenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
o-Toluidine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
3-Methylphenol	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
4-Methylphenol	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
3,3'-Dichlorobenzidine	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
3,3'-Dimethylbenzidine	ND	40	ug/L		07/05/19 15:02	07/11/19 00:12	
3-Methylcholanthrene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
3-Nitroaniline	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
4,6-Dinitro-2-methylphenol	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
4-Aminobiphenyl	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
4-Bromophenyl phenyl ether	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
4-Chloro-3-methylphenol	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
p-Chloroaniline	ND	5.0	ug/L			07/11/19 00:12	
4-Chlorophenyl phenyl ether	ND	5.0	ug/L			07/11/19 00:12	
4-Nitroaniline	ND	10	ug/L			07/11/19 00:12	
4-Nitrophenol	ND *	10	ug/L			07/11/19 00:12	
7,12-Dimethylbenz(a)anthracene	ND	10	ug/L			07/11/19 00:12	
Acenaphthene	ND	5.0	ug/L			07/11/19 00:12	
Acenaphthylene	ND	5.0	ug/L			07/11/19 00:12	
Acetophenone	ND	5.0	ug/L			07/11/19 00:12	
Anthracene	ND	5.0				07/11/19 00:12	
	ND ND	5.0 5.0	ug/L			07/11/19 00:12	
Benzo[a]anthracene	ND ND		ug/L				
Benzo[a]pyrene		5.0	ug/L			07/11/19 00:12	
Benzo[b]fluoranthene	ND	5.0	ug/L			07/11/19 00:12	
Benzo[g,h,i]perylene	ND	5.0	ug/L			07/11/19 00:12	
Benzo[k]fluoranthene	ND	5.0	ug/L			07/11/19 00:12	
Benzyl alcohol	ND	20	ug/L			07/11/19 00:12	
Bis(2-chloroethoxy)methane	ND	5.0	ug/L			07/11/19 00:12	
Bis(2-chloroethyl)ether	ND	5.0	ug/L			07/11/19 00:12	
Bis(2-ethylhexyl) phthalate	ND	5.0	ug/L			07/11/19 00:12	
bis(2 chloro-1-methylethyl) ether	ND	5.0	ug/L			07/11/19 00:12	
Butyl benzyl phthalate	ND	5.0	ug/L			07/11/19 00:12	
Chrysene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Diallate	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
Dibenz(a,h)anthracene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Dibenzofuran	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
Diethyl phthalate	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Dimethoate	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
Dimethyl phthalate	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Di-n-butyl phthalate	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Di-n-octyl phthalate	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Dinoseb	ND	10	ug/L			07/11/19 00:12	

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Lab Sample ID: 480-155757-2

Date Collected: 07/03/19 13:15 **Matrix: Water** Date Received: 07/03/19 17:00

Analyte	Result Qu		MDL Unit	D	Prepared	Analyzed	Dil Fa
Diphenylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
Disulfoton	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
Ethyl methanesulfonate	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	
Famphur	ND	40	ug/L		07/05/19 15:02	07/11/19 00:12	
Fluoranthene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	•
Fluorene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Hexachlorobenzene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	•
Hexachlorobutadiene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
Hexachlorocyclopentadiene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	•
Hexachloroethane	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	•
Hexachloropropene	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Indeno[1,2,3-cd]pyrene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
Isodrin	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Isophorone	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
Isosafrole	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Kepone	ND	50	ug/L		07/05/19 15:02	07/11/19 00:12	1
Methapyrilene	ND	50	ug/L		07/05/19 15:02	07/11/19 00:12	1
Methyl methanesulfonate	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Safrole	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Thionazin	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Naphthalene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	
Nitrobenzene	ND	5.0	ug/L		07/05/19 15:02	07/11/19 00:12	1
5-Nitro-o-toluidine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
N-Nitrosodiethylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
Chlorobenzilate	ND	20	ug/L		07/05/19 15:02	07/11/19 00:12	1
N-Nitrosodimethylamine	ND	10	ug/L		07/05/19 15:02	07/11/19 00:12	1
N-Nitrosodi-n-butylamine	ND	10	ug/L			07/11/19 00:12	1
N-Nitrosodipropylamine	ND	5.0	ug/L			07/11/19 00:12	1
N-Nitrosodiphenylamine	ND	5.0	ug/L			07/11/19 00:12	1
N-Nitrosomethylethylamine	ND	10	ug/L			07/11/19 00:12	
N-Nitrosopiperidine	ND	10	ug/L			07/11/19 00:12	
N-Nitrosopyrrolidine	ND	10	ug/L			07/11/19 00:12	
Triethyl phosphorothioate	ND	10	ug/L			07/11/19 00:12	
Parathion	ND	10	ug/L			07/11/19 00:12	1
Parathion methyl	ND	10	ug/L			07/11/19 00:12	1
p-Dimethylamino azobenzene	ND	10	ug/L			07/11/19 00:12	
Pentachlorobenzene	ND	10	ug/L			07/11/19 00:12	1
Pentachloronitrobenzene	ND	10	ug/L			07/11/19 00:12	-
Pentachlorophenol	ND	10	ug/L			07/11/19 00:12	
Phenacetin	ND	10	ug/L			07/11/19 00:12	1
Phenanthrene	ND	5.0	ug/L			07/11/19 00:12	1
Phenol	ND	5.0	ug/L			07/11/19 00:12	· · · · · · · · · · · · · · · · · · ·
Phorate	ND ND	10	ug/L			07/11/19 00:12	-
p-Phenylene diamine	ND ND	800	ug/L			07/11/19 00:12	
Pyrene Pyrene	ND	5.0	ug/L			07/11/19 00:12	· · · · · .
Pronamide	ND ND	10	ug/L ug/L			07/11/19 00:12	,
Surrogate	%Recovery Qu	ualifier Limits			Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl	84	48 - 120			•	07/11/19 00:12	1
2-Fluorophenol (Surr)	54	35 - 120				07/11/19 00:12	1

Eurofins TestAmerica, Buffalo

Page 38 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4 Lab Sample ID: 480-155757-2

Date Collected: 07/03/19 13:15 **Matrix: Water** Date Received: 07/03/19 17:00

	Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2,4,6-Tribromophenol (Surr)	70	41 - 120	07/05/19 15:02	07/11/19 00:12	1
İ	Nitrobenzene-d5 (Surr)	80	46 - 120	07/05/19 15:02	07/11/19 00:12	1
	Phenol-d5 (Surr)	40	22 - 120	07/05/19 15:02	07/11/19 00:12	1
	p-Terphenyl-d14 (Surr)	84	59 - 136	07/05/19 15:02	07/11/19 00:12	1

Method: 8081B - Org	anochlorine	Pesticides ((GC)
---------------------	-------------	--------------	------

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
4,4'-DDE	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
4,4'-DDT	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Aldrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
alpha-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
beta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Chlordane (technical)	ND		0.50		ug/L		07/08/19 15:10	07/09/19 15:18	1
delta-BHC	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Dieldrin	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endosulfan I	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endosulfan II	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endosulfan sulfate	ND *	*	0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endrin	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Endrin aldehyde	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
gamma-BHC (Lindane)	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Heptachlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Methoxychlor	ND		0.050		ug/L		07/08/19 15:10	07/09/19 15:18	1
Toxaphene	ND		0.50		ug/L		07/08/19 15:10	07/09/19 15:18	1
Heptachlor epoxide	ND		0.050		ua/L		07/08/19 15:10	07/09/19 15:18	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	50		20 - 120	07/08/19 15:10	07/09/19 15:18	1
Tetrachloro-m-xylene	55		44 - 120	07/08/19 15:10	07/09/19 15:18	1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
PCB-1221	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
PCB-1232	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
PCB-1242	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
PCB-1248	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
PCB-1254	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
PCB-1260	ND		0.60		ug/L		07/05/19 08:16	07/10/19 19:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

_	•		•	•
Tetrachloro-m-xylene	58	39 - 121	07/05/19 08:16 07/10/1	9 19:23
DCB Decachlorobiphenyl	49	19 - 120	07/05/19 08:16 07/10/1	9 19:23 1

Method: 8151A - Herbicides (GC)

	~ /						
Analyte	Result Quali	ifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND	0.52	ug/L		07/09/19 09:24	07/10/19 15:33	1
2,4-D	ND	0.52	ug/L		07/09/19 09:24	07/10/19 15:33	1
Silvex (2,4,5-TP)	ND	0.52	ug/L		07/09/19 09:24	07/10/19 15:33	1

Eurofins TestAmerica, Buffalo

Page 39 of 136

Job ID: 480-155710-1

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00 Lab Sample ID: 480-155757-2

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4-Dichlorophenylacetic acid	62		48 - 132				07/09/19 09:24	07/10/19 15:33	
Method: 537 (modified) - Fluor	inated Alky	/I Substan	ces						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	16		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoropentanoic acid (PFPeA)	19		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorohexanoic acid (PFHxA)	23		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoroheptanoic acid (PFHpA)	7.3		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorooctanoic acid (PFOA)	11		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorobutanesulfonic acid	4.7		1.8		ng/L			07/10/19 01:04	
(PFBS)					Ū				
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorooctanesulfonic acid (PFOS)	2.1		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		07/08/19 05:43	07/10/19 01:04	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		07/08/19 05:43	07/10/19 01:04	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		07/08/19 05:43	07/10/19 01:04	
6:2 FTS	ND		18		ng/L		07/08/19 05:43	07/10/19 01:04	
8:2 FTS	ND		18		ng/L		07/08/19 05:43	07/10/19 01:04	
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
13C4 PFBA	66		25 - 150				•	07/10/19 01:04	
13C5 PFPeA	89		25 - 150					07/10/19 01:04	
13C2 PFHxA	99		25 - 150					07/10/19 01:04	
13C4 PFHpA	100		25 - 150					07/10/19 01:04	
13C4 PFOA	96		25 - 150					07/10/19 01:04	
13C5 PFNA	95		25 - 150 25 - 150					07/10/19 01:04	
13C2 PFDA	94		25 - 150					07/10/19 01:04	
13C2 PFUnA	96		25 - 150 25 - 150					07/10/19 01:04	
13C2 PFDoA	90		25 - 150 25 - 150					07/10/19 01:04	
13C2 PFTeDA	93		25 - 150 25 - 150					07/10/19 01:04	
13C3 PFBS	93		25 - 150 25 - 150					07/10/19 01:04	
1303 PFB3 1802 PFHxS	102		25 - 150 25 - 150					07/10/19 01:04	
13C4 PFOS	91							07/10/19 01:04	
			25 - 150 25 - 150						
13C8 FOSA da NMOEOSAA	82		25 - 150 25 - 150					07/10/19 01:04	
d3-NMeFOSAA	96		25 - 150					07/10/19 01:04	
d5-NEtFOSAA	97		25 ₋ 150					07/10/19 01:04	
M2-6:2 FTS	121		25 - 150					07/10/19 01:04	
M2-8:2 FTS	101		25 - 150				07/08/19 05:43	07/10/19 01:04	

Eurofins TestAmerica, Buffalo

Page 40 of 136

_

3

5

7

9

11

13

15

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Lab Sample ID: 480-155757-2 Date Collected: 07/03/19 13:15

Matrix: Water Date Received: 07/03/19 17:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		07/08/19 07:30	07/09/19 00:35	
Antimony	ND		0.020		mg/L		07/08/19 07:30	07/09/19 00:35	•
Arsenic	ND		0.015		mg/L		07/08/19 07:30	07/09/19 00:35	•
Barium	0.055		0.0020		mg/L		07/08/19 07:30	07/09/19 00:35	· · · · · · · · ·
Beryllium	ND		0.0020		mg/L		07/08/19 07:30	07/09/19 00:35	•
Boron	0.052		0.020		mg/L		07/08/19 07:30	07/09/19 09:53	•
Cadmium	ND		0.0020		mg/L		07/08/19 07:30	07/09/19 00:35	
Calcium	69.9		0.50		mg/L		07/08/19 07:30	07/09/19 00:35	•
Chromium	ND		0.0040		mg/L		07/08/19 07:30	07/09/19 00:35	
Cobalt	ND		0.0040		mg/L		07/08/19 07:30	07/09/19 00:35	
Copper	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:35	
ron	0.32		0.050		mg/L		07/08/19 07:30	07/09/19 00:35	
_ead	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:35	• • • • • • • •
Magnesium	12.3		0.20		mg/L		07/08/19 07:30	07/09/19 00:35	
Manganese	0.13		0.0030		mg/L		07/08/19 07:30	07/09/19 00:35	
Nickel	ND		0.010		mg/L		07/08/19 07:30	07/09/19 00:35	
Potassium	1.8		0.50		mg/L		07/08/19 07:30	07/09/19 00:35	
Selenium	ND		0.025		mg/L		07/08/19 07:30	07/09/19 00:35	
Silver	ND		0.0060		mg/L		07/08/19 07:30	07/09/19 00:35	· · · · · · .
Sodium	14.0		1.0		mg/L			07/09/19 00:35	
Thallium	ND		0.020		mg/L			07/09/19 00:35	
'inc	ND		0.010		mg/L			07/09/19 00:35	
/anadium	ND		0.0050		mg/L			07/09/19 00:35	
Tin	ND		0.010		mg/L			07/09/19 00:35	
Method: 7470A - Mercury (CV	•	0	D.	MDI	11.24	_	Post and	A	D'I = -
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		07/08/19 11:51	07/08/19 16:13	•
Method: SM 2340B - Total Har	dness (as C	CaCO3) by	calculation						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium and Magnesium Hardness	225		0.50		mg/L			07/10/19 11:29	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
romide	ND		0.40		mg/L			07/08/19 19:38	
Alkalinity, Total	139		10.0		mg/L			07/14/19 14:57	2
Ammonia (as N)	ND		0.020		mg/L as N			07/10/19 09:50	•
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		07/18/19 09:10	07/21/19 10:22	
Nitrate	ND		0.050		mg/L as N			07/03/19 21:28	
Chemical Oxygen Demand	6.3		5.0		mg/L			07/14/19 09:32	
Cyanide, Total	ND	*	0.010		mg/L		07/10/19 15:50	07/11/19 13:17	•
Sulfate	97.1	В	7.5		mg/L			07/24/19 12:43	į
The state of the s	ND		0.0050		mg/L		07/11/19 19:18	07/12/19 14:51	
Phenolics, Total Recoverable	110				-		- · · ·		
			1.0		ma/L			07/14/19 14:39	
Chloride	22.0		1.0		mg/L ma/L			07/14/19 14:39 07/09/19 08:53	
Phenolics, Total Recoverable Chloride Total Dissolved Solids Biochemical Oxygen Demand			1.0 10.0 2.0		mg/L mg/L mg/L			07/14/19 14:39 07/09/19 08:53 07/04/19 09:11	

Client: Waste Management

Date Received: 07/03/19 17:00

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2 **Client Sample ID: MWSE-4** Date Collected: 07/03/19 13:15

Matrix: Water

Job ID: 480-155710-1

Analyte		Result	Qualifier	RL	ı	RL Un	it	D	Prepared	Analyzed	Dil Fac
Color		5.00		5.00		Co	lor Units	_		07/05/19 09:12	1
₋ Method: 903.0 - Radi	um-226	(GFPC)									
momour cools itaa.		(0)	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.0584	U *	0.103	0.103	1.00	0.181	pCi/L		07/15/19 14:52	08/20/19 20:42	1
Carrier	%Yield	Qualifier	Limits						Prepared	Analyzed	Dil Fac
Ba Carrier	49.7		40 - 110						07/15/19 14:52	08/20/19 20:42	1
_ Method: 904.0 - Radi	um-228	(GFPC)									
		(0)	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-228	0.600	U *	0.570	0.573	1.00	0.922	pCi/L		07/15/19 15:55	07/29/19 10:13	1
Carrier	%Yield	Qualifier	Limits						Prepared	Analyzed	Dil Fac
Ba Carrier	49.7		40 - 110						07/15/19 15:55	07/29/19 10:13	1
Y Carrier	75.5		40 - 110						07/15/19 15:55	07/29/19 10:13	1
_ Method: Field Sampl	lina - Fie	ld Sampling									
Analyte			Qualifier	NONE	NO	NE Un	it	D	Prepared	Analyzed	Dil Fac
Field pH		7.52				SU				07/03/19 13:15	1
Specific Conductance		516				um	hos/cm			07/03/19 13:15	1
Temperature		16.2				De	grees C			07/03/19 13:15	1
Oxidation Reduction Po	tential	70.0				mil	livolts			07/03/19 13:15	1
Turbidity		6.9				NT	U			07/03/19 13:15	1
- Method: 908.0 - Uran	ium, To	tal									
Analyte	,		Qualifier	RL	ı	RL Un	it	D	Prepared	Analyzed	Dil Fac
U		0.175		0.148		pC	i/L			07/29/19 00:00	1

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-155757-3

Date Collected: 07/03/19 09:00 **Matrix: Water** Date Received: 07/03/19 17:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND —	1.0	ug/L			07/12/19 12:14	
1,1,1-Trichloroethane	ND	1.0	ug/L			07/12/19 12:14	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L			07/12/19 12:14	
1,1,2-Trichloroethane	ND	1.0	ug/L			07/12/19 12:14	
1,1-Dichloroethane	ND	1.0	ug/L			07/12/19 12:14	
1,1-Dichloroethene	ND	1.0	ug/L			07/12/19 12:14	
1,1-Dichloropropene	ND	1.0	ug/L			07/12/19 12:14	
1,2,3-Trichloropropane	ND	1.0	ug/L			07/12/19 12:14	
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L			07/12/19 12:14	
1,2-Dichlorobenzene	ND	1.0	ug/L			07/12/19 12:14	
1,2-Dichloroethane	ND	1.0	ug/L			07/12/19 12:14	
1,2-Dichloropropane	ND	1.0	ug/L			07/12/19 12:14	
1,3-Dichloropropane	ND	1.0	ug/L			07/12/19 12:14	
1,4-Dichlorobenzene	ND	1.0	ug/L			07/12/19 12:14	
2,2-Dichloropropane	ND	1.0	ug/L			07/12/19 12:14	
2-Butanone (MEK)	ND	10	ug/L			07/12/19 12:14	
2-Hexanone	ND	5.0	ug/L			07/12/19 12:14	
4-Methyl-2-pentanone (MIBK)	ND	5.0	ug/L			07/12/19 12:14	
Acetone	ND	10	ug/L			07/12/19 12:14	
Acetonitrile	ND	15	ug/L			07/12/19 12:14	
Acrolein	ND	20	ug/L			07/12/19 12:14	
Acrylonitrile	ND	5.0	ug/L			07/12/19 12:14	
Allyl chloride	ND	1.0	ug/L			07/12/19 12:14	
Benzene	ND	1.0	ug/L			07/12/19 12:14	
Chlorobromomethane	ND	1.0	ug/L			07/12/19 12:14	
Bromodichloromethane	ND	1.0	ug/L			07/12/19 12:14	
Bromoform	ND	1.0	ug/L			07/12/19 12:14	
Bromomethane	ND	1.0	ug/L			07/12/19 12:14	
Carbon disulfide	ND	1.0	ug/L			07/12/19 12:14	
Carbon tetrachloride	ND	1.0	ug/L			07/12/19 12:14	
Chlorobenzene	ND	1.0	ug/L			07/12/19 12:14	
Dibromochloromethane	ND	1.0	ug/L			07/12/19 12:14	
Chloroethane	ND	1.0	ug/L			07/12/19 12:14	
Chloroform	ND	1.0	ug/L			07/12/19 12:14	
Chloromethane	ND	1.0	ug/L			07/12/19 12:14	
cis-1,2-Dichloroethene	ND	1.0	ug/L			07/12/19 12:14	
cis-1,3-Dichloropropene	ND	1.0	ug/L			07/12/19 12:14	
Chloroprene	ND	1.0	ug/L			07/12/19 12:14	
Dibromomethane	ND	1.0	ug/L			07/12/19 12:14	
Dichlorodifluoromethane	ND	1.0	ug/L			07/12/19 12:14	
Ethyl methacrylate	ND	1.0	ug/L			07/12/19 12:14	
Ethylbenzene	ND	1.0	ug/L			07/12/19 12:14	
1,2-Dibromoethane	ND	1.0	ug/L			07/12/19 12:14	
Hexachlorobutadiene	ND ND	2.0	ug/L			07/12/19 12:14	
lodomethane	ND ND	1.0	ug/L ug/L			07/12/19 12:14	
Isobutyl alcohol	ND	25				07/12/19 12:14	
Methacrylonitrile	ND ND	25 5.0	ug/L ug/L			07/12/19 12:14	
Methyl methacrylate Methylene Chloride	ND ND	1.0 1.0	ug/L ug/L			07/12/19 12:14 07/12/19 12:14	

Eurofins TestAmerica, Buffalo

9/6/2019

Page 43 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: TRIP BLANK

Date Collected: 07/03/19 09:00

Date Received: 07/03/19 17:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	ND		1.0	ug/L			07/12/19 12:14	1
Propionitrile	ND		10	ug/L			07/12/19 12:14	1
Styrene	ND		1.0	ug/L			07/12/19 12:14	1
Tetrachloroethene	ND		1.0	ug/L			07/12/19 12:14	1
Toluene	ND		1.0	ug/L			07/12/19 12:14	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			07/12/19 12:14	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			07/12/19 12:14	1
trans-1,4-Dichloro-2-butene	ND		1.0	ug/L			07/12/19 12:14	1
Trichloroethene	ND		1.0	ug/L			07/12/19 12:14	1
Trichlorofluoromethane	ND		1.0	ug/L			07/12/19 12:14	1
Vinyl acetate	ND		5.0	ug/L			07/12/19 12:14	1
Vinyl chloride	ND		1.0	ug/L			07/12/19 12:14	1
Xylenes, Total	ND		2.0	ug/L			07/12/19 12:14	1
o-Xylene	ND		1.0	ug/L			07/12/19 12:14	1
m,p-Xylene	ND		2.0	ug/L			07/12/19 12:14	1
1,2-Dichloroethene, Total	ND		2.0	ug/L			07/12/19 12:14	1
1,3-Dichlorobenzene	ND		1.0	ug/L			07/12/19 12:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120		•		07/12/19 12:14	1
4-Bromofluorobenzene (Surr)	111		73 - 120				07/12/19 12:14	1
Toluene-d8 (Surr)	98		80 - 120				07/12/19 12:14	1
Dibromofluoromethane (Surr)	102		75 - 123				07/12/19 12:14	1

9/6/2019

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1 Lab Sample ID: 480-156080-1

Date Collected: 07/12/19 13:40 Matrix: Water Date Received: 07/12/19 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thionazin	ND		1.0		ug/L		07/19/19 20:48	07/24/19 14:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	55		45 - 106				07/19/19 20:48	07/24/19 14:40	1
2-Fluorophenol (Surr)	56		39 - 105				07/19/19 20:48	07/24/19 14:40	1
2,4,6-Tribromophenol (Surr)	58		39 - 125				07/19/19 20:48	07/24/19 14:40	1
Nitrobenzene-d5 (Surr)	70		43 - 110				07/19/19 20:48	07/24/19 14:40	1
Phenol-d5 (Surr)	54		40 - 108				07/19/19 20:48	07/24/19 14:40	1
Terphenyl-d14 (Surr)	72		45 - 120				07/19/19 20:48	07/24/19 14:40	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		0.010		mg/L		-	07/13/19 10:30	1

3

5

7

0

10

11

13

1 T 4 E

16

18

Client Sample Results

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2 Lab Sample ID: 480-156080-2

Date Collected: 07/12/19 12:30 Matrix: Water Date Received: 07/12/19 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thionazin	ND		0.94		ug/L		07/19/19 20:48	07/24/19 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	61		45 - 106				07/19/19 20:48	07/24/19 15:07	1
2-Fluorophenol (Surr)	47		39 - 105				07/19/19 20:48	07/24/19 15:07	1
2,4,6-Tribromophenol (Surr)	36	X	39 - 125				07/19/19 20:48	07/24/19 15:07	1
Nitrobenzene-d5 (Surr)	76		43 - 110				07/19/19 20:48	07/24/19 15:07	1
Phenol-d5 (Surr)	46		40 - 108				07/19/19 20:48	07/24/19 15:07	1
Terphenyl-d14 (Surr)	74		45 - 120				07/19/19 20:48	07/24/19 15:07	1

6

9

10

12

4 4

15

Client Sample Results

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3

Lab Sample ID: 480-156080-3 Date Collected: 07/12/19 12:10

Matrix: Water

Date Received: 07/12/19 15:40

Method: EPA 625.1 - Semi	volatile Organi	c Compou	nds (GC/MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thionazin	ND		0.94		ug/L		07/19/19 20:48	07/24/19 15:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	65		45 - 106				07/19/19 20:48	07/24/19 15:35	1
2-Fluorophenol (Surr)	73		39 - 105				07/19/19 20:48	07/24/19 15:35	1
2,4,6-Tribromophenol (Surr)	69		39 - 125				07/19/19 20:48	07/24/19 15:35	1
Nitrobenzene-d5 (Surr)	82		43 - 110				07/19/19 20:48	07/24/19 15:35	1
Phenol-d5 (Surr)	71		40 - 108				07/19/19 20:48	07/24/19 15:35	1
Terphenyl-d14 (Surr)	79		45 - 120				07/19/19 20:48	07/24/19 15:35	1

Client Sample Results

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4 Lab Sample ID: 480-156080-4

Date Collected: 07/12/19 11:05

Date Received: 07/12/19 15:40

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Thionazin	ND		0.94		ug/L		07/19/19 20:48	07/24/19 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	56		45 - 106				07/19/19 20:48	07/24/19 16:03	1
2-Fluorophenol (Surr)	49		39 - 105				07/19/19 20:48	07/24/19 16:03	1
2,4,6-Tribromophenol (Surr)	41		39 - 125				07/19/19 20:48	07/24/19 16:03	1
Nitrobenzene-d5 (Surr)	75		43 - 110				07/19/19 20:48	07/24/19 16:03	1
Phenol-d5 (Surr)	54		40 - 108				07/19/19 20:48	07/24/19 16:03	1
Terphenyl-d14 (Surr)	74		45 - 120				07/19/19 20:48	07/24/19 16:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND	-	0.010		mg/L		-	07/13/19 10:30	1

9/6/2019

Surrogate Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surre	ogate Reco
		DCA	BFB	TOL	DBFM
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	(75-123)
480-155710-1	MWSE-2	101	95	100	94
480-155710-2	MWSE-3	107	98	104	97
480-155757-1	MWSE-1	95	105	97	100
480-155757-2	MWSE-4	97	105	97	101
480-155757-3	TRIP BLANK	98	111	98	102
LCS 480-481743/5	Lab Control Sample	100	96	101	95
LCS 480-481776/5	Lab Control Sample	99	107	96	102
MB 480-481743/7	Method Blank	103	91	98	95
MB 480-481776/7	Method Blank	98	105	97	101
MB 480-481776/7 Surrogate Legend	Method Blank	98	105	97	101

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)								
		FBP	2FP	TBP	NBZ	PHL	TPHd14			
Lab Sample ID	Client Sample ID	(48-120)	(35-120)	(41-120)	(46-120)	(22-120)	(59-136)			
480-155710-1	MWSE-2	100	64	85	94	46	94			
480-155710-2	MWSE-3	95	64	82	93	45	94			
480-155757-1	MWSE-1	93	62	88	91	45	92			
480-155757-2	MWSE-4	84	54	70	80	40	84			
LCS 480-480988/2-A	Lab Control Sample	97	67	97	96	51	95			
LCSD 480-480988/3-A	Lab Control Sample Dup	98	70	99	98	54	96			
MB 480-480988/1-A	Method Blank	100	66	89	96	45	100			

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: EPA 625.1 - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)							
		FBP	2FP	TBP	NBZ	PHL	TPHL			
Lab Sample ID	Client Sample ID	(45-106)	(39-105)	(39-125)	(43-110)	(40-108)	(45-120)			
480-156080-1	MWSE-1	55	56	58	70	54	72			
480-156080-2	MWSE-2	61	47	36 X	76	46	74			
480-156080-3	MWSE-3	65	73	69	82	71	79			
480-156080-4	MWSE-4	56	49	41	75	54	74			
LCS 180-285394/2-A	Lab Control Sample	62	73	66	87	75	73			
LCSD 180-285394/3-A	Lab Control Sample Dup	61	81	73	82	81	75			
MB 180-285394/1-A	Method Blank	74	93	73	91	91	84			

Eurofins TestAmerica, Buffalo

Page 49 of 136

Job ID: 480-155710-1

3

4

10

12

14

46

1/

Surrogate Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Surrogate Legend

FBP = 2-Fluorobiphenyl

2FP = 2-Fluorophenol (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		DCBP1	TCX1						
Lab Sample ID	Client Sample ID	(20-120)	(44-120)						
480-155710-1	MWSE-2	74	91						
480-155710-2	MWSE-3	59	80						
480-155757-1	MWSE-1	56	73						
480-155757-2	MWSE-4	50	55						
LCS 480-481166/2-A	Lab Control Sample	41	59						
LCSD 480-481166/3-A	Lab Control Sample Dup	44	84						
MB 480-481166/1-A	Method Blank	40	78						

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)							
		TCX2	DCBP2						
Lab Sample ID	Client Sample ID	(39-121)	(19-120)						
480-155710-1	MWSE-2	62	52						
480-155710-2	MWSE-3	59	33						
480-155757-1	MWSE-1	58	58						
480-155757-2	MWSE-4	58	49						
LCS 480-480888/2-A	Lab Control Sample	59	31						
MB 480-480888/1-A	Method Blank	62	38						

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCBP = DCB Decachlorobiphenyl

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
Lab Sample ID	Client Sample ID	(48-132)	
480-155710-1	MWSE-2	57	
480-155710-2	MWSE-3	54	
480-155757-1	MWSE-1	55	
480-155757-2	MWSE-4	62	
LCS 480-480799/2-A	Lab Control Sample	57	
LCS 480-481261/2-A	Lab Control Sample	55	
LCSD 480-480799/3-A	Lab Control Sample Dup	61	
LCSD 480-481261/3-A	Lab Control Sample Dup	73	
MB 480-480799/1-A	Method Blank	57	

Eurofins TestAmerica, Buffalo

9/6/2019

Page 50 of 136

Job ID: 480-155710-1

2

4

9

11

12

14

16

4.0

4 (

Surrogate Summary

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

DCPAA = 2,4-Dichlorophenylacetic acid

Method: 8151A - Herbicides (GC) (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
Lab Sample ID	Client Sample ID	(48-132)	
MB 480-481261/1-A	Method Blank		

5

7

8

10

12

14

16

1 /

Isotope Dilution Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

		DXE	
Lab Sample ID	Client Sample ID	(15-110)	
480-155710-1	MWSE-2	30	
480-155710-2	MWSE-3	30	
480-155757-1	MWSE-1	31	
480-155757-2	MWSE-4	33	
LCS 480-480991/2-A	Lab Control Sample	30	
MB 480-480991/1-A	Method Blank	33	
Surrogate Legend			

Method: 537 (modified) - Fluorinated Alkyl Substances

		Percent Isotope Dilution Recovery (Acceptance Limits)										
		PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)			
480-155710-1	MWSE-2	83	100	106	102	101	99	103	100			
480-155710-2	MWSE-3	76	84	96	93	91	87	88	83			
480-155757-1	MWSE-1	90	99	102	101	102	94	99	97			
480-155757-2	MWSE-4	66	89	99	100	96	95	94	96			
LCS 320-306095/2-A	Lab Control Sample	89	95	99	97	97	97	99	97			
LCSD 320-306095/3-A	Lab Control Sample Dup	91	98	106	99	99	101	101	99			
MB 320-306095/1-A	Method Blank	88	93	96	97	99	96	94	96			
		Percent Isotope Dilution Recovery (Acceptance Limits)										
		PFDoA	PFTDA	3C3-PFB	PFHxS	PFOS	PFOSA	-NMeFOS	-NEtFOS			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)			
480-155710-1	MWSE-2	97	106	94	102	96	87	100	100			
480-155710-2	MWSE-3	74	72	87	92	85	66	84	87			
480-155757-1	MWSE-1	96	109	98	105	98	85	97	102			
480-155757-2	MWSE-4	90	93	93	102	91	82	96	97			
LCS 320-306095/2-A	Lab Control Sample	96	98	96	100	98	82	101	98			
LCSD 320-306095/3-A	Lab Control Sample Dup	100	100	94	104	95	85	106	97			
MB 320-306095/1-A	Method Blank	94	96	95	96	91	80	103	102			
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)				
		M262FTS	M282FTS	•		•	•	•				
		(05.450)										

		M262FTS	M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)
480-155710-1	MWSE-2	132	104
480-155710-2	MWSE-3	128	106
480-155757-1	MWSE-1	137	127
480-155757-2	MWSE-4	121	101
LCS 320-306095/2-A	Lab Control Sample	138	112
LCSD 320-306095/3-A	Lab Control Sample Dup	135	122
MB 320-306095/1-A	Method Blank	125	108

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

PFHpA = 13C4 PFHpA

PFOA = 13C4 PFOA

Eurofins TestAmerica, Buffalo

9/6/2019

Page 52 of 136

Job ID: 480-155710-1

Isotope Dilution Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

PFNA = 13C5 PFNA PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFD: A 4000 PFD: A

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

13C3-PFBS = 13C3 PFBS

PFHxS = 1802 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3-NMeFOSAA = d3-NMeFOSAA

d5-NEtFOSAA = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Job ID: 480-155710-1

6

3

4

5

6

Q

10

12

13

15

17

Tracer/Carrier Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

		Percent Yield (Acceptance Limits)
	Ba Carrier	
Client Sample ID	(40-110)	
MWSE-2	58.2	
MWSE-3	82.8	
MWSE-1	60.5	
MWSE-4	49.7	
Lab Control Sample	80.8	
Lab Control Sample Dup	67.2	
Method Blank	80.8	
d		
	MWSE-2 MWSE-3 MWSE-1 MWSE-4 Lab Control Sample Lab Control Sample Dup	Client Sample ID (40-110) MWSE-2 58.2 MWSE-3 82.8 MWSE-1 60.5 MWSE-4 49.7 Lab Control Sample 80.8 Lab Control Sample Dup 67.2 Method Blank 80.8

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ba Carrier	Y Carrier	
Lab Sample ID	Client Sample ID	(40-110)	(40-110)	
480-155710-1	MWSE-2	58.2	79.6	
480-155710-2	MWSE-3	82.8	80.7	
480-155757-1	MWSE-1	60.5	80.4	
480-155757-2	MWSE-4	49.7	75.5	
LCS 160-434867/1-A	Lab Control Sample	80.8	75.9	
LCSD 160-434867/2-A	Lab Control Sample Dup	67.2	99.8	
MB 160-434867/7-A	Method Blank	80.8	77.4	
Tracer/Carrier Legend	i			

Y Carrier = Y Carrier

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-481743/7

Matrix: Water

Hexachlorobutadiene

Iodomethane

Isobutyl alcohol

Methacrylonitrile

Methyl methacrylate

Analysis Batch: 481743

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			07/11/19 21:12	1
1,1,1-Trichloroethane	ND		1.0	ug/L			07/11/19 21:12	1
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L			07/11/19 21:12	1
1,1,2-Trichloroethane	ND		1.0	ug/L			07/11/19 21:12	1
1,1-Dichloroethane	ND		1.0	ug/L			07/11/19 21:12	1
1,1-Dichloroethene	ND		1.0	ug/L			07/11/19 21:12	1
1,1-Dichloropropene	ND		1.0	ug/L			07/11/19 21:12	1
1,2,3-Trichloropropane	ND		1.0	ug/L			07/11/19 21:12	1
1,2-Dibromo-3-Chloropropane	ND		1.0	ug/L			07/11/19 21:12	1
1,2-Dichlorobenzene	ND		1.0	ug/L			07/11/19 21:12	1
1,2-Dichloroethane	ND		1.0	ug/L			07/11/19 21:12	1
1,2-Dichloropropane	ND		1.0	ug/L			07/11/19 21:12	1
1,3-Dichloropropane	ND		1.0	ug/L			07/11/19 21:12	1
1,4-Dichlorobenzene	ND		1.0	ug/L			07/11/19 21:12	1
2,2-Dichloropropane	ND		1.0	ug/L			07/11/19 21:12	1
2-Butanone (MEK)	ND		10	ug/L			07/11/19 21:12	1
2-Hexanone	ND		5.0	ug/L			07/11/19 21:12	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	ug/L			07/11/19 21:12	1
Acetone	ND		10	ug/L			07/11/19 21:12	1
Acetonitrile	ND		15	ug/L			07/11/19 21:12	1
Acrolein	ND		20	ug/L			07/11/19 21:12	1
Acrylonitrile	ND		5.0	ug/L			07/11/19 21:12	1
Allyl chloride	ND		1.0	ug/L			07/11/19 21:12	1
Benzene	ND		1.0	ug/L			07/11/19 21:12	1
Chlorobromomethane	ND		1.0	ug/L			07/11/19 21:12	1
Bromodichloromethane	ND		1.0	ug/L			07/11/19 21:12	1
Bromoform	ND		1.0	ug/L			07/11/19 21:12	1
Bromomethane	ND		1.0	ug/L			07/11/19 21:12	1
Carbon disulfide	ND		1.0	ug/L			07/11/19 21:12	1
Carbon tetrachloride	ND		1.0	ug/L			07/11/19 21:12	1
Chlorobenzene	ND		1.0	ug/L			07/11/19 21:12	1
Dibromochloromethane	ND		1.0	ug/L			07/11/19 21:12	1
Chloroethane	ND		1.0	ug/L			07/11/19 21:12	1
Chloroform	ND		1.0	ug/L			07/11/19 21:12	1
Chloromethane	ND		1.0	ug/L			07/11/19 21:12	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			07/11/19 21:12	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			07/11/19 21:12	1
Chloroprene	ND		1.0	ug/L			07/11/19 21:12	1
Dibromomethane	ND		1.0	ug/L			07/11/19 21:12	1
Dichlorodifluoromethane	ND		1.0	ug/L			07/11/19 21:12	1
Ethyl methacrylate	ND		1.0	ug/L			07/11/19 21:12	1
Ethylbenzene	ND		1.0	ug/L			07/11/19 21:12	1
1,2-Dibromoethane	ND		1.0	ug/L			07/11/19 21:12	1
	ND			·				

Eurofins TestAmerica, Buffalo

07/11/19 21:12

07/11/19 21:12

07/11/19 21:12

07/11/19 21:12

07/11/19 21:12

Page 55 of 136

2.0

1.0

25

5.0

1.0

ug/L

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

ND

ND

-

3

6

8

10

12

14

13

1 Q

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-481743/7

Matrix: Water

Analysis Batch: 481743

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		1.0		ug/L			07/11/19 21:12	1
Naphthalene	ND		1.0		ug/L			07/11/19 21:12	1
Propionitrile	ND		10		ug/L			07/11/19 21:12	1
Styrene	ND		1.0		ug/L			07/11/19 21:12	1
Tetrachloroethene	ND		1.0		ug/L			07/11/19 21:12	1
Toluene	ND		1.0		ug/L			07/11/19 21:12	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/11/19 21:12	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/11/19 21:12	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/11/19 21:12	1
Trichloroethene	ND		1.0		ug/L			07/11/19 21:12	1
Trichlorofluoromethane	ND		1.0		ug/L			07/11/19 21:12	1
Vinyl acetate	ND		5.0		ug/L			07/11/19 21:12	1
Vinyl chloride	ND		1.0		ug/L			07/11/19 21:12	1
Xylenes, Total	ND		2.0		ug/L			07/11/19 21:12	1
o-Xylene	ND		1.0		ug/L			07/11/19 21:12	1
m,p-Xylene	ND		2.0		ug/L			07/11/19 21:12	1
1,2-Dichloroethene, Total	ND		2.0		ug/L			07/11/19 21:12	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/11/19 21:12	1

MR MR

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	103	77 - 120		07/11/19 21:12	1	
4-Bromofluorobenzene (Surr)	91	73 - 120		07/11/19 21:12	1	
Toluene-d8 (Surr)	98	80 - 120		07/11/19 21:12	1	
Dibromofluoromethane (Surr)	95	75 - 123		07/11/19 21:12	1	

Lab Sample ID: LCS 480-481743/5

Matrix: Water

Analysis Batch: 481743

CI	ent Sample ID: Lab Control Sample Prep Type: Total/NA

Alialysis Datell. 401745								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	24.5		ug/L		98	80 - 120	
1,1,1-Trichloroethane	25.0	23.9		ug/L		95	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.6		ug/L		99	76 - 120	
1,1,2-Trichloroethane	25.0	24.1		ug/L		97	76 - 122	
1,1-Dichloroethane	25.0	24.0		ug/L		96	77 - 120	
1,1-Dichloroethene	25.0	22.3		ug/L		89	66 - 127	
1,1-Dichloropropene	25.0	25.0		ug/L		100	72 - 122	
1,2,3-Trichloropropane	25.0	24.8		ug/L		99	68 - 122	
1,2-Dibromo-3-Chloropropane	25.0	23.5		ug/L		94	56 - 134	
1,2-Dichlorobenzene	25.0	23.7		ug/L		95	80 - 124	
1,2-Dichloroethane	25.0	24.0		ug/L		96	75 - 120	
1,2-Dichloropropane	25.0	24.5		ug/L		98	76 - 120	
1,3-Dichloropropane	25.0	24.7		ug/L		99	75 - 120	
1,4-Dichlorobenzene	25.0	24.9		ug/L		100	80 - 120	
2,2-Dichloropropane	25.0	26.4		ug/L		105	63 - 136	
2-Butanone (MEK)	125	133		ug/L		106	57 - 140	
2-Hexanone	125	129		ug/L		103	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	129		ug/L		103	71 - 125	

Eurofins TestAmerica, Buffalo

Page 56 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-481743/5

Matrix: Water

Analysis Batch: 481743

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-155710-1

Analyte	Spike Added		LCS Qualifier	Unit	D	%Rec	%Rec. Limits
Acetone		144		ug/L		115	56 - 142
Acrolein	125	97.8		ug/L		78	52 - 143
Acrylonitrile	250	258		ug/L		103	63 - 125
Allyl chloride	25.0	24.5		ug/L		98	60 - 140
Benzene	25.0	24.3		ug/L		97	71 - 124
Chlorobromomethane	25.0	22.4		ug/L		90	72 - 130
Bromodichloromethane	25.0	24.0		ug/L		96	80 - 122
Bromoform	25.0	24.5		ug/L		98	61 - 132
Bromomethane	25.0	26.0		ug/L		104	55 - 144
Carbon disulfide	25.0	23.5		ug/L		94	59 ₋ 134
Carbon tetrachloride	25.0	24.6		ug/L		98	72 ₋ 134
Chlorobenzene	25.0	24.5		ug/L		98	80 - 120
Dibromochloromethane	25.0	23.4		ug/L		94	75 - 125
Chloroethane	25.0	28.2		ug/L		113	69 - 136
Chloroform	25.0	21.5		ug/L		86	73 - 127
Chloromethane	25.0	29.7		ug/L		119	68 - 124
cis-1,2-Dichloroethene	25.0	23.3		ug/L		93	74 - 124
cis-1,3-Dichloropropene	25.0	24.8		ug/L		99	74 - 124
Dibromomethane	25.0	22.8		ug/L		91	76 - 127
Dichlorodifluoromethane	25.0	32.5		ug/L		130	59 ₋ 135
Ethyl methacrylate	25.0	25.3		ug/L		101	74 ₋ 120
Ethylbenzene	25.0	24.3		ug/L		97	77 - 123
1,2-Dibromoethane	25.0	23.7		ug/L		95	77 ₋ 120
Hexachlorobutadiene	25.0	21.5		ug/L		86	68 - 131
lodomethane	25.0	22.1		ug/L		88	78 - 123
sobutyl alcohol	625	665		ug/L		106	51 ₋ 150
Methylene Chloride	25.0	23.4		ug/L		93	75 - 124
Naphthalene	25.0	21.5		ug/L		86	66 - 125
Styrene	25.0	24.5		ug/L		98	80 - 120
Tetrachloroethene	25.0	24.1		ug/L		96	74 - 122
Toluene	25.0	23.8		ug/L		95	80 - 122
trans-1,2-Dichloroethene	25.0	24.0		ug/L		96	73 - 127
rans-1,3-Dichloropropene	25.0	24.7		ug/L		99	80 - 120
trans-1,4-Dichloro-2-butene	25.0	16.9		ug/L		68	41 - 131
Trichloroethene	25.0	24.1		ug/L		97	74 - 123
Trichlorofluoromethane	25.0	28.3		ug/L		113	62 - 150
Vinyl acetate	50.0	49.6		ug/L		99	50 - 144
Vinyl chloride	25.0	28.8		ug/L		115	65 - 133
o-Xylene	25.0	24.2		ug/L		97	76 - 122
m,p-Xylene	25.0	24.4		ug/L		97	76 - 122
1,3-Dichlorobenzene	25.0	25.1		ug/L		100	77 - 120
•	CS LCS	, , ,		J			-

Page 57 of 136

Limits

77 - 120

73 - 120

80 - 120

75 - 123

%Recovery Qualifier

100

96

101

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-481776/7

Matrix: Water

Analysis Batch: 481776

Client Sample ID: Method Blank

Prep Type: Total/NA

	МВ					_			
Analyte		Qualifier	RL -	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0		ug/L			07/12/19 10:52	1
1,1,1-Trichloroethane	ND		1.0		ug/L			07/12/19 10:52	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			07/12/19 10:52	1
1,1,2-Trichloroethane	ND		1.0		ug/L			07/12/19 10:52	1
1,1-Dichloroethane	ND		1.0		ug/L			07/12/19 10:52	1
1,1-Dichloroethene	ND		1.0		ug/L			07/12/19 10:52	
1,1-Dichloropropene	ND		1.0		ug/L			07/12/19 10:52	1
1,2,3-Trichloropropane	ND		1.0		ug/L			07/12/19 10:52	1
1,2-Dibromo-3-Chloropropane	ND		1.0		ug/L			07/12/19 10:52	1
1,2-Dichlorobenzene	ND		1.0		ug/L			07/12/19 10:52	1
1,2-Dichloroethane	ND		1.0		ug/L			07/12/19 10:52	1
1,2-Dichloropropane	ND		1.0		ug/L			07/12/19 10:52	1
1,3-Dichloropropane	ND		1.0		ug/L			07/12/19 10:52	1
1,4-Dichlorobenzene	ND		1.0		ug/L			07/12/19 10:52	1
2,2-Dichloropropane	ND		1.0		ug/L			07/12/19 10:52	1
2-Butanone (MEK)	ND		10		ug/L			07/12/19 10:52	1
2-Hexanone	ND		5.0		ug/L			07/12/19 10:52	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			07/12/19 10:52	1
Acetone	ND		10		ug/L			07/12/19 10:52	1
Acetonitrile	ND		15		ug/L			07/12/19 10:52	1
Acrolein	ND		20		ug/L			07/12/19 10:52	1
Acrylonitrile	ND		5.0		ug/L			07/12/19 10:52	1
Allyl chloride	ND		1.0		ug/L			07/12/19 10:52	1
Benzene	ND		1.0		ug/L			07/12/19 10:52	1
Chlorobromomethane	ND		1.0		ug/L			07/12/19 10:52	1
Bromodichloromethane	ND		1.0		ug/L			07/12/19 10:52	1
Bromoform	ND		1.0		ug/L			07/12/19 10:52	1
Bromomethane	ND		1.0		ug/L			07/12/19 10:52	1
Carbon disulfide	ND		1.0		ug/L			07/12/19 10:52	1
Carbon tetrachloride	ND		1.0		ug/L			07/12/19 10:52	1
Chlorobenzene	ND		1.0		ug/L			07/12/19 10:52	1
Dibromochloromethane	ND		1.0		ug/L			07/12/19 10:52	1
Chloroethane	ND		1.0		ug/L			07/12/19 10:52	1
Chloroform	ND		1.0		ug/L			07/12/19 10:52	1
Chloromethane	ND		1.0		ug/L			07/12/19 10:52	1
cis-1,2-Dichloroethene	ND		1.0		ug/L			07/12/19 10:52	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			07/12/19 10:52	
Chloroprene	ND		1.0		ug/L			07/12/19 10:52	1
Dibromomethane	ND		1.0		ug/L			07/12/19 10:52	1
Dichlorodifluoromethane	ND		1.0		ug/L			07/12/19 10:52	
Ethyl methacrylate	ND		1.0		ug/L			07/12/19 10:52	1
Ethylbenzene	ND		1.0		ug/L			07/12/19 10:52	1
1,2-Dibromoethane	ND		1.0		ug/L			07/12/19 10:52	
Hexachlorobutadiene	ND		2.0		ug/L ug/L			07/12/19 10:52	1
Iodomethane	ND ND		1.0		ug/L ug/L			07/12/19 10:52	1
	ND							07/12/19 10:52	
Isobutyl alcohol Mothacrylonitrilo	ND ND		25 5.0		ug/L			07/12/19 10:52	1
Methacrylonitrile			5.0		ug/L				1
Methyl methacrylate	ND		1.0		ug/L			07/12/19 10:52	1

Eurofins TestAmerica, Buffalo

Page 58 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-481776/7 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481776

7 maryolo Batom 101110	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND		1.0		ug/L			07/12/19 10:52	1
Naphthalene	ND		1.0		ug/L			07/12/19 10:52	1
Propionitrile	ND		10		ug/L			07/12/19 10:52	1
Styrene	ND		1.0		ug/L			07/12/19 10:52	1
Tetrachloroethene	ND		1.0		ug/L			07/12/19 10:52	1
Toluene	ND		1.0		ug/L			07/12/19 10:52	1
trans-1,2-Dichloroethene	ND		1.0		ug/L			07/12/19 10:52	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			07/12/19 10:52	1
trans-1,4-Dichloro-2-butene	ND		1.0		ug/L			07/12/19 10:52	1
Trichloroethene	ND		1.0		ug/L			07/12/19 10:52	1
Trichlorofluoromethane	ND		1.0		ug/L			07/12/19 10:52	1
Vinyl acetate	ND		5.0		ug/L			07/12/19 10:52	1
Vinyl chloride	ND		1.0		ug/L			07/12/19 10:52	1
Xylenes, Total	ND		2.0		ug/L			07/12/19 10:52	1
o-Xylene	ND		1.0		ug/L			07/12/19 10:52	1
m,p-Xylene	ND		2.0		ug/L			07/12/19 10:52	1
1,2-Dichloroethene, Total	ND		2.0		ug/L			07/12/19 10:52	1
1,3-Dichlorobenzene	ND		1.0		ug/L			07/12/19 10:52	1

мв мв

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98	77 - 120		07/12/19 10:52	1
4-Bromofluorobenzene (Surr)	105	73 - 120		07/12/19 10:52	1
Toluene-d8 (Surr)	97	80 - 120		07/12/19 10:52	1
Dibromofluoromethane (Surr)	101	75 - 123		07/12/19 10:52	1

Lab Sample ID: LCS 480-481776/5

Matrix: Water

Analysis Batch: 481776								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	27.0		ug/L		108	80 - 120	
1,1,1-Trichloroethane	25.0	25.9		ug/L		103	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	24.1		ug/L		97	76 - 120	
1,1,2-Trichloroethane	25.0	23.4		ug/L		94	76 - 122	
1,1-Dichloroethane	25.0	23.4		ug/L		94	77 - 120	
1,1-Dichloroethene	25.0	23.0		ug/L		92	66 - 127	
1,1-Dichloropropene	25.0	24.4		ug/L		98	72 - 122	
1,2,3-Trichloropropane	25.0	25.6		ug/L		103	68 - 122	
1,2-Dibromo-3-Chloropropane	25.0	27.2		ug/L		109	56 - 134	
1,2-Dichlorobenzene	25.0	24.1		ug/L		96	80 - 124	
1,2-Dichloroethane	25.0	23.1		ug/L		93	75 - 120	
1,2-Dichloropropane	25.0	23.4		ug/L		93	76 - 120	
1,3-Dichloropropane	25.0	23.0		ug/L		92	75 - 120	
1,4-Dichlorobenzene	25.0	23.4		ug/L		94	80 - 120	
2,2-Dichloropropane	25.0	23.4		ug/L		94	63 - 136	
2-Butanone (MEK)	125	119		ug/L		95	57 - 140	
2-Hexanone	125	119		ug/L		95	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	119		ug/L		95	71 - 125	

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Page 59 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

LCS LCS

Spike

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-481776/5

Matrix: Water

Analysis Batch: 481776

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

Job ID: 480-155710-1

Analyte	Added	Result Qua	alifier Unit	D %Rec	Limits
Acetone	125	115	ug/L	92	56 - 142
Acrolein	125	108	ug/L	87	52 - 143
Acrylonitrile	250	237	ug/L	95	63 - 125
Allyl chloride	25.0	22.6	ug/L	91	60 - 140
Benzene	25.0	22.5	ug/L	90	71 - 124
Chlorobromomethane	25.0	24.2	ug/L	97	72 - 130
Bromodichloromethane	25.0	26.4	ug/L	106	80 - 122
Bromoform	25.0	31.1	ug/L	125	61 - 132
Bromomethane	25.0	21.6	ug/L	86	55 - 144
Carbon disulfide	25.0	23.1	ug/L	93	59 - 134
Carbon tetrachloride	25.0	26.5	ug/L	106	72 - 134
Chlorobenzene	25.0	23.1	ug/L	92	80 - 120
Dibromochloromethane	25.0	29.3	ug/L	117	75 - 125
Chloroethane	25.0	21.0	ug/L	84	69 - 136
Chloroform	25.0	23.0	ug/L	92	73 - 127
Chloromethane	25.0	21.7	ug/L	87	68 - 124
cis-1,2-Dichloroethene	25.0	23.8	ug/L	95	74 - 124
cis-1,3-Dichloropropene	25.0	24.5	ug/L	98	74 - 124
Dibromomethane	25.0	25.2	ug/L	101	76 - 127
Dichlorodifluoromethane	25.0	20.2	ug/L	81	59 - 135
Ethyl methacrylate	25.0	23.3	ug/L	93	74 - 120
Ethylbenzene	25.0	23.1	ug/L	92	77 - 123
1,2-Dibromoethane	25.0	24.8	ug/L	99	77 - 120
Hexachlorobutadiene	25.0	27.2	ug/L	109	68 - 131
lodomethane	25.0	24.0	ug/L	96	78 - 123
Isobutyl alcohol	625	496	ug/L	79	51 - 150
Methylene Chloride	25.0	23.6	ug/L	94	75 - 124
Naphthalene	25.0	24.7	ug/L	99	66 - 125
Styrene	25.0	23.4	ug/L	94	80 - 120
Tetrachloroethene	25.0	25.8	ug/L	103	74 - 122
Toluene	25.0	22.0	ug/L	88	80 - 122
trans-1,2-Dichloroethene	25.0	23.6	ug/L	94	73 - 127
trans-1,3-Dichloropropene	25.0	24.4	ug/L	97	80 - 120
trans-1,4-Dichloro-2-butene	25.0	22.4	ug/L	89	41 - 131
Trichloroethene	25.0	23.1	ug/L	93	74 - 123
Trichlorofluoromethane	25.0	22.2	ug/L	89	62 - 150
Vinyl acetate	50.0	41.2	ug/L	82	50 - 144
Vinyl chloride	25.0	22.8	ug/L	91	65 - 133
o-Xylene	25.0	23.3	ug/L	93	76 - 122
m,p-Xylene	25.0	23.6	ug/L	94	76 - 122

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		77 - 120
4-Bromofluorobenzene (Surr)	107		73 - 120
Toluene-d8 (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	102		75 - 123

1,3-Dichlorobenzene

77 - 120

Page 60 of 136

25.0

23.4

ug/L

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-480988/1-A

Matrix: Water

Analysis Batch: 481493

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 480988

Analysis Batch: 481493								Prep Batch:	48 <mark>09</mark> 88
Accelete		MB	D.	MDI	1114	_	B	A	D!! =
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2,4,5-Tetrachlorobenzene	ND ND		5.0		ug/L			07/10/19 21:25	1
1,2,4-Trichlorobenzene	ND ND		10		ug/L			07/10/19 21:25	1
1,2-Dichlorobenzene			10		ug/L			07/10/19 21:25	1
1,3,5-Trinitrobenzene	ND		10		ug/L			07/10/19 21:25	1
1,3-Dichlorobenzene	ND		10		ug/L			07/10/19 21:25	1
1,3-Dinitrobenzene	ND		20		ug/L			07/10/19 21:25	1
1,4-Naphthoquinone	ND		10		ug/L			07/10/19 21:25	1
1,4-Dichlorobenzene	ND		10		ug/L			07/10/19 21:25	1
1-Naphthylamine	ND		10		ug/L			07/10/19 21:25	
2,3,4,6-Tetrachlorophenol	ND		5.0		ug/L			07/10/19 21:25	1
2,4,5-Trichlorophenol	ND		5.0		ug/L			07/10/19 21:25	1
2,4,6-Trichlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2,4-Dichlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2,4-Dimethylphenol	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2,4-Dinitrophenol	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
2,4-Dinitrotoluene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2,6-Dichlorophenol	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
2,6-Dinitrotoluene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Acetylaminofluorene	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Chloronaphthalene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Chlorophenol	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Methylnaphthalene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Methylphenol	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Naphthylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Nitroaniline	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
2-Nitrophenol	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
o-Toluidine	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
3-Methylphenol	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
4-Methylphenol	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
3,3'-Dichlorobenzidine	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
3,3'-Dimethylbenzidine	ND		40		ug/L			07/10/19 21:25	1
3-Methylcholanthrene	ND		10		ug/L			07/10/19 21:25	1
3-Nitroaniline	ND		10		ug/L			07/10/19 21:25	1
4,6-Dinitro-2-methylphenol	ND		10		ug/L			07/10/19 21:25	· · · · · · · · · · · · · · · · · · ·
4-Aminobiphenyl	ND		10		ug/L			07/10/19 21:25	1
4-Bromophenyl phenyl ether	ND		5.0		ug/L			07/10/19 21:25	
4-Chloro-3-methylphenol	ND		5.0		ug/L			07/10/19 21:25	· · · · · · · · · · · · · · · · · · ·
p-Chloroaniline	ND		5.0		ug/L			07/10/19 21:25	1
4-Chlorophenyl phenyl ether	ND		5.0		ug/L			07/10/19 21:25	1
4-Nitroaniline	ND		10					07/10/19 21:25	
	ND ND				ug/L			07/10/19 21:25	
4-Nitrophenol			10		ug/L				1
7,12-Dimethylbenz(a)anthracene	ND		10		ug/L			07/10/19 21:25	1
Acenaphthene	ND		5.0		ug/L			07/10/19 21:25	1
Acetaphthylene	ND		5.0		ug/L			07/10/19 21:25	1
Acetophenone	ND		5.0		ug/L			07/10/19 21:25	1
Anthracene	ND		5.0		ug/L			07/10/19 21:25	1
Benzo[a]anthracene	ND		5.0		ug/L			07/10/19 21:25	1
Benzo[a]pyrene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1

Eurofins TestAmerica, Buffalo

Page 61 of 136

5

3

7

_

10

12

1 *1*

13

17

10

LR.

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-480988/1-A

Matrix: Water

Analysis Batch: 481493

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 480988

Analysis Batch: 481493	MR	МВ						Prep Batch:	480988
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[b]fluoranthene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	
Benzo[g,h,i]perylene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Benzo[k]fluoranthene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Benzyl alcohol	ND		20		ug/L		07/05/19 15:02	07/10/19 21:25	1
Bis(2-chloroethoxy)methane	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Bis(2-chloroethyl)ether	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Bis(2-ethylhexyl) phthalate	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
bis(2 chloro-1-methylethyl) ether	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Butyl benzyl phthalate	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Chrysene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Diallate	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
Dibenz(a,h)anthracene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Dibenzofuran	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
Diethyl phthalate	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Dimethoate	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
Dimethyl phthalate	ND		5.0		ug/L			07/10/19 21:25	1
Di-n-butyl phthalate	ND		5.0		ug/L			07/10/19 21:25	1
Di-n-octyl phthalate	ND		5.0		ug/L			07/10/19 21:25	1
Dinoseb	ND		10		ug/L			07/10/19 21:25	
Diphenylamine	ND		10		ug/L			07/10/19 21:25	1
Disulfoton	ND		10		ug/L			07/10/19 21:25	
Ethyl methanesulfonate	ND		10		ug/L			07/10/19 21:25	· · · · · · · · · · · · 1
Famphur	ND		40		ug/L			07/10/19 21:25	1
Fluoranthene	ND		5.0		ug/L			07/10/19 21:25	,
Fluorene	ND		5.0		ug/L			07/10/19 21:25	
Hexachlorobenzene	ND		5.0		ug/L			07/10/19 21:25	,
Hexachlorobutadiene	ND ND		5.0		_			07/10/19 21:25	,
	ND ND		5.0		ug/L			07/10/19 21:25	
Hexachlorocyclopentadiene					ug/L				
Hexachloroethane	ND		5.0		ug/L			07/10/19 21:25	1
Hexachloropropene	ND		10		ug/L			07/10/19 21:25	1
Indeno[1,2,3-cd]pyrene	ND		5.0		ug/L			07/10/19 21:25	1
Isodrin	ND		10		ug/L			07/10/19 21:25	1
Isophorone	ND		5.0		ug/L			07/10/19 21:25	
Isosafrole	ND		10		ug/L			07/10/19 21:25	1
Kepone	ND		50		ug/L			07/10/19 21:25	1
Methapyrilene	ND		50		ug/L			07/10/19 21:25	1
Methyl methanesulfonate	ND		10		ug/L			07/10/19 21:25	1
Safrole	ND		10		ug/L			07/10/19 21:25	1
Thionazin	ND		10		ug/L			07/10/19 21:25	1
Naphthalene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
Nitrobenzene	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
5-Nitro-o-toluidine	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
N-Nitrosodiethylamine	ND		10		ug/L			07/10/19 21:25	1
Chlorobenzilate	ND		20		ug/L		07/05/19 15:02	07/10/19 21:25	1
N-Nitrosodimethylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1
N-Nitrosodi-n-butylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	
N-Nitrosodipropylamine	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
N-Nitrosodiphenylamine	ND		5.0		ug/L		07/05/19 15:02	07/10/19 21:25	1
N-Nitrosomethylethylamine	ND		10		ug/L		07/05/19 15:02	07/10/19 21:25	1

Eurofins TestAmerica, Buffalo

Page 62 of 136

2

3

7

9

14

12

14

4.0

1 G

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-480988/1-A Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Water Analysis Batch: 481493 Prep Batch: 480988**

	MB MB	3					
Analyte	Result Qu	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
N-Nitrosopiperidine	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
N-Nitrosopyrrolidine	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Triethyl phosphorothioate	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Parathion	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Parathion methyl	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
p-Dimethylamino azobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Pentachlorobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Pentachloronitrobenzene	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Pentachlorophenol	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Phenacetin	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
Phenanthrene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 21:25	1
Phenol	ND	5.0	ug/L		07/05/19 15:02	07/10/19 21:25	1
Phorate	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1
p-Phenylene diamine	ND	800	ug/L		07/05/19 15:02	07/10/19 21:25	1
Pyrene	ND	5.0	ug/L		07/05/19 15:02	07/10/19 21:25	1
Pronamide	ND	10	ug/L		07/05/19 15:02	07/10/19 21:25	1

MB	MB				
%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
100		48 - 120	07/05/19 15:02	07/10/19 21:25	1
66		35 - 120	07/05/19 15:02	07/10/19 21:25	1
89		41 - 120	07/05/19 15:02	07/10/19 21:25	1
96		46 - 120	07/05/19 15:02	07/10/19 21:25	1
45		22 - 120	07/05/19 15:02	07/10/19 21:25	1
100		59 - 136	07/05/19 15:02	07/10/19 21:25	1
	%Recovery 100 66 89 96 45	66 89 96 45	%Recovery Qualifier Limits 100 48 - 120 66 35 - 120 89 41 - 120 96 46 - 120 45 22 - 120	%Recovery Qualifier Limits Prepared 100 48 - 120 07/05/19 15:02 66 35 - 120 07/05/19 15:02 89 41 - 120 07/05/19 15:02 96 46 - 120 07/05/19 15:02 45 22 - 120 07/05/19 15:02	%Recovery Qualifier Limits Prepared Analyzed 100 48 - 120 07/05/19 15:02 07/10/19 21:25 66 35 - 120 07/05/19 15:02 07/10/19 21:25 89 41 - 120 07/05/19 15:02 07/10/19 21:25 96 46 - 120 07/05/19 15:02 07/10/19 21:25 45 22 - 120 07/05/19 15:02 07/10/19 21:25

Lab Sample ID: LCS 480-480988/2-A Matrix: Water Analysis Batch: 481493				Clie	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 480988
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4,5-Tetrachlorobenzene	32.0	30.1		ug/L		94	53 - 120
1,2,4-Trichlorobenzene	32.0	29.6		ug/L		93	40 - 120
1,2-Dichlorobenzene	32.0	27.4		ug/L		86	49 - 120
1,3-Dichlorobenzene	32.0	27.2		ug/L		85	50 - 120
1,3-Dinitrobenzene	32.0	32.7		ug/L		102	68 - 131
1,4-Dichlorobenzene	32.0	27.4		ug/L		86	51 - 120
2,3,4,6-Tetrachlorophenol	32.0	35.3		ug/L		110	63 - 120
2,4,5-Trichlorophenol	32.0	34.3		ug/L		107	65 - 126
2,4,6-Trichlorophenol	32.0	36.0		ug/L		113	64 - 120
2,4-Dichlorophenol	32.0	32.6		ug/L		102	63 - 120
2,4-Dimethylphenol	32.0	32.2		ug/L		101	47 - 120
2,4-Dinitrophenol	64.0	70.1		ug/L		110	31 - 137
2,4-Dinitrotoluene	32.0	31.9		ug/L		100	69 - 120
2,6-Dichlorophenol	32.0	33.5		ug/L		105	62 - 120
2,6-Dinitrotoluene	32.0	33.4		ug/L		105	68 - 120
2-Chloronaphthalene	32.0	29.8		ug/L		93	58 - 120
2-Chlorophenol	32.0	28.7		ug/L		90	48 - 120
2-Methylnaphthalene	32.0	30.7		ug/L		96	59 - 120

Eurofins TestAmerica, Buffalo

Page 63 of 136

Client: Waste Management

Matrix: Water

N-Nitrosodimethylamine

N-Nitrosodipropylamine

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: LCS 480-480988/2-A

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample

Job ID: 480-155710-1

Prep '	Type: T	otal/NA
Prep	Batch:	480988
%Rec.		

Analysis Batch: 481493	Spike		LCS	- ~-	Prep Batch: 48098
Analyte	Added		Qualifier Unit	D %Rec	Limits
2-Methylphenol	32.0	31.8	ug/L	99	39 - 120
2-Nitroaniline	32.0	36.4	ug/L	114	54 - 127
2-Nitrophenol	32.0	31.9	ug/L	100	52 - 125
3-Methylphenol	32.0	27.8	ug/L	87	39 - 120
4-Methylphenol	32.0	27.8	ug/L	87	29 - 131
3,3'-Dichlorobenzidine	64.0	74.0	ug/L	116	49 - 135
3-Nitroaniline	32.0	29.2	ug/L	91	51 - 120
4,6-Dinitro-2-methylphenol	64.0	69.3	ug/L	108	46 - 136
4-Bromophenyl phenyl ether	32.0	31.0	ug/L	97	65 - 120
4-Chloro-3-methylphenol	32.0	30.0	ug/L	94	61 - 123
p-Chloroaniline	32.0	21.1	ug/L	66	30 - 120
4-Chlorophenyl phenyl ether	32.0	31.2	ug/L	97	62 - 120
4-Nitroaniline	32.0	29.1	ug/L	91	65 - 120
4-Nitrophenol	64.0	76.3	ug/L	119	45 - 120
Acenaphthene	32.0	33.0	ug/L	103	60 - 120
Acenaphthylene	32.0	32.0	ug/L	100	63 - 120
Acetophenone	32.0	31.8	ug/L	99	45 - 120
Anthracene	32.0	30.4	ug/L	95	67 - 120
Benzo[a]anthracene	32.0	33.5	ug/L	105	70 - 121
Benzo[a]pyrene	32.0	31.1	ug/L	97	60 - 123
Benzo[b]fluoranthene	32.0	33.4	ug/L	104	66 - 126
Benzo[g,h,i]perylene	32.0	33.4	ug/L	104	66 - 150
Benzo[k]fluoranthene	32.0	33.0	ug/L	103	65 - 124
Benzyl alcohol	32.0	27.7	ug/L	86	41 - 126
Bis(2-chloroethoxy)methane	32.0	28.8	ug/L	90	50 - 128
Bis(2-chloroethyl)ether	32.0	27.5	ug/L	86	44 - 120
Bis(2-ethylhexyl) phthalate	32.0	40.7	ug/L	127	63 - 139
bis(2 chloro-1-methylethyl) ether	32.0	30.9	ug/L	97	21 - 136
Butyl benzyl phthalate	32.0	35.0	ug/L	109	70 - 129
Chrysene	32.0	35.0	ug/L	109	69 - 120
Dibenz(a,h)anthracene	32.0	33.4	ug/L	105	65 - 135
Dibenzofuran	32.0	30.5	ug/L	95	66 - 120
Diethyl phthalate	32.0	35.9	ug/L	112	59 - 127
Dimethyl phthalate	32.0	34.9	ug/L	109	68 - 120
Di-n-butyl phthalate	32.0	34.4	ug/L	108	69 - 131
Di-n-octyl phthalate	32.0	36.8	ug/L	115	63 - 140
Diphenylamine	27.4	25.9	ug/L	95	61 - 120
Fluoranthene	32.0	33.1	ug/L	104	69 - 126
Fluorene	32.0	32.5	ug/L	102	66 - 120
Hexachlorobenzene	32.0	29.7	ug/L	93	61 - 120
Hexachlorobutadiene	32.0	30.0	ug/L	94	35 - 120
Hexachlorocyclopentadiene	32.0	24.7	ug/L	77	31 - 120
Hexachloroethane	32.0	29.1	ug/L	91	43 - 120
Indeno[1,2,3-cd]pyrene	32.0	34.9	ug/L	109	69 - 146
Isophorone	32.0	32.4	ug/L	101	55 - 120
Naphthalene	32.0	29.6	ug/L	93	57 - 120
Nitrobenzene	32.0	32.9	ug/L	103	53 - 123
NI Nillanda della	00.0	00.0		400	40 400

Eurofins TestAmerica, Buffalo

10 - 120

32 - 140

106

98

Page 64 of 136

33.8

31.5

ug/L

ug/L

32.0

32.0

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-480988/2-A

Lab Sample ID: LCSD 480-480988/3-A

Matrix: Water

Analysis Batch: 481493

Client Sample ID: Lab Control Sample

Prep	Type: Total/NA
Prep	Batch: 480988
%Rec.	

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
32.0	30.3		ug/L		95	61 - 120	
64.0	58.7		ug/L		92	29 - 136	
32.0	35.1		ug/L		110	68 - 120	
32.0	18.8		ug/L		59	17 - 120	
32.0	33.1		ug/L		103	70 - 125	
	Added 32.0 64.0 32.0 32.0	Added Result 32.0 30.3 64.0 58.7 32.0 35.1 32.0 18.8	Added Result Qualifier 32.0 30.3 64.0 58.7 32.0 35.1 32.0 18.8	Added Result Qualifier Unit 32.0 30.3 ug/L 64.0 58.7 ug/L 32.0 35.1 ug/L 32.0 18.8 ug/L	Added Result Qualifier Unit D 32.0 30.3 ug/L 64.0 58.7 ug/L 32.0 35.1 ug/L 32.0 18.8 ug/L	Added Result Qualifier Unit D %Rec 32.0 30.3 ug/L 95 64.0 58.7 ug/L 92 32.0 35.1 ug/L 110 32.0 18.8 ug/L 59	Added Result Qualifier Unit D %Rec Limits 32.0 30.3 ug/L 95 61 - 120 64.0 58.7 ug/L 92 29 - 136 32.0 35.1 ug/L 110 68 - 120 32.0 18.8 ug/L 59 17 - 120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	97		48 - 120
2-Fluorophenol (Surr)	67		35 - 120
2,4,6-Tribromophenol (Surr)	97		41 - 120
Nitrobenzene-d5 (Surr)	96		46 - 120
Phenol-d5 (Surr)	51		22 - 120
p-Terphenyl-d14 (Surr)	95		59 - 136

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Prep Type: Total/NA

Analysis Batch: 481493							Prep 1y		
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4,5-Tetrachlorobenzene	32.0	31.8		ug/L		99	53 - 120	5	30
1,2,4-Trichlorobenzene	32.0	30.9		ug/L		96	40 - 120	4	30
1,2-Dichlorobenzene	32.0	28.3		ug/L		88	49 - 120	3	29
1,3-Dichlorobenzene	32.0	28.1		ug/L		88	50 - 120	3	37
1,3-Dinitrobenzene	32.0	35.1		ug/L		110	68 - 131	7	18
1,4-Dichlorobenzene	32.0	28.9		ug/L		90	51 - 120	5	36
2,3,4,6-Tetrachlorophenol	32.0	36.9		ug/L		115	63 - 120	4	30
2,4,5-Trichlorophenol	32.0	37.0		ug/L		115	65 - 126	8	18
2,4,6-Trichlorophenol	32.0	37.9		ug/L		118	64 - 120	5	19
2,4-Dichlorophenol	32.0	33.1		ug/L		103	63 - 120	2	19
2,4-Dimethylphenol	32.0	34.0		ug/L		106	47 - 120	5	42
2,4-Dinitrophenol	64.0	71.6		ug/L		112	31 - 137	2	22
2,4-Dinitrotoluene	32.0	33.0		ug/L		103	69 - 120	3	20
2,6-Dichlorophenol	32.0	35.0		ug/L		109	62 - 120	4	30
2,6-Dinitrotoluene	32.0	34.4		ug/L		108	68 - 120	3	15
2-Chloronaphthalene	32.0	30.8		ug/L		96	58 - 120	3	21
2-Chlorophenol	32.0	30.0		ug/L		94	48 - 120	4	25
2-Methylnaphthalene	32.0	32.3		ug/L		101	59 - 120	5	21
2-Methylphenol	32.0	33.1		ug/L		103	39 - 120	4	27
2-Nitroaniline	32.0	38.0		ug/L		119	54 - 127	5	15
2-Nitrophenol	32.0	34.0		ug/L		106	52 - 125	6	18
3-Methylphenol	32.0	28.4		ug/L		89	39 - 120	2	30
4-Methylphenol	32.0	28.4		ug/L		89	29 - 131	2	24
3,3'-Dichlorobenzidine	64.0	72.8		ug/L		114	49 - 135	2	25
3-Nitroaniline	32.0	29.9		ug/L		93	51 - 120	2	19
4,6-Dinitro-2-methylphenol	64.0	75.3		ug/L		118	46 - 136	8	15
4-Bromophenyl phenyl ether	32.0	31.9		ug/L		100	65 - 120	3	15
4-Chloro-3-methylphenol	32.0	31.2		ug/L		97	61 - 123	4	27
p-Chloroaniline	32.0	24.4		ug/L		76	30 - 120	15	22

Eurofins TestAmerica, Buffalo

Page 65 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 480-480988/3-A

Matrix: Water

Analysis Batch: 481493

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 480988**

Analysis Batch. 401433	Spike	LCSD	LCSD		%Rec.	RPD		
Analyte	Added	Result	Qualifier Unit	D %	Rec	Limits	RPD	Limit
4-Chlorophenyl phenyl ether	32.0	33.4	ug/L		104	62 - 120	7	16
4-Nitroaniline	32.0	30.7	ug/L		96	65 - 120	6	24
4-Nitrophenol	64.0	77.1	* ug/L		121	45 - 120	1	48
Acenaphthene	32.0	34.2	ug/L		107	60 - 120	4	24
Acenaphthylene	32.0	33.0	ug/L		103	63 - 120	3	18
Acetophenone	32.0	32.5	ug/L		102	45 - 120	2	20
Anthracene	32.0	32.2	ug/L		101	67 - 120	6	15
Benzo[a]anthracene	32.0	34.2	ug/L		107	70 - 121	2	15
Benzo[a]pyrene	32.0	31.6	ug/L		99	60 - 123	1	15
Benzo[b]fluoranthene	32.0	34.3	ug/L		107	66 - 126	3	15
Benzo[g,h,i]perylene	32.0	34.9	ug/L		109	66 - 150	5	15
Benzo[k]fluoranthene	32.0	34.2	ug/L		107	65 - 124	4	22
Benzyl alcohol	32.0	29.8	ug/L		93	41 - 126	7	34
Bis(2-chloroethoxy)methane	32.0	30.2	ug/L		94	50 - 128	5	17
Bis(2-chloroethyl)ether	32.0	27.3	ug/L		85	44 - 120	0	21
Bis(2-ethylhexyl) phthalate	32.0	41.0	ug/L		128	63 - 139	1	15
bis(2 chloro-1-methylethyl) ether	32.0	31.9	ug/L		100	21 - 136	3	24
Butyl benzyl phthalate	32.0	35.8	ug/L		112	70 - 129	2	16
Chrysene	32.0	35.9	ug/L		112	69 - 120	3	15
Dibenz(a,h)anthracene	32.0	34.2	ug/L		107	65 - 135	2	15
Dibenzofuran	32.0	32.2	ug/L		101	66 - 120	5	15
Diethyl phthalate	32.0	37.9	ug/L		118	59 - 127	5	15
Dimethyl phthalate	32.0	35.4	ug/L		111	68 - 120	1	15
Di-n-butyl phthalate	32.0	35.2	ug/L		110	69 - 131	2	15
Di-n-octyl phthalate	32.0	37.3	ug/L		117	63 - 140	1	16
Diphenylamine	27.4	27.3	ug/L		100	61 - 120	5	30
Fluoranthene	32.0	34.1	ug/L		107	69 - 126	3	15
Fluorene	32.0	34.1	ug/L		107	66 - 120	5	15
Hexachlorobenzene	32.0	31.4	ug/L		98	61 - 120	5	15
Hexachlorobutadiene	32.0	32.1	ug/L		100	35 - 120	7	44
Hexachlorocyclopentadiene	32.0	25.1	ug/L		79	31 - 120	2	49
Hexachloroethane	32.0	29.9	ug/L		93	43 - 120	3	46
Indeno[1,2,3-cd]pyrene	32.0	35.5	ug/L		111	69 - 146	2	15
Isophorone	32.0	33.9	ug/L		106	55 - 120	4	17
Naphthalene	32.0	31.1	ug/L		97	57 - 120	5	29
Nitrobenzene	32.0	34.7	ug/L		108	53 - 123	5	24
N-Nitrosodimethylamine	32.0	35.9	ug/L		112	10 - 120	6	30
N-Nitrosodipropylamine	32.0	32.1	ug/L		100	32 - 140	2	31
N-Nitrosodiphenylamine	32.0	31.9	ug/L		100	61 - 120	5	15
Pentachlorophenol	64.0	62.6	ug/L		98	29 - 136	6	37
Phenanthrene	32.0	36.8	ug/L		115	68 - 120	5	15
Phenol	32.0	19.5	ug/L		61	17 - 120	4	34
Pyrene	32.0	34.4	ug/L		108	70 - 125	4	19

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	98		48 - 120
2-Fluorophenol (Surr)	70		35 - 120
2,4,6-Tribromophenol (Surr)	99		41 - 120

Eurofins TestAmerica, Buffalo

9/6/2019

Page 66 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

LCSD LCSD

Lab Sample ID: LCSD 480-480988/3-A

Matrix: Water

Analysis Batch: 481493

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 480988**

Limits Surrogate %Recovery Qualifier Nitrobenzene-d5 (Surr) 46 - 120 98 Phenol-d5 (Surr) 54 22 - 120 59 - 136 p-Terphenyl-d14 (Surr) 96

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 480-480991/1-A

Matrix: Water

Analysis Batch: 481374

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 480991

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.20 07/05/19 15:22 07/09/19 19:29 1,4-Dioxane $\overline{\mathsf{ND}}$ ug/L MB MB Isotope Dilution Qualifier Limits Prepared Dil Fac %Recovery Analyzed

07/05/19 15:22 07/09/19 19:29 1,4-Dioxane-d8 33 15 - 110

LCS LCS

Lab Sample ID: LCS 480-480991/2-A

Matrix: Water

Analysis Batch: 481374

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 480991**

%Rec.

Spike Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dioxane 1.00 1.10 110 40 - 140 ug/L

LCS LCS

Isotope Dilution %Recovery Qualifier Limits 1,4-Dioxane-d8 30 15 - 110

Method: EPA 625.1 - Semivolatile Organic Compounds (GC/MS)

MB MB

Lab Sample ID: MB 180-285394/1-A

Matrix: Water

Analysis Batch: 285773

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 285394

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Thionazin $\overline{\mathsf{ND}}$ 1.0 07/19/19 20:48 07/24/19 14:12 ua/L

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl	74		45 - 106	07/19/19 20:48	07/24/19 14:12	1
2-Fluorophenol (Surr)	93		39 - 105	07/19/19 20:48	07/24/19 14:12	1
2,4,6-Tribromophenol (Surr)	73		39 - 125	07/19/19 20:48	07/24/19 14:12	1
Nitrobenzene-d5 (Surr)	91		43 - 110	07/19/19 20:48	07/24/19 14:12	1
Phenol-d5 (Surr)	91		40 - 108	07/19/19 20:48	07/24/19 14:12	1
Terphenyl-d14 (Surr)	84		45 - 120	07/19/19 20:48	07/24/19 14:12	1

Lab Sample ID: LCS 180-285394/2-A

Matrix: Water

Analysis Batch: 285773

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

9/6/2019

Prep Batch: 285394

LCS LCS Surrogate %Recovery Qualifier Limits 2-Fluorobiphenyl 62 45 - 106

Eurofins TestAmerica, Buffalo

Page 67 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: EPA 625.1 - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 180-285394/2-A

Matrix: Water

Analysis Batch: 285773

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 285394

LCS LCS Surrogate %Recovery Qualifier Limits 2-Fluorophenol (Surr) 73 39 - 105 2,4,6-Tribromophenol (Surr) 66 39 - 125 Nitrobenzene-d5 (Surr) 87 43 - 110 Phenol-d5 (Surr) 75 40 - 108 45 - 120 Terphenyl-d14 (Surr) 73

Lab Sample ID: LCSD 180-285394/3-A

Matrix: Water

Analysis Batch: 285773

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 285394

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl	61		45 - 106
2-Fluorophenol (Surr)	81		39 - 105
2,4,6-Tribromophenol (Surr)	73		39 - 125
Nitrobenzene-d5 (Surr)	82		43 - 110
Phenol-d5 (Surr)	81		40 - 108
Terphenyl-d14 (Surr)	75		45 - 120

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-481166/1-A

Matrix: Water

Analysis Batch: 481221

Client Sample ID: Method Blank
Prep Type: Total/NA
Pron Batch: 481166

Prep Batch: 481166

	MB M	IB					
Analyte	Result Q	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
4,4'-DDE	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
4,4'-DDT	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Aldrin	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
alpha-BHC	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
beta-BHC	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Chlordane (technical)	ND	0.50	ug/L		07/08/19 15:10	07/09/19 13:01	1
delta-BHC	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Dieldrin	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Endosulfan I	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Endosulfan II	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Endosulfan sulfate	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Endrin	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Endrin aldehyde	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
gamma-BHC (Lindane)	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Heptachlor	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Methoxychlor	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1
Toxaphene	ND	0.50	ug/L		07/08/19 15:10	07/09/19 13:01	1
Heptachlor epoxide	ND	0.050	ug/L		07/08/19 15:10	07/09/19 13:01	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	40		20 - 120	07/08/19 15:10	07/09/19 13:01	1
Tetrachloro-m-xylene	78		44 - 120	07/08/19 15:10	07/09/19 13:01	1

Eurofins TestAmerica, Buffalo

9/6/2019

Page 68 of 136

9

3

4

6

8

10

12

14

15

17

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: LCS 480-481166/2-A			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 481221			Prep Batch: 481166
	Snika	100 100	0/ Pag

	Spike	LC3 I	LU3				/oixec.	
Analyte	Added	Result (Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	0.400	0.345		ug/L		86	64 - 129	
4,4'-DDE	0.400	0.305		ug/L		76	50 - 120	
4,4'-DDT	0.400	0.383		ug/L		96	59 - 120	
Aldrin	0.400	0.243		ug/L		61	40 - 125	
alpha-BHC	0.400	0.265		ug/L		66	52 - 125	
beta-BHC	0.400	0.309		ug/L		77	51 - 120	
delta-BHC	0.400	0.313		ug/L		78	51 - 120	
Dieldrin	0.400	0.300		ug/L		75	66 - 128	
Endosulfan I	0.400	0.281		ug/L		70	57 - 120	
Endosulfan II	0.400	0.306		ug/L		77	66 - 131	
Endosulfan sulfate	0.400	0.552 *	+	ug/L		138	66 - 136	
Endrin	0.400	0.397		ug/L		99	65 - 135	
Endrin aldehyde	0.400	0.333		ug/L		83	61 - 134	
gamma-BHC (Lindane)	0.400	0.309		ug/L		77	56 - 120	
Heptachlor	0.400	0.296		ug/L		74	58 - 120	
Methoxychlor	0.400	0.390		ug/L		97	50 - 150	
Heptachlor epoxide	0.400	0.365		ug/L		91	65 - 125	

SurrogateKecoveryQualifierLimitsDCB Decachlorobiphenyl4120 - 120Tetrachloro-m-xylene5944 - 120

Lab Sample ID: LCSD 480-481166/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Ratch: 481221

Analysis Batch: 481221							Prep Ba	atch: 48	31166
_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDD	0.400	0.447	*	ug/L		112	64 - 129	26	23
4,4'-DDE	0.400	0.340		ug/L		85	50 - 120	11	22
4,4'-DDT	0.400	0.413		ug/L		103	59 - 120	8	24
Aldrin	0.400	0.287		ug/L		72	40 - 125	17	25
alpha-BHC	0.400	0.331		ug/L		83	52 - 125	22	24
beta-BHC	0.400	0.362		ug/L		91	51 - 120	16	24
delta-BHC	0.400	0.398		ug/L		99	51 - 120	24	24
Dieldrin	0.400	0.434	*	ug/L		108	66 - 128	37	24
Endosulfan I	0.400	0.392	*	ug/L		98	57 - 120	33	30
Endosulfan II	0.400	0.425		ug/L		106	66 - 131	32	40
Endosulfan sulfate	0.400	0.570	*	ug/L		142	66 - 136	3	24
Endrin	0.400	0.448		ug/L		112	65 - 135	12	24
Endrin aldehyde	0.400	0.342		ug/L		86	61 - 134	3	28
gamma-BHC (Lindane)	0.400	0.386		ug/L		97	56 - 120	22	24
Heptachlor	0.400	0.381		ug/L		95	58 - 120	25	25
Methoxychlor	0.400	0.419		ug/L		105	50 - 150	7	26
Heptachlor epoxide	0.400	0.419		ug/L		105	65 - 125	14	23

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	44		20 - 120
Tetrachloro-m-xylene	84		44 - 120

Eurofins TestAmerica, Buffalo

Page 69 of 136

2

3

+

6

ŏ

10

12

13

15

16

4.0

Prep Type: Total/NA

19

9/6/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-480888/1-A

Matrix: Water

Analysis Batch: 481474

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 480888

	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1
PCB-1221	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1
PCB-1232	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1
PCB-1242	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1
PCB-1248	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1
PCB-1254	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1
PCB-1260	ND		0.50		ug/L		07/05/19 08:16	07/10/19 14:03	1

MB MB

Surrogate	%Recovery Q	Qualifier Lin	nits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	62	39	- 121	07/05/19 08:16	07/10/19 14:03	1
DCB Decachlorobiphenvl	38	19	- 120	07/05/19 08:16	07/10/19 14:03	1

LCS LCS

3.40

2.94

Result Qualifier Unit

ug/L

ug/L

Spike

4.00

4.00

Added

Lab Sample ID: LCS 480-480888/2-A

Matrix: Water

Analyte

PCB-1016

PCB-1260

Analysis Batch: 481474

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Drop Potoby 400000

%Rec.

Prep Batch: 480888

%Rec Limits 85 62 - 130 74

56 - 123

LCS LCS Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 59 39 - 121 DCB Decachlorobiphenyl 31 19 - 120

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 480-480799/1-A

Matrix: Water

Analysis Batch: 480962

Client Sample ID: Method Blank	
Prep Type: Total/NA	

Prep Batch: 480799

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND		0.50		ug/L		07/03/19 14:11	07/05/19 15:12	1
2,4-D	ND		0.50		ug/L		07/03/19 14:11	07/05/19 15:12	1
Silvex (2,4,5-TP)	ND		0.50		ug/L		07/03/19 14:11	07/05/19 15:12	1
	МВ	МВ							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 2,4-Dichlorophenylacetic acid 57 48 - 132 07/03/19 14:11 07/05/19 15:12

Lab Sample ID: LCS 480-480799/2-A

Matrix: Water

Analysis Batch: 480962

Client Sample ID: L	.ab Control Sample
P	Prep Type: Total/NA
	Prep Batch: 480799
o	%Rec

	Spik	e LCS	LCS			%Rec.	
Analyte	Adde	d Result	Qualifier Unit	D	%Rec	Limits	
2,4,5-T	2.0	0 1.48	ug/L		74	41 - 150	
2,4-D	2.0	0 1.63	ug/L		82	36 - 150	
Silvex (2,4,5-TP)	2.0	0 1.50	ug/L		75	49 - 150	

Eurofins TestAmerica, Buffalo

9/6/2019

Page 70 of 136

Client: Waste Management

Job ID: 480-155710-1 Project/Site: Chaffee Landfill-New Wells

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCS 480-480799/2-A

Matrix: Water

Analysis Batch: 480962

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 480799

LCS LCS

Limits Surrogate %Recovery Qualifier 2,4-Dichlorophenylacetic acid 48 - 132 57

Lab Sample ID: LCSD 480-480799/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 480962

Prep Type: Total/NA **Prep Batch: 480799** LCSD LCSD **RPD**

Spike %Rec. Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit 2,4,5-T 2.00 50 1.42 41 - 150 5 ug/L 2,4-D 2.00 1.68 ug/L 36 - 150 3 50 84 Silvex (2,4,5-TP) 2.00 1.54 ug/L 77 49 - 150 3 50

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 48 - 132

Lab Sample ID: MB 480-481261/1-A

Matrix: Water

Analysis Batch: 481461

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 481261

MB MB

	1110 11						
Analyte	Result C	Qualifier RL	MDL Un	nit D	Prepared	Analyzed	Dil Fac
2,4,5-T	ND ND	0.50	ug/	/L	07/09/19 09:24	07/10/19 13:34	1
2,4-D	ND	0.50	ug/	/L	07/09/19 09:24	07/10/19 13:34	1
Silvex (2,4,5-TP)	ND	0.50	ug/	/L	07/09/19 09:24	07/10/19 13:34	1

MB MB

%Recovery Qualifier Surrogate I imits Prepared Dil Fac Analyzed 48 - 132 07/09/19 09:24 07/10/19 13:34 2,4-Dichlorophenylacetic acid 58

Lab Sample ID: LCS 480-481261/2-A

Matrix: Water

Analysis Batch: 481461

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 481261

Client Sample ID: Lab Control Sample Dup

Spike LCS LCS %Rec.

Analyte	Added	Result	Qualifier Uni	t D	%Rec	Limits	
2,4,5-T	2.00	1.46	ug/l		73	41 - 150	
2,4-D	2.00	1.53	ug/l	_	76	36 - 150	
Silvex (2.4.5-TP)	2.00	1.48	ua/l	_	74	49 - 150	

LCS LCS

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 55 48 - 132

Lab Sample ID: LCSD 480-481261/3-A

Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 481461							Prep Ba	atch: 48	31261
-	Spil	e LCSD	LCSD				%Rec.		RPD
Analyte	Adde	d Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4,5-T	2.0	1.43		ug/L	_	72	41 - 150	2	50
2,4-D	2.0	0 1.66	i	ug/L		83	36 - 150	9	50
Silvex (2,4,5-TP)	2.0	0 1.48		ug/L		74	49 - 150	0	50

Eurofins TestAmerica, Buffalo

9/6/2019

Page 71 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 8151A - Herbicides (GC) (Continued)

Matrix: Water

Analysis Batch: 481461

Lab Sample ID: LCSD 480-481261/3-A **Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA**

Prep Batch: 481261

LCSD LCSD

Surrogate %Recovery Qualifier Limits 2,4-Dichlorophenylacetic acid 48 - 132

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-306095/1-A

Matrix: Water

Analysis Batch: 306613

lient Sample ID: Method Blank
Prep Type: Total/NA
Pron Batch: 306095

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorooctanoic acid (PFOA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorononanoic acid (PFNA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorodecanoic acid (PFDA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorododecanoic acid (PFDoA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		07/08/19 05:43	07/10/19 00:32	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20		ng/L		07/08/19 05:43	07/10/19 00:32	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20		ng/L		07/08/19 05:43	07/10/19 00:32	1
6:2 FTS	ND		20		ng/L		07/08/19 05:43	07/10/19 00:32	1
8:2 FTS	ND		20		ng/L		07/08/19 05:43	07/10/19 00:32	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Isotope Dilution	%Recovery Qualifier	Limits	Prepared Analyzed	Dil Fac
13C4 PFBA	88	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C5 PFPeA	93	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C2 PFHxA	96	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C4 PFHpA	97	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C4 PFOA	99	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C5 PFNA	96	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C2 PFDA	94	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C2 PFUnA	96	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C2 PFDoA	94	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C2 PFTeDA	96	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C3 PFBS	95	25 - 150	07/08/19 05:43 07/10/19 00:32	1
1802 PFHxS	96	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C4 PFOS	91	25 - 150	07/08/19 05:43 07/10/19 00:32	1
13C8 FOSA	80	25 - 150	07/08/19 05:43 07/10/19 00:32	1

Eurofins TestAmerica, Buffalo

9/6/2019

Page 72 of 136

Limits

25 - 150

25 - 150

25 - 150

25 - 150

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

%Recovery

MB MB

103

102

125

108

Qualifier

Lab Sample ID: MB 320-306095/1-A

Matrix: Water

Isotope Dilution

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

M2-8:2 FTS

Analysis Batch: 306613

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 306095**

Prepared Analyzed Dil Fac 07/08/19 05:43 07/10/19 00:32 07/08/19 05:43 07/10/19 00:32 07/08/19 05:43 07/10/19 00:32 07/08/19 05:43 07/10/19 00:32

Lab Sample ID: LCS 320-306095/2-A

Matrix: Water

Analysis Batch: 306613

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 306095 %Rec.

Spike LCS LCS Added Result Qualifier Limits **Analyte** Unit D %Rec 40.0 Perfluorobutanoic acid (PFBA) 41.3 ng/L 103 70 - 130 40.0 Perfluoropentanoic acid (PFPeA) 40.5 ng/L 101 66 - 126 Perfluorohexanoic acid (PFHxA) 40.0 37.8 ng/L 94 66 - 126 Perfluoroheptanoic acid (PFHpA) 40.0 41.8 ng/L 105 66 - 126 Perfluorooctanoic acid (PFOA) 40.0 43.3 ng/L 108 64 - 124 Perfluorononanoic acid (PFNA) 40.0 68 - 128 39.4 ng/L 99 Perfluorodecanoic acid (PFDA) 40.0 39.3 98 69 - 129 ng/L 40.0 96 60 - 120 Perfluoroundecanoic acid 38.3 ng/L (PFUnA) Perfluorododecanoic acid 40.0 41.6 ng/L 104 71 - 131 (PFDoA) 40.0 41.9 Perfluorotridecanoic acid ng/L 105 72 - 132 (PFTriA) 40.0 39.8 ng/L 99 68 - 128Perfluorotetradecanoic acid (PFTeA) 35.4 37.1 ng/L 105 73 - 133 Perfluorobutanesulfonic acid (PFBS) 36.4 33.3 ng/L 91 63 - 123 Perfluorohexanesulfonic acid (PFHxS) 38.1 38.0 ng/L 100 68 - 128 Perfluoroheptanesulfonic Acid (PFHpS) 37.1 38.4 103 67 - 127Perfluorooctanesulfonic acid ng/L (PFOS) 38.6 98 37.7 68 - 128 ng/L Perfluorodecanesulfonic acid (PFDS) 40.0 45.7 ng/L 114 70 - 130 Perfluorooctanesulfonamide (FOSA) 40.0 39.8 100 67 - 127 ng/L N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA) 40.0 40.4 ng/L 101 65 - 125N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA) 37.9 32.8 ng/L 86 66 - 126 6:2 FTS 8:2 FTS 38.3 108 67 - 12741.3 ng/L

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	89		25 - 150
13C5 PFPeA	95		25 - 150
13C2 PFHxA	99		25 - 150
13C4 PFHpA	97		25 - 150
13C4 PFOA	97		25 - 150
13C5 PFNA	97		25 - 150
13C2 PFDA	99		25 - 150

Eurofins TestAmerica, Buffalo

Page 73 of 136

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

LCS LCS

Lab Sample ID: LCS 320-306095/2-A

Matrix: Water

Analysis Batch: 306613

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 306095

Isotope Dilution %Recovery Qualifier Limits 13C2 PFUnA 97 25 - 150 13C2 PFDoA 96 25 - 150 13C2 PFTeDA 98 25 - 150 13C3 PFBS 96 25 - 150 1802 PFHxS 25 - 150 100 13C4 PFOS 25 - 150 98 13C8 FOSA 82 25 - 150 101 d3-NMeFOSAA 25 - 150 d5-NEtFOSAA 98 25 - 150 M2-6:2 FTS 138 25 - 150 M2-8:2 FTS 112 25 - 150

Lab Sample ID: LCSD 320-306095/3-A **Client Sample ID: Lab Control Sample Dup**

Unit

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

ng/L

LCSD LCSD

Result Qualifier

Matrix: Water

Analyte

Analysis Batch: 306613

Prep Type: Total/NA **Prep Batch: 306095**

%Rec

104

100

107

106

102

114

99

71 - 131

72 - 132

68 - 128

67 - 127

68 - 128

70 - 130

67 - 127

D

%Rec. **RPD** RPD Limits Limit

0

4

7

3

5

n

0

30

30

30

30

30

30

30

30

30

30

30

30

30

9/6/2019

10

Perfluorobutanoic acid (PFBA) 40.0 41.8 104 70 - 130 30 ng/L 40.0 Perfluoropentanoic acid (PFPeA) 39.7 ng/L 99 66 - 1262 30 Perfluorohexanoic acid (PFHxA) 40.0 37.3 ng/L 93 66 - 126 30 ng/L Perfluoroheptanoic acid (PFHpA) 40.0 42.7 107 66 - 126 2 30 Perfluorooctanoic acid (PFOA) 40.0 42.1 ng/L 105 64 - 124 3 30 Perfluorononanoic acid (PFNA) 40.0 42.2 ng/L 106 68 - 128 7 30 Perfluorodecanoic acid (PFDA) 40.0 40.7 ng/L 102 69 - 129 4 30 40.0 38.3 ng/L 96 60 - 120 0 30 Perfluoroundecanoic acid

Spike

Added

40.0

40.0

38.1

37.1

38.6

40.0

40.0

(PFUnA) Perfluorododecanoic acid

Perfluoroheptanesulfonic Acid

Perfluorooctanesulfonic acid

(PFDoA) Perfluorotridecanoic acid (PFTriA)

(PFTeA)

(PFBS)

(PFHxS)

(PFHpS)

40.0 39.6 99 68 - 128Perfluorotetradecanoic acid ng/L 1 37.6 ng/L 106 35.4 73 - 1331 Perfluorobutanesulfonic acid Perfluorohexanesulfonic acid 36.4 34.2 ng/L 94 63 - 123

41.6

40.1

40.8

39.4

39.4

45.5

39.6

(PFOS) Perfluorodecanesulfonic acid

(PFDS) Perfluorooctanesulfonamide

(FOSA) N-methylperfluorooctanesulfona

midoacetic acid (NMeFOSAA) 40.0 40.5 ng/L 101 65 - 125N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA) 6:2 FTS 37.9 33.7 ng/L 89 66 - 126 3 8:2 FTS 38.3 37.9 99 67 - 127 ng/L 9

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

	LCSD	LCSD		
Isotope Dilution	%Recovery	Qualifier	Limits	
13C4 PFBA	91		25 - 150	
13C5 PFPeA	98		25 - 150	
13C2 PFHxA	106		25 - 150	
13C4 PFHpA	99		25 - 150	
13C4 PFOA	99		25 - 150	
13C5 PFNA	101		25 - 150	
13C2 PFDA	101		25 - 150	
13C2 PFUnA	99		25 - 150	
13C2 PFDoA	100		25 - 150	
13C2 PFTeDA	100		25 - 150	
13C3 PFBS	94		25 - 150	
1802 PFHxS	104		25 - 150	
13C4 PFOS	95		25 - 150	
13C8 FOSA	85		25 - 150	
d3-NMeFOSAA	106		25 - 150	
d5-NEtFOSAA	97		25 - 150	
M2-6:2 FTS	135		25 - 150	
M2-8:2 FTS	122		25 - 150	

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-480833/1-A

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 481076								Prep Batch:	480833
Amalista	MB		DI	MDI	l lmi4	_	Duamanad	A malumad	Dil Foo
Analyte	ND	Qualifier	RL 0.20	MDL	Unit	D	Prepared 07/05/19 07:47	Analyzed	Dil Fac
Aluminum					mg/L			07/05/19 18:17	•
Antimony	ND		0.020		mg/L			07/05/19 18:17	1
Arsenic	ND		0.015		mg/L		07/05/19 07:47	07/05/19 18:17	1
Barium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 18:17	1
Beryllium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 18:17	1
Boron	ND		0.020		mg/L		07/05/19 07:47	07/05/19 18:17	1
Cadmium	ND		0.0020		mg/L		07/05/19 07:47	07/05/19 18:17	1
Calcium	ND		0.50		mg/L		07/05/19 07:47	07/05/19 18:17	1
Chromium	ND		0.0040		mg/L		07/05/19 07:47	07/05/19 18:17	1
Cobalt	ND		0.0040		mg/L		07/05/19 07:47	07/05/19 18:17	1
Copper	ND		0.010		mg/L		07/05/19 07:47	07/05/19 18:17	1
Iron	ND		0.050		mg/L		07/05/19 07:47	07/05/19 18:17	1
Lead	ND		0.010		mg/L		07/05/19 07:47	07/05/19 18:17	1
Magnesium	ND		0.20		mg/L		07/05/19 07:47	07/05/19 18:17	1
Manganese	ND		0.0030		mg/L		07/05/19 07:47	07/05/19 18:17	1
Nickel	ND		0.010		mg/L		07/05/19 07:47	07/05/19 18:17	1
Potassium	ND		0.50		mg/L		07/05/19 07:47	07/05/19 18:17	1
Selenium	ND		0.025		mg/L		07/05/19 07:47	07/05/19 18:17	1
Silver	ND		0.0060		mg/L		07/05/19 07:47	07/05/19 18:17	1
Sodium	ND		1.0		mg/L		07/05/19 07:47	07/05/19 18:17	1
Thallium	ND		0.020		mg/L		07/05/19 07:47	07/05/19 18:17	1
Zinc	ND		0.010		mg/L		07/05/19 07:47	07/05/19 18:17	1
Vanadium	ND		0.0050		mg/L		07/05/19 07:47	07/05/19 18:17	1
Tin	ND		0.010		mg/L			07/05/19 18:17	1

Page 75 of 136

Client: Waste Management

Matrix: Water

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: LCS 480-480833/2-A

Method: 6010C - Metals (ICP) (Continued)

Client Sample ID: Lab Control Sample

Prep 7	Гуре: 1	Total	/NA
Prep	Batch:	480	833
%Poc			

Job ID: 480-155710-1

Analysis Batch: 481076	Spike	LCS	LCS				Prep Batch: 480833 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	9.29		mg/L		93	80 - 120
Antimony	0.200	0.213		mg/L		106	80 - 120
Arsenic	0.200	0.199		mg/L		99	80 - 120
Barium	0.200	0.200		mg/L		100	80 - 120
Beryllium	0.200	0.200		mg/L		100	80 - 120
Boron	0.200	0.197		mg/L		98	80 - 120
Cadmium	0.200	0.195		mg/L		98	80 - 120
Calcium	10.0	9.47		mg/L		95	80 - 120
Chromium	0.200	0.191		mg/L		96	80 - 120
Cobalt	0.200	0.187		mg/L		93	80 - 120
Copper	0.200	0.196		mg/L		98	80 - 120
Iron	10.0	9.92		mg/L		99	80 - 120
Lead	0.200	0.190		mg/L		95	80 - 120
Magnesium	10.0	9.63		mg/L		96	80 - 120
Manganese	0.200	0.196		mg/L		98	80 - 120
Nickel	0.200	0.198		mg/L		99	80 - 120
Potassium	10.0	9.60		mg/L		96	80 - 120
Selenium	0.200	0.196		mg/L		98	80 - 120
Silver	0.0500	0.0472		mg/L		94	80 - 120
Sodium	10.0	9.31		mg/L		93	80 - 120
Thallium	0.200	0.197		mg/L		99	80 - 120
Zinc	0.200	0.199		mg/L		100	80 - 120
Vanadium	0.200	0.197		mg/L		98	80 - 120
Tin	0.200	0.183		mg/L		92	80 - 120

Lab Sample ID: MB 480-480974/1-A

Matrix: Water

Analysis Batch: 481247

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 480974

	MR	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		07/08/19 07:30	07/08/19 23:22	1
Antimony	ND		0.020		mg/L		07/08/19 07:30	07/08/19 23:22	1
Arsenic	ND		0.015		mg/L		07/08/19 07:30	07/08/19 23:22	1
Barium	ND		0.0020		mg/L		07/08/19 07:30	07/08/19 23:22	1
Beryllium	ND		0.0020		mg/L		07/08/19 07:30	07/08/19 23:22	1
Boron	ND		0.020		mg/L		07/08/19 07:30	07/08/19 23:22	1
Cadmium	ND		0.0020		mg/L		07/08/19 07:30	07/08/19 23:22	1
Calcium	ND		0.50		mg/L		07/08/19 07:30	07/08/19 23:22	1
Chromium	ND		0.0040		mg/L		07/08/19 07:30	07/08/19 23:22	1
Cobalt	ND		0.0040		mg/L		07/08/19 07:30	07/08/19 23:22	1
Copper	ND		0.010		mg/L		07/08/19 07:30	07/08/19 23:22	1
Iron	ND		0.050		mg/L		07/08/19 07:30	07/08/19 23:22	1
Lead	ND		0.010		mg/L		07/08/19 07:30	07/08/19 23:22	1
Magnesium	ND		0.20		mg/L		07/08/19 07:30	07/08/19 23:22	1
Manganese	ND		0.0030		mg/L		07/08/19 07:30	07/08/19 23:22	1
Nickel	ND		0.010		mg/L		07/08/19 07:30	07/08/19 23:22	1
Potassium	ND		0.50		mg/L		07/08/19 07:30	07/08/19 23:22	1
Selenium	ND		0.025		mg/L		07/08/19 07:30	07/08/19 23:22	1
Silver	ND		0.0060		mg/L		07/08/19 07:30	07/08/19 23:22	1

Eurofins TestAmerica, Buffalo

Page 76 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-480974/1-A **Matrix: Water**

Analysis Batch: 481247

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 480974

Job ID: 480-155710-1

	MB MI	В				•	
Analyte	Result Qu	ualifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sodium	ND ND	1.0	mg/L		07/08/19 07:30	07/08/19 23:22	1
Thallium	ND	0.020	mg/L		07/08/19 07:30	07/08/19 23:22	1
Zinc	ND	0.010	mg/L		07/08/19 07:30	07/08/19 23:22	1
Vanadium	ND	0.0050	mg/L		07/08/19 07:30	07/08/19 23:22	1
Tin	ND	0.010	mg/L		07/08/19 07:30	07/08/19 23:22	1

Lab Sample ID: LCS 480-480974/2-A

Matrix: Water

Client Sample II	D: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 481247							Prep Batch: 48097
	Spike		LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	9.36		mg/L		94	80 - 120
Antimony	0.200	0.211		mg/L		105	80 - 120
Arsenic	0.200	0.202		mg/L		101	80 - 120
Barium	0.200	0.199		mg/L		100	80 - 120
Beryllium	0.200	0.201		mg/L		101	80 - 120
Cadmium	0.200	0.195		mg/L		98	80 - 120
Calcium	10.0	9.64		mg/L		96	80 - 120
Chromium	0.200	0.196		mg/L		98	80 - 120
Cobalt	0.200	0.185		mg/L		92	80 - 120
Copper	0.200	0.193		mg/L		97	80 - 120
Iron	10.0	9.93		mg/L		99	80 - 120
Lead	0.200	0.186		mg/L		93	80 - 120
Magnesium	10.0	9.67		mg/L		97	80 - 120
Manganese	0.200	0.199		mg/L		99	80 - 120
Nickel	0.200	0.196		mg/L		98	80 - 120
Potassium	10.0	9.47		mg/L		95	80 - 120
Selenium	0.200	0.188		mg/L		94	80 - 120
Silver	0.0500	0.0489		mg/L		98	80 - 120
Sodium	10.0	9.24		mg/L		92	80 - 120
Thallium	0.200	0.190		mg/L		95	80 - 120
Zinc	0.200	0.206		mg/L		103	80 - 120
Vanadium	0.200	0.197		mg/L		98	80 - 120
Tin	0.200	0.181		mg/L		90	80 - 120

Lab Sample ID: LCS 480-480974/2-A

Matrix: Water

Analyte

Analysis Batch: 481438

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 480974

D %Rec

97

%Rec.

Limits 80 - 120

Boron Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-480933/1-A

Matrix: Water

Analysis Batch: 481001

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 480933**

MB MB Analyte **Result Qualifier** MDL Unit Prepared Analyzed ND mg/L 07/05/19 11:55 07/05/19 15:47 Mercury 0.00020

LCS LCS

0.194

Result Qualifier

Unit

mg/L

Spike

Added

0.200

Eurofins TestAmerica, Buffalo

Page 77 of 136

Project/Site: Chaffee Landfill-New Wells

Method: 7470A - Mercury (CVAA)

Lab Sample ID: LCS 480-480933/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481001 Prep Batch: 480933** Spike LCS LCS %Rec.

Analyte Added Result Qualifier %Rec Limits Unit 0.00667 0.00683 102 80 - 120 Mercury mg/L

Lab Sample ID: MB 480-481119/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481183 Prep Batch: 481119** MB MB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 0.00020 07/08/19 11:51 07/08/19 16:04 Mercury ND mg/L

Lab Sample ID: LCS 480-481119/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481183 Prep Batch: 481119** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits D 0.00667 80 - 120 Mercury 0.00638 mg/L 96

Lab Sample ID: 480-155757-1 MS Client Sample ID: MWSE-1 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481183 Prep Batch: 481119** Sample Sample Spike MS MS %Rec. Added Limits Analyte Result Qualifier Result Qualifier D %Rec Unit

Mercury ND 0.00667 0.00685 103 80 - 120 mg/L

Matrix: Water Prep Type: Total/NA **Analysis Batch: 481183 Prep Batch: 481119** Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier **Analyte** Added Result Qualifier Unit %Rec Limits **RPD** Limit ND 0.00667 0.00698

mg/L

Method: 300.0 - Bromide

Mercury

Lab Sample ID: 480-155757-1 MSD

Lab Sample ID: MB 480-481169/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481169

MB MB MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.20 07/08/19 16:29 Bromide $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-481169/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481169

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec Bromide 5.00 4.79 mg/L 96 90 - 110

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: MWSE-1

80 - 120

105

Project/Site: Chaffee Landfill-New Wells

Method: 300.0 - Bromide (Continued)

Lab Sample ID: 480-155710-1 MS **Client Sample ID: MWSE-2 Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481169

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Bromide ND 25.0 101 80 - 120 25.35 mg/L

Lab Sample ID: 480-155710-1 MSD Client Sample ID: MWSE-2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481169

RPD MSD MSD %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Bromide ND 25.0 25.61 mg/L 102 80 - 120 20

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-481985/12 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Alkalinity, Total $\overline{\mathsf{ND}}$ 5.0 mg/L 07/14/19 14:41

Lab Sample ID: MB 480-481985/24 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

MB MB **MDL** Unit **Analyte** Result Qualifier RL D Prepared Analyzed Dil Fac 5.0 07/14/19 14:53 Alkalinity, Total ND mg/L

Lab Sample ID: MB 480-481985/32 **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 481985

MB MB Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac Alkalinity, Total $\overline{\mathsf{ND}}$ 5.0 mg/L 07/14/19 14:59

Lab Sample ID: LCS 480-481985/13 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 50.0 Alkalinity, Total 53.46 mg/L 107 90 - 110

Lab Sample ID: LCS 480-481985/25 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits %Rec 90 - 110 Alkalinity, Total 50.0 53.19 mg/L 106

Eurofins TestAmerica, Buffalo

9/6/2019

Project/Site: Chaffee Landfill-New Wells

Method: 310.2 - Alkalinity (Continued)

Lab Sample ID: LCS 480-481985/33 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Alkalinity, Total 50.0 53.11 106 90 - 110 mg/L

Lab Sample ID: 480-155710-1 MS Client Sample ID: MWSE-2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 186 20.0 Alkalinity, Total 183.3 4 mg/L -14 60 - 140

Lab Sample ID: 480-155710-1 MSD Client Sample ID: MWSE-2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 186 20.0 199.9 4 60 - 140 20 Alkalinity, Total mg/L 69

Lab Sample ID: 480-155710-2 MS Client Sample ID: MWSE-3 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481985

Sample Sample Spike MS MS %Rec. Added Limits Analyte Result Qualifier Result Qualifier %Rec Unit D Alkalinity, Total 25.9 20.0 44.31 92 60 - 140 mg/L

Lab Sample ID: 480-155710-2 MSD

Matrix: Water

Analysis Batch: 481985

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits **RPD** Limit Alkalinity, Total 20.0 43.05 25.9 mg/L 60 - 140 20

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-481459/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481459

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.020 07/10/19 08:52 Ammonia (as N) $\overline{\mathsf{ND}}$ mg/L as N

Lab Sample ID: MB 480-481459/51 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481459

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Ammonia (as N) $\overline{\mathsf{ND}}$ 0.020 mg/L as N 07/10/19 09:33

MR MR

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: MWSE-3

Prep Type: Total/NA

Project/Site: Chaffee Landfill-New Wells

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: LCS 480-481459/4 Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 481459 Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec 104 90 - 110

Ammonia (as N) 1.00 1.04 mg/L as N

Lab Sample ID: LCS 480-481459/52 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481459

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 1.00 Ammonia (as N) 1.04 mg/L as N 104 90 - 110

Lab Sample ID: 480-155710-1 MS Client Sample ID: MWSE-2 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481459

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec I imits ND 0.200 Ammonia (as N) 0.196 mg/L as N 98 90 - 110

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: MB 480-482601/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 482976 MB MB

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac

0.15 07/18/19 09:10 07/21/19 09:01 Total Kjeldahl Nitrogen $\overline{\mathsf{ND}}$ mg/L as N

Lab Sample ID: LCS 480-482601/2-A **Matrix: Water**

Analysis Batch: 482976

Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits mg/L as N Total Kjeldahl Nitrogen 2.50 2.26 90 90 - 110

Method: 410.4 - COD

Lab Sample ID: MB 480-481974/27 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481974

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 5.0 **Chemical Oxygen Demand** $\overline{\mathsf{ND}}$ mg/L 07/14/19 09:32

Lab Sample ID: LCS 480-481974/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

26.47

mg/L

Analysis Batch: 481974

Chemical Oxygen Demand

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits

25.0

Eurofins TestAmerica, Buffalo

9/6/2019

90 - 110

106

Prep Type: Total/NA

Prep Batch: 482601

Prep Type: Total/NA

Prep Batch: 482601

Client Sample ID: Lab Control Sample

Project/Site: Chaffee Landfill-New Wells

Method: 410.4 - COD (Continued)

Lab Sample ID: MB 480-482652/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 482652

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Chemical Oxygen Demand 5.0 07/18/19 09:44 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: MB 480-482652/51 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 482652

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 5.0 **Chemical Oxygen Demand** ND mg/L 07/18/19 09:44

Lab Sample ID: LCS 480-482652/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 482652

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec **Chemical Oxygen Demand** 25.0 90 22.62 mg/L 90 - 110

Lab Sample ID: LCS 480-482652/52 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 482652

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier D %Rec Unit Chemical Oxygen Demand 25.0 22.62 90 90 - 110 mg/L

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-480800/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480800

MB MB

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac Chromium, hexavalent $\overline{\mathsf{ND}}$ 0.010 mg/L 07/03/19 11:45

Lab Sample ID: LCS 480-480800/4

Matrix: Water

Analysis Batch: 480800

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 0.0500 Chromium, hexavalent 0.0517 mg/L 103 85 - 115

Lab Sample ID: 480-155710-2 MS **Client Sample ID: MWSE-3** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480800

MS MS Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Limits Unit %Rec Chromium, hexavalent ND 0.0500 0.0505 mg/L 101 85 - 115

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Chaffee Landfill-New Wells

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: 480-155710-1 DU **Client Sample ID: MWSE-2** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480800

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit RPD Limit Chromium, hexavalent ND ND NC mg/L

Lab Sample ID: MB 480-481949/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481949

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.010 Chromium, hexavalent ND mg/L 07/13/19 10:30

Lab Sample ID: LCS 480-481949/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481949

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chromium, hexavalent 0.0500 85 - 115 0.0517 mg/L 103

Lab Sample ID: 480-156080-1 MS Client Sample ID: MWSE-1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481949

Sample Sample Spike MS MS %Rec. Added Limits Analyte Result Qualifier Result Qualifier %Rec Unit D Chromium, hexavalent ND 0.0500 0.0493 99 85 - 115 mg/L

Lab Sample ID: 480-156080-4 DU

Matrix: Water

Analysis Batch: 481949

Sample Sample DU DU **RPD** Result Qualifier RPD Analyte Result Qualifier Unit D Limit Chromium, hexavalent ND ND NC mg/L 20

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-481334/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 481516

Prep Type: Total/NA Prep Batch: 481334 MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.010 07/09/19 14:15 07/10/19 14:50 Cyanide, Total $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-481334/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481516 Prep Batch: 481334 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit Limits Cyanide, Total 0.250 0.253 mg/L 101 90 - 110

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: MWSE-4

Prep Type: Total/NA

Project/Site: Chaffee Landfill-New Wells

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: 480-15571	0-2 MS							Clien	t Sample	ID: MWSE-3
Matrix: Water									Prep Ty	pe: Total/NA
Analysis Batch: 481516									Prep Ba	atch: 481334
_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	ND		0.100	0.0931		mg/L		93	90 - 110	

Lab Sample ID: MB 480-481527/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 481688 **Prep Batch: 481527** MB MB Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 0.010 07/10/19 15:50 07/11/19 12:48 Cyanide, Total ND mg/L

Lab Sample ID: LCS 480-481527/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481688 Prep Batch: 481527** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Cyanide, Total 0.400 0.345 86 90 - 110 mg/L

Lab Sample ID: LCS 480-481527/3-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481688 Prep Batch: 481527** Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier D %Rec Unit Cyanide, Total 0.250 0.204 mg/L 82 90 - 110

Method: 9038 - Sulfate, Turbidimetric

Lab Sample ID: MB 480-483565/12 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 483565

MB MB Analyte Result Qualifier RI **MDL** Unit D Prepared Analyzed Dil Fac Sulfate 3.72 1.5 mg/L 07/24/19 12:27

Lab Sample ID: MB 480-483565/30 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 483565

MB MB **MDL** Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 3.78 1.5 07/24/19 12:40 Sulfate mg/L

Lab Sample ID: LCS 480-483565/11 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 483565

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit Limits Sulfate 30.0 29.63 mg/L 99 90 - 110

Eurofins TestAmerica, Buffalo

9/6/2019

Project/Site: Chaffee Landfill-New Wells

Method: 9038 - Sulfate, Turbidimetric (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-483565/29 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 483565 Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit

90 - 110 Sulfate 30.0 29.64 99 mg/L

Method: 9065 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-481746/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 481919 **Prep Batch: 481746**

MR MR

Result Qualifier **MDL** Unit **Prepared** Analyzed 0.0050 07/11/19 19:10 07/12/19 14:35 Phenolics, Total Recoverable $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-481746/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 481919 Prep Batch: 481746** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Phenolics, Total Recoverable 0.100 0.161 mg/L 161 90 - 110

Lab Sample ID: MB 480-481747/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481919

MB MB

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac

0.0050 07/11/19 19:18 07/12/19 14:51 Phenolics, Total Recoverable ND mg/L

Lab Sample ID: LCS 480-481747/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481919 Prep Batch: 481747 Spike LCS LCS %Rec.

Limits Analyte Added Result Qualifier Unit %Rec Phenolics, Total Recoverable 0.100 0.105 mg/L 105 90 - 110

Method: 9251 - Chloride

Lab Sample ID: MB 480-481986/12 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481986 MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac Chloride $\overline{\mathsf{ND}}$ 1.0 mg/L 07/14/19 14:39

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-481986/13 Prep Type: Total/NA

Matrix: Water Analysis Batch: 481986

Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Chloride 25.0 26.73 ma/L 107 90 - 110

Eurofins TestAmerica, Buffalo

9/6/2019

Prep Batch: 481747

Project/Site: Chaffee Landfill-New Wells

Method: 9251 - Chloride (Continued)

Lab Sample ID: 480-155710-1 MS

Matrix: Water

Analysis Batch: 481986

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier %Rec Limits Unit Chloride 20.0 103 74 - 131 14 1 34.74 mg/L

Lab Sample ID: 480-155710-1 MSD

Matrix: Water

Analysis Batch: 481986

RPD MSD MSD %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit 20.0 Chloride 14.1 34.82 mg/L 104 74 - 131 0

Lab Sample ID: 480-155710-2 MS

Matrix: Water

Analysis Batch: 481986

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit Limits %Rec Chloride ND 20.0 74 - 131 24.12 mg/L 116

Lab Sample ID: 480-155710-2 MSD

Matrix: Water

Analysis Batch: 481986

Spike MSD MSD %Rec. **RPD** Sample Sample Result Qualifier Added RPD Limit Analyte Result Qualifier D %Rec Limits Unit Chloride $\overline{\mathsf{ND}}$ 20.0 22.94 74 - 131 20 mg/L

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-480848/3

Matrix: Water

Analysis Batch: 480848

MB MB

Analyte Result Qualifier RI **RL Unit** Prepared Analyzed Dil Fac Color $\overline{\mathsf{ND}}$ 5.00 Color Units 07/03/19 17:25

Lab Sample ID: LCS 480-480848/4

Matrix: Water

Analysis Batch: 480848

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 30.0 30.00 90 - 110 Color Color Units

Lab Sample ID: 480-155710-1 DU

Matrix: Water

Analysis Batch: 480848

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Limit Color Units Color 10.0 10.00

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: MWSE-2

Client Sample ID: MWSE-2

Client Sample ID: MWSE-3

Client Sample ID: MWSE-3

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MWSE-2

Project/Site: Chaffee Landfill-New Wells

Method: SM 2120B - Color, Colorimetric (Continued)

Lab Sample ID: MB 480-480925/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 480925

MB MB

Analyte Result Qualifier RL **RL** Unit Analyzed Dil Fac Prepared Color 5.00 Color Units 07/05/19 09:12 ND

Lab Sample ID: LCS 480-480925/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 480925

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 30.0 Color Units Color 30.00 100 90 - 110

Lab Sample ID: 480-155757-1 DU Client Sample ID: MWSE-1 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480925

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit ח RPD Limit Color 10.0 Color Units 20 10.00

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-481085/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481085

MB MB

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Total Dissolved Solids 10.0 07/08/19 08:38 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-481085/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 481085

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit D %Rec Total Dissolved Solids 500 501.0 mg/L 100 85 - 115

Lab Sample ID: 480-155710-1 DU Client Sample ID: MWSE-2 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481085

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier Unit **RPD** Limit 579.0 Total Dissolved Solids 587 mg/L

Lab Sample ID: MB 480-481219/1

Matrix: Water

Analysis Batch: 481219

MR MR Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac mg/L **Total Dissolved Solids** $\overline{\mathsf{ND}}$ 10.0 07/09/19 07:49

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

10

Dil Fac

Prep Type: Total/NA

Project/Site: Chaffee Landfill-New Wells

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-481219/2 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 481219 Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit

500

Lab Sample ID: 480-155757-2 DU Client Sample ID: MWSE-4 Prep Type: Total/NA

490.0

mg/L

Matrix: Water

Total Dissolved Solids

Analysis Batch: 481219

RPD DU DU Sample Sample Analyte Result Qualifier Result Qualifier Unit D RPD Limit **Total Dissolved Solids** 441 434.0 mg/L 2

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-480863/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 480863

USB USB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac **Biochemical Oxygen Demand** $\overline{\mathsf{ND}}$ 2.0 mg/L 07/04/19 04:48

Lab Sample ID: LCS 480-480863/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480863

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits **Biochemical Oxygen Demand** 198 210.0 mg/L 106 85 - 115

Lab Sample ID: USB 480-480864/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 480864

USB USB

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac **Biochemical Oxygen Demand** $\overline{\mathsf{ND}}$ 2.0 mg/L 07/04/19 09:11

Lab Sample ID: LCS 480-480864/2

Matrix: Water

Analysis Batch: 480864

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits 198 **Biochemical Oxygen Demand** 186.1 mg/L 85 - 115

Method: SM 5310D - Organic Carbon, Total (TOC)

Lab Sample ID: MB 480-481954/51 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481954

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total Organic Carbon 1.0 07/13/19 02:59 $\overline{\mathsf{ND}}$ mg/L

Eurofins TestAmerica, Buffalo

9/6/2019

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

98

85 - 115

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Method: SM 5310D - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 480-481954/52

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 481954

Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit 90 - 110 Total Organic Carbon 60.0 92 55.18 mg/L

Count

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-434862/7-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 440089

Prep Type: Total/NA

Prep Batch: 434862

10

Job ID: 480-155710-1

MB MB Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 07/15/19 14:52 08/20/19 20:43 -0.03976 U 0.0623 0.0624 1.00 0.138 pCi/L

Total

MB MB

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 80.8 40 - 110 07/15/19 14:52 08/20/19 20:43

Lab Sample ID: LCS 160-434862/1-A

Matrix: Water

Analysis Batch: 439901

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 434862

Total LCS LCS **Spike** Uncert. %Rec. Added Result Qual RL **MDC** Unit Analyte $(2\sigma + / -)$ %Rec

Limits Radium-226 11.4 10.89 1.13 1.00 0.117 pCi/L 96 75 - 125

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 80.8 40 - 110

Lab Sample ID: LCSD 160-434862/2-A **Client Sample ID: Lab Control Sample Dup**

Matrix: Water

Analysis Batch: 441783

Prep Type: Total/NA **Prep Batch: 434862**

Spike LCSD LCSD %Rec. RER Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits RER Limit

Total

Radium-226 11.4 8.527 0.933 1.00 0.125 pCi/L 75 75 - 125 1.15

LCSD LCSD

Carrier %Yield Qualifier Limits Ba Carrier 67.2 40 - 110

Method: 904.0 - Radium-228 (GFPC)

Client Sample ID: Method Blank Lab Sample ID: MB 160-434867/7-A

Matrix: Water

Prep Type: Total/NA Analysis Batch: 436841 **Prep Batch: 434867** Count Total

MR MR Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit Prepared RL Analyzed Dil Fac Radium-228 0.5666 U 0.380 0.383 1.00 0.591 pCi/L 07/15/19 15:55 07/29/19 10:13

Eurofins TestAmerica, Buffalo

9/6/2019

QC Sample Results

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: MB 160-434867/7-A

Method: 904.0 - Radium-228 (GFPC) (Continued)

Matrix: Water

Carrier

Ba Carrier

Y Carrier

Analysis Batch: 436841

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 434867**

MB MB **%Yield Qualifier** Limits Prepared Analyzed Dil Fac 40 - 110 07/15/19 15:55 07/29/19 10:13 80.8 07/15/19 15:55 07/29/19 10:13 77.4 40 - 110

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 160-434867/1-A

Matrix: Water

Analysis Batch: 436841

Prep Type: Total/NA Prep Batch: 434867

10

Total Spike LCS LCS %Rec. Uncert. Analyte Added $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Result Qual Radium-228 75 - 125 9.74 11.53 1.40 1.00 0.672 pCi/L 118

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 80.8 40 - 110 Y Carrier 75.9 40 - 110

Lab Sample ID: LCSD 160-434867/2-A

Matrix: Water

Analysis Batch: 436841

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 434867

Total Spike LCSD LCSD Uncert. %Rec. **RER** Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits RER Limit 0.548 pCi/L Radium-228 9.74 8.522 1.08 1.00 88 75 - 125 1.21

LCSD LCSD %Yield Qualifier Carrier Limits 40 - 110 Ba Carrier 67.2 Y Carrier 99.8 40 - 110

Eurofins TestAmerica, Buffalo

9/6/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

GC/MS VOA

Analysis Batch: 481743

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8260C	
480-155710-2	MWSE-3	Total/NA	Water	8260C	
MB 480-481743/7	Method Blank	Total/NA	Water	8260C	
LCS 480-481743/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 481776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	8260C	
480-155757-2	MWSE-4	Total/NA	Water	8260C	
480-155757-3	TRIP BLANK	Total/NA	Water	8260C	
MB 480-481776/7	Method Blank	Total/NA	Water	8260C	
LCS 480-481776/5	Lab Control Sample	Total/NA	Water	8260C	

GC/MS Semi VOA

Prep Batch: 285394

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-156080-1	MWSE-1	Total/NA	Water	625	_
480-156080-2	MWSE-2	Total/NA	Water	625	
480-156080-3	MWSE-3	Total/NA	Water	625	
480-156080-4	MWSE-4	Total/NA	Water	625	
MB 180-285394/1-A	Method Blank	Total/NA	Water	625	
LCS 180-285394/2-A	Lab Control Sample	Total/NA	Water	625	
LCSD 180-285394/3-A	Lab Control Sample Dup	Total/NA	Water	625	

Analysis Batch: 285773

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-156080-1	MWSE-1	Total/NA	Water	EPA 625.1	285394
480-156080-2	MWSE-2	Total/NA	Water	EPA 625.1	285394
480-156080-3	MWSE-3	Total/NA	Water	EPA 625.1	285394
480-156080-4	MWSE-4	Total/NA	Water	EPA 625.1	285394
MB 180-285394/1-A	Method Blank	Total/NA	Water	EPA 625.1	285394
LCS 180-285394/2-A	Lab Control Sample	Total/NA	Water	EPA 625.1	285394
LCSD 180-285394/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 625.1	285394

Prep Batch: 480988

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	3510C	
480-155710-2	MWSE-3	Total/NA	Water	3510C	
480-155757-1	MWSE-1	Total/NA	Water	3510C	
480-155757-2	MWSE-4	Total/NA	Water	3510C	
MB 480-480988/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-480988/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-480988/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Prep Batch: 480991

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	3510C	<u> </u>
480-155710-2	MWSE-3	Total/NA	Water	3510C	
480-155757-1	MWSE-1	Total/NA	Water	3510C	
480-155757-2	MWSE-4	Total/NA	Water	3510C	

Eurofins TestAmerica, Buffalo

Page 91 of 136

5

Job ID: 480-155710-1

3

4

6

ا

9

11

14

15

17

L

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

GC/MS Semi VOA (Continued)

Prep Batch: 480991 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-480991/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-480991/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 481374

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8270D SIM ID	480991
480-155710-2	MWSE-3	Total/NA	Water	8270D SIM ID	480991
480-155757-1	MWSE-1	Total/NA	Water	8270D SIM ID	480991
480-155757-2	MWSE-4	Total/NA	Water	8270D SIM ID	480991
MB 480-480991/1-A	Method Blank	Total/NA	Water	8270D SIM ID	480991
LCS 480-480991/2-A	Lab Control Sample	Total/NA	Water	8270D SIM ID	480991

Analysis Batch: 481493

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8270D	480988
480-155710-2	MWSE-3	Total/NA	Water	8270D	480988
480-155757-1	MWSE-1	Total/NA	Water	8270D	480988
480-155757-2	MWSE-4	Total/NA	Water	8270D	480988
MB 480-480988/1-A	Method Blank	Total/NA	Water	8270D	480988
LCS 480-480988/2-A	Lab Control Sample	Total/NA	Water	8270D	480988
LCSD 480-480988/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	480988

GC Semi VOA

Prep Batch: 480799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8151A	
480-155710-2	MWSE-3	Total/NA	Water	8151A	
MB 480-480799/1-A	Method Blank	Total/NA	Water	8151A	
LCS 480-480799/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 480-480799/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	

Prep Batch: 480888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	3510C	_
480-155710-2	MWSE-3	Total/NA	Water	3510C	
480-155757-1	MWSE-1	Total/NA	Water	3510C	
480-155757-2	MWSE-4	Total/NA	Water	3510C	
MB 480-480888/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-480888/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 480962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8151A	480799
480-155710-2	MWSE-3	Total/NA	Water	8151A	480799
MB 480-480799/1-A	Method Blank	Total/NA	Water	8151A	480799
LCS 480-480799/2-A	Lab Control Sample	Total/NA	Water	8151A	480799
LCSD 480-480799/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	480799

Eurofins TestAmerica, Buffalo

Page 92 of 136

Job ID: 480-155710-1

9/6/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

GC Semi VOA

Prep Batch: 481166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	3510C	
480-155710-2	MWSE-3	Total/NA	Water	3510C	
480-155757-1	MWSE-1	Total/NA	Water	3510C	
480-155757-2	MWSE-4	Total/NA	Water	3510C	
MB 480-481166/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-481166/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 480-481166/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 481221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8081B	481166
480-155710-2	MWSE-3	Total/NA	Water	8081B	481166
480-155757-1	MWSE-1	Total/NA	Water	8081B	481166
480-155757-2	MWSE-4	Total/NA	Water	8081B	481166
MB 480-481166/1-A	Method Blank	Total/NA	Water	8081B	481166
LCS 480-481166/2-A	Lab Control Sample	Total/NA	Water	8081B	481166
LCSD 480-481166/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	481166

Prep Batch: 481261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	8151A	
480-155757-2	MWSE-4	Total/NA	Water	8151A	
MB 480-481261/1-A	Method Blank	Total/NA	Water	8151A	
LCS 480-481261/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 480-481261/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	

Analysis Batch: 481461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	8151A	481261
480-155757-2	MWSE-4	Total/NA	Water	8151A	481261
MB 480-481261/1-A	Method Blank	Total/NA	Water	8151A	481261
LCS 480-481261/2-A	Lab Control Sample	Total/NA	Water	8151A	481261
LCSD 480-481261/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	481261

Analysis Batch: 481474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	8082A	480888
480-155710-2	MWSE-3	Total/NA	Water	8082A	480888
480-155757-1	MWSE-1	Total/NA	Water	8082A	480888
480-155757-2	MWSE-4	Total/NA	Water	8082A	480888
MB 480-480888/1-A	Method Blank	Total/NA	Water	8082A	480888
LCS 480-480888/2-A	Lab Control Sample	Total/NA	Water	8082A	480888

LCMS

Prep Batch: 306095

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
480-155710-1	MWSE-2	Total/NA	Water	3535	
480-155710-2	MWSE-3	Total/NA	Water	3535	
480-155757-1	MWSE-1	Total/NA	Water	3535	
480-155757-2	MWSE-4	Total/NA	Water	3535	

Eurofins TestAmerica, Buffalo

Page 93 of 136 9/6/2019

3

Job ID: 480-155710-1

А

5

7

10

4.0

4.0

14

17

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

LCMS (Continued)

Prep Batch: 306095 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 320-306095/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-306095/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-306095/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 306613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	537 (modified)	306095
480-155710-2	MWSE-3	Total/NA	Water	537 (modified)	306095
480-155757-1	MWSE-1	Total/NA	Water	537 (modified)	306095
480-155757-2	MWSE-4	Total/NA	Water	537 (modified)	306095
MB 320-306095/1-A	Method Blank	Total/NA	Water	537 (modified)	306095
LCS 320-306095/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	306095
LCSD 320-306095/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	306095

Metals

Prep Batch: 480833

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	3005A	_ :
480-155710-2	MWSE-3	Total/NA	Water	3005A	
MB 480-480833/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-480833/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 480933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	7470A	
480-155710-2	MWSE-3	Total/NA	Water	7470A	
MB 480-480933/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-480933/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 480974

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	3005A	
480-155757-2	MWSE-4	Total/NA	Water	3005A	
MB 480-480974/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-480974/2-A	Lab Control Sample	Total/NA	Water	3005A	

Analysis Batch: 481001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	7470A	480933
480-155710-2	MWSE-3	Total/NA	Water	7470A	480933
MB 480-480933/1-A	Method Blank	Total/NA	Water	7470A	480933
LCS 480-480933/2-A	Lab Control Sample	Total/NA	Water	7470A	480933

Analysis Batch: 481076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	6010C	480833
480-155710-2	MWSE-3	Total/NA	Water	6010C	480833
MB 480-480833/1-A	Method Blank	Total/NA	Water	6010C	480833
LCS 480-480833/2-A	Lab Control Sample	Total/NA	Water	6010C	480833

Eurofins TestAmerica, Buffalo

9/6/2019

Page 94 of 136

Job ID: 480-155710-1

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Metals

Prep Batch: 481119

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	7470A	
480-155757-2	MWSE-4	Total/NA	Water	7470A	
MB 480-481119/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-481119/2-A	Lab Control Sample	Total/NA	Water	7470A	
480-155757-1 MS	MWSE-1	Total/NA	Water	7470A	
480-155757-1 MSD	MWSE-1	Total/NA	Water	7470A	

Analysis Batch: 481183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	7470A	481119
480-155757-2	MWSE-4	Total/NA	Water	7470A	481119
MB 480-481119/1-A	Method Blank	Total/NA	Water	7470A	481119
LCS 480-481119/2-A	Lab Control Sample	Total/NA	Water	7470A	481119
480-155757-1 MS	MWSE-1	Total/NA	Water	7470A	481119
480-155757-1 MSD	MWSE-1	Total/NA	Water	7470A	481119

Analysis Batch: 481247

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	6010C	480974
480-155757-2	MWSE-4	Total/NA	Water	6010C	480974
MB 480-480974/1-A	Method Blank	Total/NA	Water	6010C	480974
LCS 480-480974/2-A	Lab Control Sample	Total/NA	Water	6010C	480974

Analysis Batch: 481438

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	6010C	480974
480-155757-2	MWSE-4	Total/NA	Water	6010C	480974
LCS 480-480974/2-A	Lab Control Sample	Total/NA	Water	6010C	480974

Analysis Batch: 481468

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	SM 2340B	
480-155757-2	MWSE-4	Total/NA	Water	SM 2340B	

Analysis Batch: 482222

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	SM 2340B	
480-155710-2	MWSE-3	Total/NA	Water	SM 2340B	

General Chemistry

Analysis Batch: 480800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	7196A	_
480-155710-2	MWSE-3	Total/NA	Water	7196A	
MB 480-480800/3	Method Blank	Total/NA	Water	7196A	
LCS 480-480800/4	Lab Control Sample	Total/NA	Water	7196A	
480-155710-2 MS	MWSE-3	Total/NA	Water	7196A	
480-155710-1 DU	MWSE-2	Total/NA	Water	7196A	

Eurofins TestAmerica, Buffalo

9/6/2019

Page 95 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

General Chemistry

Analy	/sis	Batch:	480848
Allal	7313	Dateii.	TUUUTU

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	SM 2120B	
480-155710-2	MWSE-3	Total/NA	Water	SM 2120B	
MB 480-480848/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-480848/4	Lab Control Sample	Total/NA	Water	SM 2120B	
480-155710-1 DU	MWSE-2	Total/NA	Water	SM 2120B	

Analysis Batch: 480861

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	353.2	
480-155710-2	MWSF-3	Total/NA	Water	353.2	

Analysis Batch: 480862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	353.2	
480-155757-2	MWSE-4	Total/NA	Water	353.2	

Analysis Batch: 480863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	SM 5210B	
480-155710-2	MWSE-3	Total/NA	Water	SM 5210B	
USB 480-480863/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-480863/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 480864

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	SM 5210B	
480-155757-2	MWSE-4	Total/NA	Water	SM 5210B	
USB 480-480864/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-480864/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 480925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	SM 2120B	
480-155757-2	MWSE-4	Total/NA	Water	SM 2120B	
MB 480-480925/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-480925/4	Lab Control Sample	Total/NA	Water	SM 2120B	
480-155757-1 DU	MWSE-1	Total/NA	Water	SM 2120B	

Analysis Batch: 481085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	SM 2540C	
480-155710-2	MWSE-3	Total/NA	Water	SM 2540C	
MB 480-481085/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-481085/2	Lab Control Sample	Total/NA	Water	SM 2540C	
480-155710-1 DU	MWSE-2	Total/NA	Water	SM 2540C	

Analysis Batch: 481169

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	300.0	
480-155710-2	MWSE-3	Total/NA	Water	300.0	
480-155757-1	MWSE-1	Total/NA	Water	300.0	

Eurofins TestAmerica, Buffalo

9/6/2019

Page 96 of 136

Job ID: 480-155710-1

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

General Chemistry (Continued)

Analysis Batch: 481169 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-2	MWSE-4	Total/NA	Water	300.0	
MB 480-481169/4	Method Blank	Total/NA	Water	300.0	
LCS 480-481169/3	Lab Control Sample	Total/NA	Water	300.0	
480-155710-1 MS	MWSE-2	Total/NA	Water	300.0	
480-155710-1 MSD	MWSE-2	Total/NA	Water	300.0	

Analysis Batch: 481219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	SM 2540C	
480-155757-2	MWSE-4	Total/NA	Water	SM 2540C	
MB 480-481219/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-481219/2	Lab Control Sample	Total/NA	Water	SM 2540C	
480-155757-2 DU	MWSE-4	Total/NA	Water	SM 2540C	

Prep Batch: 481334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	9012B	_
480-155710-2	MWSE-3	Total/NA	Water	9012B	
MB 480-481334/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-481334/2-A	Lab Control Sample	Total/NA	Water	9012B	
480-155710-2 MS	MWSE-3	Total/NA	Water	9012B	

Analysis Batch: 481459

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	350.1	_
480-155710-2	MWSE-3	Total/NA	Water	350.1	
480-155757-1	MWSE-1	Total/NA	Water	350.1	
480-155757-2	MWSE-4	Total/NA	Water	350.1	
MB 480-481459/3	Method Blank	Total/NA	Water	350.1	
MB 480-481459/51	Method Blank	Total/NA	Water	350.1	
LCS 480-481459/4	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-481459/52	Lab Control Sample	Total/NA	Water	350.1	
480-155710-1 MS	MWSE-2	Total/NA	Water	350.1	

Analysis Batch: 481516

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	9012B	481334
480-155710-2	MWSE-3	Total/NA	Water	9012B	481334
MB 480-481334/1-A	Method Blank	Total/NA	Water	9012B	481334
LCS 480-481334/2-A	Lab Control Sample	Total/NA	Water	9012B	481334
480-155710-2 MS	MWSE-3	Total/NA	Water	9012B	481334

Prep Batch: 481527

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	9012B	
480-155757-2	MWSE-4	Total/NA	Water	9012B	
MB 480-481527/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-481527/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-481527/3-A	Lab Control Sample	Total/NA	Water	9012B	

Page 97 of 136

9/6/2019

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

General Chemistry

Analysis Batch: 481688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	9012B	481527
480-155757-2	MWSE-4	Total/NA	Water	9012B	481527
MB 480-481527/1-A	Method Blank	Total/NA	Water	9012B	481527
LCS 480-481527/2-A	Lab Control Sample	Total/NA	Water	9012B	481527
LCS 480-481527/3-A	Lab Control Sample	Total/NA	Water	9012B	481527

Prep Batch: 481746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	Distill/Phenol	
480-155710-2	MWSE-3	Total/NA	Water	Distill/Phenol	
MB 480-481746/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-481746/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Prep Batch: 481747

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	Distill/Phenol	
480-155757-2	MWSE-4	Total/NA	Water	Distill/Phenol	
MB 480-481747/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-481747/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Analysis Batch: 481919

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MWSE-2	Total/NA	Water	9065	481746
MWSE-3	Total/NA	Water	9065	481746
MWSE-1	Total/NA	Water	9065	481747
MWSE-4	Total/NA	Water	9065	481747
Method Blank	Total/NA	Water	9065	481746
Method Blank	Total/NA	Water	9065	481747
Lab Control Sample	Total/NA	Water	9065	481746
Lab Control Sample	Total/NA	Water	9065	481747
	MWSE-2 MWSE-3 MWSE-1 MWSE-4 Method Blank Method Blank Lab Control Sample	MWSE-2 MWSE-3 Total/NA MWSE-1 Total/NA MWSE-4 Method Blank Method Blank Total/NA Method Blank Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA Total/NA	MWSE-2 Total/NA Water MWSE-3 Total/NA Water MWSE-1 Total/NA Water MWSE-4 Total/NA Water Method Blank Total/NA Water Method Blank Total/NA Water Lab Control Sample Total/NA Water	MWSE-2 Total/NA Water 9065 MWSE-3 Total/NA Water 9065 MWSE-1 Total/NA Water 9065 MWSE-4 Total/NA Water 9065 Method Blank Total/NA Water 9065 Method Blank Total/NA Water 9065 Lab Control Sample Total/NA Water 9065

Analysis Batch: 481949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-156080-1	MWSE-1	Total/NA	Water	7196A	
480-156080-4	MWSE-4	Total/NA	Water	7196A	
MB 480-481949/3	Method Blank	Total/NA	Water	7196A	
LCS 480-481949/4	Lab Control Sample	Total/NA	Water	7196A	
480-156080-1 MS	MWSE-1	Total/NA	Water	7196A	
480-156080-4 DU	MWSE-4	Total/NA	Water	7196A	

Analysis Batch: 481954

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	SM 5310D	_
480-155710-2	MWSE-3	Total/NA	Water	SM 5310D	
480-155757-1	MWSE-1	Total/NA	Water	SM 5310D	
480-155757-2	MWSE-4	Total/NA	Water	SM 5310D	
MB 480-481954/51	Method Blank	Total/NA	Water	SM 5310D	
LCS 480-481954/52	Lab Control Sample	Total/NA	Water	SM 5310D	

Eurofins TestAmerica, Buffalo

Page 98 of 136

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

General Chemistry

Analysis Batch: 481974

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	410.4	
480-155757-2	MWSE-4	Total/NA	Water	410.4	
MB 480-481974/27	Method Blank	Total/NA	Water	410.4	
LCS 480-481974/28	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 481985

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	310.2	
480-155710-2	MWSE-3	Total/NA	Water	310.2	
480-155757-1	MWSE-1	Total/NA	Water	310.2	
480-155757-2	MWSE-4	Total/NA	Water	310.2	
MB 480-481985/12	Method Blank	Total/NA	Water	310.2	
MB 480-481985/24	Method Blank	Total/NA	Water	310.2	
MB 480-481985/32	Method Blank	Total/NA	Water	310.2	
LCS 480-481985/13	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-481985/25	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-481985/33	Lab Control Sample	Total/NA	Water	310.2	
480-155710-1 MS	MWSE-2	Total/NA	Water	310.2	
480-155710-1 MSD	MWSE-2	Total/NA	Water	310.2	
480-155710-2 MS	MWSE-3	Total/NA	Water	310.2	
480-155710-2 MSD	MWSE-3	Total/NA	Water	310.2	

Analysis Batch: 481986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	9251	
480-155710-2	MWSE-3	Total/NA	Water	9251	
480-155757-1	MWSE-1	Total/NA	Water	9251	
480-155757-2	MWSE-4	Total/NA	Water	9251	
MB 480-481986/12	Method Blank	Total/NA	Water	9251	
LCS 480-481986/13	Lab Control Sample	Total/NA	Water	9251	
480-155710-1 MS	MWSE-2	Total/NA	Water	9251	
480-155710-1 MSD	MWSE-2	Total/NA	Water	9251	
480-155710-2 MS	MWSE-3	Total/NA	Water	9251	
480-155710-2 MSD	MWSE-3	Total/NA	Water	9251	

Prep Batch: 482601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	351.2	
480-155710-2	MWSE-3	Total/NA	Water	351.2	
480-155757-1	MWSE-1	Total/NA	Water	351.2	
480-155757-2	MWSE-4	Total/NA	Water	351.2	
MB 480-482601/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-482601/2-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 482652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	410.4	
480-155710-2	MWSE-3	Total/NA	Water	410.4	
MB 480-482652/3	Method Blank	Total/NA	Water	410.4	
MB 480-482652/51	Method Blank	Total/NA	Water	410.4	
LCS 480-482652/4	Lab Control Sample	Total/NA	Water	410.4	

Eurofins TestAmerica, Buffalo

Job ID: 480-155710-1

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

General Chemistry (Continued)

Analysis Batch: 482652 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-482652/52	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 482976

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	351.2	482601
480-155710-2	MWSE-3	Total/NA	Water	351.2	482601
480-155757-1	MWSE-1	Total/NA	Water	351.2	482601
480-155757-2	MWSE-4	Total/NA	Water	351.2	482601
MB 480-482601/1-A	Method Blank	Total/NA	Water	351.2	482601
LCS 480-482601/2-A	Lab Control Sample	Total/NA	Water	351.2	482601

Analysis Batch: 483565

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	9038	_
480-155710-2	MWSE-3	Total/NA	Water	9038	
480-155757-1	MWSE-1	Total/NA	Water	9038	
480-155757-2	MWSE-4	Total/NA	Water	9038	
MB 480-483565/12	Method Blank	Total/NA	Water	9038	
MB 480-483565/30	Method Blank	Total/NA	Water	9038	
LCS 480-483565/11	Lab Control Sample	Total/NA	Water	9038	
LCS 480-483565/29	Lab Control Sample	Total/NA	Water	9038	

Rad

Prep Batch: 434862

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	PrecSep STD	
480-155710-2	MWSE-3	Total/NA	Water	PrecSep STD	
480-155757-1	MWSE-1	Total/NA	Water	PrecSep STD	
480-155757-2	MWSE-4	Total/NA	Water	PrecSep STD	
MB 160-434862/7-A	Method Blank	Total/NA	Water	PrecSep STD	
LCS 160-434862/1-A	Lab Control Sample	Total/NA	Water	PrecSep STD	
LCSD 160-434862/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep STD	

Prep Batch: 434867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	PrecSep_0	
480-155710-2	MWSE-3	Total/NA	Water	PrecSep_0	
480-155757-1	MWSE-1	Total/NA	Water	PrecSep_0	
480-155757-2	MWSE-4	Total/NA	Water	PrecSep_0	
MB 160-434867/7-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-434867/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-434867/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

Field Service / Mobile Lab

Analysis Batch: 483257

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	Field Sampling
480-155710-2	MWSE-3	Total/NA	Water	Field Sampling
480-155757-1	MWSE-1	Total/NA	Water	Field Sampling
480-155757-2	MWSE-4	Total/NA	Water	Field Sampling

Eurofins TestAmerica, Buffalo

Job ID: 480-155710-1

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Subcontract Lab non-Sister Lab

Analysis Batch: 490568

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155757-1	MWSE-1	Total/NA	Water	908.0	
480-155757-2	MWSE-4	Total/NA	Water	908.0	

Analysis Batch: 490572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-155710-1	MWSE-2	Total/NA	Water	908.0	
480-155710-2	MWSE-3	Total/NA	Water	908.0	

4

O

7

8

-

12

1 1

16

1 Ω

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-2

Date Received: 07/02/19 18:30

Lab Sample ID: 480-155710-1 Date Collected: 07/02/19 13:00

Matrix: Water

Duam Trons	Batch	Batch Mathad	D	Dilution	Batch	Prepared	Amales - 4	l ch
Prep Type Fotal/NA	Type	- Method 8260C	Run	_	481743	or Analyzed 07/11/19 23:25	Analyst	Lab
	Analysis			I				TAL BUI
Гotal/NA Гotal/NA	Prep	3510C 8270D		1	480988 481493	07/05/19 15:02 07/10/19 22:49		TAL BUI
	Analysis			ı				
Fotal/NA	Prep	3510C		4	480991	07/05/19 15:22		TAL BUI
Γotal/NA	Analysis	8270D SIM ID		1		07/10/19 01:48		TAL BUI
Fotal/NA	Prep	3510C		4		07/08/19 15:10		TAL BUI
Γotal/NA	Analysis	8081B		1	481221			TAL BUI
Fotal/NA	Prep	3510C		4	480888	07/05/19 08:16		TAL BU
Γotal/NA	Analysis	8082A		1		07/10/19 18:07		TAL BU
Total/NA	Prep	8151A				07/03/19 14:11		TAL BU
Total/NA	Analysis	8151A		1		07/05/19 17:11		TAL BU
Γotal/NA	Prep	3535				07/08/19 05:43		TAL SA
Total/NA	Analysis	537 (modified)		1		07/10/19 01:12		TAL SA
Γotal/NA	Prep	3005A				07/05/19 07:47		TAL BU
Total/NA	Analysis	6010C		1	481076	07/05/19 19:18	EMB	TAL BU
Γotal/NA	Prep	7470A				07/05/19 11:55		TAL BU
Γotal/NA	Analysis	7470A		1	481001	07/05/19 15:49	BMB	TAL BU
Total/NA	Analysis	SM 2340B		1	482222	07/16/19 09:25	LMH	TAL BU
Total/NA	Analysis	300.0		5	481169	07/08/19 17:56	IMZ	TAL BU
Total/NA	Analysis	310.2		2	481985	07/14/19 14:57	KEB	TAL BU
Total/NA	Analysis	350.1		1	481459	07/10/19 09:35	CLT	TAL BU
Γotal/NA	Prep	351.2			482601	07/18/19 09:10	CAM	TAL BU
Total/NA	Analysis	351.2		1	482976	07/21/19 10:22	KEB	TAL BU
「otal/NA	Analysis	353.2		1	480861	07/03/19 21:42	SMH	TAL BU
Γotal/NA	Analysis	410.4		1	482652	07/18/19 09:44	EAG	TAL BU
otal/NA	Analysis	7196A		1	480800	07/03/19 11:45	MJB	TAL BU
「otal/NA	Prep	9012B			481334	07/09/19 14:15	A.II	TAL BU
Total/NA	Analysis	9012B		1		07/10/19 15:16		TAL BU
Total/NA	Analysis	9038		10	483565	07/24/19 12:52	KEB	TAL BU
Total/NA	Prep	Distill/Phenol				07/11/19 19:10		TAL BU
Total/NA	Analysis	9065		1		07/12/19 14:38		TAL BU
Total/NA	Analysis	9251		1		07/14/19 14:39		TAL BU
Fotal/NA	Analysis	SM 2120B		1		07/03/19 17:25		TAL BU
Fotal/NA	Analysis	SM 2540C		1		07/08/19 08:38		TAL BU
Total/NA	Analysis	SM 5210B		1		07/04/19 04:48		TAL BU
Total/NA	Analysis	SM 5310D		1	481954	07/13/19 06:12	CLA	TAL BU
Total/NA	Prep	PrecSep STD				07/15/19 14:52		TAL SL
Total/NA	Analysis	903.0		1	440092	08/20/19 20:42	CDR	TAL SL
Total/NA	Prep	PrecSep_0			434867	07/15/19 15:55		TAL SL
otal/NA	Analysis	904.0		1	436841	07/29/19 10:12	CDR	TAL SL
Total/NA	Analysis	Field Sampling		1	483257	07/02/19 13:00	FLD	TAL BU
Total/NA	Analysis	908.0		1	490572	08/05/19 00:00	СТВ	Eberline

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-3

Lab Sample ID: 480-155710-2 Date Collected: 07/02/19 12:20 **Matrix: Water**

Date Received: 07/02/19 18:30

	Batch	Batch	_	Dilution	Batch	Prepared	_	
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	481743	07/11/19 23:48	KMN	TAL BUF
Total/NA	Prep	3510C			480988	07/05/19 15:02		TAL BUF
Total/NA	Analysis	8270D		1	481493	07/10/19 23:17	RJS	TAL BUF
Total/NA	Prep	3510C			480991	07/05/19 15:22		TAL BUF
Total/NA	Analysis	8270D SIM ID		1	481374	07/10/19 02:12	RJS	TAL BUF
Total/NA	Prep	3510C			481166	07/08/19 15:10		TAL BUF
Total/NA	Analysis	8081B		1	481221	07/09/19 14:39	JLS	TAL BUF
Total/NA	Prep	3510C			480888	07/05/19 08:16	SMP	TAL BUF
Total/NA	Analysis	8082A		1	481474	07/10/19 18:45	W1T	TAL BUF
Total/NA	Prep	8151A			480799	07/03/19 14:11	JMP	TAL BUF
Total/NA	Analysis	8151A		1	480962	07/05/19 17:40	JLS	TAL BUF
Total/NA	Prep	3535				07/08/19 05:43		TAL SAC
Total/NA	Analysis	537 (modified)		1	306613	07/10/19 01:20	D1R	TAL SAC
Total/NA	Prep	3005A			480833	07/05/19 07:47	EMB	TAL BUF
Total/NA	Analysis	6010C		1	481076	07/05/19 19:22	EMB	TAL BUF
Total/NA	Prep	7470A			480933	07/05/19 11:55	BMB	TAL BUF
Total/NA	Analysis	7470A		1	481001	07/05/19 15:51	BMB	TAL BUF
Total/NA	Analysis	SM 2340B		1	482222	07/16/19 09:25	LMH	TAL BUF
Total/NA	Analysis	300.0		1	481169	07/08/19 19:09	IMZ	TAL BUF
Total/NA	Analysis	310.2		1	481985	07/14/19 14:41	KEB	TAL BU
Total/NA	Analysis	350.1		1	481459	07/10/19 09:37	CLT	TAL BUI
Total/NA	Prep	351.2			482601	07/18/19 09:10	CAM	TAL BUF
Total/NA	Analysis	351.2		1	482976	07/21/19 10:22	KEB	TAL BUF
Total/NA	Analysis	353.2		1	480861	07/03/19 21:44	SMH	TAL BUF
Total/NA	Analysis	410.4		1	482652	07/18/19 09:44	EAG	TAL BUF
Total/NA	Analysis	7196A		1	480800	07/03/19 11:45	MJB	TAL BUF
Total/NA	Prep	9012B			481334	07/09/19 14:15	AJL	TAL BUF
Total/NA	Analysis	9012B		1	481516	07/10/19 15:17	MDL	TAL BUI
Total/NA	Analysis	9038		1	483565	07/24/19 12:31	KEB	TAL BU
Total/NA	Prep	Distill/Phenol			481746	07/11/19 19:10	AEF	TAL BUI
Total/NA	Analysis	9065		1	481919	07/12/19 14:40	SRW	TAL BU
Total/NA	Analysis	9251		1	481986	07/14/19 14:39	KEB	TAL BUI
Total/NA	Analysis	SM 2120B		1	480848	07/03/19 17:25	AEF	TAL BUI
Total/NA	Analysis	SM 2540C		1	481085	07/08/19 08:38	RAF	TAL BUI
Total/NA	Analysis	SM 5210B		1	480863	07/04/19 04:48	EY	TAL BUI
Total/NA	Analysis	SM 5310D		1		07/13/19 06:26		TAL BUI
Total/NA	Prep	PrecSep STD		•		07/15/19 14:52		TAL SL
Total/NA	Analysis	903.0		1		08/20/19 20:42		TAL SL
Total/NA	Prep	PrecSep_0		•	434867	07/15/19 15:55		TAL SL
Total/NA	Analysis	904.0		1	436841	07/29/19 10:12		TAL SL
Total/NA	Analysis	Field Sampling		1		07/02/19 12:20		TAL BUI
	•							
Total/NA	Analysis	908.0		1	490572	08/05/19 00:00	CIR	Eberline

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1

Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-1 **Matrix: Water**

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			481776	07/12/19 11:26	AEM	TAL BUF
Total/NA	Prep	3510C			480988	07/05/19 15:02	AAP	TAL BUF
Total/NA	Analysis	8270D		1	481493	07/10/19 23:44	RJS	TAL BUF
Total/NA	Prep	3510C			480991	07/05/19 15:22	ATG	TAL BUF
Total/NA	Analysis	8270D SIM ID		1	481374	07/10/19 02:36	RJS	TAL BUF
Total/NA	Prep	3510C			481166	07/08/19 15:10		TAL BUF
Total/NA	Analysis	8081B		1	481221	07/09/19 14:58	JLS	TAL BUF
Total/NA	Prep	3510C			480888	07/05/19 08:16		TAL BUF
Total/NA	Analysis	8082A		1	481474	07/10/19 19:11	W1T	TAL BUF
Total/NA	Prep	8151A			481261	07/09/19 09:24		TAL BUF
Total/NA	Analysis	8151A		1	481461	07/10/19 15:03	JLS	TAL BUF
Total/NA	Prep	3535			306095	07/08/19 05:43		TAL SAC
Total/NA	Analysis	537 (modified)		1	306613	07/10/19 00:56	D1R	TAL SAC
Total/NA	Prep	3005A				07/08/19 07:30		TAL BUF
Total/NA	Analysis	6010C		1	481247	07/09/19 00:31	AMH	TAL BUF
Total/NA	Prep	3005A				07/08/19 07:30		TAL BUF
Total/NA	Analysis	6010C		1	481438	07/09/19 09:50	AMH	TAL BUF
Total/NA	Prep	7470A				07/08/19 11:51		TAL BUF
Total/NA	Analysis	7470A		1	481183	07/08/19 16:08	BMB	TAL BUF
Total/NA	Analysis	SM 2340B		1	481468	07/10/19 11:29	LMH	TAL BUF
Total/NA	Analysis	300.0		2	481169	07/08/19 19:24	IMZ	TAL BUF
Total/NA	Analysis	310.2		2	481985	07/14/19 14:57	KEB	TAL BUF
Total/NA	Analysis	350.1		1	481459	07/10/19 09:50	CLT	TAL BUF
Total/NA	Prep	351.2			482601	07/18/19 09:10	CAM	TAL BUF
Total/NA	Analysis	351.2		1	482976	07/21/19 10:22	KEB	TAL BUF
Total/NA	Analysis	353.2		1	480862	07/03/19 21:26	SMH	TAL BUF
Total/NA	Analysis	410.4		1	481974	07/14/19 09:32	EAG	TAL BUF
Total/NA	Prep	9012B			481527	07/10/19 15:50	AJL	TAL BUF
Total/NA	Analysis	9012B		1	481688	07/11/19 13:16	MDL	TAL BUF
Total/NA	Analysis	9038		10	483565	07/24/19 12:55	KEB	TAL BUF
Total/NA	Prep	Distill/Phenol			481747	07/11/19 19:18	AEF	TAL BUF
Total/NA	Analysis	9065		1		07/12/19 14:51		TAL BUF
Total/NA	Analysis	9251		1	481986	07/14/19 14:39	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	480925	07/05/19 09:12	CSS	TAL BUF
Total/NA	Analysis	SM 2540C		1		07/09/19 07:49		TAL BUF
Total/NA	Analysis	SM 5210B		1		07/04/19 09:11		TAL BUF
	•			1		07/13/19 07:54		TAL BUF
Total/NA	Analysis	SM 5310D		I				
Total/NA Total/NA	Prep Analysis	PrecSep STD 903.0		1		07/15/19 14:52 08/20/19 20:42		TAL SL TAL SL
Total/NA	Prep	PrecSep 0				07/15/19 15:55		TAL SL
Total/NA	Analysis	904.0		1	436841			TAL SL
Total/NA	Analysis	Field Sampling		1		07/03/19 13:05		TAL BUF
1				•	. 30=31			

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-1

Date Collected: 07/03/19 13:05 Date Received: 07/03/19 17:00 Lab Sample ID: 480-155757-1

Matrix: Water

Batch Batch Dilution Batch Prepared Method **Prep Type** Run Factor Number or Analyzed Type Analyst Lab Total/NA Analysis 908.0 490568 07/29/19 00:00 CTB Eberline

Client Sample ID: MWSE-4

Date Collected: 07/03/19 13:15

Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-2

Matrix: Water

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor -	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	481776	07/12/19 11:50		TAL BU
Total/NA	Prep	3510C		4	480988	07/05/19 15:02		TAL BUI
Total/NA	Analysis	8270D		1	481493			TAL BU
Total/NA Total/NA	Prep	3510C 8270D SIM ID		1	480991	07/05/19 15:22 07/10/19 03:01		TAL BUI
	Analysis			I				
Total/NA Total/NA	Prep Analysis	3510C 8081B		1	481166 481221	07/08/19 15:10 07/09/19 15:18		TAL BUI
	Analysis			I				
Total/NA Total/NA	Prep Analysis	3510C 8082A		1		07/05/19 08:16 07/10/19 19:23		TAL BU
Total/NA	·							
Total/NA	Prep Analysis	8151A 8151A		1	481461	07/09/19 09:24 07/10/19 15:33		TAL BU
Total/NA	Prep	3535		ı	306095			TAL SA
Total/NA	Analysis	537 (modified)		1		07/10/19 03:43		TAL SA
Total/NA	Prep	3005A		•	480974			TAL BU
Total/NA	Analysis	6010C		1		07/09/19 00:35		TAL BU
Γotal/NA	Prep	3005A			480974			TAL BU
Γotal/NA	Analysis	6010C		1		07/09/19 09:53		TAL BU
Total/NA	Prep	7470A			481119	07/08/19 11:51	BMB	TAL BU
Total/NA	Analysis	7470A		1		07/08/19 16:13		TAL BU
Total/NA	Analysis	SM 2340B		1	481468	07/10/19 11:29	LMH	TAL BU
Total/NA	Analysis	300.0		2	481169	07/08/19 19:38	IMZ	TAL BU
Total/NA	Analysis	310.2		2	481985	07/14/19 14:57	KEB	TAL BU
Total/NA	Analysis	350.1		1		07/10/19 09:50		TAL BU
Total/NA	Prep	351.2			482601			TAL BU
Total/NA	Analysis	351.2		1		07/21/19 10:22		TAL BU
Total/NA	Analysis	353.2		1		07/03/19 21:28		TAL BU
Total/NA	Analysis	410.4		1		07/14/19 09:32		TAL BU
	•							
Total/NA Total/NA	Prep Analysis	9012B 9012B		1		07/10/19 15:50 07/11/19 13:17		TAL BU TAL BU
Total/NA	Analysis	9038		5		07/24/19 12:43		TAL BU
	•			3		07/11/19 19:18		
Total/NA Total/NA	Prep Analysis	Distill/Phenol 9065		1		07/11/19 19.16 07/12/19 14:51		TAL BU TAL BU
Total/NA	Analysis	9251		1		07/14/19 14:39		TAL BU
	•							
Total/NA	Analysis	SM 2120B		1		07/05/19 09:12		TAL BU
Total/NA	Analysis	SM 2540C		1		07/09/19 08:53		TAL BU
Total/NA	Analysis	SM 5210B		1	480864	07/04/19 09:11	EY	TAL BU

Eurofins TestAmerica, Buffalo

Page 105 of 136

2

3

4

9

13

15

4.0

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID: 480-155757-2

Matrix: Water

Job ID: 480-155710-1

Date Collected: 07/03/19 13:15 Date Received: 07/03/19 17:00

Client Sample ID: MWSE-4

Prep Type Total/NA	Batch Type Analysis	Batch Method SM 5310D	Run	Dilution Factor 1	Batch Number 481954	Prepared or Analyzed 07/13/19 08:09	Analyst CLA	Lab TAL BUF
Total/NA Total/NA	Prep Analysis	PrecSep STD 903.0		1	434862 440089	07/15/19 14:52 08/20/19 20:42		TAL SL TAL SL
Total/NA Total/NA Total/NA	Prep Analysis Analysis	PrecSep_0 904.0 Field Sampling		1	434867 436841 483257	07/15/19 15:55 07/29/19 10:13 07/03/19 13:15	CDR	TAL SL TAL SL TAL BUF
Total/NA	Analysis	908.0		1	490568	07/29/19 00:00	СТВ	Eberline

Client Sample ID: TRIP BLANK

Date Collected: 07/03/19 09:00 Date Received: 07/03/19 17:00

Lab Sample ID: 480-155757-3

Matrix: Water

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL BUF Total/NA Analysis 8260C 481776 07/12/19 12:14 AEM

Client Sample ID: MWSE-1 Date Collected: 07/12/19 13:40

Date Received: 07/12/19 15:40

Lab Sample ID: 480-156080-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	625			285394	07/19/19 20:48	BJT	TAL PIT
Total/NA	Analysis	EPA 625.1		1	285773	07/24/19 14:40	VVP	TAL PIT
Total/NA	Analysis	7196A		1	481949	07/13/19 10:30	EAG	TAL BUF

Client Sample ID: MWSE-2

Date Collected: 07/12/19 12:30

Date Received: 07/12/19 15:40

Lab Sample ID: 480-156080-2

Lab Sample ID: 480-156080-3

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab TAL PIT Total/NA Prep 625 285394 07/19/19 20:48 BJT Total/NA Analysis EPA 625.1 285773 07/24/19 15:07 VVP TAL PIT 1

Client Sample ID: MWSE-3

Date Collected: 07/12/19 12:10

Date Received: 07/12/19 15:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	625			285394	07/19/19 20:48	BJT	TAL PIT
Total/NA	Analysis	EPA 625.1		1	285773	07/24/19 15:35	VVP	TAL PIT

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Client Sample ID: MWSE-4

Lab Sample ID: 480-156080-4 Date Collected: 07/12/19 11:05

Matrix: Water

Date Received: 07/12/19 15:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	625			285394	07/19/19 20:48	BJT	TAL PIT
Total/NA	Analysis	EPA 625.1		1	285773	07/24/19 16:03	VVP	TAL PIT
Total/NA	Analysis	7196A		1	481949	07/13/19 10:30	EAG	TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058 TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	F	Program	Identification Number	Expiration Date
New York		NELAP	10026	03-31-20
The following analytes the agency does not do		port, but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8260C		Water	1,2-Dichloroethene, Total	
9038		Water	Sulfate	
9251		Water	Chloride	
Field Sampling		Water	Field pH	
Field Sampling		Water	Oxidation Reduction Potentia	al
Field Sampling		Water	Specific Conductance	
Field Sampling		Water	Temperature	
Field Sampling		Water	Turbidity	
SM 5310D		Water	Total Organic Carbon	

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
Arkansas DEQ	State	19-033-0	06-27-20
Arkansas DEQ	State Program	88-0690	06-27-20
California	State	2891	04-30-20
California	State Program	2891	04-30-20
Connecticut	State	PH-0688	09-30-20
Connecticut	State Program	PH-0688	09-30-20
Florida	NELAP	E871008	06-30-20
Florida	NELAP	E871008	06-30-20
Illinois	NELAP	200005	06-30-20
Illinois	NELAP	004375	06-30-20
Kansas	NELAP	E-10350	01-31-20
Kansas	NELAP	E-10350	03-31-20
Kentucky (UST)	State Program	162013	04-30-20
Kentucky (WW)	State	KY98043	12-31-19
Kentucky (WW)	State Program	KY98043	12-31-19
Louisiana	NELAP	04041	06-30-20
Minnesota	NELAP	042-999-482	12-31-19
Minnesota	NELAP	042-999-482	12-31-19
Nevada	State Program	PA00164	07-31-20
New Hampshire	NELAP	2030	04-04-20
New Jersey	NELAP	PA005	06-30-20
New Jersey	NELAP	PA005	06-30-20
New York	NELAP	11182	03-31-20
New York	NELAP	11182	04-01-20
North Carolina (WW/SW)	State Program	434	12-31-19
North Dakota	State	R-227	04-30-20
North Dakota	State Program	R-227	04-30-20
Oregon	NELAP	PA-2151	02-06-20
Oregon	NELAP	PA-2151	02-06-20
Pennsylvania	NELAP	02-00416	04-30-20
Pennsylvania	NELAP	02-00416	04-30-20
Rhode Island	State	LAO00362	12-30-19

Eurofins TestAmerica, Buffalo

Page 108 of 136

2

3

7

9

11

4.0

14

10

18

LR

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Laboratory: Eurofins TestAmerica, Pittsburgh (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Rhode Island	State Program	LAO00362	12-30-19
South Carolina	State Program	89014	04-30-20
Texas	NELAP	T104704528-15-2	03-31-20
Texas	NELAP	T104704528	03-31-20
US Fish & Wildlife	Federal	LE94312A-1	07-31-19
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462015-4	05-31-20
Utah	NELAP	PA001462019-8	05-31-20
Virginia	NELAP	460189	09-14-19
Virginia	NELAP	10043	09-14-19
West Virginia DEP	State	142	01-31-20
West Virginia DEP	State Program	142	01-31-20
Wisconsin	State	998027800	08-31-19
Wisconsin	State Program	998027800	08-31-19

2

3

4

9

10

11

13

14

16

18

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State Program	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	DoD	L2468	01-20-21
ANAB	DOE	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	08-09-21
Arizona	State Program	AZ0708	08-11-20
Arkansas DEQ	State Program	88-0691	06-17-20
California	State	2897	01-31-20
California	State Program	2897	01-31-20
Colorado	State Program	CA00044	08-31-19
Connecticut	State	PH-0691	06-30-21
Connecticut	State Program	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-20
Florida	NELAP	E87570	06-30-20
Hawaii	State	<cert no.=""></cert>	01-29-20
Hawaii	State Program	N/A	01-29-20
Illinois	NELAP	200060	03-17-20 *
llinois	NELAP	200060	03-17-20
Kansas	NELAP	E-10375	10-31-19
_ouisiana	NELAP	30612	06-30-20
Maine	State Program	CA0004	04-14-20
Michigan	State	9947	01-29-20
Michigan	State Program	9947	01-31-20
Nevada	State Program	CA00044	07-31-19
New Hampshire	NELAP	2997	04-20-20
New York	NELAP	11666	04-01-20
Oregon	NELAP	4040	01-29-20
Oregon	NELAP	4040	01-29-20
Pennsylvania	NELAP	68-01272	03-31-20
Pennsylvania	NELAP	68-01272	03-31-20
Texas	NELAP	T104704399	05-31-20
Texas	NELAP	T104704399-19-13	05-31-20
JS Fish & Wildlife	Federal	LE148388-0	07-31-20
JSDA	Federal	P330-18-00239	01-17-21
JSEPA UCMR	Federal	CA00044	12-31-20
Utah	NELAP	CA00044 CA00044	02-29-20
	State Program		04-16-20
/ermont	NELAP	V1-4040 460278	03-14-20
√irginia √irginia	NELAP NELAP	460278	03-14-20
Virginia Machinatan			
Washington	State Program	C581	05-05-20
Washington	State Program	C581	05-05-20
West Virginia (DW)	State	9930C	12-31-19
West Virginia (DW)	State Program	9930C	12-31-19
Wyoming	State Program	8TMS-L	01-28-19 *

-5

4

6

Ω

9

44

12

13

15

17

18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

Laboratory: Eurofins TestAmerica, St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
ANAB	Dept. of Defense ELAP	L2305	04-06-22
ANAB	Dept. of Energy	L2305.01	04-06-22
ANAB	DoD	L2305	04-06-22
ANAB	DOE	L2305.01	04-06-22
ANAB	ISO/IEC 17025	L2305	04-06-22
Arizona	State	AZ0813	12-08-19
Arizona	State Program	AZ0813	12-08-19
California	State	2886	06-30-20
California	State Program	2886	06-30-20
Connecticut	State	PH-0241	03-31-21
Connecticut	State Program	PH-0241	03-31-21
Florida	NELAP	E87689	06-30-20
Florida	NELAP	E87689	06-30-20
Hawaii	State Program	NA	06-30-20
Illinois	NELAP	200023	11-30-19
Illinois	NELAP	004553	11-30-19
lowa	State Program	373	12-01-20
Kansas	NELAP	E-10236	10-31-19
Kentucky (DW)	State	KY90125	12-31-19
Kentucky (DW)	State Program	KY90125	12-31-19
Louisiana	NELAP	04080	06-30-20
Louisiana (DW)	NELAP	LA011	12-31-19
Louisiana (DW)	State	LA011	12-31-19
Maryland	State	310	09-30-20
		310	09-30-20
Maryland Michigan	State Program	9005	
Michigan Michaeuri	State Program	780	06-30-20
Missouri	State		06-30-22
Missouri	State Program	780	06-30-20
Nevada	State	MO000542020-1	07-31-20
New Jersey	NELAP	MO002	06-30-20
New Jersey	NELAP	MO002	06-30-20
New York	NELAP	11616	03-31-20
New York	NELAP	11616	04-01-20
North Dakota	State	R-207	06-30-20
North Dakota	State Program	R207	06-30-20
NRC	NRC	24-24817-01	12-31-22
Oklahoma	State	9997	08-31-20
Oklahoma	State Program	9997	08-31-20
Pennsylvania	NELAP	68-00540	02-28-20
Pennsylvania	NELAP	68-00540	02-28-20
South Carolina	State Program	85002001	06-30-20
Texas	NELAP	T104704193-19-14	07-31-20
Texas	NELAP	T104704193-19-13	07-31-20
US Fish & Wildlife	Federal	058448	07-31-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	Federal	P330-17-0028	02-02-20
USDA	US Federal Programs	P330-17-00028	02-02-20
Utah	NELAP	MO000542019-11	07-31-20
Virginia	NELAP	460230	06-14-20
Virginia	NELAP	10310	06-14-20

Client: Waste Management Job ID: 480-155710-1

Project/Site: Chaffee Landfill-New Wells

Laboratory: Eurofins TestAmerica, St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State Program	C592	08-30-19 *
West Virginia DEP	State Program	381	08-31-19 *

4

5

6

8

4.6

11

13

4 =

.

18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL BUF
8270D SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	TAL BUF
EPA 625.1	Semivolatile Organic Compounds (GC/MS)	40 CFR 761	TAL PIT
8081B	Organochlorine Pesticides (GC)	SW846	TAL BUF
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL BUF
8151A	Herbicides (GC)	SW846	TAL BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
6010C	Metals (ICP)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
SM 2340B	Total Hardness (as CaCO3) by calculation	SM	TAL BUF
300.0	Bromide	40CFR136A	TAL BUF
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9038	Sulfate, Turbidimetric	SW846	TAL BUF
9065	Phenolics, Total Recoverable	SW846	TAL BUF
9251	Chloride	SW846	TAL BUF
SM 2120B	Color, Colorimetric	SM	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF
SM 5310D	Organic Carbon, Total (TOC)	SM	TAL BUF
Field Sampling	Field Sampling	EPA	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL BUF

Protocol References:

3535

625

5030C

7470A

8151A

9012B

Distill/Phenol

40 CFR 761 = Toxic Substances Control Act (TSCA)

Solid-Phase Extraction (SPE)

Liquid-Liquid Extraction

Preparation, Mercury

Distillation, Phenolics

Extraction (Herbicides)

Purge and Trap

40CFR136A = "Methods for Organic Chemical Analysis of Municipal Industrial Wastewater", 40CFR, Part 136, Appendix A, October 26, 1984 and subsequent revisions.

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

Cyanide, Total and/or Amenable, Distillation

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Buffalo

SW846

SW846

SW846

SW846

SW846

None

40CFR136A

Job ID: 480-155710-1

3

7

10

12

14

15

, E

18

TAL SAC

TAL BUF

TAL PIT

TAL BUF

TAL BUF

TAL BUF

TAL BUF

Ш

Sample Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Lab Sample ID **Client Sample ID** Matrix Collected Received Asset ID 480-155710-1 MWSE-2 07/02/19 13:00 07/02/19 18:30 Water MWSE-3 480-155710-2 Water 07/02/19 12:20 07/02/19 18:30 480-155757-1 MWSE-1 Water 07/03/19 13:05 07/03/19 17:00 480-155757-2 MWSE-4 Water 07/03/19 13:15 07/03/19 17:00 480-155757-3 TRIP BLANK Water 07/03/19 09:00 07/03/19 17:00 MWSE-1 Water 07/12/19 13:40 07/12/19 15:40 480-156080-1 480-156080-2 MWSE-2 Water 07/12/19 12:30 07/12/19 15:40 480-156080-3 MWSE-3 Water 07/12/19 12:10 07/12/19 15:40 480-156080-4 MWSE-4 Water 07/12/19 11:05 07/12/19 15:40

Job ID: 480-155710-1

3

4

5

9

10

10

13

15

Quantitation Limit Exceptions Summary

Client: Waste Management

Project/Site: Chaffee Landfill-New Wells

Job ID: 480-155710-1

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
310.2	Alkalinity, Total	Water	Total/NA	mg/L	5.0	10
351.2	Total Kjeldahl Nitrogen	Water	Total/NA	mg/L as N	0.15	0.2
410.4	Chemical Oxygen Demand	Water	Total/NA	mg/L	5.0	10
9038	Sulfate	Water	Total/NA	mg/L	1.5	5.0
9065	Phenolics, Total Recoverable	Water	Total/NA	mg/L	0.0050	0.01

__

4

5

7

Q

9

4 4

12

1 A

4.0

4.0

Chain of Custody Record

eurofins Environment Testing Testing

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (715) 691-2600 Fax (715) 691-7991

Client Information	Sampler.		Lab PM: Giglia, Denise L	Denis	J e					Carrier	Trackir	Carrier Tracking No(s):		COC No: 480-131844-29748.	4-29748.2	
Client Contact:	Phone:		E-Mail:	cilcio	(a)	amori	o orie	8						Page:		
Company			asilian	Billig.	(Wiesi	allelle	All IC.C							7 01	7	
Company. TestAmerica Laboratories, Inc							An	alysi	s Re	Analysis Requested	pa			300 #:		
Address: 10 Hazelwood Drive	Due Date Requested:		N25-12			_			_		-			Preservation Codes:	n Codes:	
Gity. Amherst	TAT Requested (days):			NAME.				MEIN	41744	ole						
State, Zip: NY, 14228								5 440	טאר,ש	SO_ets	_					
Phone. 716-863-3438(TeI)	Po#: Purchase Order Requested	p		- //		sapioi	ри		'oa'du	51, Nitr	_		480-155	480-155710 Chain of Custody	Ustody.	
Email: timothy.bly@testamericainc.com					_		Deman	_	ua i 'nui	26 '880	1t	_	-	s	(noise)	1
Project Name: Project Name: Chaffee Landfill/NY05 Event Desc: 2019 Part 363 Expanded -Q2 48002636	Project #: 2 48002636			-		_	xλđeu			trite, 90	_			rtainer L - EDA	W - pH 4-5 Z - other (specify)	
Site: New York	SSOW#:			_	_	_	O Isoin			3.2_Ni				of cor		
Samulo Identification	Sample Date Time	Sample Type (C=comp,		beld Filtered S M/SM mrohe	stoT - G0168M	The TVN - ATEL	210B - Biochen	T - bols D_ D045	ieldSampling -	120B, 353.2, 35	196A - Chromiu 10.2 - Alkalinity	(otal Number		
	1			_	-	-	z	-		(0)(3)	-				Special instructions/Note.	
MWSE-2	7/2/19 1300	9	Water		2	2 2	-	-		6	-	-				
MWSE-3	7/2/19 1220	O	Water		2	2 2	-	-	-	m	-	-				
						-			-							
									-							
						+		+	+		+		+			
				-		+	1		+		+	1	+			
						+			+		+	-	-			
Possible Hazard Identification	Outcode!	Podiological		Sai	nple [Dispos	A) le	fee m	ay be	asses	sed if	sample	s are re	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	han 1 month)	
sted: I, II, III, IV, Other (specify)		Nationogical		Spe	ecial Ir	struct	Special Instructions/QC Requirements	C Req	nireme	Disposal by Lab	al Dy	(ap		Archive For	Months	
Empty Kit Relinquished by:	Date:			Time:			-	П		Г	Method	Method of Shipment	ent /			
Relinquished by:	Date/Time: 07-02-19 18	3 0	Company		Received by	ed by:	Mari		(ow	J.Kol	16	Date/	Date/Time	162/19 1	930 Company	
Relinquished by:	Date/Time:		Company		Received	ed by:						Date/Time	Time:		Company	
Relinquished by:	Date/Time:		Company		Received by	ed by:						Date/	Date/Time:		Company	
Custody Seals Intact: Custody Seal No.:					Cooler	Tempe	Cooler Temperature(s) °C and Other Remarks	°C and	Other R	emarks		7.2	ח'ח	175 1 Hh	CE	
															Ver: 01/16/2019	

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3
S - H2SO4
I - TSP Dodecahydrate
U - Acetone Special Instructions/Note: Ver: 01/16/2019 V - MCAA W - pH 4-5 Z - other (specify) Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client — Disposal By Lab — Archive For _____ Mon COC No: 480-131844-29748.1 Preservation Codes: ナンド G - Amchlor H - Ascorbic Acid C - Zn Acetate D - Nitric Acid E - NaHSO4 Page: Page 1 of 2 J - DI Water K - EDTA F - MeOH Total Number of containers 717 9065 - Phenolics, Total Recoverable Jate/Time -6010C, 7470A, SM2340B Method of Shipment _ U - 0.806 Carrier Tracking No(s) -_ 350.1, 351.2, 410.4 Analysis Requested 300.0 28D - Bromide Cooler Temperature(s) C and Other Remarks: 2 2 2270D - NY Part 360 Expanded Semivolatiles Special Instructions/QC Requirements: MICKOW 7 8081B - NY Part 360 Expanded Pesticides 2 2 8082A - NY Part 360 Expanded - Aroclors 2 7 denise.giglia@testamericainc.com PFC_IDA - PFAS, Standard List (21 Analytes) 903.0 - Radium-226 904.0 - Standard Target List sceived by Received by 2 7 Lab PM: Giglia, Denise L 3 3 8260C - NY Part 363 Expanded Volatiles Time: Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail: BT=Tissue, A=Air Preservation Code Water Water Matrix Company Company Radiological (C=comp, G=grab) Sample Type O O 07-02-19 1830 Purchase Order Requested Sample Time 1220 1300 Date Unknown TAT Requested (days) Due Date Requested: Sample Date 7/2/19 7/2/19 Project Name:
Chaffee Landfill/NY05 Event Desc: 2019 Part 363 Expanded -Q2 48002636
Site: Phone: Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No Flammable Possible Hazard Identification timothy.bly@testamericainc.com TestAmerica Laboratories, Inc Empty Kit Relinquished by: Custody Seals Intact: Sample Identification Client Information S.02 A Yes A No 10 Hazelwood Drive Non-Hazard 716-863-3438(Tel) ndnished by inquished by State, Zip: NY, 14228 **Timothy Bly** New York MWSE-2 MWSE-3 Amherst

Environment Testing

: eurofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

						1					100	-		1		١		
Client Information	Sampler, TB/SO/ZV			Gigli	Giglia, Denise L						3	mer Tra	Camer Tracking No(s)	Vo(s).			GOC No. 480-131844-29748.1	
Client Contact Timothy Bly	Phone			E-Ma deni	E-Maill denise giglia@testamericainc.com	@testa	meric	ainc.c	mo								Page: Page 1 of 2	
Company. TestAmerica Laboratories, Inc.								An	Analysis		edue	Requested					Job #.	
Address	Due Date Requested:	:p			80	H					-				-		Preservation Codes:	
City nazewood Drive	TAT Requested (days):	ys):													-		A - HCL M - Hexane B - NaOH N - None	au c
State State									(se		89						D - Nitric Acid P - Na204S E - NaHSO4 Q - Na2SO3	45 03
Phone: 716-863-3438(Tel)	Po#. Purchase Order Red	Requested		h	(0	səlit			MISNA	_						_	T	S - H2SO4
Email timothy biv@testamencainc.com	#OM				1000	sloV b			ts) tel	_	× 11 11 11 11 11 11 11 11 11 11 11 11 11				,,,,,,,		I - Ice J - Di Water	ine A
Project Name Chaffee Landfill/NY05 Event Desc: 2019 Part 363 Expanded -Q2 48002636	Project # Q2 48002636					puedx	taid te		dard L	-		. m					K-EDTA L-EDA	-5 (specify)
Site: New York	:#MOSS				-	363 E	Pargi	526	net2 ,8				4.0				Other:	
	olome, ol	Sample	Sample Type (C=comp,		benetlit blei MSM myohe	260C - NY Par	03.0, 904.0 04.0 - Standaro	-muibsЯ - 0,80	RATH - ACI_DT	DB9 YN - AS80	heq YN - 8180 heq YN - 0072	00.0 28D - Bro	50.1, 351.2, 410	U - 0.80	010C, 7470A, S	otal Number		
Sample identification	Sample Care	X	Preserva	Preservation Code:	X	-	1-	۵ ا		+=	-	-	c co	-	0,		apedal manucional and a	is/Note.
TRIP BLANK	7/3/19	0060	O	Water		ю					-							
MWSE-1	7/3/19	1305	ຶ່	Water		m	2 1	+	2	2	2	2 1	-	¥	-	-		
MWSE-4	7/3/19	1315	9	Water		67	2 1	1	2	2	2	2 1	٢	+	+	1		
												-						1.1
													8	0-156	757	Chain	480-155757 Chain of Custody	L I
																		1
ant	Poison B Unknown	Ш	Radiological	16	Sar	nple D	Sample Disposal (A fee may be ass	sal (A	fee n	nay b	e ass	essec	assessed if san Disposal By Lab	mple	s are	Arch	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Months	SI
Deliverable Requested: I, II, III, IV, Other (specify)					Spe	ecial In	structi	ons/C	C Re	quirer	nents							
Empty Kit Relinquished by		Date:			Time:							Me	thod of	Method of Shipment	ant			
Relinquished by THM	Date/Time 7-19/	1	00	Company		Received by	ed by							Date/Time	Time:		Company	>
Relinquished by	Date/Time			Company		Received by	ed by:							Date/Time	Time		Сотрапу	λ.
Relinquished by:	Date/Time			Сотрапу		Received by	ed by	1	1	1		1		Date/	Date/Time	7	1700 confe	2
Contract Con																		

100 (20) (20) (20) (20) (20) (20) (20) (2											I				-	
Client Information	Sampler TB/SO/ZV			Lab PM Giglia,	Lab PM Giglia, Denise L	e L					Carrie	rTracki	Carrier Tracking No(s).		COC No: 480-131844-29748.2	-29748.2
Client Contact Timothy Bly	Phone:			E-Mail denis	E-Mail: denise.giglia@testamericainc.com	@testa	america	ainc.cc	mc						Page: Page 2 of 2	
Company: TestAmerica Laboratories, Inc								An	Analysis Requested	s Rec	sent	ted			Job #	
Address 10 Hazelwood Drive	Due Date Requested:	.pe							-						Preservation Codes	
City Amherst	TAT Requested (days	ıys):							Hawe	417410	oje;	_		_	B - NaOH C - Zn Acetate	
State, Zlp. NY, 14228							12		adU (Line	O_9lsti				D - Nitric Acid E - NaHSO4	P - Na204S O - Na2SO3
Phone: 716-863-3438(Tel)	PO#. Purchase Order Requested	Requested			(0	ablair	sanınır	pu		and de	in , res				G - Amchlor H - Ascorbic A	
Email timothy by@testamericainc.com	#OM						_	Dema	-	a i 'nus	6 '850	ηu				
Project Name Chaffee Landfil/NY05 Event Desc. 2019 Part 363 Expanded -02 48002636	Project # 2 48002636							χλđeu			e ,etint				rtaine L-EDA	W - pH 4-5 Z - other (spe
Site: New York	SSOW#.					1000	-) lesim	_		N_5.88	-	No i ota		of col	
		Sample	Sample Type (C=comp,		ield Filtered A'SM mohe	MoT - GOTERM	7 M - A131	2108 - Biochei	540C_Calcd - 7	eldSampling -	1208, 353.2, 38	imondo - Aaei	10.2 - Alkalinit		otal Number	
Sample Identification	Sample Date		G=grab) Preserva	Preservation Code:		-			1		Z	-	3.	-		Special Instructions/Note:
TRIP BLANK	7/3/19	0060	o	Water							1					
MWSE-1	7/3/19	1305	ŋ	Water		2	2 2	-	*	0	m	-	+			
MWSE-4	7/3/19	1315	o	Water		2	2 2	-	-	0	m	+	+			
							+			+			4			
							+									
					Sar	nple [Sodsic	A) le	fee m	ay be	asses	sed if	sample	s are re	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	an 1 month)
Non-Hazard Flammable Skin Imlant Poison B Deliverable Requested 1 II. III V Other (specify)	ison B Unknown		Radiological		Spe	Rei	Special Instructions/OC Requirements	Clien ons/O	Red	uireme	Dispo:	Disposal By Lab	Lab		Archive For	Months
Empty Kit Relinquished by:		Date			Time							Method	Method of Shipment	ent		
Relinquished by	Date/Time	-		Company		Received by	. Kq pa				1		Date/Time	Time		Company
Relinquished by	Date/Time			Company		Received by	, kg pa						Date/Time	Time		Company
Relinquished by	Date/Time			Сотралу		Received by	Ag Day		1	1	1		Date	Datagime -19	2/ 2	Company Company
the same of the sa										,		1				

Chain of Custody Record

curorins lestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

eurofins Environment Testing Testamerica

tories, Inc			E-Mail: denise.	E-Mail: denise giglia@testamericainc.com				Page:	
a Laboratories, Inc od Drive				Mary Mary and Australian Property and Australian Prope	stamerical	inc.com		Page 1 of 2	
lories, Inc			1					Job #:	
						Analysis Requested	ted		
st p. 1228	Due Date Requested:							Preservation Codes	ides; M - Hexana
1228	TAT Requested (days):							B - NaOH C - Zn Acetate	
								D - Nitric Acid E - NaHSO4	
716-863-3438(Tel)	PO#. Purchase Order Requested	-	(0)					G - Amchlor H - Ascorbic Acid	
nericainc.com			N 10 s		Jus			I - Ice	U - Acetone V - MCAA
indfill/NY05 Event Desc: 2019 Part 363 Expanded -Q2	# 1636		9X) 9(4		4.0				W - pH 4-5 Z - other (specify)
Site: SSOW#: New York	*	7	meS						
Samula Identification	Sample Date Time	Sample Type (C=comp,	Watrix (Wwwater, Sacolid, Owwaste/oil, ed.)	N/SM miofies	7196A - Chromi	480-156080	480-156080 Chain of Custody	isto]	Snorial Instructions Note:
	1		_	ŝ	-				
MWSE-1	112/19 1340	9	Water	0	1 2				
MWSE-2 7/1	0221	9	Water	-	0 2				
MWSE-3 7/1	7/12/19 12.10	o	Water	-	0 2				
MWSE-4 7/1	Z011 1105	9	Water	0	1 2				
					X				
Possible Hazard Identification Non-Hazard — Flammable — Skin Irriant — Poison B	- Unknown	Radiological		Sample	le Disposal (A f	ee may	be assessed if samples are i	Tetained longer than 1	1 month)
ssted: I, II, III, IV, Other (specify)	1			Special	Instruction	Requir			
inquished by:	Date:			Time:		V	Method of Shipment:		
TAPM	Date/Time; -12-19/	CHO	Company	Rece	Received by:	Walkow (14 db Date/Time:	HS1 6/21/41	
Relinquished by. Date/Time	Time:	,	Company	Rece	Received by:		Date/Time.		Company
Relinquished by: Date/Time:	īme:		Company	Rece	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:				Cool	er Tempera	Cooler Temperature(s) °C and Other Remarks:	210	# 1 JCE	

Plinat Information 19:16 Personal Int	Sampler			Lab PM:	PM:					Carrier Tra	Carrier Tracking No(s):	30	0	COC No:	
Client Contact: (Sub Contract Lab)	Phone			Giglia	Giglia, Denise L	se L				2				180-368247.1	
Shipping/Receiving Company:				der	denise.giglia@testamericainc.com	@tes	tamer	icainc.c	om	New York	7.6			Page 1 of 1	
TestAmerica Laboratories, Inc.					NELAP - New York	- Nev	N Yorl	Accreditations Required (See note): NELAP - New York	te):				F. (-	Job #: 480-155710-1	
13715 Rider Trail North,	Due Date Requested: 7/22/2019	ē.						Ana	lysis	Requested	2	1		Preservation Codes:	des:
City: Earth City State, Zip:	TAT Requested (days):	ys):										4		A - HCL B - NaOH C - Zn Acelate	M - Hexane N - None O - AsNaO2
MO, 63045								_						D - Nitric Acid E - NaHSO4	P - Na204S O - Na2SO3
314-298-8566(Tel) 314-298-8757(Fax)	PO #)		_							G - Amchlor	R - Na2S2O3 S - H2SO4
Email:	WO#				_								_	I - Ice	U - Acetone
Project Name: Chaffee Landfill	Project #: 48002636				-	0.00	-						-	K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				-		_	-					0.000	Other:	
Chaffee Landfill (formerly CID)						200							300,820	Other:	
		Sample	Sample Type (C=comp,	Matrix (wawster, Sasolid, Oawaste/oil,	ld Filtered	.0/FIELD_FL	.0/PrecSep_	.0/PrecSep_					al Number		
	V.	\bigvee	Preserva	Preservation Code:	X		-						4	opecial in	special instructions/Note:
MWSE-2 (480-155710-1)	7/2/19	13:00 Eastern		Water		×	×	×				-	5		
MWSE-3 (480-155710-2)	7/2/19	12:20 Fastern		Water		×	×	×			-	1	CT		
							-								
							+								
Note: Since laboratory accreditations are subject to change, TestAmerica Laboratories, Inc. places the ownership of method, analyte & accreditation compliance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the TestAmerica laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmerica Laboratories, Inc.	Laboratories, Inc. places the resistence of the same paralyze succession and the state of the same the state of the same same same the same same same same same same same sam	wnership of made, the sample gned Chain of	nethod, analyti is must be ship Custody attes	e & accreditation apped back to the ting to said cor	n complian e TestAme nplicance t	rica lab	n out su oratory merica	bcontrac or other i	l laboratories nstructions w	. This sample ill be provided	shipment is Any chan	forwarded jes to accr	under c	hain-of-custody. If status should be b	the laboratory does n rought to TestAmeric
Possible Hazard Identification Unconfirmed					San	ple D	ispos	le Disposal (A f	ee may be	Disposal	if sampl	es are r	etainec	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	month)
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	ble Rank: 2	10		Spe	cial In	structi	Special Instructions/QC	Requirements	nents:	by LdD		ALCHIVE FOR	e For	Months
Empty Kit Relinquished by:		Date:			Time:	1			0	Meth	Method of Shipment:	ent:	1		
Relinguished by	Date/Tiple:	יערו		Company	4.0	Regely	O'y by:	8	1	Run	Date	Date/Time:	D	20:50	Company
Reinquished by	Date/Time: ' *			Company		Received by	d by		ľ	2000	Date	Date/Time:	F		Company
	Date/Time:			Company		Received by:	d by:				Date	Date/Time:			Company
A Yes A No.						Cooler	Temper	Cooler Temperature(s) °C	C and Other Remarks	Remarks:					

Client Information	Sample Mat Type (www.grass) (C=comp. company G=grab) E1215334 G Ggrab) G Wa	Frieid Filikered Sample (Yes or No) Perform MS/MSD (Yes or No) Perform MS/MSD (Yes or No) Sams310D · Total Organic Carbon	Z 81210 Z M Pan 363 Expanded Herbicides C	A S210B - Biochemical Oxygen Demand D	A lotal	Uester Tracking Noise		COC No 480-131844-29748 2 Page 2 of 2 Job #
od Drive Od Drive State (161)	Sample Mat Type (www. C=Comp. orway G=grab) Extrave Preservation Cc G Wa	(0) 10 Early Elitered Sample (Yes or No.) Prenderm MS/MSD (Yes or No.) Prenderm MS/MSD (Yes or No.) Prenderm MS/MSD (Yes or No.)	2 Sebioidae Medicides Arzte Z C C C C C C C C C C C C C C C C C C	And Solids and Dissolved Solids 2 25210B - Biochemical Oxygen Demand 2 2540C _Calcd - Total Dissolved Solids 2 2540C _Calcd - Total Dissolved Solids 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ande, Total	sted		age Page 2 of 2 lob #:
od Drive od Drive glestamericainc com offill/NY05 Event Desc. 2019 Part 363 Expanded -Q2 artification		Fleid Filitered Sample (Yes or No) Perform Ms/M3D (Yes or No) SMS310D · Total Organic Carbon	S SZ MINS_GOTSS S	An bnemed begion bendered best and best	anide, Total Series Animals And Mittals Calc	sted	-	Job #
od Drive 28. Tel) 20. 20.19 Part 363 Expanded -Q2 Intiffication		Fleid Fillered Sample (Yes or No) Perform Ms/MsD (Yes or No) SM5310D · Total Organic Carbon	onexold-b,t - di_2M_MI2_dofx8 Z	Z 2540C_Calcd - Total Dissolved Solids	letoT ,obine		-	
3/1el) 3/1estamericainic com idill/NY05 Event Desc. 2019 Part 363 Expanded -Q2 intification		Fleid Fillered Sample (Yes or No) Perform Ms/M3D (Yes or No) A SMS310D - Total Organic Carbon	onexold-4,t-di_2M_Mi2_dofs8 S ∨ S	Z 2540C_Colcd - Total Dissolved Solids	lstoT ,ebins			Preservation Codes:
glestamencainc com diluNY05 Event Desc. 2019 Part 363 Expanded -Q2 artification		Fleid Fillered Sample (Yes or No) Perform Ms/M3D (Yes or No) A SMS310D - Total Organic Carbon	onexold-b,t-di_2M_Mis_d0fs8 \(\Z \)	Z 2540C_Calcd - Total Dissolved Solids	lstoT ,ebine	_		
hy bly@itestamericainc.com Thy bly@itestamericainc.com Thy bly@itestamericainc.com Thy bly@itestamericainc.com The Landfill/NY05 Event Desc. 2019 Part 363 Expanded -02 48002536 SSOWre Tork SE-2 Ti2/19 SE-3 Ti2/19		Fleid Filigered Sample (Yes or No.) Perform MS/MSD (Yes or No.) SMS310D - Total Organic Carbon	onexold-b,t - di_2M_Mis_dofss S	Z 2540C_Caicd - Total Dissolved Solid	letoT , ebine			
ale ale		Fleid Fillered Sample (Yes or I) Perform MS/MSD (Yes or I) A SMS310D · Total Organic Car	xold-b,t-di_2M_Mi2_dors8 S	Z 2540C_Calcd - Total Disaolva	letoT ,ebine	10	480-155710 Chain of Custody	n of Custody
at A		Fleid Filtered Sample (Period Sample (Y Sams) Floren MS/MSD (Y Sams) Floren Sample (Period Sampl	F. di_sm_mis_dofss S	Z 2540C_Calcd - Total D	stoT ,abins	olsvsx	-	L - EDA Z - other (specify)
Sample Date 772/19 772/19		Field Filtered Wide making A or one	SM_MIS_GOTS8 S	Z 2540C Calcd - 7	pine	eų 'un		Other:
7/2/19 7/2/19	1	8 A 6 6	8 Z N	Z	0158 - CY	196A - Chromi	otal Number	
7/2/19	9	2 2	2	-	6 m	Z	1	Special Instructions/Note
7/2/19	(-	-	-	3 1 1		
	5	_	2 2	-	-	3 1 1		
Possible Hazard Identification Non-Hazard Elaminable Skin Initiant Poison B Unknown	Radiological	Sample	le Disposal (Al Return To Client	(A fee ma	ay be as:	assessed if sam	amples are retaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Months
III. IV. O		Special	Instruction	Special Instructions/QC Requirements	uirement			
linquished by		Time	1			Method of	Method of Shipment	
101	830		Received by	3	(ow Ci	don	Date Time 7 6	1830
John Parker 1	STO Campany			Some of the same o			7 (0) A	Gempany Company
Custody Seals Intact Custody Seal No.		Cool	ler Temperatu	Cooler Temperature(s) "C and Other Remarks	Other Rem	arks.	# hin Cit	#1 IXE

• eurofins Engineering

or buildlo

Phone (716) 691-2600 Fax (716) 691-7991										l					-		
Client Information	Sampler			Lab PM Giglia,	Lab PM Giglia, Denise L	e					arrier	Carrier Tracking No(s)	10(8)		0 4	COC No. 480-131844-29748.1	8.1
Client Contact Timothy Bly	Phone			E-Mait denis	E-Mait: denise.giglia@testamencainc.com	@testa	merica	oo oui	8						<u> </u>	Page Page 1 of 2	
Company TestAmerica Laboratories, Inc	-							Ana	Analysis Requested	Req	reste	P			7	Job #	
Address 10 Hazelwood Drive	Due Date Requested:	17.				_										Preservation Codes	\$
Cry Amherst State. Zp	TAT Requested (days)	(8):														A - HCL B - NaOH C - Zn Acetate D - Nitric Acid	M - Hexane N - None O - AsNaO2 P - Na2O4S
NY, 14228 Phone	PO#		and the second s			SE				sap	səlitelo						Q - Na2SO3 R - Na2S2O3 S - H2SO4
716-863-3438(i.e.) Email	Wo #	жедиеѕтеа				litatoV				pestic	Virns			elden			T - TSP Dodecahydrate U - Acetone V - MCAA
Figure 1 Project # Project # Project # Project # Project # Chaffee Landfill/NV05 Event Desc 2019 Part 363 Expanded -Q2 48002636	Project # Q2 48002636					papuedx	teil te			papuedx	papuedx					K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Site New York	SSOW#.					322 E	Targe			360 E					100 10	Other:	
		Sample	Sample Type (C=comp,	Matrix (weather, Sesoind, Onwestered,	beld Filtered S M\&M mrohe	260C - NY Part	0.409 ,0,50 b1sbnst2 - 0,40	-muibsA - 0.50	PC_IOA - PFAS	D81 P NY Part	770D - NY Part	00.0_28D - Bro	U - 0.80	010C, 7470A, S	nedmuM lsto		
Sample Identification	Sample Date		-1 (II)	Preservation Code	-	-	-	1	-	8 Z	-	-		100	-	Special In	Special instructions/Note:
MWSE-2	7/2/19	1300	0	Water		100	01	1-	10	2	1 01	1_	1_	-	-		
MWSE-3	712/19	1220	9	Water		6	2 1	-	2 2	2	2	-	-	-	-		
												++					
										-							
										_							
					Sa	mple	Dispos	al (A	fee mg	y be	asses:	sed if s	ample	as are	retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	month)
Flammable Skin Irritant 1 I, II, III, IV, Other (specify)	Poison & On	UNKNOWN	Radiological	3/	Sp	Special Instructions/QC Requirements	al Instructions/QC	ions/Q	C Regi	lireme	nts.	Disposal by Lab	ap		AIC	Alchive roi	MONINS
Empty Kit Relinquished by		Date			Time			<				Method of Shipment	of Shipm	ent	1		
Relinquished by	Date/Time	9/183	9	Company		Recei	Received by		July C	ON	Cico	colo	Date	Date/Time	7/10	12/19 18W	
Reimquished by M. Reimquished	Date/Time		1530	Company		Recei	Received by	>					Date Date	Date/Time	0/6	14 qm	Company
0			-			Coale	Cooler Temperature(s) ² C and Other Remarks	rature(s	³ C and	Other P	emarks		7.7	7	nin	马川耳	
A Yes A No						_	-							1	-		Ver 01/16/2019

Seurofins (specifical security)

Chain of Custody Record

Eurotins TestAmerica, Buffalo

10 Hazelwood Drive

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

	Sampler			Lab PM		Carrier Tracking No(s)	king No(s):	COC No:	
Client Information (Sub Contract Lab)				Giglia	Giglia, Denise L			480-50582.1	
Client Contact. Shipping/Receiving	Phone			E-Mail denis	E-Mail: denise.giglia@testamericainc.com	State of Origin New York	uit	Page 1 of 1	
Company					Accreditations Required (See note):	note):		# dof	
TestAmerica Laboratories, Inc.					NELAP - New York			480-155710-1	
Address 880 Riverside Parkway,	Due Date Requested: 7/15/2019	:pe			A	Analysis Requested		Preservation Codes	
City: West Sacramento State, Zip. CA, 95605	TAT Requested (days):	ays):			ız)			B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4	N - None O - AsNaO2 P - Na2O4S O - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	# Od				100			G - Amehlor H - Ascorbic Acid	
	#OM				(oN				
Project Name Chaffee Landfill	Project #, 48002636				10 26			ntainer L-EDA	W - pH 4-5 Z - other (specify)
Site: Chaffee Landfill (formerly CID)	SSOW#				usp ()			of co Other:	
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp, G=orab)	Matrix (Wewster, Secold, Orwastelo), BTETISSUE REAL!	Field Filtered Perform MS/M PFC_IDA/3535_ Analytes)			Total Number	Special Instructions/Note:
	$\langle \rangle$	X	Preserva	_	X				
MWSE-2 (480-155710-1)	7/2/19	13:00 Fastern		Water	×			2	
MWSE-3 (480-155710-2)	7/2/19	12:20 Eastern		Water	×			2	
Note. Since laboratory acceditations are subject to change, TestAmenca Laboratones incipiaces the ownership of method, analyse & accreditation compliance upon out subcontract laboratories. This sample shipmed back to the TestAmenca laboratory or other instructions will be provided. Any changes to accreditation status should be brought to TestAmenca Laboratories. In attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody affesting to said complicance to TestAmenca Laboratories, Inc.	Laboratories, inc. places the ysis/fests/matrix being analyz a current to date, return the s.	ownership of n ed, the sample gned Chain of	nethod, analyte is must be ship Custody attest	& accreditation of ped back to the T ng to said compli	ompliance upon out subcontra estAmerica laboratory or other cance to TestAmerica Laborat	act laboratories. This sample st ir instructions will be provided torles, Inc.	ipment is forwarded unc Any changes to accredit	der chain-of-custody If ation status should be t	the laboratory does not prought to TestAmerica
Possible Hazard Identification					Sample Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	if samples are reta	sined longer than	1 month)
Unconfirmed					Return To Client	nt Disposal By Lab		Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable	able Rank: 2	2		Special Instructions/QC Requirements	2C Requirements			
Empty Kit Relinquished by:		Date:			Time.	Metho	Method of Shipment.		
Relinquished by	7-5-19	1	029	White states	Received by	W	Date/Time.	05% W.	
Relinquished by	Date/Time			Company	Received by	4	Date/Time		Сотралу
Relinquished by	Date/Time			Company	Received by		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s	Cooler Temperature(s) °C and Other Remarks	し、		

DISTRIBUTION: WHITE ORIGINAL - Stars with Sample YELLOW - Returned to Client. PINK - Field Copy

Signature

Date

Numė

Сопралу

Signature

Con
DISTRIBUTION: WHITEOREGINAL - Stays with Sample YELLOW - Returned to Cleral PINK - Field Cope

Date

Nama

Company

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

480-155710 Field O

Tracking #: 4276 6720 1280

SO PO/ FO / SAT / 2-Day / Ground / UPS / CDO / Courier GSO / OnTrac / Goldstreak / USPS / Other____

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations.

File in the job folder with the COC.

Notes:	Therm. ID: ALLO Corr. Factor:	
	Ice Wet Gel Other	
	Cooler Custody Seal:	
	Sample Custody Seal:	
	Cooler ID:	
	Temp Observed: 1,1 Corrected: 1.	-1
	From: Temp Blank D Sample D	
	NCM Filed: Yes □ No □	
	Yes	No NA
	Perchlorate has headspace? (Methods 314, 331, 6850)	□ ps
	Alkalinity has no headspace?	D 80
	CoC is complete w/o discrepancies?	0 0
	Samples received within holding time?	
	Sample preservatives verified?	D 0
	Cooler compromised/tampered with?	₽ D
	Samples compromised/tampered with?	₽ D
	Samples w/o discrepancies?	ם ם
	Sample containers have legible labels?	D
	Containers are not broken or leaking?	ם ם
	Sample date/times are provided.	ם ם
	Appropriate containers are used?	ם ם
	Sample bottles are completely filled?	ם ם
	Zero headspace?*	ם מ
	Multiphasic samples are not present?	ם ם
	Sample temp QK?	ם ם
	Sample out of temp?	Be D

W12E

*Containers requiring zero headspace have no headspace, or bubble < 6 mm (1/4")

I/TACORP\CORP\QA\QA_FACILITIES\SACRAMENTO-QA\DOCUMENT-MANAGEMENT\FORMS\QA-812 SAMPLE RECEIVING NOTES.DOC QA-812 TGT 07/01/2019

Client: Waste Management Job Number: 480-155710-1

Login Number: 155710 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Harper, Marcus D

Croater risiper, mareae		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
f necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

2

3

4

5

9

11

13

15

Client: Waste Management Job Number: 480-155710-1

Login Number: 155710 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 4 List Creation: 07/10/19 02:44 PM

Creator: Say, Thomas C

Creator: Say, Thomas C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

7
٠,

18

Client: Waste Management Job Number: 480-155710-1

Login Number: 155710 List Source: Eurofins TestAmerica, Sacramento
List Number: 2 List Creation: 07/06/19 03:41 PM

Creator: Thompson, Sarah W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

5

6

10

12

14

16

19

Client: Waste Management Job Number: 480-155710-1

List Source: Eurofins TestAmerica, Buffalo Login Number: 155757

List Number: 1

Creator: Harper, Marcus D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Client: Waste Management Job Number: 480-155710-1

Login Number: 155757 List Source: Eurofins TestAmerica, Sacramento
List Number: 3 List Creation: 07/06/19 03:41 PM

Creator: Thompson, Sarah W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	Seal present with no number.
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Waste Management Job Number: 480-155710-1

Login Number: 156080 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Harper, Marcus D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

2

4

6

7

9

1 1

12

15

17

1

9/6/2019

Client: Waste Management Job Number: 480-155710-1

Login Number: 156080 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 2 List Creation: 07/16/19 03:06 PM

Creator: Watson, Debbie

adioactivity wasn't checked or is = background as measured by a survey efter. In the cooler's custody seal, if present, is intact. In the ample custody seals, if present, are intact. In the cooler or samples do not appear to have been compromised or many amples were received on ice. In the cooler Temperature is acceptable. In the cooler Temperature is recorded. In the cooler Temperature is recorded. In the cooler Temperature is recorded. In the cooler Stilled out in ink and legible. In the cooler Stilled out with all pertinent information. In the Field Sampler's name present on COC? In the Field Sampler's name present on COC? In the containers name in the containers received and the COC. In the complex are received within Holding Time (excluding tests with immediate of the containers have legible labels. In the cooler True of the containers have legible labels. In the cooler true of the containers have legible labels. In the cooler true of the cooler of true of the containers have legible labels. In the cooler or samples are received or intact. In the cooler or samples are received or intact. In the cooler or samples are received or intact. In the cooler or samples are received or intact. In the cooler or samples are received or intact. In the cooler or samples are received or intact. In the cooler or samples are received or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or samples or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or intact. In the cooler or int</th <th></th>	
ample custody seals, if present, are intact. True the cooler or samples do not appear to have been compromised or impered with. In the cooler Temperature is acceptable. Cooler Temperature is recorded. True Cooler Temperature is recorded. True Cooler Temperature is recorded. True Cooler Temperature is recorded. True Cooler Temperature is recorded. True Cooler Temperature is recorded. True Cooler Temperature is recorded. True Cooler Spresent. True Cooler Spresent. True Cooler Spresent. True Cooler Spresent. True Cooler Spresent. True Cooler Temperature is recorded. True Cooler Temp	
the cooler or samples do not appear to have been compromised or impered with. In amples were received on ice. In amples were received on ice. True True True True True True True True DC is present. True DC is filled out in ink and legible. True DC is filled out with all pertinent information. True	
mpered with. amples were received on ice. True poler Temperature is acceptable. True poler Temperature is recorded. True poler Temperature is recorded. True poler Temperature is recorded. True poler Temperature is recorded. True pole is present. True pole is filled out in ink and legible. True pole is filled out with all pertinent information. True pole is filled out with all pertinent information. True the Field Sampler's name present on COC? N/A pere are no discrepancies between the containers received and the COC. True pumples are received within Holding Time (excluding tests with immediate pole is present. True pole i	
coler Temperature is acceptable. True CC is present. True CC is filled out in ink and legible. True CC is filled out with all pertinent information. True True CC is filled out with all pertinent information. True	
ooler Temperature is recorded. True OC is present. True OC is filled out in ink and legible. True OC is filled out with all pertinent information. True the Field Sampler's name present on COC? N/A here are no discrepancies between the containers received and the COC. True amples are received within Holding Time (excluding tests with immediate True	
DC is present. True DC is filled out in ink and legible. True DC is filled out with all pertinent information. True the Field Sampler's name present on COC? N/A here are no discrepancies between the containers received and the COC. True amples are received within Holding Time (excluding tests with immediate True Ts)	
DC is filled out in ink and legible. True DC is filled out with all pertinent information. True the Field Sampler's name present on COC? N/A here are no discrepancies between the containers received and the COC. True amples are received within Holding Time (excluding tests with immediate True Ts)	
DC is filled out with all pertinent information. True the Field Sampler's name present on COC? N/A here are no discrepancies between the containers received and the COC. True amples are received within Holding Time (excluding tests with immediate True Ts)	
the Field Sampler's name present on COC? N/A here are no discrepancies between the containers received and the COC. True amples are received within Holding Time (excluding tests with immediate True Ts)	
here are no discrepancies between the containers received and the COC. True camples are received within Holding Time (excluding tests with immediate True Ts)	
amples are received within Holding Time (excluding tests with immediate True	
Γs)	
ample containers have legible labels.	
ontainers are not broken or leaking.	
ample collection date/times are provided. True	
propriate sample containers are used.	
ample bottles are completely filled.	
ample Preservation Verified.	
nere is sufficient vol. for all requested analyses, incl. any requested True S/MSDs	
ontainers requiring zero headspace have no headspace or bubble is True Smm (1/4").	
ultiphasic samples are not present. True	
amples do not require splitting or compositing.	
esidual Chlorine Checked. N/A	

2

3

4

9

11

12

14

16

4.6

46

Site: Waste Management Chaffee Landfill Groundwater Monitoring

Laboratory: Test America, Amherst, NY

Report No.: 480-157980

Reviewer: Lorie MacKinnon/Richard Frappa GEI Consultants

Date: January 16, 2020

Samples Reviewed and Evaluation Summary

Ground water samples were collected August 21 and 30, 2019 from the Chaffee Landfill located in Chaffee, New York. Analytical results for samples MW-18BR, MW-P(I), MWBA-2, and MWSE-4 representing a minimum of 5% of groundwater samples, were reviewed based on the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, January 2017 (USEPA-540-R-2017-002) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, January 2017 (USEPA-540-R-2017-001), as well as by the methods referenced by the data package and professional and technical judgment.

Samples included in this review are listed below:

FIELD ID	LAB ID	FRACTIONS VALIDATED
MW-18BR	480-157980-5	VOCs, Total and Dissolved Metals, Cr6, General Chemistry
MW-P(I)	480-157980-9	VOCs, Total and Dissolved Metals, Cr6, General Chemistry
MWBA-2	480-158409-3	VOCs, Total and Dissolved Metals, Cr6, General Chemistry
MWSE-4	480-158878-4	Fluorinated Alkyl Substances

Associated QC Samples:

Field/Trip Blanks: Field Blank, Trip Blank (08/21), Trip Blank (08/30)

Field Duplicate pair: MW-P(I)/DUP

Field Duplicate pair: MWSE-4/DUP (for Fluorinated Alkyl Substances)

The above-listed aqueous samples were analyzed for volatile organic compounds (VOCs) by SW-846 method 8260C, total and dissolved metals by SW-846 methods 6010C/6020A/7470A, hardness by Standard Methods SM2340C, hexavalent chromium by SW-846 method 7196A, and general chemistry parameters which included bromide, chloride, and sulfate by EPA method 300.0, ammonia as nitrogen by EPA method 350.1, total kjeldahl nitrogen (TKN) as nitrogen by EPA method 351.2, chemical oxygen demand (COD) by EPA method 410.4, total recoverable phenolics by SW846 method 9065, total cyanide by SW846 method 9012B, nitrate by EPA method 353.2, color by Standard Methods (SM) 2120B, alkalinity by EPA 310.2, total dissolved solids (TDS) by SM 2540C, biochemical oxygen demand (BOD) by SM 5210B, and total organic carbon (TOC) by SM 5310C.

The data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Initial and Continuing Calibrations
- Blanks

- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- ICP Serial Dilution Results
- Quantitation Limits

In general, the data appear usable as reported or usable with minor qualification due to sample matrix or laboratory quality control outliers. However, the following issue was noted which may have a significant impact on the data usability:

• The nondetect results for 1,4-dioxane in samples MW-18BR, MW-P(I), and MWBA-2 were rejected (R) due to low calibration response factors. These results should not be used for decision-making purposes.

All other results were considered valid; even though some were qualified as discussed below.

The validation findings were based on the following information. Validation qualifiers are defined in Attachment 1 at the end of this report.

Data Completeness

The data package was complete as received by the laboratory.

Holding Times and Sample Preservation

All hold time and sample preservation criteria were met, except where noted below.

Cyanide

The recovery for cyanide was slightly below control limits in LCS 480-491744, associated with sample MWBA-2. The sample was re-prepped six days outside of the required hold time with an acceptable LCS recovery and the result was confirmed. Professional judgment was taken to report the initial analysis of cyanide for sample MWBA-2, therefore qualification due to hold time exceedance was not required.

Initial and Continuing Calibrations

Initial and continuing calibration criteria were met, except where noted below.

VOCs

Compounds that did not meet criteria in the VOC calibrations are summarized in the following table.

Instrument/ Calibration Standard	Compound	Calibration Exceedance	Validation Qualifier				
VOC							
HP5973C ICAL 08/08/19	1,4-Dioxane	RF 0.0073	Reject (R) the nondetect results for 1,4-dioxane				
HP5973C CCAL 08/22/19 09:18	1,4-Dioxane 37.2 %D		in samples MW-18BR and MW-P(I).				
Associated samples: MV	Associated samples: MW-18BR, MW-P(I)						
HP5977L ICAL 08/15/19	1,4-Dioxane	Dioxane RF 0.0032 Reject (R) the nondetect					
HP5977L CCAL	1,4-Dioxane	RF0.0041, 27.4 %D	in sample MWBA-2.				
09/10/19 21:49	Acetone	31.9 %D	Estimate (UJ) the nondetect result for acetone in sample MWBA-2.				
Associated sample: MWBA-2							

Initial calibration (ICAL) relative standard deviation (%RSD) > 20; estimate (J) positive and blank-qualified (UJ) results only.

Continuing calibration (CCAL) percent difference (%D) > 20; estimate (J/UJ) positive and nondetect results. Response factor (RF) < 0.05 (0.010 for poor responders); Estimate (J) positive results and reject (R) nondetect results.

<u>Metals</u>

The recovery criteria were met in the ICSAB sample analysis. Lead, which should not be present, was detected above the absolute value of the reporting limit in select ICSA sample analyses. Only samples with interferent levels similar (within 15%) to those of the ICSA sample were considered to be affected. As the interferent levels in samples MW-18BR, MW-P(I), and MWBA-2 were less than those of the ICSA sample, validation actions were not required.

Blanks

Contamination was not detected in the laboratory instrument and method blanks and associated field blank and trip blank samples, except where noted below.

Analyte	Blank ID/ Associated Samples	Concentration Detected	Validation Actions
Total alkalinity	09/09 Instrument blank: MWBA-2 (3-fold)	11.65 mg/L	Qualify the result for total alkalinity in sample MWBA-2 as estimated (J+); High bias.
Total recoverable phenolics	MB 480-490474: MW-18BR, MW-P(I)	0.00632 mg/L	Qualify the results for total recoverable phenolics as nondetect (U) at the reported values in samples MW-18BR and MW-P(I).
Total recoverable phenolics	Field Blank: MW-18BR, MW-P(I), MWBA-2	0.0088 mg/L	Qualify the result for total recoverable phenolics as nondetect (U) at the reported value in sample MWBA-2.

Blank Actions:

If the sample result is < QL; report the result as nondetect (U) at the quantitation limit (QL) or reported value.

If the sample result is \geq QL and \leq 2x blank contamination detected; professional judgment was taken to report the result as nondetect (U) at the reported value.

If the sample result is $\geq QL$ or 2x contamination and < 10x blank contamination detected; professional judgment was taken to report the sample result as estimated (J); biased high.

If the sample result is nondetect or > 10x blank contamination detected; validation action is not required.

Surrogate Recoveries

All criteria were met.

Isotope Dilution Analyte Recoveries (PFAS)

All isotope dilution recoveries were within the laboratory control limits.

MS/MSD Results

MS/MSD analyses were performed on project sample MW-18BR for VOCs and total and dissolved metals. MS/MSD analyses were performed on various project samples for bromide, chloride, sulfate, ammonia, TKN, COD, total phenolics, hexavalent chromium, cyanide, color, hardness, and TOC. All recovery and precision criteria were met for the MS/MSD samples which were in the preparation batches of the validated samples, except where noted below.

Sample	Analyte	Recovery (%)	RPD (%)	QC Limits (%)	Validation Actions
MW-18BR		85, 84	-		Estimate (UJ) the nondetect results for total
MW-P(I),	Total Cyanide	MS 84	NA	90-110	cyanide in samples MW-18BR, MW-P(I), and
MWBA-2		MS 89	NA		MWBA-2; Low bias.
MW-18BR		72, 72	-		Estimate (UJ) the nondetect results for ammonia
MW-P(I),	Ammonia	MS 85	NA	90-110	in samples MW-18BR, MW-P(I), and MWBA-
MWBA-2		MS 69	NA		2; Low bias.
MW-18BR	Total	86, 87	-		Estimate (UJ) the blank-qualified nondetect
MW-P(I),	Recoverable	MS 86	NA	90-110	results for total recoverable phenolics in samples
MWBA-2	Phenolics	MS 76	NA		MW-18BR, MW-P(I), and MWBA-2; Low bias.
Associated project samples: MW-18BR, MW-P(I), MWBA-2					

⁻ criterion met

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on various project samples for TKN, color, hexavalent chromium, BOD, and total dissolved solids. All criteria were met.

LCS Results

All LCS recovery criteria were met, except where noted below.

NA- Not applicable; MSD not performed on this sample

Total Cyanide

The following table lists the recoveries outside of control limits in the LCS and the resulting actions.

LCS ID	Analyte	Recovery (%)	Control Limits (%)	Associated Samples	Validation Action/Bias
LCS 480- 491744	Total Cyanide	86	90-110	MWBA-2	Estimate (UJ) the nondetect result for total cyanide in sample MWBA-2; Low bias.

Internal Standards

All criteria were met.

Serial Dilution Results

A serial dilution analysis was performed on project sample MW-17 for total and dissolved metals. All criteria were met.

Field Duplicate Results - Inorganics

Samples MW-P(I) and DUP were submitted as the field duplicate pair with this sample set. The following table summarizes the RPDs of the detected analytes in the field duplicate pair, which were within the acceptance criteria.

Analyte	MW-P(I)	DUP	RPD (%)
	(mg/L)	(mg/L)	
Boron	0.037	0.037	0
Calcium	107	108	0.9
Iron	1.3	1.4	7.4
Lead	0.0030 U	0.0033	NC, Within 2xRL
Magnesium	37.2	37.6	1.1
Manganese	0.12	0.12	0
Sodium	18.6	19.0	2.1
Dissolved Boron	0.035	0.035	0
Dissolved Calcium	107	104	2.8
Dissolved Iron	0.29	0.48	49.4, Within 2xRL
Dissolved Magnesium	36.8	36.1	1.9
Dissolved Manganese	0.11	0.11	0
Dissolved Sodium	21.4	19.5	9.3
Total alkalinity	296	291	1.7
Chemical oxygen demand	13.7	8.9	42.5, Within 2xRL
Hardness	408	420	2.9
Total dissolved solids	554	650	15.9
Chloride	52.8	48.0	9.5
Sulfate	106	103	2.9
	NC – Not	calculable	

Analyte MW-P(I)		DUP RPD (%)			
•	(mg/L)	(mg/L)			
Criteria: When both results are ≥5x the RL, RPDs must be <30%.					
When results are < 5x the RL, professional judgment was used to qualify results in which the absolute difference between the					
original and field duplicate was >2XRL					

Field Duplicate Results – Fluorinated Alkyl Substances

Samples MWSE-4 and DUP were submitted as the field duplicate pair with this sample set. As shown in the table below, the duplicate sample (Blind Duplicate) is inconsistent with the parent sample. The COC was reviewed and the sample collection time of the duplicate sample matched that of MWSE-4 and was listed as such on the COC. GEI reviewed test results for the prior sampling event (July 2019) and found sample results for MWSE-3 were non-detect for fluorinated alkyl substances and sample MWSE-4 contained analyte concentrations near identical to those reported in MWSE-3 during the September 2019 event. GEI discussed this issue with Mr. Robert Hrabak of Test America Sacramento on January 16, 2020. It was mutually agreed that the parent sample MWSE-4 was inappropriately labeled in the field. As a result, the data presented for MWSE-3 and the data for MWSE-4 are considered to be transposed and the laboratory data sheet modified during sample validation.

The following table summarizes the RPDs of the detected analytes in the field duplicate pair (corrected sample ID shown). RPDs were within the acceptance criteria.

Analyte	MWSE-4 ng/L	Blind Duplicate (MWSE-4) ng/L	RPD (%)
Perfluorobutanesulfonic acid (PFBS)	4.8	4.7	2.1
Perfluorobutanoic acid (PFBA)	15	15	0
Perfluoroheptanoic acid (PFHpA)	5.8	6.1	4.1
Perfluorohexanoic acid (PFHxA)	21	21	0
Perfluorooctanesulfonic acid (PFOS)	2.6	2.5	4.0
Perfluorooctanoic acid (PFOA)	9	9	0
Perfluoropentanoic acid (PFPeA)	15	15	0

Quantitation Limits

Sample results were reported down to the reporting or quantitation limit (QL). All quantitation limit criteria were met, except where noted below.

The following table lists the requested project specific reporting limits which were less than the laboratory standard quantitation limits but greater than the laboratory method detection limits.

Analyte	Project Reporting Limits	Laboratory PQL	Validation Assessment
2-Butanone	5.0 ug/L	10 ug/L	Standard levels of 2 and 5 ug/L were utilized in the calibration curve and
Acetone	5.0 ug/L	10 ug/L	curve linearity criteria were met, therefore accuracy at the project reporting limit of 5 was demonstrated and results are accepted without qualification.
Antimony	0.015 mg/L	0.020 mg/L	The low point calibration standard analyzed was at the laboratory PQL
Arsenic	0.010 mg/L	0.015 mg/L	levels, therefore accuracy was not confirmed at the lower project reporting
Lead	0.003 mg/L	0.010 mg/L	limits. The nondetect results for antimony, arsenic, lead, and thallium
Thallium	0.010 mg/L	0.020 mg/L	samples MW-18BR, MW-P(I), and MWBA-2 were estimated (UJ).
Alkalinity	5.0 mg/L	10 mg/L	Validation action was not required as all affected project results were greater than the laboratory PQL of 10 mg/L.
Total Kjeldahl Nitrogen	0.15 mg/L as N	0.20 mg/L	The low point calibration standard analyzed was at the laboratory PQL level, therefore accuracy was not confirmed at the lower project reporting limit. The nondetect results for total kjeldahl nitrogen in samples MW-18BR, MW-P(I), and MWBA-2 were estimated (UJ).
Chemical Oxygen Demand	5 mg/L	10 mg/L	A standard level of 5 mg/L was utilized in the calibration curve and curve linearity criteria were met, therefore accuracy at the project reporting limit of 5 was demonstrated and results are accepted without qualification.
Total Recoverable Phenolics	0.005 mg/L	0.010 mg/L	The low point calibration standard analyzed was at the laboratory PQL level, therefore accuracy was not confirmed at the lower project reporting limit. The nondetect results for total recoverable phenolics in samples MW-18BR, MW-P(I), and MWBA-2 were estimated (UJ).
Color	0.010 Color Units	5 Color Units	The low point calibration standard analyzed was at the laboratory PQL level, therefore accuracy was not confirmed at the lower project reporting limit. The nondetect results for color in samples MW-P(I) and MWBA-2 were estimated (UJ). The result for color in sample MW-18BR was detected at the laboratory PQL therefore it can be accepted without qualification.
Hardness	1.0 mg/L	2.0 mg/L	Validation action was not required as all affected project results were greater than the laboratory PQL of 2 mg/L.

General Chemistry

Anion samples MW-18BR (5-fold), MW-P(I) (5-fold), and MWBA-2 (2-fold) were analyzed at dilutions to bring chloride and sulfate level within the instrument linear range. Bromide was not detected in these analyses and the reporting limits were therefore elevated. Alkalinity samples MW-18BR (2-fold), MW-P(I) (3-fold), and MWBA-2 (3-fold) were analyzed at dilutions due high levels.

Attachments: MW18BR, MW-P(I), MWBA-2, MWSE-4 validated data sheets

Attachment 1

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) based on an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1

Lab Sample ID: 480-158878-1

Date Collected: 09/09/19 12:35 **Matrix: Water** Date Received: 09/09/19 15:40

Method: 537 (modified) - Fluor Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluoropentanoic acid (PFPeA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorohexanoic acid (PFHxA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluoroheptanoic acid (PFHpA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorooctanoic acid (PFOA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorononanoic acid (PFNA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorodecanoic acid (PFDA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluoroundecanoic acid (PFUnA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorododecanoic acid (PFDoA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorotridecanoic acid (PFTriA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorotetradecanoic acid (PFTeA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorobutanesulfonic acid (PFBS)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorohexanesulfonic acid (PFHxS)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorooctanesulfonic acid (PFOS)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorodecanesulfonic acid (PFDS)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
Perfluorooctanesulfonamide (FOSA)	ND	1.9	ng/L	09/12/19 07:48	09/13/19 21:30	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	19	ng/L	09/12/19 07:48	09/13/19 21:30	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	19	ng/L	09/12/19 07:48	09/13/19 21:30	
6:2 FTS	ND	19	ng/L	09/12/19 07:48	09/13/19 21:30	
8:2 FTS	ND	19	ng/L	09/12/19 07:48	09/13/19 21:30	
sotope Dilution	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fa
13C4 PFBA	98	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C5-PFPeA DNU	101	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C2 PFHxA	100	25 ₋ 150		09/12/19 07:48	09/13/19 21:30	
13C4 PFHpA	103	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C4 PFOA	104	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C5 PFNA	103	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C2 PFDA	97	25 ₋ 150		09/12/19 07:48	09/13/19 21:30	
13C2 PFUnA	103	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C2 PFDoA	100	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C2 PFTeDA	106	25 - 150		09/12/19 07:48	09/13/19 21:30	
1802 PFHxS	115	25 - 150		09/12/19 07:48	09/13/19 21:30	
13C4 PFOS	105	25 - 150			09/13/19 21:30	
13C8 FOSA	101	25 - 150		09/12/19 07:48	09/13/19 21:30	
d3-NMeFOSAA	97	25 - 150			09/13/19 21:30	
d5-NEtFOSAA	96	25 - 150			09/13/19 21:30	
M2-6:2 FTS	115	25 - 150			09/13/19 21:30	
M2-8:2 FTS	129	25 - 150		09/12/19 07:48		

Client Sample ID: MWSE-2

Date Collected: 09/09/19 11:20 Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-2 **Matrix: Water**

Ì	Method: 537 (modified) - Fluor	inated Alkyl Substances	6						
ı	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ı	Perfluorobutanoic acid (PFBA)	ND ND	1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2

Lab Sample ID: 480-158878-2

Date Collected: 09/09/19 11:20 Matrix: Water Date Received: 09/09/19 15:40

Method: 537 (modified) - Fluor Analyte		I Substand Qualifier	es (Continu RL	ed) MDL	l Init	D	Prepared	Analyzed	Dil Fac
Perfluoropentanoic acid (PFPeA)	ND	Qualifier	1,9	HIDL	ng/L			09/13/19 21:39	1
Perfluorohexanoic acid (PFHxA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorooctanoic acid (PFOA)	ND		1,9		ng/L			09/13/19 21:39	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L			09/13/19 21:39	1
Perfluoroheptanesulfonic Acid	ND		1.9		ng/L			09/13/19 21:39	1
(PFHpS)	NB		1.5		ng/L		03/12/13 07:40	03/10/13 21:03	
Perfluorooctanesulfonic acid (PFOS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
6:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
8:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	102		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C5-PFPeA DNU	106		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFHxA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C4 PFHpA	104		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C4 PFOA	106		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C5 PFNA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFDA	103		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFUnA	109		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFDoA	100		25 ₋ 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFTeDA	97		25 - 150				09/12/19 07:48	09/13/19 21:39	1
18O2 PFHxS	114		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C4 PFOS	102		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C8 FOSA	102		25 - 150				09/12/19 07:48	09/13/19 21:39	1
d3-NMeFOSAA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
d5-NEtFOSAA	101		25 - 150				09/12/19 07:48	09/13/19 21:39	1
M2-6:2 FTS	114		25 - 150				09/12/19 07:48	09/13/19 21:39	1
M2-8:2 FTS	116		25 - 150				00/12/10 07:48	09/13/19 21:39	1

Client Sample ID: MWSE-3
Date Collected: 09/09/19 13:41

Lab Sample ID: 480-158878-3 Matrix: Water

Date Received: 09/09/19 15:40

Method: 537 (modified) - Fluorinated Alkyl Substances											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Perfluorobutanoic acid (PFBA)	15		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1	
	Perfluoropentanoic acid (PFPeA)	15		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1	

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3 Muse-4 RF

Date Collected: 09/09/19 13:41 11:46 nF

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-3

Matrix: Water

Job ID: 480-157980-1

Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Perfluorohexanoic acid (PFHxA)	21		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluoroheptanoic acid (PFHpA)	5.8		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorooctanoic acid (PFOA)	9.0		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorobutanesulfonic acid (PFBS)	4.8		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorooctanesulfonic acid (PFOS)	2.6		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	
3:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	
3:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	
sotope Dilution	%Recovery	Qualifier Lim	its				Prepared	Analyzed	Dil Fa
I3C4 PFBA	89	25 -	150				09/12/19 07:48	09/13/19 21:49	
13C5-PFPeA DNU	103	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C2 PFHxA	103	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C4 PFHpA	110	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C4 PFOA	107	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C5 PFNA	106	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C2 PFDA	106	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C2 PFUnA	109	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C2 PFDoA	105	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C2 PFTeDA	98	25 -	150					09/13/19 21:49	
8O2 PFHxS	115	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C4 PFOS	103	25 -	150				09/12/19 07:48	09/13/19 21:49	
3C8 FOSA	104	25 -	150				09/12/19 07:48	09/13/19 21:49	
3-NMeFOSAA	97	25 -	150					09/13/19 21:49	
5-NEtFOSAA	102	25-						09/13/19 21:49	
12-6:2 FTS	128	25 -						09/13/19 21:49	
12-8:2 FTS	123	25-						09/13/19 21:49	

Client Sample ID: MWSE-4 WV5E-3 KF Date Collected: 09/09/19 14:46 13:41 NE Date Received: 09/09/19 15:40 Lab Sample ID: 480-158878-4

Matrix: Water

Method: 537 (modified) - Fluorinated Alkyl Substances										
	Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac	
	Perfluorobutanoic acid (PFBA)	ND	1.8	n	ng/L		09/12/19 07:48	09/13/19 21:59	1	
	Perfluoropentanoic acid (PFPeA)	ND	1.8	n	ıg/L		09/12/19 07:48	09/13/19 21:59	1	

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4 PMWSE-3 FF
Date Collected: 09/09/19 11:46 13:41 RF

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-4

Matrix: Water

Job ID: 480-157980-1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorooctanoic acid (PFOA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
6:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
8:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	95		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C5-PFPeA DNU	104		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFHxA	99		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C4 PFHpA	107		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C4 PFOA	106		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C5 PFNA	100		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFDA	98		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFUnA	108		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFDoA	101		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFTeDA	96		25 - 150				09/12/19 07:48	09/13/19 21:59	1
1802 PFHxS	116		25 - 150				09/12/19 07:48		1
13C4 PFOS	107		25 - 150				09/12/19 07:48		1
13C8 FOSA	101		25 - 150				09/12/19 07:48		1
d3-NMeFOSAA	96		25 - 150				09/12/19 07:48	-	1
d5-NEtFOSAA	100		25 - 150				09/12/19 07:48		1
M2-6:2 FTS	118		25 - 150				09/12/19 07:48		1
M2-8:2 FTS	118		25 - 150					09/13/19 21:59	1

Client Sample ID: BLIND DUP

Date Collected: 09/09/19 11:46

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-5

Matrix: Water

Method: 537 (modified) - Fluoria	nated Alky	l Substance	s						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	15		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoropentanoic acid (PFPeA)	15		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorohexanoic acid (PFHxA)	21		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Lab Sample ID: 480-158878-5

Matrix: Water

Job ID: 480-157980-1

Client Sample ID: BLIND DUP

Date Collected: 09/09/19 11:46 Date Received: 09/09/19 15:40

(muse-4)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluoroheptanoic acid (PFHpA)	6.1		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorooctanoic acid (PFOA)	9.0		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorobutanesulfonic acid (PFBS)	4.7		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorooctanesulfonic acid (PFOS)	2.5		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
6:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
8:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	84		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C5-PFPeA DNU	97		25 ₋ 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFHxA	101		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C4 PFHpA	101		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C4 PFOA	102		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C5 PFNA	100		25 ₋ 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFDA	100		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFUnA	97		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFDoA	97		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFTeDA	91		25 - 150				09/12/19 07:48	09/13/19 22:08	1
1802 PFHxS	110		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C4 PFOS	101		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C8 FOSA	99		25 - 150				09/12/19 07:48	09/13/19 22:08	1
d3-NMeFOSAA	92		25 - 150				09/12/19 07:48	09/13/19 22:08	1
d5-NEtFOSAA	95		25 - 150				09/12/19 07:48	09/13/19 22:08	1
M2-6:2 FTS	119		25 - 150					09/13/19 22:08	1

Client Sample ID: TRIP BLANK

Date Collected: 09/09/19 09:00 Date Received: 09/09/19 15:40

M2-8:2 FTS

Lab Sample ID: 480-158878-6

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS									
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0		ug/L			09/20/19 00:45	1
1,1,1-Trichloroethane	ND		5.0		ug/L			09/20/19 00:45	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/20/19 00:45	1

25 - 150

116

Eurofins TestAmerica, Buffalo

09/12/19 07:48 09/13/19 22:08

09/30/2019

RE

Eurofins TestAmerica, Buffalo

10 Hazelwood Drive

Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Chain of Custody Record

Lab PM

Sampler

611	ro	1	l	n	9
 LU	1 ()	,	E	11	ı

Environment Testing

Dimining					
/ / / / / /					
	MININE E	wa ma	81 8 0 81 88 8	HID HILL	шиш

Client Information	Process .		Giglia, De				nise L			111111111111111111111111111111111111111				III —		
Client Contact Timothy Bly						giglia@	glia@testamericainc.com 480-158878 Chain of Custody									
Company TestAmerica Laboratories, Inc									Analys	is Rug-		oo, o ona	iii oi Cus	stody		
Address	Due Date Request	ed:					W	TT	1 1		TI	T		Preservation C	odes:	
10 Hazelwood Drive	TAT Requested (d.	lys):			-	1	1				4.1			A - HCL B - NaOH	M - Hexane N - None	•
Amherst						1	V	11			1.0	11		C - Zn Acetate	O - AsNaO2	
State Zip NY, 14228					188	W :	1		11	11	1.3			D - Nitne Acid E NaHSO4	P - Na2O4S D - Na2SO3	3
Phone 716-863-3438(Tel)	Po # Purchase Order	Dogwoodog				M A	Of Baseline Volatilas							F - MeOH G - Amchior	R - Na2S20 5 - H2SO4	
7 10-003-3439(FeI)	WO#	Requested			or No	2 A	1 1	1 1		11.4	1 1		1 2	H - Ascorbic Acid	U Acetone	
limothy bly@testamencainc.com	D				_ 5	S F	9	11			1.1		g	J - DI Water K - EDTA	V - MCAA W - pH 4-5	
Project Name Chaffee Facility Western Expansion	Project # 48002685				3,0	dard dard	Baseline Votetiles	11	11		1.7	11	containers	L - EDA	Z - other (sp	pecify)
Site New York	SSOW#				Samp				11				ofcor	Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrii (Wewster Sesolid, Orwants/o	old Filtered	Perform M8/M8	8260C - NY Part 360						Total Number	Special	Instructions	/Note:
		><	Preserva			M>	1			a ta s	20 20 2	176120	X			
MWSE-1	9/9/19	1235	G	Water		2	0						113			
MWSE-2	9/9/19	1120	G	Water	13 0	2	0	\Box							3	
MWSE-3	9/9/19	1341	G	Water		2	0								1	
MWSE-4	9/9/19	1146	G	Water		2	0						/	DUP TAKEN	1	
Blind Duplicate	9/9/19	1146	G	Water		2	0							TAKEN AT MW	-/	
TRIP BLANK	9/9/19	0900	G	Water		0	2								No.	R
															Mas	
Possible Hazard Identification Non-Hazard Flammable Skin Imitant	Poison B Unkn	own 🗆	Radiologica	1				sposal (m To Cli			essed if s posal By L			ed longer than ive For	1 month) Months	
Deliverable Requested T, II, III, IV, Other (specify)										uirements						
Empty Kit Relinquished by.		Date			Tir	ne.					Melnod o	of Shipment			-, -, -	
Relinquished by Mourees &	09/09/1	9 15	40	Company	any Receiv			Received by			9/9/17		/17		Company /S:40	0
Relinquished by	Date/Time			Company		Reserved by			Date/Timel				Company			
Relinquished by	Date/Time			Company		Rec	eived	by				Date/Time: Company				
Custody Seals Intact: Custody Seal No Δ Yes Δ No						Coo	Her Te	mperature	e(s) °C and	Other Rema	rks		3. 3	2/		

09/30/2019

Page 15981 of 15988

, .

Ver 01/16/2019

Client: Waste Management Job Number: 480-157980-1

Login Number: 158878

List Number: 2

Creator: Kintaudi, Pauline W

List Source: Eurofins TestAmerica, Sacramento List Creation: 09/11/19 01:36 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	993303
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-157980-1

Client Project/Site: Chaffee Facility Western Exp-GW Baselin

Sampling Event: Chaffee WEXP GW Baseline(9)

For:

Waste Management Chaffee Landfill 10860 Olean Road Chaffee, New York 14030-9799

Attn: Christopher Chapman

Authorized for release by: 9/30/2019 7:27:38 PM

Denise L'Arglia

Denise Giglia, Project Manager I (716)691-2600

denise.giglia@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

5

6

10

12

1 /

15

16

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	8
Client Sample Results	22
Surrogate Summary	122
Isotope Dilution Summary	124
QC Sample Results	125
QC Association Summary	209
Lab Chronicle	245
Certification Summary	267
Method Summary	270
Sample Summary	271
Detection Limit Exceptions Summary	272
Chain of Custody	273
Field Data Sheets	285
Receipt Checklists	308

3

6

8

10

12

1 1

15

17

Definitions/Glossary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Qualifiers

G			

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits

F1 MS and/or MSD Recovery is outside acceptance limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

scr	aı	tior
	scr	scrip

LCS or LCSD is outside acceptance limits.

RPD of the LCS and LCSD exceeds the control limits

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

	Qualifier	Qualifier [Description
--	-----------	-------------	-------------

LCS or LCSD is outside acceptance limits.

ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.

4 MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

В Compound was found in the blank and sample. b Result Detected in the Unseeded Control blank (USB).

MS and/or MSD Recovery is outside acceptance limits.

Sample was prepped or analyzed beyond the specified holding time

Glossary

Abbreviation	These commonly	used abbreviations r	nay or may not be	e present in this report.
ADDIEVIALIOII	THESE COMMISSION	useu applevialiolis i	iiav oi iiiav iiot bi	, DI 636III III III3 16DOI (

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

FDI Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Eurofins TestAmerica, Buffalo

Page 3 of 314

9/30/2019

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-157980-1

Comments

No additional comments.

Receipt

The samples were received on 8/21/2019 5:30 PM. 8/23/2019 4:45 PM. 8/26/2019 4:30 PM. 8/30/2019 4:15 PM. 9/3/2019 4:50 PM and 9/9/2019 3:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 11 coolers at receipt time were 2.9° C, 2.9° C, 2.9° C, 3.1° C, 3.1° C, 3.3° C, 3.5° C, 3.6° C, 3.7° C, 3.8° C and 4.2° C.

GC/MS VOA

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-489143 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes: therefore, the data have been reported. The following sample is impacted: MW-50 (480-158145-1).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-491215 recovered above the upper control limit for Acetonitrile. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: FIELD BLANK (480-158409-1), MWBA-1 (480-158409-2), MWBA-2 (480-158409-3), MW-O(I) (480-158409-4) and TRIP BLANK (480-158409-5).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-491769 recovered outside acceptance criteria, low biased, for 2-Hexanone, 4-Methyl-2-pentanone, Acetonitrile and Tetrahydrofuran. A reporting limit (RL) standard was analyzed, and the target analytes were detected. Since the associated samples were non-detect for these analyte, the data have been reported. The following samples are impacted: MWSE-1 (480-158492-1), MWSE-2 (480-158492-2), MWSE-3 (480-158492-3) and MWSE-4 (480-158492-4).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-491769 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detect for the affected analyte; therefore, the data have been reported. The following samples are impacted: MWSE-1 (480-158492-1), MWSE-2 (480-158492-2), MWSE-3 (480-158492-3) and MWSE-4 (480-158492-4).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-491707 recovered outside acceptance criteria, low biased, for 1,2-Dichloroethane, 1,4-Dichlorobenzene, Chloroform, Toluene and trans-1,3-Dichloropropene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported. The following sample is impacted: TRIP BLANK (480-158492-5).

Method(s) 8260C: The continuing calibration verification (CCV) associated with batch 480-491707 recovered above the upper control limit for 1.4-Dioxane and Acetonitrile. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: TRIP BLANK (480-158492-5).

Method(s) 8260C: The laboratory control sample (LCS) for analytical batch 480-491707 recovered outside control limits for the following analyte: 1,4-Dioxane. This analyte was biased high in the LCS and were not detected in the associated samples: therefore, the data have been reported. The following sample is impacted: TRIP BLANK (480-158492-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

HPLC/IC

Method(s) 300.0: The following samples were diluted due to the abundance of non-target analytes: DUP (480-157980-1), MW-16 (480-157980-2), MW-17 (480-157980-4), MW-18BR (480-157980-5), MW-L(I) (480-157980-6), MW-M(S) (480-157980-8), MW-P(I) (480-157980-9), MW-P(S) (480-157980-10), MW-N(S) (480-158093-2), MW-Q(I) (480-158093-3), MWSE-1 (480-158492-1), MWSE-2 (480-158492-2) and MWSE-4 (480-158492-4). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following sample was reported with elevated reporting limits for all analytes: MW-M(l) (480-157980-7), MW-N(l) (480-158093-1), MWBA-1 (480-158409-2), MWBA-2 (480-158409-3) and MW-O(I) (480-158409-4). The sample was analyzed at a dilution

Job ID: 480-157980-1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

based on screening results.

Method(s) SM 4110B: The following samples were diluted to bring the concentration of target analytes within the calibration range: DUP (480-157980-1), MW-16 (480-157980-2), MW-17 (480-157980-4), MW-18BR (480-157980-5), MW-L(I) (480-157980-6), MW-M(S) (480-157980-8), MW-P(I) (480-157980-9), MW-P(S) (480-157980-10), MW-N(S) (480-158093-2), MW-Q(I) (480-158093-3), MWBA-1 (480-158409-2), MWBA-2 (480-158409-3), MWSE-1 (480-158492-1), MWSE-2 (480-158492-2) and MWSE-4 (480-158492-4). Elevated reporting limits (RLs) are provided.

Method(s) SM 4110B: The following sample was reported with elevated reporting limits for all analytes: MW-M(I) (480-157980-7), MW-N(I) (480-158093-1) and MW-O(I) (480-158409-4). The sample was analyzed at a dilution based on screening results.

Method(s) SM 4110B: The results reported for the following sample do not concur with results previously reported for this site: MW-P(I) (480-157980-9). Reanalysis was performed, and the result(s) confirmed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method(s) 6010C: The Total Aluminum results reported for the following samples do not concur with results previously reported for this site: MW-M(I) (480-157980-7) and MW-M(S) (480-157980-8). Reanalysis was performed, and the results confirmed.

Method(s) 6010C: Dissolved Sodium metals result for the following sample is greater than the corresponding total metals result: MW-Q(I) (480-158093-3). The dissolved metals and total metals results have been confirmed by the analysis of the undigested sample.

Method(s) 6010C: The continuing calibration verifications (CCV 480-489442/37 and 480-489442/49) associated with batch 480-489442 recovered above the upper control limit for Total Silver. The samples MW-50 (480-158145-1) associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 6010C: The laboratory control sample duplicate (LCSD) for preparation batch 480-489078 and analytical batch 480-489442 recovered outside control limits for the following analytes: Total Copper and Zinc. These analytes were biased high in the LCSD and were not detected in the associated samples MW-50 (480-158145-1); therefore, the data have been reported.

Method(s) 6010C: The recovery of post spike, (480-157980-E-4-A PDS), associated with batch 480-488655, exhibited a result outside quality control limits for Dissolved Sodium. However, the serial dilution (SD) of this sample was compliant, therefore no corrective action was necessary.

Method(s) 6010C: The Dissolved Boron results reported for the following sample do not concur with results previously reported for this site: MW-17 (480-157980-4). Reanalysis was performed, and the result(s) confirmed.

Method(s) 6010C: The Dissolved Boron, Calcium, Magnesium, Manganese, and Sodium results reported for the following sample do not concur with results previously reported for this site: MW-M(I) (480-157980-7). Reanalysis was performed, and the result(s) confirmed.

Method(s) 6010C: The Dissolved Calcium, Iron, Magnesium, Manganese, and Sodium results reported for the following sample do not concur with results previously reported for this site: MW-M(S) (480-157980-8). Reanalysis was performed, and the result(s) confirmed.

Method(s) 6010C: The Dissolved Sodium results reported for the following sample do not concur with results previously reported for this site: MW-P(I) (480-157980-9). Reanalysis was performed, and the result(s) confirmed.

Method(s) 6010C: The Dissolved Barium, Manganese, and Sodium results reported for the following sample do not concur with results previously reported for this site: MW-P(S) (480-157980-10). Reanalysis was performed, and the result(s) confirmed.

Method(s) 6010C: Dissolved Manganese metals result for the following sample is greater than the corresponding total metals result: MWSE-2 (480-158492-2). The dissolved metals and total metals results have been confirmed by the analysis of the undigested sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-157980-1

6

10

12

13

4 -

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

LCMS

Method(s) 537 (modified): Due to a shortage in the marketplace for 13C3-PFBS, the target analyte PFBS and/or Perfluoropentanesulfonic acid (PFPeS) could not be quantitated against 13C3-PFBS (its labeled variant) as listed in the SOP. PFBS and Perfluoropentanesulfonic acid (PFPeS) was quantitated versus 18O2-PFHxS instead. (ICV 320-322933/11)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

Method(s) SM 2120B: The following samples were filtered prior to analysis, therefore the analytical results are being report as "True Color": DUP (480-157980-1), MW-17 (480-157980-4), MW-17 (480-157980-4[MS]), MW-17 (480-157980-4[MSD]), MW-18BR (480-157980-5), MW-L(I) (480-157980-6), MW-M(I) (480-157980-7), MW-M(S) (480-157980-8), MW-P(I) (480-157980-9), MW-P(S) (480-157980-10), MW-N(I) (480-158093-1), MW-Q(I) (480-158093-3), MW-50 (480-158145-1), MWSE-3 (480-158492-3)

Method(s) SM 2120B: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to matrix spike duplicate inadvertently not having spiking reagent added in original analysis. Both sets of data are reported: MW-17 (480-157980-4), MW-17 (480-157980-4[MSD]) and MW-17 (480-157980-4[MSD]).

Method(s) SM 2120B: The following samples in analytical batch 480-490392 were analyzed outside of the allowable frequency of quality control criteria due to laboratory error. The data has been reported due to holding time limitations: MWSE-3 (480-158492-3) and MWSE-4 (480-158492-4)

Method(s) 310.2: The continuing calibration blank (CCB) for analytical batch 480-491046 contained Alkalinity, Total above the reporting limit (RL). All reported samples associated with this CCB were either ND for this analyte or contained this analyte at a concentration greater than 10X the value found in the CCB; therefore, re-analysis of samples was not performed. MWBA-1 (480-158409-2), MWBA-2 (480-158409-3) and MW-O(I) (480-158409-4)

Method(s) 351.2: For preparation batch 480-491906 and analytical batch 480-492180 there is no raw instrument data nor raw preparation logs due to laboratory error. The data results are uploaded directly from the instrument: FIELD BLANK (480-158409-1), MWSE-1 (480-158492-1), MWSE-2 (480-158492-2), MWSE-3 (480-158492-3), MWSE-4 (480-158492-4) and (480-158409-C-1-B DU)

Method(s) 351.2: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to inconsistent results between sample and matrix duplicate (DU) in original analysis. Both sets of data are reported: FIELD BLANK (480-158409-1).

Method(s) 353.2: The results reported for the following sample do not concur with results previously reported for this site: MW-N(I) (480-158093-1). Reanalysis was performed, and the result(s) confirmed.

Method(s) 353.2: The continuing calibration verification (CCV) associated with batch 480-490220 recovered above the upper control limit for Nitrite. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. MWSE-1 (480-158492-1), MWSE-2 (480-158492-2) and MWSE-3 (480-158492-3)

Method(s) 410.4: The results reported for the following sample do not concur with results previously reported for this site: MW-P(I) (480-157980-9). Reanalysis was performed, and the result(s) confirmed.

Method(s) SM 5210B: The glucose-glutamic acid standard (LCS) recovered below the recovery limits specified in the method for analytical batch 480-488619 .

Method(s) SM 5210B: The RPD between the lowest and highest values used in averaging the final result exceeds 30%. MW-50 (480-158145-1)

Method(s) SM 5210B: Due to the matrix, the initial volume(s) used for the following sample deviated from the standard procedure: MW-P(I) (480-157980-9). The reporting limits (RLs) have been adjusted proportionately.

Method(s) 335.4, 9012B: The laboratory control sample (LCS) for preparation batch 480-492183 and analytical batch 480-492325 recovered outside control limits for the following analytes: Cyanide. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported. MWSE-1 (480-158492-1), MWSE-3 (480-158492-3) and MWSE-4

2

4

E

6

9

10

12

15

4 -

10

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1 (Continued)

Laboratory: Eurofins TestAmerica, Buffalo (Continued)

(480-158492-4)

Method(s) 9012B: Reanalysis of the following sample(s) was performed outside of the analytical holding time due to original result being outside of historical limits. The reanalysis did not confirm the original result. The reanalysis is within historical limits. Both sets of data are being reported.: MW-50 (480-158145-1).

Method(s) 9012B: The following sample(s) was analyzed outside of analytical holding time due to failure of quality control criteria in the original analysis. Both sets of data are reported: MWBA-1 (480-158409-2), MWBA-2 (480-158409-3) and MW-O(I) (480-158409-4).

Method(s) 9065: The method blank for preparation batch 480-490474 and analytical batch 480-490818 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. DUP (480-157980-1), MW-16 (480-157980-2), MW-17 (480-157980-4), MW-18BR (480-157980-5), MW-L(I) (480-157980-6), MW-M(I) (480-157980-7), MW-M(S) (480-157980-8), MW-P(I) (480-157980-9) and MW-P(S) (480-157980-10)

Method(s) 9065: The method blank for preparation batch 480-491834 and analytical batch 480-492044 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. MW-16(S) (480-157980-3)

Method(s) 9065: The method blank for preparation batch 480-490716 and analytical batch 480-490818 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. MW-50 (480-158145-1)

Method(s) 9065: The results reported for the following samples do not concur with results previously reported for this site: MW-N(S) (480-158093-2) and MWBA-1 (480-158409-2). Reanalysis was performed, and the result(s) confirmed.

Method(s) 9065: The method blank for preparation batch 480-492372 and analytical batch 480-492515 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. MW-N(S) (480-158093-2)

Method(s) 9065: The method blank for preparation batch 480-490714 and analytical batch 480-490818 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. MW-N(I) (480-158093-1) and MW-Q(I) (480-158093-3)

Method(s) 9065: The method blank for preparation batch 480-492371 and analytical batch 480-492515 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. MWSE-1 (480-158492-1), MWSE-2 (480-158492-2), MWSE-3 (480-158492-3) and MWSE-4 (480-158492-4)

Method(s) 9065: The method blank for preparation batch 480-492372 and analytical batch 480-492515 contained Phenolics, Total Recoverable above the method detection limit. This target analyte concentration was less than the practical quantitation limit (PQL); therefore, re-extraction and re-analysis of samples was not performed. MWBA-1 (480-158409-2)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-322696.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-157980-1

3

4

5

7

9

10

12

1*4*

10

17

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: DUP

Lab Sample ID: 480-157980-1

Job ID: 480-157980-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.037		0.020		mg/L	1	_	6010C	Total/NA
Calcium	108		5.0		mg/L	1		6010C	Total/NA
Iron	1.4		0.10		mg/L	1		6010C	Total/NA
Lead	0.0033		0.0030		mg/L	1		6010C	Total/NA
Magnesium	37.6		5.0		mg/L	1		6010C	Total/NA
Manganese	0.12		0.015		mg/L	1		6010C	Total/NA
Sodium	19.0		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.035		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	104		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.48		0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	36.1		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.11		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	19.5		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	291		20.0		mg/L	4		310.2	Total/NA
Chemical Oxygen Demand	8.9		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.0082	В	0.0050		mg/L	1		9065	Total/NA
Hardness	420		5.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	650		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	48.0		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	103		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.26				SU	1		Field Sampling	Total/NA
Specific Conductance	909				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-43.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	17.9				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	6.2				NTU	1		Field Sampling	Total/NA
Well Depth	55.52				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	32.38				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-16

Lab Sample ID: 480-157980-2

Analyte	Result Qualif	ier RL	MDL Unit	Dil Fac	D Method	Prep Type
Barium	0.35	0.20	mg/L	1	- 6010C	Total/NA
Calcium	124	5.0	mg/L	1	6010C	Total/NA
Iron	0.48	0.10	mg/L	1	6010C	Total/NA
Magnesium	33.1	5.0	mg/L	1	6010C	Total/NA
Manganese	0.041	0.015	mg/L	1	6010C	Total/NA
Sodium	105	5.0	mg/L	1	6010C	Total/NA
Barium, Dissolved	0.34	0.20	mg/L	1	6010C	Dissolved
Calcium, Dissolved	118	5.0	mg/L	1	6010C	Dissolved
Iron, Dissolved	0.48	0.10	mg/L	1	6010C	Dissolved
Magnesium, Dissolved	31.3	5.0	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.038	0.015	mg/L	1	6010C	Dissolved
Sodium, Dissolved	102	5.0	mg/L	1	6010C	Dissolved
Alkalinity, Total	298	20.0	mg/L	4	310.2	Total/NA
Chemical Oxygen Demand	25.7	5.0	mg/L	1	410.4	Total/NA
Phenolics, Total Recoverable	0.0070 B	0.0050	mg/L	1	9065	Total/NA
Color	15.0	0.0100	Color Units	1	SM 2120	B Total/NA
Hardness	460	5.0	mg/L	1	SM 2340	C Total/NA
Total Dissolved Solids	743	10.0	mg/L	1	SM 2540	C Total/NA
Chloride	247	2.5	mg/L	5	SM 4110	B Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16 (Continued)

Lab Sample ID: 480-157980-2

Job ID: 480-157980-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Sulfate	30.5		10.0		mg/L	5	_	SM 4110B	Total/NA
pH, Field	7.17				SU	1		Field Sampling	Total/NA
Specific Conductance	1349				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	3.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	11.2				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	2.4				NTU	1		Field Sampling	Total/NA
Well Depth	30.60				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	19.31				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-16(S)

Lab Sample ID: 480-157980-3

Analyte	Result	Qualifier	RL	MDL Un	it	Dil Fac	D	Method	Prep Type
Aluminum	0.39		0.20	mg	J/L	1	_	6010C	Total/NA
Calcium	92.0		5.0	mg	J/L	1		6010C	Total/NA
Iron	0.56		0.10	mg	J/L	1		6010C	Total/NA
Magnesium	10.7		5.0	mg	J/L	1		6010C	Total/NA
Manganese	0.050		0.015	mg	J/L	1		6010C	Total/NA
Potassium	6.7		5.0	mg	J/L	1		6010C	Total/NA
Calcium, Dissolved	88.2		5.0	mg	J/L	1		6010C	Dissolved
Magnesium, Dissolved	10.1		5.0	mg	J/L	1		6010C	Dissolved
Manganese, Dissolved	0.021		0.015	mg	J/L	1		6010C	Dissolved
Potassium, Dissolved	6.4		5.0	mg	J/L	1		6010C	Dissolved
Alkalinity, Total	248		15.0	mg	J/L	3		310.2	Total/NA
Total Kjeldahl Nitrogen	0.47		0.15	mg	_J /L as N	1		351.2	Total/NA
Nitrate	0.095		0.050	mg	J/L as N	1		353.2	Total/NA
Chemical Oxygen Demand	9.2		5.0	mg	J/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.011	В	0.0050	mg	J/L	1		9065	Total/NA
Color	5.00		0.0100	Со	lor Units	1		SM 2120B	Total/NA
Hardness	268		2.0	mg	J/L	1		SM 2340C	Total/NA
Total Dissolved Solids	341		10.0	mg	J/L	1		SM 2540C	Total/NA
Chloride	2.6		0.50	mg	J/L	1		SM 4110B	Total/NA
Sulfate	41.7		2.0	mg	J/L	1		SM 4110B	Total/NA
Total Organic Carbon	4.6		1.0	mg	J/L	1		SM 5310C	Total/NA
pH, Field	7.16			SU	J	1		Field Sampling	Total/NA
Specific Conductance	548			um	nhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	81			mil	livolts	1		Field Sampling	Total/NA
Temperature, Field	14.8			De	grees C	1		Field Sampling	Total/NA
Odor	No			NC	NE	1		Field Sampling	Total/NA
Turbidity	18.8			NT	U	1		Field Sampling	Total/NA
Well Depth	14.45			ft		1		Field Sampling	Total/NA
Depth to Water from Top of Casing	6.28			ft		1		Field Sampling	Total/NA

Client Sample ID: MW-17

Lab Sample ID: 480-157980-4

Analyte	Result Q	ualifier RL	MDL	Unit	Dil Fac	D Me	thod	Prep Type
Boron	0.029	0.020		mg/L	1	601	0C	Total/NA
Calcium	121	5.0		mg/L	1	601	0C	Total/NA
Iron	1.0	0.10		mg/L	1	601	0C	Total/NA
Magnesium	39.2	5.0		mg/L	1	601	0C	Total/NA
Manganese	0.084	0.015		mg/L	1	601	0C	Total/NA
Sodium	33.1	5.0		mg/L	1	601	0C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 9 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-17 (Continued)

Lab Sample ID: 480-157980-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron, Dissolved	0.025		0.020		mg/L	1	_	6010C	Dissolved
Calcium, Dissolved	121		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.52		0.10		mg/L	1		6010C	Dissolved
Lead, Dissolved	0.0031		0.0030		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	39.1		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.060		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	61.0		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	324		20.0		mg/L	4		310.2	Total/NA
Chemical Oxygen Demand	20.7		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.011	B F1	0.0050		mg/L	1		9065	Total/NA
Hardness	470		5.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	585		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	105		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	55.3		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.18				SU	1		Field Sampling	Total/NA
Specific Conductance	1013				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-20				millivolts	1		Field Sampling	Total/NA
Temperature, Field	12.9				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	2.7				NTU	1		Field Sampling	Total/NA
Well Depth	42.00				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	25.27				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-18BR

Lab Sample ID: 480-157980-5

						. p. o	
- Analyte	Result (Qualifier RL	MDL Unit	Dil Fac	D	Method	Prep Type
Aluminum	1.3	0.20	mg/L	. 1	_	6010C	Total/NA
Barium	0.30	0.20	mg/L	. 1		6010C	Total/NA
Calcium	116	5.0	mg/L	. 1		6010C	Total/NA
Iron	1.2	0.10	mg/L	. 1		6010C	Total/NA
Magnesium	37.7	5.0	mg/L	. 1		6010C	Total/NA
Manganese	0.11	0.015	mg/L	. 1		6010C	Total/NA
Sodium	33.6	5.0	mg/L	. 1		6010C	Total/NA
Barium, Dissolved	0.28	0.20	mg/L	. 1		6010C	Dissolved
Calcium, Dissolved	112	5.0	mg/L	. 1		6010C	Dissolved
Magnesium, Dissolved	36.4	5.0	mg/L	. 1		6010C	Dissolved
Sodium, Dissolved	32.2	5.0	mg/L	. 1		6010C	Dissolved
Alkalinity, Total	152	10.0	mg/L	. 2		310.2	Total/NA
Chemical Oxygen Demand	16.9	5.0	mg/L	. 1		410.4	Total/NA
Phenolics, Total Recoverable	0.0076 E	B 0.0050	mg/L	. 1		9065	Total/NA
Color	5.00	0.0100	Colo	r Units 1		SM 2120B	Total/NA
Hardness	440	5.0	mg/L	. 1		SM 2340C	Total/NA
Total Dissolved Solids	793	10.0	mg/L	. 1		SM 2540C	Total/NA
Chloride	222	2.5	mg/L	. 5		SM 4110B	Total/NA
Sulfate	58.9	10.0	mg/L	. 5		SM 4110B	Total/NA
pH, Field	7.42		SU	1		Field Sampling	Total/NA
Specific Conductance	1092		umho	os/cm 1		Field Sampling	Total/NA
Field EH/ORP	7.0		milliv	olts 1		Field Sampling	Total/NA
Temperature, Field	14.9		Degr	ees C 1		Field Sampling	Total/NA
Odor	No		NON	E 1		Field Sampling	Total/NA
Turbidity	42.1		NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 10 of 314

Job ID: 480-157980-1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-18BR (Continued)

Lab Sample ID: 480-157980-5

Job ID: 480-157980-1

Analyte	Result Qualifier	NONE	NONE Unit	Dil Fac D	Method	Prep Type
Well Depth	27.80		ft		Field Sampling	Total/NA
Depth to Water from Top of Casing	18.96		ft	1	Field Sampling	Total/NA

Lab Sample ID: 480-157980-6 Client Sample ID: MW-L(I)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.81		0.20		mg/L	1	_	6010C	Total/NA
Boron	0.024		0.020		mg/L	1		6010C	Total/NA
Calcium	86.8		5.0		mg/L	1		6010C	Total/NA
Iron	2.1		0.10		mg/L	1		6010C	Total/NA
Magnesium	28.1		5.0		mg/L	1		6010C	Total/NA
Manganese	0.092		0.015		mg/L	1		6010C	Total/NA
Sodium	8.6		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.021		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	81.1		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.23		0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	26.2		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.074		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	9.0		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	220		15.0		mg/L	3		310.2	Total/NA
Phenolics, Total Recoverable	0.0096	В	0.0050		mg/L	1		9065	Total/NA
Color	5.00		0.0100		Color Units	1		SM 2120B	Total/NA
Hardness	320		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	454		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	14.2		1.0		mg/L	2		SM 4110B	Total/NA
Sulfate	112		4.0		mg/L	2		SM 4110B	Total/NA
pH, Field	7.78				SU	1		Field Sampling	Total/NA
Specific Conductance	639				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	54.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	17.6				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	32.1				NTU	1		Field Sampling	Total/NA
Well Depth	42.40				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	30.10				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-M(I) Lab Sample ID: 480-157980-7

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	1.5	0.20		mg/L		_	6010C	Total/NA
Boron	0.041	0.020		mg/L	1		6010C	Total/NA
Calcium	87.9	5.0		mg/L	1		6010C	Total/NA
Iron	2.2	0.10		mg/L	1		6010C	Total/NA
Magnesium	30.5	5.0		mg/L	1		6010C	Total/NA
Manganese	0.12	0.015		mg/L	1		6010C	Total/NA
Sodium	15.0	5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.021	0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	122	5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.16	0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	41.9	5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.16	0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	63.5	5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	285	15.0		mg/L	3		310.2	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 11 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(I) (Continued)

Lab Sample ID: 480-157980-7

Job ID: 480-157980-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Nitrate	0.061		0.050		mg/L as N	1	_	353.2	Total/NA
Chemical Oxygen Demand	5.9		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.0080	В	0.0050		mg/L	1		9065	Total/NA
Color	5.00		0.0100		Color Units	1		SM 2120B	Total/NA
Hardness	324		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	438		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	24.8		1.0		mg/L	2		SM 4110B	Total/NA
Sulfate	53.4		4.0		mg/L	2		SM 4110B	Total/NA
pH, Field	7.53				SU	1		Field Sampling	Total/NA
Specific Conductance	675				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-22.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	14.9				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	29.8				NTU	1		Field Sampling	Total/NA
Well Depth	42.25			1	ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	24.77			1	ft	1		Field Sampling	Total/NA

Client Sample ID: MW-M(S)

Lab Sample ID: 480-157980-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
Aluminum	0.33		0.20		mg/L		6010C	Total/NA
Boron	0.031		0.020		mg/L	1	6010C	Total/NA
Calcium	188		5.0		mg/L	1	6010C	Total/NA
Iron	2.2		0.10		mg/L	1	6010C	Total/NA
Magnesium	57.6		5.0		mg/L	1	6010C	Total/NA
Manganese	0.59		0.015		mg/L	1	6010C	Total/NA
Sodium	39.6		5.0		mg/L	1	6010C	Total/NA
Boron, Dissolved	0.035		0.020		mg/L	1	6010C	Dissolved
Calcium, Dissolved	83.1		5.0		mg/L	1	6010C	Dissolved
Magnesium, Dissolved	28.9		5.0		mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.093		0.015		mg/L	1	6010C	Dissolved
Sodium, Dissolved	15.8		5.0		mg/L	1	6010C	Dissolved
Alkalinity, Total	477		25.0		mg/L	5	310.2	Total/NA
Total Kjeldahl Nitrogen	0.49		0.15		mg/L as N	1	351.2	Total/NA
Chemical Oxygen Demand	12.6		5.0		mg/L	1	410.4	Total/NA
Phenolics, Total Recoverable	0.0061	В	0.0050		mg/L	1	9065	Total/NA
Hardness	660		10.0		mg/L	1	SM 2340C	Total/NA
Total Dissolved Solids	927		10.0		mg/L	1	SM 2540C	Total/NA
Chloride	46.0		2.5		mg/L	5	SM 4110B	Total/NA
Sulfate	237		10.0		mg/L	5	SM 4110B	Total/NA
Total Organic Carbon	1.7		1.0		mg/L	1	SM 5310C	Total/NA
pH, Field	7.02				SU	1	Field Sampling	Total/NA
Specific Conductance	1319				umhos/cm	1	Field Sampling	Total/NA
Field EH/ORP	-14.0				millivolts	1	Field Sampling	Total/NA
Temperature, Field	16.1				Degrees C	1	Field Sampling	Total/NA
Odor	No				NONE	1	Field Sampling	Total/NA
Turbidity	18.6				NTU	1	Field Sampling	Total/NA
Well Depth	24.29				ft	1	Field Sampling	Total/NA
Depth to Water from Top of Casing	12.12				ft	1	Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 12 of 314

2

3

4

7

9

11

4.0

14

16

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(I)

Lab Sample ID: 480-157980-9

Job ID: 480-157980-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.037		0.020		mg/L	1	_	6010C	Total/NA
Calcium	107		5.0		mg/L	1		6010C	Total/NA
Iron	1.3		0.10		mg/L	1		6010C	Total/NA
Magnesium	37.2		5.0		mg/L	1		6010C	Total/NA
Manganese	0.12		0.015		mg/L	1		6010C	Total/NA
Sodium	18.6		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.035		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	107		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.29		0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	36.8		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.11		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	21.4		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	296		15.0		mg/L	3		310.2	Total/NA
Chemical Oxygen Demand	13.7		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.0074	B F1	0.0050		mg/L	1		9065	Total/NA
Hardness	408		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	554		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	52.8		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	106		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.26				SU	1		Field Sampling	Total/NA
Specific Conductance	909				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-43.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	17.9				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	6.2				NTU	1		Field Sampling	Total/NA
Well Depth	55.52				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	32.38				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-P(S)

Lab Sample ID: 480-157980-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Aluminum	0.30	0.20	mg/L	1	6010C	Total/NA
Barium	0.20	0.20	mg/L	1	6010C	Total/NA
Boron	0.021	0.020	mg/L	1	6010C	Total/NA
Calcium	114	5.0	mg/L	1	6010C	Total/NA
Iron	0.72	0.10	mg/L	1	6010C	Total/NA
Magnesium	40.7	5.0	mg/L	1	6010C	Total/NA
Manganese	0.066	0.015	mg/L	1	6010C	Total/NA
Sodium	72.9	5.0	mg/L	1	6010C	Total/NA
Boron, Dissolved	0.027	0.020	mg/L	1	6010C	Dissolved
Calcium, Dissolved	177	5.0	mg/L	1	6010C	Dissolved
Iron, Dissolved	0.61	0.10	mg/L	1	6010C	Dissolved
Magnesium, Dissolved	53.5	5.0	mg/L	1	6010C	Dissolved
Manganese, Dissolved	0.57	0.015	mg/L	1	6010C	Dissolved
Sodium, Dissolved	33.9	5.0	mg/L	1	6010C	Dissolved
Alkalinity, Total	382	20.0	mg/L	4	310.2	Total/NA
Nitrate	0.079	0.050	mg/L as N	1	353.2	Total/NA
Chemical Oxygen Demand	7.2	5.0	mg/L	1	410.4	Total/NA
Phenolics, Total Recoverable	0.0076 B	0.0050	mg/L	1	9065	Total/NA
Color	10.0	0.0100	Color Units	1	SM 2120B	Total/NA
Hardness	450	5.0	mg/L	1	SM 2340C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

3

5

0

9

11

13

15

Ш

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(S) (Continued)

Lab Sample ID: 480-157980-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Dissolved Solids	732		10.0		mg/L	1	_	SM 2540C	Total/NA
Chloride	156		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	40.0		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.23				SU	1		Field Sampling	Total/NA
Specific Conductance	1186				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-4.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	18.1				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	13.1				NTU	1		Field Sampling	Total/NA
Well Depth	29.00				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	15.05				ft	1		Field Sampling	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-157980-11

No Detections.

Client Sample ID: MW-N(I)

Lab Sample ID: 480-158093-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	7.8		0.20		mg/L	1	_	6010C	Total/NA
Boron	0.047		0.020		mg/L	1		6010C	Total/NA
Calcium	129		5.0		mg/L	1		6010C	Total/NA
Iron	10.1		0.10		mg/L	1		6010C	Total/NA
Lead	0.013		0.0030		mg/L	1		6010C	Total/NA
Magnesium	31.7		5.0		mg/L	1		6010C	Total/NA
Manganese	0.77		0.015		mg/L	1		6010C	Total/NA
Potassium	5.0		5.0		mg/L	1		6010C	Total/NA
Sodium	9.5		5.0		mg/L	1		6010C	Total/NA
Zinc	0.039		0.020		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.035		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	117		5.0		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	28.0		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.59		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	9.1		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	350		20.0		mg/L	4		310.2	Total/NA
Total Kjeldahl Nitrogen	0.80		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.060		0.050		mg/L as N	1		353.2	Total/NA
Chemical Oxygen Demand	29.0		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.0075	В	0.0050		mg/L	1		9065	Total/NA
Hardness	430		5.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	479		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	22.7		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	81.6		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.17				SU	1		Field Sampling	Total/NA
Specific Conductance	778				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	54.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	15.4				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	>300				NTU	1		Field Sampling	Total/NA
Well Depth	47.70				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	39.82				ft	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

9/30/2019

Page 14 of 314

2

3

4

6

10

12

14

15

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(S)

Lab Sample ID: 480-158093-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.023		0.020		mg/L	1	_	6010C	Total/NA
Calcium	143		5.0		mg/L	1		6010C	Total/NA
Magnesium	24.4		5.0		mg/L	1		6010C	Total/NA
Manganese	0.025		0.015		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.023		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	137		5.0		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	23.6		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	336		20.0		mg/L	4		310.2	Total/NA
Total Kjeldahl Nitrogen	0.20		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.11		0.050		mg/L as N	1		353.2	Total/NA
Phenolics, Total Recoverable	0.0082	В	0.0050		mg/L	1		9065	Total/NA
Color	10.0		0.0100		Color Units	1		SM 2120B	Total/NA
Hardness	460		5.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	545		10.0		mg/L	1		SM 2540C	Total/NA
Sulfate	142		10.0		mg/L	5		SM 4110B	Total/NA
Total Organic Carbon	2.5		1.0		mg/L	1		SM 5310C	Total/NA
pH, Field	6.88				SU	1		Field Sampling	Total/NA
Specific Conductance	852				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	116.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	15.4				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	9.6				NTU	1		Field Sampling	Total/NA
Well Depth	27.50				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	15.02				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-Q(I)

Lab Sample ID: 480-158093-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.35		0.20		mg/L	1	_	6010C	Total/NA
Boron	0.035		0.020		mg/L	1		6010C	Total/NA
Calcium	121		5.0		mg/L	1		6010C	Total/NA
Iron	1.6		0.10		mg/L	1		6010C	Total/NA
Magnesium	42.3		5.0		mg/L	1		6010C	Total/NA
Manganese	0.12		0.015		mg/L	1		6010C	Total/NA
Sodium	9.7		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.034		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	118		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.17		0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	41.7		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.11		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	14.0		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	284		20.0		mg/L	4		310.2	Total/NA
Ammonia (as N)	0.061		0.050		mg/L as N	1		350.1	Total/NA
Total Kjeldahl Nitrogen	0.26	F1	0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.059		0.050		mg/L as N	1		353.2	Total/NA
Chemical Oxygen Demand	10.1		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.0072	В	0.0050		mg/L	1		9065	Total/NA
Hardness	480		5.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	490		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	60.7		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	115		10.0		mg/L	5		SM 4110B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 15 of 314

Job ID: 480-157980-1

3

4

5

8

46

11

13

14

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-Q(I) (Continued)

Lab Sample ID: 480-158093-3

Analyte	Result	Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
pH, Field	7.35				SU	1	_	Field Sampling	Total/NA
Specific Conductance	907				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-70				millivolts	1		Field Sampling	Total/NA
Temperature, Field	14.6				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	18.8				NTU	1		Field Sampling	Total/NA
Well Depth	62.80				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	42.16				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-50

Lab Sample ID: 480-158145-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.21		0.20		mg/L	1	_	6010C	Total/NA
Calcium	69.7		5.0		mg/L	1		6010C	Total/NA
Iron	1.2		0.10		mg/L	1		6010C	Total/NA
Magnesium	15.2		5.0		mg/L	1		6010C	Total/NA
Manganese	0.18		0.015		mg/L	1		6010C	Total/NA
Calcium, Dissolved	55.8		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.57		0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	12.7		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.13		0.015		mg/L	1		6010C	Dissolved
Alkalinity, Total	210		15.0		mg/L	3		310.2	Total/NA
Ammonia (as N)	0.41		0.050		mg/L as N	1		350.1	Total/NA
Total Kjeldahl Nitrogen	1.4		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.65		0.050		mg/L as N	1		353.2	Total/NA
Chemical Oxygen Demand	21.0		5.0		mg/L	1		410.4	Total/NA
Cyanide, Total	0.010		0.010		mg/L	1		9012B	Total/NA
Phenolics, Total Recoverable	0.013	В	0.0050		mg/L	1		9065	Total/NA
Hardness	244		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	251		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	11.8		0.50		mg/L	1		SM 4110B	Total/NA
Sulfate	35.6		2.0		mg/L	1		SM 4110B	Total/NA
Biochemical Oxygen Demand	3.6	b	2.0		mg/L	1		SM 5210B	Total/NA
Total Organic Carbon	1.4		1.0		mg/L	1		SM 5310C	Total/NA
pH, Field	7.57				SU	1		Field Sampling	Total/NA
Specific Conductance	474				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	-96				millivolts	1		Field Sampling	Total/NA
Temperature, Field	11.1				Degrees C	1		Field Sampling	Total/NA
Odor	Yes				NONE	1		Field Sampling	Total/NA
Turbidity	8.3				NTU	1		Field Sampling	Total/NA
Well Depth	27.50				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	25.90				ft	1		Field Sampling	Total/NA

Client Sample ID: FIELD BLANK

Lab Sample ID: 480-158409-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fa	D	Method	F	Prep Type
Phenolics, Total Recoverable	0.0088	F1	0.0050		mg/L		1 _	9065		Γotal/NA

Client Sample ID: MWBA-1

Lab Sample ID: 480-158409-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Calcium	76.9	5.0	mg/L	1 6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 16 of 314

2

3

6

8

10

12

14

16

17

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-1 (Continued)

Lab Sample ID: 480-158409-2

Job ID: 480-157980-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Magnesium	18.1		5.0		mg/L	1	6010C	Total/NA
Calcium, Dissolved	79.3		5.0		mg/L	1	6010C	Dissolved
Magnesium, Dissolved	18.1		5.0		mg/L	1	6010C	Dissolved
Alkalinity, Total	210	^	15.0		mg/L	3	310.2	Total/NA
Phenolics, Total Recoverable	0.0085	В	0.0050		mg/L	1	9065	Total/NA
Color	5.00		0.0100		Color Units	1	SM 2120B	Total/NA
Hardness	272		2.0		mg/L	1	SM 2340C	Total/NA
Total Dissolved Solids	338		10.0		mg/L	1	SM 2540C	Total/NA
Chloride	5.0		1.0		mg/L	2	SM 4110B	Total/NA
Sulfate	71.9		4.0		mg/L	2	SM 4110B	Total/NA
pH, Field	6.96				SU	1	Field Sampling	Total/NA
Specific Conductance	506				umhos/cm	1	Field Sampling	Total/NA
Field EH/ORP	133.0				millivolts	1	Field Sampling	Total/NA
Temperature, Field	10.0				Degrees C	1	Field Sampling	Total/NA
Odor	No				NONE	1	Field Sampling	Total/NA
Turbidity	1.9				NTU	1	Field Sampling	Total/NA
Well Depth	31.06				ft	1	Field Sampling	Total/NA
Depth to Water from Top of Casing	19.62				ft	1	Field Sampling	Total/NA

Client Sample ID: MWBA-2

Lab Sample ID: 480-158409-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.036		0.020		mg/L	1	_	6010C	Total/NA
Calcium	72.0		5.0		mg/L	1		6010C	Total/NA
Magnesium	21.1		5.0		mg/L	1		6010C	Total/NA
Sodium	6.6		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.034		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	71.5		5.0		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	20.5		5.0		mg/L	1		6010C	Dissolved
Sodium, Dissolved	6.2		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	196	۸	15.0		mg/L	3		310.2	Total/NA
Nitrate	0.062		0.050		mg/L as N	1		353.2	Total/NA
Phenolics, Total Recoverable	0.0092		0.0050		mg/L	1		9065	Total/NA
Hardness	260		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	349		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	3.2		1.0		mg/L	2		SM 4110B	Total/NA
Sulfate	77.5		4.0		mg/L	2		SM 4110B	Total/NA
pH, Field	7.56				SU	1		Field Sampling	Total/NA
Specific Conductance	522				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	150.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	11.7				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	1.7				NTU	1		Field Sampling	Total/NA
Well Depth	31.00				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	18.12				ft	1		Field Sampling	Total/NA

Client Sample ID: MW-O(I)

Lab Sample ID: 480-158409-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.28		0.20		mg/L	1	_	6010C	Total/NA
Calcium	72.0		5.0		mg/L	1		6010C	Total/NA
Iron	0.37		0.10		mg/L	1		6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-O(I) (Continued)

Lab Sample ID: 480-158409-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Magnesium	17.4		5.0		mg/L	1	_	6010C	Total/NA
Manganese	0.10		0.015		mg/L	1		6010C	Total/NA
Barium, Dissolved	0.26		0.20		mg/L	1		6010C	Dissolved
Calcium, Dissolved	73.9		5.0		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	20.2		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.080		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	5.5		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	181	۸	15.0		mg/L	3		310.2	Total/NA
Phenolics, Total Recoverable	0.0084		0.0050		mg/L	1		9065	Total/NA
Hardness	252		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	296		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	11.6		1.0		mg/L	2		SM 4110B	Total/NA
Sulfate	51.2		4.0		mg/L	2		SM 4110B	Total/NA
pH, Field	7.03				SU	1		Field Sampling	Total/NA
Specific Conductance	485				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	55				millivolts	1		Field Sampling	Total/NA
Temperature, Field	15.1				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	19.8				NTU	1		Field Sampling	Total/NA
Well Depth	52.00				ft	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	43.96				ft	1		Field Sampling	Total/NA

Client Sample ID: TRIP BLANK

No Detections.

Client Sample ID: MWSE-1

Lab Sample ID: 480-158492-1

Lab Sample ID: 480-158409-5

								•	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.030		0.020		mg/L	1	_	6010C	Total/NA
Calcium	105		5.0		mg/L	1		6010C	Total/NA
Magnesium	26.8		5.0		mg/L	1		6010C	Total/NA
Manganese	0.036		0.015		mg/L	1		6010C	Total/NA
Sodium	5.0		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.029		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	108		5.0		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	28.1		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.034		0.015		mg/L	1		6010C	Dissolved
Alkalinity, Total	237		15.0		mg/L	3		310.2	Total/NA
Total Kjeldahl Nitrogen	0.60		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.11		0.050		mg/L as N	1		353.2	Total/NA
Phenolics, Total Recoverable	0.0088	F1 B	0.0050		mg/L	1		9065	Total/NA
Hardness	368		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	430		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	7.9		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	125		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.34				SU	1		Field Sampling	Total/NA
Specific Conductance	25830				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	135.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	13.1				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	1.9				NTU	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 480-157980-1

Eurofins TestAmerica, Buffalo

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1 (Continued) Lab Sample ID: 480-158492-1

Analyte	Result Qualifier	NONE	NONE Unit	Dil Fac D	Method	Prep Type	
Depth to Water from Top of Casing	15.54		ft		Field Sampling	Total/NA	

Client Sample ID: MWSE-2 Lab Sample ID: 480-158492-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.045		0.020		mg/L	1	_	6010C	Total/NA
Calcium	133		5.0		mg/L	1		6010C	Total/NA
Magnesium	28.7		5.0		mg/L	1		6010C	Total/NA
Manganese	0.056		0.015		mg/L	1		6010C	Total/NA
Sodium	10.6		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.045		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	136		5.0		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	29.8		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.071		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	10.1		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	216		15.0		mg/L	3		310.2	Total/NA
Total Kjeldahl Nitrogen	1.3		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	0.081		0.050		mg/L as N	1		353.2	Total/NA
Phenolics, Total Recoverable	0.0080	В	0.0050		mg/L	1		9065	Total/NA
Hardness	432		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	617		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	16.1		2.5		mg/L	5		SM 4110B	Total/NA
Sulfate	229		10.0		mg/L	5		SM 4110B	Total/NA
pH, Field	7.37				SU	1		Field Sampling	Total/NA
Specific Conductance	1408				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	99.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	12.4				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	1.8				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	15.76				ft	1		Field Sampling	Total/NA

Client Sample ID: MWSE-3

Lab Sample ID: 480-158492-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Aluminum	0.74		0.20		mg/L	1	_	6010C	Total/NA
Calcium	12.9		5.0		mg/L	1		6010C	Total/NA
Iron	0.95		0.10		mg/L	1		6010C	Total/NA
Manganese	0.052		0.015		mg/L	1		6010C	Total/NA
Calcium, Dissolved	13.2		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	21.6		5.0		mg/L	1		310.2	Total/NA
Total Kjeldahl Nitrogen	1.1		0.15		mg/L as N	1		351.2	Total/NA
Nitrate	2.3		0.050		mg/L as N	1		353.2	Total/NA
Phenolics, Total Recoverable	0.0094	В	0.0050		mg/L	1		9065	Total/NA
Hardness	44.0		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	54.0		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	0.96		0.50		mg/L	1		SM 4110B	Total/NA
Sulfate	14.2		2.0		mg/L	1		SM 4110B	Total/NA
pH, Field	6.18				SU	1		Field Sampling	Total/NA
Specific Conductance	105				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	174.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	16.6				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

Page 19 of 314

Job ID: 480-157980-1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3 (Continued)

Lab Sample ID: 480-158492-3

Job ID: 480-157980-1

Analyte	Result (Qualifier	NONE	NONE	Unit	Dil Fac	D	Method	Prep Type
Turbidity	11.8				NTU	1	_	Field Sampling	Total/NA
Depth to Water from Top of Casing	22.56				ft	1		Field Sampling	Total/NA

Lab Sample ID: 480-158492-4 Client Sample ID: MWSE-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.066		0.020		mg/L	1	_	6010C	Total/NA
Calcium	79.8		5.0		mg/L	1		6010C	Total/NA
Iron	0.34		0.10		mg/L	1		6010C	Total/NA
Magnesium	14.0		5.0		mg/L	1		6010C	Total/NA
Manganese	0.22		0.015		mg/L	1		6010C	Total/NA
Sodium	14.7		5.0		mg/L	1		6010C	Total/NA
Boron, Dissolved	0.066		0.020		mg/L	1		6010C	Dissolved
Calcium, Dissolved	81.3		5.0		mg/L	1		6010C	Dissolved
Iron, Dissolved	0.16		0.10		mg/L	1		6010C	Dissolved
Magnesium, Dissolved	14.3		5.0		mg/L	1		6010C	Dissolved
Manganese, Dissolved	0.20		0.015		mg/L	1		6010C	Dissolved
Sodium, Dissolved	14.5		5.0		mg/L	1		6010C	Dissolved
Alkalinity, Total	146		10.0		mg/L	2		310.2	Total/NA
Chemical Oxygen Demand	6.9		5.0		mg/L	1		410.4	Total/NA
Phenolics, Total Recoverable	0.0080	В	0.0050		mg/L	1		9065	Total/NA
Color	5.00		0.0100		Color Units	1		SM 2120B	Total/NA
Hardness	252		2.0		mg/L	1		SM 2340C	Total/NA
Total Dissolved Solids	336		10.0		mg/L	1		SM 2540C	Total/NA
Chloride	20.0		1.0		mg/L	2		SM 4110B	Total/NA
Sulfate	120		4.0		mg/L	2		SM 4110B	Total/NA
Total Organic Carbon	1.4		1.0		mg/L	1		SM 5310C	Total/NA
pH, Field	6.84				SU	1		Field Sampling	Total/NA
Specific Conductance	570				umhos/cm	1		Field Sampling	Total/NA
Field EH/ORP	67.0				millivolts	1		Field Sampling	Total/NA
Temperature, Field	16.0				Degrees C	1		Field Sampling	Total/NA
Odor	No				NONE	1		Field Sampling	Total/NA
Turbidity	2.7				NTU	1		Field Sampling	Total/NA
Depth to Water from Top of Casing	12.72				ft	1		Field Sampling	Total/NA

Client Sample ID: TRIP BLANK

No Detections.

Client Sample ID: MWSE-1

No Detections.

Client Sample ID: MWSE-2

No Detections.

Client Sample ID: MWSE-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	15	1.9	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	15	1.9	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	21	1.9	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.8	1.9	ng/L	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

9/30/2019

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-158492-5

Lab Sample ID: 480-158878-1

Lab Sample ID: 480-158878-2

Lab Sample ID: 480-158878-3

Page 20 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3 (Continued)

Lab S	ample	ID: 48	0-158	3878-3
-------	-------	--------	-------	--------

Analyte	Result Q	ualifier	RL	MDL	Unit	Dil Fa	c D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	9.0		1.9		ng/L		1 _	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	4.8		1.9		ng/L		1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.6		1.9		ng/L		1	537 (modified)	Total/NA

Client Sample ID: MWSE-4

Lab Sample ID: 480-158878-4

No Detections.

Client Sample ID: BLIND DUP

Lab Sample ID: 480-158878-5

Analyte	Result Qu	ualifier RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	15	1.8	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	15	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	21	1.8	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	6.1	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	9.0	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	4.7	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.5	1.8	ng/L	1	537 (modified)	Total/NA

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-158878-6

No Detections.

45

19

This Detection Summary does not include radiochemical test results.

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: DUP

Date Collected: 08/21/19 12:35 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-1

Matrix: Ground Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 14:20	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 14:20	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 14:20	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 14:20	
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 14:20	
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 14:20	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 14:20	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 14:20	
1,2-Dibromoethane	ND	5.0	ug/L			08/22/19 14:20	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 14:20	
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 14:20	
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 14:20	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 14:20	
1,4-Dioxane	ND	50	ug/L			08/22/19 14:20	
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 14:20	
2-Hexanone	ND	10	ug/L			08/22/19 14:20	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 14:20	
Acetone	ND	5.0	ug/L			08/22/19 14:20	
Acetonitrile	ND	100	ug/L			08/22/19 14:20	
Benzene	ND	5.0	ug/L			08/22/19 14:20	
Bromochloromethane	ND	5.0	ug/L			08/22/19 14:20	
Bromodichloromethane	ND	5.0	ug/L			08/22/19 14:20	
Bromoform	ND	5.0	ug/L			08/22/19 14:20	
Bromomethane	ND	5.0	ug/L			08/22/19 14:20	
Carbon disulfide	ND	5.0	ug/L			08/22/19 14:20	
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 14:20	
Chlorobenzene	ND	5.0	ug/L			08/22/19 14:20	
Chloroethane	ND	5.0	.			08/22/19 14:20	
Chloroform	ND ND	5.0 5.0	ug/L			08/22/19 14:20	
	ND ND		ug/L				
Chloromethane		5.0	ug/L			08/22/19 14:20	
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 14:20	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 14:20	
Dibromochloromethane	ND	5.0	ug/L			08/22/19 14:20	
Dibromomethane	ND	5.0	ug/L			08/22/19 14:20	
Ethylbenzene	ND	5.0	ug/L			08/22/19 14:20	
odomethane	ND	5.0	ug/L			08/22/19 14:20	
n,p-Xylene	ND	5.0	ug/L			08/22/19 14:20	
Methylene Chloride	ND	5.0	ug/L			08/22/19 14:20	
o-Xylene	ND	5.0	ug/L			08/22/19 14:20	
Styrene	ND	5.0	ug/L			08/22/19 14:20	
Tetrachloroethene	ND	5.0	ug/L			08/22/19 14:20	
Гetrahydrofuran	ND	10	ug/L			08/22/19 14:20	
Гoluene	ND	5.0	ug/L			08/22/19 14:20	
rans-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 14:20	
rans-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 14:20	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			08/22/19 14:20	
Trichloroethene	ND	5.0	ug/L			08/22/19 14:20	
Trichlorofluoromethane	ND	5.0	ug/L			08/22/19 14:20	
√inyl acetate	ND	50	ug/L			08/22/19 14:20	

Eurofins TestAmerica, Buffalo

Page 22 of 314

2

3

5

7

9

12

14

17

Н

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: DUP

Lab Sample ID: 480-157980-1

Date Collected: 08/21/19 12:35 Matrix: Ground Water
Date Received: 08/21/19 17:30

Method: 8260C - Volatile Or	ganic Compoun	nds by GC	/MS (Contin	ued)					
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 14:20	1
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					08/22/19 14:20	
1,2-Dicilioroctifatic-d+ (out)	700		11-120					00/22/19 14.20	,
4-Bromofluorobenzene (Surr)	91		77 - 120 73 - 120					08/22/19 14:20	1

Method: 6010C - Metals (ICP)								
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	· 	mg/L		08/23/19 08:49	08/23/19 18:08	1
Antimony	ND	0.015		mg/L		08/23/19 08:49	08/23/19 18:08	1
Arsenic	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:08	1
Barium	ND	0.20		mg/L		08/23/19 08:49	08/23/19 18:08	1
Beryllium	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 18:08	1
Boron	0.037	0.020		mg/L		08/23/19 08:49	08/23/19 18:08	1
Cadmium	ND	0.0050		mg/L		08/23/19 08:49	08/23/19 18:08	1
Calcium	108	5.0		mg/L		08/23/19 08:49	08/23/19 18:08	1
Chromium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:08	1
Cobalt	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:08	1
Copper	ND	0.025		mg/L		08/23/19 08:49	08/23/19 18:08	1
Iron	1.4	0.10		mg/L		08/23/19 08:49	08/23/19 18:08	1
Lead	0.0033	0.0030		mg/L		08/23/19 08:49	08/23/19 18:08	1
Magnesium	37.6	5.0		mg/L		08/23/19 08:49	08/23/19 18:08	1
Manganese	0.12	0.015		mg/L		08/23/19 08:49	08/23/19 18:08	1
Nickel	ND	0.040		mg/L		08/23/19 08:49	08/23/19 18:08	1
Potassium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 18:08	1
Silver	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:08	1
Sodium	19.0	5.0		mg/L		08/23/19 08:49	08/23/19 18:08	1
Thallium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:08	1
Vanadium	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:08	1
Zinc	ND	0.020		mg/L		08/23/19 08:49	08/23/19 18:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:02	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:02	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:02	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:02	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:02	1
Boron, Dissolved	0.035		0.020		mg/L		08/23/19 08:45	08/23/19 20:02	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:02	1
Calcium, Dissolved	104		5.0		mg/L		08/23/19 08:45	08/23/19 20:02	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:02	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:02	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:02	1
Iron, Dissolved	0.48		0.10		mg/L		08/23/19 08:45	08/23/19 20:02	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:02	1
Magnesium, Dissolved	36.1		5.0		mg/L		08/23/19 08:45	08/23/19 20:02	1
Manganese, Dissolved	0.11		0.015		mg/L		08/23/19 08:45	08/23/19 20:02	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:02	1

Eurofins TestAmerica, Buffalo

Page 23 of 314

2

3

5

7

9

11

13

14

16

17

П

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: DUP Lab Sample ID: 480-157980-1

Date Collected: 08/21/19 12:35 Matrix: Ground Water Date Received: 08/21/19 17:30

Method: 6010C - Metals (ICP) - Dis			•			_			
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 20:02	
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:02	
Sodium, Dissolved	19.5		5.0		mg/L			08/23/19 20:02	
Гhallium, Dissolved	ND		0.010		mg/L			08/23/19 20:02	
Vanadium, Dissolved	ND		0.050		mg/L			08/23/19 20:02	
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:02	
Method: 6020A - Metals (ICP/MS)									
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:24	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	08/23/19 08:37	08/24/19 10:21	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:42	
Method: 7470A - Mercury (CVAA)						_			
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil F
Mercury, Dissolved	ND		0.00020		mg/L		08/27/19 11:20	08/27/19 14:49	
General Chemistry									
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/27/19 13:26	
Alkalinity, Total	291		20.0		mg/L			08/26/19 23:54	
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:36	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/23/19 09:14	08/26/19 11:59	
Nitrate	ND		0.050		mg/L as N			08/22/19 20:19	
Chemical Oxygen Demand	8.9		5.0		mg/L			08/23/19 18:15	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 12:13	
Phenolics, Total Recoverable	0.0082	В	0.0050		mg/L		09/05/19 23:15	09/08/19 10:54	
-lardness	420		5.0		mg/L			08/28/19 11:20	
Total Dissolved Solids	650		10.0		mg/L			08/23/19 08:29	
Chloride	48.0		2.5		mg/L			08/27/19 13:26	
Sulfate	103		10.0		mg/L			08/27/19 13:26	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 18:45	
Total Organic Carbon	ND		1.0		mg/L			08/23/19 12:38	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units	_		08/23/19 10:10	
Method: Field Sampling - Field Sa	mnling								
Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fa
oH, Field	7.26				SU			08/21/19 12:35	
Specific Conductance	909				umhos/cm			08/21/19 12:35	
Field EH/ORP	-43.0				millivolts			08/21/19 12:35	
Cemperature, Field	17.9				Degrees C			08/21/19 12:35	
Odor	No				NONE			08/21/19 12:35	
	6.2				NTU			08/21/19 12:35	

Eurofins TestAmerica, Buffalo

Page 24 of 314

2

3

5

-

10

12

14

. .

nica, Danaio

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: DUP Lab Sample ID: 480-157980-1

Date Collected: 08/21/19 12:35 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Field	d Sampling	(Continued	d)						
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	55.52				ft			08/21/19 12:35	1
Depth to Water from Top of Casing	32.38				ft			08/21/19 12:35	1

0

4

5

6

8

10

12

11

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16

Lab Sample ID: 480-157980-2

Date Collected: 08/21/19 11:18 **Matrix: Ground Water** Date Received: 08/21/19 17:30

Method: 8260C - Volatile Organ Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
,1,1,2-Tetrachloroethane	ND —	5.0	ug/L			08/22/19 14:47	
,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 14:47	
,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 14:47	
,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 14:47	
,1-Dichloroethane	ND	5.0	ug/L			08/22/19 14:47	
,1-Dichloroethene	ND	5.0	ug/L			08/22/19 14:47	
,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 14:47	
,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 14:47	
,2-Dibromoethane	ND	5.0	ug/L			08/22/19 14:47	
,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 14:47	
,2-Dichloroethane	ND	5.0	ug/L			08/22/19 14:47	
,2-Dichloropropane	ND	5.0	ug/L			08/22/19 14:47	
,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 14:47	
,4-Dioxane	ND	50	ug/L			08/22/19 14:47	
P-Butanone (MEK)	ND	5.0	ug/L			08/22/19 14:47	
-Hexanone	ND	10	ug/L			08/22/19 14:47	
-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 14:47	
Acetone	ND	5.0	ug/L			08/22/19 14:47	
Acetonitrile	ND	100	ug/L			08/22/19 14:47	
Benzene	ND	5.0	ug/L			08/22/19 14:47	
Bromochloromethane	ND	5.0	ug/L			08/22/19 14:47	
romodichloromethane	ND	5.0	ug/L			08/22/19 14:47	
romoform	ND	5.0	ug/L			08/22/19 14:47	
Bromomethane	ND	5.0	ug/L			08/22/19 14:47	
Carbon disulfide	ND	5.0	ug/L			08/22/19 14:47	
Carbon tetrachloride	ND	5.0				08/22/19 14:47	
Chlorobenzene	ND ND	5.0	ug/L ug/L			08/22/19 14:47	
Chloroethane	ND	5.0	ug/L			08/22/19 14:47	
Chloroform	ND ND	5.0	ug/L			08/22/19 14:47	
Chloromethane	ND ND	5.0	ug/L			08/22/19 14:47	
is-1,2-Dichloroethene	ND	5.0				08/22/19 14:47	
	ND ND	5.0	ug/L				
is-1,3-Dichloropropene			ug/L			08/22/19 14:47	
Dibromochloromethane	ND	5.0	ug/L			08/22/19 14:47	
Dibromomethane	ND	5.0	ug/L			08/22/19 14:47	
Ethylbenzene	ND	5.0	ug/L			08/22/19 14:47	
odomethane	ND	5.0	ug/L			08/22/19 14:47	
n,p-Xylene	ND	5.0	ug/L			08/22/19 14:47	
Methylene Chloride	ND	5.0	ug/L			08/22/19 14:47	
-Xylene	ND	5.0	ug/L			08/22/19 14:47	
Styrene	ND	5.0	ug/L			08/22/19 14:47	
etrachloroethene	ND	5.0	ug/L			08/22/19 14:47	
etrahydrofuran	ND	10	ug/L			08/22/19 14:47	
oluene	ND	5.0	ug/L			08/22/19 14:47	
rans-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 14:47	
rans-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 14:47	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			08/22/19 14:47	
richloroethene	ND	5.0	ug/L			08/22/19 14:47	
richlorofluoromethane	ND	5.0	ug/L			08/22/19 14:47	

Eurofins TestAmerica, Buffalo

Page 26 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16

Date Collected: 08/21/19 11:18
Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-2

Matrix: Ground Water

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 14:47	1
	a								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		Qualifier	77 - 120				Prepared	Analyzed 08/22/19 14:47	Dil Fac
		Qualifier					Prepared		Dil Fac 1 1

Method: 6010C - Metals (ICP) Analyte	Result Q	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	mg/L	08/23/19 08:49	08/23/19 18:12	1
Antimony	ND	0.015	mg/L	08/23/19 08:49	08/23/19 18:12	1
Arsenic	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:12	1
Barium	0.35	0.20	mg/L	08/23/19 08:49	08/23/19 18:12	1
Beryllium	ND	0.0030	mg/L	08/23/19 08:49	08/23/19 18:12	1
Boron	ND	0.020	mg/L	08/23/19 08:49	08/23/19 18:12	1
Cadmium	ND	0.0050	mg/L	08/23/19 08:49	08/23/19 18:12	1
Calcium	124	5.0	mg/L	08/23/19 08:49	08/23/19 18:12	1
Chromium	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:12	1
Cobalt	ND	0.050	mg/L	08/23/19 08:49	08/23/19 18:12	1
Copper	ND	0.025	mg/L	08/23/19 08:49	08/23/19 18:12	1
Iron	0.48	0.10	mg/L	08/23/19 08:49	08/23/19 18:12	1
Lead	ND	0.0030	mg/L	08/23/19 08:49	08/23/19 18:12	1
Magnesium	33.1	5.0	mg/L	08/23/19 08:49	08/23/19 18:12	1
Manganese	0.041	0.015	mg/L	08/23/19 08:49	08/23/19 18:12	1
Nickel	ND	0.040	mg/L	08/23/19 08:49	08/23/19 18:12	1
Potassium	ND	5.0	mg/L	08/23/19 08:49	08/23/19 18:12	1
Silver	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:12	1
Sodium	105	5.0	mg/L	08/23/19 08:49	08/23/19 18:12	1
Thallium	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:12	1
Vanadium	ND	0.050	mg/L	08/23/19 08:49	08/23/19 18:12	1
Zinc	ND	0.020	mg/L	08/23/19 08:49	08/23/19 18:12	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:06	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:06	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:06	1
Barium, Dissolved	0.34		0.20		mg/L		08/23/19 08:45	08/23/19 20:06	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:06	1
Boron, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:06	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:06	1
Calcium, Dissolved	118		5.0		mg/L		08/23/19 08:45	08/23/19 20:06	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:06	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:06	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:06	1
Iron, Dissolved	0.48		0.10		mg/L		08/23/19 08:45	08/23/19 20:06	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:06	1
Magnesium, Dissolved	31.3		5.0		mg/L		08/23/19 08:45	08/23/19 20:06	1
Manganese, Dissolved	0.038		0.015		mg/L		08/23/19 08:45	08/23/19 20:06	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:06	1

Eurofins TestAmerica, Buffalo

Page 27 of 314

6

3

5

7

9

10

12

14

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16 Lab Sample ID: 480-157980-2

Date Collected: 08/21/19 11:18 Matrix: Ground Water Date Received: 08/21/19 17:30

Method: 6010C - Metals (ICP) - Dis			•			_			
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 20:06	
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:06	
Sodium, Dissolved	102		5.0		mg/L			08/23/19 20:06	
Thallium, Dissolved	ND		0.010		mg/L			08/23/19 20:06	
Vanadium, Dissolved	ND		0.050		mg/L			08/23/19 20:06	
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:06	
Method: 6020A - Metals (ICP/MS)									
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:26	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	08/23/19 08:37	08/24/19 10:24	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:43	
Method: 7470A - Mercury (CVAA)						-	_		 -
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		08/27/19 11:20	08/27/19 14:50	
General Chemistry									
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/27/19 14:54	
Alkalinity, Total	298		20.0		mg/L			08/27/19 00:07	
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:36	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/23/19 09:14	08/26/19 11:59	
Nitrate	ND		0.050		mg/L as N			08/22/19 20:20	
Chemical Oxygen Demand	25.7		5.0		mg/L			08/25/19 14:19	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 11:12	
Phenolics, Total Recoverable	0.0070	В	0.0050		mg/L		09/05/19 23:15	09/08/19 11:04	
Hardness	460		5.0		mg/L			08/28/19 11:20	
Total Dissolved Solids	743		10.0		mg/L			08/23/19 08:29	
Chloride	247		2.5		mg/L			08/27/19 14:54	
Sulfate	30.5		10.0		mg/L			08/27/19 14:54	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 18:45	
Total Organic Carbon	ND		1.0		mg/L			08/23/19 12:53	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	15.0		0.0100		Color Units	_		08/23/19 10:10	
Method: Field Sampling - Field Sa	mplina								
Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fa
oH, Field	7.17				SU			08/21/19 11:18	
Specific Conductance	1349				umhos/cm			08/21/19 11:18	
Field EH/ORP	3.0				millivolts			08/21/19 11:18	
Геmperature, Field	11.2				Degrees C			08/21/19 11:18	
Odor	No				NONE			08/21/19 11:18	

Eurofins TestAmerica, Buffalo

Page 28 of 314

2

3

5

7

10

12

14

16

4.6

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16 Lab Sample ID: 480-157980-2

Date Collected: 08/21/19 11:18 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Field Sampling (Continued)									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	30.60				ft			08/21/19 11:18	1
Depth to Water from Top of Casing	19.31				ft			08/21/19 11:18	1

2

<u>.</u>

5

6

8

10

111

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16(S)

Lab Sample ID: 480-157980-3

Date Collected: 08/21/19 11:10 **Matrix: Ground Water** Date Received: 08/21/19 17:30

1,1,1,2-Tetrachloroethane	ND				
	ND	5.0	ug/L	08/22/19 15:13	1
1,1,1-Trichloroethane	ND	5.0	ug/L	08/22/19 15:13	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	08/22/19 15:13	1
1,1,2-Trichloroethane	ND	5.0	ug/L	08/22/19 15:13	1
1,1-Dichloroethane	ND	5.0	ug/L	08/22/19 15:13	1
1,1-Dichloroethene	ND	5.0	ug/L	08/22/19 15:13	1
1,2,3-Trichloropropane	ND	5.0	ug/L	08/22/19 15:13	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L	08/22/19 15:13	1
1,2-Dibromoethane	ND	5.0	ug/L	08/22/19 15:13	1
1,2-Dichlorobenzene	ND	5.0	ug/L	08/22/19 15:13	1
1,2-Dichloroethane	ND	5.0	ug/L	08/22/19 15:13	1
1,2-Dichloropropane	ND	5.0	ug/L	08/22/19 15:13	1
1,4-Dichlorobenzene	ND	5.0	ug/L	08/22/19 15:13	1
1,4-Dioxane	ND	50	ug/L	08/22/19 15:13	1
2-Butanone (MEK)	ND	5.0	ug/L	08/22/19 15:13	1
2-Hexanone	ND	10	ug/L	08/22/19 15:13	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	08/22/19 15:13	1
Acetone	ND	5.0	ug/L	08/22/19 15:13	1
Acetonitrile	ND	100	ug/L	08/22/19 15:13	1
Benzene	ND	5.0	ug/L	08/22/19 15:13	1
Bromochloromethane	ND	5.0	ug/L	08/22/19 15:13	1
Bromodichloromethane	ND	5.0	ug/L	08/22/19 15:13	1
Bromoform	ND	5.0	ug/L	08/22/19 15:13	1
Bromomethane	ND	5.0	ug/L	08/22/19 15:13	1
Carbon disulfide	ND	5.0	ug/L	08/22/19 15:13	
Carbon tetrachloride	ND	5.0	ug/L	08/22/19 15:13	1
Chlorobenzene	ND	5.0	ug/L	08/22/19 15:13	1
Chloroethane	ND	5.0	ug/L	08/22/19 15:13	· · · · · · · · · · · · · · · · · · ·
Chloroform	ND	5.0	ug/L	08/22/19 15:13	1
Chloromethane	ND	5.0	ug/L	08/22/19 15:13	1
cis-1,2-Dichloroethene	ND	5.0	ug/L	08/22/19 15:13	· · · · · · · · · · · · · · · · · · ·
cis-1,3-Dichloropropene	ND	5.0	ug/L	08/22/19 15:13	1
Dibromochloromethane	ND	5.0	ug/L	08/22/19 15:13	1
Dibromomethane	ND	5.0	ug/L	08/22/19 15:13	
Ethylbenzene	ND	5.0	ug/L	08/22/19 15:13	1
Iodomethane	ND	5.0	ug/L	08/22/19 15:13	1
m,p-Xylene	ND	5.0		08/22/19 15:13	
., ,	ND	5.0	ug/L	08/22/19 15:13	
Methylene Chloride	ND ND		ug/L		1
o-Xylene	ND ND	5.0	ug/L	08/22/19 15:13 08/22/19 15:13	1
Styrene Tetrachloroethene		5.0	ug/L	08/22/19 15:13	1
	ND	5.0	ug/L		1
Tetrahydrofuran	ND ND	10	ug/L	08/22/19 15:13	
Toluene	ND	5.0	ug/L	08/22/19 15:13	1
trans-1,2-Dichloroethene	ND	5.0	ug/L	08/22/19 15:13	1
trans-1,3-Dichloropropene	ND	5.0	ug/L	08/22/19 15:13	1
trans-1,4-Dichloro-2-butene	ND	10	ug/L	08/22/19 15:13	1
Trichloroethene	ND	5.0	ug/L	08/22/19 15:13	1
Trichlorofluoromethane Vinyl acetate	ND ND	5.0 50	ug/L ug/L	08/22/19 15:13 08/22/19 15:13	1

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16(S)

Date Collected: 08/21/19 11:10 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-3

Matrix: Ground Water

Method: 8260C - Volatil	e Organic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND ND		5.0		ug/L			08/22/19 15:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	110		77 - 120					08/22/19 15:13	1
1,2-Dichloroethane-d4 (Surr) 4-Bromofluorobenzene (Surr)	110 92		77 - 120 73 - 120					08/22/19 15:13 08/22/19 15:13	<u>1</u> 1

Method: 6010C - Metals (ICP) Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.39	0.20		mg/L		08/23/19 08:49	08/23/19 18:16	1
Antimony	ND	0.015		mg/L		08/23/19 08:49	08/23/19 18:16	1
Arsenic	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:16	1
Barium	ND	0.20		mg/L		08/23/19 08:49	08/23/19 18:16	1
Beryllium	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 18:16	1
Boron	ND	0.020		mg/L		08/23/19 08:49	08/23/19 18:16	1
Cadmium	ND	0.0050		mg/L		08/23/19 08:49	08/23/19 18:16	1
Calcium	92.0	5.0		mg/L		08/23/19 08:49	08/23/19 18:16	1
Chromium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:16	1
Cobalt	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:16	1
Copper	ND	0.025		mg/L		08/23/19 08:49	08/23/19 18:16	1
Iron	0.56	0.10		mg/L		08/23/19 08:49	08/23/19 18:16	1
Lead	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 18:16	1
Magnesium	10.7	5.0		mg/L		08/23/19 08:49	08/23/19 18:16	1
Manganese	0.050	0.015		mg/L		08/23/19 08:49	08/23/19 18:16	1
Nickel	ND	0.040		mg/L		08/23/19 08:49	08/23/19 18:16	1
Potassium	6.7	5.0		mg/L		08/23/19 08:49	08/23/19 18:16	1
Silver	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:16	1
Sodium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 18:16	1
Thallium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:16	1
Vanadium	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:16	1
Zinc	ND	0.020		mg/L		08/23/19 08:49	08/23/19 18:16	1
_				-				

Method: 6010C - Metals (ICI Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:09	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:09	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:09	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:09	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:09	1
Boron, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:09	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:09	1
Calcium, Dissolved	88.2		5.0		mg/L		08/23/19 08:45	08/23/19 20:09	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:09	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:09	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:09	1
Iron, Dissolved	ND		0.10		mg/L		08/23/19 08:45	08/23/19 20:09	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:09	1
Magnesium, Dissolved	10.1		5.0		mg/L		08/23/19 08:45	08/23/19 20:09	1
Manganese, Dissolved	0.021		0.015		mg/L		08/23/19 08:45	08/23/19 20:09	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:09	1

Eurofins TestAmerica, Buffalo

Page 31 of 314

2

<u>5</u>

5

7

9

11

13

_

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16(S)

Date Collected: 08/21/19 11:10 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-3

Matrix: Ground Water

Method: 6010C - Metals (ICP) - Dis ^{Analyte}		(Continued) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Potassium, Dissolved	6.4		5.0		mg/L	- –	08/23/19 08:45	08/23/19 20:09	1
Silver, Dissolved	ND		0.010		mg/L			08/23/19 20:09	1
Sodium, Dissolved	ND		5.0		mg/L			08/23/19 20:09	1
Thallium, Dissolved	ND		0.010		•			08/23/19 20:09	1
Vanadium, Dissolved	ND		0.010		mg/L			08/23/19 20:09	1
Zinc, Dissolved	ND		0.050		mg/L mg/L			08/23/19 20:09	ı 1
ZIIIC, DISSOIVEU	ND		0.020		mg/L		00/23/19 00.43	00/23/19 20:09	'
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:28	1
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium, Dissolved	ND		0.0010		mg/L	_	08/23/19 08:37	08/24/19 10:26	1
Method: 7470A - Mercury (CVAA)	D	O UC			1114	_	.	A 1	D:: -
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		U8/26/19 12:12	08/26/19 15:45	1
Mothod: 7470A Moroum, (C\/AA)	Dioce	lvod							
Method: 7470A - Mercury (CVAA) · Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	ND		0.00020	IVIDE	mg/L	- –	08/27/19 11:20	08/27/19 14:51	1
viciouity, Dissolved	ND		0.00020		mg/L		00/2//10 11.20	00/2//10 14.01	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20		mg/L			08/27/19 15:08	1
Alkalinity, Total	248		15.0		mg/L			08/27/19 00:07	3
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:37	1
Total Kjeldahl Nitrogen	0.47		0.15		mg/L as N		08/29/19 09:01	09/01/19 11:48	1
Nitrate	0.095		0.050		mg/L as N			08/22/19 21:11	1
Chemical Oxygen Demand	9.2		5.0		mg/L			08/23/19 18:15	1
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	1
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 11:13	1
Phenolics, Total Recoverable	0.011	В	0.0050		mg/L		09/12/19 20:24	09/13/19 17:56	1
Hardness	268		2.0		mg/L		-	08/28/19 11:20	1
Total Dissolved Solids	341		10.0		mg/L			08/23/19 08:29	1
Chloride	2.6		0.50		mg/L			08/27/19 15:08	1
Sulfate	41.7		2.0		mg/L			08/27/19 15:08	1
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 02:22	1
Total Organic Carbon	4.6		1.0		mg/L			08/23/19 13:08	1
		Qualifier		ים	•	n	Droporod		Dil Eco
Analyte		- uaiiiier	RL 0.0100	- KL	Unit Color Units	_ D	Prepared	Analyzed 08/23/19 10:10	Dil Fac
Color	5.00		0.0100		COIOI OIIIIS			00/23/18 10.10	1
Method: Field Sampling - Field Sa	mnling								
Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
oH, Field	7.16				SU			08/21/19 11:10	1
Specific Conductance	548				umhos/cm			08/21/19 11:10	1
-	81				millivolts			08/21/19 11:10	1
Field FH/ORP								JJ/2 1/ 1J 11.1U	
					Degrees C			08/21/10 11:10	
Field EH/ORP Temperature, Field Odor	14.8 No				Degrees C NONE			08/21/19 11:10 08/21/19 11:10	1

Eurofins TestAmerica, Buffalo

Page 32 of 314

2

3

5

8

4 4

12

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16(S)

Lab Sample ID: 480-157980-3

Date Collected: 08/21/19 11:10 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Field Sampling (Continued)									
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	14.45				ft			08/21/19 11:10	1
Depth to Water from Top of Casing	6.28				ft			08/21/19 11:10	1

2

Л

5

6

8

10

12

11

10

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-17

Lab Sample ID: 480-157980-4 Date Collected: 08/21/19 13:20 **Matrix: Ground Water**

Date Received: 08/21/19 17:30

1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	ND ND	5.0	ug/L	08/22/19 15:3	39 1
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane				00.220	,,
1,1,2-Trichloroethane		5.0	ug/L	08/22/19 15:3	
	ND	5.0	ug/L	08/22/19 15:3	39 1
1,1-Dichloroethane	ND	5.0	ug/L	08/22/19 15:3	39 1
	ND	5.0	ug/L	08/22/19 15:3	39 1
1,1-Dichloroethene	ND	5.0	ug/L	08/22/19 15:3	39 1
1,2,3-Trichloropropane	ND	5.0	ug/L	08/22/19 15:3	39 1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L	08/22/19 15:3	39 1
1,2-Dibromoethane	ND	5.0	ug/L	08/22/19 15:3	39 1
1,2-Dichlorobenzene	ND	5.0	ug/L	08/22/19 15:3	39 1
1,2-Dichloroethane	ND	5.0	ug/L	08/22/19 15:3	39 1
1,2-Dichloropropane	ND	5.0	ug/L	08/22/19 15:3	39 1
1,4-Dichlorobenzene	ND	5.0	ug/L	08/22/19 15:3	39 1
1,4-Dioxane	ND	50	ug/L	08/22/19 15:3	39 1
2-Butanone (MEK)	ND	5.0	ug/L	08/22/19 15:3	39 1
2-Hexanone	ND	10	ug/L	08/22/19 15:3	39 1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L	08/22/19 15:3	39 1
Acetone	ND	5.0	ug/L	08/22/19 15:3	39 1
Acetonitrile	ND	100	ug/L	08/22/19 15:	39 1
Benzene	ND	5.0	ug/L	08/22/19 15:3	39 1
Bromochloromethane	ND	5.0	ug/L	08/22/19 15:3	
Bromodichloromethane	ND	5.0	ug/L	08/22/19 15:	
Bromoform	ND	5.0	ug/L	08/22/19 15:	
Bromomethane	ND	5.0	ug/L	08/22/19 15:3	
Carbon disulfide	ND	5.0	ug/L	08/22/19 15:3	
Carbon tetrachloride	ND	5.0	ug/L	08/22/19 15:	
Chlorobenzene	ND	5.0	ug/L	08/22/19 15:3	
Chloroethane	ND	5.0	ug/L	08/22/19 15:3	
Chloroform	ND	5.0	ug/L	08/22/19 15:	
Chloromethane	ND F1	5.0	ug/L	08/22/19 15:	
cis-1,2-Dichloroethene	ND	5.0	ug/L	08/22/19 15:3	
cis-1,3-Dichloropropene	ND	5.0	ug/L	08/22/19 15:	
Dibromochloromethane	ND	5.0		08/22/19 15:3	
Dibromomethane	ND	5.0	ug/L	08/22/19 15:3	
Ethylbenzene	ND ND	5.0	ug/L ug/L	08/22/19 15:3	
Iodomethane	ND ND	5.0	_	08/22/19 15:3	
	ND	5.0	ug/L		
m,p-Xylene			ug/L	08/22/19 15:	
Methylene Chloride	ND	5.0	ug/L	08/22/19 15:3	
o-Xylene	ND	5.0	ug/L	08/22/19 15:3	
Styrene	ND	5.0	ug/L	08/22/19 15:3	
Tetrachloroethene	ND	5.0	ug/L	08/22/19 15:3	
Tetrahydrofuran	ND	10	ug/L	08/22/19 15:3	
Toluene	ND	5.0	ug/L	08/22/19 15:3	
trans-1,2-Dichloroethene	ND	5.0	ug/L	08/22/19 15:3	
trans-1,3-Dichloropropene	ND	5.0	ug/L	08/22/19 15:	
trans-1,4-Dichloro-2-butene	ND	10	ug/L	08/22/19 15:3	
Trichloroethene	ND	5.0	ug/L	08/22/19 15:3	
Trichlorofluoromethane	ND	5.0	ug/L	08/22/19 15:3	39 1
Vinyl acetate	ND	50	ug/L	08/22/19 15:3	39 1

Eurofins TestAmerica, Buffalo

Page 34 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-17 Lab Sample ID: 480-157980-4

Date Collected: 08/21/19 13:20 Matrix: Ground Water Date Received: 08/21/19 17:30

Method: 8260C - Volatile Or	ganic Compoi	unds by G	C/MS (Contir	iued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 15:39	1
Commo mata	0/ 🗖	O	1 5 14				Dramarad	A l	D:// E
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		Quaimer	77 - 120				Prepared	08/22/19 15:39	DII Fac
		Quaimer					Prepared		1 1

Method: 6010C - Metals (ICP) Analyte	Result Qı	ualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Antimony	ND	0.015	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Arsenic	ND	0.010	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Barium	ND	0.20	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Beryllium	ND	0.0030	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Boron	0.029	0.020	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Cadmium	ND	0.0050	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Calcium	121	5.0	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Chromium	ND	0.010	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Cobalt	ND	0.050	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Copper	ND	0.025	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Iron	1.0	0.10	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Lead	ND	0.0030	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Magnesium	39.2	5.0	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Manganese	0.084	0.015	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Nickel	ND	0.040	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Potassium	ND	5.0	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Silver	ND	0.010	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Sodium	33.1	5.0	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Thallium	ND	0.010	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Vanadium	ND	0.050	mg/L	08/23/19 08:4	9 08/23/19 18:31	1
Zinc	ND	0.020	mg/L	08/23/19 08:4	9 08/23/19 18:31	1

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:13	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:13	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:13	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:13	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:13	1
Boron, Dissolved	0.025		0.020		mg/L		08/23/19 08:45	08/23/19 20:13	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:13	1
Calcium, Dissolved	121		5.0		mg/L		08/23/19 08:45	08/23/19 20:13	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:13	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:13	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:13	1
Iron, Dissolved	0.52		0.10		mg/L		08/23/19 08:45	08/23/19 20:13	1
Lead, Dissolved	0.0031		0.0030		mg/L		08/23/19 08:45	08/23/19 20:13	1
Magnesium, Dissolved	39.1		5.0		mg/L		08/23/19 08:45	08/23/19 20:13	1
Manganese, Dissolved	0.060		0.015		mg/L		08/23/19 08:45	08/23/19 20:13	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:13	1

Eurofins TestAmerica, Buffalo

Page 35 of 314

6

3

5

7

10

12

14

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-17 Lab Sample ID: 480-157980-4

Date Collected: 08/21/19 13:20 Matrix: Ground Water
Date Received: 08/21/19 17:30

Analyte Potassium, Dissolved Silver, Dissolved Sodium, Dissolved	ND	Qualifier			mg/L	_ D	Prepared 08/23/19 08:45	Analyzed 08/23/19 20:13	Dil Fa
Silver, Dissolved					TTICI/T		U0/Z3/19 U0 43	08/23/19 2013	
	ND		0.010		mg/L		08/23/19 08:45		
	61.0		5.0		mg/L			08/23/19 20:13	
Thallium, Dissolved	ND		0.010		mg/L			08/23/19 20:13	
Vanadium, Dissolved	ND		0.050		mg/L			08/23/19 20:13	
Zinc, Dissolved	ND		0.020		mg/L			08/23/19 20:13	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:30	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		08/23/19 08:37	08/24/19 10:28	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 16:00	
Method: 7470A - Mercury (CVAA)						_			
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		08/27/19 11:20	08/27/19 14:52	
General Chemistry	.	.				_			5
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/27/19 19:35	
Alkalinity, Total	324	E4	20.0		mg/L			08/26/19 23:54	
Ammonia (as N)	ND	F1	0.050		mg/L as N		. 00/04/4/0 00:44	08/22/19 11:38	
Гotal Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/24/19 08:41	08/26/19 10:32	
Nitrate	ND		0.050		mg/L as N			08/22/19 21:12	
Chemical Oxygen Demand	20.7		5.0		mg/L			08/25/19 15:12	
Chromium, hexavalent	ND	- 4	0.010		mg/L		00/04/40 40:04	08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04 09/05/19 23:15	09/03/19 11:15	
Phenolics, Total Recoverable	0.011	BF1	0.0050		mg/L		09/05/19 23.15	09/08/19 10:54	
Hardness	470		5.0		mg/L			08/28/19 11:20	
Fotal Dissolved Solids	585		10.0		mg/L			08/23/19 08:29	
Chloride	105		2.5		mg/L			08/27/19 19:35	
Sulfate	55.3		10.0		mg/L			08/27/19 19:35 08/22/19 18:45	
Biochemical Oxygen Demand Total Organic Carbon	ND ND		2.0 1.0		mg/L			08/22/19 18:45	
•					mg/L		_		
Analyte		Qualifier	RL	RL	Unit	_ D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units			08/23/19 10:10	
Color	ND	Н	0.0100		Color Units			09/17/19 11:30	
Method: Field Sampling - Field Sa		0	Nove	Neve	114	_	D	A 1	D.: -
Analyte		Qualifier	NONE	NONE		_ D	Prepared	Analyzed	Dil Fa
oH, Field	7.18				SU			08/21/19 13:20	
Specific Conductance	1013				umhos/cm			08/21/19 13:20	
Field EH/ORP	-20				millivolts			08/21/19 13:20	
Temperature, Field	12.9				Degrees C			08/21/19 13:20	

Eurofins TestAmerica, Buffalo

9/30/2019

Page 36 of 314

2

3

5

-

10

12

14

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-17 Lab Sample ID: 480-157980-4

Date Collected: 08/21/19 13:20 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Fig	eld Sampling	(Continued	i)						
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	2.7				NTU			08/21/19 13:20	1
Well Depth	42.00				ft			08/21/19 13:20	1
Depth to Water from Top of Casing	25.27				ft			08/21/19 13:20	1

5

6

8

9

11

13

14

16

11/

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-18BR

Lab Sample ID: 480-157980-5 Date Collected: 08/21/19 13:05 **Matrix: Ground Water**

Date Received: 08/21/19 17:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 16:06	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 16:06	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 16:06	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 16:06	
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 16:06	
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 16:06	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 16:06	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 16:06	
1,2-Dibromoethane	ND	5.0	ug/L			08/22/19 16:06	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 16:06	
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 16:06	
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 16:06	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 16:06	
1,4-Dioxane	ND	50	ug/L			08/22/19 16:06	
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 16:06	
2-Hexanone	ND	10	ug/L			08/22/19 16:06	
1-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 16:06	
Acetone	ND	5.0	ug/L			08/22/19 16:06	
Acetonitrile	ND	100	ug/L			08/22/19 16:06	
Benzene	ND	5.0	ug/L			08/22/19 16:06	
Bromochloromethane	ND	5.0	ug/L			08/22/19 16:06	
Bromodichloromethane	ND	5.0	ug/L			08/22/19 16:06	
Bromoform	ND	5.0	ug/L			08/22/19 16:06	
Bromomethane	ND	5.0	ug/L			08/22/19 16:06	
Carbon disulfide	ND	5.0	ug/L			08/22/19 16:06	
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 16:06	
Chlorobenzene	ND	5.0	ug/L			08/22/19 16:06	
Chloroethane	ND	5.0	ug/L			08/22/19 16:06	
Chloroform	ND	5.0	ug/L			08/22/19 16:06	
Chloromethane	ND	5.0	ug/L			08/22/19 16:06	
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 16:06	
·	ND ND	5.0	-			08/22/19 16:06	
cis-1,3-Dichloropropene	ND ND		ug/L				
Dibromochloromethane		5.0	ug/L			08/22/19 16:06	
Dibromomethane	ND	5.0	ug/L			08/22/19 16:06	
Ethylbenzene	ND	5.0	ug/L			08/22/19 16:06	
odomethane	ND	5.0	ug/L			08/22/19 16:06	
n,p-Xylene	ND	5.0	ug/L			08/22/19 16:06	
Methylene Chloride	ND	5.0	ug/L			08/22/19 16:06	
o-Xylene	ND	5.0	ug/L			08/22/19 16:06	
Styrene	ND	5.0	ug/L			08/22/19 16:06	
etrachloroethene	ND	5.0	ug/L			08/22/19 16:06	
etrahydrofuran	ND	10	ug/L			08/22/19 16:06	
oluene	ND	5.0	ug/L			08/22/19 16:06	
rans-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 16:06	
rans-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 16:06	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			08/22/19 16:06	
Trichloroethene	ND	5.0	ug/L			08/22/19 16:06	
Frichlorofluoromethane	ND	5.0	ug/L			08/22/19 16:06	
/inyl acetate	ND	50	ug/L			08/22/19 16:06	

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-18BR

Date Collected: 08/21/19 13:05 Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-5

Matrix: Ground Water

N	Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Contin	nued)				
Α	nalyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
V	inyl chloride	ND		5.0	ug/L			08/22/19 16:06	1
s	urrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1	,2-Dichloroethane-d4 (Surr)	117		77 - 120				08/22/19 16:06	1
4	-Bromofluorobenzene (Surr)	99		73 - 120				08/22/19 16:06	1
Т	oluene-d8 (Surr)	103		80 - 120				08/22/19 16:06	1

Method: 6010C - Metals (IC Analyte	P) Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	1.3	0.20	i	mg/L		08/23/19 08:49	08/23/19 18:49	1
Antimony	ND	0.015	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Arsenic	ND	0.010	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Barium	0.30	0.20		mg/L		08/23/19 08:49	08/23/19 18:49	1
Beryllium	ND	0.0030	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Boron	ND	0.020	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Cadmium	ND	0.0050		mg/L		08/23/19 08:49	08/23/19 18:49	1
Calcium	116	5.0	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Chromium	ND	0.010	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Cobalt	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:49	1
Copper	ND	0.025	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Iron	1.2	0.10	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Lead	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 18:49	1
Magnesium	37.7	5.0	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Manganese	0.11	0.015	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Nickel	ND	0.040		mg/L		08/23/19 08:49	08/23/19 18:49	1
Potassium	ND	5.0	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Silver	ND	0.010	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Sodium	33.6	5.0		mg/L		08/23/19 08:49	08/23/19 18:49	1
Thallium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:49	1
Vanadium	ND	0.050	ı	mg/L		08/23/19 08:49	08/23/19 18:49	1
Zinc	ND	0.020		mg/L		08/23/19 08:49	08/23/19 18:49	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:32	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:32	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:32	1
Barium, Dissolved	0.28		0.20		mg/L		08/23/19 08:45	08/23/19 20:32	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:32	1
Boron, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:32	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:32	1
Calcium, Dissolved	112		5.0		mg/L		08/23/19 08:45	08/23/19 20:32	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:32	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:32	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:32	1
Iron, Dissolved	ND		0.10		mg/L		08/23/19 08:45	08/23/19 20:32	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:32	1
Magnesium, Dissolved	36.4		5.0		mg/L		08/23/19 08:45	08/23/19 20:32	1
Manganese, Dissolved	ND		0.015		mg/L		08/23/19 08:45	08/23/19 20:32	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:32	1

Eurofins TestAmerica, Buffalo

Page 39 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-18BR Lab Sample ID: 480-157980-5

Date Collected: 08/21/19 13:05

Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: 6010C - Metals (ICP) - Dis Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L	_	08/23/19 08:45	08/23/19 20:32	
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:32	
Sodium, Dissolved	32.2		5.0		mg/L		08/23/19 08:45	08/23/19 20:32	
Thallium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:32	
Vanadium, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:32	
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:32	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L	_	08/23/19 08:37	08/24/19 11:49	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	08/23/19 08:37	08/24/19 10:47	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L	_	08/26/19 12:12	08/26/19 15:46	
Method: 7470A - Mercury (CVAA)	- Disso	lved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L	_	08/27/19 11:20	08/27/19 14:58	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/27/19 15:27	
Alkalinity, Total	152		10.0		mg/L			08/26/19 23:57	
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:41	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/24/19 08:41	08/26/19 10:32	
Nitrate	ND		0.050		mg/L as N			08/22/19 20:30	
Chemical Oxygen Demand	16.9		5.0		mg/L			08/23/19 18:15	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 11:52	
Phenolics, Total Recoverable	0.0076	В	0.0050		mg/L		09/05/19 23:15	09/08/19 10:57	
Hardness	440		5.0		mg/L			08/29/19 13:45	
Total Dissolved Solids	793		10.0		mg/L			08/23/19 08:29	
Chloride	222		2.5		mg/L			08/27/19 15:27	
Sulfate	58.9		10.0		mg/L			08/27/19 15:27	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 18:45	
Total Organic Carbon	ND		1.0		mg/L	_	_	08/23/19 13:23	
Analyte Color	Result 5.00	Qualifier	RL 0.0100	RL	Unit Color Units	_ D	Prepared	Analyzed 08/23/19 10:10	Dil Fa
50.01	0.00		0.0.00		30.0. G			00/20/10 10110	
Method: Field Sampling - Field Sa Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fa
oH, Field	7.42				SU			08/21/19 13:05	
Specific Conductance	1092				umhos/cm			08/21/19 13:05	
Field EH/ORP	7.0				millivolts			08/21/19 13:05	
Temperature, Field	14.9				Degrees C			08/21/19 13:05	
I DITINGUIGIUI G. I IGIU	17.3				_ 09.000 0			55,21,1010.00	
Odor	No				NONE			08/21/19 13:05	

Eurofins TestAmerica, Buffalo

Page 40 of 314

2

3

5

7

3

12

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-18BR Lab Sample ID: 480-157980-5

Date Collected: 08/21/19 13:05 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Fiel	d Sampling (Continue	ed)					
Analyte	Result Qualifier	NONE	NONE Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	27.80		ft			08/21/19 13:05	1
Depth to Water from Top of Casing	18.96		ft			08/21/19 13:05	1

3

4

5

9

11

13

14

4.0

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-L(I)

Lab Sample ID: 480-157980-6

Date Collected: 08/21/19 11:50 **Matrix: Ground Water** Date Received: 08/21/19 17:30

Analyte	Result Qualifier	RL	MDL Unit	<u>D</u>	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 16:33	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 16:33	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 16:33	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 16:33	
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 16:33	
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 16:33	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 16:33	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 16:33	
1,2-Dibromoethane	ND	5.0	ug/L			08/22/19 16:33	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 16:33	
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 16:33	
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 16:33	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 16:33	
1,4-Dioxane	ND	50	ug/L			08/22/19 16:33	
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 16:33	
2-Hexanone	ND	10	ug/L			08/22/19 16:33	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 16:33	
Acetone	ND	5.0	ug/L			08/22/19 16:33	
Acetonitrile	ND	100	ug/L			08/22/19 16:33	
Benzene	ND	5.0	ug/L			08/22/19 16:33	
Bromochloromethane	ND	5.0	ug/L			08/22/19 16:33	
Bromodichloromethane	ND	5.0	ug/L			08/22/19 16:33	
Bromoform	ND	5.0	ug/L			08/22/19 16:33	
Bromomethane	ND	5.0	ug/L			08/22/19 16:33	
Carbon disulfide	ND	5.0	ug/L			08/22/19 16:33	
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 16:33	
Chlorobenzene	ND	5.0	ug/L			08/22/19 16:33	
Chloroethane	ND	5.0	.			08/22/19 16:33	
Chloroform	ND ND	5.0 5.0	ug/L			08/22/19 16:33	
	ND ND		ug/L				
Chloromethane		5.0	ug/L			08/22/19 16:33	
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 16:33	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 16:33	
Dibromochloromethane	ND	5.0	ug/L			08/22/19 16:33	
Dibromomethane	ND	5.0	ug/L			08/22/19 16:33	
Ethylbenzene	ND	5.0	ug/L			08/22/19 16:33	
odomethane	ND	5.0	ug/L			08/22/19 16:33	
m,p-Xylene	ND	5.0	ug/L			08/22/19 16:33	
Methylene Chloride	ND	5.0	ug/L			08/22/19 16:33	
o-Xylene	ND	5.0	ug/L			08/22/19 16:33	
Styrene	ND	5.0	ug/L			08/22/19 16:33	
Tetrachloroethene	ND	5.0	ug/L			08/22/19 16:33	
Гetrahydrofuran	ND	10	ug/L			08/22/19 16:33	
Гoluene	ND	5.0	ug/L			08/22/19 16:33	
rans-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 16:33	
rans-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 16:33	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			08/22/19 16:33	
Trichloroethene	ND	5.0	ug/L			08/22/19 16:33	
Trichlorofluoromethane	ND	5.0	ug/L			08/22/19 16:33	
√inyl acetate	ND	50	ug/L			08/22/19 16:33	

Eurofins TestAmerica, Buffalo

Page 42 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-L(I)

Lab Sample ID: 480-157980-6

Matrix: Ground Water

Date Collected: 08/21/19 11:50 Date Received: 08/21/19 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 16:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		77 - 120			-		08/22/19 16:33	1
4-Bromofluorobenzene (Surr)	94		73 - 120					08/22/19 16:33	1
Toluene-d8 (Surr)	97		80 - 120					08/22/19 16:33	1

Method: 6010C - Metals (ICP) Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.81	0.20	mg/L		08/23/19 08:49	08/23/19 18:53	1
Antimony	ND	0.015	mg/L		08/23/19 08:49	08/23/19 18:53	1
Arsenic	ND	0.010	mg/L		08/23/19 08:49	08/23/19 18:53	1
Barium	ND	0.20	mg/L		08/23/19 08:49	08/23/19 18:53	1
Beryllium	ND	0.0030	mg/L		08/23/19 08:49	08/23/19 18:53	1
Boron	0.024	0.020	mg/L		08/23/19 08:49	08/23/19 18:53	1
Cadmium	ND	0.0050	mg/L		08/23/19 08:49	08/23/19 18:53	1
Calcium	86.8	5.0	mg/L		08/23/19 08:49	08/23/19 18:53	1
Chromium	ND	0.010	mg/L		08/23/19 08:49	08/23/19 18:53	1
Cobalt	ND	0.050	mg/L		08/23/19 08:49	08/23/19 18:53	1
Copper	ND	0.025	mg/L		08/23/19 08:49	08/23/19 18:53	1
Iron	2.1	0.10	mg/L		08/23/19 08:49	08/23/19 18:53	1
Lead	ND	0.0030	mg/L		08/23/19 08:49	08/23/19 18:53	1
Magnesium	28.1	5.0	mg/L		08/23/19 08:49	08/23/19 18:53	1
Manganese	0.092	0.015	mg/L		08/23/19 08:49	08/23/19 18:53	1
Nickel	ND	0.040	mg/L		08/23/19 08:49	08/23/19 18:53	1
Potassium	ND	5.0	mg/L		08/23/19 08:49	08/23/19 18:53	1
Silver	ND	0.010	mg/L		08/23/19 08:49	08/23/19 18:53	1
Sodium	8.6	5.0	mg/L		08/23/19 08:49	08/23/19 18:53	1
Thallium	ND	0.010	mg/L		08/23/19 08:49	08/23/19 18:53	1
Vanadium	ND	0.050	mg/L		08/23/19 08:49	08/23/19 18:53	1
Zinc	ND	0.020	mg/L		08/23/19 08:49	08/23/19 18:53	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:47	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:47	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:47	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:47	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:47	1
Boron, Dissolved	0.021		0.020		mg/L		08/23/19 08:45	08/23/19 20:47	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:47	1
Calcium, Dissolved	81.1		5.0		mg/L		08/23/19 08:45	08/23/19 20:47	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:47	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:47	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:47	1
Iron, Dissolved	0.23		0.10		mg/L		08/23/19 08:45	08/23/19 20:47	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:47	1
Magnesium, Dissolved	26.2		5.0		mg/L		08/23/19 08:45	08/23/19 20:47	1
Manganese, Dissolved	0.074		0.015		mg/L		08/23/19 08:45	08/23/19 20:47	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:47	1

Eurofins TestAmerica, Buffalo

Page 43 of 314

2

3

5

9

11

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-L(I) Lab Sample ID: 480-157980-6

Date Collected: 08/21/19 11:50 **Matrix: Ground Water** Date Received: 08/21/19 17:30

Analyte Re	<mark>ved</mark> sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 20:47	
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:47	
Sodium, Dissolved	9.0		5.0		mg/L		08/23/19 08:45	08/23/19 20:47	
Thallium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:47	
Vanadium, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:47	
Zinc, Dissolved	ND		0.020		mg/L			08/23/19 20:47	
Method: 6020A - Metals (ICP/MS)									
Analyte Re	sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:51	
Method: 6020A - Metals (ICP/MS) - Dis	sol	ved							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		08/23/19 08:37	08/24/19 10:49	
Method: 7470A - Mercury (CVAA) Analyte Re	sult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:47	
•			0.00020		9/=		00/20/10 12112	00/20/10 10/11	
Method: 7470A - Mercury (CVAA) - Dis Analyte Re		lved Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND	- Guuiiici	0.00020		mg/L		08/28/19 11:32	08/28/19 14:10	
Moroary, Biocontoa	.,,		0.00020		g/.L		00,20,10 11.02	00/20/10 11:10	
General Chemistry									
	sult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.40		mg/L			08/27/19 15:41	
Alkalinity, Total	220		15.0		mg/L			08/26/19 23:57	
Ammonia (as N)	ND	F1	0.050		mg/L as N			08/22/19 11:43	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/24/19 08:41	08/26/19 10:32	
Nitrate	ND		0.050		mg/L as N			08/22/19 20:31	
Chemical Oxygen Demand	ND		5.0		mg/L			08/23/19 18:15	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 11:54	
Phenolics, Total Recoverable 0.0	096	В	0.0050		mg/L		09/05/19 23:15	09/08/19 10:57	
Hardness	320		2.0		mg/L			08/29/19 13:45	
Total Dissolved Solids	454		10.0		mg/L			08/23/19 08:29	
Chloride	4.2		1.0		mg/L			08/27/19 15:41	
Sulfate	112		4.0		mg/L			08/27/19 15:41	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 18:45	
Total Organic Carbon	ND		1.0		mg/L			08/23/19 13:37	
		Qualifier	RL _	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	5.00		0.0100		Color Units			08/23/19 10:10	
Method: Field Sampling - Field Sampl	ina								
		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fa
oH, Field	7.78				SU	_		08/21/19 11:50	
Specific Conductance	639				umhos/cm			08/21/19 11:50	
Field EH/ORP	54.0				millivolts			08/21/19 11:50	
Temperature, Field	7.6				Degrees C			08/21/19 11:50	
Odor	No				NONE			08/21/19 11:50	
	32.1				NTU			08/21/19 11:50	

Eurofins TestAmerica, Buffalo

Page 44 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-L(I) Lab Sample ID: 480-157980-6

Date Collected: 08/21/19 11:50 **Matrix: Ground Water**

Date Received: 08/21/19 17:30

Method: Field Sampling - Fiel	ld Sampling (Continued)					
Analyte	Result Qualifier	NONE	NONE Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	42.40		ft			08/21/19 11:50	1
Depth to Water from Top of Casing	30.10		ft			08/21/19 11:50	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(I)

Lab Sample ID: 480-157980-7

Matrix: Ground Water

Date Collected: 08/21/19 13:55 Date Received: 08/21/19 17:30

Method: 8260C - Volatile Org	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 16:59	1
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 16:59	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 16:59	1
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 16:59	1
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 16:59	1
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 16:59	1
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 16:59	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 16:59	1
1,2-Dibromoethane	ND	5.0	ug/L			08/22/19 16:59	1
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 16:59	1
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 16:59	1
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 16:59	1
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 16:59	1
1,4-Dioxane	ND	50	ug/L			08/22/19 16:59	1
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 16:59	1
2-Hexanone	ND	10	ug/L			08/22/19 16:59	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 16:59	1
Acetone	ND	5.0	ug/L			08/22/19 16:59	1
Acetonitrile	ND	100	ug/L			08/22/19 16:59	1
Benzene	ND	5.0	ug/L			08/22/19 16:59	1
Bromochloromethane	ND	5.0	ug/L			08/22/19 16:59	1
Bromodichloromethane	ND	5.0	ug/L			08/22/19 16:59	1
Bromoform	ND	5.0	ug/L			08/22/19 16:59	1
Bromomethane	ND	5.0	ug/L			08/22/19 16:59	1
Carbon disulfide	ND	5.0	ug/L			08/22/19 16:59	· · · · · · · · · · · 1
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 16:59	1
Chlorobenzene	ND	5.0	ug/L			08/22/19 16:59	
Chloroethane	ND	5.0	ug/L			08/22/19 16:59	
Chloroform	ND	5.0	ug/L			08/22/19 16:59	1
Chloromethane	ND	5.0	ug/L			08/22/19 16:59	1
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 16:59	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 16:59	1
Dibromochloromethane	ND	5.0	ug/L			08/22/19 16:59	1
Dibromomethane	ND	5.0	ug/L			08/22/19 16:59	
Ethylbenzene	ND	5.0	ug/L			08/22/19 16:59	. 1
Iodomethane	ND	5.0	ug/L			08/22/19 16:59	1
m,p-Xylene	ND	5.0				08/22/19 16:59	· · · · · · · · 1
• •	ND	5.0	ug/L			08/22/19 16:59	_
Methylene Chloride	ND ND		ug/L				1
o-Xylene	ND ND	5.0	ug/L			08/22/19 16:59 08/22/19 16:59	
Styrene Tetrachloroethene		5.0	ug/L				1
	ND ND	5.0	ug/L			08/22/19 16:59	1
Tetrahydrofuran	ND	10	ug/L			08/22/19 16:59	1
Toluene	ND	5.0	ug/L			08/22/19 16:59	1
trans-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 16:59	1
trans-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 16:59	
trans-1,4-Dichloro-2-butene	ND	10	ug/L			08/22/19 16:59	1
Trichloroethene	ND	5.0	ug/L			08/22/19 16:59	1
Trichlorofluoromethane	ND	5.0	ug/L			08/22/19 16:59	1
Vinyl acetate	ND	50	ug/L			08/22/19 16:59	1

Eurofins TestAmerica, Buffalo

Page 46 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(I)

Date Collected: 08/21/19 13:55
Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-7

Matrix: Ground Water

Method: 8260C - Volatile Or	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 16:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120			-		08/22/19 16:59	1
4-Bromofluorobenzene (Surr)	96		73 - 120					08/22/19 16:59	1

Method: 6010C - Metals (ICP) Analyte	Result C	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	1.5	0.20	mg/L	08/23/19 08:49	08/23/19 18:57	1
Antimony	ND	0.015	mg/L	08/23/19 08:49	08/23/19 18:57	1
Arsenic	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:57	1
Barium	ND	0.20	mg/L	08/23/19 08:49	08/23/19 18:57	1
Beryllium	ND	0.0030	mg/L	08/23/19 08:49	08/23/19 18:57	1
Boron	0.041	0.020	mg/L	08/23/19 08:49	08/23/19 18:57	1
Cadmium	ND	0.0050	mg/L	08/23/19 08:49	08/23/19 18:57	1
Calcium	87.9	5.0	mg/L	08/23/19 08:49	08/23/19 18:57	1
Chromium	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:57	1
Cobalt	ND	0.050	mg/L	08/23/19 08:49	08/23/19 18:57	1
Copper	ND	0.025	mg/L	08/23/19 08:49	08/23/19 18:57	1
Iron	2.2	0.10	mg/L	08/23/19 08:49	08/23/19 18:57	1
Lead	ND	0.0030	mg/L	08/23/19 08:49	08/23/19 18:57	1
Magnesium	30.5	5.0	mg/L	08/23/19 08:49	08/23/19 18:57	1
Manganese	0.12	0.015	mg/L	08/23/19 08:49	08/23/19 18:57	1
Nickel	ND	0.040	mg/L	08/23/19 08:49	08/23/19 18:57	1
Potassium	ND	5.0	mg/L	08/23/19 08:49	08/23/19 18:57	1
Silver	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:57	1
Sodium	15.0	5.0	mg/L	08/23/19 08:49	08/23/19 18:57	1
Thallium	ND	0.010	mg/L	08/23/19 08:49	08/23/19 18:57	1
Vanadium	ND	0.050	mg/L	08/23/19 08:49	08/23/19 18:57	1
Zinc	ND	0.020	mg/L	08/23/19 08:49	08/23/19 18:57	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:51	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:51	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:51	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:51	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:51	1
Boron, Dissolved	0.021		0.020		mg/L		08/23/19 08:45	08/23/19 20:51	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:51	1
Calcium, Dissolved	122		5.0		mg/L		08/23/19 08:45	08/23/19 20:51	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:51	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:51	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:51	1
Iron, Dissolved	0.16		0.10		mg/L		08/23/19 08:45	08/23/19 20:51	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:51	1
Magnesium, Dissolved	41.9		5.0		mg/L		08/23/19 08:45	08/23/19 20:51	1
Manganese, Dissolved	0.16		0.015		mg/L		08/23/19 08:45	08/23/19 20:51	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:51	1

Eurofins TestAmerica, Buffalo

Page 47 of 314

6

3

5

7

9

11 12

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(I)

Lab Sample ID: 480-157980-7

Date Collected: 08/21/19 13:55 Matrix: Ground Water

Method: 6010C - Metals (ICP) - I	Dissolved	(Continued)							
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fac
Potassium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 20:51	1
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:51	1
Sodium, Dissolved	63.5		5.0		mg/L		08/23/19 08:45		1
Thallium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:51	1
Vanadium, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:51	1
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:51	1
Method: 6020A - Metals (ICP/MS	S)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:53	1
Method: 6020A - Metals (ICP/MS	S) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium, Dissolved	ND		0.0010		mg/L		08/23/19 08:37	08/24/19 10:51	1
Method: 7470A - Mercury (CVA	4)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:51	1
Method: 7470A - Mercury (CVA	A) - Disso	lved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	ND		0.00020		mg/L		08/28/19 11:32	08/28/19 14:11	1
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.40		mg/L			08/27/19 15:56	2
Alkalinity, Total	285		15.0		mg/L			08/26/19 23:57	3
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:45	1
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/24/19 08:41	08/26/19 10:32	1
Nitrate	0.061		0.050		mg/L as N			08/22/19 21:16	1
Chemical Oxygen Demand	5.9		5.0		mg/L			08/23/19 18:15	1
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	1
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 11:55	1
Phenolics, Total Recoverable	0.0080	В	0.0050		mg/L		09/05/19 23:15	09/08/19 10:57	1
Hardness	324		2.0		mg/L			08/29/19 13:45	1
Total Dissolved Solids	438		10.0		mg/L			08/23/19 08:29	1
Chloride	24.8		1.0		mg/L			08/27/19 15:56	2
Sulfate	53.4		4.0		mg/L			08/27/19 15:56	2
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 18:45	-
Total Organic Carbon	ND		1.0		mg/L			08/23/19 13:52	1
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Color	5.00		0.0100		Color Units	_		08/23/19 10:10	1
Method: Field Sampling - Field									
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fac
oH, Field	7.53				SU			08/21/19 13:55	1
Specific Conductance	675				umhos/cm			08/21/19 13:55	1
Field EH/ORP	-22.0				millivolts			08/21/19 13:55	1
Temperature, Field	14.9				Degrees C			08/21/19 13:55	1
Odor	No				NONE			08/21/19 13:55	1
Oddi	140				NONE			00/21/19 13.33	

Eurofins TestAmerica, Buffalo

Page 48 of 314

2

3

5

e S

10

12

14

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(I)

Lab Sample ID: 480-157980-7

Date Collected: 08/21/19 13:55 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Fiel	d Sampling (Continue	ed)						
Analyte	Result Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	42.25			ft			08/21/19 13:55	1
Depth to Water from Top of Casing	24.77			ft			08/21/19 13:55	1

3

5

6

8

10

11 10

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(S)

Date Collected: 08/21/19 14:10 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-8

Matrix: Ground Water

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane		5.0	ug/L			08/22/19 17:26	1
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 17:26	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 17:26	1
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 17:26	1
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 17:26	1
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 17:26	1
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 17:26	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 17:26	1
1,2-Dibromoethane	ND	5.0	ug/L			08/22/19 17:26	1
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 17:26	1
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 17:26	1
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 17:26	1
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 17:26	1
1,4-Dioxane	ND	50	ug/L			08/22/19 17:26	1
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 17:26	1
2-Hexanone	ND	10	ug/L			08/22/19 17:26	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 17:26	1
Acetone	ND	5.0	ug/L			08/22/19 17:26	1
Acetonitrile	ND	100	ug/L			08/22/19 17:26	
Benzene	ND	5.0	ug/L			08/22/19 17:26	1
Bromochloromethane	ND	5.0	ug/L			08/22/19 17:26	1
Bromodichloromethane	ND	5.0	ug/L			08/22/19 17:26	1
Bromoform	ND	5.0	ug/L			08/22/19 17:26	1
Bromomethane	ND	5.0	ug/L			08/22/19 17:26	1
Carbon disulfide	ND	5.0	ug/L			08/22/19 17:26	1
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 17:26	1
Chlorobenzene	ND	5.0	ug/L			08/22/19 17:26	1
Chloroethane	ND	5.0	ug/L			08/22/19 17:26	1
Chloroform	ND	5.0	ug/L			08/22/19 17:26	1
Chloromethane	ND	5.0	ug/L			08/22/19 17:26	1
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 17:26	1
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 17:26	1
Dibromochloromethane	ND	5.0	ug/L			08/22/19 17:26	
Dibromomethane	ND	5.0	ug/L			08/22/19 17:26	
Ethylbenzene	ND	5.0	ug/L			08/22/19 17:26	1
Iodomethane	ND	5.0	ug/L			08/22/19 17:26	
m,p-Xylene	ND	5.0	ug/L			08/22/19 17:26	
Methylene Chloride	ND	5.0	ug/L			08/22/19 17:26	1
o-Xylene	ND	5.0	ug/L			08/22/19 17:26	1
Styrene	ND	5.0	ug/L			08/22/19 17:26	
Tetrachloroethene	ND	5.0	ug/L			08/22/19 17:26	1
Tetrahydrofuran	ND	10	ug/L			08/22/19 17:26	1
Toluene			.			08/22/19 17:26	
trans-1,2-Dichloroethene	ND ND	5.0 5.0	ug/L ug/L			08/22/19 17:26	1
trans-1,3-Dichloropropene	ND ND	5.0 5.0	_			08/22/19 17:26	1
trans-1,4-Dichloro-2-butene			ug/L			08/22/19 17:26	
Trichloroethene	ND ND	10 5.0	ug/L				1
	ND ND	5.0 5.0	ug/L			08/22/19 17:26	1
Trichlorofluoromethane Vinyl acetate	ND ND	5.0 50	ug/L ug/L			08/22/19 17:26 08/22/19 17:26	1

Eurofins TestAmerica, Buffalo

9/30/2019

Page 50 of 314

G

3

O

8

10

12

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(S)

Date Collected: 08/21/19 14:10
Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-8

Matrix: Ground Water

Method: 8260C - Volatile Or	ganic Compoι	ınds by G	C/MS (Contir	iued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 17:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	113		77 - 120			-		08/22/19 17:26	1
4-Bromofluorobenzene (Surr)	104		73 - 120					08/22/19 17:26	1
Toluene-d8 (Surr)	108		80 - 120					08/22/19 17:26	1

Method: 6010C - Metals (ICF Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.33	0.20		mg/L		08/23/19 08:49	08/23/19 19:01	1
Antimony	ND	0.015		mg/L		08/23/19 08:49	08/23/19 19:01	1
Arsenic	ND	0.010		mg/L		08/23/19 08:49	08/23/19 19:01	1
Barium	ND	0.20		mg/L		08/23/19 08:49	08/23/19 19:01	1
Beryllium	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 19:01	1
Boron	0.031	0.020		mg/L		08/23/19 08:49	08/23/19 19:01	1
Cadmium	ND	0.0050		mg/L		08/23/19 08:49	08/23/19 19:01	1
Calcium	188	5.0		mg/L		08/23/19 08:49	08/23/19 19:01	1
Chromium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 19:01	1
Cobalt	ND	0.050		mg/L		08/23/19 08:49	08/23/19 19:01	1
Copper	ND	0.025		mg/L		08/23/19 08:49	08/23/19 19:01	1
Iron	2.2	0.10		mg/L		08/23/19 08:49	08/23/19 19:01	1
Lead	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 19:01	1
Magnesium	57.6	5.0		mg/L		08/23/19 08:49	08/23/19 19:01	1
Manganese	0.59	0.015		mg/L		08/23/19 08:49	08/23/19 19:01	1
Nickel	ND	0.040		mg/L		08/23/19 08:49	08/23/19 19:01	1
Potassium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 19:01	1
Silver	ND	0.010		mg/L		08/23/19 08:49	08/23/19 19:01	1
Sodium	39.6	5.0		mg/L		08/23/19 08:49	08/23/19 19:01	1
Thallium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 19:01	1
Vanadium	ND	0.050		mg/L		08/23/19 08:49	08/23/19 19:01	1
Zinc	ND	0.020		mg/L		08/23/19 08:49	08/23/19 19:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:55	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:55	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:55	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:55	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:55	1
Boron, Dissolved	0.035		0.020		mg/L		08/23/19 08:45	08/23/19 20:55	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:55	1
Calcium, Dissolved	83.1		5.0		mg/L		08/23/19 08:45	08/23/19 20:55	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:55	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:55	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:55	1
Iron, Dissolved	ND		0.10		mg/L		08/23/19 08:45	08/23/19 20:55	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:55	1
Magnesium, Dissolved	28.9		5.0		mg/L		08/23/19 08:45	08/23/19 20:55	1
Manganese, Dissolved	0.093		0.015		mg/L		08/23/19 08:45	08/23/19 20:55	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:55	1

Eurofins TestAmerica, Buffalo

Page 51 of 314

2

<u>ی</u>

5

7

9

11 12

14

15

<u> 17</u>

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(S)

Date Collected: 08/21/19 14:10

Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-8

Matrix: Ground Water

Method: 6010C - Metals (ICP) - Dis Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 20:55	
Silver, Dissolved	ND		0.010		mg/L			08/23/19 20:55	
Sodium, Dissolved	15.8		5.0		mg/L			08/23/19 20:55	
Thallium, Dissolved	ND		0.010		mg/L			08/23/19 20:55	
Vanadium, Dissolved	ND		0.050		mg/L			08/23/19 20:55	
Zinc, Dissolved	ND		0.020		mg/L			08/23/19 20:55	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L	_	08/23/19 08:37	08/24/19 11:56	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		08/23/19 08:37	08/24/19 10:54	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:53	
Method: 7470A - Mercury (CVAA) -	Disso	lved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L	_	08/28/19 11:32	08/28/19 14:12	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/27/19 16:11	
Alkalinity, Total	477		25.0		mg/L			08/26/19 23:58	
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:46	
Total Kjeldahl Nitrogen	0.49		0.15		mg/L as N		08/29/19 09:01	09/01/19 11:48	
Nitrate	ND		0.050		mg/L as N			08/22/19 20:33	
Chemical Oxygen Demand	12.6		5.0		mg/L			08/23/19 18:15	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 11:57	
Phenolics, Total Recoverable	0.0061	В	0.0050		mg/L		09/05/19 23:15	09/08/19 11:04	
Hardness	660		10.0		mg/L			08/29/19 13:45	
Total Dissolved Solids	927		10.0		mg/L			08/23/19 08:29	
Chloride	46.0		2.5		mg/L			08/27/19 16:11	
Sulfate	237		10.0		mg/L			08/27/19 16:11	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/22/19 18:45	
Total Organic Carbon	1.7		1.0		mg/L			08/23/19 14:07	
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units			08/23/19 10:10	
Method: Field Sampling - Field Sampling		0	Nove	NAN-	1124	_	D	A 1	D.: -
Analyte		Qualifier	NONE	NONE		_ D	Prepared	Analyzed	Dil Fa
pH, Field	7.02				SU			08/21/19 14:10	
Specific Conductance	1319				umhos/cm			08/21/19 14:10	
Field EH/ORP	-14.0				millivolts			08/21/19 14:10	
Temperature, Field	16.1				Degrees C NONE			08/21/19 14:10	
Odor	No							08/21/19 14:10	

Eurofins TestAmerica, Buffalo

Page 52 of 314

3

5

7

10

12

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(S)

Lab Sample ID: 480-157980-8

Date Collected: 08/21/19 14:10

Date Received: 08/21/19 17:30

Matrix: Ground Water

Method: Field Sampling - Field Sampling (Continued) Analyte Result Qualifier NONE **NONE** Unit D Analyzed Dil Fac Prepared **Well Depth** 24.29 ft 08/21/19 14:10 ft 08/21/19 14:10 **Depth to Water from Top of** 12.12 Casing

Eurofins TestAmerica, Buffalo

2

4

5

7

6

11

14

14

17

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(I)

Lab Sample ID: 480-157980-9

Date Collected: 08/21/19 12:35 **Matrix: Ground Water** Date Received: 08/21/19 17:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 17:52	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 17:52	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 17:52	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 17:52	
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 17:52	
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 17:52	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 17:52	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 17:52	
1,2-Dibromoethane	ND	5.0	ug/L			08/22/19 17:52	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 17:52	
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 17:52	
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 17:52	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 17:52	
1,4-Dioxane	ND	50	ug/L			08/22/19 17:52	
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 17:52	
2-Hexanone	ND	10	ug/L			08/22/19 17:52	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 17:52	
Acetone	ND	5.0	ug/L			08/22/19 17:52	
Acetonitrile	ND	100	ug/L			08/22/19 17:52	
Benzene	ND	5.0	ug/L			08/22/19 17:52	
Bromochloromethane	ND	5.0	ug/L			08/22/19 17:52	
Bromodichloromethane	ND	5.0	ug/L			08/22/19 17:52	
Bromoform	ND	5.0	ug/L			08/22/19 17:52	
Bromomethane	ND	5.0	ug/L			08/22/19 17:52	
Carbon disulfide	ND	5.0	ug/L			08/22/19 17:52	
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 17:52	
Chlorobenzene	ND	5.0	ug/L			08/22/19 17:52	
Chloroethane	ND	5.0	ug/L ug/L			08/22/19 17:52	
Chloroform	ND ND	5.0	-			08/22/19 17:52	
Chloromethane	ND	5.0	ug/L ug/L			08/22/19 17:52	
cis-1,2-Dichloroethene	ND	5.0	.			08/22/19 17:52	
,	ND ND	5.0	ug/L			08/22/19 17:52	
cis-1,3-Dichloropropene			ug/L				
Dibromochloromethane	ND	5.0	ug/L			08/22/19 17:52	
Dibromomethane	ND ND	5.0	ug/L			08/22/19 17:52	
Ethylbenzene		5.0	ug/L			08/22/19 17:52	
lodomethane	ND	5.0	ug/L			08/22/19 17:52	
m,p-Xylene	ND	5.0	ug/L			08/22/19 17:52	
Methylene Chloride	ND	5.0	ug/L			08/22/19 17:52	
o-Xylene	ND	5.0	ug/L			08/22/19 17:52	
Styrene	ND	5.0	ug/L			08/22/19 17:52	
Tetrachloroethene	ND	5.0	ug/L			08/22/19 17:52	
Tetrahydrofuran	ND	10	ug/L			08/22/19 17:52	
Toluene	ND	5.0	ug/L			08/22/19 17:52	
trans-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 17:52	
trans-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 17:52	
trans-1,4-Dichloro-2-butene	ND	10	ug/L			08/22/19 17:52	
Trichloroethene	ND	5.0	ug/L			08/22/19 17:52	
Trichlorofluoromethane	ND	5.0	ug/L			08/22/19 17:52	

Eurofins TestAmerica, Buffalo

Page 54 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(I)

Lab Sample ID: 480-157980-9

Matrix: Ground Water

Date Collected: 08/21/19 12:35 Date Received: 08/21/19 17:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 17:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120					08/22/19 17:52	1
4-Bromofluorobenzene (Surr)	92		73 - 120					08/22/19 17:52	1
Toluene-d8 (Surr)	95		80 - 120					08/22/19 17:52	1

Method: 6010C - Metals (ICP) Analyte	Result Q	Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	mg/L	08/23/19 08:49	08/23/19 19:16	1
Antimony	ND	0.015	mg/L	08/23/19 08:49	08/23/19 19:16	1
Arsenic	ND	0.010	mg/L	08/23/19 08:49	08/23/19 19:16	1
Barium	ND	0.20	mg/L	08/23/19 08:49	08/23/19 19:16	1
Beryllium	ND	0.0030	mg/L	08/23/19 08:49	08/23/19 19:16	1
Boron	0.037	0.020	mg/L	08/23/19 08:49	08/23/19 19:16	1
Cadmium	ND	0.0050	mg/L	08/23/19 08:49	08/23/19 19:16	1
Calcium	107	5.0	mg/L	08/23/19 08:49	08/23/19 19:16	1
Chromium	ND	0.010	mg/L	08/23/19 08:49	08/23/19 19:16	1
Cobalt	ND	0.050	mg/L	08/23/19 08:49	08/23/19 19:16	1
Copper	ND	0.025	mg/L	08/23/19 08:49	08/23/19 19:16	1
Iron	1.3	0.10	mg/L	08/23/19 08:49	08/23/19 19:16	1
Lead	ND	0.0030	mg/L	08/23/19 08:49	08/23/19 19:16	1
Magnesium	37.2	5.0	mg/L	08/23/19 08:49	08/23/19 19:16	1
Manganese	0.12	0.015	mg/L	08/23/19 08:49	08/23/19 19:16	1
Nickel	ND	0.040	mg/L	08/23/19 08:49	08/23/19 19:16	1
Potassium	ND	5.0	mg/L	08/23/19 08:49	08/23/19 19:16	1
Silver	ND	0.010	mg/L	08/23/19 08:49	08/23/19 19:16	1
Sodium	18.6	5.0	mg/L	08/23/19 08:49	08/23/19 19:16	1
Thallium	ND	0.010	mg/L	08/23/19 08:49	08/23/19 19:16	1
Vanadium	ND	0.050	mg/L	08/23/19 08:49	08/23/19 19:16	1
Zinc	ND	0.020	mg/L	08/23/19 08:49	08/23/19 19:16	1

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:58	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:58	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:58	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 20:58	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:58	1
Boron, Dissolved	0.035		0.020		mg/L		08/23/19 08:45	08/23/19 20:58	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 20:58	1
Calcium, Dissolved	107		5.0		mg/L		08/23/19 08:45	08/23/19 20:58	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:58	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 20:58	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 20:58	1
Iron, Dissolved	0.29		0.10		mg/L		08/23/19 08:45	08/23/19 20:58	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 20:58	1
Magnesium, Dissolved	36.8		5.0		mg/L		08/23/19 08:45	08/23/19 20:58	1
Manganese, Dissolved	0.11		0.015		mg/L		08/23/19 08:45	08/23/19 20:58	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 20:58	1

Eurofins TestAmerica, Buffalo

Page 55 of 314

6

5

5

7

9

11

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(I)

Lab Sample ID: 480-157980-9

Date Collected: 08/21/19 12:35 Matrix: Ground Water Date Received: 08/21/19 17:30

Method: 6010C - Metals (ICP) - D		Qualifier	l) RL	MDi	Unit	D	Dropored	Analyzad	Dil Fa
Analyte		Qualifier	——————————————————————————————————————	MDL	Unit	. <u>–</u>	Prepared	Analyzed	DII Fa
Potassium, Dissolved	ND ND				mg/L		08/23/19 08:45	08/23/19 20:58	
Silver, Dissolved			0.010		mg/L		08/23/19 08:45	08/23/19 20:58	
Sodium, Dissolved	21.4		5.0		mg/L		08/23/19 08:45	08/23/19 20:58	
Fhallium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 20:58	
Vanadium, Dissolved	ND		0.050		mg/L			08/23/19 20:58	
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 20:58	
Method: 6020A - Metals (ICP/MS	•	0 115				_			5
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		08/23/19 08:37	08/24/19 11:58	
Method: 6020A - Metals (ICP/MS) - Dissol	ved							
Analyte `	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND	·	0.0010		mg/L	_	08/23/19 08:37	08/24/19 10:56	
Method: 7470A - Mercury (CVAA	•					_	_		
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:54	
Method: 7470A - Mercury (CVAA									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury, Dissolved	ND		0.00020		mg/L		08/28/19 11:32	08/28/19 14:13	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Bromide	ND		1.0		mg/L	_		08/27/19 16:25	
Alkalinity, Total	296		15.0		mg/L			08/26/19 23:58	
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:47	
otal Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/24/19 08:41	08/26/19 10:32	
Nitrate	ND		0.050		mg/L as N			08/22/19 20:35	
Chemical Oxygen Demand	13.7		5.0		mg/L			08/25/19 14:23	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND	F1	0.010		mg/L		09/01/19 16:04	09/03/19 11:58	
Phenolics, Total Recoverable	0.0074	B F1	0.0050		mg/L		09/05/19 23:15	09/08/19 11:04	
Hardness	408		2.0		mg/L			08/29/19 13:45	
Total Dissolved Solids	554		10.0		mg/L			08/23/19 08:29	
Chloride	52.8		2.5		mg/L			08/28/19 15:17	
Sulfate	106		10.0		mg/L			08/27/19 16:25	
Biochemical Oxygen Demand	ND		3.0		mg/L			08/22/19 18:45	
Total Organic Carbon	ND		1.0		mg/L			08/23/19 14:21	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units	_		08/23/19 10:10	
Mothed: Field Compline Field S	Samulina								
Method: Field Sampling - Field S Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fa
oH, Field	7.26				SU			08/21/19 12:35	
Specific Conductance	909				umhos/cm			08/21/19 12:35	
Field EH/ORP	-43.0				millivolts			08/21/19 12:35	
emperature, Field	17.9				Degrees C			08/21/19 12:35	
	No				NONE			08/21/19 12:35	
Odor	NO				INCHAL				

Eurofins TestAmerica, Buffalo

Page 56 of 314

2

3

5

1

9

11 12

14

13

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(I) Lab Sample ID: 480-157980-9

Date Collected: 08/21/19 12:35 **Matrix: Ground Water**

Date Received: 08/21/19 17:30

Method: Field Sampling - Fiel	ld Sampling (Continued	I)					
Analyte	Result Qualifier	NONE	NONE Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	55.52		ft			08/21/19 12:35	1
Depth to Water from Top of Casing	32.38		ft			08/21/19 12:35	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(S)

Lab Sample ID: 480-157980-10

Date Collected: 08/21/19 12:20 **Matrix: Ground Water** Date Received: 08/21/19 17:30

Method: 8260C - Volatile Orga Analyte	Result Qualif		MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	5.0	ug/L	<u> </u>		08/22/19 18:19	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/22/19 18:19	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/22/19 18:19	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/22/19 18:19	
1,1-Dichloroethane	ND	5.0	ug/L			08/22/19 18:19	
1,1-Dichloroethene	ND	5.0	ug/L			08/22/19 18:19	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/22/19 18:19	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/22/19 18:19	
1,2-Dibromoethane	ND ND	5.0	_			08/22/19 18:19	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/22/19 18:19	
<i>'</i>			ug/L				
1,2-Dichloroethane	ND	5.0	ug/L			08/22/19 18:19	
1,2-Dichloropropane	ND	5.0	ug/L			08/22/19 18:19	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/22/19 18:19	
1,4-Dioxane	ND	50	ug/L			08/22/19 18:19	
2-Butanone (MEK)	ND	5.0	ug/L			08/22/19 18:19	
2-Hexanone	ND	10	ug/L			08/22/19 18:19	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/22/19 18:19	
Acetone	ND	5.0	ug/L			08/22/19 18:19	
Acetonitrile	ND	100	ug/L			08/22/19 18:19	
Benzene	ND	5.0	ug/L			08/22/19 18:19	
Bromochloromethane	ND	5.0	ug/L			08/22/19 18:19	
Bromodichloromethane	ND	5.0	ug/L			08/22/19 18:19	
Bromoform	ND	5.0	ug/L			08/22/19 18:19	
Bromomethane	ND	5.0	ug/L			08/22/19 18:19	
Carbon disulfide	ND	5.0	ug/L			08/22/19 18:19	
Carbon tetrachloride	ND	5.0	ug/L			08/22/19 18:19	
Chlorobenzene	ND	5.0	ug/L			08/22/19 18:19	
Chloroethane	ND	5.0	ug/L			08/22/19 18:19	
Chloroform	ND	5.0	ug/L			08/22/19 18:19	
Chloromethane	ND	5.0	ug/L			08/22/19 18:19	
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/22/19 18:19	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/22/19 18:19	
Dibromochloromethane	ND	5.0	ug/L			08/22/19 18:19	
Dibromomethane	ND	5.0	ug/L			08/22/19 18:19	
Ethylbenzene	ND	5.0	ug/L			08/22/19 18:19	
odomethane	ND	5.0	ug/L			08/22/19 18:19	
n,p-Xylene	ND	5.0	ug/L			08/22/19 18:19	
Methylene Chloride	ND	5.0	ug/L			08/22/19 18:19	
o-Xylene	ND	5.0	ug/L			08/22/19 18:19	
Styrene	ND	5.0	ug/L			08/22/19 18:19	
Tetrachloroethene	ND	5.0	ug/L			08/22/19 18:19	
Tetrahydrofuran	ND	10	ug/L			08/22/19 18:19	
Toluene	ND	5.0	ug/L			08/22/19 18:19	
rans-1,2-Dichloroethene	ND ND	5.0	ug/L			08/22/19 18:19	
rans-1,3-Dichloropropene	ND ND	5.0 5.0				08/22/19 18:19	
			ug/L				
rans-1,4-Dichloro-2-butene	ND ND	10	ug/L			08/22/19 18:19	
Trichloroethene	ND	5.0	ug/L			08/22/19 18:19	
Trichlorofluoromethane	ND	5.0	ug/L			08/22/19 18:19	

Eurofins TestAmerica, Buffalo

Page 58 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(S)

Lab Sample ID: 480-157980-10

Date Collected: 08/21/19 12:20 **Matrix: Ground Water** Date Received: 08/21/19 17:30

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Vinyl chloride	ND		5.0		ug/L			08/22/19 18:19	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	107		77 - 120			•		08/22/19 18:19	1	
4-Bromofluorobenzene (Surr)	95		73 - 120					08/22/19 18:19	1	
Toluene-d8 (Surr)	95		80 - 120					08/22/19 18:19	1	

Method: 6010C - Metals (ICP) Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.30	0.20	mg/L		08/23/19 08:49	08/23/19 19:20	1
Antimony	ND	0.015	mg/L		08/23/19 08:49	08/23/19 19:20	1
Arsenic	ND	0.010	mg/L		08/23/19 08:49	08/23/19 19:20	1
Barium	0.20	0.20	mg/L		08/23/19 08:49	08/23/19 19:20	1
Beryllium	ND	0.0030	mg/L		08/23/19 08:49	08/23/19 19:20	1
Boron	0.021	0.020	mg/L		08/23/19 08:49	08/23/19 19:20	1
Cadmium	ND	0.0050	mg/L		08/23/19 08:49	08/23/19 19:20	1
Calcium	114	5.0	mg/L		08/23/19 08:49	08/23/19 19:20	1
Chromium	ND	0.010	mg/L		08/23/19 08:49	08/23/19 19:20	1
Cobalt	ND	0.050	mg/L		08/23/19 08:49	08/23/19 19:20	1
Copper	ND	0.025	mg/L		08/23/19 08:49	08/23/19 19:20	1
Iron	0.72	0.10	mg/L		08/23/19 08:49	08/23/19 19:20	1
Lead	ND	0.0030	mg/L		08/23/19 08:49	08/23/19 19:20	1
Magnesium	40.7	5.0	mg/L		08/23/19 08:49	08/23/19 19:20	1
Manganese	0.066	0.015	mg/L		08/23/19 08:49	08/23/19 19:20	1
Nickel	ND	0.040	mg/L		08/23/19 08:49	08/23/19 19:20	1
Potassium	ND	5.0	mg/L		08/23/19 08:49	08/23/19 19:20	1
Silver	ND	0.010	mg/L		08/23/19 08:49	08/23/19 19:20	1
Sodium	72.9	5.0	mg/L		08/23/19 08:49	08/23/19 19:20	1
Thallium	ND	0.010	mg/L		08/23/19 08:49	08/23/19 19:20	1
Vanadium	ND	0.050	mg/L		08/23/19 08:49	08/23/19 19:20	1
Zinc	ND	0.020	mg/L		08/23/19 08:49	08/23/19 19:20	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 21:02	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 21:02	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 21:02	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 21:02	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 21:02	1
Boron, Dissolved	0.027		0.020		mg/L		08/23/19 08:45	08/23/19 21:02	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 21:02	1
Calcium, Dissolved	177		5.0		mg/L		08/23/19 08:45	08/23/19 21:02	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 21:02	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 21:02	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 21:02	1
Iron, Dissolved	0.61		0.10		mg/L		08/23/19 08:45	08/23/19 21:02	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 21:02	1
Magnesium, Dissolved	53.5		5.0		mg/L		08/23/19 08:45	08/23/19 21:02	1
Manganese, Dissolved	0.57		0.015		mg/L		08/23/19 08:45	08/23/19 21:02	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 21:02	1

Eurofins TestAmerica, Buffalo

Page 59 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(S)

Date Collected: 08/21/19 12:20

Lab Sample ID: 480-157980-10

Matrix: Ground Water

Date Received: 08/21/19 17:30

Potassium, Dissolved		(Continued Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	ND		5.0		mg/L	_	08/23/19 08:45	08/23/19 21:02	
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 21:02	
Sodium, Dissolved	33.9		5.0		mg/L		08/23/19 08:45	08/23/19 21:02	
Thallium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 21:02	
Vanadium, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 21:02	
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 21:02	
Method: 6020A - Metals (ICP/MS)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L	_	08/23/19 08:37	08/24/19 12:00	
Method: 6020A - Metals (ICP/MS) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	08/23/19 08:37	08/24/19 10:58	
Method: 7470A - Mercury (CVAA	a)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L	_	08/26/19 12:12	08/26/19 15:55	
Method: 7470A - Mercury (CVAA									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L	_	08/28/19 11:32	08/28/19 14:15	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L	_		08/27/19 16:40	
Alkalinity, Total	382		20.0		mg/L			08/26/19 23:58	
Ammonia (as N)	ND		0.050		mg/L as N			08/22/19 11:48	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/24/19 08:41	08/26/19 10:38	
Nitrate	0.079		0.050		mg/L as N			08/22/19 21:17	
Chemical Oxygen Demand	7.2		5.0		mg/L			08/27/19 11:23	
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	
Cyanide, Total	ND		0.010		mg/L		09/01/19 16:04	09/03/19 12:01	
Phenolics, Total Recoverable	0.0076	В	0.0050		mg/L		09/05/19 23:15	09/08/19 11:04	
Hardness	450		5.0		mg/L			08/29/19 13:45	
Total Dissolved Solids	732		10.0		mg/L			08/23/19 08:29	
Chloride	156		2.5		mg/L			08/27/19 16:40	
Sulfate	40.0		10.0		mg/L			08/27/19 16:40	
	ND		2.0		mg/L			08/22/19 18:45	
Biochemical Oxygen Demand			1.0		mg/L			08/23/19 16:23	
Biochemical Oxygen Demand Total Organic Carbon	ND				Unit	D	Prepared	Analyzed	Dil Fa
Total Organic Carbon Analyte	Result	Qualifier	RL	RL					
Total Organic Carbon Analyte		Qualifier	0.0100 —		Color Units	- =		08/23/19 10:10	
Total Organic Carbon Analyte Color Method: Field Sampling - Field S	Result 10.0 Sampling		0.0100		Color Units		<u> </u>	08/23/19 10:10	
Total Organic Carbon Analyte Color Method: Field Sampling - Field S Analyte	Result 10.0 Sampling Result	Qualifier Qualifier		NONE	Color Units Unit	 _ D	Prepared	08/23/19 10:10 Analyzed	
Total Organic Carbon Analyte Color Method: Field Sampling - Field S Analyte pH, Field	Result 10.0 Sampling Result 7.23		0.0100		Color Units Unit SU		<u> </u>	08/23/19 10:10 Analyzed 08/21/19 12:20	
Total Organic Carbon Analyte Color Method: Field Sampling - Field S Analyte pH, Field Specific Conductance	Result 10.0 Sampling Result 7.23 1186		0.0100		Color Units Unit SU umhos/cm		<u> </u>	08/23/19 10:10 Analyzed 08/21/19 12:20 08/21/19 12:20	
Total Organic Carbon Analyte Color Method: Field Sampling - Field S Analyte pH, Field Specific Conductance Field EH/ORP	Result 10.0 Sampling Result 7.23		0.0100		Unit SU umhos/cm millivolts		<u> </u>	08/23/19 10:10 Analyzed 08/21/19 12:20 08/21/19 12:20 08/21/19 12:20	
Total Organic Carbon Analyte Color Method: Field Sampling - Field S Analyte pH, Field Specific Conductance Field EH/ORP Temperature, Field	Result 10.0 Sampling Result 7.23 1186 -4.0 18.1		0.0100		Color Units Unit SU umhos/cm millivolts Degrees C		<u> </u>	08/23/19 10:10 Analyzed 08/21/19 12:20 08/21/19 12:20	
	Result 10.0 Sampling Result 7.23 1186 -4.0		0.0100		Unit SU umhos/cm millivolts		<u> </u>	08/23/19 10:10 Analyzed 08/21/19 12:20 08/21/19 12:20 08/21/19 12:20	Dil Fa

Eurofins TestAmerica, Buffalo

9/30/2019

Page 60 of 314

2

3

6

8

10

12

5

__ 17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(S)

Lab Sample ID: 480-157980-10

Date Collected: 08/21/19 12:20 Matrix: Ground Water

Date Received: 08/21/19 17:30

Method: Field Sampling - Field Sampling (Continued)										
Analyte	Result Q	ualifier NON	E NONE	Unit	D	Prepared	Analyzed	Dil Fac		
Well Depth	29.00			ft			08/21/19 12:20	1		
Depth to Water from Top of Casing	15.05			ft			08/21/19 12:20	1		

2

4

5

6

8

10

12

4 4

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

1,2,3-Trichloropropane

1,2-Dibromoethane

1,2-Dichlorobenzene

1,2-Dichloroethane

1,2-Dichloropropane

1.4-Dichlorobenzene

2-Butanone (MEK)

1,4-Dioxane

2-Hexanone

Acetone

Benzene

Acetonitrile

Bromoform

Dibromochloromethane

Trichlorofluoromethane

Vinyl acetate

1,2-Dibromo-3-Chloropropane

4-Methyl-2-pentanone (MIBK)

Lab Sample ID: 480-157980-11 Date Collected: 08/21/19 00:00

5.0

10

5.0

5.0

5.0

5.0

5.0

Matrix: Water

Analyzed

08/22/19 18:46

08/22/19 18:46

08/22/19 18:46

08/22/19 18:46

Dil Fac

Date Received: 08/21/19 17:30 Method: 8260C - Volatile Organic Compounds by GC/MS Result Qualifier RL Analyte **MDL** Unit D Prepared 1,1,1,2-Tetrachloroethane $\overline{\mathsf{ND}}$ 5.0 ug/L 1.1.1-Trichloroethane ND 5.0 ug/L ND 1,1,2,2-Tetrachloroethane 5.0 ug/L 1,1,2-Trichloroethane ND 5.0 ug/L ND 5.0 ug/L 1,1-Dichloroethane 1.1-Dichloroethene ND 5.0 ug/L

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

ND

08/22/19 18:46 08/22/19 18:46 08/22/19 18:46 08/22/19 18:46 ug/L 08/22/19 18:46 08/22/19 18:46

ug/L ug/L 08/22/19 18:46 ug/L 08/22/19 18:46 ug/L 08/22/19 18:46 ug/L 08/22/19 18:46 ug/L 08/22/19 18:46

50 ug/L 08/22/19 18:46 5.0 ug/L 08/22/19 18:46 10 ug/L 08/22/19 18:46 10 ug/L 08/22/19 18:46 5.0 ug/L 08/22/19 18:46 100 ug/L 08/22/19 18:46 5.0 ug/L 08/22/19 18:46

ND Bromochloromethane ND 5.0 ug/L 08/22/19 18:46 Bromodichloromethane ND 5.0 ug/L 08/22/19 18:46 NΩ 5.0 ug/L 08/22/19 18:46 Bromomethane 08/22/19 18:46 ND 5.0 ug/L Carbon disulfide ND 5.0 ug/L 08/22/19 18:46 Carbon tetrachloride ND

ug/L

ug/L

ug/L

ug/L

5.0

5.0

Chlorobenzene ND 5.0 ug/L 08/22/19 18:46 Chloroethane 5.0 ND ug/L 08/22/19 18:46 Chloroform ND 5.0 ug/L 08/22/19 18:46 Chloromethane ND 5.0 ug/L 08/22/19 18:46 5.0 ND cis-1,2-Dichloroethene ug/L 08/22/19 18:46 cis-1,3-Dichloropropene ND 5.0 ug/L 08/22/19 18:46

Dibromomethane ND 5.0 ug/L 08/22/19 18:46 Ethylbenzene ND 5.0 ug/L 08/22/19 18:46 Iodomethane ND 5.0 ug/L 08/22/19 18:46 m,p-Xylene ND 5.0 ug/L 08/22/19 18:46 Methylene Chloride 5.0 ug/L ND 08/22/19 18:46 ND ug/L o-Xylene 5.0 08/22/19 18:46 Styrene ND 5.0 ug/L 08/22/19 18:46

Tetrachloroethene ND 5.0 ug/L 08/22/19 18:46 Tetrahydrofuran ND 10 ug/L 08/22/19 18:46 Toluene ND 5.0 ug/L 08/22/19 18:46 trans-1,2-Dichloroethene ND 5.0 ug/L 08/22/19 18:46 trans-1,3-Dichloropropene ND 5.0 ug/L 08/22/19 18:46 trans-1,4-Dichloro-2-butene ND 10 ug/L 08/22/19 18:46 Trichloroethene ND 5.0 ug/L 08/22/19 18:46

Eurofins TestAmerica, Buffalo

08/22/19 18:46

08/22/19 18:46

5.0

50

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-157980-11

Date Collected: 08/21/19 00:00 **Matrix: Water**

Date Received: 08/21/19 17:30

Method: 8260C -	Volatile Organic	Compounds by	GC/MS (Conti	nued)
Δnalvte		Result Qualifier	RI	MDI

	u	anac a, c							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/22/19 18:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		77 - 120			-		08/22/19 18:46	1
4-Bromofluorobenzene (Surr)	94		73 - 120					08/22/19 18:46	1
Toluene-d8 (Surr)	94		80 - 120					08/22/19 18:46	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(I)

Lab Sample ID: 480-158093-1

Matrix: Ground Water

Date Collected: 08/23/19 11:12 Date Received: 08/23/19 16:45

Method: 8260C - Volatile Org	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/24/19 20:54	1
1,1,1-Trichloroethane	ND	5.0	ug/L			08/24/19 20:54	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/24/19 20:54	1
1,1,2-Trichloroethane	ND	5.0	ug/L			08/24/19 20:54	1
1,1-Dichloroethane	ND	5.0	ug/L			08/24/19 20:54	1
1,1-Dichloroethene	ND	5.0	ug/L			08/24/19 20:54	1
1,2,3-Trichloropropane	ND	5.0	ug/L			08/24/19 20:54	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/24/19 20:54	1
1,2-Dibromoethane	ND	5.0	ug/L			08/24/19 20:54	1
1,2-Dichlorobenzene	ND	5.0	ug/L			08/24/19 20:54	1
1,2-Dichloroethane	ND	5.0	ug/L			08/24/19 20:54	1
1,2-Dichloropropane	ND	5.0	ug/L			08/24/19 20:54	1
1,4-Dichlorobenzene	ND	5.0	ug/L			08/24/19 20:54	1
1,4-Dioxane	ND	50	ug/L			08/24/19 20:54	1
2-Butanone (MEK)	ND	5.0	ug/L			08/24/19 20:54	1
2-Hexanone	ND	10	ug/L			08/24/19 20:54	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/24/19 20:54	1
Acetone	ND	5.0	ug/L			08/24/19 20:54	1
Acetonitrile	ND	100	ug/L			08/24/19 20:54	1
Benzene	ND	5.0	ug/L			08/24/19 20:54	1
Bromochloromethane	ND	5.0	ug/L			08/24/19 20:54	1
Bromodichloromethane	ND	5.0	ug/L			08/24/19 20:54	1
Bromoform	ND	5.0	ug/L			08/24/19 20:54	1
Bromomethane	ND	5.0	ug/L			08/24/19 20:54	1
Carbon disulfide	ND	5.0	ug/L			08/24/19 20:54	· · · · · · · 1
Carbon tetrachloride	ND	5.0	ug/L			08/24/19 20:54	1
Chlorobenzene	ND	5.0	ug/L			08/24/19 20:54	1
Chloroethane	ND	5.0	ug/L			08/24/19 20:54	
Chloroform	ND	5.0	ug/L			08/24/19 20:54	1
Chloromethane	ND	5.0	ug/L			08/24/19 20:54	1
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/24/19 20:54	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/24/19 20:54	1
Dibromochloromethane	ND	5.0	ug/L			08/24/19 20:54	1
Dibromomethane	ND	5.0	ug/L			08/24/19 20:54	
Ethylbenzene	ND	5.0	ug/L			08/24/19 20:54	1
Iodomethane	ND	5.0	ug/L			08/24/19 20:54	1
m,p-Xylene	ND	5.0				08/24/19 20:54	
Methylene Chloride	ND	5.0	ug/L			08/24/19 20:54	_
•	ND ND		ug/L			08/24/19 20:54	1
o-Xylene		5.0	ug/L				1
Styrene	ND	5.0	ug/L			08/24/19 20:54	1
Tetrachloroethene	ND	5.0	ug/L			08/24/19 20:54	1
Tetrahydrofuran	ND	10	ug/L			08/24/19 20:54	1
Toluene	ND	5.0	ug/L			08/24/19 20:54	1
trans-1,2-Dichloroethene	ND	5.0	ug/L			08/24/19 20:54	1
trans-1,3-Dichloropropene	ND	5.0	ug/L			08/24/19 20:54	1
trans-1,4-Dichloro-2-butene	ND	10	ug/L			08/24/19 20:54	1
Trichloroethene	ND	5.0	ug/L			08/24/19 20:54	1
Trichlorofluoromethane	ND	5.0	ug/L			08/24/19 20:54	1
Vinyl acetate	ND	50	ug/L			08/24/19 20:54	1

Eurofins TestAmerica, Buffalo

Page 64 of 314

S

3

6

8

10

13

_

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(I)

Lab Sample ID: 480-158093-1

Matrix: Ground Water

Date Collected: 08/23/19 11:12 Date Received: 08/23/19 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/24/19 20:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		77 - 120					08/24/19 20:54	1
4-Bromofluorobenzene (Surr)	111		73 - 120					08/24/19 20:54	1
Toluene-d8 (Surr)	89		80 - 120					08/24/19 20:54	1

Method: 6010C - Metals (ICP) Analyte	Result (Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	7.8	0.20	mg/L	08/27/19 08:48	08/27/19 16:47	1
Antimony	ND	0.015	mg/L	08/27/19 08:48	08/27/19 16:47	1
Arsenic	ND	0.010	mg/L	08/27/19 08:48	08/27/19 16:47	1
Barium	ND	0.20	mg/L	08/27/19 08:48	08/27/19 16:47	1
Beryllium	ND	0.0030	mg/L	08/27/19 08:48	08/27/19 16:47	1
Boron	0.047	0.020	mg/L	08/27/19 08:48	08/27/19 16:47	1
Cadmium	ND	0.0050	mg/L	08/27/19 08:48	08/27/19 16:47	1
Calcium	129	5.0	mg/L	08/27/19 08:48	08/27/19 16:47	1
Chromium	ND	0.010	mg/L	08/27/19 08:48	08/27/19 16:47	1
Cobalt	ND	0.050	mg/L	08/27/19 08:48	08/27/19 16:47	1
Copper	ND	0.025	mg/L	08/27/19 08:48	08/27/19 16:47	1
Iron	10.1	0.10	mg/L	08/27/19 08:48	08/27/19 16:47	1
Lead	0.013	0.0030	mg/L	08/27/19 08:48	08/27/19 16:47	1
Magnesium	31.7	5.0	mg/L	08/27/19 08:48	08/27/19 16:47	1
Manganese	0.77	0.015	mg/L	08/27/19 08:48	08/27/19 16:47	1
Nickel	ND	0.040	mg/L	08/27/19 08:48	08/27/19 16:47	1
Potassium	5.0	5.0	mg/L	08/27/19 08:48	08/27/19 16:47	1
Silver	ND	0.010	mg/L	08/27/19 08:48	08/27/19 16:47	1
Sodium	9.5	5.0	mg/L	08/27/19 08:48	08/27/19 16:47	1
Thallium	ND	0.010	mg/L	08/27/19 08:48	08/27/19 16:47	1
Vanadium	ND	0.050	mg/L	08/27/19 08:48	08/27/19 16:47	1
Zinc	0.039	0.020	mg/L	08/27/19 08:48	08/27/19 16:47	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/27/19 08:48	08/27/19 19:12	1
Antimony, Dissolved	ND		0.020		mg/L		08/27/19 08:48	08/27/19 19:12	1
Arsenic, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:12	1
Barium, Dissolved	ND		0.20		mg/L		08/27/19 08:48	08/27/19 19:12	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 19:12	1
Boron, Dissolved	0.035		0.020		mg/L		08/27/19 08:48	08/27/19 19:12	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/27/19 08:48	08/27/19 19:12	1
Calcium, Dissolved	117		5.0		mg/L		08/27/19 08:48	08/27/19 19:12	1
Chromium, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:12	1
Cobalt, Dissolved	ND		0.050		mg/L		08/27/19 08:48	08/27/19 19:12	1
Copper, Dissolved	ND		0.025		mg/L		08/27/19 08:48	08/27/19 19:12	1
Iron, Dissolved	ND		0.10		mg/L		08/27/19 08:48	08/27/19 19:12	1
Lead, Dissolved	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 19:12	1
Magnesium, Dissolved	28.0		5.0		mg/L		08/27/19 08:48	08/27/19 19:12	1
Manganese, Dissolved	0.59		0.015		mg/L		08/27/19 08:48	08/27/19 19:12	1
Nickel, Dissolved	ND		0.040		mg/L		08/27/19 08:48	08/27/19 19:12	1

Eurofins TestAmerica, Buffalo

Page 65 of 314

6

3

5

7

10

12

14

16

Ц

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(I)

Lab Sample ID: 480-158093-1

Date Collected: 08/23/19 11:12 Matrix: Ground Water
Date Received: 08/23/19 16:45

Method: 6020A - Metals (ICP/MS) - Danalyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - Danalyte Mercury Method: 7470A - Mercury (CVAA) - Danalyte Mercury, Dissolved General Chemistry Analyte Bromide	ND Dissol Result ND Result ND Disso Result	Qualifier Qualifier	5.0 0.010 5.0 0.010 0.050 0.020 RL 0.0050 RL 0.0010	MDL	mg/L mg/L mg/L mg/L mg/L mg/L Unit mg/L			08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 Analyzed 08/27/19 19:06	Dil Fa
Sodium, Dissolved Thallium, Dissolved Vanadium, Dissolved Vanadium, Dissolved Vanadium, Dissolved Victoria (CP/MS) Analyte Selenium Method: 6020A - Metals (ICP/MS) - Dissolved Method: 6020A - Metals (ICP/MS) - Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - Dissolved Method: 7470A - Mercury (CVAA) - Dissolved Method: 7470A - Mercury (CVAA) - Dissolved Method: 7470A - Mercury (CVAA) - Dissolved General Chemistry Analyte Bromide	9.1 ND ND ND Result ND Result ND Result ND Result ND Result Result ND	Qualifier Qualifier	5.0 0.010 0.050 0.020 RL 0.0050	MDL	mg/L mg/L mg/L mg/L Unit mg/L		08/27/19 08:48 08/27/19 08:48 08/27/19 08:48 08/27/19 08:48 Prepared 08/27/19 08:35	08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 Malyzed 08/27/19 19:06	
Thallium, Dissolved Vanadium, Dissolved Vanadium, Dissolved Method: 6020A - Metals (ICP/MS) Analyte Selenium Method: 6020A - Metals (ICP/MS) - Description of the control	Result ND Result ND Result ND Result ND Result ND Result ND	Qualifier Qualifier	0.010 0.050 0.020 RL 0.0050 RL	MDL	mg/L mg/L Unit mg/L		08/27/19 08:48 08/27/19 08:48 08/27/19 08:48 Prepared 08/27/19 08:35	08/27/19 19:12 08/27/19 19:12 08/27/19 19:12 Analyzed 08/27/19 19:06	
Wethod: 6020A - Metals (ICP/MS) Analyte Selenium Method: 6020A - Metals (ICP/MS) - E Analyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - E Analyte Mercury Method: 7470A - Mercury (CVAA) - E Analyte Mercury Method: 7470A - Mercury (CVAA) - E Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Result ND Cissol Result ND Result ND Comparison Result ND Comparison Result Result Result Result Result Result Result Result	Qualifier Qualifier	0.050 0.020 RL 0.0050 RL 0.0010	MDL	mg/L mg/L Unit mg/L Unit		08/27/19 08:48 08/27/19 08:48 Prepared 08/27/19 08:35 Prepared	08/27/19 19:12 08/27/19 19:12 Analyzed 08/27/19 19:06	
Method: 6020A - Metals (ICP/MS) Analyte Selenium Method: 6020A - Metals (ICP/MS) - Detai	Result ND Properties No ND Result ND Properties ND Properties ND Properties ND Result Result ND Properties ND Result ND Properties ND Result ND Properties ND Result ND Properties ND Result ND Properties ND Properties ND ND Result ND Properties ND ND Result ND Properties ND ND ND ND ND ND ND ND ND ND ND ND ND	Qualifier Qualifier	0.020 RL 0.0050 RL 0.0010	MDL	mg/L Unit mg/L Unit		08/27/19 08:48 Prepared 08/27/19 08:35 Prepared	08/27/19 19:12 Analyzed 08/27/19 19:06	
Method: 6020A - Metals (ICP/MS) Analyte Selenium Method: 6020A - Metals (ICP/MS) - Description Analyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - Description Analyte Mercury Method: 7470A - Mercury (CVAA) - Description Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Result ND Dissol Result ND Result ND Disso Result	Qualifier Qualifier	RL 0.0050	MDL	Unit mg/L		Prepared 08/27/19 08:35	Analyzed 08/27/19 19:06	
Analyte Selenium Method: 6020A - Metals (ICP/MS) - Description of the selection of the sel	ND Dissol Result ND Result ND Disso Result	Qualifier Qualifier	0.0050 RL 0.0010	MDL	mg/L Unit		08/27/19 08:35 Prepared	08/27/19 19:06	
Method: 6020A - Metals (ICP/MS) - Danalyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - I Analyte Mercury Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	ND Dissol Result ND Result ND Disso Result	Qualifier Qualifier	0.0050 RL 0.0010	MDL	mg/L Unit		08/27/19 08:35 Prepared	08/27/19 19:06	
Method: 6020A - Metals (ICP/MS) - EAnalyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - EAnalyte Mercury, Dissolved General Chemistry Analyte Bromide	Pissol Result ND Result ND Disso Result	Qualifier Qualifier	RL		Unit	_ D	Prepared		Dil F
Analyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Result ND Result Disso Result	Qualifier Qualifier	0.0010			_ <u>D</u>	•	Analyzed	Dile
Analyte Selenium, Dissolved Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Result ND Result Disso Result	Qualifier Qualifier	0.0010			<u>D</u>	•	Analyzed	DilE
Method: 7470A - Mercury (CVAA) Analyte Mercury Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Result ND Disso Result	·	RL	MDI	mg/L	_	08/27/19 08:34		ם ווכ
Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	ND Disso Result	·		MDI			55/21/10 00.04	08/27/19 20:34	
Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	ND Disso Result	·		MDI					
Method: 7470A - Mercury (CVAA) - I Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Disso Result		0.00020	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte Mercury, Dissolved General Chemistry Analyte Bromide	Result				mg/L	_	08/27/19 11:20	08/27/19 14:25	
Mercury, Dissolved General Chemistry Analyte Bromide		Ived							
General Chemistry Analyte Bromide		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte Bromide	ND		0.00020		mg/L	_	08/29/19 11:53	08/29/19 15:00	
Analyte Bromide									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
	ND		1.0		mg/L	_		08/28/19 05:33	
Alkalinity, Total	350		20.0		mg/L			08/27/19 00:22	
Ammonia (as N)	ND		0.050		mg/L as N			08/26/19 09:24	
Total Kjeldahl Nitrogen	0.80		0.15		mg/L as N		09/04/19 08:05	09/04/19 13:38	
Nitrate	0.060		0.050		mg/L as N			08/24/19 12:32	
Chemical Oxygen Demand	29.0		5.0		mg/L			08/29/19 12:10	
Chromium, hexavalent	ND		0.010		mg/L			08/24/19 08:15	
Cyanide, Total	ND		0.010		mg/L		09/04/19 20:50	09/05/19 13:35	
Phenolics, Total Recoverable (0.0075	В	0.0050		mg/L		09/07/19 00:56	09/08/19 11:20	
Hardness	430		5.0		mg/L			09/09/19 09:45	
Total Dissolved Solids	479		10.0		mg/L			08/26/19 14:39	
Chloride	22.7		2.5		mg/L			08/28/19 05:33	
Sulfate	81.6		10.0		mg/L			08/28/19 05:33	
Biochemical Oxygen Demand	ND	*	2.0		mg/L			08/23/19 17:14	
Total Organic Carbon	ND		1.0		mg/L			08/27/19 22:36	
		Qualifier	RL 0.0100	RL	Unit	_ D	Prepared	Analyzed	Dil F
Color	ND		0.0100		Color Units			08/24/19 10:16	
Method: Field Sampling - Field Sam			NONE	NONE	Unit	_	Dropored	A not-reed	חייי
		Qualifier	NONE	NONE		. D	Prepared	Analyzed	Dil F
pH, Field	7.17				SU umbas/sm			08/23/19 11:12	
Specific Conductance	778				umhos/cm			08/23/19 11:12	
Field EH/ORP	54.0				millivolts			08/23/19 11:12	
Temperature, Field	15.4				Degrees C			08/23/19 11:12	
Odor Turbidity	No				NONE			08/23/19 11:12	

Eurofins TestAmerica, Buffalo

Page 66 of 314

2

3

5

7

9

12

14

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(I)

Lab Sample ID: 480-158093-1

Date Collected: 08/23/19 11:12 Matrix: Ground Water

Date Received: 08/23/19 16:45

Method: Field Sampling - Fiel	d Sampling	(Continued	l)						
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	47.70				ft			08/23/19 11:12	1
Depth to Water from Top of Casing	39.82				ft			08/23/19 11:12	1

6

8

10

12

. .

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(S)

Lab Sample ID: 480-158093-2

Matrix: Ground Water

Date Collected: 08/23/19 11:00 Date Received: 08/23/19 16:45

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/24/19 21:17	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/24/19 21:17	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/24/19 21:17	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/24/19 21:17	
1,1-Dichloroethane	ND	5.0	ug/L			08/24/19 21:17	
1,1-Dichloroethene	ND	5.0	ug/L			08/24/19 21:17	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/24/19 21:17	
I,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/24/19 21:17	
1,2-Dibromoethane	ND	5.0	ug/L			08/24/19 21:17	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/24/19 21:17	
1,2-Dichloroethane	ND	5.0	ug/L			08/24/19 21:17	
1,2-Dichloropropane	ND	5.0	ug/L			08/24/19 21:17	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/24/19 21:17	
1,4-Dioxane	ND	50	ug/L			08/24/19 21:17	
2-Butanone (MEK)	ND	5.0	ug/L			08/24/19 21:17	
2-Hexanone	ND	10	ug/L			08/24/19 21:17	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/24/19 21:17	
Acetone	ND	5.0	ug/L			08/24/19 21:17	
Acetonitrile	ND	100	ug/L			08/24/19 21:17	
Benzene	ND	5.0	ug/L			08/24/19 21:17	
Bromochloromethane	ND	5.0	ug/L			08/24/19 21:17	
Bromodichloromethane	ND	5.0	ug/L			08/24/19 21:17	
Bromoform	ND	5.0				08/24/19 21:17	
Bromomethane	ND ND	5.0	ug/L			08/24/19 21:17	
Carbon disulfide	ND	5.0	ug/L			08/24/19 21:17	
			ug/L				
Carbon tetrachloride	ND ND	5.0 5.0	ug/L			08/24/19 21:17	
Chlorobenzene			ug/L			08/24/19 21:17	
Chloroethane	ND	5.0	ug/L			08/24/19 21:17	
Chloroform	ND	5.0	ug/L			08/24/19 21:17	
Chloromethane	ND	5.0	ug/L			08/24/19 21:17	
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/24/19 21:17	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/24/19 21:17	
Dibromochloromethane	ND	5.0	ug/L			08/24/19 21:17	
Dibromomethane	ND	5.0	ug/L			08/24/19 21:17	
Ethylbenzene	ND	5.0	ug/L			08/24/19 21:17	
odomethane	ND	5.0	ug/L			08/24/19 21:17	
n,p-Xylene	ND	5.0	ug/L			08/24/19 21:17	
Methylene Chloride	ND	5.0	ug/L			08/24/19 21:17	
o-Xylene	ND	5.0	ug/L			08/24/19 21:17	
Styrene	ND	5.0	ug/L			08/24/19 21:17	
etrachloroethene	ND	5.0	ug/L			08/24/19 21:17	
etrahydrofuran	ND	10	ug/L			08/24/19 21:17	
oluene	ND	5.0	ug/L			08/24/19 21:17	
rans-1,2-Dichloroethene	ND	5.0	ug/L			08/24/19 21:17	
rans-1,3-Dichloropropene	ND	5.0	ug/L			08/24/19 21:17	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			08/24/19 21:17	
richloroethene	ND	5.0	ug/L			08/24/19 21:17	
richlorofluoromethane	ND	5.0	ug/L			08/24/19 21:17	
/inyl acetate	ND	50	ug/L			08/24/19 21:17	

Eurofins TestAmerica, Buffalo

Page 68 of 314

S

3

5

7

9

12

14

13

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(S)

Date Collected: 08/23/19 11:00
Date Received: 08/23/19 16:45

Lab Sample ID: 480-158093-2

Matrix: Ground Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/24/19 21:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analvzed	Dil Fac
Juliogate	/or vectorer y	Qualifier	LIIIIII				riepaieu	Allalyzeu	Diriac
1,2-Dichloroethane-d4 (Surr)	85	Qualifier	77 - 120				гтератец	08/24/19 21:17	1
		Quaimer					rrepared		1

Method: 6010C - Metals (ICP) Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20		mg/L		08/27/19 08:48	08/27/19 16:51	1
Antimony	ND	0.015		mg/L		08/27/19 08:48	08/27/19 16:51	1
Arsenic	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:51	1
Barium	ND	0.20		mg/L		08/27/19 08:48	08/27/19 16:51	1
Beryllium	ND	0.0030		mg/L		08/27/19 08:48	08/27/19 16:51	1
Boron	0.023	0.020		mg/L		08/27/19 08:48	08/27/19 16:51	•
Cadmium	ND	0.0050		mg/L		08/27/19 08:48	08/27/19 16:51	
Calcium	143	5.0		mg/L		08/27/19 08:48	08/27/19 16:51	•
Chromium	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:51	•
Cobalt	ND	0.050		mg/L		08/27/19 08:48	08/27/19 16:51	
Copper	ND	0.025		mg/L		08/27/19 08:48	08/27/19 16:51	
Iron	ND	0.10		mg/L		08/27/19 08:48	08/27/19 16:51	•
Lead	ND	0.0030		mg/L		08/27/19 08:48	08/27/19 16:51	
Magnesium	24.4	5.0		mg/L		08/27/19 08:48	08/27/19 16:51	•
Manganese	0.025	0.015		mg/L		08/27/19 08:48	08/27/19 16:51	•
Nickel	ND	0.040		mg/L		08/27/19 08:48	08/27/19 16:51	
Potassium	ND	5.0		mg/L		08/27/19 08:48	08/27/19 16:51	
Silver	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:51	1
Sodium	ND	5.0		mg/L		08/27/19 08:48	08/27/19 16:51	
Thallium	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:51	•
Vanadium	ND	0.050		mg/L		08/27/19 08:48	08/27/19 16:51	•
Zinc	ND	0.020		mg/L		08/27/19 08:48	08/27/19 16:51	,

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/27/19 08:48	08/27/19 19:16	1
Antimony, Dissolved	ND		0.020		mg/L		08/27/19 08:48	08/27/19 19:16	1
Arsenic, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:16	1
Barium, Dissolved	ND		0.20		mg/L		08/27/19 08:48	08/27/19 19:16	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 19:16	1
Boron, Dissolved	0.023		0.020		mg/L		08/27/19 08:48	08/27/19 19:16	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/27/19 08:48	08/27/19 19:16	1
Calcium, Dissolved	137		5.0		mg/L		08/27/19 08:48	08/27/19 19:16	1
Chromium, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:16	1
Cobalt, Dissolved	ND		0.050		mg/L		08/27/19 08:48	08/27/19 19:16	1
Copper, Dissolved	ND		0.025		mg/L		08/27/19 08:48	08/27/19 19:16	1
Iron, Dissolved	ND		0.10		mg/L		08/27/19 08:48	08/27/19 19:16	1
Lead, Dissolved	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 19:16	1
Magnesium, Dissolved	23.6		5.0		mg/L		08/27/19 08:48	08/27/19 19:16	1
Manganese, Dissolved	ND		0.015		mg/L		08/27/19 08:48	08/27/19 19:16	1
Nickel, Dissolved	ND		0.040		mg/L		08/27/19 08:48	08/27/19 19:16	1

Eurofins TestAmerica, Buffalo

Page 69 of 314

6

5

5

7

9

11

12

14

4.0

17

Ш

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(S)

Lab Sample ID: 480-158093-2

Date Collected: 08/23/19 11:00 Matrix: Ground Water
Date Received: 08/23/19 16:45

Potassium, Dissolved Silver, Dissolved Sodium, Dissolved	Result	Qualifier	d) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
	ND		5.0		mg/L		08/27/19 08:48	08/27/19 19:16	
Sodium Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:16	
	ND		5.0		mg/L		08/27/19 08:48	08/27/19 19:16	
Thallium, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:16	
Vanadium, Dissolved	ND		0.050		mg/L		08/27/19 08:48	08/27/19 19:16	
Zinc, Dissolved	ND		0.020		mg/L		08/27/19 08:48	08/27/19 19:16	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L	_	08/27/19 08:35	08/27/19 19:08	
Method: 6020A - Metals (ICP/MS)	- Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		08/27/19 08:34	08/27/19 20:36	
Method: 7470A - Mercury (CVAA)				.		_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/27/19 11:20	08/27/19 14:26	
Method: 7470A - Mercury (CVAA)						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		08/29/19 11:53	08/29/19 15:01	
General Chemistry									
Analyte		Qualifier	RL _	MDL		_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/28/19 05:47	
Alkalinity, Total	336		20.0		mg/L			08/27/19 00:27	
Ammonia (as N)	ND		0.050		mg/L as N			08/26/19 09:25	
Total Kjeldahl Nitrogen	0.20		0.15		mg/L as N		09/04/19 08:05	09/04/19 13:38	
Nitrate	0.11		0.050		mg/L as N			08/24/19 12:34	
Chemical Oxygen Demand	ND		5.0		mg/L			08/29/19 12:10	
Chromium, hexavalent	ND		0.010		mg/L			08/24/19 08:15	
Cyanide, Total	ND		0.010		mg/L		09/04/19 20:50	09/05/19 13:39	
Phenolics, Total Recoverable	0.0082	B	0.0050		mg/L		09/16/19 23:12	09/17/19 10:36	
Hardness	460		5.0		mg/L			09/09/19 09:45	
Total Discolved Colida	545		10.0		mg/L			08/26/19 14:39	
	ND		2.5		mg/L			08/28/19 05:47	
Chloride					mg/L			08/28/19 05:47	
Chloride Sulfate	142		10.0		-				
Chloride Sulfate Biochemical Oxygen Demand	ND	*	2.0		mg/L			08/23/19 17:14	
Total Dissolved Solids Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon		*	2.0 1.0		-			08/23/19 17:14 08/27/19 22:50	
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte	ND 2.5 Result	* Qualifier	2.0 1.0 RL	RL	mg/L mg/L Unit	_ D	Prepared	08/27/19 22:50 Analyzed	Dil Fa
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte	ND 2.5		2.0 1.0	RL	mg/L mg/L	_ D	Prepared	08/27/19 22:50	
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte Color Method: Field Sampling - Field Sa	ND 2.5 Result 10.0	Qualifier	2.0 1.0 RL 0.0100		mg/L mg/L Unit Color Units			08/27/19 22:50 Analyzed 08/24/19 10:16	
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte Color Method: Field Sampling - Field Sa Analyte	Result 10.0 ampling Result		2.0 1.0 RL	RL	mg/L mg/L Unit Color Units Unit	_ <u>D</u>	Prepared Prepared	08/27/19 22:50 Analyzed 08/24/19 10:16 Analyzed	
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte Color Method: Field Sampling - Field Sanalyte pH, Field	Result 10.0 Result 6.88	Qualifier	2.0 1.0 RL 0.0100		mg/L mg/L Unit Color Units			08/27/19 22:50 Analyzed 08/24/19 10:16 Analyzed 08/23/19 11:00	
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte Color Method: Field Sampling - Field Sanalyte pH, Field	Result 10.0 ampling Result	Qualifier	2.0 1.0 RL 0.0100		mg/L mg/L Unit Color Units Unit			08/27/19 22:50 Analyzed 08/24/19 10:16 Analyzed	
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte Color Method: Field Sampling - Field Sanalyte pH, Field Specific Conductance Field EH/ORP	Result 10.0 Result 6.88	Qualifier	2.0 1.0 RL 0.0100		mg/L mg/L Unit Color Units Unit SU			08/27/19 22:50 Analyzed 08/24/19 10:16 Analyzed 08/23/19 11:00	
Chloride Sulfate Biochemical Oxygen Demand	Result 10.0 ampling Result 6.88 852	Qualifier	2.0 1.0 RL 0.0100		mg/L mg/L Unit Color Units Unit SU umhos/cm			08/27/19 22:50 Analyzed 08/24/19 10:16 Analyzed 08/23/19 11:00 08/23/19 11:00	Dil Fa
Chloride Sulfate Biochemical Oxygen Demand Total Organic Carbon Analyte Color Method: Field Sampling - Field Sanalyte pH, Field Specific Conductance Field EH/ORP	2.5 Result 10.0 ampling Result 6.88 852 116.0	Qualifier	2.0 1.0 RL 0.0100		mg/L mg/L Unit Color Units Unit SU umhos/cm millivolts			08/27/19 22:50 Analyzed 08/24/19 10:16 Analyzed 08/23/19 11:00 08/23/19 11:00 08/23/19 11:00	

Eurofins TestAmerica, Buffalo

Page 70 of 314

2

3

5

7

9

12

11

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

15.02

Client Sample ID: MW-N(S)

Lab Sample ID: 480-158093-2

Date Collected: 08/23/19 11:00 Matrix: Ground Water Date Received: 08/23/19 16:45

ft

Method: Field Sampling - Field Sampling (Continued)
Analyte Result Qualifier NONE NONE Unit ft Depth 27.50

Mell Depth 27.50

Method: Field Sampling (Continued)

NONE NONE Unit Depth Depth Depth NONE Depth NONE Depth Depth NONE Depth NONE Depth Depth NONE Depth De

Depth to Water from Top of Casing

4

5

6

08/23/19 11:00

7

8

10

12

14

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-Q(I)

Lab Sample ID: 480-158093-3

Matrix: Water

Date Collected: 08/23/19 11:30 Date Received: 08/23/19 16:45

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/24/19 21:40	
1,1,1-Trichloroethane	ND	5.0	ug/L			08/24/19 21:40	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/24/19 21:40	
1,1,2-Trichloroethane	ND	5.0	ug/L			08/24/19 21:40	
1,1-Dichloroethane	ND	5.0	ug/L			08/24/19 21:40	
1,1-Dichloroethene	ND	5.0	ug/L			08/24/19 21:40	
1,2,3-Trichloropropane	ND	5.0	ug/L			08/24/19 21:40	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/24/19 21:40	
1,2-Dibromoethane	ND	5.0	ug/L			08/24/19 21:40	
1,2-Dichlorobenzene	ND	5.0	ug/L			08/24/19 21:40	
1,2-Dichloroethane	ND	5.0	ug/L			08/24/19 21:40	
1,2-Dichloropropane	ND	5.0	ug/L			08/24/19 21:40	
1,4-Dichlorobenzene	ND	5.0	ug/L			08/24/19 21:40	
1,4-Dioxane	ND	50	ug/L			08/24/19 21:40	
2-Butanone (MEK)	ND	5.0	ug/L			08/24/19 21:40	
2-Hexanone	ND	10	ug/L			08/24/19 21:40	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/24/19 21:40	
Acetone	ND	5.0	ug/L			08/24/19 21:40	
Acetonitrile	ND	100	ug/L			08/24/19 21:40	
Benzene	ND	5.0	ug/L			08/24/19 21:40	
Bromochloromethane	ND	5.0	ug/L			08/24/19 21:40	
Bromodichloromethane	ND	5.0	ug/L			08/24/19 21:40	
Bromoform	ND	5.0				08/24/19 21:40	
Bromomethane	ND ND	5.0	ug/L			08/24/19 21:40	
Carbon disulfide	ND ND	5.0	ug/L			08/24/19 21:40	
	ND	5.0	ug/L				
Carbon tetrachloride	ND ND	5.0 5.0	ug/L			08/24/19 21:40	
Chlorobenzene			ug/L			08/24/19 21:40	
Chloroethane	ND	5.0	ug/L			08/24/19 21:40	
Chloroform	ND	5.0	ug/L			08/24/19 21:40	
Chloromethane	ND	5.0	ug/L			08/24/19 21:40	
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/24/19 21:40	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/24/19 21:40	
Dibromochloromethane	ND	5.0	ug/L			08/24/19 21:40	
Dibromomethane	ND	5.0	ug/L			08/24/19 21:40	
Ethylbenzene	ND	5.0	ug/L			08/24/19 21:40	
odomethane	ND	5.0	ug/L			08/24/19 21:40	
n,p-Xylene	ND	5.0	ug/L			08/24/19 21:40	
Methylene Chloride	ND	5.0	ug/L			08/24/19 21:40	
o-Xylene	ND	5.0	ug/L			08/24/19 21:40	
Styrene	ND	5.0	ug/L			08/24/19 21:40	
Tetrachloroethene	ND	5.0	ug/L			08/24/19 21:40	
Гetrahydrofuran	ND	10	ug/L			08/24/19 21:40	
Foluene	ND	5.0	ug/L			08/24/19 21:40	
rans-1,2-Dichloroethene	ND	5.0	ug/L			08/24/19 21:40	
rans-1,3-Dichloropropene	ND	5.0	ug/L			08/24/19 21:40	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			08/24/19 21:40	
Frichloroethene	ND	5.0	ug/L			08/24/19 21:40	
Trichlorofluoromethane	ND	5.0	ug/L			08/24/19 21:40	
/inyl acetate	ND	50	ug/L			08/24/19 21:40	

Eurofins TestAmerica, Buffalo

Page 72 of 314

5

3

5

7

9

11

4 4

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-Q(I)

Lab Sample ID: 480-158093-3 Date Collected: 08/23/19 11:30

Matrix: Water

Date Received: 08/23/19 16:45

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/24/19 21:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		77 - 120					08/24/19 21:40	1
4-Bromofluorobenzene (Surr)	108		73 - 120					08/24/19 21:40	1
Toluene-d8 (Surr)	88		80 - 120					08/24/19 21:40	1

Method: 6010C - Metals (ICP) Analyte	Result Qualifi	ier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.35	0.20		mg/L		09/04/19 09:46	09/04/19 21:10	1
Antimony	ND	0.015		mg/L		08/27/19 08:48	08/27/19 16:55	1
Arsenic	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:55	1
Barium	ND	0.20		mg/L		08/27/19 08:48	08/27/19 16:55	1
Beryllium	ND	0.0030		mg/L		08/27/19 08:48	08/27/19 16:55	1
Boron	0.035	0.020		mg/L		08/27/19 08:48	08/27/19 16:55	1
Cadmium	ND	0.0050		mg/L		08/27/19 08:48	08/27/19 16:55	1
Calcium	121	5.0		mg/L		08/27/19 08:48	08/27/19 16:55	1
Chromium	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:55	1
Cobalt	ND	0.050		mg/L		08/27/19 08:48	08/27/19 16:55	1
Copper	ND	0.025		mg/L		08/27/19 08:48	08/27/19 16:55	1
Iron	1.6	0.10		mg/L		08/27/19 08:48	08/27/19 16:55	1
Lead	ND	0.0030		mg/L		08/27/19 08:48	08/27/19 16:55	1
Magnesium	42.3	5.0		mg/L		08/27/19 08:48	08/27/19 16:55	1
Manganese	0.12	0.015		mg/L		08/27/19 08:48	08/27/19 16:55	1
Nickel	ND	0.040		mg/L		08/27/19 08:48	08/27/19 16:55	1
Potassium	ND	5.0		mg/L		08/27/19 08:48	08/27/19 16:55	1
Silver	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:55	1
Sodium	9.7	5.0		mg/L		08/27/19 08:48	08/27/19 16:55	1
Thallium	ND	0.010		mg/L		08/27/19 08:48	08/27/19 16:55	1
Vanadium	ND	0.050		mg/L		08/27/19 08:48	08/27/19 16:55	1
Zinc	ND	0.020		mg/L		08/27/19 08:48	08/27/19 16:55	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/27/19 08:48	08/27/19 19:20	1
Antimony, Dissolved	ND		0.020		mg/L		08/27/19 08:48	08/27/19 19:20	1
Arsenic, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:20	1
Barium, Dissolved	ND		0.20		mg/L		08/27/19 08:48	08/27/19 19:20	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 19:20	1
Boron, Dissolved	0.034		0.020		mg/L		08/27/19 08:48	08/27/19 19:20	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/27/19 08:48	08/27/19 19:20	1
Calcium, Dissolved	118		5.0		mg/L		08/27/19 08:48	08/27/19 19:20	1
Chromium, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:20	1
Cobalt, Dissolved	ND		0.050		mg/L		08/27/19 08:48	08/27/19 19:20	1
Copper, Dissolved	ND		0.025		mg/L		08/27/19 08:48	08/27/19 19:20	1
Iron, Dissolved	0.17		0.10		mg/L		08/27/19 08:48	08/27/19 19:20	1
Lead, Dissolved	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 19:20	1
Magnesium, Dissolved	41.7		5.0		mg/L		08/27/19 08:48	08/27/19 19:20	1
Manganese, Dissolved	0.11		0.015		mg/L		08/27/19 08:48	08/27/19 19:20	1
Nickel, Dissolved	ND		0.040		mg/L		08/27/19 08:48	08/27/19 19:20	1

Eurofins TestAmerica, Buffalo

Page 73 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-Q(I)

Lab Sample ID: 480-158093-3

Date Collected: 08/23/19 11:30 Matrix: Water Date Received: 08/23/19 16:45

Method: 6010C - Metals (ICP) - Dis					1114	_	D	A I	D:: -
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		08/27/19 08:48	08/27/19 19:20	
Silver, Dissolved	ND		0.010		mg/L		08/27/19 08:48	08/27/19 19:20	
Sodium, Dissolved	14.0		5.0		mg/L			08/27/19 19:20	
Γhallium, Dissolved	ND		0.010		mg/L			08/27/19 19:20	
Vanadium, Dissolved	ND		0.050		mg/L			08/27/19 19:20	
Zinc, Dissolved	ND		0.020		mg/L		08/27/19 08:48	08/27/19 19:20	
Method: 6020A - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		08/27/19 08:35	08/27/19 19:11	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	08/27/19 08:34	08/27/19 20:39	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		08/27/19 11:20	08/27/19 14:30	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		08/29/19 11:53	08/29/19 15:03	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		1.0		mg/L			08/28/19 06:02	
Alkalinity, Total	284		20.0		mg/L			08/27/19 00:25	
Ammonia (as N)	0.061		0.050		mg/L as N			08/26/19 09:25	
Гotal Kjeldahl Nitrogen	0.26	F1	0.15		mg/L as N		09/04/19 08:05	09/04/19 13:38	
Nitrate	0.059		0.050		mg/L as N			08/24/19 12:35	
Chemical Oxygen Demand	10.1		5.0		mg/L			08/29/19 12:10	
Chromium, hexavalent	ND		0.010		mg/L			08/24/19 08:15	
Cyanide, Total	ND		0.010		mg/L		09/04/19 20:50	09/05/19 13:40	
Phenolics, Total Recoverable	0.0072	В	0.0050		mg/L		09/07/19 00:56	09/08/19 11:20	
Hardness	480		5.0		mg/L			09/09/19 09:45	
Total Dissolved Solids	490		10.0		mg/L			08/26/19 14:39	
Chloride	60.7		2.5		mg/L			08/28/19 06:02	
Sulfate	115		10.0		mg/L			08/28/19 06:02	
Biochemical Oxygen Demand	ND	*	2.0		mg/L			08/23/19 17:14	
Total Organic Carbon	ND		1.0		mg/L			08/28/19 00:06	
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units			08/24/19 10:16	
Method: Field Sampling - Field Sa	mpling								
Analyte	Result	Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fa
H, Field	7.35				SU	_		08/23/19 11:30	
Specific Conductance	907				umhos/cm			08/23/19 11:30	
Field EH/ORP	-70				millivolts			08/23/19 11:30	
Temperature, Field	14.6				Degrees C			08/23/19 11:30	
Odor	No				NONE			08/23/19 11:30	
Turbidity	18.8				NTU			08/23/19 11:30	

Eurofins TestAmerica, Buffalo

Page 74 of 314

2

3

5

7

10

12

14

16

1 0

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-Q(I)

Lab Sample ID: 480-158093-3

Date Collected: 08/23/19 11:30 Matrix: Water

Date Collected: 08/23/19 11:30 Matrix: Wate Date Received: 08/23/19 16:45

Method: Field Sampling - Fiel	d Sampling (Continued)					
Analyte	Result Qualifier	NONE	NONE Unit	D	Prepared	Analyzed	Dil Fac
Well Depth	62.80		ft			08/23/19 11:30	1
Depth to Water from Top of	42.16		ft			08/23/19 11:30	1
Casing							

2

3

4

6

Q

9

11

13

14

16

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-50

Lab Sample ID: 480-158145-1 Date Collected: 08/26/19 13:45 **Matrix: Ground Water**

Date Received: 08/26/19 16:30

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D F	repared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			08/28/19 16:37	1
1,1,1-Trichloroethane	ND	5.0	ug/L			08/28/19 16:37	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			08/28/19 16:37	1
1,1,2-Trichloroethane	ND	5.0	ug/L			08/28/19 16:37	1
1,1-Dichloroethane	ND	5.0	ug/L			08/28/19 16:37	1
1,1-Dichloroethene	ND	5.0	ug/L			08/28/19 16:37	1
1,2,3-Trichloropropane	ND	5.0	ug/L			08/28/19 16:37	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			08/28/19 16:37	1
1,2-Dibromoethane	ND	5.0	ug/L			08/28/19 16:37	1
1,2-Dichlorobenzene	ND	5.0	ug/L			08/28/19 16:37	1
1,2-Dichloroethane	ND	5.0	ug/L			08/28/19 16:37	1
1,2-Dichloropropane	ND	5.0	ug/L			08/28/19 16:37	1
1,4-Dichlorobenzene	ND	5.0	ug/L			08/28/19 16:37	1
1,4-Dioxane	ND	50	ug/L			08/28/19 16:37	1
2-Butanone (MEK)	ND	5.0	ug/L			08/28/19 16:37	1
2-Hexanone	ND	10	ug/L			08/28/19 16:37	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			08/28/19 16:37	1
Acetone	ND	5.0	ug/L			08/28/19 16:37	1
Acetonitrile	ND	100	ug/L			08/28/19 16:37	1
Benzene	ND	5.0	ug/L			08/28/19 16:37	1
Bromochloromethane	ND	5.0	ug/L			08/28/19 16:37	1
Bromodichloromethane	ND	5.0	ug/L			08/28/19 16:37	1
Bromoform	ND	5.0	ug/L			08/28/19 16:37	1
Bromomethane	ND	5.0	ug/L			08/28/19 16:37	1
Carbon disulfide	ND	5.0	ug/L			08/28/19 16:37	1
Carbon tetrachloride	ND	5.0	ug/L			08/28/19 16:37	1
Chlorobenzene	ND	5.0	ug/L			08/28/19 16:37	1
Chloroethane	ND	5.0	ug/L			08/28/19 16:37	
Chloroform	ND	5.0	ug/L			08/28/19 16:37	1
Chloromethane	ND	5.0	ug/L			08/28/19 16:37	1
cis-1,2-Dichloroethene	ND	5.0	ug/L			08/28/19 16:37	
cis-1,3-Dichloropropene	ND	5.0	ug/L			08/28/19 16:37	1
Dibromochloromethane	ND	5.0	ug/L			08/28/19 16:37	1
Dibromomethane	ND	5.0	ug/L			08/28/19 16:37	
Ethylbenzene	ND	5.0	ug/L			08/28/19 16:37	1
Iodomethane	ND	5.0	ug/L			08/28/19 16:37	1
m,p-Xylene	ND	5.0				08/28/19 16:37	
• •	ND ND	5.0	ug/L			08/28/19 16:37	
Methylene Chloride	ND ND		ug/L			08/28/19 16:37	1
o-Xylene	ND ND	5.0	ug/L			08/28/19 16:37	
Styrene		5.0	ug/L				1
Tetrachloroethene	ND ND	5.0	ug/L			08/28/19 16:37	1
Tetrahydrofuran	ND	10	ug/L			08/28/19 16:37	
Toluene	ND ND	5.0	ug/L			08/28/19 16:37	1
trans-1,2-Dichloroethene	ND	5.0	ug/L			08/28/19 16:37	1
trans-1,3-Dichloropropene	ND	5.0	ug/L			08/28/19 16:37	1
trans-1,4-Dichloro-2-butene	ND	10	ug/L			08/28/19 16:37	1
Trichloroethene	ND	5.0	ug/L			08/28/19 16:37	1
Trichlorofluoromethane	ND	5.0	ug/L			08/28/19 16:37	1
Vinyl acetate	ND	50	ug/L			08/28/19 16:37	· · · · · · · · · 1

Eurofins TestAmerica, Buffalo

Page 76 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-50

Date Collected: 08/26/19 13:45 Date Received: 08/26/19 16:30 Lab Sample ID: 480-158145-1

Matrix: Ground Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			08/28/19 16:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					08/28/19 16:37	1
4-Bromofluorobenzene (Surr)	102		73 - 120					08/28/19 16:37	1
Toluene-d8 (Surr)	97		80 - 120					08/28/19 16:37	1

Method: 6010C - Metals (IC Analyte	, Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND ND	0.20		mg/L		08/28/19 08:05	08/29/19 00:44	1
Antimony	ND	0.015		mg/L		08/28/19 08:05	08/29/19 00:44	1
Arsenic	ND	0.010		mg/L		08/28/19 08:05	08/29/19 00:44	1
Barium	0.21	0.20		mg/L		08/28/19 08:05	08/29/19 00:44	1
Beryllium	ND	0.0030		mg/L		08/28/19 08:05	08/29/19 00:44	1
Boron	ND	0.020		mg/L		08/28/19 08:05	08/29/19 00:44	1
Cadmium	ND	0.0050		mg/L		08/28/19 08:05	08/29/19 00:44	1
Calcium	69.7	5.0		mg/L		08/28/19 08:05	08/29/19 00:44	1
Chromium	ND	0.010		mg/L		09/10/19 06:30	09/10/19 19:14	1
Cobalt	ND	0.050		mg/L		08/28/19 08:05	08/29/19 00:44	1
Copper	ND *	0.025		mg/L		08/28/19 08:05	08/29/19 00:44	1
Iron	1.2	0.10		mg/L		08/28/19 08:05	08/29/19 00:44	1
Lead	ND	0.0030		mg/L		08/28/19 08:05	08/29/19 00:44	1
Magnesium	15.2	5.0		mg/L		08/28/19 08:05	08/29/19 00:44	1
Manganese	0.18	0.015		mg/L		08/28/19 08:05	08/29/19 00:44	1
Nickel	ND	0.040		mg/L		08/28/19 08:05	08/29/19 00:44	1
Potassium	ND	5.0		mg/L		08/28/19 08:05	08/29/19 00:44	1
Silver	ND	0.010		mg/L		08/28/19 08:05	08/29/19 00:44	1
Sodium	ND	5.0		mg/L		08/28/19 08:05	08/29/19 00:44	1
Thallium	ND	0.010		mg/L		08/28/19 08:05	08/29/19 00:44	1
Vanadium	ND	0.050		mg/L		08/28/19 08:05	08/29/19 00:44	1
Zinc	ND *	0.020		mg/L		08/28/19 08:05	08/29/19 00:44	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/28/19 09:36	08/29/19 01:53	1
Antimony, Dissolved	ND		0.020		mg/L		08/28/19 09:36	08/29/19 01:53	1
Arsenic, Dissolved	ND		0.010		mg/L		08/28/19 09:36	08/29/19 01:53	1
Barium, Dissolved	ND		0.20		mg/L		08/28/19 09:36	08/29/19 01:53	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/28/19 09:36	08/29/19 01:53	1
Boron, Dissolved	ND		0.020		mg/L		08/28/19 09:36	08/29/19 01:53	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/28/19 09:36	08/29/19 01:53	1
Calcium, Dissolved	55.8		5.0		mg/L		08/28/19 09:36	08/29/19 01:53	1
Chromium, Dissolved	ND		0.010		mg/L		08/28/19 09:36	08/29/19 01:53	1
Cobalt, Dissolved	ND		0.050		mg/L		08/28/19 09:36	08/29/19 01:53	1
Copper, Dissolved	ND		0.025		mg/L		08/28/19 09:36	08/29/19 01:53	1
Iron, Dissolved	0.57		0.10		mg/L		08/28/19 09:36	08/29/19 16:33	1
Lead, Dissolved	ND		0.0030		mg/L		08/28/19 09:36	08/29/19 01:53	1
Magnesium, Dissolved	12.7		5.0		mg/L		08/28/19 09:36	08/29/19 01:53	1
Manganese, Dissolved	0.13		0.015		mg/L		08/28/19 09:36	08/29/19 01:53	1
Nickel, Dissolved	ND		0.040		mg/L		08/28/19 09:36	08/29/19 01:53	1

Eurofins TestAmerica, Buffalo

Page 77 of 314

2

3

5

7

9

11

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-50

Date Collected: 08/26/19 13:45

Lab Sample ID: 480-158145-1

Matrix: Ground Water

Date Received: 08/26/19 16:30

Polissolation Dissolved ND	Method: 6010C - Metals (ICP) - D Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Silver, Dissolved ND					- INDL					1
Sodium, Dissolved ND						-				1
Thaillum, Dissolved						.				
Vanadimu Dissolved ND	·					•				1
Method: 6020A - Metals (ICP/MS) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fasselinium ND 0.0050 mg/L 08/28/19 07:59 08/28/19 17:15	•					-				1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed MRC M										
Method: 6020A - Metals (ICP/MS) - Dissolved Result Qualifier RL MDL Unit D Prepared Analyzed Method: 6020A - Metals (ICP/MS) - Dissolved Rosult Qualifier RL MDL Unit D Prepared Analyzed Method: 7470A - Mercury (CVAA) Analyzed Method: 7470A - Mercury (CVAA) Result Qualifier RL MDL Unit D Prepared Analyzed Dil F Mercury Method: 7470A - Mercury (CVAA) - Dissolved Rosult Qualifier RL MDL Unit D Prepared Analyzed Dil F Mercury Method: 7470A - Mercury (CVAA) - Dissolved Rosult Qualifier RL MDL Unit D Prepared Analyzed Dil F Mercury Method: 7470A - Mercury (CVAA) - Dissolved Rosult Qualifier RL MDL Unit Mercury Method: 7470A - Mercury (CVAA) - Dissolved Rosult Qualifier RL MDL Unit Mercury Method: 7470A - Mercury (CVAA) - Dissolved Rosult Qualifier RL MDL Unit D Prepared Analyzed Dil F Mercury Mercur	Method: 6020A - Metals (ICP/MS	3)								
Method: 6020A - Metals (ICP/MS) - Dissolved Result Qualifier RL MDL Unit mg/L 08/28/19 09:38 08/28/19 15:49 Method: 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 09/03/19 11:54 09/03/19 11:	•	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Maralyte Result Qualifier RL MDL Unit D Prepared Analyzed DIF	Selenium	ND		0.0050		mg/L	_	08/28/19 07:59	08/28/19 17:15	1
Method: 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII F Method: 7470A - Mercury (CVAA) - Dissolved Method: 7470A - Mercury (CVAA) - Dissolved Method: 7470A - Mercury (CVAA) - Dissolved Result Qualifier RL MDL Unit D Prepared Analyzed Method: 7470A - Mercury (CVAA) - Dissolved ND 0.00020 mg/L 0.00029 0	Method: 6020A - Metals (ICP/MS) - Dissol	ved							
Method: 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit mg/L 09/03/19 11:54 09/03/19 15:45 09/03/19 15:50 09/03/19 15:18	•		Qualifier		MDL	Unit	D	•	Analyzed	Dil Fac
Maralyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil F Mercury ND 0.00020 mg/L 0.9/03/19 11:54 0.9/03/19 15:45 Dil F Mercury ND 0.00020 mg/L 0.9/03/19 11:54 Dil F Mercury ND 0.00020 mg/L 0.8/29/19 11:53 0.8/29/19 15:18 Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Mercury Dil F Dil	Selenium, Dissolved	ND		0.0010		mg/L	_	08/28/19 09:38	08/28/19 15:49	1
Mercury ND 0.00020 mg/L 0.003/19 11:54 0.003/19 15:45 0.003/19 15:55 0.003/		•					_			
Method: 7470A - Mercury (CVAA) - Dissolved Analyte Result Qualifier RL MDL Unit D 08/29/19 11:53 08/29/19 15:18 08/29/19 15:28 09/09/19 15:28 09/09/19 15:29			Qualifier		MDL		D			Dil Fac
Nanalyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil F	Mercury	ND		0.00020		mg/L		09/03/19 11:54	09/03/19 15:45	1
Mercury, Dissolved ND 0.00020 mg/L 08/29/19 11:53 08/29/19 15:18							_			
Cameral Chemistry			Qualifier		MDL		_ D			Dil Fac
Analyte	viercury, Dissolved	ND		0.00020		mg/L		08/29/19 11:53	08/29/19 15:18	1
Stromide ND 0.20 mg/L 08/28/19 14:48 Alkalinity, Total 210 15.0 mg/L 08/28/19 14:48 Alkalinity, Total 210 15.0 mg/L 08/28/19 21:18 Ammonia (as N) 0.41 0.050 mg/L as N 09/05/19 13:33 09/08/19 09:07 Total Kjeldahl Nitrogen 1.4 0.15 mg/L as N 09/05/19 13:33 09/08/19 16:47 Olifitate 0.65 0.050 mg/L as N 08/28/19 00:41 Olifitate 0.65 0.050 mg/L as N 08/28/19 00:41 Olifitate 0.65 0.050 mg/L as N 08/28/19 00:41 Olifitate 0.65 0.050 mg/L as N 08/28/19 00:41 Olifitate 0.65 Olifitate Olifitate 0.65 Olifitate Olif	•	D'	Ovelifie:	BI	MD	l lmi4	_	Duanana	A mal:	Dil 5
Alkalinity, Total 210 15.0 mg/L 08/28/19 21:18			Qualifier		MDL		. <u>.</u>	Prepared		
Ammonia (as N)						-				1
Total Kjeldahl Nitrogen 1.4						•				3
Nitrate 0.65 0.050 mg/L as N 08/28/19 00:41 Chemical Oxygen Demand 21.0 5.0 mg/L 08/29/19 15:50 Chromium, hexavalent ND 0.010 mg/L 09/08/19 14:57 09/09/19 12:19 02/20/20/20/20/20/20/20/20/20/20/20/20/2								.00/05/40 40.00		1
Chemical Oxygen Demand 21.0 5.0 mg/L 08/29/19 15:50 Chromium, hexavalent ND 0.010 mg/L 09/08/19 14:57 09/09/19 12:19 Oyanide, Total 0.010 ND H 0.010 mg/L 09/08/19 14:57 09/09/19 12:19 Oyanide, Total ND H 0.010 mg/L 09/15/19 15:25 09/16/19 13:40 Oyardide, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 09/08/19 12:27 Oyardide, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 Oyardide, Total Dissolved Solids 251 10.0 mg/L 08/28/19 09:29 Oyardide 11.8 0.50 mg/L 08/28/19 14:48 Oyardide 08/28/19 14:48 Oyardide 08/28/19 14:48 Oyardide Oyardi	_					· ·		09/05/19 13:33		1
Chromium, hexavalent ND 0.010 mg/L 09/08/19 14:57 09/09/19 12:19 Cyanide, Total 0.010 mg/L 09/08/19 14:57 09/09/19 12:19 Cyanide, Total ND H 0.010 mg/L 09/15/19 15:25 09/16/19 13:40 Cyanide, Total ND H 0.010 mg/L 09/07/19 01:20 09/08/19 12:27 Cyanide, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 09/08/19 12:27 Cyanide, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 09/08/19 12:27 Cyanidess 244 2.0 mg/L 09/07/19 01:20 09/08/19 12:27 Cyanidess 251 10.0 mg/L 08/28/19 09:29 Cyanidess 08/28/19 09:29 Cyanidess 08/28/19 14:48 Cyanides 08/28/19 14:48						· ·				1
Cyanide, Total 0.010 0.010 mg/L 09/08/19 14:57 09/09/19 12:19 Cyanide, Total ND H 0.010 mg/L 09/15/19 15:25 09/16/19 13:40 Phenolics, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 09/08/19 12:27 Hardness 244 2.0 mg/L 09/09/19 01:20 09/09/19 09:45 Total Dissolved Solids 251 10.0 mg/L 08/28/19 09:29 Chloride 11.8 0.50 mg/L 08/28/19 14:48 Sulfate 35.6 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 18:59 Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil F Color ND 0.0100 Color Units D 08/26/19 13:45 OH, Field 7.57 SU 08/26/19 13:45 OH, Field 7.57 SU 08/26/19 13:45 <td></td> <td></td> <td></td> <td></td> <td></td> <td> .</td> <td></td> <td></td> <td></td> <td>1</td>						.				1
Cyanide, Total ND H 0.010 mg/L 09/15/19 15:25 09/16/19 13:40 Phenolics, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 09/08/19 12:27 Hardness 244 2.0 mg/L 09/07/19 01:20 09/08/19 12:27 Total Dissolved Solids 251 10.0 mg/L 08/28/19 09:29 Chloride 11.8 0.50 mg/L 08/28/19 14:48 Sulfate 35.6 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 18:59 Total Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Analyte Result Qualifier RL RL RL Unit D Prepared Analyzed Dil F Color ND 0.0100 Color Units D 08/26/19 13:45 Dil F OH, Field 7.57 SU 08/26/19 13:45 OR/26/19 13:45 OR/26/19 13:45 Specific Conductance						•		00/00/40 44:57		1
Phenolics, Total Recoverable 0.013 B 0.0050 mg/L 09/07/19 01:20 09/08/19 12:27 Hardness 244 2.0 mg/L 09/09/19 09:45 Total Dissolved Solids 251 10.0 mg/L 08/28/19 09:29 Chloride 11.8 0.50 mg/L 08/28/19 14:48 Sulfate 35.6 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18:59 Chloride 1.4 1.0 mg/L 08/28/19 18						•				1
Hardness 244 2.0 mg/L 09/09/19 09:45 Total Dissolved Solids 251 10.0 mg/L 08/28/19 09:29 Chloride 11.8 0.50 mg/L 08/28/19 14:48 Sulfate 35.6 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 14:48 Biochemical Oxygen Demand 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Chal Organic Carbon 0.0100 Color Units 08/27/19 14:20 Color Units 08/27/19 14:20 Color Units						🗄				1
Total Dissolved Solids 251 10.0 mg/L 08/28/19 09:29			В					09/07/19 01:20		1
Chloride						•				1
Sulfate 35.6 2.0 mg/L 08/28/19 14:48										
Biochemical Oxygen Demand 3.6 b 2.0 mg/L 08/28/19 02:28										1
Total Organic Carbon 1.4 1.0 mg/L 08/28/19 18:59 Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Folion Color ND 0.0100 Color Units 08/27/19 14:20 Method: Field Sampling - Field Sampling Analyte Result Qualifier NONE NONE Unit D Prepared Analyzed Dil Folion OH, Field 7.57 SU 08/26/19 13:45 OH, Field 7.57 SU 08/26/19 13:45 OH, Field Conductance 474 Umhos/cm 08/26/19 13:45 OH, Field						•				1
Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Foliation			D							
Method: Field Sampling - Field Sampling Analyte Result Ph., Field NONE NONE NONE NONE NONE NONE NONE NONE						-		_		1
Method: Field Sampling - Field Sampling Analyte Result PH, Field Qualifier NONE NONE Unit D Prepared Analyzed Dil F pH, Field 7.57 SU 08/26/19 13:45 Specific Conductance 474 umhos/cm 08/26/19 13:45 Field EH/ORP -96 millivolts 08/26/19 13:45 Temperature, Field 11.1 Degrees C 08/26/19 13:45			Qualifier		RL		_ D	Prepared		Dil Fac
Analyte Result Oualifier NONE NONE Unit Duit NONE Description Prepared None Analyzed None Dil Foundation 6H, Field OH, Field Specific Conductance 474 umhos/cm 08/26/19 13:45 08/26/19 13:45 Field EH/ORP -96 millivolts 08/26/19 13:45 Temperature, Field 11.1 Degrees C 08/26/19 13:45	Color	ND		0.0100		Color Units			08/27/19 14:20	1
DH, Field 7.57 SU 08/26/19 13:45 Specific Conductance 474 umhos/cm 08/26/19 13:45 Field EH/ORP -96 millivolts 08/26/19 13:45 Temperature, Field 11.1 Degrees C 08/26/19 13:45			Ovelifie:	NONE	NONE	l lmi4	_	Duanana	A mal:	Dil 5
Specific Conductance 474 umhos/cm 08/26/19 13:45 Field EH/ORP -96 millivolts 08/26/19 13:45 Temperature, Field 11.1 Degrees C 08/26/19 13:45			Qualitier	NONE	NONE		. <u>.</u>	Prepared	-	
Field EH/ORP -96 millivolts 08/26/19 13:45 Temperature, Field 11.1 Degrees C 08/26/19 13:45										1
Temperature, Field 11.1 Degrees C 08/26/19 13:45										1
										1
Odor Yes NONE 08/26/19 13:45										1

Eurofins TestAmerica, Buffalo

Page 78 of 314

2

3

5

1.0

12

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-50 Lab Sample ID: 480-158145-1

Date Collected: 08/26/19 13:45 Matrix: Ground Water

Date Received: 08/26/19 16:30

Method: Field Sampling - Fie	eld Sampling	(Continued	l)						
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	8.3				NTU			08/26/19 13:45	1
Well Depth	27.50				ft			08/26/19 13:45	1
Depth to Water from Top of Casing	25.90				ft			08/26/19 13:45	1

2

4

5

6

8

10

12

1 A

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: FIELD BLANK

Lab Sample ID: 480-158409-1 Date Collected: 08/30/19 11:00 Date Received: 08/30/19 16:15

Matrix: Water

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane		5.0	ug/L		<u> </u>	09/11/19 01:29	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/11/19 01:29	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/11/19 01:29	
1,1,2-Trichloroethane	ND	5.0	ug/L			09/11/19 01:29	
1,1-Dichloroethane	ND	5.0	ug/L			09/11/19 01:29	
1,1-Dichloroethene	ND	5.0	ug/L			09/11/19 01:29	
1,2,3-Trichloropropane	ND	5.0	ug/L			09/11/19 01:29	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/11/19 01:29	
1,2-Dibromoethane	ND	5.0	ug/L			09/11/19 01:29	
1,2-Dichlorobenzene	ND	5.0	ug/L			09/11/19 01:29	
1,2-Dichloroethane	ND	5.0	ug/L			09/11/19 01:29	
1,2-Dichloropropane	ND	5.0	ug/L			09/11/19 01:29	
1,4-Dichlorobenzene	ND	5.0	ug/L			09/11/19 01:29	
1,4-Dioxane	ND	50	ug/L			09/11/19 01:29	
2-Butanone (MEK)	ND	5.0	ug/L			09/11/19 01:29	
2-Hexanone	ND	10	ug/L			09/11/19 01:29	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/11/19 01:29	
Acetone	ND	5.0	ug/L			09/11/19 01:29	
Acetonitrile	ND	100	ug/L			09/11/19 01:29	
Benzene	ND	5.0	ug/L			09/11/19 01:29	
Bromochloromethane	ND	5.0	ug/L			09/11/19 01:29	
Bromodichloromethane	ND	5.0	ug/L			09/11/19 01:29	
Bromoform	ND	5.0	ug/L			09/11/19 01:29	
Bromomethane	ND	5.0	ug/L			09/11/19 01:29	
Carbon disulfide	ND	5.0	ug/L			09/11/19 01:29	
Carbon tetrachloride	ND	5.0	ug/L			09/11/19 01:29	
Chlorobenzene	ND	5.0	ug/L			09/11/19 01:29	
Chloroethane	ND	5.0	ug/L			09/11/19 01:29	
Chloroform	ND	5.0	ug/L			09/11/19 01:29	
Chloromethane	ND	5.0	ug/L			09/11/19 01:29	
cis-1,2-Dichloroethene	ND	5.0	ug/L			09/11/19 01:29	
cis-1,3-Dichloropropene	ND	5.0	ug/L			09/11/19 01:29	
Dibromochloromethane	ND	5.0	ug/L			09/11/19 01:29	
Dibromomethane	ND	5.0	ug/L			09/11/19 01:29	
Ethylbenzene	ND	5.0	ug/L			09/11/19 01:29	
lodomethane	ND	5.0	ug/L			09/11/19 01:29	
m,p-Xylene	ND	5.0	ug/L			09/11/19 01:29	
Methylene Chloride	ND	5.0	ug/L			09/11/19 01:29	
o-Xylene	ND	5.0	ug/L			09/11/19 01:29	
Styrene	ND	5.0	ug/L			09/11/19 01:29	
Tetrachloroethene	ND	5.0	ug/L			09/11/19 01:29	
Tetrahydrofuran	ND	10	ug/L			09/11/19 01:29	
Toluene	ND	5.0	ug/L			09/11/19 01:29	
trans-1,2-Dichloroethene	ND	5.0	ug/L			09/11/19 01:29	
trans-1,3-Dichloropropene	ND	5.0	ug/L			09/11/19 01:29	
trans-1,4-Dichloro-2-butene	ND	10	ug/L			09/11/19 01:29	
Trichloroethene	ND	5.0	ug/L			09/11/19 01:29	
Trichlorofluoromethane	ND	5.0	ug/L			09/11/19 01:29	
Vinyl acetate	ND	50	ug/L			09/11/19 01:29	

Eurofins TestAmerica, Buffalo

Page 80 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: FIELD BLANK

Lab Sample ID: 480-158409-1 Date Collected: 08/30/19 11:00

Matrix: Water

Date Received: 08/30/19 16:15

Method: 8260C - Volatile Org	ganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/11/19 01:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120			-		09/11/19 01:29	1
4. Dua va afficia va la avana va a (Occurs)	0.0		73 - 120					09/11/19 01:29	1
4-Bromofluorobenzene (Surr)	98		13 - 120					09/11/19 01.29	,

Method: 6010C - Metals (ICP) Analyte	Result (Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	mg/L	09/05/19 06:30	09/10/19 16:12	1
Antimony	ND	0.015	mg/L	09/05/19 06:30	09/10/19 16:12	1
Arsenic	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:12	1
Barium	ND	0.20	mg/L	09/05/19 06:30	09/10/19 16:12	1
Beryllium	ND	0.0030	mg/L	09/05/19 06:30	09/10/19 16:12	1
Boron	ND	0.020	mg/L	09/05/19 06:30	09/10/19 16:12	1
Cadmium	ND	0.0050	mg/L	09/05/19 06:30	09/10/19 16:12	1
Calcium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:12	1
Chromium	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:12	1
Cobalt	ND	0.050	mg/L	09/05/19 06:30	09/10/19 16:12	1
Copper	ND	0.025	mg/L	09/05/19 06:30	09/10/19 16:12	1
Iron	ND	0.10	mg/L	09/05/19 06:30	09/10/19 16:12	1
Lead	ND	0.0030	mg/L	09/05/19 06:30	09/10/19 16:12	1
Magnesium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:12	1
Manganese	ND	0.015	mg/L	09/05/19 06:30	09/10/19 16:12	1
Nickel	ND	0.040	mg/L	09/05/19 06:30	09/10/19 16:12	1
Potassium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:12	1
Silver	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:12	1
Sodium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:12	1
Thallium	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:12	1
Vanadium	ND	0.050	mg/L	09/05/19 06:30	09/10/19 16:12	1
Zinc	ND	0.020	mg/L	09/05/19 06:30	09/10/19 16:12	1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		09/04/19 08:41	09/05/19 00:10	1
Antimony, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:10	1
Arsenic, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:10	1
Barium, Dissolved	ND		0.20		mg/L		09/04/19 08:41	09/05/19 00:10	1
Beryllium, Dissolved	ND		0.0030		mg/L		09/04/19 08:41	09/05/19 00:10	1
Boron, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:10	1
Cadmium, Dissolved	ND		0.0050		mg/L		09/04/19 08:41	09/05/19 00:10	1
Calcium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:10	1
Chromium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:10	1
Cobalt, Dissolved	ND		0.050		mg/L		09/04/19 08:41	09/05/19 00:10	1
Copper, Dissolved	ND		0.025		mg/L		09/04/19 08:41	09/05/19 00:10	1
Iron, Dissolved	ND		0.10		mg/L		09/04/19 08:41	09/05/19 00:10	1
Lead, Dissolved	ND		0.0030		mg/L		09/04/19 08:41	09/05/19 00:10	1
Magnesium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:10	1
Manganese, Dissolved	ND		0.015		mg/L		09/04/19 08:41	09/05/19 00:10	1
Nickel, Dissolved	ND		0.040		mg/L		09/04/19 08:41	09/05/19 00:10	1

Eurofins TestAmerica, Buffalo

Page 81 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: FIELD BLANK

Date Received: 08/30/19 16:15

Lab Sample ID: 480-158409-1 Date Collected: 08/30/19 11:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:10	
Silver, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:10	
Sodium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:10	
Thallium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:10	
Vanadium, Dissolved	ND		0.050		mg/L		09/04/19 08:41	09/05/19 00:10	
Zinc, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:10	
Method: 6020A - Metals (ICP/MS	5)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		09/05/19 06:00	09/05/19 18:20	
Method: 6020A - Metals (ICP/MS	i) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		09/04/19 08:33	09/05/19 15:53	
Method: 7470A - Mercury (CVAA									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		09/10/19 11:40	09/10/19 16:04	
Method: 7470A - Mercury (CVAA	A) - Disso	lved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		09/18/19 11:00	09/18/19 14:28	,
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.20		mg/L			09/09/19 13:47	•
Alkalinity, Total	ND		5.0		mg/L			09/09/19 16:37	,
Ammonia (as N)	ND	F1	0.050		mg/L as N			09/06/19 08:34	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		09/13/19 10:03	09/15/19 11:59	
Total Kjeldahl Nitrogen	ND	Н	0.15		mg/L as N		09/27/19 08:32	09/29/19 12:00	•
Nitrate	ND		0.050		mg/L as N			08/31/19 09:27	
Chemical Oxygen Demand	ND		5.0		mg/L			09/06/19 14:05	•
Chromium, hexavalent	ND		0.010		mg/L			08/31/19 09:14	,
Cyanide, Total	ND	. <u></u>	0.010		mg/L		09/09/19 19:35	09/11/19 13:57	
Phenolics, Total Recoverable	0.0088	F1	0.0050		mg/L		09/13/19 23:44	09/15/19 14:51	
Hardness	ND		2.0		mg/L			09/15/19 11:45	•
Total Dissolved Solids	ND		10.0		mg/L			09/05/19 10:44	
Chloride	ND		0.50		mg/L			09/09/19 13:47	
Sulfate	ND		2.0		mg/L			09/09/19 13:47	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/31/19 06:51	
Total Organic Carbon	ND		1.0		mg/L			09/06/19 03:05	
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units			09/01/19 08:10	

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-1

Date Collected: 08/30/19 14:22 Date Received: 08/30/19 16:15 Lab Sample ID: 480-158409-2

Matrix: Ground Water

Analyte	anic Compounds by GC/ Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND -	5.0	ug/L			09/11/19 01:53	1
1,1,1-Trichloroethane	ND	5.0	ug/L			09/11/19 01:53	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/11/19 01:53	1
1,1,2-Trichloroethane	ND	5.0	ug/L			09/11/19 01:53	1
1,1-Dichloroethane	ND	5.0	ug/L			09/11/19 01:53	1
1,1-Dichloroethene	ND	5.0	ug/L			09/11/19 01:53	1
1,2,3-Trichloropropane	ND	5.0	ug/L			09/11/19 01:53	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/11/19 01:53	1
1,2-Dibromoethane	ND	5.0	ug/L			09/11/19 01:53	1
1,2-Dichlorobenzene	ND	5.0	ug/L			09/11/19 01:53	1
1,2-Dichloroethane	ND	5.0	ug/L			09/11/19 01:53	1
1,2-Dichloropropane	ND	5.0	ug/L			09/11/19 01:53	1
1,4-Dichlorobenzene	ND	5.0	ug/L			09/11/19 01:53	1
1,4-Dioxane	ND	50	ug/L			09/11/19 01:53	1
2-Butanone (MEK)	ND	5.0	ug/L			09/11/19 01:53	1
2-Hexanone	ND	10	ug/L			09/11/19 01:53	1
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/11/19 01:53	1
Acetone	ND	5.0	ug/L			09/11/19 01:53	1
Acetonitrile	ND	100	ug/L			09/11/19 01:53	
Benzene	ND	5.0	ug/L			09/11/19 01:53	1
Bromochloromethane	ND	5.0	ug/L			09/11/19 01:53	1
Bromodichloromethane	ND	5.0	ug/L			09/11/19 01:53	
Bromoform	ND	5.0	ug/L			09/11/19 01:53	1
Bromomethane	ND	5.0	ug/L			09/11/19 01:53	1
Carbon disulfide	ND	5.0	ug/L			09/11/19 01:53	· · · · · · · · · · · · · · · · · · ·
Carbon tetrachloride	ND	5.0	ug/L			09/11/19 01:53	1
Chlorobenzene	ND	5.0	ug/L			09/11/19 01:53	1
Chloroethane	ND	5.0	ug/L			09/11/19 01:53	
Chloroform	ND	5.0	ug/L			09/11/19 01:53	1
Chloromethane	ND	5.0	ug/L			09/11/19 01:53	1
cis-1,2-Dichloroethene	ND	5.0	ug/L			09/11/19 01:53	1
cis-1,3-Dichloropropene	ND	5.0	ug/L			09/11/19 01:53	1
Dibromochloromethane	ND	5.0	ug/L			09/11/19 01:53	1
Dibromomethane	ND	5.0	ug/L			09/11/19 01:53	
Ethylbenzene	ND	5.0	ug/L			09/11/19 01:53	1
lodomethane	ND	5.0	ug/L			09/11/19 01:53	1
m,p-Xylene	ND	5.0	ug/L			09/11/19 01:53	
Methylene Chloride	ND	5.0	ug/L			09/11/19 01:53	1
o-Xylene	ND ND	5.0	ug/L			09/11/19 01:53	1
Styrene	ND	5.0				09/11/19 01:53	
Tetrachloroethene	ND	5.0	ug/L ug/L			09/11/19 01:53	
Tetrahydrofuran	ND ND	10	=				1
.			ug/L			09/11/19 01:53	
Toluene	ND ND	5.0	ug/L			09/11/19 01:53	1
trans-1,2-Dichloroethene	ND ND	5.0	ug/L			09/11/19 01:53	1
trans-1,3-Dichloropropene	ND ND	5.0	ug/L			09/11/19 01:53	1
trans-1,4-Dichloro-2-butene	ND	10 5.0	ug/L			09/11/19 01:53	1
Trichloroethene	ND	5.0	ug/L			09/11/19 01:53	1
Trichlorofluoromethane Vinyl acetate	ND ND	5.0 50	ug/L ug/L			09/11/19 01:53 09/11/19 01:53	1 1

Eurofins TestAmerica, Buffalo

Page 83 of 314

2

3

4

7

9

11

14

4.0

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-1

Date Collected: 08/30/19 14:22 Date Received: 08/30/19 16:15 Lab Sample ID: 480-158409-2

Matrix: Ground Water

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/11/19 01:53	1
Surrogate	%Recovery	Qualifier	Limita				Prepared	Analyzad	Dil Fac
Surrogate	70Kecovery	Qualifier	Limits				Frepareu	Analyzed	DII Fac
1,2-Dichloroethane-d4 (Surr)	97	Qualifier	77 - 120				Prepareu	09/11/19 01:53	DII Fac
		Quaimer					Prepareu		1 1

Method: 6010C - Metals (ICP) Analyte	Result (Qualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	mg/L	09/05/19 06:30	09/10/19 16:16	1
Antimony	ND	0.015	mg/L	09/05/19 06:30	09/10/19 16:16	1
Arsenic	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:16	1
Barium	ND	0.20	mg/L	09/05/19 06:30	09/10/19 16:16	1
Beryllium	ND	0.0030	mg/L	09/05/19 06:30	09/10/19 16:16	1
Boron	ND	0.020	mg/L	09/05/19 06:30	09/10/19 16:16	1
Cadmium	ND	0.0050	mg/L	09/05/19 06:30	09/10/19 16:16	1
Calcium	76.9	5.0	mg/L	09/05/19 06:30	09/10/19 16:16	1
Chromium	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:16	1
Cobalt	ND	0.050	mg/L	09/05/19 06:30	09/10/19 16:16	1
Copper	ND	0.025	mg/L	09/05/19 06:30	09/10/19 16:16	1
Iron	ND	0.10	mg/L	09/05/19 06:30	09/10/19 16:16	1
Lead	ND	0.0030	mg/L	09/05/19 06:30	09/10/19 16:16	1
Magnesium	18.1	5.0	mg/L	09/05/19 06:30	09/10/19 16:16	1
Manganese	ND	0.015	mg/L	09/05/19 06:30	09/10/19 16:16	1
Nickel	ND	0.040	mg/L	09/05/19 06:30	09/10/19 16:16	1
Potassium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:16	1
Silver	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:16	1
Sodium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:16	1
Thallium	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:16	1
Vanadium	ND	0.050	mg/L	09/05/19 06:30	09/10/19 16:16	1
Zinc	ND	0.020	mg/L	09/05/19 06:30	09/10/19 16:16	1
The state of the s			0			

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		09/04/19 08:41	09/05/19 00:14	1
Antimony, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:14	1
Arsenic, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:14	1
Barium, Dissolved	ND		0.20		mg/L		09/04/19 08:41	09/05/19 00:14	1
Beryllium, Dissolved	ND	0	0.0030		mg/L		09/04/19 08:41	09/05/19 00:14	1
Boron, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:14	1
Cadmium, Dissolved	ND	O	.0050		mg/L		09/04/19 08:41	09/05/19 00:14	1
Calcium, Dissolved	79.3		5.0		mg/L		09/04/19 08:41	09/05/19 00:14	1
Chromium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:14	1
Cobalt, Dissolved	ND		0.050		mg/L		09/04/19 08:41	09/05/19 00:14	1
Copper, Dissolved	ND		0.025		mg/L		09/04/19 08:41	09/05/19 00:14	1
Iron, Dissolved	ND		0.10		mg/L		09/04/19 08:41	09/05/19 00:14	1
Lead, Dissolved	ND	0	.0030		mg/L		09/04/19 08:41	09/05/19 00:14	1
Magnesium, Dissolved	18.1		5.0		mg/L		09/04/19 08:41	09/05/19 00:14	1
Manganese, Dissolved	ND		0.015		mg/L		09/04/19 08:41	09/05/19 00:14	1
Nickel, Dissolved	ND		0.040		mg/L		09/04/19 08:41	09/05/19 00:14	1

Eurofins TestAmerica, Buffalo

Page 84 of 314

6

3

5

7

9

11

12

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-1 Lab Sample ID: 480-158409-2

Date Collected: 08/30/19 14:22

Matrix: Ground Water

Date Received: 08/30/19 16:15

Method: 6010C - Metals (ICP) - Dis Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Potassium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:14	
Silver, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:14	
Sodium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:14	• • • • • • • •
Γhallium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:14	
/anadium, Dissolved	ND		0.050		mg/L		09/04/19 08:41	09/05/19 00:14	
Zinc, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:14	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium	ND		0.0050		mg/L	_	09/05/19 06:00	09/05/19 18:22	
Method: 6020A - Metals (ICP/MS)	- Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium, Dissolved	ND		0.0010		mg/L	_	09/04/19 08:33	09/05/19 15:55	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L	_	09/10/19 11:40	09/10/19 16:05	
Method: 7470A - Mercury (CVAA)	- Disso	lved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		09/18/19 11:00	09/18/19 14:29	•
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.40		mg/L			09/09/19 14:02	
Alkalinity, Total	210	^	15.0		mg/L			09/09/19 17:09	3
Ammonia (as N)	ND		0.050		mg/L as N			09/06/19 08:36	
otal Kjeldahl Nitrogen	ND		0.15		mg/L as N		09/19/19 09:22	09/22/19 10:27	
litrate	ND		0.050		mg/L as N			08/31/19 09:28	
Chemical Oxygen Demand	ND		5.0		mg/L			09/06/19 14:05	
Chromium, hexavalent	ND		0.010		mg/L			08/31/19 09:14	•
Cyanide, Total	ND		0.010		mg/L		09/09/19 19:35	09/11/19 14:02	•
Cyanide, Total	ND		0.010		mg/L		09/18/19 18:35	09/19/19 08:54	
Phenolics, Total Recoverable	0.0085	В	0.0050		mg/L		09/16/19 23:12	09/17/19 10:36	•
lardness	272		2.0		mg/L			09/15/19 11:45	•
otal Dissolved Solids	338		10.0		mg/L			09/05/19 10:44	
Chloride	5.0		1.0		mg/L			09/09/19 14:02	2
Sulfate	71.9		4.0		mg/L			09/09/19 14:02	2
Biochemical Oxygen Demand	ND		2.0		mg/L			08/31/19 06:51	
Total Organic Carbon	ND		1.0		mg/L			09/06/19 03:20	•
Analyte		Qualifier	RL	RL	Unit	_ D	Prepared	Analyzed	Dil Fac
Color	5.00		0.0100		Color Units			09/01/19 08:10	•
Method: Field Sampling - Field Sa							_		
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fac
H, Field	6.96				SU			08/30/19 14:22	•
Specific Conductance	506				umhos/cm			08/30/19 14:22	•
ield EH/ORP	133.0				millivolts			08/30/19 14:22	
Temperature, Field	10.0				Degrees C			08/30/19 14:22	

Eurofins TestAmerica, Buffalo

Page 85 of 314

2

3

5

8

1U 11

12

15

16

18

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-1 Lab Sample ID: 480-158409-2

Date Collected: 08/30/19 14:22 Matrix: Ground Water

Date Received: 08/30/19 16:15

Method: Field Sampling - Fie	Id Sampling (Continued	i)						
Analyte	Result Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	1.9			NTU			08/30/19 14:22	1
Well Depth	31.06			ft			08/30/19 14:22	1
Depth to Water from Top of	19.62			ft			08/30/19 14:22	1
Casing								

3

5

6

8

10

40

13

15

10

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-2

Lab Sample ID: 480-158409-3 Date Collected: 08/30/19 13:45 **Matrix: Ground Water**

Date Received: 08/30/19 16:15

Method: 8260C - Volatile Org Analyte	Result Qu	alifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			09/11/19 02:17	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/11/19 02:17	•
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/11/19 02:17	•
1,1,2-Trichloroethane	ND	5.0	ug/L			09/11/19 02:17	
1,1-Dichloroethane	ND	5.0	ug/L			09/11/19 02:17	•
1,1-Dichloroethene	ND	5.0	ug/L			09/11/19 02:17	
1,2,3-Trichloropropane	ND	5.0	ug/L			09/11/19 02:17	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/11/19 02:17	
1,2-Dibromoethane	ND	5.0	ug/L			09/11/19 02:17	
1,2-Dichlorobenzene	ND	5.0	ug/L			09/11/19 02:17	• • • • • • •
1,2-Dichloroethane	ND	5.0	ug/L			09/11/19 02:17	
1,2-Dichloropropane	ND	5.0	ug/L			09/11/19 02:17	
1,4-Dichlorobenzene	ND	5.0	ug/L			09/11/19 02:17	,
1,4-Dioxane	ND	50	ug/L			09/11/19 02:17	
2-Butanone (MEK)	ND	5.0	ug/L			09/11/19 02:17	
2-Hexanone	ND	10	ug/L			09/11/19 02:17	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/11/19 02:17	
Acetone	ND	5.0	ug/L			09/11/19 02:17	
Acetonitrile	ND	100	ug/L			09/11/19 02:17	
Benzene	ND	5.0	ug/L			09/11/19 02:17	
Bromochloromethane	ND	5.0	ug/L			09/11/19 02:17	
Bromodichloromethane	ND	5.0	ug/L			09/11/19 02:17	
Bromoform	ND	5.0	ug/L			09/11/19 02:17	
Bromomethane	ND	5.0	ug/L			09/11/19 02:17	
Carbon disulfide	ND	5.0	ug/L			09/11/19 02:17	
Carbon tetrachloride	ND	5.0	ug/L			09/11/19 02:17	
Chlorobenzene	ND	5.0	ug/L			09/11/19 02:17	
Chloroethane	ND	5.0	ug/L			09/11/19 02:17	,
Chloroform	ND	5.0	ug/L			09/11/19 02:17	
Chloromethane	ND	5.0	ug/L			09/11/19 02:17	
cis-1,2-Dichloroethene	ND	5.0	.			09/11/19 02:17	,
cis-1,3-Dichloropropene	ND ND	5.0	ug/L ug/L			09/11/19 02:17	
Dibromochloromethane	ND ND	5.0	_			09/11/19 02:17	
Dibromomethane	ND	5.0	ug/L ug/L			09/11/19 02:17	· · · · · .
Ethylbenzene	ND ND	5.0	ug/L			09/11/19 02:17	
lodomethane	ND ND	5.0	_			09/11/19 02:17	
			ug/L				
m,p-Xylene	ND	5.0	ug/L			09/11/19 02:17	ĺ
Methylene Chloride	ND	5.0	ug/L			09/11/19 02:17	
o-Xylene	ND	5.0	ug/L			09/11/19 02:17	
Styrene	ND	5.0	ug/L			09/11/19 02:17	•
Tetrachloroethene	ND	5.0	ug/L			09/11/19 02:17	•
Tetrahydrofuran	ND	10	ug/L			09/11/19 02:17	
Toluene	ND	5.0	ug/L			09/11/19 02:17	•
trans-1,2-Dichloroethene	ND	5.0	ug/L			09/11/19 02:17	
trans-1,3-Dichloropropene	ND	5.0	ug/L			09/11/19 02:17	
trans-1,4-Dichloro-2-butene	ND	10	ug/L			09/11/19 02:17	
Trichloroethene	ND	5.0	ug/L			09/11/19 02:17	_
Trichlorofluoromethane	ND	5.0	ug/L			09/11/19 02:17	•

Eurofins TestAmerica, Buffalo

Page 87 of 314

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-2

Lab Sample ID: 480-158409-3 Date Collected: 08/30/19 13:45 **Matrix: Ground Water**

Date Received: 08/30/19 16:15

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/11/19 02:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		77 - 120					09/11/19 02:17	1
4-Bromofluorobenzene (Surr)	98		73 - 120					09/11/19 02:17	1
Toluene-d8 (Surr)	95		80 - 120					09/11/19 02:17	1

Method: 6010C - Metals (ICP) Analyte	Result Qı	ualifier RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20	mg/L	09/05/19 06:30	09/10/19 16:20	1
Antimony	ND	0.015	mg/L	09/05/19 06:30	09/10/19 16:20	1
Arsenic	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:20	1
Barium	ND	0.20	mg/L	09/05/19 06:30	09/10/19 16:20	1
Beryllium	ND	0.0030	mg/L	09/05/19 06:30	09/10/19 16:20	1
Boron	0.036	0.020	mg/L	09/05/19 06:30	09/10/19 16:20	1
Cadmium	ND	0.0050	mg/L	09/05/19 06:30	09/10/19 16:20	1
Calcium	72.0	5.0	mg/L	09/05/19 06:30	09/10/19 16:20	1
Chromium	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:20	1
Cobalt	ND	0.050	mg/L	09/05/19 06:30	09/10/19 16:20	1
Copper	ND	0.025	mg/L	09/05/19 06:30	09/10/19 16:20	1
Iron	ND	0.10	mg/L	09/05/19 06:30	09/10/19 16:20	1
Lead	ND	0.0030	mg/L	09/05/19 06:30	09/10/19 16:20	1
Magnesium	21.1	5.0	mg/L	09/05/19 06:30	09/10/19 16:20	1
Manganese	ND	0.015	mg/L	09/05/19 06:30	09/10/19 16:20	1
Nickel	ND	0.040	mg/L	09/05/19 06:30	09/10/19 16:20	1
Potassium	ND	5.0	mg/L	09/05/19 06:30	09/10/19 16:20	1
Silver	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:20	1
Sodium	6.6	5.0	mg/L	09/05/19 06:30	09/10/19 16:20	1
Thallium	ND	0.010	mg/L	09/05/19 06:30	09/10/19 16:20	1
Vanadium	ND	0.050	mg/L	09/05/19 06:30	09/10/19 16:20	1
Zinc	ND	0.020	mg/L	09/05/19 06:30	09/10/19 16:20	1
<u></u>						

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		09/04/19 08:41	09/05/19 00:18	1
Antimony, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:18	1
Arsenic, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:18	1
Barium, Dissolved	ND		0.20		mg/L		09/04/19 08:41	09/05/19 00:18	1
Beryllium, Dissolved	ND		0.0030		mg/L		09/04/19 08:41	09/05/19 00:18	1
Boron, Dissolved	0.034		0.020		mg/L		09/04/19 08:41	09/05/19 00:18	1
Cadmium, Dissolved	ND		0.0050		mg/L		09/04/19 08:41	09/05/19 00:18	1
Calcium, Dissolved	71.5		5.0		mg/L		09/04/19 08:41	09/05/19 00:18	1
Chromium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:18	1
Cobalt, Dissolved	ND		0.050		mg/L		09/04/19 08:41	09/05/19 00:18	1
Copper, Dissolved	ND		0.025		mg/L		09/04/19 08:41	09/05/19 00:18	1
Iron, Dissolved	ND		0.10		mg/L		09/04/19 08:41	09/05/19 00:18	1
Lead, Dissolved	ND		0.0030		mg/L		09/04/19 08:41	09/05/19 00:18	1
Magnesium, Dissolved	20.5		5.0		mg/L		09/04/19 08:41	09/05/19 00:18	1
Manganese, Dissolved	ND		0.015		mg/L		09/04/19 08:41	09/05/19 00:18	1
Nickel, Dissolved	ND		0.040		mg/L		09/04/19 08:41	09/05/19 00:18	1

Eurofins TestAmerica, Buffalo

Page 88 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Date Received: 08/30/19 16:15

Field EH/ORP

Odor

Temperature, Field

Client Sample ID: MWBA-2 Lab Sample ID: 480-158409-3

Date Collected: 08/30/19 13:45 Matrix: Ground Water

Method: 6010C - Metals (ICP) - Dis Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:18	
Silver, Dissolved	ND		0.010		mg/L		09/04/19 08:41		
Sodium, Dissolved	6.2		5.0		mg/L		09/04/19 08:41	09/05/19 00:18	
Thallium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:18	
Vanadium, Dissolved	ND		0.050		mg/L			09/05/19 00:18	
Zinc, Dissolved	ND		0.020		mg/L			09/05/19 00:18	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L	_	09/05/19 06:00	09/05/19 18:25	
Method: 6020A - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		09/04/19 08:33	09/05/19 15:57	
Method: 7470A - Mercury (CVAA)	- "					_			5
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		09/10/19 11:40	09/10/19 16:07	
Method: 7470A - Mercury (CVAA)			Di	MDI	l lmi4	_	Duamanad	A malumad	DilE
Analyte Mercury, Dissolved	ND	Qualifier	RL 0.00020	MDL	mg/L	_ D	Prepared	Analyzed 09/18/19 14:30	Dil Fa
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.40		mg/L			09/09/19 14:17	
Alkalinity, Total	196	^	15.0		mg/L			09/09/19 17:09	
Ammonia (as N)	ND		0.050		mg/L as N			09/06/19 08:37	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		09/17/19 07:30	09/17/19 16:31	
Nitrate	0.062		0.050		mg/L as N			08/31/19 09:46	
Chemical Oxygen Demand	ND		5.0		mg/L			09/06/19 14:05	
Chromium, hexavalent	ND		0.010		mg/L			08/31/19 09:14	
Cyanide, Total	ND	*	0.010		mg/L		09/12/19 14:04	09/12/19 17:20	
Cyanide, Total	ND	Н	0.010		mg/L		09/18/19 18:35	09/19/19 08:55	
Phenolics, Total Recoverable	0.0092		0.0050		mg/L		09/13/19 23:44	09/15/19 14:51	
Hardness	260		2.0		mg/L			09/15/19 11:45	
Total Dissolved Solids	349		10.0		mg/L			09/05/19 10:44	
Chloride	3.2		1.0		mg/L			09/09/19 14:17	
Sulfate	77.5		4.0		mg/L			09/09/19 14:17	
Biochemical Oxygen Demand	ND		2.0		mg/L			08/31/19 06:51	
Total Organic Carbon	ND		1.0		mg/L			09/06/19 03:35	
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units	_		09/01/19 08:10	
Method: Field Sampling - Field Sa	mpling								
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fa
					SU			08/30/19 13:45	
pH, Field	7.56				30				
pH, Field Specific Conductance	7.56 522				umhos/cm			08/30/19 13:45	

Eurofins TestAmerica, Buffalo

08/30/19 13:45

08/30/19 13:45

08/30/19 13:45

Page 89 of 314

150.0

11.7

No

millivolts

NONE

Degrees C

2

3

5

0

10

12

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-2 Lab Sample ID: 480-158409-3

Date Collected: 08/30/19 13:45 Matrix: Ground Water

Date Received: 08/30/19 16:15

Method: Field Sampling - Fie	ld Sampling (Continued	d)						
Analyte	Result Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	1.7			NTU			08/30/19 13:45	1
Well Depth	31.00			ft			08/30/19 13:45	1
Depth to Water from Top of	18.12			ft			08/30/19 13:45	1
Casing								

2

Α

5

6

8

4.6

11

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-O(I)

Lab Sample ID: 480-158409-4

Matrix: Ground Water

Date Collected: 08/30/19 11:39 Date Received: 08/30/19 16:15

Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	5.0		ug/L			09/11/19 02:42	1
1,1,1-Trichloroethane	ND	5.0	1	ug/L			09/11/19 02:42	1
1,1,2,2-Tetrachloroethane	ND	5.0	1	ug/L			09/11/19 02:42	1
1,1,2-Trichloroethane	ND	5.0		ug/L			09/11/19 02:42	1
1,1-Dichloroethane	ND	5.0		ug/L			09/11/19 02:42	1
1,1-Dichloroethene	ND	5.0		ug/L			09/11/19 02:42	1
1,2,3-Trichloropropane	ND	5.0		ug/L			09/11/19 02:42	1
1,2-Dibromo-3-Chloropropane	ND	10		ug/L			09/11/19 02:42	1
1,2-Dibromoethane	ND	5.0		ug/L			09/11/19 02:42	1
1,2-Dichlorobenzene	ND	5.0		ug/L			09/11/19 02:42	1
1,2-Dichloroethane	ND	5.0		ug/L			09/11/19 02:42	1
1,2-Dichloropropane	ND	5.0		ug/L			09/11/19 02:42	1
1,4-Dichlorobenzene	ND	5.0		ug/L			09/11/19 02:42	
1,4-Dioxane	ND	50		ug/L			09/11/19 02:42	1
2-Butanone (MEK)	ND	5.0		ug/L			09/11/19 02:42	1
2-Hexanone	ND	10		ug/L			09/11/19 02:42	
4-Methyl-2-pentanone (MIBK)	ND ND	10		ug/L ug/L			09/11/19 02:42	1
Acetone	ND ND	5.0					09/11/19 02:42	1
Acetonitrile	ND	100		ug/L			09/11/19 02:42	
Benzene	ND ND			ug/L				1
		5.0		ug/L			09/11/19 02:42	1
Bromochloromethane	ND	5.0		ug/L			09/11/19 02:42	1
Bromodichloromethane	ND	5.0		ug/L			09/11/19 02:42	1
Bromoform	ND	5.0		ug/L			09/11/19 02:42	1
Bromomethane	ND	5.0		ug/L			09/11/19 02:42	1
Carbon disulfide	ND	5.0		ug/L			09/11/19 02:42	1
Carbon tetrachloride	ND	5.0		ug/L			09/11/19 02:42	1
Chlorobenzene	ND	5.0		ug/L			09/11/19 02:42	1
Chloroethane	ND	5.0		ug/L			09/11/19 02:42	1
Chloroform	ND	5.0		ug/L			09/11/19 02:42	1
Chloromethane	ND	5.0		ug/L			09/11/19 02:42	1
cis-1,2-Dichloroethene	ND	5.0		ug/L			09/11/19 02:42	1
cis-1,3-Dichloropropene	ND	5.0	1	ug/L			09/11/19 02:42	1
Dibromochloromethane	ND	5.0		ug/L			09/11/19 02:42	1
Dibromomethane	ND	5.0		ug/L			09/11/19 02:42	1
Ethylbenzene	ND	5.0		ug/L			09/11/19 02:42	1
lodomethane	ND	5.0		ug/L			09/11/19 02:42	1
m,p-Xylene	ND	5.0		ug/L			09/11/19 02:42	1
Methylene Chloride	ND	5.0		ug/L			09/11/19 02:42	1
o-Xylene	ND	5.0		ug/L			09/11/19 02:42	1
Styrene	ND	5.0		ug/L			09/11/19 02:42	1
Tetrachloroethene	ND	5.0		ug/L			09/11/19 02:42	1
Tetrahydrofuran	ND	10		ug/L			09/11/19 02:42	1
Toluene	ND	5.0		ug/L			09/11/19 02:42	1
trans-1,2-Dichloroethene	ND	5.0		ug/L			09/11/19 02:42	1
trans-1,3-Dichloropropene	ND	5.0		ug/L			09/11/19 02:42	1
trans-1,4-Dichloro-2-butene	ND	10		ug/L			09/11/19 02:42	· · · · · · · · · · · · · · · · · · ·
Trichloroethene	ND ND	5.0		ug/L ug/L			09/11/19 02:42	1
Trichlorofluoromethane	ND ND	5.0		ug/L ug/L			09/11/19 02:42	1
Vinyl acetate	ND ND	50		ug/L ug/L			09/11/19 02:42	

Eurofins TestAmerica, Buffalo

Page 91 of 314

2

3

5

7

9

11

1 *1*

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-O(I)

Lab Sample ID: 480-158409-4

Date Collected: 08/30/19 11:39 **Matrix: Ground Water** Date Received: 08/30/19 16:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/11/19 02:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120					09/11/19 02:42	1
4-Bromofluorobenzene (Surr)	98		73 - 120					09/11/19 02:42	1
Toluene-d8 (Surr)	93		80 - 120					09/11/19 02:42	- 4

Method: 6010C - Metals (ICP) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND -	0.20		mg/L		09/05/19 06:30	09/10/19 16:24	1
Antimony	ND	0.015		mg/L		09/05/19 06:30	09/10/19 16:24	1
Arsenic	ND	0.010		mg/L		09/05/19 06:30	09/10/19 16:24	1
Barium	0.28	0.20		mg/L		09/05/19 06:30	09/10/19 16:24	1
Beryllium	ND	0.0030		mg/L		09/05/19 06:30	09/10/19 16:24	1
Boron	ND	0.020		mg/L		09/05/19 06:30	09/10/19 16:24	1
Cadmium	ND	0.0050		mg/L		09/05/19 06:30	09/10/19 16:24	1
Calcium	72.0	5.0		mg/L		09/05/19 06:30	09/10/19 16:24	1
Chromium	ND	0.010		mg/L		09/05/19 06:30	09/10/19 16:24	1
Cobalt	ND	0.050		mg/L		09/05/19 06:30	09/10/19 16:24	1
Copper	ND	0.025		mg/L		09/05/19 06:30	09/10/19 16:24	1
Iron	0.37	0.10		mg/L		09/05/19 06:30	09/10/19 16:24	1
Lead	ND	0.0030		mg/L		09/05/19 06:30	09/10/19 16:24	1
Magnesium	17.4	5.0		mg/L		09/05/19 06:30	09/10/19 16:24	1
Manganese	0.10	0.015		mg/L		09/05/19 06:30	09/10/19 16:24	1
Nickel	ND	0.040		mg/L		09/05/19 06:30	09/10/19 16:24	1
Potassium	ND	5.0		mg/L		09/05/19 06:30	09/10/19 16:24	1
Silver	ND	0.010		mg/L		09/05/19 06:30	09/10/19 16:24	1
Sodium	ND	5.0		mg/L		09/05/19 06:30	09/10/19 16:24	1
Thallium	ND	0.010		mg/L		09/05/19 06:30	09/10/19 16:24	1
Vanadium	ND	0.050		mg/L		09/05/19 06:30	09/10/19 16:24	1
Zinc	ND	0.020		mg/L		09/05/19 06:30	09/10/19 16:24	1

Method: 6010C - Metals (ICI Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND ND	0.20		mg/L		09/04/19 08:41	09/05/19 00:21	1
Antimony, Dissolved	ND	0.020		mg/L		09/04/19 08:41	09/05/19 00:21	1
Arsenic, Dissolved	ND	0.010		mg/L		09/04/19 08:41	09/05/19 00:21	1
Barium, Dissolved	0.26	0.20		mg/L		09/04/19 08:41	09/05/19 00:21	1
Beryllium, Dissolved	ND	0.0030		mg/L		09/04/19 08:41	09/05/19 00:21	1
Boron, Dissolved	ND	0.020		mg/L		09/04/19 08:41	09/05/19 00:21	1
Cadmium, Dissolved	ND	0.0050		mg/L		09/04/19 08:41	09/05/19 00:21	1
Calcium, Dissolved	73.9	5.0		mg/L		09/04/19 08:41	09/05/19 00:21	1
Chromium, Dissolved	ND	0.010		mg/L		09/04/19 08:41	09/05/19 00:21	1
Cobalt, Dissolved	ND	0.050		mg/L		09/04/19 08:41	09/05/19 00:21	1
Copper, Dissolved	ND	0.025		mg/L		09/04/19 08:41	09/05/19 00:21	1
Iron, Dissolved	ND	0.10		mg/L		09/04/19 08:41	09/05/19 00:21	1
Lead, Dissolved	ND	0.0030		mg/L		09/04/19 08:41	09/05/19 00:21	1
Magnesium, Dissolved	20.2	5.0		mg/L		09/04/19 08:41	09/05/19 00:21	1
Manganese, Dissolved	0.080	0.015		mg/L		09/04/19 08:41	09/05/19 00:21	1
Nickel, Dissolved	ND	0.040		mg/L		09/04/19 08:41	09/05/19 00:21	1

Eurofins TestAmerica, Buffalo

Page 92 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-O(I)

Date Collected: 08/30/19 11:39

Lab Sample ID: 480-158409-4

Matrix: Ground Water

Date Collected: 08/30/19 11:39 Date Received: 08/30/19 16:15

Odor

Method: 6010C - Metals (ICP) - Dis Analyte	Result	Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		09/04/19 08:41	09/05/19 00:21	•
Silver, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:21	
Sodium, Dissolved	5.5		5.0		mg/L		09/04/19 08:41	09/05/19 00:21	
Thallium, Dissolved	ND		0.010		mg/L		09/04/19 08:41	09/05/19 00:21	
Vanadium, Dissolved	ND		0.050		mg/L		09/04/19 08:41	09/05/19 00:21	
Zinc, Dissolved	ND		0.020		mg/L		09/04/19 08:41	09/05/19 00:21	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		09/05/19 06:00	09/05/19 18:27	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L		09/04/19 08:33	09/05/19 16:07	
Method: 7470A - Mercury (CVAA) Analyte	Recult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND	Qualifier –	0.00020	IVIDE	mg/L		09/10/19 11:40	09/10/19 16:08	Diria
Mercury	ND		0.00020		mg/L		00/10/10 11.40	00/10/10 10:00	
Method: 7470A - Mercury (CVAA) · Analyte		lved Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND	— — —	0.00020		mg/L		09/18/19 11:00	09/18/19 14:32	Diria
wiercury, Dissolveu	ND		0.00020		mg/L		09/10/19 11.00	09/10/19 14.52	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.40		mg/L			09/09/19 14:31	
Alkalinity, Total	181	^	15.0		mg/L			09/09/19 17:09	;
Ammonia (as N)	ND		0.050		mg/L as N			09/06/19 08:38	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		09/17/19 07:30	09/17/19 16:31	
Nitrate	ND		0.050		mg/L as N			08/31/19 09:30	
Chemical Oxygen Demand	ND		5.0		mg/L			09/06/19 14:05	
Chromium, hexavalent	ND		0.010		mg/L			08/31/19 09:14	
Cyanide, Total	ND	*	0.010		mg/L		09/12/19 14:04	09/12/19 17:21	
Cyanide, Total	ND		0.010		mg/L		09/18/19 18:35	09/19/19 08:56	
Phenolics, Total Recoverable	0.0084		0.0050		mg/L			09/15/19 14:51	
Hardness	252		2.0		mg/L		03/13/13 23.44	09/18/19 11:45	
Total Dissolved Solids	296		10.0		mg/L			09/05/19 10:44	
			1.0					09/09/19 14:31	
Chloride	11.6				mg/L				
Sulfate Discharge Daniel Control Daniel	51.2		4.0		mg/L			09/09/19 14:31	:
Biochemical Oxygen Demand	ND		2.0		mg/L			08/31/19 06:51	
Total Organic Carbon	ND		1.0		mg/L			09/06/19 04:49	
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fa
Color	ND		0.0100		Color Units			09/01/19 08:10	
Method: Field Sampling - Field Sa									
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil Fa
pH, Field	7.03				SU			08/30/19 11:39	
Specific Conductance	485				umhos/cm			08/30/19 11:39	
Field EH/ORP	55				millivolts			08/30/19 11:39	
Field LIT/OKF	33							00.00.10 11.00	

Eurofins TestAmerica, Buffalo

9/30/2019

08/30/19 11:39

Page 93 of 314

No

NONE

2

3

5

0

10

12

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-O(I)

Lab Sample ID: 480-158409-4

Date Collected: 08/30/19 11:39 Matrix: Ground Water

Date Received: 08/30/19 16:15

Method: Field Sampling - Fie	ld Sampling	(Continued	l)						
Analyte	Result	Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fac
Turbidity	19.8				NTU			08/30/19 11:39	1
Well Depth	52.00				ft			08/30/19 11:39	1
Depth to Water from Top of Casing	43.96				ft			08/30/19 11:39	1

2

4

5

6

8

10

12

. .

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Date Received: 08/30/19 16:15

Vinyl acetate

Lab Sample ID: 480-158409-5 Date Collected: 08/30/19 09:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0		ug/L			09/11/19 03:06	1
1,1,1-Trichloroethane	ND		5.0		ug/L			09/11/19 03:06	
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/11/19 03:06	
1,1,2-Trichloroethane	ND		5.0		ug/L			09/11/19 03:06	1
1,1-Dichloroethane	ND		5.0		ug/L			09/11/19 03:06	1
1,1-Dichloroethene	ND		5.0		ug/L			09/11/19 03:06	1
1,2,3-Trichloropropane	ND		5.0		ug/L			09/11/19 03:06	1
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			09/11/19 03:06	1
1,2-Dibromoethane	ND		5.0		ug/L			09/11/19 03:06	1
1,2-Dichlorobenzene	ND		5.0		ug/L			09/11/19 03:06	1
1,2-Dichloroethane	ND		5.0		ug/L			09/11/19 03:06	1
1,2-Dichloropropane	ND		5.0		ug/L			09/11/19 03:06	1
1,4-Dichlorobenzene	ND		5.0		ug/L			09/11/19 03:06	1
1,4-Dioxane	ND		50		ug/L			09/11/19 03:06	
2-Butanone (MEK)	ND		5.0		ug/L			09/11/19 03:06	1
2-Hexanone	ND		10		ug/L			09/11/19 03:06	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			09/11/19 03:06	1
Acetone	ND		5.0		ug/L			09/11/19 03:06	1
Acetonitrile	ND		100		ug/L			09/11/19 03:06	
Benzene	ND		5.0		ug/L			09/11/19 03:06	
Bromochloromethane	ND		5.0		ug/L			09/11/19 03:06	,
Bromodichloromethane	ND		5.0					09/11/19 03:06	
Bromoform	ND		5.0		ug/L			09/11/19 03:06	
Bromomethane	ND ND		5.0		ug/L			09/11/19 03:06	1
	ND ND				ug/L				
Carbon disulfide			5.0		ug/L			09/11/19 03:06	1
Carbon tetrachloride	ND		5.0		ug/L			09/11/19 03:06	1
Chlorobenzene	ND		5.0		ug/L			09/11/19 03:06	
Chloroethane	ND		5.0		ug/L			09/11/19 03:06	1
Chloroform	ND		5.0		ug/L			09/11/19 03:06	1
Chloromethane	ND		5.0		ug/L			09/11/19 03:06	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/11/19 03:06	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/11/19 03:06	1
Dibromochloromethane	ND		5.0		ug/L			09/11/19 03:06	1
Dibromomethane	ND		5.0		ug/L			09/11/19 03:06	1
Ethylbenzene	ND		5.0		ug/L			09/11/19 03:06	1
lodomethane	ND		5.0		ug/L			09/11/19 03:06	1
m,p-Xylene	ND		5.0		ug/L			09/11/19 03:06	1
Methylene Chloride	ND		5.0		ug/L			09/11/19 03:06	1
o-Xylene	ND		5.0		ug/L			09/11/19 03:06	1
Styrene	ND		5.0		ug/L			09/11/19 03:06	1
Tetrachloroethene	ND		5.0		ug/L			09/11/19 03:06	1
Tetrahydrofuran	ND		10		ug/L			09/11/19 03:06	1
Toluene	ND		5.0		ug/L			09/11/19 03:06	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			09/11/19 03:06	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			09/11/19 03:06	1
trans-1,4-Dichloro-2-butene	ND		10		ug/L			09/11/19 03:06	1
Trichloroethene	ND		5.0		ug/L			09/11/19 03:06	1
Trichlorofluoromethane	ND		5.0		ug/L			09/11/19 03:06	1

Eurofins TestAmerica, Buffalo

09/11/19 03:06

Page 95 of 314

ug/L

ND

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-158409-5 Date Collected: 08/30/19 09:00

Matrix: Water

Date Received: 08/30/19 16:15

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	ug/L			09/11/19 03:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		77 - 120				09/11/19 03:06	1
4-Bromofluorobenzene (Surr)	98		73 - 120				09/11/19 03:06	1
Toluene-d8 (Surr)	95		80 - 120				09/11/19 03:06	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1

Lab Sample ID: 480-158492-1 Date Collected: 09/03/19 13:10 **Matrix: Ground Water**

Date Received: 09/03/19 16:50

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 22:26	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/12/19 22:26	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 22:26	
1,1,2-Trichloroethane	ND	5.0	ug/L			09/12/19 22:26	
1,1-Dichloroethane	ND	5.0	ug/L			09/12/19 22:26	
1,1-Dichloroethene	ND	5.0	ug/L			09/12/19 22:26	
1,2,3-Trichloropropane	ND	5.0	ug/L			09/12/19 22:26	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/12/19 22:26	
1,2-Dibromoethane	ND	5.0	ug/L			09/12/19 22:26	
1,2-Dichlorobenzene	ND	5.0	ug/L			09/12/19 22:26	
1,2-Dichloroethane	ND	5.0	ug/L			09/12/19 22:26	
1,2-Dichloropropane	ND	5.0	ug/L			09/12/19 22:26	
1,4-Dichlorobenzene	ND	5.0	ug/L			09/12/19 22:26	
1,4-Dioxane	ND	50	ug/L			09/12/19 22:26	
2-Butanone (MEK)	ND	5.0	ug/L			09/12/19 22:26	
2-Hexanone	ND	10	ug/L			09/12/19 22:26	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/12/19 22:26	
Acetone	ND	5.0	ug/L			09/12/19 22:26	
Acetonitrile	ND	100	ug/L			09/12/19 22:26	
Benzene	ND	5.0	ug/L			09/12/19 22:26	
Bromochloromethane	ND	5.0	ug/L			09/12/19 22:26	
Bromodichloromethane	ND	5.0	ug/L			09/12/19 22:26	
Bromoform	ND	5.0				09/12/19 22:26	
Bromomethane	ND	5.0	ug/L			09/12/19 22:26	
Carbon disulfide	ND	5.0	ug/L			09/12/19 22:26	
			ug/L				
Carbon tetrachloride	ND ND	5.0 5.0	ug/L			09/12/19 22:26	
Chlorobenzene			ug/L			09/12/19 22:26	
Chloroethane	ND	5.0	ug/L			09/12/19 22:26	
Chloroform	ND	5.0	ug/L			09/12/19 22:26	
Chloromethane	ND	5.0	ug/L			09/12/19 22:26	
cis-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 22:26	
cis-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 22:26	
Dibromochloromethane	ND	5.0	ug/L			09/12/19 22:26	
Dibromomethane	ND	5.0	ug/L			09/12/19 22:26	
Ethylbenzene	ND	5.0	ug/L			09/12/19 22:26	
odomethane	ND	5.0	ug/L			09/12/19 22:26	
n,p-Xylene	ND	5.0	ug/L			09/12/19 22:26	
Methylene Chloride	ND	5.0	ug/L			09/12/19 22:26	
o-Xylene	ND	5.0	ug/L			09/12/19 22:26	
Styrene	ND	5.0	ug/L			09/12/19 22:26	
Tetrachloroethene	ND	5.0	ug/L			09/12/19 22:26	
Гetrahydrofuran	ND	10	ug/L			09/12/19 22:26	
Гoluene	ND	5.0	ug/L			09/12/19 22:26	
rans-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 22:26	
rans-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 22:26	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			09/12/19 22:26	
Frichloroethene	ND	5.0	ug/L			09/12/19 22:26	
Trichlorofluoromethane	ND	5.0	ug/L			09/12/19 22:26	
/inyl acetate	ND	50	ug/L			09/12/19 22:26	

Eurofins TestAmerica, Buffalo

Page 97 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1

Date Collected: 09/03/19 13:10 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-1

Matrix: Ground Water

Method: 8260C - Volatile O	rganic Compoi	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	U	ug/L			09/12/19 22:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
- Carrogato									
1,2-Dichloroethane-d4 (Surr)	109		77 - 120					09/12/19 22:26	1
	109 100		77 - 120 73 - 120					09/12/19 22:26 09/12/19 22:26	1 1

Method: 6010C - Metals (ICP) Analyte	Result Qual	lifier RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND -	0.20	m	g/L	_	09/05/19 05:35	09/05/19 16:50	1
Antimony	ND	0.015	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Arsenic	ND	0.010	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Barium	ND	0.20	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Beryllium	ND	0.0030	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Boron	0.030	0.020	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Cadmium	ND	0.0050	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Calcium	105	5.0	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Chromium	ND	0.010	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Cobalt	ND	0.050	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Copper	ND	0.025	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Iron	ND	0.10	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Lead	ND	0.0030	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Magnesium	26.8	5.0	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Manganese	0.036	0.015	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Nickel	ND	0.040	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Potassium	ND	5.0	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Silver	ND	0.010	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Sodium	5.0	5.0	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Thallium	ND	0.010	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Vanadium	ND	0.050	m	g/L		09/05/19 05:35	09/05/19 16:50	1
Zinc	ND	0.020	m	g/L		09/05/19 05:35	09/05/19 16:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		09/06/19 10:59	09/11/19 03:26	1
Antimony, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:26	1
Arsenic, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:26	1
Barium, Dissolved	ND		0.20		mg/L		09/06/19 10:59	09/11/19 03:26	1
Beryllium, Dissolved	ND		0.0030		mg/L		09/06/19 10:59	09/11/19 03:26	1
Boron, Dissolved	0.029		0.020		mg/L		09/06/19 10:59	09/11/19 03:26	1
Cadmium, Dissolved	ND		0.0050		mg/L		09/06/19 10:59	09/11/19 03:26	1
Calcium, Dissolved	108		5.0		mg/L		09/06/19 10:59	09/11/19 03:26	1
Chromium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:26	1
Cobalt, Dissolved	ND		0.050		mg/L		09/06/19 10:59	09/11/19 03:26	1
Copper, Dissolved	ND		0.025		mg/L		09/06/19 10:59	09/11/19 03:26	1
Iron, Dissolved	ND		0.10		mg/L		09/06/19 10:59	09/11/19 03:26	1
Lead, Dissolved	ND		0.0030		mg/L		09/06/19 10:59	09/11/19 03:26	1
Magnesium, Dissolved	28.1		5.0		mg/L		09/06/19 10:59	09/11/19 03:26	1
Manganese, Dissolved	0.034		0.015		mg/L		09/06/19 10:59	09/11/19 03:26	1
Nickel, Dissolved	ND		0.040		mg/L		09/06/19 10:59	09/11/19 03:26	1

Eurofins TestAmerica, Buffalo

Page 98 of 314

6

5

7

9

10

12

14

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1 Lab Sample ID: 480-158492-1

Date Collected: 09/03/19 13:10 Matrix: Ground Water Date Received: 09/03/19 16:50

Method: 6010C - Metals (ICP) - Dis							_	_	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		09/06/19 10:59	09/11/19 03:26	
Silver, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:26	
Sodium, Dissolved	ND		5.0		mg/L		09/06/19 10:59	09/11/19 03:26	
Γhallium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:26	
/anadium, Dissolved	ND		0.050		mg/L		09/06/19 10:59	09/11/19 03:26	
Zinc, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:26	
Method: 6020A - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		09/06/19 06:30	09/06/19 14:00	
Method: 6020A - Metals (ICP/MS)	- Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Selenium, Dissolved	ND		0.0010		mg/L	_	09/06/19 10:50	09/09/19 13:50	
Method: 7470A - Mercury (CVAA)	_	.				_			
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020		mg/L		09/10/19 11:40	09/10/19 17:15	
Method: 7470A - Mercury (CVAA)			ъ.		119	_	Barrana	A I	D:: E
Analyte		Qualifier	RL _	MDL	Unit	_ D	Prepared	Analyzed	Dil F
flercury, Dissolved	ND		0.00020		mg/L		09/18/19 11:00	09/18/19 14:33	
Seneral Chemistry						_			
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil F
Bromide	ND		1.0		mg/L			09/09/19 14:46	
Alkalinity, Total	237		15.0		mg/L			09/09/19 17:22	
Ammonia (as N)	ND	F1	0.050		mg/L as N			09/06/19 12:35	
Total Kjeldahl Nitrogen	0.60		0.15		mg/L as N		09/13/19 10:03	09/15/19 12:17	
Nitrate	0.11		0.050		mg/L as N			09/04/19 21:06	
Chemical Oxygen Demand	ND		5.0		mg/L			09/12/19 12:35	
Chromium, hexavalent	ND		0.010		mg/L			09/04/19 09:45	
Cyanide, Total	ND	*	0.010		mg/L		09/15/19 15:19	09/16/19 12:50	
Phenolics, Total Recoverable	0.0088	F1 B	0.0050		mg/L		09/16/19 23:07	09/17/19 10:24	
Hardness	368		2.0		mg/L			09/18/19 11:45	
Total Dissolved Solids	430		10.0		mg/L			09/05/19 10:32	
Chloride	7.9		2.5		mg/L			09/09/19 14:46	
Sulfate	125		10.0		mg/L			09/09/19 14:46	
Biochemical Oxygen Demand	ND		2.0		mg/L			09/05/19 05:45	
Total Organic Carbon	ND		1.0		mg/L			09/07/19 23:08	
Analyte		Qualifier	RL _	RL	Unit	D	Prepared	Analyzed	Dil F
Color	ND		0.0100		Color Units	_		09/05/19 11:30	
Method: Field Sampling - Field Sa	mpling								
Analyte		Qualifier	NONE	NONE		D	Prepared	Analyzed	Dil F
oH, Field	7.34				SU	_		09/03/19 13:10	
Specific Conductance	25830				umhos/cm			09/03/19 13:10	
Field EH/ORP	135.0				millivolts			09/03/19 13:10	
Геmperature, Field	13.1				Degrees C			09/03/19 13:10	
Odor	No				NONE			09/03/19 13:10	
Turbidity	1.9				NTU			09/03/19 13:10	

Eurofins TestAmerica, Buffalo

Page 99 of 314

2

3

5

0

10

12

14

16

18

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1 Lab Sample ID: 480-158492-1

Date Collected: 09/03/19 13:10 Matrix: Ground Water Date Received: 09/03/19 16:50

Method: Field Sampling - Field Sampling (Continued)

Analyte Result Qualifier NONE NONE Unit D Prepared Analyzed Dil Fac

 Depth to Water from Top of Casing
 15.54
 ft
 09/03/19 13:10
 1

Eurofins TestAmerica, Buffalo

3

4

5

6

7

10

12

4 4

15

17

Ш

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2

Date Collected: 09/03/19 11:50 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-2

Matrix: Ground Water

Method: 8260C - Volatile Org Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane		5.0	ug/L			09/12/19 22:49	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/12/19 22:49	1
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 22:49	1
1,1,2-Trichloroethane	ND	5.0	ug/L			09/12/19 22:49	1
1,1-Dichloroethane	ND	5.0	ug/L			09/12/19 22:49	1
1,1-Dichloroethene	ND	5.0	ug/L			09/12/19 22:49	1
1,2,3-Trichloropropane	ND	5.0	ug/L			09/12/19 22:49	1
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/12/19 22:49	1
1,2-Dibromoethane	ND	5.0	ug/L			09/12/19 22:49	1
1,2-Dichlorobenzene	ND	5.0	ug/L			09/12/19 22:49	1
1,2-Dichloroethane	ND	5.0	ug/L			09/12/19 22:49	1
1,2-Dichloropropane	ND	5.0	ug/L			09/12/19 22:49	1
1,4-Dichlorobenzene	ND	5.0	ug/L			09/12/19 22:49	
1,4-Dioxane	ND	50	ug/L			09/12/19 22:49	1
2-Butanone (MEK)	ND	5.0	ug/L			09/12/19 22:49	1
2-Hexanone	ND	10	ug/L			09/12/19 22:49	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/12/19 22:49	1
Acetone (WIBIT)	ND	5.0	ug/L			09/12/19 22:49	1
Acetonic	ND	100	ug/L			09/12/19 22:49	
Benzene	ND	5.0	ug/L			09/12/19 22:49	
Bromochloromethane	ND	5.0	ug/L			09/12/19 22:49	1
Bromodichloromethane	ND	5.0	ug/L			09/12/19 22:49	
Bromoform	ND	5.0	ug/L			09/12/19 22:49	,
Bromomethane	ND	5.0	ug/L			09/12/19 22:49	,
Carbon disulfide	ND	5.0	ug/L			09/12/19 22:49	
Carbon disdifide Carbon tetrachloride	ND	5.0	ug/L			09/12/19 22:49	,
Chlorobenzene	ND	5.0	ug/L			09/12/19 22:49	,
Chloroethane Chloroform	ND ND	5.0 5.0	ug/L			09/12/19 22:49 09/12/19 22:49	1
Chloromethane	ND ND	5.0 5.0	ug/L			09/12/19 22:49	,
	ND		ug/L				
cis-1,2-Dichloroethene	ND ND	5.0	ug/L			09/12/19 22:49 09/12/19 22:49	1
cis-1,3-Dichloropropene		5.0	ug/L				1
Dibromochloromethane	ND	5.0	ug/L			09/12/19 22:49	1
Dibromomethane	ND	5.0	ug/L			09/12/19 22:49	1
Ethylbenzene	ND	5.0	ug/L			09/12/19 22:49	1
Iodomethane	ND	5.0	ug/L			09/12/19 22:49	1
m,p-Xylene	ND	5.0	ug/L			09/12/19 22:49	1
Methylene Chloride	ND	5.0	ug/L			09/12/19 22:49	1
o-Xylene	ND	5.0	ug/L			09/12/19 22:49	1
Styrene	ND	5.0	ug/L			09/12/19 22:49	1
Tetrachloroethene	ND	5.0	ug/L			09/12/19 22:49	1
Tetrahydrofuran	ND	10	ug/L			09/12/19 22:49	1
Toluene	ND	5.0	ug/L			09/12/19 22:49	1
trans-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 22:49	1
trans-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 22:49	1
trans-1,4-Dichloro-2-butene	ND	10	ug/L			09/12/19 22:49	1
Trichloroethene	ND	5.0	ug/L			09/12/19 22:49	1
Trichlorofluoromethane	ND	5.0	ug/L			09/12/19 22:49	1
Vinyl acetate	ND	50	ug/L			09/12/19 22:49	1

Eurofins TestAmerica, Buffalo

Page 101 of 314

2

3

4

6

8

4 4

16

4 -

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2

Date Collected: 09/03/19 11:50 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-2

Matrix: Ground Water

Method: 8260C - Volatile Or	ganic Compo	unds by G	C/MS (Contir	iued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/12/19 22:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	405		77 400			-			
1,2-Dichioroethane-u4 (Sun)	105		77 - 120					09/12/19 22:49	1
4-Bromofluorobenzene (Surr)	105		77 - 120 73 - 120					09/12/19 22:49 09/12/19 22:49	1 1

Method: 6010C - Metals (ICP) Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20		mg/L		09/05/19 05:35	09/05/19 16:54	
Antimony	ND	0.015		mg/L		09/05/19 05:35	09/05/19 16:54	
Arsenic	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:54	
Barium	ND	0.20		mg/L		09/05/19 05:35	09/05/19 16:54	· · · · · · · ·
Beryllium	ND	0.0030		mg/L		09/05/19 05:35	09/05/19 16:54	
Boron	0.045	0.020		mg/L		09/05/19 05:35	09/05/19 16:54	
Cadmium	ND	0.0050		mg/L		09/05/19 05:35	09/05/19 16:54	
Calcium	133	5.0		mg/L		09/05/19 05:35	09/05/19 16:54	
Chromium	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:54	
Cobalt	ND	0.050		mg/L		09/05/19 05:35	09/05/19 16:54	
Copper	ND	0.025		mg/L		09/05/19 05:35	09/05/19 16:54	
Iron	ND	0.10		mg/L		09/05/19 05:35	09/05/19 16:54	
Lead	ND	0.0030		mg/L		09/05/19 05:35	09/05/19 16:54	
Magnesium	28.7	5.0		mg/L		09/05/19 05:35	09/05/19 16:54	
Manganese	0.056	0.015		mg/L		09/05/19 05:35	09/05/19 16:54	
Nickel	ND	0.040		mg/L		09/05/19 05:35	09/05/19 16:54	
Potassium	ND	5.0		mg/L		09/05/19 05:35	09/05/19 16:54	
Silver	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:54	
Sodium	10.6	5.0		mg/L		09/05/19 05:35	09/05/19 16:54	· · · · · · · · ·
Thallium	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:54	
Vanadium	ND	0.050		mg/L		09/05/19 05:35	09/05/19 16:54	
Zinc	ND	0.020		mg/L		09/05/19 05:35	09/05/19 16:54	
_				-				

Analyte	Result Q	ualifier F	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND ND	0.	20	mg/L		09/06/19 10:59	09/11/19 03:30	1
Antimony, Dissolved	ND	0.0	20	mg/L		09/06/19 10:59	09/11/19 03:30	1
Arsenic, Dissolved	ND	0.0	0	mg/L		09/06/19 10:59	09/11/19 03:30	1
Barium, Dissolved	ND	0.	20	mg/L		09/06/19 10:59	09/11/19 03:30	1
Beryllium, Dissolved	ND	0.00	30	mg/L		09/06/19 10:59	09/11/19 03:30	1
Boron, Dissolved	0.045	0.0	20	mg/L		09/06/19 10:59	09/11/19 03:30	1
Cadmium, Dissolved	ND	0.00	50	mg/L		09/06/19 10:59	09/11/19 03:30	1
Calcium, Dissolved	136	5	.0	mg/L		09/06/19 10:59	09/11/19 03:30	1
Chromium, Dissolved	ND	0.0	10	mg/L		09/06/19 10:59	09/11/19 03:30	1
Cobalt, Dissolved	ND	0.0	50	mg/L		09/06/19 10:59	09/11/19 03:30	1
Copper, Dissolved	ND	0.0	25	mg/L		09/06/19 10:59	09/11/19 03:30	1
Iron, Dissolved	ND	0.	10	mg/L		09/06/19 10:59	09/11/19 03:30	1
Lead, Dissolved	ND	0.00	30	mg/L		09/06/19 10:59	09/11/19 03:30	1
Magnesium, Dissolved	29.8	5	.0	mg/L		09/06/19 10:59	09/11/19 03:30	1
Manganese, Dissolved	0.071	0.0	15	mg/L		09/06/19 10:59	09/11/19 03:30	1
Nickel, Dissolved	ND	0.0	10	mg/L		09/06/19 10:59	09/11/19 03:30	1

Eurofins TestAmerica, Buffalo

Page 102 of 314

3

5

7

9

11

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2

Date Collected: 09/03/19 11:50

Lab Sample ID: 480-158492-2

Matrix: Ground Water

Date Received: 09/03/19 16:50

Method: 6010C - Metals (ICP) - Dis ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Potassium, Dissolved	ND		5.0		mg/L		09/06/19 10:59	09/11/19 03:30	
Silver, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:30	
Sodium, Dissolved	10.1		5.0		mg/L		09/06/19 10:59	09/11/19 03:30	
Thallium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:30	
Vanadium, Dissolved	ND		0.050		mg/L			09/11/19 03:30	
Zinc, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:30	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Selenium	ND		0.0050		mg/L		09/06/19 06:30	09/06/19 14:09	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Selenium, Dissolved	ND		0.0010		mg/L		09/06/19 10:50	09/09/19 13:52	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Mercury	ND		0.00020		mg/L	_	09/10/19 11:40	09/10/19 17:16	
Method: 7470A - Mercury (CVAA)						_			
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dill
Mercury, Dissolved	ND		0.00020		mg/L		09/18/19 11:00	09/18/19 14:34	
General Chemistry						_			
Analyte		Qualifier	RL -	MDL		_ D	Prepared	Analyzed	Dil
Bromide	ND		1.0		mg/L			09/09/19 22:06	
Alkalinity, Total	216		15.0		mg/L			09/09/19 17:22	
Ammonia (as N)	ND		0.050		mg/L as N		. 00/40/40/40/00	09/06/19 12:36	
Total Kjeldahl Nitrogen	1.3		0.15		mg/L as N		09/13/19 10:03	09/15/19 12:17	
Vitrate	0.081		0.050		mg/L as N			09/04/19 21:07	
Chemical Oxygen Demand Chromium, hexavalent	ND		5.0		mg/L			09/12/19 12:35	
Cyanide, Total	ND ND	Г1	0.010		mg/L		00/17/10 11:02	09/04/19 09:45	
• •			0.010		mg/L			09/17/19 15:34 09/17/19 10:24	
Phenolics, Total Recoverable	0.0080		0.0050		mg/L		09/10/19 23.07		
Hardness Fotal Dissolved Solids	432 617		2.0 10.0		mg/L mg/L			09/18/19 11:45 09/05/19 10:32	
Chloride	16.1		2.5		mg/L			09/09/19 10:32	
			10.0					09/09/19 22:06	
Sulfate Biochemical Oxygen Demand	229 ND		2.0		mg/L mg/L			09/05/19 05:45	
Fotal Organic Carbon	ND		1.0		mg/L			09/07/19 03:43	
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil
Color	ND		0.0100		Color Units			09/05/19 11:30	
Mathad: Field Compline Field Co.	malina								
Method: Field Sampling - Field Sa Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil I
oH, Field	7.37				SU			09/03/19 11:50	
Specific Conductance	1408				umhos/cm			09/03/19 11:50	
Field EH/ORP	99.0				millivolts			09/03/19 11:50	
Геmperature, Field	12.4				Degrees C			09/03/19 11:50	
Odor	No				NONE			09/03/19 11:50	
Turbidity	1.8				NTU			09/03/19 11:50	

Eurofins TestAmerica, Buffalo

9

11

12

14

. .

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2 Lab Sample ID: 480-158492-2

Matrix: Ground Water Date Collected: 09/03/19 11:50

Date Received: 09/03/19 16:50

Method: Field Sampling - Field Sampling (Continued) Result Qualifier Analyte NONE **NONE** Unit D Prepared

Analyzed Dil Fac

Depth to Water from Top of 15.76 ft 09/03/19 11:50 Casing

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3

Date Collected: 09/03/19 14:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-3

Matrix: Ground Water

Analyte	Result Qualifier	RL_	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 23:14	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/12/19 23:14	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 23:14	
1,1,2-Trichloroethane	ND	5.0	ug/L			09/12/19 23:14	
1,1-Dichloroethane	ND	5.0	ug/L			09/12/19 23:14	
1,1-Dichloroethene	ND	5.0	ug/L			09/12/19 23:14	
1,2,3-Trichloropropane	ND	5.0	ug/L			09/12/19 23:14	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/12/19 23:14	
1,2-Dibromoethane	ND	5.0	ug/L			09/12/19 23:14	
1,2-Dichlorobenzene	ND	5.0	ug/L			09/12/19 23:14	
1,2-Dichloroethane	ND	5.0	ug/L			09/12/19 23:14	
1,2-Dichloropropane	ND	5.0	ug/L			09/12/19 23:14	
1,4-Dichlorobenzene	ND	5.0	ug/L			09/12/19 23:14	
1,4-Dioxane	ND	50	ug/L			09/12/19 23:14	
2-Butanone (MEK)	ND	5.0	ug/L			09/12/19 23:14	
2-Hexanone	ND	10	ug/L			09/12/19 23:14	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/12/19 23:14	
Acetone	ND	5.0	ug/L			09/12/19 23:14	
Acetonitrile	ND	100	ug/L			09/12/19 23:14	
Benzene	ND	5.0	ug/L			09/12/19 23:14	
Bromochloromethane	ND	5.0	ug/L			09/12/19 23:14	
Bromodichloromethane	ND	5.0	ug/L			09/12/19 23:14	
Bromoform	ND	5.0	ug/L			09/12/19 23:14	
Bromomethane	ND	5.0	ug/L			09/12/19 23:14	
Carbon disulfide	ND	5.0	ug/L			09/12/19 23:14	
Carbon tetrachloride	ND	5.0	ug/L			09/12/19 23:14	
Chlorobenzene	ND	5.0	ug/L			09/12/19 23:14	
Chloroethane	ND	5.0	ug/L			09/12/19 23:14	
Chloroform	ND	5.0	ug/L			09/12/19 23:14	
Chloromethane	ND	5.0	ug/L			09/12/19 23:14	
cis-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 23:14	
cis-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 23:14	
Dibromochloromethane	ND	5.0	ug/L			09/12/19 23:14	
Dibromomethane	ND	5.0	ug/L			09/12/19 23:14	
Ethylbenzene	ND	5.0	ug/L			09/12/19 23:14	
lodomethane	ND	5.0	ug/L			09/12/19 23:14	
m,p-Xylene	ND	5.0				09/12/19 23:14	
	ND	5.0	ug/L			09/12/19 23:14	
Methylene Chloride o-Xylene			ug/L			09/12/19 23:14	
	ND	5.0	ug/L				
Styrene	ND	5.0	ug/L			09/12/19 23:14	
Tetrachloroethene	ND	5.0	ug/L			09/12/19 23:14	
Tetrahydrofuran	ND	10	ug/L			09/12/19 23:14	
Toluene	ND ND	5.0	ug/L			09/12/19 23:14	
trans-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 23:14	
trans-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 23:14	
trans-1,4-Dichloro-2-butene	ND	10	ug/L			09/12/19 23:14	
Trichloroethene	ND	5.0	ug/L			09/12/19 23:14	
Trichlorofluoromethane	ND	5.0	ug/L			09/12/19 23:14	

Eurofins TestAmerica, Buffalo

Page 105 of 314

3

J

0

10

12

14

16

4.6

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3

Date Collected: 09/03/19 14:25 Date Received: 09/03/19 16:50

Lab Sample ID: 480-158492-3

Matrix: Ground Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	ug/L			09/12/19 23:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		77 - 120				09/12/19 23:14	1
4-Bromofluorobenzene (Surr)	101		73 - 120				09/12/19 23:14	1
Toluene-d8 (Surr)	93		80 - 120				09/12/19 23:14	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	0.74	0.20		mg/L		09/05/19 05:35	09/05/19 16:57	1
Antimony	ND	0.015		mg/L		09/05/19 05:35	09/05/19 16:57	1
Arsenic	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:57	1
Barium	ND	0.20		mg/L		09/05/19 05:35	09/05/19 16:57	1
Beryllium	ND	0.0030		mg/L		09/05/19 05:35	09/05/19 16:57	1
Boron	ND	0.020		mg/L		09/05/19 05:35	09/05/19 16:57	1
Cadmium	ND	0.0050		mg/L		09/05/19 05:35	09/05/19 16:57	1
Calcium	12.9	5.0		mg/L		09/05/19 05:35	09/05/19 16:57	1
Chromium	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:57	1
Cobalt	ND	0.050		mg/L		09/05/19 05:35	09/05/19 16:57	1
Copper	ND	0.025		mg/L		09/05/19 05:35	09/05/19 16:57	1
Iron	0.95	0.10		mg/L		09/05/19 05:35	09/05/19 16:57	1
Lead	ND	0.0030		mg/L		09/05/19 05:35	09/05/19 16:57	1
Magnesium	ND	5.0		mg/L		09/05/19 05:35	09/05/19 16:57	1
Manganese	0.052	0.015		mg/L		09/05/19 05:35	09/05/19 16:57	1
Nickel	ND	0.040		mg/L		09/05/19 05:35	09/05/19 16:57	1
Potassium	ND	5.0		mg/L		09/05/19 05:35	09/05/19 16:57	1
Silver	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:57	1
Sodium	ND	5.0		mg/L		09/05/19 05:35	09/05/19 16:57	1
Thallium	ND	0.010		mg/L		09/05/19 05:35	09/05/19 16:57	1
Vanadium	ND	0.050		mg/L		09/05/19 05:35	09/05/19 16:57	1
Zinc	ND	0.020		mg/L		09/05/19 05:35	09/05/19 16:57	1
_				-				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		09/06/19 10:59	09/11/19 03:34	1
Antimony, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:34	1
Arsenic, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:34	1
Barium, Dissolved	ND		0.20		mg/L		09/06/19 10:59	09/11/19 03:34	1
Beryllium, Dissolved	ND		0.0030		mg/L		09/06/19 10:59	09/11/19 03:34	1
Boron, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:34	1
Cadmium, Dissolved	ND		0.0050		mg/L		09/06/19 10:59	09/11/19 03:34	1
Calcium, Dissolved	13.2		5.0		mg/L		09/06/19 10:59	09/11/19 03:34	1
Chromium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:34	1
Cobalt, Dissolved	ND		0.050		mg/L		09/06/19 10:59	09/11/19 03:34	1
Copper, Dissolved	ND		0.025		mg/L		09/06/19 10:59	09/11/19 03:34	1
Iron, Dissolved	ND		0.10		mg/L		09/06/19 10:59	09/11/19 03:34	1
Lead, Dissolved	ND		0.0030		mg/L		09/06/19 10:59	09/11/19 03:34	1
Magnesium, Dissolved	ND		5.0		mg/L		09/06/19 10:59	09/11/19 03:34	1
Manganese, Dissolved	ND		0.015		mg/L		09/06/19 10:59	09/11/19 03:34	1
Nickel, Dissolved	ND		0.040		mg/L		09/06/19 10:59	09/11/19 03:34	1

Eurofins TestAmerica, Buffalo

Page 106 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3

Date Collected: 09/03/19 14:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-3

Matrix: Ground Water

Method: 6010C - Metals (ICP) - Dis ^{Analyte}		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L				
Silver, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:34	
Sodium, Dissolved	ND		5.0		mg/L		09/06/19 10:59	09/11/19 03:34	
Thallium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:34	
Vanadium, Dissolved	ND		0.050		mg/L			09/11/19 03:34	
Zinc, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:34	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L		09/06/19 06:30	09/06/19 14:11	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	09/06/19 10:50	09/09/19 13:54	
Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L		09/10/19 11:40	09/10/19 17:17	
Method: 7470A - Mercury (CVAA) -	Disso	lved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		09/18/19 11:00	09/18/19 14:38	
General Chemistry									
Analyte		Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.20		mg/L			09/09/19 16:16	
Alkalinity, Total	21.6		5.0		mg/L			09/09/19 16:37	
Ammonia (as N)	ND		0.050		mg/L as N			09/06/19 12:37	
Total Kjeldahl Nitrogen	1.1		0.15		mg/L as N		09/13/19 10:03	09/15/19 12:17	
Nitrate	2.3		0.050		mg/L as N			09/04/19 21:08	
Chemical Oxygen Demand	ND		5.0		mg/L			09/12/19 12:35	
Chromium, hexavalent	ND		0.010		mg/L			09/04/19 09:45	
Cyanide, Total	ND		0.010		mg/L			09/16/19 12:54	
Phenolics, Total Recoverable	0.0094	B	0.0050		mg/L		09/16/19 23:07	09/17/19 10:24	
Hardness	44.0		2.0		mg/L			09/18/19 11:45	
Total Dissolved Solids	54.0		10.0		mg/L			09/05/19 10:32	
Chloride	0.96		0.50		mg/L			09/09/19 16:16	
Sulfate	14.2		2.0		mg/L			09/09/19 16:16	
Biochemical Oxygen Demand	ND		2.0		mg/L			09/05/19 05:45	
Total Organic Carbon	ND		1.0		mg/L			09/08/19 01:09	
Analyte	Result ND	Qualifier	RL	RL	Unit Color Units	_ D	Prepared	Analyzed 09/05/19 11:30	Dil Fa
Color	ND		0.0100		COIOI UNITS			09/00/19 TT:30	
Method: Field Sampling - Field San		Qualifier	NONE	NONE	Unit	D	Droporod	Analyzad	Dil Fa
Analyte	6.18	Qualifier	MONE	NONE	SU	_ D	Prepared	Analyzed 09/03/19 14:25	טוו רמ
pH, Field					umhos/cm				
Specific Conductance	105				millivolts			09/03/19 14:25 09/03/19 14:25	
Field EH/ORP	174.0							09/03/19 14:25	
Temperature, Field Odor	16.6 No				Degrees C NONE			09/03/19 14:25	
								UM/US/14 14 75	

Eurofins TestAmerica, Buffalo

5

7

9

11

13

15

1-7

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3 Lab Sample ID: 480-158492-3

Date Collected: 09/03/19 14:25 Matrix: Ground Water

Date Received: 09/03/19 16:50

Method: Field Sampling - Field Sampling (Continued)

Analyte Result Qualifier NONE NONE Unit D Prepared Analyzed Dil Fac

Poeth to Weter from Top of 123.56

 Depth to Water from Top of Casing
 22.56
 ft
 09/03/19 14:25
 1

7

6

8

10

10

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4

Date Collected: 09/03/19 12:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-4

Matrix: Ground Water

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 23:37	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/12/19 23:37	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 23:37	
1,1,2-Trichloroethane	ND	5.0	ug/L			09/12/19 23:37	
1,1-Dichloroethane	ND	5.0	ug/L			09/12/19 23:37	
1,1-Dichloroethene	ND	5.0	ug/L			09/12/19 23:37	
1,2,3-Trichloropropane	ND	5.0	ug/L			09/12/19 23:37	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/12/19 23:37	
1,2-Dibromoethane	ND	5.0	ug/L			09/12/19 23:37	
1,2-Dichlorobenzene	ND	5.0	ug/L			09/12/19 23:37	
1,2-Dichloroethane	ND	5.0	ug/L			09/12/19 23:37	
1,2-Dichloropropane	ND	5.0	ug/L			09/12/19 23:37	
1,4-Dichlorobenzene	ND	5.0	ug/L			09/12/19 23:37	
1,4-Dioxane	ND	50	ug/L			09/12/19 23:37	
2-Butanone (MEK)	ND	5.0	ug/L			09/12/19 23:37	
2-Hexanone	ND	10	ug/L			09/12/19 23:37	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/12/19 23:37	
Acetone	ND	5.0	ug/L			09/12/19 23:37	
Acetonitrile	ND	100	ug/L			09/12/19 23:37	
Benzene	ND	5.0	ug/L			09/12/19 23:37	
Bromochloromethane	ND	5.0	ug/L			09/12/19 23:37	
Bromodichloromethane	ND	5.0	ug/L			09/12/19 23:37	
Bromoform	ND	5.0	ug/L			09/12/19 23:37	
Bromomethane	ND	5.0	ug/L			09/12/19 23:37	
Carbon disulfide	ND	5.0	ug/L			09/12/19 23:37	
Carbon tetrachloride	ND	5.0	ug/L			09/12/19 23:37	
Chlorobenzene	ND	5.0	ug/L			09/12/19 23:37	
Chloroethane	ND	5.0	ug/L			09/12/19 23:37	
Chloroform	ND	5.0	ug/L			09/12/19 23:37	
Chloromethane	ND	5.0	ug/L			09/12/19 23:37	
cis-1,2-Dichloroethene	ND	5.0	.			09/12/19 23:37	
cis-1,3-Dichloropropene	ND ND	5.0	ug/L			09/12/19 23:37	
Dibromochloromethane	ND	5.0	ug/L			09/12/19 23:37	
Dibromomethane	ND	5.0	ug/L			09/12/19 23:37	
	ND ND	5.0	ug/L			09/12/19 23:37	
Ethylbenzene			ug/L				
lodomethane	ND	5.0	ug/L			09/12/19 23:37	
m,p-Xylene	ND	5.0	ug/L			09/12/19 23:37	
Methylene Chloride	ND	5.0	ug/L			09/12/19 23:37	
o-Xylene	ND	5.0	ug/L			09/12/19 23:37	
Styrene	ND	5.0	ug/L			09/12/19 23:37	
Tetrachloroethene	ND	5.0	ug/L			09/12/19 23:37	
Tetrahydrofuran 	ND	10	ug/L			09/12/19 23:37	
Toluene	ND	5.0	ug/L			09/12/19 23:37	
trans-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 23:37	
trans-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 23:37	
trans-1,4-Dichloro-2-butene	ND	10	ug/L			09/12/19 23:37	
Trichloroethene	ND	5.0	ug/L			09/12/19 23:37	
Trichlorofluoromethane	ND	5.0	ug/L			09/12/19 23:37	

Eurofins TestAmerica, Buffalo

Page 109 of 314

3

4

6

8

11

12

10

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4

Date Collected: 09/03/19 12:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-4

Matrix: Ground Water

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/12/19 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		77 - 120					09/12/19 23:37	1
4-Bromofluorobenzene (Surr)	100		73 - 120					09/12/19 23:37	1
Toluene-d8 (Surr)	93		80 - 120					09/12/19 23:37	1

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND —	0.20	mg/L		09/05/19 05:35	09/05/19 17:01	1
Antimony	ND	0.015	mg/L		09/05/19 05:35	09/05/19 17:01	1
Arsenic	ND	0.010	mg/L		09/05/19 05:35	09/05/19 17:01	1
Barium	ND	0.20	mg/L		09/05/19 05:35	09/05/19 17:01	1
Beryllium	ND	0.0030	mg/L		09/05/19 05:35	09/05/19 17:01	1
Boron	0.066	0.020	mg/L		09/05/19 05:35	09/05/19 17:01	1
Cadmium	ND	0.0050	mg/L		09/05/19 05:35	09/05/19 17:01	1
Calcium	79.8	5.0	mg/L		09/05/19 05:35	09/05/19 17:01	1
Chromium	ND	0.010	mg/L		09/05/19 05:35	09/05/19 17:01	1
Cobalt	ND	0.050	mg/L		09/05/19 05:35	09/05/19 17:01	1
Copper	ND	0.025	mg/L		09/05/19 05:35	09/05/19 17:01	1
Iron	0.34	0.10	mg/L		09/05/19 05:35	09/05/19 17:01	1
Lead	ND	0.0030	mg/L		09/05/19 05:35	09/05/19 17:01	1
Magnesium	14.0	5.0	mg/L		09/05/19 05:35	09/05/19 17:01	1
Manganese	0.22	0.015	mg/L		09/05/19 05:35	09/05/19 17:01	1
Nickel	ND	0.040	mg/L		09/05/19 05:35	09/05/19 17:01	1
Potassium	ND	5.0	mg/L		09/05/19 05:35	09/05/19 17:01	1
Silver	ND	0.010	mg/L		09/05/19 05:35	09/05/19 17:01	1
Sodium	14.7	5.0	mg/L		09/05/19 05:35	09/05/19 17:01	1
Thallium	ND	0.010	mg/L		09/05/19 05:35	09/05/19 17:01	1
Vanadium	ND	0.050	mg/L		09/05/19 05:35	09/05/19 17:01	1
Zinc	ND	0.020	mg/L		09/05/19 05:35	09/05/19 17:01	1

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND ND		0.20		mg/L		09/06/19 10:59	09/11/19 03:38	1
Antimony, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:38	1
Arsenic, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:38	1
Barium, Dissolved	ND		0.20		mg/L		09/06/19 10:59	09/11/19 03:38	1
Beryllium, Dissolved	ND		0.0030		mg/L		09/06/19 10:59	09/11/19 03:38	1
Boron, Dissolved	0.066		0.020		mg/L		09/06/19 10:59	09/11/19 03:38	1
Cadmium, Dissolved	ND		0.0050		mg/L		09/06/19 10:59	09/11/19 03:38	1
Calcium, Dissolved	81.3		5.0		mg/L		09/06/19 10:59	09/11/19 03:38	1
Chromium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:38	1
Cobalt, Dissolved	ND		0.050		mg/L		09/06/19 10:59	09/11/19 03:38	1
Copper, Dissolved	ND		0.025		mg/L		09/06/19 10:59	09/11/19 03:38	1
Iron, Dissolved	0.16		0.10		mg/L		09/06/19 10:59	09/11/19 03:38	1
Lead, Dissolved	ND		0.0030		mg/L		09/06/19 10:59	09/11/19 03:38	1
Magnesium, Dissolved	14.3		5.0		mg/L		09/06/19 10:59	09/11/19 03:38	1
Manganese, Dissolved	0.20		0.015		mg/L		09/06/19 10:59	09/11/19 03:38	1
Nickel, Dissolved	ND		0.040		mg/L		09/06/19 10:59	09/11/19 03:38	1

Eurofins TestAmerica, Buffalo

Page 110 of 314

2

3

5

7

9

10

12

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4

Date Collected: 09/03/19 12:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-4

Matrix: Ground Water

Method: 6010C - Metals (ICP) - Dis Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Potassium, Dissolved	ND		5.0		mg/L		09/06/19 10:59	09/11/19 03:38	
Silver, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:38	
Sodium, Dissolved	14.5		5.0		mg/L		09/06/19 10:59	09/11/19 03:38	
Thallium, Dissolved	ND		0.010		mg/L		09/06/19 10:59	09/11/19 03:38	
Vanadium, Dissolved	ND		0.050		mg/L			09/11/19 03:38	
Zinc, Dissolved	ND		0.020		mg/L		09/06/19 10:59	09/11/19 03:38	
Method: 6020A - Metals (ICP/MS)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium	ND		0.0050		mg/L	_	09/06/19 06:30	09/06/19 14:13	
Method: 6020A - Metals (ICP/MS) -	Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Selenium, Dissolved	ND		0.0010		mg/L	_	09/06/19 10:50	09/09/19 14:04	
Method: 7470A - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	ND		0.00020		mg/L	_	09/10/19 11:40	09/10/19 17:18	
Method: 7470A - Mercury (CVAA)	- Disso	lved							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	ND		0.00020		mg/L		09/18/19 11:00	09/18/19 14:40	
General Chemistry									
Analyte		Qualifier	RL	MDL	Unit	_ D	Prepared	Analyzed	Dil Fa
Bromide	ND		0.40		mg/L			09/09/19 16:31	
Alkalinity, Total	146		10.0		mg/L			09/09/19 17:20	
Ammonia (as N)	ND		0.050		mg/L as N		-11112112112112	09/06/19 12:38	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		09/13/19 10:03	09/15/19 12:17	
Nitrate	ND		0.050		mg/L as N			09/04/19 13:58	
Chemical Oxygen Demand	6.9		5.0		mg/L			09/12/19 12:35	
Chromium, hexavalent	ND ND	*	0.010		mg/L		00/45/40 45:40	09/04/19 09:45	
Cyanide, Total Bassystalia			0.010		mg/L		09/15/19 15:19	09/16/19 12:56 09/17/19 10:24	
Phenolics, Total Recoverable	0.0080	В	0.0050		mg/L		09/16/19 23:07	09/17/19 10.24	
Hardness	252		2.0 10.0		mg/L			09/05/19 11:45	
Total Dissolved Solids Chloride	336 20.0		1.0		mg/L mg/L			09/09/19 16:31	
Sulfate	120		4.0		mg/L			09/09/19 16:31	
Biochemical Oxygen Demand	ND		2.0		mg/L			09/05/19 05:45	
Total Organic Carbon	1.4		1.0		mg/L			09/08/19 03:43	
		O. alific		ъ.	-	_	D		
Analyte Color	5.00	Qualifier	RL 0.0100	KL_	Unit Color Units	- D	Prepared	Analyzed 09/05/19 11:30	Dil Fa
Method: Field Sampling - Field Sa Analyte		Qualifier	NONE	NONE	Unit	D	Prepared	Analyzed	Dil Fa
pH, Field	6.84				SU			09/03/19 12:25	
Specific Conductance	570				umhos/cm			09/03/19 12:25	
Field EH/ORP	67.0				millivolts			09/03/19 12:25	
Temperature, Field	16.0				Degrees C			09/03/19 12:25	
Odor	No				NONE			09/03/19 12:25	
Turbidity	2.7				NTU			09/03/19 12:25	

Eurofins TestAmerica, Buffalo

2

4

6

8

10

12

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4 Lab Sample ID: 480-158492-4

Date Collected: 09/03/19 12:25 Matrix: Ground Water

Date Received: 09/03/19 16:50

Method: Field Sampling - Field Sampling (Continued)

Analyte Result Qualifier NONE NONE Unit D Prepared Analyzed Dil Fac

 Depth to Water from Top of
 12.72
 ft
 09/03/19 12:25
 1

Casing

3

5

6

8

10

11

13

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-158492-5

Date Collected: 09/03/19 08:00 **Matrix: Water** Date Received: 09/03/19 16:50

Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND —	5.0	ug/L			09/12/19 17:33	
1,1,1-Trichloroethane	ND	5.0	ug/L			09/12/19 17:33	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L			09/12/19 17:33	
1,1,2-Trichloroethane	ND	5.0	ug/L			09/12/19 17:33	
1,1-Dichloroethane	ND	5.0	ug/L			09/12/19 17:33	
1,1-Dichloroethene	ND	5.0	ug/L			09/12/19 17:33	
1,2,3-Trichloropropane	ND	5.0	ug/L			09/12/19 17:33	
1,2-Dibromo-3-Chloropropane	ND	10	ug/L			09/12/19 17:33	
1,2-Dibromoethane	ND	5.0	ug/L			09/12/19 17:33	
1,2-Dichlorobenzene	ND	5.0	ug/L			09/12/19 17:33	
1,2-Dichloroethane	ND	5.0	ug/L			09/12/19 17:33	
1,2-Dichloropropane	ND	5.0	ug/L			09/12/19 17:33	
1,4-Dichlorobenzene	ND	5.0	ug/L			09/12/19 17:33	
1,4-Dioxane	ND *	50	ug/L			09/12/19 17:33	
2-Butanone (MEK)	ND	5.0	ug/L			09/12/19 17:33	
2-Hexanone	ND	10	ug/L			09/12/19 17:33	
4-Methyl-2-pentanone (MIBK)	ND	10	ug/L			09/12/19 17:33	
Acetone	ND	5.0	_			09/12/19 17:33	
Acetonie	ND	100	ug/L			09/12/19 17:33	
	ND ND	5.0	ug/L				
Benzene			ug/L			09/12/19 17:33	
Bromochloromethane	ND	5.0	ug/L			09/12/19 17:33	
Bromodichloromethane	ND	5.0	ug/L			09/12/19 17:33	
Bromoform	ND	5.0	ug/L			09/12/19 17:33	
Bromomethane	ND	5.0	ug/L			09/12/19 17:33	
Carbon disulfide	ND	5.0	ug/L			09/12/19 17:33	
Carbon tetrachloride	ND	5.0	ug/L			09/12/19 17:33	
Chlorobenzene	ND	5.0	ug/L			09/12/19 17:33	
Chloroethane	ND	5.0	ug/L			09/12/19 17:33	
Chloroform	ND	5.0	ug/L			09/12/19 17:33	
Chloromethane	ND	5.0	ug/L			09/12/19 17:33	
cis-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 17:33	
cis-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 17:33	
Dibromochloromethane	ND	5.0	ug/L			09/12/19 17:33	
Dibromomethane	ND	5.0	ug/L			09/12/19 17:33	
Ethylbenzene	ND	5.0	ug/L			09/12/19 17:33	
odomethane	ND	5.0	ug/L			09/12/19 17:33	
n,p-Xylene	ND	5.0	ug/L			09/12/19 17:33	
Methylene Chloride	ND	5.0	ug/L			09/12/19 17:33	
o-Xylene	ND	5.0	ug/L			09/12/19 17:33	
Styrene	ND	5.0	ug/L			09/12/19 17:33	
Tetrachloroethene	ND	5.0	ug/L			09/12/19 17:33	
Fetrahydrofuran	ND	10	ug/L			09/12/19 17:33	
Toluene	ND	5.0	ug/L			09/12/19 17:33	
rans-1,2-Dichloroethene	ND	5.0	ug/L			09/12/19 17:33	
rans-1,3-Dichloropropene	ND	5.0	ug/L			09/12/19 17:33	
rans-1,4-Dichloro-2-butene	ND	10	ug/L			09/12/19 17:33	
Trichloroethene	ND	5.0	ug/L			09/12/19 17:33	
Trichlorofluoromethane	ND	5.0	ug/L			09/12/19 17:33	
Vinyl acetate	ND	5.0	ug/∟ ug/L			09/12/19 17:33	

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-158492-5 Date Collected: 09/03/19 08:00

Matrix: Water

Date Received: 09/03/19 16:50

Method: 8260C - Volatile O	rganic Compo	unds by G	C/MS (Contir	nued)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0	ug/L			09/12/19 17:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		77 - 120				09/12/19 17:33	1
4-Bromofluorobenzene (Surr)	96		73 - 120				09/12/19 17:33	1
Toluene-d8 (Surr)	99		80 - 120				09/12/19 17:33	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1

Date Collected: 09/09/19 12:35 Date Received: 09/09/19 15:40 Lab Sample ID: 480-158878-1

Matrix: Water

Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		1.9		ng/L			09/13/19 21:30	1
Perfluoropentanoic acid (PFPeA)	ND		1.9		ng/L			09/13/19 21:30	1
Perfluorohexanoic acid (PFHxA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorooctanoic acid (PFOA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:30	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:30	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:30	1
6:2 FTS `	ND		19		ng/L		09/12/19 07:48	09/13/19 21:30	1
8:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:30	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	98		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C5-PFPeA DNU	101		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C2 PFHxA	100		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C4 PFHpA	103		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C4 PFOA	104		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C5 PFNA	103		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C2 PFDA	97		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C2 PFUnA	103		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C2 PFDoA	100		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C2 PFTeDA	106		25 - 150				09/12/19 07:48	09/13/19 21:30	1
18O2 PFHxS	115		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C4 PFOS	105		25 - 150				09/12/19 07:48	09/13/19 21:30	1
13C8 FOSA	101		25 - 150				09/12/19 07:48	09/13/19 21:30	1
d3-NMeFOSAA	97		25 - 150				09/12/19 07:48	09/13/19 21:30	1
d5-NEtFOSAA	96		25 - 150				09/12/19 07:48	09/13/19 21:30	1
M2-6:2 FTS	115		25 - 150				09/12/19 07:48	09/13/19 21:30	

Eurofins TestAmerica, Buffalo

9

3

5

10

12

14

4.0

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2

Date Collected: 09/09/19 11:20 Date Received: 09/09/19 15:40 Lab Sample ID: 480-158878-2

Matrix: Water

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluoropentanoic acid (PFPeA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorohexanoic acid (PFHxA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorooctanoic acid (PFOA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:39	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
6:2 FTS `	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
8:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:39	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	102		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C5-PFPeA DNU	106		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFHxA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C4 PFHpA	104		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C4 PFOA	106		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C5 PFNA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFDA	103		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFUnA	109		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFDoA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C2 PFTeDA	97		25 - 150				09/12/19 07:48	09/13/19 21:39	1
18O2 PFHxS	114		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C4 PFOS	102		25 - 150				09/12/19 07:48	09/13/19 21:39	1
13C8 FOSA	102		25 - 150				09/12/19 07:48	09/13/19 21:39	1
d3-NMeFOSAA	100		25 - 150				09/12/19 07:48	09/13/19 21:39	1
d5-NEtFOSAA	101		25 - 150				09/12/19 07:48	09/13/19 21:39	1
M2-6:2 FTS	114		25 - 150				09/12/19 07:48	09/13/19 21:39	1
M2-8:2 FTS	116		25 - 150				00/40/40 07:40	09/13/19 21:39	1

Eurofins TestAmerica, Buffalo

9/30/2019

3

5

7

9

11

13

1 5

16

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3

Lab Sample ID: 480-158878-3 Date Collected: 09/09/19 13:41

Matrix: Water Date Received: 09/09/19 15:40

Method: 537 (modified) - Fluor Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	15		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluoropentanoic acid (PFPeA)	15		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorohexanoic acid (PFHxA)	21		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluoroheptanoic acid (PFHpA)	5.8		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorooctanoic acid (PFOA)	9.0		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorobutanesulfonic acid (PFBS)	4.8		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorooctanesulfonic acid (PFOS)	2.6		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		09/12/19 07:48	09/13/19 21:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L			09/13/19 21:49	1
6:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	1
8:2 FTS	ND		19		ng/L		09/12/19 07:48	09/13/19 21:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	89		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C5-PFPeA DNU	103		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C2 PFHxA	103		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C4 PFHpA	110		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C4 PFOA	107		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C5 PFNA	106		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C2 PFDA	106		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C2 PFUnA	109		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C2 PFDoA	105		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C2 PFTeDA	98		25 - 150				09/12/19 07:48	09/13/19 21:49	1
1802 PFHxS	115		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C4 PFOS	103		25 - 150				09/12/19 07:48	09/13/19 21:49	1
13C8 FOSA	104		25 - 150				09/12/19 07:48	09/13/19 21:49	1
d3-NMeFOSAA	97		25 - 150				09/12/19 07:48	09/13/19 21:49	1
d5-NEtFOSAA	102		25 - 150				09/12/19 07:48	09/13/19 21:49	1
								09/13/19 21:49	1
M2-6:2 FTS	128		25 - 150				09/12/19 07.40	03/13/13 21.43	,

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4

Date Collected: 09/09/19 11:46 Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	
Perfluoropentanoic acid (PFPeA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorohexanoic acid (PFHxA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorooctanoic acid (PFOA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 21:59	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
6:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
8:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 21:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	95		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C5-PFPeA DNU	104		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFHxA	99		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C4 PFHpA	107		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C4 PFOA	106		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C5 PFNA	100		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFDA	98		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFUnA	108		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFDoA	101		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C2 PFTeDA	96		25 - 150				09/12/19 07:48	09/13/19 21:59	1
1802 PFHxS	116		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C4 PFOS	107		25 - 150				09/12/19 07:48	09/13/19 21:59	1
13C8 FOSA	101		25 - 150				09/12/19 07:48	09/13/19 21:59	1
d3-NMeFOSAA	96		25 - 150				09/12/19 07:48	09/13/19 21:59	1
d5-NEtFOSAA	100		25 - 150				09/12/19 07:48	09/13/19 21:59	1
M2-6:2 FTS	118		25 - 150				09/12/19 07:48	09/13/19 21:59	1
M2-8:2 FTS	118		25 - 150				09/12/19 07:48	09/13/19 21:59	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: BLIND DUP

Lab Sample ID: 480-158878-5 Date Collected: 09/09/19 11:46 **Matrix: Water**

Date Received: 09/09/19 15:40

Method: 537 (modified) - Fluor Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	15		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoropentanoic acid (PFPeA)	15		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorohexanoic acid (PFHxA)	21		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoroheptanoic acid (PFHpA)	6.1		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorooctanoic acid (PFOA)	9.0		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorobutanesulfonic acid (PFBS)	4.7		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorooctanesulfonic acid (PFOS)	2.5		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		09/12/19 07:48	09/13/19 22:08	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
N-ethylperfluorooctanesulfonamidoac	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
etic acid (NEtFOSAA) 6:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
8:2 FTS	ND		18		ng/L		09/12/19 07:48	09/13/19 22:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	84		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C5-PFPeA DNU	97		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFHxA	101		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C4 PFHpA	101		25 - 150				09/12/19 07:48	09/13/19 22:08	
13C4 PFOA	102		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C5 PFNA	100		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFDA	100		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFUnA	97		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFDoA	97		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C2 PFTeDA	91		25 - 150				09/12/19 07:48	09/13/19 22:08	
1802 PFHxS	110		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C4 PFOS	101		25 - 150				09/12/19 07:48	09/13/19 22:08	1
13C8 FOSA	99		25 - 150				09/12/19 07:48	09/13/19 22:08	1
d3-NMeFOSAA	92		25 - 150				09/12/19 07:48	09/13/19 22:08	1
d5-NEtFOSAA	95		25 - 150					09/13/19 22:08	1
M2-6:2 FTS	119		25 - 150					09/13/19 22:08	
M2-8:2 FTS	116		25 - 150					09/13/19 22:08	1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-6 Date Collected: 09/09/19 09:00

Matrix: Water

Method: 8260C - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0		ug/L			09/20/19 00:45	
1,1,1-Trichloroethane	ND		5.0		ug/L			09/20/19 00:45	•
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/20/19 00:45	
1,1,2-Trichloroethane	ND		5.0		ug/L			09/20/19 00:45	• • • • • • • •
1,1-Dichloroethane	ND		5.0		ug/L			09/20/19 00:45	
1,1-Dichloroethene	ND		5.0		ug/L			09/20/19 00:45	
1,2,3-Trichloropropane	ND		5.0		ug/L			09/20/19 00:45	
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			09/20/19 00:45	
1,2-Dibromoethane	ND		5.0		ug/L			09/20/19 00:45	
1,2-Dichlorobenzene	ND		5.0		ug/L			09/20/19 00:45	
1,2-Dichloroethane	ND		5.0		ug/L			09/20/19 00:45	
1,2-Dichloropropane	ND		5.0		ug/L			09/20/19 00:45	
1,4-Dichlorobenzene	ND		5.0		ug/L			09/20/19 00:45	
1,4-Dioxane	ND		50		ug/L			09/20/19 00:45	
2-Butanone (MEK)	ND		5.0		ug/L			09/20/19 00:45	
2-Hexanone	ND		10		ug/L			09/20/19 00:45	· · · · · · .
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			09/20/19 00:45	
Acetone	ND		5.0		•			09/20/19 00:45	
					ug/L				
Acetonitrile	ND ND		100		ug/L			09/20/19 00:45	
Benzene			5.0		ug/L			09/20/19 00:45	
Bromochloromethane	ND		5.0		ug/L			09/20/19 00:45	
Bromodichloromethane	ND		5.0		ug/L			09/20/19 00:45	
Bromoform	ND		5.0		ug/L			09/20/19 00:45	
Bromomethane	ND		5.0		ug/L			09/20/19 00:45	
Carbon disulfide	ND		5.0		ug/L			09/20/19 00:45	
Carbon tetrachloride	ND		5.0		ug/L			09/20/19 00:45	•
Chlorobenzene	ND		5.0		ug/L			09/20/19 00:45	
Chloroethane	ND		5.0		ug/L			09/20/19 00:45	•
Chloroform	ND		5.0		ug/L			09/20/19 00:45	•
Chloromethane	ND		5.0		ug/L			09/20/19 00:45	
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/20/19 00:45	•
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/20/19 00:45	•
Dibromochloromethane	ND		5.0		ug/L			09/20/19 00:45	•
Dibromomethane	ND		5.0		ug/L			09/20/19 00:45	
Ethylbenzene	ND		5.0		ug/L			09/20/19 00:45	•
lodomethane	ND		5.0		ug/L			09/20/19 00:45	
m,p-Xylene	ND		5.0		ug/L			09/20/19 00:45	
Methylene Chloride	ND		5.0		ug/L			09/20/19 00:45	•
o-Xylene	ND		5.0		ug/L			09/20/19 00:45	•
Styrene	ND		5.0		ug/L			09/20/19 00:45	
Tetrachloroethene	ND		5.0		ug/L			09/20/19 00:45	
Tetrahydrofuran	ND		10		ug/L			09/20/19 00:45	
Toluene	ND		5.0		ug/L			09/20/19 00:45	· · · · · · · · ·
trans-1,2-Dichloroethene	ND		5.0		ug/L			09/20/19 00:45	
trans-1,3-Dichloropropene	ND		5.0		ug/L			09/20/19 00:45	
trans-1,4-Dichloro-2-butene	ND		10		ug/L			09/20/19 00:45	
Trichloroethene	ND		5.0		ug/L			09/20/19 00:45	1
Trichlorofluoromethane	ND		5.0		ug/L			09/20/19 00:45	
Visit sectots	140				აყ, ∟			00/20/40 00.45	

Eurofins TestAmerica, Buffalo

09/20/19 00:45

50

ug/L

ND

Vinyl acetate

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-158878-6 Date Collected: 09/09/19 09:00

Matrix: Water

Date Received: 09/09/19 15:40

Method: 8260C - Volatile	Organic Compou	nds by GC/MS (Continued)
--------------------------	----------------	----------------	------------

Welliou. 02000 - Volatile Orga	ariic Compo	ulius by G	C/W3 (COILLI	iiueu)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		5.0		ug/L			09/20/19 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		77 - 120			-		09/20/19 00:45	1
4-Bromofluorobenzene (Surr)	103		73 - 120					09/20/19 00:45	1
Toluene-d8 (Surr)	105		80 - 120					09/20/19 00:45	1

Surrogate Summary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

				•	te Recovery (Acceptance Lin
		DCA	BFB	TOL	
ab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	
80-157980-1	DUP	108	91	96	
80-157980-2	MW-16	110	95	99	
80-157980-3	MW-16(S)	110	92	96	
80-157980-4	MW-17	103	95	97	
80-157980-4 MS	MW-17	105	95	100	
80-157980-4 MSD	MW-17	105	93	98	
80-157980-5	MW-18BR	117	99	103	
80-157980-6	MW-L(I)	109	94	97	
80-157980-7	MW-M(I)	108	96	95	
80-157980-8	MW-M(S)	113	104	108	
80-157980-9	MW-P(I)	105	92	95	
80-157980-10	MW-P(S)	107	95	95	
80-158093-1	MW-N(I)	85	111	89	
80-158093-2	MW-N(S)	85	110	89	
80-158145-1	MW-50	103	102	97	
80-158409-2	MWBA-1	97	95	91	
80-158409-3	MWBA-2	97	98	95	
80-158409-4	MW-O(I)	100	98	93	
80-158492-1	MWSE-1	109	100	97	
80-158492-2	MWSE-2	105	102	94	
80-158492-3	MWSE-3	108	101	93	
80-158492-4	MWSE-4	103	100	93	

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	rcent Surro	gate Recovery (Acceptance Limits)
		DCA	BFB	TOL	
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)	
480-157980-11	TRIP BLANK	107	94	94	
480-158093-3	MW-Q(I)	88	108	88	
480-158409-1	FIELD BLANK	97	98	91	
480-158409-5	TRIP BLANK	100	98	95	
480-158492-5	TRIP BLANK	98	96	99	
480-158878-6	TRIP BLANK	109	103	105	
LCS 480-488279/5	Lab Control Sample	103	97	97	
LCS 480-488663/5	Lab Control Sample	86	110	91	
LCS 480-489143/5	Lab Control Sample	101	103	95	
LCS 480-491215/6	Lab Control Sample	92	97	92	
LCS 480-491707/11	Lab Control Sample	92	95	96	
LCS 480-491769/5	Lab Control Sample	107	106	101	
LCS 480-492966/5	Lab Control Sample	106	101	103	
MB 480-488279/7	Method Blank	109	100	99	
MB 480-488663/7	Method Blank	84	111	89	
MB 480-489143/7	Method Blank	100	102	95	

Page 122 of 314

Surrogate Summary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate F						
		DCA	BFB	TOL					
Lab Sample ID	Client Sample ID	(77-120)	(73-120)	(80-120)					
MB 480-491215/8	Method Blank	93	93	89					
MB 480-491707/9	Method Blank	96	90	94					
MB 480-491769/7	Method Blank	107	101	94					
MB 480-492966/7	Method Blank	105	102	104					
Surregate Legend									

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

Λ

5

0

_

0

10

4.0

13

15

17

Isotope Dilution Summary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

		Percent Isotope Dilution Recovery (Acceptance Limits)										
		PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)			
480-158878-1	MWSE-1	98	101	100	103	104	103	97	103			
480-158878-2	MWSE-2	102	106	100	104	106	100	103	109			
480-158878-3	MWSE-3	89	103	103	110	107	106	106	109			
480-158878-4	MWSE-4	95	104	99	107	106	100	98	108			
480-158878-5	BLIND DUP	84	97	101	101	102	100	100	97			
LCS 320-322696/2-A	Lab Control Sample	105	106	102	108	109	100	107	104			
LCSD 320-322696/3-A	Lab Control Sample Dup	102	105	102	108	107	104	98	97			
MB 320-322696/1-A	Method Blank	101	104	101	105	103	103	101	100			
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)				
		PFDoA	PFTDA	PFHxS	PFOS	PFOSA	-NMeFOS	-NEtFOS/	M262FTS			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)			
480-158878-1	MWSE-1	100	106	115	105	101	97	96	115			
480-158878-2	MWSE-2	100	97	114	102	102	100	101	114			
480-158878-3	MWSE-3	105	98	115	103	104	97	102	128			
480-158878-4	MWSE-4	101	96	116	107	101	96	100	118			
480-158878-5	BLIND DUP	97	91	110	101	99	92	95	119			
LCS 320-322696/2-A	Lab Control Sample	105	103	116	108	103	98	97	104			
LCSD 320-322696/3-A	Lab Control Sample Dup	97	98	115	103	100	97	95	105			
MB 320-322696/1-A	Method Blank	98	93	111	102	99	92	100	107			
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)				
		M282FTS										
Lab Sample ID	Client Sample ID	(25-150)										
480-158878-1	MWSE-1	129										
480-158878-2	MWSE-2	116										
480-158878-3	MWSE-3	123										
480-158878-4	MWSE-4	118										
480-158878-5	BLIND DUP	116										
LCS 320-322696/2-A	Lab Control Sample	112										
LCSD 320-322696/3-A	Lab Control Sample Dup	114										
MB 320-322696/1-A	Method Blank	113										
Surrogato Lagand												

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5-PFPeA DNU

PFHxA = 13C2 PFHxA

PFHpA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3-NMeFOSAA = d3-NMeFOSAA

d5-NEtFOSAA = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Eurofins TestAmerica, Buffalo

Page 124 of 314

6

_

4

6

8

10

12

1 /

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-488279/7

Matrix: Water

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0		ug/L			08/22/19 11:06	1
1,1,1-Trichloroethane	ND		5.0		ug/L			08/22/19 11:06	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			08/22/19 11:06	1
1,1,2-Trichloroethane	ND		5.0		ug/L			08/22/19 11:06	1
1,1-Dichloroethane	ND		5.0		ug/L			08/22/19 11:06	1
1,1-Dichloroethene	ND		5.0		ug/L			08/22/19 11:06	1
1,2,3-Trichloropropane	ND		5.0		ug/L			08/22/19 11:06	1
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			08/22/19 11:06	1
1,2-Dibromoethane	ND		5.0		ug/L			08/22/19 11:06	1
1,2-Dichlorobenzene	ND		5.0		ug/L			08/22/19 11:06	1
1,2-Dichloroethane	ND		5.0		ug/L			08/22/19 11:06	1
1,2-Dichloropropane	ND		5.0		ug/L			08/22/19 11:06	1
1,4-Dichlorobenzene	ND		5.0		ug/L			08/22/19 11:06	1
1,4-Dioxane	ND		50		ug/L			08/22/19 11:06	1
2-Butanone (MEK)	ND		5.0		ug/L			08/22/19 11:06	1
2-Hexanone	ND		10		ug/L			08/22/19 11:06	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			08/22/19 11:06	1
Acetone	ND		5.0		ug/L			08/22/19 11:06	1
Acetonitrile	ND		100		ug/L			08/22/19 11:06	1
Benzene	ND		5.0		ug/L			08/22/19 11:06	1
Bromochloromethane	ND		5.0		ug/L			08/22/19 11:06	1
Bromodichloromethane	ND		5.0		ug/L			08/22/19 11:06	
Bromoform	ND		5.0		ug/L			08/22/19 11:06	. 1
Bromomethane	ND		5.0		ug/L			08/22/19 11:06	1
Carbon disulfide	ND		5.0		ug/L			08/22/19 11:06	
Carbon tetrachloride	ND		5.0		ug/L			08/22/19 11:06	1
Chlorobenzene	ND		5.0		ug/L			08/22/19 11:06	1
Chloroethane	ND		5.0		ug/L			08/22/19 11:06	
Chloroform	ND		5.0		ug/L			08/22/19 11:06	1
Chloromethane	ND		5.0		ug/L			08/22/19 11:06	1
cis-1,2-Dichloroethene	ND		5.0					08/22/19 11:06	' 1
cis-1,3-Dichloropropene	ND		5.0		ug/L ug/L			08/22/19 11:06	1
Dibromochloromethane	ND ND				_			08/22/19 11:06	
	ND		5.0		ug/L				
Dibromomethane Ethylhograpa	ND ND		5.0 5.0		ug/L			08/22/19 11:06 08/22/19 11:06	1
Ethylbenzene					ug/L				
lodomethane	ND		5.0		ug/L			08/22/19 11:06	1
m,p-Xylene	ND		5.0		ug/L			08/22/19 11:06	1
Methylene Chloride	ND		5.0		ug/L			08/22/19 11:06	1
o-Xylene	ND		5.0		ug/L			08/22/19 11:06	1
Styrene	ND		5.0		ug/L			08/22/19 11:06	1
Tetrachloroethene	ND		5.0		ug/L			08/22/19 11:06	1
Tetrahydrofuran	ND		10		ug/L			08/22/19 11:06	1
Toluene	ND		5.0		ug/L			08/22/19 11:06	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			08/22/19 11:06	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			08/22/19 11:06	1
trans-1,4-Dichloro-2-butene	ND		10		ug/L			08/22/19 11:06	1
Trichloroethene	ND		5.0		ug/L			08/22/19 11:06	1
Trichlorofluoromethane	ND		5.0		ug/L			08/22/19 11:06	1

Eurofins TestAmerica, Buffalo

Page 125 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MR MR

Lab Sample ID: MB 480-488279/7

Matrix: Water

Analysis Batch: 488279

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-157980-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		50		ug/L			08/22/19 11:06	1
Vinyl chloride	ND		5.0		ug/L			08/22/19 11:06	1

MR MR Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 08/22/19 11:06 1,2-Dichloroethane-d4 (Surr) 109 77 - 120 73 - 120 4-Bromofluorobenzene (Surr) 100 08/22/19 11:06 80 - 120 Toluene-d8 (Surr) 99 08/22/19 11:06

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec.

Limits

80 - 120

Analysis Batch: 488279

Matrix: Water

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

Ethylbenzene

Iodomethane

Lab Sample ID: LCS 480-488279/5

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec 25.0 1,1,1,2-Tetrachloroethane 25.1 ug/L 101 1,1,1-Trichloroethane 25.0 28.6 ug/L 114 1,1,2,2-Tetrachloroethane 25.0 26.0 ug/L 104 1,1,2-Trichloroethane 25.0 24.9 ug/L 100

73 - 12676 - 120 76 - 1221,1-Dichloroethane 25.0 26.7 ug/L 107 77 - 1201,1-Dichloroethene 25.0 27.8 ug/L 111 66 - 127 1,2,3-Trichloropropane 25.0 25.0 ug/L 100 68 - 1221,2-Dibromo-3-Chloropropane 25.0 254 ug/L 102 56 - 134 105 1,2-Dibromoethane 25.0 26.4 ug/L 77 - 12025.0 26.0 104 1,2-Dichlorobenzene ug/L 80 - 124 1,2-Dichloroethane 25.0 26.6 ug/L 106 75 - 120 25.0 27.5 ug/L 110 76 - 120 1,2-Dichloropropane 1,4-Dichlorobenzene 25.0 25.4 ug/L 101 80 - 120 1,4-Dioxane 500 615 ug/L 123 50 - 1502-Butanone (MEK) 125 144 ug/L 115 57 - 140 125 139 ug/L 111 65 - 127 2-Hexanone 4-Methyl-2-pentanone (MIBK) 125 137 ug/L 110 71 - 125 Acetone 125 133 ug/L 107 56 - 142 25.0 26.7 Benzene ug/L 107 71 - 124Bromochloromethane 25.0 26.6 ug/L 106 72 - 130Bromodichloromethane 25.0 27.7 ug/L 111 80 - 122 25.0 107 Bromoform 26.7 ug/L 61 - 132 25.0 25.6 102 55 - 144 Bromomethane ug/L Carbon disulfide 25.0 29.0 116 59 - 134 ug/L Carbon tetrachloride 25.0 28.0 72 - 134 ug/L 112 Chlorobenzene 25.0 25.4 ug/L 102 80 - 120 25.0 25.9 ug/L 104 Chloroethane 69 - 136Chloroform 25.0 25.4 ug/L 101 73 - 127Chloromethane 25.0 28.7 115 68 - 124 ug/L

25.0

25.0

25.0

25.0

25.0

25.0

26.3

27.9

26.2

26.8

25.9

27.6

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Eurofins TestAmerica, Buffalo

74 - 124

74 - 124

75 - 125

76 - 127 77 - 123

78 - 123

105

112

105

107

103

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-488279/5

Matrix: Water

Analysis Batch: 488279

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m,p-Xylene	25.0	27.3		ug/L		109	76 - 122	
Methylene Chloride	25.0	25.3		ug/L		101	75 - 124	
o-Xylene	25.0	26.1		ug/L		104	76 - 122	
Styrene	25.0	26.9		ug/L		108	80 - 120	
Tetrachloroethene	25.0	26.4		ug/L		106	74 - 122	
Tetrahydrofuran	50.0	56.4		ug/L		113	62 - 132	
Toluene	25.0	26.5		ug/L		106	80 - 122	
trans-1,2-Dichloroethene	25.0	27.3		ug/L		109	73 - 127	
trans-1,3-Dichloropropene	25.0	26.7		ug/L		107	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	26.1		ug/L		104	41 - 131	
Trichloroethene	25.0	26.7		ug/L		107	74 - 123	
Trichlorofluoromethane	25.0	26.1		ug/L		105	62 - 150	
Vinyl acetate	50.0	55.7		ug/L		111	50 - 144	
Vinyl chloride	25.0	27.4		ug/L		109	65 - 133	

LCS LCS

Surrogate	%Recovery Qualified	r Limits
1,2-Dichloroethane-d4 (Surr)	103	77 - 120
4-Bromofluorobenzene (Surr)	97	73 - 120
Toluene-d8 (Surr)	97	80 - 120

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Client Sample ID: MW-17	
Prep Type: Total/NA	

Analysis Batch: 488279									a. =	
	•	Sample	Spike		MS		_		%Rec.	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	ND		25.0	25.1		ug/L		100	80 - 120	
1,1,1-Trichloroethane	ND		25.0	29.1		ug/L		116	73 - 126	
1,1,2,2-Tetrachloroethane	ND		25.0	25.1		ug/L		100	76 - 120	
1,1,2-Trichloroethane	ND		25.0	26.6		ug/L		106	76 - 122	
1,1-Dichloroethane	ND		25.0	27.8		ug/L		111	77 - 120	
1,1-Dichloroethene	ND		25.0	29.0		ug/L		116	66 - 127	
1,2,3-Trichloropropane	ND		25.0	24.3		ug/L		97	68 - 122	
1,2-Dibromo-3-Chloropropane	ND		25.0	23.5		ug/L		94	56 - 134	
1,2-Dibromoethane	ND		25.0	26.6		ug/L		107	77 - 120	
1,2-Dichlorobenzene	ND		25.0	24.3		ug/L		97	80 - 124	
1,2-Dichloroethane	ND		25.0	27.6		ug/L		110	75 - 120	
1,2-Dichloropropane	ND		25.0	27.9		ug/L		111	76 - 120	
1,4-Dichlorobenzene	ND		25.0	24.3		ug/L		97	78 - 124	
1,4-Dioxane	ND		500	666		ug/L		133	50 - 150	
2-Butanone (MEK)	ND		125	145		ug/L		116	57 ₋ 140	
2-Hexanone	ND		125	142		ug/L		113	65 - 127	
4-Methyl-2-pentanone (MIBK)	ND		125	141		ug/L		113	71 - 125	
Acetone	ND		125	128		ug/L		102	56 - 142	
Benzene	ND		25.0	27.5		ug/L		110	71 - 124	
Bromochloromethane	ND		25.0	27.4		ug/L		110	72 - 130	
Bromodichloromethane	ND		25.0	28.1		ug/L		112	80 - 122	
Bromoform	ND		25.0	24.3		ug/L		97	61 - 132	
Bromomethane	ND		25.0	27.1		ug/L		108	55 - 144	

Eurofins TestAmerica, Buffalo

Page 127 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water Analysis Batch: 488279 Client Sample ID: MW-17 Prep Type: Total/NA

-	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbon disulfide	ND		25.0	28.9		ug/L		116	59 - 134
Carbon tetrachloride	ND		25.0	27.8		ug/L		111	72 - 134
Chlorobenzene	ND		25.0	26.2		ug/L		105	80 - 120
Chloroethane	ND		25.0	27.5		ug/L		110	69 - 136
Chloroform	ND		25.0	25.9		ug/L		104	73 - 127
Chloromethane	ND	F1	25.0	30.5		ug/L		122	68 - 124
cis-1,2-Dichloroethene	ND		25.0	27.6		ug/L		110	74 - 124
cis-1,3-Dichloropropene	ND		25.0	26.9		ug/L		108	74 - 124
Dibromochloromethane	ND		25.0	25.1		ug/L		100	75 - 125
Dibromomethane	ND		25.0	27.6		ug/L		110	76 - 127
Ethylbenzene	ND		25.0	26.0		ug/L		104	77 - 123
Iodomethane	ND		25.0	28.3		ug/L		113	78 - 123
m,p-Xylene	ND		25.0	26.5		ug/L		106	76 - 122
Methylene Chloride	ND		25.0	26.0		ug/L		104	75 - 124
o-Xylene	ND		25.0	26.6		ug/L		106	76 - 122
Styrene	ND		25.0	27.3		ug/L		109	80 - 120
Tetrachloroethene	ND		25.0	26.6		ug/L		106	74 - 122
Tetrahydrofuran	ND		50.0	57.6		ug/L		115	62 - 132
Toluene	ND		25.0	27.1		ug/L		108	80 - 122
trans-1,2-Dichloroethene	ND		25.0	28.6		ug/L		114	73 - 127
trans-1,3-Dichloropropene	ND		25.0	25.9		ug/L		104	80 - 120
trans-1,4-Dichloro-2-butene	ND		25.0	20.0		ug/L		80	41 - 131
Trichloroethene	ND		25.0	26.8		ug/L		107	74 - 123
Trichlorofluoromethane	ND		25.0	26.6		ug/L		106	62 - 150
Vinyl acetate	ND		50.0	54.1		ug/L		108	50 - 144
Vinyl chloride	ND		25.0	29.1		ug/L		116	65 - 133

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	95		73 - 120
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water Analysis Batch: 488279

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		25.0	26.0		ug/L		104	80 - 120	4	20
1,1,1-Trichloroethane	ND		25.0	30.4		ug/L		122	73 - 126	4	15
1,1,2,2-Tetrachloroethane	ND		25.0	26.6		ug/L		106	76 - 120	6	15
1,1,2-Trichloroethane	ND		25.0	26.3		ug/L		105	76 - 122	1	15
1,1-Dichloroethane	ND		25.0	28.4		ug/L		114	77 - 120	2	20
1,1-Dichloroethene	ND		25.0	29.5		ug/L		118	66 - 127	1	16
1,2,3-Trichloropropane	ND		25.0	25.1		ug/L		100	68 - 122	3	14
1,2-Dibromo-3-Chloropropane	ND		25.0	26.2		ug/L		105	56 - 134	11	15
1,2-Dibromoethane	ND		25.0	27.5		ug/L		110	77 - 120	3	15
1,2-Dichlorobenzene	ND		25.0	25.9		ug/L		104	80 - 124	6	20
1,2-Dichloroethane	ND		25.0	28.0		ug/L		112	75 - 120	1	20

Eurofins TestAmerica, Buffalo

Page 128 of 314

Client Sample ID: MW-17

Prep Type: Total/NA

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water Analysis Batch: 488279 Client Sample ID: MW-17 **Prep Type: Total/NA**

Analyte	-	Sample Qualifier	Spike Added	_	MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
1,2-Dichloropropane	ND		25.0	27.8		ug/L		111	76 - 120		20
1,4-Dichlorobenzene	ND		25.0	25.8		ug/L		103	78 - 124	6	20
1,4-Dioxane	ND		500	676		ug/L		135	50 - 150	1	20
2-Butanone (MEK)	ND		125	144		ug/L		115	57 ₋ 140	1	20
2-Hexanone	ND		125	141		ug/L		113	65 - 127	1	15
4-Methyl-2-pentanone (MIBK)	ND		125	144		ug/L		115	71 - 125	2	35
Acetone	ND		125	129		ug/L		103	56 - 142	1	15
Benzene	ND		25.0	28.0		ug/L		112	71 - 124	2	13
Bromochloromethane	ND		25.0	27.8		ug/L		111	72 - 130	1	15
Bromodichloromethane	ND		25.0	28.3		ug/L		113	80 - 122	1	15
Bromoform	ND		25.0	24.4		ug/L		98	61 - 132	0	15
Bromomethane	ND		25.0	29.0		ug/L		116	55 - 144	7	15
Carbon disulfide	ND		25.0	30.7		ug/L		123	59 - 134	6	15
Carbon tetrachloride	ND		25.0	29.5		ug/L		118	72 - 134	6	15
Chlorobenzene	ND		25.0	26.1		ug/L		105	80 - 120	0	25
Chloroethane	ND		25.0	30.8		ug/L		123	69 - 136	11	15
Chloroform	ND		25.0	26.3		ug/L		105	73 - 127	2	20
Chloromethane	ND	F1	25.0	32.6	F1	ug/L		131	68 - 124	7	15
cis-1,2-Dichloroethene	ND		25.0	28.3		ug/L		113	74 - 124	2	15
cis-1,3-Dichloropropene	ND		25.0	27.8		ug/L		111	74 - 124	3	15
Dibromochloromethane	ND		25.0	25.1		ug/L		100	75 - 125	0	15
Dibromomethane	ND		25.0	28.0		ug/L		112	76 - 127	2	15
Ethylbenzene	ND		25.0	26.3		ug/L		105	77 - 123	1	15
Iodomethane	ND		25.0	29.5		ug/L		118	78 - 123	4	20
m,p-Xylene	ND		25.0	27.3		ug/L		109	76 - 122	3	16
Methylene Chloride	ND		25.0	26.4		ug/L		105	75 - 124	1	15
o-Xylene	ND		25.0	27.0		ug/L		108	76 - 122	2	16
Styrene	ND		25.0	27.7		ug/L		111	80 - 120	1	20
Tetrachloroethene	ND		25.0	27.6		ug/L		110	74 - 122	4	20
Tetrahydrofuran	ND		50.0	60.0		ug/L		120	62 - 132	4	25
Toluene	ND		25.0	26.5		ug/L		106	80 - 122	2	15
trans-1,2-Dichloroethene	ND		25.0	28.4		ug/L		114	73 - 127	1	20
trans-1,3-Dichloropropene	ND		25.0	26.2		ug/L		105	80 - 120	1	15
trans-1,4-Dichloro-2-butene	ND		25.0	20.9		ug/L		84	41 - 131	4	20
Trichloroethene	ND		25.0	27.4		ug/L		109	74 - 123	2	16
Trichlorofluoromethane	ND		25.0	29.6		ug/L		118	62 - 150	11	20
Vinyl acetate	ND		50.0	53.9		ug/L		108	50 - 144	0	23
Vinyl chloride	ND		25.0	32.3		ug/L		129	65 - 133	10	15

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	105		77 - 120
4-Bromofluorobenzene (Surr)	93		73 - 120
Toluene-d8 (Surr)	98		80 - 120

Page 129 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-488663/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 488663	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0	ug/L			08/24/19 13:49	1
1,1,1-Trichloroethane	ND		5.0	ug/L			08/24/19 13:49	1
1,1,2,2-Tetrachloroethane	ND		5.0	ug/L			08/24/19 13:49	1
1,1,2-Trichloroethane	ND		5.0	ug/L			08/24/19 13:49	1
1,1-Dichloroethane	ND		5.0	ug/L			08/24/19 13:49	1
1,1-Dichloroethene	ND		5.0	ug/L			08/24/19 13:49	1
1,2,3-Trichloropropane	ND		5.0	ug/L			08/24/19 13:49	1
1,2-Dibromo-3-Chloropropane	ND		10	ug/L			08/24/19 13:49	1
1,2-Dibromoethane	ND		5.0	ug/L			08/24/19 13:49	1
1,2-Dichlorobenzene	ND		5.0	ug/L			08/24/19 13:49	1
1,2-Dichloroethane	ND		5.0	ug/L			08/24/19 13:49	1
1,2-Dichloropropane	ND		5.0	ug/L			08/24/19 13:49	1
1,4-Dichlorobenzene	ND		5.0	ug/L			08/24/19 13:49	1
1,4-Dioxane	ND		50	ug/L			08/24/19 13:49	1
2-Butanone (MEK)	ND		5.0	ug/L			08/24/19 13:49	1
2-Hexanone	ND		10	ug/L			08/24/19 13:49	1
4-Methyl-2-pentanone (MIBK)	ND		10	ug/L			08/24/19 13:49	1
Acetone	ND		5.0	ug/L			08/24/19 13:49	1
Acetonitrile	ND		100	ug/L			08/24/19 13:49	
Benzene	ND		5.0	ug/L			08/24/19 13:49	1
Bromochloromethane	ND		5.0	ug/L			08/24/19 13:49	1
Bromodichloromethane	ND		5.0	ug/L			08/24/19 13:49	
Bromoform	ND		5.0	ug/L			08/24/19 13:49	1
Bromomethane	ND		5.0	ug/L			08/24/19 13:49	-
Carbon disulfide	ND		5.0	ug/L			08/24/19 13:49	
Carbon tetrachloride	ND		5.0	ug/L			08/24/19 13:49	1
Chlorobenzene	ND		5.0	ug/L			08/24/19 13:49	1
Chloroethane	ND		5.0	ug/L			08/24/19 13:49	
Chloroform	ND		5.0	ug/L			08/24/19 13:49	-
Chloromethane	ND		5.0	ug/L			08/24/19 13:49	,
cis-1,2-Dichloroethene	ND		5.0				08/24/19 13:49	
cis-1,3-Dichloropropene	ND ND		5.0	ug/L ug/L			08/24/19 13:49	,
Dibromochloromethane	ND ND		5.0	_			08/24/19 13:49	
Dibromomethane	ND		5.0	ug/L			08/24/19 13:49	
	ND ND		5.0 5.0	ug/L				1
Ethylbenzene				ug/L			08/24/19 13:49	1
lodomethane	ND		5.0	ug/L			08/24/19 13:49	1
m,p-Xylene	ND		5.0	ug/L			08/24/19 13:49	1
Methylene Chloride	ND		5.0	ug/L			08/24/19 13:49	1
o-Xylene	ND		5.0	ug/L			08/24/19 13:49	1
Styrene	ND		5.0	ug/L			08/24/19 13:49	1
Tetrachloroethene	ND		5.0	ug/L			08/24/19 13:49	1
Tetrahydrofuran	ND		10	ug/L			08/24/19 13:49	1
Toluene	ND		5.0	ug/L			08/24/19 13:49	1
trans-1,2-Dichloroethene	ND		5.0	ug/L			08/24/19 13:49	1
trans-1,3-Dichloropropene	ND		5.0	ug/L			08/24/19 13:49	1
trans-1,4-Dichloro-2-butene	ND		10	ug/L			08/24/19 13:49	1
Trichloroethene	ND		5.0	ug/L			08/24/19 13:49	1
Trichlorofluoromethane	ND		5.0	ug/L			08/24/19 13:49	1

Eurofins TestAmerica, Buffalo

Page 130 of 314

9

3

4

6

0

10

12

14

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

мв мв

Result Qualifier

Lab Sample ID: MB 480-488663/7

Lab Sample ID: LCS 480-488663/5

Matrix: Water

Analyte

Vinyl acetate

Vinyl chloride

Analysis Batch: 488663

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac Prepared Analyzed

ND 50 ug/L 08/24/19 13:49 ND 5.0 ug/L 08/24/19 13:49

MDL Unit

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 84 77 - 120 08/24/19 13:49 4-Bromofluorobenzene (Surr) 73 - 120 08/24/19 13:49 111 Toluene-d8 (Surr) 89 80 - 120 08/24/19 13:49

RL

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water Analysis Batch: 488663

Analyte Added Result Qualifier Unit p %Rec Limits 1,1,1,2-Tertachloroethane 25.0 23.8 ug/L 95 80.120 1,1,2-Tertachloroethane 25.0 23.6 ug/L 94 76.120 1,1,2-Tichloroethane 25.0 23.4 ug/L 96 76.122 1,1-Dichloroethane 25.0 23.4 ug/L 93 67.122 1,1-Dichloroethane 25.0 22.9 ug/L 91 66.127 1,1-2-Dichroepropane 25.0 23.3 ug/L 93 68.122 1,2-Dichroporpopane 25.0 25.3 ug/L 93 68.122 1,2-Dichlorobenzene 25.0 25.3 ug/L 101 77.120 1,2-Dichlorobenzene 25.0 23.5 ug/L 194 75.120 1,2-Dichlorobenzene 25.0 23.5 ug/L 190 76.120 1,2-Dichlorobenzene 25.0 23.5 ug/L 110 76.120	Analysis Baton. 400000	Spike	LCS	LCS				%Rec.	
1,1,1-Trichloroethane 25.0 23.8 ug/L 95 73-126 1,1,2,2-Tetrachloroethane 25.0 23.6 ug/L 94 76-120 1,1,2-Trichloroethane 25.0 23.1 ug/L 93 77-120 1,1-Dichloroethane 25.0 22.9 ug/L 91 66-127 1,2-Dichloropopane 25.0 22.9 ug/L 82 56-134 1,2-Dichloropopane 25.0 23.3 ug/L 82 56-134 1,2-Dichlorophane 25.0 25.3 ug/L 101 77-120 1,2-Dichlorophane 25.0 23.5 ug/L 94 75-120 1,2-Dichlorobehane 25.0 23.5 ug/L 94 75-120 1,2-Dichlorophane 25.0 23.5 ug/L 94 75-120 1,2-Dichlorophane 25.0 23.5 ug/L 94 75-120 1,2-Dichlorophane 25.0 24.9 ug/L 100 76-120 1,2-Dichlorophane 25.0 23.5 ug/L 110 76-120 1,4-Dichlorophan	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane 25.0 23.6 ug/L 94 76-120 1,1,2-Tirchloroethane 25.0 24.1 ug/L 96 76-122 1,1-Dichloroethane 25.0 23.4 ug/L 93 77-120 1,1-Dichloroethane 25.0 22.9 ug/L 91 66-127 1,2-Dibromo-3-Chloropropane 25.0 23.3 ug/L 82 56-134 1,2-Dibromo-3-Chloropropane 25.0 25.3 ug/L 92 86-124 1,2-Dibrhoroethane 25.0 23.1 ug/L 92 80-124 1,2-Dichloroptopane 25.0 23.1 ug/L 92 80-124 1,2-Dichloroptopane 25.0 23.5 ug/L 94 75-120 1,2-Dichloroptopane 25.0 22.6 ug/L 91 80-120 1,4-Dichloroptopane 25.0 22.6 ug/L 91 80-120 1,4-Dichloroptopane 25.0 22.6 ug/L 91 80-120 1,4-Dichlo	1,1,1,2-Tetrachloroethane	25.0	23.7		ug/L		95	80 - 120	
1,1,2-Trichloroethane 25.0 24.1 ug/L 96 76.122 1,1-Dichloroethane 25.0 23.4 ug/L 93 77.120 1,1-Dichloroethane 25.0 22.9 ug/L 91 66.127 1,2,3-Trichloropropane 25.0 23.3 ug/L 82 56.134 1,2-Dibromo-3-Chloropropane 25.0 25.3 ug/L 101 77.120 1,2-Dichlorobenzene 25.0 23.1 ug/L 94 75.120 1,2-Dichloropenzene 25.0 23.5 ug/L 94 75.120 1,2-Dichloropropane 25.0 23.5 ug/L 94 75.120 1,2-Dichloropropane 25.0 23.5 ug/L 94 75.120 1,2-Dichloropropane 25.0 24.9 ug/L 100 76.120 1,4-Dichloropropane 25.0 24.9 ug/L 100 76.120 1,4-Dichloropropane 25.0 22.6 ug/L 11 50.150 1,4-Dichloropropane 25.0 22.6 ug/L 11 50.150 <td< td=""><td>1,1,1-Trichloroethane</td><td>25.0</td><td>23.8</td><td></td><td>ug/L</td><td></td><td>95</td><td>73 - 126</td><td></td></td<>	1,1,1-Trichloroethane	25.0	23.8		ug/L		95	73 - 126	
1,1-Dichloroethane 25.0 23.4 ug/L 93 77.120 1,1-Dichloroethene 25.0 22.9 ug/L 91 66-127 1,2-3-Trichloropropane 25.0 23.3 ug/L 93 68.122 1,2-Dichromo-3-Chloropropane 25.0 20.4 ug/L 82 56.134 1,2-Dichloroethane 25.0 25.3 ug/L 101 77.120 1,2-Dichloroptopane 25.0 23.5 ug/L 94 75.120 1,2-Dichloroptopane 25.0 22.6 ug/L 91 80.120 1,2-Dichloroptopane 25.0 22.6 ug/L 100 76.120 1,2-Dichloroptopane 25.0 22.6 ug/L 101 76.120 1,4-Dichloroptopane 25.0 22.6 ug/L 101 76.120 1,4-Dichloroptopane 25.0 22.6 ug/L 11 50.120 1,4-Dichloroptopane 25.0 22.6 ug/L 11 50.150 2-Butanone 10 12 14 ug/L 115 57.140	1,1,2,2-Tetrachloroethane	25.0	23.6		ug/L		94	76 - 120	
1,1-Dichloroethene 25.0 22.9 ug/L 91 66-127 1,2,3-Trichloropropane 25.0 23.3 ug/L 93 68-122 1,2-Dibromo-3-Chloropropane 25.0 25.0 ug/L 101 77-120 1,2-Dichlorobethane 25.0 25.3 ug/L 192 80-124 1,2-Dichlorobenzene 25.0 23.5 ug/L 194 75-120 1,2-Dichloropropane 25.0 24.9 ug/L 110 76-120 1,4-Dicknoperbarene 25.0 22.6 ug/L 111 50-150 1,4-Dicknoperbarene 25.0 22.6 ug/L 111 50-150 1,4-Dicknoperbarene 500 553 ug/L 111 50-150 1,4-Dicknoperbarene 25.0 22.6 ug/L 111 50-150 1,4-Dicknoperbarene 25.0 22.6 ug/L 111 50-150 1,4-Dicknoperbarene 25.0 25.0 ug/L 111 50-150 2-Hexanone 125 148 ug/L 110 50-125 2-Hex	1,1,2-Trichloroethane	25.0	24.1		ug/L		96	76 - 122	
1,2,3-Trichloropropane 25.0 23.3 ug/L 83 68.122 1,2-Dibromo-3-Chloropropane 25.0 20.4 ug/L 82 56.134 1,2-Dibromoethane 25.0 25.3 ug/L 101 77.120 1,2-Dichlorobenzene 25.0 23.1 ug/L 94 75.120 1,2-Dichloropropane 25.0 23.5 ug/L 100 76.120 1,4-Dichloropopane 25.0 22.6 ug/L 101 75.120 1,4-Dichlorobenzene 25.0 22.6 ug/L 11 50.120 1,4-Dichorobenzene 500 553 ug/L 115 50.120 1,4-Dichorobenzene 125 144 ug/L 115 50.140 2-Butanone (MEK) 125 144 ug/L 115 57.140 2-Hexanone 125 129 ug/L 103 65.127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71.126 Acetone 125 138 ug/L 118 56.142 Benzene 25.	1,1-Dichloroethane	25.0	23.4		ug/L		93	77 - 120	
1,2-Dibromo-3-Chloropropane 25.0 20.4 ug/L 82 56.134 1,2-Dibromoethane 25.0 25.3 ug/L 92 80.124 1,2-Dichlorobenzene 25.0 23.1 ug/L 92 80.124 1,2-Dichloroptorpane 25.0 23.5 ug/L 100 76.120 1,2-Dichloroptorpane 25.0 22.6 ug/L 101 77.120 1,4-Dicknope 500 553 ug/L 111 50.150 2-Butanone (MEK) 125 144 ug/L 115 57.140 2-Hexanone 125 129 ug/L 103 65.127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 103 65.127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 103 65.127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71.125 Acetone 125 148 ug/L 118 56.142 Bromochloromethane 25.0 23.9 ug/L 10 71.124 Bromochloromethane	1,1-Dichloroethene	25.0	22.9		ug/L		91	66 - 127	
1,2-Dibromoethane 25.0 25.3 ug/L 101 77.120 1,2-Dichlorobenzene 25.0 23.1 ug/L 92 80.124 1,2-Dichloroethane 25.0 23.5 ug/L 194 75.120 1,2-Dichloropropane 25.0 24.9 ug/L 191 80.120 1,4-Dioxane 500 553 ug/L 111 50.150 2-Butanone (MEK) 125 144 ug/L 115 57.140 2-Hexanone 125 129 ug/L 103 65.127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71.125 Acetone 125 148 ug/L 105 71.125 Acetone 125 148 ug/L 105 71.124 Benzene 25.0 23.9 ug/L 101 72.130 Bromochloromethane 25.0 25.2 ug/L 101 72.130 Bromodichloromethane 25.0 26.4 ug/L 106 61.132 Bromodichloromethane 25.0 23.3 <td>1,2,3-Trichloropropane</td> <td>25.0</td> <td>23.3</td> <td></td> <td>ug/L</td> <td></td> <td>93</td> <td>68 - 122</td> <td></td>	1,2,3-Trichloropropane	25.0	23.3		ug/L		93	68 - 122	
1,2-Dichlorobenzene 25.0 23.1 ug/L 92 80 - 124 1,2-Dichloroethane 25.0 23.5 ug/L 94 75 - 120 1,2-Dichloroppane 25.0 24.9 ug/L 91 80 - 120 1,4-Dichlorobenzene 500 553 ug/L 111 50 - 150 2-Butanone (MEK) 125 144 ug/L 115 57 - 140 2-Heanone 125 129 ug/L 103 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 148 ug/L 105 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 148 ug/L 106 71 - 125 Benzene 25.0 23.9 ug/L 101 72 - 130 Bromochloromethane 25.0 24.9 ug/L 100 80 - 122 Bromochloromethane <td>1,2-Dibromo-3-Chloropropane</td> <td>25.0</td> <td>20.4</td> <td></td> <td>ug/L</td> <td></td> <td>82</td> <td>56 - 134</td> <td></td>	1,2-Dibromo-3-Chloropropane	25.0	20.4		ug/L		82	56 - 134	
1,2-Dichloroethane 25.0 23.5 ug/L 94 75.120 1,2-Dichloropropane 25.0 24.9 ug/L 100 76.120 1,4-Dichlorobenzene 25.0 22.6 ug/L 91 80.120 1,4-Dioxane 500 553 ug/L 111 50.150 2-Butanone (MEK) 125 144 ug/L 115 57.140 2-Hexanone 125 129 ug/L 103 65.127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71.125 Acetone 125 134 ug/L 105 71.126 Acetone 125 148 ug/L 105 71.124 Benzene 25.0 23.9 ug/L 106 67.122 Bromochloromethane 25.0 25.2 ug/L 101 72.130 Bromoform 25.0 26.4 ug/L 106 61.132 Bromoformethane 25.0 23.3 ug/L	1,2-Dibromoethane	25.0	25.3		ug/L		101	77 - 120	
1,2-Dichloropropane 25.0 24.9 ug/L 100 76 - 120 1,4-Diokane 25.0 22.6 ug/L 91 80 - 120 1,4-Diokane 500 553 ug/L 111 50 - 150 2-Butanone (MEK) 125 144 ug/L 115 57 - 140 2-Hexanone 125 129 ug/L 103 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 148 ug/L 118 56 - 142 Benzene 25.0 23.9 ug/L 96 71 - 124 Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromofichloromethane 25.0 25.2 ug/L 100 80 - 122 Bromofichloromethane 25.0 26.4 ug/L 106 61 - 132 Bromofichloromethane 25.0 23.3 ug/L 33 55 - 144 Carbon disulfide 25.0	1,2-Dichlorobenzene	25.0	23.1		ug/L		92	80 - 124	
1,4-Dichlorobenzene 25.0 22.6 ug/L 91 80 - 120 1,4-Dioxane 500 553 ug/L 111 50 - 150 2-Butanone (MEK) 125 144 ug/L 115 57 - 140 2-Hexanone 125 129 ug/L 103 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 4-Methyl-2-pentanone (MIBK) 125 148 ug/L 118 56 - 142 8-cetone 125 148 ug/L 118 56 - 142 Benzene 25.0 23.9 ug/L 101 72 - 130 Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromomethane 25.0 26.4 ug/L 106 61 - 132 Bromothidide 25.0 23.3 ug/L 93 55 - 144 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorotethane 25.0	1,2-Dichloroethane	25.0	23.5		ug/L		94	75 - 120	
1,4-Dioxane 500 553 ug/L 111 50 - 150 2-Butanone (MEK) 125 144 ug/L 115 57 - 140 2-Hexanone 125 129 ug/L 103 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 4-Methyl-2-pentanone (MIBK) 125 148 ug/L 118 66 - 142 Acetone 125 148 ug/L 118 66 - 142 Benzene 25.0 23.9 ug/L 96 71 - 124 Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromofilomomethane 25.0 24.9 ug/L 106 61 - 132 Bromofilomomethane 25.0 26.4 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 83 55 - 144 Carbon disulfide 25.0 23.7 ug/L 95 72 - 134 Chlorobracene 25.0 23.8 ug/L 95 80 - 120 Chloroform 25.0 <td>1,2-Dichloropropane</td> <td>25.0</td> <td>24.9</td> <td></td> <td>ug/L</td> <td></td> <td>100</td> <td>76 - 120</td> <td></td>	1,2-Dichloropropane	25.0	24.9		ug/L		100	76 - 120	
2-Butanone (MEK) 125 144 ug/L 115 57 - 140 2-Hexanone 125 129 ug/L 103 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 148 ug/L 118 56 - 142 Benzene 25.0 23.9 ug/L 96 71 - 124 Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromodichloromethane 25.0 24.9 ug/L 106 61 - 132 Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromofethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chloroethane 25.0 23.8 ug/L 95 80 - 120 Chloroform 25.0 25.0 21.1 ug/L 85 69 - 136 Chloroformethane <td< td=""><td>1,4-Dichlorobenzene</td><td>25.0</td><td>22.6</td><td></td><td>ug/L</td><td></td><td>91</td><td>80 - 120</td><td></td></td<>	1,4-Dichlorobenzene	25.0	22.6		ug/L		91	80 - 120	
2-Hexanone 125 129 ug/L 103 65 - 127 4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 148 ug/L 118 56 - 142 Benzene 25.0 23.9 ug/L 96 71 - 124 Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromoform 25.0 26.4 ug/L 100 80 - 122 Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromomethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chlorothane 25.0 22.5 ug/L 95 80 - 120 Chlorotorm 25.0 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0	1,4-Dioxane	500	553		ug/L		111	50 - 150	
4-Methyl-2-pentanone (MIBK) 125 131 ug/L 105 71 - 125 Acetone 125 148 ug/L 118 56 - 142 Benzene 25.0 23.9 ug/L 96 71 - 124 Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromodichloromethane 25.0 24.9 ug/L 100 80 - 122 Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromomethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 23.8 ug/L 95 80 - 120 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloroformethane 25.0 24.5 ug/L 96 68 - 124 cis-1,3-Dichloropropene 25.0 <td>2-Butanone (MEK)</td> <td>125</td> <td>144</td> <td></td> <td>ug/L</td> <td></td> <td>115</td> <td>57 ₋ 140</td> <td></td>	2-Butanone (MEK)	125	144		ug/L		115	57 ₋ 140	
Acetone 125 148 ug/L 118 56-142 Benzene 25.0 23.9 ug/L 96 71-124 Bromochloromethane 25.0 25.2 ug/L 101 72-130 Bromodichloromethane 25.0 24.9 ug/L 100 80-122 Bromoform 25.0 26.4 ug/L 106 61-132 Bromomethane 25.0 20.9 ug/L 83 55-144 Carbon disulfide 25.0 23.3 ug/L 93 59-134 Carbon tetrachloride 25.0 23.7 ug/L 95 72-134 Chlorobenzene 25.0 23.8 ug/L 95 80-120 Chlorothane 25.0 21.1 ug/L 85 69-136 Chloroform 25.0 21.5 ug/L 95 73-127 Chloromethane 25.0 21.5 ug/L 98 74-124 cis-1,2-Dichloroptene 25.0 25.4 ug/L 101 74-124 cis-1,3-Dichloropropene 25.0 25.8 u	2-Hexanone	125	129		ug/L		103	65 - 127	
Benzene 25.0 23.9 ug/L 96 71.124 Bromochloromethane 25.0 25.2 ug/L 101 72.130 Bromodichloromethane 25.0 24.9 ug/L 100 80.122 Bromoform 25.0 26.4 ug/L 106 61.132 Bromomethane 25.0 20.9 ug/L 83 55.144 Carbon disulfide 25.0 23.3 ug/L 93 59.134 Carbon tetrachloride 25.0 23.7 ug/L 95 72.134 Chlorobenzene 25.0 23.8 ug/L 95 80.120 Chloroethane 25.0 21.1 ug/L 85 69.136 Chloroform 25.0 22.5 ug/L 90 73.127 Chloromethane 25.0 21.5 ug/L 96 68.124 cis-1,2-Dichloroptopene 25.0 24.5 ug/L 98 74.124 Dibromochloromethane 25.0 25.8 u	4-Methyl-2-pentanone (MIBK)	125	131		ug/L		105	71 - 125	
Bromochloromethane 25.0 25.2 ug/L 101 72 - 130 Bromodichloromethane 25.0 24.9 ug/L 100 80 - 122 Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromomethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 25.4 ug/L 98 74 - 124 cis-1,3-Dichloromethane 25.0 25.8 ug/L 101 74 - 124 Dibromomethane 25.0 25.8 ug/L 98 76 - 127 Ethylbenzene	Acetone	125	148		ug/L		118	56 - 142	
Bromodichloromethane 25.0 24.9 ug/L 100 80 - 122 Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromomethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.8 ug/L 101 74 - 124 Dibromomethane 25.0 25.8 ug/L 98 76 - 127 Ethylbenzene 25.0	Benzene	25.0	23.9		ug/L		96	71 - 124	
Bromoform 25.0 26.4 ug/L 106 61 - 132 Bromomethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Bromochloromethane	25.0	25.2		ug/L		101	72 - 130	
Bromomethane 25.0 20.9 ug/L 83 55 - 144 Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Bromodichloromethane	25.0	24.9		ug/L		100	80 - 122	
Carbon disulfide 25.0 23.3 ug/L 93 59 - 134 Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Bromoform	25.0	26.4		ug/L		106	61 - 132	
Carbon tetrachloride 25.0 23.7 ug/L 95 72 - 134 Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Bromomethane	25.0	20.9		ug/L		83	55 - 144	
Chlorobenzene 25.0 23.8 ug/L 95 80 - 120 Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Carbon disulfide	25.0	23.3		ug/L		93	59 - 134	
Chloroethane 25.0 21.1 ug/L 85 69 - 136 Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Carbon tetrachloride	25.0	23.7		ug/L		95	72 - 134	
Chloroform 25.0 22.5 ug/L 90 73 - 127 Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Chlorobenzene	25.0	23.8		ug/L		95	80 - 120	
Chloromethane 25.0 21.5 ug/L 86 68 - 124 cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Chloroethane	25.0	21.1		ug/L		85	69 - 136	
cis-1,2-Dichloroethene 25.0 24.5 ug/L 98 74 - 124 cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Chloroform	25.0	22.5		ug/L		90	73 - 127	
cis-1,3-Dichloropropene 25.0 25.4 ug/L 101 74 - 124 Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Chloromethane	25.0	21.5		ug/L		86	68 - 124	
Dibromochloromethane 25.0 25.8 ug/L 103 75 - 125 Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	cis-1,2-Dichloroethene	25.0	24.5		ug/L		98	74 - 124	
Dibromomethane 25.0 24.5 ug/L 98 76 - 127 Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	cis-1,3-Dichloropropene	25.0	25.4		ug/L		101	74 - 124	
Ethylbenzene 25.0 23.8 ug/L 95 77 - 123	Dibromochloromethane	25.0	25.8		ug/L		103	75 - 125	
,	Dibromomethane	25.0	24.5		ug/L		98	76 - 127	
lodomethane 25.0 23.4 ug/L 94 78 - 123	Ethylbenzene	25.0	23.8		ug/L		95	77 - 123	
	lodomethane	25.0	23.4		ug/L		94	78 - 123	

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-157980-1

100 100

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-488663/5

Matrix: Water

Analysis Batch: 488663

Client Sample ID: Lab Control Sample

0/ D - -

Prep Type: Total/NA

	Spike	LUS LUS			%Rec.	
Analyte	Added	Result Qua	lifier Unit	D %Rec	Limits	
m,p-Xylene	25.0	24.8	ug/L		76 - 122	
Methylene Chloride	25.0	23.3	ug/L	93	75 - 124	
o-Xylene	25.0	24.3	ug/L	97	76 - 122	
Styrene	25.0	25.3	ug/L	101	80 - 120	
Tetrachloroethene	25.0	23.8	ug/L	95	74 - 122	
Tetrahydrofuran	50.0	56.3	ug/L	113	62 - 132	
Toluene	25.0	23.6	ug/L	94	80 - 122	
trans-1,2-Dichloroethene	25.0	23.3	ug/L	93	73 - 127	
trans-1,3-Dichloropropene	25.0	25.7	ug/L	103	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	17.8	ug/L	71	41 - 131	
Trichloroethene	25.0	23.2	ug/L	93	74 - 123	
Trichlorofluoromethane	25.0	20.3	ug/L	81	62 - 150	
Vinyl acetate	50.0	54.8	ug/L	110	50 - 144	
Vinyl chloride	25.0	21.2	ug/L	85	65 - 133	

Chile

LCS LCS

MB MB

Qualifier

Result

ND

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		77 - 120
4-Bromofluorobenzene (Surr)	110		73 - 120
Toluene-d8 (Surr)	91		80 - 120

Lab Sample ID: MB 480-489143/7

Matrix: Water

1,2-Dibromoethane

Analyte

Analysis Batch: 489143

Client Sample ID: Method Blank

Analyzed

08/28/19 10:46

Prep Type: Total/NA

1,1,1,2-Tetrachloroethane $\overline{\sf ND}$ 5.0 ug/L 08/28/19 10:46 1,1,1-Trichloroethane ND 5.0 08/28/19 10:46 ug/L 1,1,2,2-Tetrachloroethane ND 5.0 ug/L 08/28/19 10:46 1.1.2-Trichloroethane ND 5.0 ug/L 08/28/19 10:46 1,1-Dichloroethane ND 5.0 ug/L 08/28/19 10:46 ug/L 1,1-Dichloroethene ND 5.0 08/28/19 10:46 1,2,3-Trichloropropane ND 5.0 ug/L 08/28/19 10:46 1,2-Dibromo-3-Chloropropane ND 10 ug/L 08/28/19 10:46

5.0

RL

MDL Unit

ug/L

D

Prepared

1,2-Dichlorobenzene ND 5.0 ug/L 08/28/19 10:46 ND 5.0 1,2-Dichloroethane ug/L 08/28/19 10:46 1,2-Dichloropropane ND 5.0 ug/L 08/28/19 10:46 1,4-Dichlorobenzene ND 5.0 ug/L 08/28/19 10:46 1,4-Dioxane ND 50 ug/L 08/28/19 10:46 ND 5.0 ug/L 2-Butanone (MEK) 08/28/19 10:46 2-Hexanone ND 10 ug/L 08/28/19 10:46 4-Methyl-2-pentanone (MIBK) ND 10 ug/L 08/28/19 10:46 ND 5.0 Acetone ug/L 08/28/19 10:46

100 Acetonitrile ND ug/L 08/28/19 10:46 ND Benzene 5.0 ug/L 08/28/19 10:46 Bromochloromethane ND 5.0 ug/L 08/28/19 10:46 Bromodichloromethane ND 5.0 ug/L 08/28/19 10:46 Bromoform ND 5.0 ug/L 08/28/19 10:46

Eurofins TestAmerica, Buffalo

Page 132 of 314

Dil Fac

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

мв мв

MB MB

Lab Sample ID: MB 480-489143/7

Matrix: Water

Analysis Batch: 489143

Client Sample ID: Method Blank

Prep Type: Total/NA

	11.0	1110						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		5.0	ug/L			08/28/19 10:46	1
Carbon disulfide	ND		5.0	ug/L			08/28/19 10:46	1
Carbon tetrachloride	ND		5.0	ug/L			08/28/19 10:46	1
Chlorobenzene	ND		5.0	ug/L			08/28/19 10:46	1
Chloroethane	ND		5.0	ug/L			08/28/19 10:46	1
Chloroform	ND		5.0	ug/L			08/28/19 10:46	1
Chloromethane	ND		5.0	ug/L			08/28/19 10:46	1
cis-1,2-Dichloroethene	ND		5.0	ug/L			08/28/19 10:46	1
cis-1,3-Dichloropropene	ND		5.0	ug/L			08/28/19 10:46	1
Dibromochloromethane	ND		5.0	ug/L			08/28/19 10:46	1
Dibromomethane	ND		5.0	ug/L			08/28/19 10:46	1
Ethylbenzene	ND		5.0	ug/L			08/28/19 10:46	1
Iodomethane	ND		5.0	ug/L			08/28/19 10:46	1
m,p-Xylene	ND		5.0	ug/L			08/28/19 10:46	1
Methylene Chloride	ND		5.0	ug/L			08/28/19 10:46	1
o-Xylene	ND		5.0	ug/L			08/28/19 10:46	1
Styrene	ND		5.0	ug/L			08/28/19 10:46	1
Tetrachloroethene	ND		5.0	ug/L			08/28/19 10:46	1
Tetrahydrofuran	ND		10	ug/L			08/28/19 10:46	1
Toluene	ND		5.0	ug/L			08/28/19 10:46	1
trans-1,2-Dichloroethene	ND		5.0	ug/L			08/28/19 10:46	1
trans-1,3-Dichloropropene	ND		5.0	ug/L			08/28/19 10:46	1
trans-1,4-Dichloro-2-butene	ND		10	ug/L			08/28/19 10:46	1
Trichloroethene	ND		5.0	ug/L			08/28/19 10:46	1
Trichlorofluoromethane	ND		5.0	ug/L			08/28/19 10:46	1
Vinyl acetate	ND		50	ug/L			08/28/19 10:46	1
Vinyl chloride	ND		5.0	ug/L			08/28/19 10:46	1

%Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed 1,2-Dichloroethane-d4 (Surr) 100 77 - 120 08/28/19 10:46 1 4-Bromofluorobenzene (Surr) 102 73 - 120 08/28/19 10:46 1 08/28/19 10:46 Toluene-d8 (Surr) 95 80 - 120

Lab Sample ID: LCS 480-489143/5

Matrix: Water

Analysis Batch: 489143

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	23.7		ug/L		95	80 - 120	
1,1,1-Trichloroethane	25.0	26.0		ug/L		104	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	22.9		ug/L		92	76 - 120	
1,1,2-Trichloroethane	25.0	23.0		ug/L		92	76 - 122	
1,1-Dichloroethane	25.0	24.5		ug/L		98	77 - 120	
1,1-Dichloroethene	25.0	27.3		ug/L		109	66 - 127	
1,2,3-Trichloropropane	25.0	23.7		ug/L		95	68 - 122	
1,2-Dibromo-3-Chloropropane	25.0	22.4		ug/L		90	56 - 134	
1,2-Dibromoethane	25.0	23.5		ug/L		94	77 - 120	
1,2-Dichlorobenzene	25.0	25.0		ug/L		100	80 - 124	

Eurofins TestAmerica, Buffalo

Page 133 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-489143/5

Matrix: Water

Analysis Batch: 489143

Client Sample ID: Lab Control Sample

Chefft Sample ID.	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch. 405143	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	25.0	23.9		ug/L		96	75 - 120	
1,2-Dichloropropane	25.0	24.2		ug/L		97	76 - 120	
1,4-Dichlorobenzene	25.0	24.5		ug/L		98	80 - 120	
1,4-Dioxane	500	408		ug/L		82	50 - 150	
2-Butanone (MEK)	125	115		ug/L		92	57 - 140	
2-Hexanone	125	109		ug/L		87	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	106		ug/L		85	71 - 125	
Acetone	125	121		ug/L		97	56 - 142	
Benzene	25.0	24.5		ug/L		98	71 - 124	
Bromochloromethane	25.0	25.5		ug/L		102	72 - 130	
Bromodichloromethane	25.0	24.7		ug/L		99	80 - 122	
Bromoform	25.0	26.0		ug/L		104	61 - 132	
Bromomethane	25.0	28.5		ug/L		114	55 - 144	
Carbon disulfide	25.0	24.8		ug/L		99	59 - 134	
Carbon tetrachloride	25.0	26.0		ug/L		104	72 - 134	
Chlorobenzene	25.0	22.9		ug/L		92	80 - 120	
Chloroethane	25.0	30.7		ug/L		123	69 - 136	
Chloroform	25.0	24.1		ug/L		96	73 - 127	
Chloromethane	25.0	26.4		ug/L		106	68 - 124	
cis-1,2-Dichloroethene	25.0	24.4		ug/L		98	74 - 124	
cis-1,3-Dichloropropene	25.0	24.3		ug/L		97	74 - 124	
Dibromochloromethane	25.0	24.5		ug/L		98	75 - 125	
Dibromomethane	25.0	24.6		ug/L		98	76 - 127	
Ethylbenzene	25.0	22.9		ug/L		92	77 - 123	
Iodomethane	25.0	26.1		ug/L		104	78 - 123	
m,p-Xylene	25.0	23.1		ug/L		92	76 - 122	
Methylene Chloride	25.0	24.5		ug/L		98	75 - 124	
o-Xylene	25.0	23.3		ug/L		93	76 - 122	
Styrene	25.0	23.2		ug/L		93	80 - 120	
Tetrachloroethene	25.0	24.8		ug/L		99	74 - 122	
Tetrahydrofuran	50.0	42.5		ug/L		85	62 - 132	
Toluene	25.0	22.8		ug/L		91	80 - 122	
trans-1,2-Dichloroethene	25.0	25.3		ug/L		101	73 - 127	
trans-1,3-Dichloropropene	25.0	22.8		ug/L		91	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	20.1		ug/L		80	41 - 131	
Trichloroethene	25.0	25.4		ug/L		102	74 - 123	
Trichlorofluoromethane	25.0	31.0		ug/L		124	62 - 150	
Vinyl acetate	50.0	43.4	J	ug/L		87	50 - 144	
Vinyl chloride	25.0	28.8		ug/L		115	65 - 133	

LCS LCS	
---------	--

Surrogate	%Recovery Qu	ıalifier	Limits
1,2-Dichloroethane-d4 (Surr)	101		77 - 120
4-Bromofluorobenzene (Surr)	103		73 - 120
Toluene-d8 (Surr)	95		80 - 120

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-491215/8

Matrix: Water

Analysis Batch: 491215

Client Sample ID: Method Blank

rep '	Type:	Total/NA	
			5

Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	— —	5.0		ug/L		Trepared	09/10/19 23:27	1
1,1,1-Trichloroethane	ND		5.0		ug/L			09/10/19 23:27	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/10/19 23:27	1
1,1,2-Trichloroethane	ND		5.0		ug/L			09/10/19 23:27	
1,1-Dichloroethane	ND		5.0		ug/L			09/10/19 23:27	1
1,1-Dichloroethene	ND		5.0		ug/L			09/10/19 23:27	1
1,2,3-Trichloropropane	ND		5.0		ug/L			09/10/19 23:27	
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			09/10/19 23:27	1
1,2-Dibromoethane	ND		5.0		ug/L			09/10/19 23:27	1
1,2-Dichlorobenzene	ND		5.0		ug/L			09/10/19 23:27	
1,2-Dichloroethane	ND		5.0		ug/L			09/10/19 23:27	1
1,2-Dichloropropane	ND		5.0		ug/L			09/10/19 23:27	1
1,4-Dichlorobenzene	ND		5.0		ug/L			09/10/19 23:27	
1,4-Dioxane	ND		50		ug/L			09/10/19 23:27	1
2-Butanone (MEK)	ND		5.0		ug/L			09/10/19 23:27	1
2-Hexanone	ND		10		ug/L			09/10/19 23:27	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			09/10/19 23:27	1
Acetone (WIBIT)	ND		5.0		ug/L			09/10/19 23:27	1
Acetonitrile	ND		100		ug/L			09/10/19 23:27	
Benzene	ND		5.0		ug/L			09/10/19 23:27	1
Bromochloromethane	ND		5.0		ug/L			09/10/19 23:27	1
Bromodichloromethane	ND		5.0		ug/L			09/10/19 23:27	
Bromoform	ND		5.0		ug/L			09/10/19 23:27	1
Bromomethane	ND		5.0		ug/L			09/10/19 23:27	1
Carbon disulfide	ND		5.0		ug/L			09/10/19 23:27	
Carbon tetrachloride	ND		5.0		ug/L			09/10/19 23:27	1
Chlorobenzene	ND		5.0		ug/L			09/10/19 23:27	1
Chloroethane	ND		5.0		ug/L			09/10/19 23:27	
Chloroform	ND		5.0		ug/L			09/10/19 23:27	1
Chloromethane	ND		5.0		ug/L			09/10/19 23:27	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/10/19 23:27	
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/10/19 23:27	1
Dibromochloromethane	ND		5.0		ug/L			09/10/19 23:27	1
Dibromomethane	ND		5.0		ug/L			09/10/19 23:27	
Ethylbenzene	ND		5.0		ug/L			09/10/19 23:27	1
lodomethane	ND		5.0		ug/L			09/10/19 23:27	1
m,p-Xylene	ND		5.0		ug/L			09/10/19 23:27	
Methylene Chloride	ND		5.0		ug/L			09/10/19 23:27	1
o-Xylene	ND		5.0		ug/L			09/10/19 23:27	1
Styrene	ND		5.0		ug/L			09/10/19 23:27	
Tetrachloroethene	ND		5.0		ug/L			09/10/19 23:27	1
Tetrahydrofuran	ND		10		ug/L			09/10/19 23:27	1
Toluene	ND		5.0		ug/L			09/10/19 23:27	· · · · · · · · · · · · · · · · · · ·
trans-1,2-Dichloroethene	ND ND		5.0		ug/L ug/L			09/10/19 23:27	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			09/10/19 23:27	1
trans-1,4-Dichloro-2-butene	ND		10		ug/L			09/10/19 23:27	
Trichloroethene	ND ND		5.0		ug/L ug/L			09/10/19 23:27	1
Trichlorofluoromethane	ND		5.0		ug/L			09/10/19 23:27	1

Eurofins TestAmerica, Buffalo

Page 135 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-491215/8

Matrix: Water

Analysis Batch: 491215

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-157980-1

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		50		ug/L			09/10/19 23:27	1
Vinyl chloride	ND		5.0		ug/L			09/10/19 23:27	1
	МВ	MB							

%Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 93 77 - 120 09/10/19 23:27 4-Bromofluorobenzene (Surr) 93 73 - 120 09/10/19 23:27 1 Toluene-d8 (Surr) 89 80 - 120 09/10/19 23:27

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 491215

Matrix: Water

Lab Sample ID: LCS 480-491215/6

Analysis Batch: 491215	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	23.9		ug/L		96	80 - 120	
1,1,1-Trichloroethane	25.0	24.3		ug/L		97	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	22.4		ug/L		90	76 ₋ 120	
1,1,2-Trichloroethane	25.0	22.0		ug/L		88	76 - 122	
1,1-Dichloroethane	25.0	24.2		ug/L		97	77 - 120	
1,1-Dichloroethene	25.0	24.8		ug/L		99	66 - 127	
1,2,3-Trichloropropane	25.0	22.9		ug/L		92	68 - 122	
1,2-Dibromo-3-Chloropropane	25.0	23.8		ug/L		95	56 - 134	
1,2-Dibromoethane	25.0	22.2		ug/L		89	77 - 120	
1,2-Dichlorobenzene	25.0	23.3		ug/L		93	80 - 124	
1,2-Dichloroethane	25.0	22.4		ug/L		90	75 - 120	
1,2-Dichloropropane	25.0	23.7		ug/L		95	76 ₋ 120	
1,4-Dichlorobenzene	25.0	22.6		ug/L		90	80 - 120	
1,4-Dioxane	500	749		ug/L		150	50 ₋ 150	
2-Butanone (MEK)	125	134		ug/L		107	57 ₋ 140	
2-Hexanone	125	121		ug/L		97	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	121		ug/L		97	71 - 125	
Acetone	125	169		ug/L		135	56 ₋ 142	
Benzene	25.0	23.3		ug/L		93	71 - 124	
Bromochloromethane	25.0	25.2		ug/L		101	72 ₋ 130	
Bromodichloromethane	25.0	22.8		ug/L		91	80 - 122	
Bromoform	25.0	23.5		ug/L		94	61 - 132	
Bromomethane	25.0	25.4		ug/L		101	55 - 144	
Carbon disulfide	25.0	24.3		ug/L		97	59 - 134	
Carbon tetrachloride	25.0	25.4		ug/L		102	72 - 134	
Chlorobenzene	25.0	22.4		ug/L		89	80 - 120	
Chloroethane	25.0	25.1		ug/L		100	69 - 136	
Chloroform	25.0	21.9		ug/L		88	73 - 127	
Chloromethane	25.0	25.6		ug/L		102	68 - 124	
cis-1,2-Dichloroethene	25.0	24.0		ug/L		96	74 - 124	
cis-1,3-Dichloropropene	25.0	21.9		ug/L		88	74 - 124	
Dibromochloromethane	25.0	22.4		ug/L		90	75 ₋ 125	
Dibromomethane	25.0	23.5		ug/L		94	76 - 127	
Ethylbenzene	25.0	22.0		ug/L		88	77 - 123	
Iodomethane	25.0	24.6		ug/L		99	78 ₋ 123	

Eurofins TestAmerica, Buffalo

Page 136 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-491215/6

Matrix: Water

Analysis Batch: 491215

Client Sample ID: Lab Control Sample

95

99

105

105

%Rec.

Prep Type: Total/NA

Job ID: 480-157980-1

Added Result Qualifier **Analyte** Unit D %Rec Limits 25.0 22.8 m.p-Xvlene ug/L 91 76 - 122 Methylene Chloride 25.0 24.9 ug/L 100 75 - 124 o-Xylene 25.0 22.8 ug/L 91 76 - 122 Styrene 25.0 93 23 2 ug/L 80 - 120Tetrachloroethene 25.0 96 74 - 122 24.1 ug/L Tetrahydrofuran 62 - 132 50.0 105 52.5 ug/L 87 80 - 122 Toluene 25.0 21.7 ug/L trans-1,2-Dichloroethene 25.0 24.5 ug/L 98 73 - 127 trans-1,3-Dichloropropene 25.0 20.9 ug/L 83 80 - 120trans-1,4-Dichloro-2-butene 25.0 18.9 ug/L 75 41 - 131

LCS LCS

23.8

24.7

52.4

26.1

ug/L

ug/L

ug/L

ug/L

Spike

25.0

25.0

50.0

25.0

LCS LCS

ND

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92	77 - 120
4-Bromofluorobenzene (Surr)	97	73 - 120
Toluene-d8 (Surr)	92	80 - 120

Lab Sample ID: MB 480-491707/9

Matrix: Water

Bromoform

Trichloroethene

Vinyl acetate

Vinyl chloride

Trichlorofluoromethane

Analysis Batch: 491707

Client Sample ID: Method Blank

74 - 123

62 - 150

50 - 144

65 - 133

Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane $\overline{\sf ND}$ 5.0 ug/L 09/12/19 14:53 1,1,1-Trichloroethane ND 5.0 ug/L 09/12/19 14:53 1,1,2,2-Tetrachloroethane ND 5.0 ug/L 09/12/19 14:53 1.1.2-Trichloroethane ND 5.0 ug/L 09/12/19 14:53 1,1-Dichloroethane ND 5.0 ug/L 09/12/19 14:53 1,1-Dichloroethene ND 5.0 ug/L 09/12/19 14:53 ND 5.0 1,2,3-Trichloropropane ug/L 09/12/19 14:53 1,2-Dibromo-3-Chloropropane ND 10 ug/L 09/12/19 14:53 1,2-Dibromoethane ND 5.0 ug/L 09/12/19 14:53 1,2-Dichlorobenzene ND 5.0 ug/L 09/12/19 14:53 ND 5.0 1,2-Dichloroethane ug/L 09/12/19 14:53 1,2-Dichloropropane ND 5.0 09/12/19 14:53 ug/L ND 5.0 1,4-Dichlorobenzene ug/L 09/12/19 14:53 1,4-Dioxane ND 50 ug/L 09/12/19 14:53 ND 5.0 2-Butanone (MEK) ug/L 09/12/19 14:53 2-Hexanone ND 10 ug/L 09/12/19 14:53 4-Methyl-2-pentanone (MIBK) ND 10 ug/L 09/12/19 14:53 Acetone ND 5.0 ug/L 09/12/19 14:53 Acetonitrile ND 100 ug/L 09/12/19 14:53 ND Benzene 5.0 ug/L 09/12/19 14:53 Bromochloromethane ND 5.0 ug/L 09/12/19 14:53 ND 5.0 Bromodichloromethane ug/L 09/12/19 14:53

Eurofins TestAmerica, Buffalo

09/12/19 14:53

Page 137 of 314

5.0

ug/L

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MB MB

Lab Sample ID: MB 480-491707/9

Matrix: Water

Analysis Batch: 491707

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	ND		5.0		ug/L			09/12/19 14:53	1
Carbon disulfide	ND		5.0		ug/L			09/12/19 14:53	1
Carbon tetrachloride	ND		5.0		ug/L			09/12/19 14:53	1
Chlorobenzene	ND		5.0		ug/L			09/12/19 14:53	1
Chloroethane	ND		5.0		ug/L			09/12/19 14:53	1
Chloroform	ND		5.0		ug/L			09/12/19 14:53	1
Chloromethane	ND		5.0		ug/L			09/12/19 14:53	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/12/19 14:53	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/12/19 14:53	1
Dibromochloromethane	ND		5.0		ug/L			09/12/19 14:53	1
Dibromomethane	ND		5.0		ug/L			09/12/19 14:53	1
Ethylbenzene	ND		5.0		ug/L			09/12/19 14:53	1
lodomethane	ND		5.0		ug/L			09/12/19 14:53	1
m,p-Xylene	ND		5.0		ug/L			09/12/19 14:53	1
Methylene Chloride	ND		5.0		ug/L			09/12/19 14:53	1
o-Xylene	ND		5.0		ug/L			09/12/19 14:53	1
Styrene	ND		5.0		ug/L			09/12/19 14:53	1
Tetrachloroethene	ND		5.0		ug/L			09/12/19 14:53	1
Tetrahydrofuran	ND		10		ug/L			09/12/19 14:53	1
Toluene	ND		5.0		ug/L			09/12/19 14:53	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			09/12/19 14:53	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			09/12/19 14:53	1
trans-1,4-Dichloro-2-butene	ND		10		ug/L			09/12/19 14:53	1
Trichloroethene	ND		5.0		ug/L			09/12/19 14:53	1
Trichlorofluoromethane	ND		5.0		ug/L			09/12/19 14:53	1
Vinyl acetate	ND		50		ug/L			09/12/19 14:53	1

MB MB

ND

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		77 - 120		09/12/19 14:53	1
4-Bromofluorobenzene (Surr)	90		73 - 120		09/12/19 14:53	1
Toluene-d8 (Surr)	94		80 - 120		09/12/19 14:53	1

5.0

ug/L

Lab Sample ID: LCS 480-491707/11

Matrix: Water

Vinyl chloride

Analysis Batch: 491707

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

09/12/19 14:53

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	21.9		ug/L		87	80 - 120	
1,1,1-Trichloroethane	25.0	23.2		ug/L		93	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	21.9		ug/L		88	76 - 120	
1,1,2-Trichloroethane	25.0	21.6		ug/L		86	76 - 122	
1,1-Dichloroethane	25.0	22.8		ug/L		91	77 - 120	
1,1-Dichloroethene	25.0	23.3		ug/L		93	66 - 127	
1,2,3-Trichloropropane	25.0	22.2		ug/L		89	68 - 122	
1,2-Dibromo-3-Chloropropane	25.0	22.4		ug/L		89	56 - 134	
1,2-Dibromoethane	25.0	22.2		ug/L		89	77 - 120	
1,2-Dichlorobenzene	25.0	22.0		ug/L		88	80 - 124	

Eurofins TestAmerica, Buffalo

Page 138 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-491707/11

Matrix: Water

Analysis Batch: 491707

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Allalysis Batcii. 491707	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dichloroethane	25.0	20.7		ug/L		83	75 - 120
1,2-Dichloropropane	25.0	23.4		ug/L		94	76 - 120
1,4-Dichlorobenzene	25.0	21.6		ug/L		86	80 - 120
1,4-Dioxane	500	891	*	ug/L		178	50 ₋ 150
2-Butanone (MEK)	125	139		ug/L		112	57 - 140
2-Hexanone	125	131		ug/L		104	65 - 127
4-Methyl-2-pentanone (MIBK)	125	118		ug/L		94	71 - 125
Acetone	125	168		ug/L		134	56 - 142
Benzene	25.0	22.9		ug/L		92	71 - 124
Bromochloromethane	25.0	23.5		ug/L		94	72 - 130
Bromodichloromethane	25.0	22.2		ug/L		89	80 - 122
Bromoform	25.0	22.0		ug/L		88	61 - 132
Bromomethane	25.0	22.1		ug/L		88	55 - 144
Carbon disulfide	25.0	22.6		ug/L		91	59 ₋ 134
Carbon tetrachloride	25.0	24.4		ug/L		98	72 - 134
Chlorobenzene	25.0	22.5		ug/L		90	80 - 120
Chloroethane	25.0	23.2		ug/L		93	69 - 136
Chloroform	25.0	20.7		ug/L		83	73 - 127
Chloromethane	25.0	25.4		ug/L		102	68 - 124
cis-1,2-Dichloroethene	25.0	23.0		ug/L		92	74 - 124
cis-1,3-Dichloropropene	25.0	23.1		ug/L		92	74 - 124
Dibromochloromethane	25.0	22.3		ug/L		89	75 - 125
Dibromomethane	25.0	22.6		ug/L		90	76 ₋ 127
Ethylbenzene	25.0	21.8		ug/L		87	77 - 123
Iodomethane	25.0	23.1		ug/L		92	78 ₋ 123
m,p-Xylene	25.0	22.8		ug/L		91	76 ₋ 122
Methylene Chloride	25.0	22.9		ug/L		92	75 - 124
o-Xylene	25.0	22.0		ug/L		88	76 - 122
Styrene	25.0	23.3		ug/L		93	80 - 120
Tetrachloroethene	25.0	23.1		ug/L		92	74 - 122
Tetrahydrofuran	50.0	52.2		ug/L		104	62 - 132
Toluene	25.0	21.3		ug/L		85	80 - 122
trans-1,2-Dichloroethene	25.0	23.5		ug/L		94	73 - 127
trans-1,3-Dichloropropene	25.0	21.3		ug/L		85	80 - 120
trans-1,4-Dichloro-2-butene	25.0	19.5		ug/L		78	41 - 131
Trichloroethene	25.0	23.6		ug/L		94	74 ₋ 123
Trichlorofluoromethane	25.0	23.9		ug/L		96	62 - 150
Vinyl acetate	50.0	54.3		ug/L		109	50 ₋ 144
Vinyl chloride	25.0	25.1		ug/L		100	65 - 133

LCS LCS	
---------	--

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92	77 - 120
4-Bromofluorobenzene (Surr)	95	73 - 120
Toluene-d8 (Surr)	96	80 - 120

Eurofins TestAmerica, Buffalo

Page 139 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-491769/7

Matrix: Water

Analysis Batch: 491769

lient Sample ID: Method Blank	
Prep Type: Total/NA	

	MB								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		5.0		ug/L			09/12/19 21:38	1
1,1,1-Trichloroethane	ND		5.0		ug/L			09/12/19 21:38	1
1,1,2,2-Tetrachloroethane	ND		5.0		ug/L			09/12/19 21:38	1
1,1,2-Trichloroethane	ND		5.0		ug/L			09/12/19 21:38	1
1,1-Dichloroethane	ND		5.0		ug/L			09/12/19 21:38	1
1,1-Dichloroethene	ND		5.0		ug/L			09/12/19 21:38	1
1,2,3-Trichloropropane	ND		5.0		ug/L			09/12/19 21:38	1
1,2-Dibromo-3-Chloropropane	ND		10		ug/L			09/12/19 21:38	1
1,2-Dibromoethane	ND		5.0		ug/L			09/12/19 21:38	1
1,2-Dichlorobenzene	ND		5.0		ug/L			09/12/19 21:38	1
1,2-Dichloroethane	ND		5.0		ug/L			09/12/19 21:38	1
1,2-Dichloropropane	ND		5.0		ug/L			09/12/19 21:38	1
1,4-Dichlorobenzene	ND		5.0		ug/L			09/12/19 21:38	1
1,4-Dioxane	ND		50		ug/L			09/12/19 21:38	1
2-Butanone (MEK)	ND		5.0		ug/L			09/12/19 21:38	1
2-Hexanone	ND		10		ug/L			09/12/19 21:38	1
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			09/12/19 21:38	1
Acetone	ND		5.0		ug/L			09/12/19 21:38	1
Acetonitrile	ND		100		ug/L			09/12/19 21:38	1
Benzene	ND		5.0		ug/L			09/12/19 21:38	1
Bromochloromethane	ND		5.0		ug/L			09/12/19 21:38	1
Bromodichloromethane	ND		5.0		ug/L			09/12/19 21:38	1
Bromoform	ND		5.0		ug/L			09/12/19 21:38	1
Bromomethane	ND		5.0		ug/L			09/12/19 21:38	1
Carbon disulfide	ND		5.0		ug/L			09/12/19 21:38	1
Carbon tetrachloride	ND		5.0		ug/L			09/12/19 21:38	1
Chlorobenzene	ND		5.0		ug/L			09/12/19 21:38	1
Chloroethane	ND		5.0		ug/L			09/12/19 21:38	1
Chloroform	ND		5.0		ug/L			09/12/19 21:38	1
Chloromethane	ND		5.0		ug/L			09/12/19 21:38	1
cis-1,2-Dichloroethene	ND		5.0		ug/L			09/12/19 21:38	1
cis-1,3-Dichloropropene	ND		5.0		ug/L			09/12/19 21:38	1
Dibromochloromethane	ND		5.0		ug/L			09/12/19 21:38	1
Dibromomethane	ND		5.0		ug/L			09/12/19 21:38	1
Ethylbenzene	ND		5.0		ug/L			09/12/19 21:38	1
Iodomethane	ND		5.0		ug/L			09/12/19 21:38	1
m,p-Xylene	ND		5.0		ug/L			09/12/19 21:38	1
Methylene Chloride	ND		5.0		ug/L			09/12/19 21:38	1
o-Xylene	ND		5.0		ug/L			09/12/19 21:38	1
Styrene	ND		5.0		ug/L			09/12/19 21:38	1
Tetrachloroethene	ND		5.0		ug/L			09/12/19 21:38	1
Tetrahydrofuran	ND		10		ug/L			09/12/19 21:38	1
Toluene	ND		5.0		ug/L			09/12/19 21:38	1
trans-1,2-Dichloroethene	ND		5.0		ug/L			09/12/19 21:38	1
trans-1,3-Dichloropropene	ND		5.0		ug/L			09/12/19 21:38	1
trans-1,4-Dichloro-2-butene	ND		10		ug/L			09/12/19 21:38	· · · · · · · · · · · · · · · · · · ·
Trichloroethene	ND		5.0		ug/L			09/12/19 21:38	1
Trichlorofluoromethane	ND		5.0		ug/L			09/12/19 21:38	1

Eurofins TestAmerica, Buffalo

Page 140 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-491769/7

Matrix: Water

Analysis Batch: 491769

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl acetate	ND		50		ug/L			09/12/19 21:38	1
Vinyl chloride	ND		5.0		ug/L			09/12/19 21:38	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 107 77 - 120 09/12/19 21:38 4-Bromofluorobenzene (Surr) 101 73 - 120 09/12/19 21:38 1 Toluene-d8 (Surr) 94 80 - 120 09/12/19 21:38

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 491769

Matrix: Water

Lab Sample ID: LCS 480-491769/5

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	25.0	23.8		ug/L		95	80 - 120	
1,1,1-Trichloroethane	25.0	25.0		ug/L		100	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	22.2		ug/L		89	76 - 120	
1,1,2-Trichloroethane	25.0	22.6		ug/L		90	76 - 122	
1,1-Dichloroethane	25.0	22.9		ug/L		92	77 - 120	
1,1-Dichloroethene	25.0	26.3		ug/L		105	66 - 127	
1,2,3-Trichloropropane	25.0	23.1		ug/L		92	68 - 122	
1,2-Dibromo-3-Chloropropane	25.0	19.9		ug/L		80	56 - 134	
1,2-Dibromoethane	25.0	23.6		ug/L		94	77 - 120	
1,2-Dichlorobenzene	25.0	23.8		ug/L		95	80 - 124	
1,2-Dichloroethane	25.0	24.1		ug/L		96	75 - 120	
1,2-Dichloropropane	25.0	22.6		ug/L		91	76 - 120	
1,4-Dichlorobenzene	25.0	23.4		ug/L		94	80 - 120	
1,4-Dioxane	500	406		ug/L		81	50 - 150	
2-Butanone (MEK)	125	98.9		ug/L		79	57 ₋ 140	
2-Hexanone	125	99.6		ug/L		80	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	97.8		ug/L		78	71 - 125	
Acetone	125	112		ug/L		90	56 - 142	
Benzene	25.0	23.7		ug/L		95	71 - 124	
Bromochloromethane	25.0	25.4		ug/L		102	72 - 130	
Bromodichloromethane	25.0	23.7		ug/L		95	80 - 122	
Bromoform	25.0	24.2		ug/L		97	61 - 132	
Bromomethane	25.0	29.4		ug/L		118	55 - 144	
Carbon disulfide	25.0	22.5		ug/L		90	59 - 134	
Carbon tetrachloride	25.0	25.0		ug/L		100	72 - 134	
Chlorobenzene	25.0	22.9		ug/L		92	80 - 120	
Chloroethane	25.0	32.0		ug/L		128	69 - 136	
Chloroform	25.0	24.3		ug/L		97	73 - 127	
Chloromethane	25.0	22.6		ug/L		90	68 - 124	
cis-1,2-Dichloroethene	25.0	23.6		ug/L		94	74 - 124	
cis-1,3-Dichloropropene	25.0	22.8		ug/L		91	74 - 124	
Dibromochloromethane	25.0	23.8		ug/L		95	75 - 125	
Dibromomethane	25.0	24.3		ug/L		97	76 - 127	
Ethylbenzene	25.0	23.0		ug/L		92	77 - 123	
lodomethane	25.0	25.1		ug/L		100	78 ₋ 123	

Eurofins TestAmerica, Buffalo

Page 141 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-491769/5

Matrix: Water

Analysis Batch: 491769

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-157980-1

	Spike	LCS L	CS		%Rec.	
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits	
m,p-Xylene	25.0	22.6	ug/L	91	76 - 122	
Methylene Chloride	25.0	23.6	ug/L	94	75 - 124	
o-Xylene	25.0	23.2	ug/L	93	76 - 122	
Styrene	25.0	22.9	ug/L	92	80 - 120	
Tetrachloroethene	25.0	24.8	ug/L	99	74 - 122	
Tetrahydrofuran	50.0	37.1	ug/L	74	62 - 132	
Toluene	25.0	22.4	ug/L	90	80 - 122	
trans-1,2-Dichloroethene	25.0	24.2	ug/L	97	73 - 127	
trans-1,3-Dichloropropene	25.0	22.0	ug/L	88	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	17.8	ug/L	71	41 - 131	
Trichloroethene	25.0	24.9	ug/L	100	74 - 123	
Trichlorofluoromethane	25.0	31.5	ug/L	126	62 - 150	
Vinyl acetate	50.0	44.3 J	ug/L	89	50 - 144	
Vinyl chloride	25.0	25.4	ug/L	102	65 - 133	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	107	77 - 120
4-Bromofluorobenzene (Surr)	106	73 - 120
Toluene-d8 (Surr)	101	80 - 120

Lab Sample ID: MB 480-492966/7

Matrix: Water

Analysis Batch: 492966

Client Sample ID: Method Blank

Prep Type: Total/NA

7 mary 515 2 atom 152555	MB	MB						
Analyte	Result	Qualifier RI	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	5.0	<u> </u>	ug/L			09/19/19 22:04	1
1,1,1-Trichloroethane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,1,2,2-Tetrachloroethane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,1,2-Trichloroethane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,1-Dichloroethane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,1-Dichloroethene	ND	5.0	0	ug/L			09/19/19 22:04	1
1,2,3-Trichloropropane	ND	5.0	j	ug/L			09/19/19 22:04	1
1,2-Dibromo-3-Chloropropane	ND	10	0	ug/L			09/19/19 22:04	1
1,2-Dibromoethane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,2-Dichlorobenzene	ND	5.0	O	ug/L			09/19/19 22:04	1
1,2-Dichloroethane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,2-Dichloropropane	ND	5.0	0	ug/L			09/19/19 22:04	1
1,4-Dichlorobenzene	ND	5.0	O	ug/L			09/19/19 22:04	1
1,4-Dioxane	ND	5	0	ug/L			09/19/19 22:04	1
2-Butanone (MEK)	ND	5.0	0	ug/L			09/19/19 22:04	1
2-Hexanone	ND	10	<u>)</u>	ug/L			09/19/19 22:04	1
4-Methyl-2-pentanone (MIBK)	ND	10	0	ug/L			09/19/19 22:04	1
Acetone	ND	5.0	0	ug/L			09/19/19 22:04	1
Acetonitrile	ND	10)	ug/L			09/19/19 22:04	1
Benzene	ND	5.0	0	ug/L			09/19/19 22:04	1
Bromochloromethane	ND	5.0	0	ug/L			09/19/19 22:04	1
Bromodichloromethane	ND	5.0	j	ug/L			09/19/19 22:04	1
Bromoform	ND	5.0	0	ug/L			09/19/19 22:04	1

Eurofins TestAmerica, Buffalo

Page 142 of 314

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-492966/7

Matrix: Water

Analysis Batch: 492966

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch. 402000	MB N	ИΒ					
Analyte	Result Q	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Bromomethane	ND		5.0	ug/L		09/19/19 22:04	1
Carbon disulfide	ND		5.0	ug/L		09/19/19 22:04	1
Carbon tetrachloride	ND		5.0	ug/L		09/19/19 22:04	1
Chlorobenzene	ND		5.0	ug/L		09/19/19 22:04	1
Chloroethane	ND		5.0	ug/L		09/19/19 22:04	1
Chloroform	ND		5.0	ug/L		09/19/19 22:04	1
Chloromethane	ND		5.0	ug/L		09/19/19 22:04	1
cis-1,2-Dichloroethene	ND		5.0	ug/L		09/19/19 22:04	1
cis-1,3-Dichloropropene	ND		5.0	ug/L		09/19/19 22:04	1
Dibromochloromethane	ND		5.0	ug/L		09/19/19 22:04	1
Dibromomethane	ND		5.0	ug/L		09/19/19 22:04	1
Ethylbenzene	ND		5.0	ug/L		09/19/19 22:04	1
Iodomethane	ND		5.0	ug/L		09/19/19 22:04	1
m,p-Xylene	ND		5.0	ug/L		09/19/19 22:04	1
Methylene Chloride	ND		5.0	ug/L		09/19/19 22:04	1
o-Xylene	ND		5.0	ug/L		09/19/19 22:04	1
Styrene	ND		5.0	ug/L		09/19/19 22:04	1
Tetrachloroethene	ND		5.0	ug/L		09/19/19 22:04	1
Tetrahydrofuran	ND		10	ug/L		09/19/19 22:04	1
Toluene	ND		5.0	ug/L		09/19/19 22:04	1
trans-1,2-Dichloroethene	ND		5.0	ug/L		09/19/19 22:04	1
trans-1,3-Dichloropropene	ND		5.0	ug/L		09/19/19 22:04	1
trans-1,4-Dichloro-2-butene	ND		10	ug/L		09/19/19 22:04	1
Trichloroethene	ND		5.0	ug/L		09/19/19 22:04	1
Trichlorofluoromethane	ND		5.0	ug/L		09/19/19 22:04	1
Vinyl acetate	ND		50	ug/L		09/19/19 22:04	1
Vinyl chloride	ND		5.0	ug/L		09/19/19 22:04	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		77 - 120		09/19/19 22:04	1
4-Bromofluorobenzene (Surr)	102		73 - 120		09/19/19 22:04	1
Toluene-d8 (Surr)	104		80 - 120		09/19/19 22:04	1

Lab Sample ID: LCS 480-492966/5

Matrix: Water

Analysis Batch: 492966

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
25.0	27.2		ug/L		109	80 - 120	
25.0	27.1		ug/L		108	73 - 126	
25.0	24.2		ug/L		97	76 - 120	
25.0	25.0		ug/L		100	76 - 122	
25.0	27.4		ug/L		110	77 - 120	
25.0	26.2		ug/L		105	66 - 127	
25.0	24.9		ug/L		100	68 - 122	
25.0	19.6		ug/L		78	56 - 134	
25.0	25.2		ug/L		101	77 - 120	
25.0	25.2		ug/L		101	80 - 124	
	Added 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0	Added Result 25.0 27.2 25.0 27.1 25.0 24.2 25.0 25.0 25.0 27.4 25.0 26.2 25.0 24.9 25.0 19.6 25.0 25.2	Added Result Qualifier 25.0 27.2 25.0 27.1 25.0 24.2 25.0 25.0 25.0 27.4 25.0 26.2 25.0 24.9 25.0 19.6 25.0 25.2	Added Result Qualifier Unit 25.0 27.2 ug/L 25.0 27.1 ug/L 25.0 24.2 ug/L 25.0 25.0 ug/L 25.0 27.4 ug/L 25.0 26.2 ug/L 25.0 24.9 ug/L 25.0 19.6 ug/L 25.0 25.2 ug/L	Added Result Qualifier Unit D 25.0 27.2 ug/L ug/L 25.0 27.1 ug/L ug/L 25.0 24.2 ug/L ug/L 25.0 25.0 ug/L ug/L 25.0 26.2 ug/L 25.0 24.9 ug/L 25.0 19.6 ug/L 25.0 25.2 ug/L	Added Result Qualifier Unit D %Rec 25.0 27.2 ug/L 109 25.0 27.1 ug/L 108 25.0 24.2 ug/L 97 25.0 25.0 ug/L 100 25.0 27.4 ug/L 110 25.0 26.2 ug/L 105 25.0 24.9 ug/L 100 25.0 19.6 ug/L 78 25.0 25.2 ug/L 101	Added Result Qualifier Unit D %Rec Limits 25.0 27.2 ug/L 109 80 - 120 25.0 27.1 ug/L 108 73 - 126 25.0 24.2 ug/L 97 76 - 120 25.0 25.0 ug/L 100 76 - 122 25.0 27.4 ug/L 110 77 - 120 25.0 26.2 ug/L 105 66 - 127 25.0 24.9 ug/L 100 68 - 122 25.0 19.6 ug/L 78 56 - 134 25.0 25.2 ug/L 101 77 - 120

Eurofins TestAmerica, Buffalo

Page 143 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-492966/5

Matrix: Water

Analysis Batch: 492966

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Balcii. 492900	Spike	1.00	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	25.0	26.6		ug/L		107	75 - 120	— —
1,2-Dichloropropane	25.0	27.3		ug/L		109	76 - 120	
1,4-Dichlorobenzene	25.0	25.3		ug/L		101	80 - 120	
1,4-Dioxane	500	486		ug/L		97	50 ₋ 150	
2-Butanone (MEK)	125	152		ug/L		122	57 - 140	
2-Hexanone	125	126		ug/L		101	65 - 127	
4-Methyl-2-pentanone (MIBK)	125	128		ug/L		103	71 - 125	
Acetone	125	142		ug/L		114	56 ₋ 142	
Benzene	25.0	26.5		ug/L		106	71 - 124	
Bromochloromethane	25.0	27.7		ug/L		111	72 - 130	
Bromodichloromethane	25.0	26.2		ug/L		105	80 - 122	
Bromoform	25.0	24.7		ug/L		99	61 - 132	
Bromomethane	25.0	23.7		ug/L		95	55 - 144	
Carbon disulfide	25.0	27.0		ug/L		108	59 ₋ 134	
Carbon tetrachloride	25.0	28.0		ug/L		112	72 - 134	
Chlorobenzene	25.0	25.9		ug/L		104	80 - 120	
Chloroethane	25.0	25.4		ug/L		102	69 - 136	
Chloroform	25.0	25.6		ug/L		102	73 - 127	
Chloromethane	25.0	24.8		ug/L		99	68 - 124	
cis-1,2-Dichloroethene	25.0	26.2		ug/L		105	74 - 124	
cis-1,3-Dichloropropene	25.0	25.0		ug/L		100	74 - 124	
Dibromochloromethane	25.0	26.3		ug/L		105	75 - 125	
Dibromomethane	25.0	27.1		ug/L		109	76 - 127	
Ethylbenzene	25.0	26.0		ug/L		104	77 - 123	
lodomethane	25.0	27.9		ug/L		112	78 ₋ 123	
m,p-Xylene	25.0	25.5		ug/L		102	76 - 122	
Methylene Chloride	25.0	26.5		ug/L		106	75 - 124	
o-Xylene	25.0	25.8		ug/L		103	76 - 122	
Styrene	25.0	25.6		ug/L		102	80 - 120	
Tetrachloroethene	25.0	27.0		ug/L		108	74 - 122	
Tetrahydrofuran	50.0	55.5		ug/L		111	62 - 132	
Toluene	25.0	26.4		ug/L		106	80 - 122	
trans-1,2-Dichloroethene	25.0	26.7		ug/L		107	73 - 127	
trans-1,3-Dichloropropene	25.0	26.3		ug/L		105	80 - 120	
trans-1,4-Dichloro-2-butene	25.0	15.7		ug/L		63	41 - 131	
Trichloroethene	25.0	27.3		ug/L		109	74 - 123	
Trichlorofluoromethane	25.0	27.0		ug/L		108	62 - 150	
Vinyl acetate	50.0	53.5		ug/L		107	50 - 144	
Vinyl chloride	25.0	25.8		ug/L		103	65 - 133	

CS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	106		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Toluene-d8 (Surr)	103		80 - 120

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 537 (modified) - Fluorinated Alkyl Substances

MR MR

100

98

93

111

102

99

92

100

107

113

Lab Sample	ID: MB	320-32269	6/1-A
------------	--------	-----------	-------

Matrix: Water

13C2 PFUnA

13C2 PFDoA

13C2 PFTeDA

1802 PFHxS

13C4 PFOS

13C8 FOSA

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

M2-8:2 FTS

Analysis Batch: 323243

Client Sample ID: Method Blank
Prep Type: Total/NA
B B (000000

Prep Batch: 322696

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorooctanoic acid (PFOA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorononanoic acid (PFNA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorodecanoic acid (PFDA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorododecanoic acid (PFDoA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		09/12/19 07:48	09/13/19 20:42	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20		ng/L		09/12/19 07:48	09/13/19 20:42	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20		ng/L		09/12/19 07:48	09/13/19 20:42	1
6:2 FTS	ND		20		ng/L		09/12/19 07:48	09/13/19 20:42	1
8:2 FTS	ND		20		ng/L		09/12/19 07:48	09/13/19 20:42	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	101		25 - 150				09/12/19 07:48	09/13/19 20:42	1
13C5-PFPeA DNU	104		25 - 150				09/12/19 07:48	09/13/19 20:42	1
13C2 PFHxA	101		25 - 150				09/12/19 07:48	09/13/19 20:42	1
13C4 PFHpA	105		25 - 150				09/12/19 07:48	09/13/19 20:42	1
13C4 PFOA	103		25 - 150				09/12/19 07:48	09/13/19 20:42	1
13C5 PFNA	103		25 - 150				09/12/19 07:48	09/13/19 20:42	1
13C2 PFDA	101		25 - 150				09/12/19 07:48	09/13/19 20:42	1

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

Page 145 of 314

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

09/12/19 07:48 09/13/19 20:42

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

13C4 PFOS

13C8 FOSA

d3-NMeFOSAA

d5-NEtFOSAA

M2-6:2 FTS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-3 Matrix: Water	·							: Lab Control Samp Prep Type: Total/N
Analysis Batch: 323243								Prep Batch: 3226
•			Spike	LCS	LCS			%Rec.
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits
Perfluorobutanoic acid (PFBA)			40.0	41.6		ng/L		70 - 130
Perfluoropentanoic acid (PFPeA)			40.0	39.2		ng/L	98	66 - 126
Perfluorohexanoic acid (PFHxA)			40.0	41.6		ng/L	104	66 - 126
Perfluoroheptanoic acid (PFHpA)			40.0	40.6		ng/L	102	66 - 126
Perfluorooctanoic acid (PFOA)			40.0	35.6		ng/L	89	64 - 124
Perfluorononanoic acid (PFNA)			40.0	42.2		ng/L	106	68 - 128
Perfluorodecanoic acid (PFDA)			40.0	36.6		ng/L	92	69 - 129
Perfluoroundecanoic acid (PFUnA)			40.0	38.6		ng/L	97	60 - 120
Perfluorododecanoic acid (PFDoA)			40.0	38.2		ng/L	96	71 - 131
Perfluorotridecanoic acid (PFTriA)			40.0	38.8		ng/L	97	72 - 132
Perfluorotetradecanoic acid (PFTeA)			40.0	38.2		ng/L	96	68 - 128
Perfluorobutanesulfonic acid (PFBS)			35.4	34.3		ng/L	97	73 - 133
Perfluorohexanesulfonic acid (PFHxS)			36.4	32.6		ng/L	90	63 - 123
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	38.6		ng/L	101	68 - 128
Perfluorooctanesulfonic acid (PFOS)			37.1	36.9		ng/L	99	67 - 127
Perfluorodecanesulfonic acid (PFDS)			38.6	37.0		ng/L	96	68 - 128
Perfluorooctanesulfonamide (FOSA)			40.0	38.2		ng/L	95	70 - 130
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	44.5		ng/L	111	67 - 127
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	40.6		ng/L	102	65 - 125
6:2 FTS			37.9	43.7		ng/L	115	66 - 126
8:2 FTS			38.3	40.1		ng/L	105	67 ₋ 127
	LCS	LCS						
Isotope Dilution	%Recovery	Qualifier	Limits					
13C4 PFBA	105		25 - 150					
13C5-PFPeA DNU	106		25 - 150					
13C2 PFHxA	102		25 - 150					
13C4 PFHpA	108		25 - 150					
13C4 PFOA	109		25 - 150					
13C5 PFNA	100		25 - 150					
13C2 PFDA	107		25 - 150					
13C2 PFUnA	104		25 - 150					
13C2 PFDoA	105		25 - 150					
13C2 PFTeDA	103		25 - 150					
1802 PFHxS	116		25 ₋ 150					

Eurofins TestAmerica, Buffalo

Page 146 of 314

25 - 150

25 - 150

25 - 150

25 - 150

25 - 150

108

103

98

97

104

2

3

4

6

8

10

12

13

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-322696/2-A

Lab Sample ID: LCSD 320-322696/3-A

Matrix: Water

Matrix: Water

Analysis Batch: 323243

LCS LCS

 Isotope Dilution
 %Recovery
 Qualifier
 Limits

 M2-8:2 FTS
 112
 25 - 150

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 322696

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 322696

Analysis Batch: 323243							Prep Ba	itch: 32	
	Spike		LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	40.0	41.4		ng/L		103	70 - 130	0	30
Perfluoropentanoic acid (PFPeA)	40.0	40.1		ng/L		100	66 - 126	2	30
Perfluorohexanoic acid (PFHxA)	40.0	42.9		ng/L		107	66 - 126	3	30
Perfluoroheptanoic acid (PFHpA)	40.0	39.5		ng/L		99	66 - 126	3	30
Perfluorooctanoic acid (PFOA)	40.0	37.9		ng/L		95	64 - 124	6	30
Perfluorononanoic acid (PFNA)	40.0	41.8		ng/L		104	68 - 128	1	30
Perfluorodecanoic acid (PFDA)	40.0	44.4		ng/L		111	69 - 129	19	30
Perfluoroundecanoic acid (PFUnA)	40.0	38.2		ng/L		96	60 - 120	1	30
Perfluorododecanoic acid (PFDoA)	40.0	43.6		ng/L		109	71 - 131	13	30
Perfluorotridecanoic acid (PFTriA)	40.0	36.5		ng/L		91	72 - 132	6	30
Perfluorotetradecanoic acid (PFTeA)	40.0	40.4		ng/L		101	68 - 128	5	30
Perfluorobutanesulfonic acid (PFBS)	35.4	35.1		ng/L		99	73 - 133	2	30
Perfluorohexanesulfonic acid (PFHxS)	36.4	34.9		ng/L		96	63 - 123	7	30
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	41.2		ng/L		108	68 - 128	6	30
Perfluorooctanesulfonic acid (PFOS)	37.1	38.2		ng/L		103	67 - 127	4	30
Perfluorodecanesulfonic acid (PFDS)	38.6	38.5		ng/L		100	68 - 128	4	30
Perfluorooctanesulfonamide (FOSA)	40.0	39.1		ng/L		98	70 - 130	2	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	43.4		ng/L		108	67 - 127	3	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	41.1		ng/L		103	65 - 125	1	30
6:2 FTS	37.9	44.3		ng/L		117	66 - 126	1	30
8:2 FTS	38.3	39.9		ng/L		104	67 - 127	0	30

LCSD LCSD

™Recovery	Quaimer	Limits
102		25 - 150
105		25 - 150
102		25 - 150
108		25 - 150
107		25 - 150
104		25 - 150
98		25 - 150
97		25 - 150
97		25 - 150
98		25 - 150
	102 105 102 108 107 104 98 97	105 102 108 107 104 98 97

Eurofins TestAmerica, Buffalo

Page 147 of 314

3

<u>+</u>

7

9

11

13

15

17

10

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCSD 320-322696/3-A **Matrix: Water**

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA **Prep Batch: 322696**

LCSD LCSD Isotope Dilution %Recovery Qualifier Limits 1802 PFHxS 115 25 - 150 13C4 PFOS 103 25 - 150 13C8 FOSA 100 25 - 150 d3-NMeFOSAA 97 25 - 150 d5-NEtFOSAA 95 25 - 150 105 25 - 150 M2-6:2 FTS M2-8:2 FTS 114 25 - 150

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-488397/1-A

Matrix: Water Analysis Batch: 488652

Analysis Batch: 323243

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 488397**

Analysis batch: 400052							Prep Batch:	400397
Analyte		MB Qualifier RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	0.20		mg/L		08/23/19 08:49		1
Antimony	ND	0.015		mg/L		08/23/19 08:49		1
Arsenic	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:00	1
Barium	ND	0.20		mg/L		08/23/19 08:49	08/23/19 18:00	1
Beryllium	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 18:00	1
Boron	ND	0.020		mg/L		08/23/19 08:49	08/23/19 18:00	1
Cadmium	ND	0.0050		mg/L		08/23/19 08:49	08/23/19 18:00	1
Calcium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 18:00	1
Chromium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:00	1
Cobalt	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:00	1
Copper	ND	0.025		mg/L		08/23/19 08:49	08/23/19 18:00	1
Iron	ND	0.10		mg/L		08/23/19 08:49	08/23/19 18:00	1
Lead	ND	0.0030		mg/L		08/23/19 08:49	08/23/19 18:00	1
Magnesium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 18:00	1
Manganese	ND	0.015		mg/L		08/23/19 08:49	08/23/19 18:00	1
Nickel	ND	0.040		mg/L		08/23/19 08:49	08/23/19 18:00	1
Potassium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 18:00	1
Silver	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:00	1
Sodium	ND	5.0		mg/L		08/23/19 08:49	08/23/19 18:00	1
Thallium	ND	0.010		mg/L		08/23/19 08:49	08/23/19 18:00	1
Vanadium	ND	0.050		mg/L		08/23/19 08:49	08/23/19 18:00	1
Zinc	ND	0.020		mg/L		08/23/19 08:49	08/23/19 18:00	1

Lab Sample ID: LCS 480-488397/2-A

Matrix: Water

Analysis Batch: 488652

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 488397**

Spike	LCS	LCS				%Rec.	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
10.0	9.31		mg/L		93	80 - 120	
0.200	0.210		mg/L		105	80 - 120	
0.200	0.192		mg/L		96	80 - 120	
0.200	0.199	J	mg/L		100	80 - 120	
0.200	0.192		mg/L		96	80 - 120	
0.200	0.194		mg/L		97	80 - 120	
	Added 10.0 0.200 0.200 0.200 0.200 0.200	Added Result 10.0 9.31 0.200 0.210 0.200 0.192 0.200 0.199 0.200 0.192	Added Result Qualifier 10.0 9.31 0.200 0.210 0.200 0.192 0.200 0.199 0.200 0.192	Added Result 9.31 Qualifier mg/L mg/L Unit mg/L 0.200 0.210 mg/L 0.200 0.192 mg/L 0.200 0.199 J mg/L 0.200 0.192 mg/L	Added Result 9.31 Qualifier mg/L Unit mg/L D 0.200 0.210 mg/L mg/L 0.200 0.192 mg/L mg/L 0.200 0.199 J mg/L 0.200 0.192 mg/L mg/L	Added Result 10.0 Qualifier 9.31 Unit mg/L mg/L mg/L mg/L D mg/L mg/L 93 0.200 0.210 mg/L mg/L 105 0.200 0.192 mg/L mg/L 96 0.200 0.199 J mg/L 100 0.200 0.192 mg/L 96	Spike LCS LCS %Rec. Added Result Qualifier Unit D %Rec Limits 10.0 9.31 mg/L 93 80 - 120 0.200 0.210 mg/L 105 80 - 120 0.200 0.192 mg/L 96 80 - 120 0.200 0.199 J mg/L 100 80 - 120 0.200 0.192 mg/L 96 80 - 120

Eurofins TestAmerica, Buffalo

Page 148 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-488397/2-A

Matrix: Water

Analysis Batch: 488652

Client Sample ID: Lab Control Sample

80 - 120

Prep Type: Total/NA

Prep Batch: 488397

7 man y 0.0 2 mom 100002	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cadmium	0.200	0.191		mg/L		96	80 - 120
Calcium	10.0	9.50		mg/L		95	80 - 120
Chromium	0.200	0.195		mg/L		97	80 - 120
Cobalt	0.200	0.183		mg/L		91	80 - 120
Copper	0.200	0.185		mg/L		93	80 - 120
Iron	10.0	9.57		mg/L		96	80 - 120
Lead	0.200	0.184		mg/L		92	80 - 120
Magnesium	10.0	9.68		mg/L		97	80 - 120
Manganese	0.200	0.192		mg/L		96	80 - 120
Nickel	0.200	0.191		mg/L		95	80 - 120
Potassium	10.0	8.93		mg/L		89	80 - 120
Silver	0.0500	0.0516		mg/L		103	80 - 120
Sodium	10.0	8.99		mg/L		90	80 - 120
Thallium	0.200	0.187		mg/L		93	80 - 120
Vanadium	0.200	0.188		mg/L		94	80 - 120

0.200

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Zinc

Client Sample ID: MW-17 Prep Type: Total/NA

mg/L

0.199

Analysis Batch: 488652	Sample	Sample	Spike	MS	MS				Prep Batch: 48839 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	ND		10.0	9.71		mg/L		97	75 - 125
Antimony	ND		0.200	0.214		mg/L		107	75 ₋ 125
Arsenic	ND		0.200	0.195		mg/L		98	75 - 125
Barium	ND		0.200	0.292		mg/L		103	75 ₋ 125
Beryllium	ND		0.200	0.196		mg/L		98	75 - 125
Boron	0.029		0.200	0.229		mg/L		100	75 ₋ 125
Cadmium	ND		0.200	0.196		mg/L		98	75 - 125
Calcium	121		10.0	128.6	4	mg/L		73	75 - 125
Chromium	ND		0.200	0.196		mg/L		98	75 ₋ 125
Cobalt	ND		0.200	0.199		mg/L		93	75 - 125
Copper	ND		0.200	0.192		mg/L		96	75 ₋ 125
Iron	1.0		10.0	10.58		mg/L		95	75 ₋ 125
Lead	ND		0.200	0.192		mg/L		96	75 - 125
Magnesium	39.2		10.0	48.67		mg/L		95	75 ₋ 125
Manganese	0.084		0.200	0.272		mg/L		94	75 ₋ 125
Nickel	ND		0.200	0.193		mg/L		96	75 - 125
Potassium	ND		10.0	10.94		mg/L		95	75 ₋ 125
Silver	ND		0.0500	0.0537		mg/L		107	75 - 125
Sodium	33.1		10.0	41.69		mg/L		86	75 - 125
Thallium	ND		0.200	0.195		mg/L		98	75 - 125
Vanadium	ND		0.200	0.191		mg/L		96	75 - 125
Zinc	ND		0.200	0.200		mg/L		99	75 - 125

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-157980-4 MSD Client Sample ID: MW-17 **Matrix: Ground Water** Prep Type: Total/NA Analysis Batch: 488652 **Prep Batch: 488397** Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit ND 10.0 96 75 - 125 20 Aluminum 9.63 mg/L Antimony ND 0.200 0.212 mg/L 106 75 - 125 20 Arsenic ND 0.200 0.196 mg/L 98 75 - 125 20 Barium ND 0.200 0.288 mg/L 100 75 - 12520 Beryllium ND 0.200 0.192 mg/L 96 75 - 125 2 20 Boron 0.029 0.200 0.224 mg/L 98 75 - 125 2 20 ND 0.193 Cadmium 0.200 mg/L 96 75 - 125 2 20 50 2 20 Calcium 121 10.0 126.3 4 mg/L 75 - 125 ND 0.195 97 20 Chromium 0.200 mg/L 75 - 125 1 Cobalt ND 0.200 0.196 mg/L 91 75 - 125 2 20 Copper ND 0.200 0.187 94 75 - 125 2 20 mg/L Iron 1.0 10.0 10.40 mg/L 94 75 - 125 2 20 Lead ND 0.200 0.189 mg/L 95 75 - 125 20 20 39.2 10.0 47.83 86 75 - 125 2 Magnesium mg/L Manganese 0.084 0.200 0.267 mg/L 91 75 - 125 2 20 Nickel ND 0.200 0.189 95 75 - 125 2 20 mg/L Potassium ND 10.0 10.69 mg/L 93 75 - 125 2 20 Silver ND 0.0500 0.0525 mg/L 105 75 - 125 2 20 Sodium mg/L 76 2 20 33.1 10.0 40.71 75 - 125 Thallium 20 ND 0.200 0.191 mg/L 96 75 - 125 2 Vanadium ND 0.200 0.187 94 75 - 125 20 mg/L Zinc ND 0.200 0.197 mg/L 75 - 125

Lab Sample ID: MB 480-488943/1-A

Matrix: Water

Analysis Batch: 489194

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 488943

Analysis Batch: 489194								Prep Batch:	488943
Analyte		MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND	Qualifier	0.20				08/27/19 08:48		
					mg/L				
Antimony	ND		0.015		mg/L		08/27/19 08:48		1
Arsenic	ND		0.010		mg/L		08/27/19 08:48	08/27/19 15:46	1
Barium	ND		0.20		mg/L		08/27/19 08:48	08/27/19 15:46	1
Beryllium	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 15:46	1
Boron	ND		0.020		mg/L		08/27/19 08:48	08/27/19 15:46	1
Cadmium	ND		0.0050		mg/L		08/27/19 08:48	08/27/19 15:46	1
Calcium	ND		5.0		mg/L		08/27/19 08:48	08/27/19 15:46	1
Chromium	ND		0.010		mg/L		08/27/19 08:48	08/27/19 15:46	1
Cobalt	ND		0.050		mg/L		08/27/19 08:48	08/27/19 15:46	1
Copper	ND		0.025		mg/L		08/27/19 08:48	08/27/19 15:46	1
Iron	ND		0.10		mg/L		08/27/19 08:48	08/27/19 15:46	1
Lead	ND		0.0030		mg/L		08/27/19 08:48	08/27/19 15:46	1
Magnesium	ND		5.0		mg/L		08/27/19 08:48	08/27/19 15:46	1
Manganese	ND		0.015		mg/L		08/27/19 08:48	08/27/19 15:46	1
Nickel	ND		0.040		mg/L		08/27/19 08:48	08/27/19 15:46	1
Potassium	ND		5.0		mg/L		08/27/19 08:48	08/27/19 15:46	1
Silver	ND		0.010		mg/L		08/27/19 08:48	08/27/19 15:46	1
Sodium	ND		5.0		mg/L		08/27/19 08:48	08/27/19 15:46	1
Thallium	ND		0.010		mg/L		08/27/19 08:48	08/27/19 15:46	1
Vanadium	ND		0.050		mg/L		08/27/19 08:48	08/27/19 15:46	1

Eurofins TestAmerica, Buffalo

Page 150 of 314

2

3

4

7

9

11

13

1 T

16

1 9

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-488943/1-A **Matrix: Water**

Analysis Batch: 489194

MB MB

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 488943

Result Qualifier MDL Unit **Prepared** Analyzed Dil Fac Analyte RL Zinc ND 0.020 mg/L

Lab Sample ID: LCS 480-488943/2-A **Client Sample ID: Lab Control Sample Matrix: Water**

Prep Type: Total/NA Prep Batch: 488943 Analysis Batch: 489194

Analysis Batch: 489194	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	9.45		mg/L		95	80 - 120
Antimony	0.200	0.214		mg/L		107	80 - 120
Arsenic	0.200	0.200		mg/L		100	80 - 120
Barium	0.200	0.206		mg/L		103	80 - 120
Beryllium	0.200	0.201		mg/L		101	80 - 120
Boron	0.200	0.199		mg/L		100	80 - 120
Cadmium	0.200	0.196		mg/L		98	80 - 120
Calcium	10.0	9.54		mg/L		95	80 - 120
Chromium	0.200	0.197		mg/L		99	80 - 120
Cobalt	0.200	0.184		mg/L		92	80 - 120
Copper	0.200	0.197		mg/L		99	80 - 120
Iron	10.0	10.04		mg/L		100	80 - 120
Lead	0.200	0.188		mg/L		94	80 - 120
Magnesium	10.0	9.78		mg/L		98	80 - 120
Manganese	0.200	0.201		mg/L		101	80 - 120
Nickel	0.200	0.195		mg/L		98	80 - 120
Potassium	10.0	9.58		mg/L		96	80 - 120
Silver	0.0500	0.0527		mg/L		105	80 - 120
Sodium	10.0	9.40		mg/L		94	80 - 120
Thallium	0.200	0.192		mg/L		96	80 - 120
Vanadium	0.200	0.203		mg/L		102	80 - 120
Zinc	0.200	0.204		mg/L		102	80 - 120

Lab Sample ID: MB 480-489078/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489442

_	MB M	МВ						•	
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND ND		0.20		mg/L		08/28/19 08:05	08/28/19 22:56	1
Antimony	ND		0.015		mg/L		08/28/19 08:05	08/28/19 22:56	1
Arsenic	ND		0.010		mg/L		08/28/19 08:05	08/28/19 22:56	1
Barium	ND		0.20		mg/L		08/28/19 08:05	08/28/19 22:56	1
Beryllium	ND		0.0030		mg/L		08/28/19 08:05	08/28/19 22:56	1
Boron	ND		0.020		mg/L		08/28/19 08:05	08/28/19 22:56	1
Cadmium	ND		0.0050		mg/L		08/28/19 08:05	08/28/19 22:56	1
Calcium	ND		5.0		mg/L		08/28/19 08:05	08/28/19 22:56	1
Chromium	ND		0.010		mg/L		08/28/19 08:05	08/28/19 22:56	1
Cobalt	ND		0.050		mg/L		08/28/19 08:05	08/28/19 22:56	1
Copper	ND		0.025		mg/L		08/28/19 08:05	08/28/19 22:56	1
Iron	ND		0.10		mg/L		08/28/19 08:05	08/28/19 22:56	1
Lead	ND		0.0030		mg/L		08/28/19 08:05	08/28/19 22:56	1
Magnesium	ND		5.0		mg/L		08/28/19 08:05	08/28/19 22:56	1

Eurofins TestAmerica, Buffalo

Prep Batch: 489078

Page 151 of 314

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-489078/1-A

Matrix: Water

Analysis Batch: 489442

Client Sample ID: Method Blank Prep Type: Total/NA

08/28/19 08:05 08/28/19 22:56

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Batch: 489078

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Manganese ND 0.015 08/28/19 08:05 08/28/19 22:56 mg/L Nickel ND 0.040 08/28/19 08:05 08/28/19 22:56 mg/L Potassium ND 5.0 mg/L 08/28/19 08:05 08/28/19 22:56 Sodium ND 08/28/19 08:05 08/28/19 22:56 5.0 mg/L Thallium ND 0.010 08/28/19 08:05 08/28/19 22:56 mg/L Vanadium ND 0.050 mg/L 08/28/19 08:05 08/28/19 22:56

0.020

ND

Lab Sample ID: MB 480-489078/1-A

Matrix: Water

Zinc

Analysis Batch: 489665

Prep Type: Total/NA **Prep Batch: 489078** MB MB

mg/L

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac Silver 0.010 mg/L 08/28/19 08:05 08/29/19 15:33

Lab Sample ID: LCS 480-489078/2-A

Matrix: Water

Analysis Ratch

			Prep Type: Total/NA
h: 489442			Prep Batch: 489078
	Spike	LCS LCS	%Rec.

Analysis Batch: 489442	Spike	LCS	LCS				Prep Batch: 489078 %Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum	10.0	9.21		mg/L		92	80 - 120
Antimony	0.200	0.206		mg/L		103	80 - 120
Arsenic	0.200	0.193		mg/L		97	80 - 120
Barium	0.200	0.197	j	mg/L		99	80 - 120
Beryllium	0.200	0.197		mg/L		98	80 - 120
Boron	0.200	0.190		mg/L		95	80 - 120
Cadmium	0.200	0.190		mg/L		95	80 - 120
Calcium	10.0	9.55		mg/L		96	80 - 120
Chromium	0.200	0.193		mg/L		97	80 - 120
Cobalt	0.200	0.182		mg/L		91	80 - 120
Copper	0.200	0.187		mg/L		93	80 - 120
Iron	10.0	9.75		mg/L		97	80 - 120
Lead	0.200	0.183		mg/L		91	80 - 120
Magnesium	10.0	9.57		mg/L		96	80 - 120
Manganese	0.200	0.193		mg/L		97	80 - 120
Nickel	0.200	0.191		mg/L		95	80 - 120
Potassium	10.0	9.26		mg/L		93	80 - 120
Sodium	10.0	9.03		mg/L		90	80 - 120
Thallium	0.200	0.187		mg/L		94	80 - 120
Vanadium	0.200	0.191		mg/L		96	80 - 120
Zinc	0.200	0.198		mg/L		99	80 - 120

Lab Sample ID: LCS 480-489078/2-A

Matrix: Water Analysis Batch: 489665							Prep Type: Total/NA Prep Batch: 489078
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Silver	0.0500	0.0487		mg/L		97	80 - 120

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-489078/24-A **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489442							Prep Batch: 489078				
•	Spike	LCSD	LCSD				%Rec.		RPD		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
Aluminum	10.0	9.43		mg/L		94	80 - 120	2	20		
Antimony	0.200	0.209		mg/L		104	80 - 120	2	20		
Arsenic	0.200	0.189		mg/L		94	80 - 120	2	20		
Barium	0.200	0.201		mg/L		100	80 - 120	2	20		
Beryllium	0.200	0.198		mg/L		99	80 - 120	1	20		
Boron	0.200	0.191		mg/L		96	80 - 120	0	20		
Cadmium	0.200	0.193		mg/L		97	80 - 120	1	20		
Calcium	10.0	9.69		mg/L		97	80 - 120	1	20		
Chromium	0.200	0.197		mg/L		99	80 - 120	2	20		
Cobalt	0.200	0.184		mg/L		92	80 - 120	2	20		
Copper	0.200	0.460	*	mg/L		230	80 - 120	85	20		
Iron	10.0	9.88		mg/L		99	80 - 120	1	20		
Lead	0.200	0.195		mg/L		97	80 - 120	6	20		
Magnesium	10.0	9.72		mg/L		97	80 - 120	2	20		
Manganese	0.200	0.196		mg/L		98	80 - 120	1	20		
Nickel	0.200	0.193		mg/L		97	80 - 120	1	20		
Potassium	10.0	9.34		mg/L		93	80 - 120	1	20		
Sodium	10.0	9.23		mg/L		92	80 - 120	2	20		
Thallium	0.200	0.186		mg/L		93	80 - 120	1	20		
Vanadium	0.200	0.196		mg/L		98	80 - 120	2	20		

Lab Sample ID: LCSD 480-489078/24-A

Zinc

Matrix: Water							Prep Ty	pe: Tot	al/NA
Analysis Batch: 489665							Prep Ba	atch: 48	89078
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Silver	0.0500	0.0488		mg/L		98	80 - 120	0	20

0.200

0.360 *

mg/L

Lab Sample ID: MB 480-489925/1-A

Matrix: Water

Analysis Batch: 491316

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 489925

80 - 120

180

Client Sample ID: Lab Control Sample Dup

7 thatyold Batom 40 10 10								I TOP Daton.	100020
_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		09/05/19 06:30	09/10/19 14:34	1
Antimony	ND		0.015		mg/L		09/05/19 06:30	09/10/19 14:34	1
Arsenic	ND		0.010		mg/L		09/05/19 06:30	09/10/19 14:34	1
Barium	ND		0.20		mg/L		09/05/19 06:30	09/10/19 14:34	1
Beryllium	ND		0.0030		mg/L		09/05/19 06:30	09/10/19 14:34	1
Boron	ND		0.020		mg/L		09/05/19 06:30	09/10/19 14:34	1
Cadmium	ND		0.0050		mg/L		09/05/19 06:30	09/10/19 14:34	1
Calcium	ND		5.0		mg/L		09/05/19 06:30	09/10/19 14:34	1
Chromium	ND		0.010		mg/L		09/05/19 06:30	09/10/19 14:34	1
Cobalt	ND		0.050		mg/L		09/05/19 06:30	09/10/19 14:34	1
Copper	ND		0.025		mg/L		09/05/19 06:30	09/10/19 14:34	1
Iron	ND		0.10		mg/L		09/05/19 06:30	09/10/19 14:34	1
Lead	ND		0.0030		mg/L		09/05/19 06:30	09/10/19 14:34	1
Magnesium	ND		5.0		mg/L		09/05/19 06:30	09/10/19 14:34	1
Manganese	ND		0.015		mg/L		09/05/19 06:30	09/10/19 14:34	1
I and the second									

Eurofins TestAmerica, Buffalo

Page 153 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

MAD MAD

Lab Sample ID: MB 480-489925/1-A

Matrix: Water

Analysis Batch: 491316

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 489925

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	ND		0.040		mg/L		09/05/19 06:30	09/10/19 14:34	1
Potassium	ND		5.0		mg/L		09/05/19 06:30	09/10/19 14:34	1
Silver	ND		0.010		mg/L		09/05/19 06:30	09/10/19 14:34	1
Sodium	ND		5.0		mg/L		09/05/19 06:30	09/10/19 14:34	1
Thallium	ND		0.010		mg/L		09/05/19 06:30	09/10/19 14:34	1
Vanadium	ND		0.050		mg/L		09/05/19 06:30	09/10/19 14:34	1
Zinc	ND		0.020		mg/L		09/05/19 06:30	09/10/19 14:34	1

Lab Sample ID: LCS 480-489925/2-A

Matrix: Water

Analysis Batch: 491316

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 489925

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Aluminum 10.0 10.00 mg/L 100 80 - 120 Antimony 0.200 0.223 80 - 120 mg/L 112 Arsenic 0.200 0.205 mg/L 102 80 - 120 Barium 0.200 0.217 108 80 - 120 mg/L Beryllium 0.200 0.203 101 80 - 120 mg/L 0.200 105 Boron 0.210 mg/L 80 - 120 Cadmium 0.200 0.204 mg/L 102 80 - 120 Calcium 10.0 9.88 mg/L 99 80 - 120 Chromium 0.200 0.205 mg/L 103 80 - 120 Cobalt 0.200 0.192 mg/L 96 80 - 120 Copper 0.200 0.199 mg/L 100 80 - 120 Iron 10.0 10.07 101 80 - 120 mg/L 0.200 80 - 120 Lead 0.196 mg/L 98 Magnesium 10.0 10.23 mg/L 102 80 - 120Manganese 0.200 0.201 mg/L 101 80 - 120 Nickel 0.200 0.201 mg/L 100 80 - 120 95 Potassium 10.0 9.54 80 - 120 mg/L Silver 0.0500 0.0501 100 80 - 120 mg/L Sodium 96 10.0 9.61 mg/L 80 - 120Thallium 0.200 0.200 mg/L 100 80 - 120 Vanadium 0.200 0.204 80 - 120 mg/L 102 Zinc 0.200 0.203 mg/L 101 80 - 120

Lab Sample ID: LCSD 480-489925/23-A

Matrix: Water

Analysis Batch: 491316

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 489925 LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 10.0 9.78 98 80 - 120 2 20 Aluminum mg/L 0.200 20 Antimony 0.217 mg/L 109 80 - 1203 Arsenic 0.200 0.199 mg/L 99 80 - 1203 20 Barium 0.200 0.211 mg/L 105 80 - 120 3 20 Beryllium 0.200 0.198 mg/L 99 80 - 120 20 Boron 0.200 0.202 mg/L 101 80 - 120 20 Cadmium 0.200 0.199 mg/L 99 80 - 120 3 20 Calcium 10.0 9.67 97 80 - 120 20 mg/L

Eurofins TestAmerica, Buffalo

Page 154 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-489925/23-A

Analysis Batch: 491316

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 489925**

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier RPD Limit **Analyte** Unit D %Rec Limits Chromium 0.200 0.202 80 - 120 2 20 mg/L 101 Cobalt 0.200 0.188 80 - 120 20 mg/L 94 3 Copper 0.200 0.195 mg/L 97 80 - 120 2 20 9.77 98 80 - 120 20 Iron 10.0 mg/L 3 0.200 0.189 94 80 - 120 20 Lead mg/L 80 - 120 20 Magnesium 10.0 10.01 mg/L 100 0.200 0.195 80 - 120 20 Manganese mg/L 98 0.200 20 Nickel 0.195 mg/L 97 80 - 120 3 Potassium 10.0 9.19 mg/L 92 80 - 12020 Silver 0.0500 0.0490 mg/L 98 80 - 120 20 20 Sodium 10.0 9.32 mg/L 93 80 - 120 3 Thallium 0.200 0.194 mg/L 97 80 - 120 20 3 0.198 Vanadium 0.200 mg/L 99 80 - 120 3 20 Zinc 0.200 0.199 80 - 120 mg/L

Lab Sample ID: MB 480-489960/1-A

Matrix: Water

Analysis Batch: 490293

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 489960

MB MB

Analyte

Result Qualifier RL **MDL** Unit Prepared Analyzed 09/04/19 09:46 09/04/19 19:16 mg/L Aluminum $\overline{\mathsf{ND}}$ 0.20

Lab Sample ID: LCS 480-489960/2-A

Matrix: Water

Analysis Batch: 490293

Prep Type: Total/NA **Prep Batch: 489960** LCS LCS Spike %Rec. Added Result Qualifier Unit Limits

Analyte %Rec Aluminum 10.0 80 - 120 10.10 mg/L 101

Lab Sample ID: MB 480-490184/1-A

Matrix: Water

Analysis Batch: 490550

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 490184

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	ND		0.20		mg/L		09/05/19 05:35	09/05/19 16:06	1
Antimony	ND		0.015		mg/L		09/05/19 05:35	09/05/19 16:06	1
Arsenic	ND		0.010		mg/L		09/05/19 05:35	09/05/19 16:06	1
Barium	ND		0.20		mg/L		09/05/19 05:35	09/05/19 16:06	1
Beryllium	ND		0.0030		mg/L		09/05/19 05:35	09/05/19 16:06	1
Boron	ND		0.020		mg/L		09/05/19 05:35	09/05/19 16:06	1
Cadmium	ND		0.0050		mg/L		09/05/19 05:35	09/05/19 16:06	1
Calcium	ND		5.0		mg/L		09/05/19 05:35	09/05/19 16:06	1
Chromium	ND		0.010		mg/L		09/05/19 05:35	09/05/19 16:06	1
Cobalt	ND		0.050		mg/L		09/05/19 05:35	09/05/19 16:06	1
Copper	ND		0.025		mg/L		09/05/19 05:35	09/05/19 16:06	1
Iron	ND		0.10		mg/L		09/05/19 05:35	09/05/19 16:06	1
Lead	ND		0.0030		mg/L		09/05/19 05:35	09/05/19 16:06	1
Magnesium	ND		5.0		mg/L		09/05/19 05:35	09/05/19 16:06	1
Manganese	ND		0.015		mg/L		09/05/19 05:35	09/05/19 16:06	1

Eurofins TestAmerica, Buffalo

Page 155 of 314

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-490184/1-A **Matrix: Water**

Analysis Batch: 490550

Client Sample ID: Method Blank

Prep Batch: 490184

Prep Type: Total/NA

_	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nickel	ND		0.040		mg/L		09/05/19 05:35	09/05/19 16:06	1
Potassium	ND		5.0		mg/L		09/05/19 05:35	09/05/19 16:06	1
Silver	ND		0.010		mg/L		09/05/19 05:35	09/05/19 16:06	1
Sodium	ND		5.0		mg/L		09/05/19 05:35	09/05/19 16:06	1
Thallium	ND		0.010		mg/L		09/05/19 05:35	09/05/19 16:06	1
Vanadium	ND		0.050		mg/L		09/05/19 05:35	09/05/19 16:06	1
Zinc	ND		0.020		mg/L		09/05/19 05:35	09/05/19 16:06	1

Lab Sample ID: LCS 480-490184/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 490184

Analysis Batch: 490550 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Aluminum 10.0 10.01 mg/L 100 80 - 120 Antimony 0.200 0.221 80 - 120 mg/L 111 Arsenic 0.200 0.206 mg/L 103 80 - 120 Barium 0.200 0.209 105 80 - 120 mg/L Beryllium 0.200 0.207 104 80 - 120 mg/L 0.200 105 Boron 0.209 mg/L 80 - 120 Cadmium 0.200 0.206 mg/L 103 80 - 120 Calcium 10.0 10.22 mg/L 102 80 - 120 Chromium 0.200 0.205 mg/L 102 80 - 120 Cobalt 0.200 0.192 mg/L 96 80 - 120 Copper 0.200 0.199 mg/L 99 80 - 120 Iron 10.0 10.39 104 80 - 120 mg/L 0.200 0.197 80 - 120 Lead mg/L 99 Magnesium 10.0 9.91 mg/L 99 80 - 120 Manganese 0.200 0.202 mg/L 101 80 - 120 Nickel 0.200 0.200 mg/L 100 80 - 120 98 Potassium 10.0 9.77 80 - 120 mg/L Silver 0.0500 0.0477 95 80 - 120 mg/L Sodium 99 10.0 9.88 mg/L 80 - 120Thallium 0.200 0.203 mg/L 102 80 - 120

Lab Sample ID: MB 480-491000/1-A

Matrix: Water

Vanadium

Zinc

Analysis Batch: 491318

Client Sample ID: Method Blank Prep Type: Total/NA

80 - 120

80 - 120

103

102

Prep Batch: 491000

Analyte	Result Qualifier	RL	MDL Ur	nit D	Prepared	Analyzed	Dil Fac
Chromium	ND	0.010	mį	g/L	09/10/19 06:30	09/10/19 18:44	1

0.206

0.203

mg/L

mg/L

Lab Sample ID: LCS 480-491000/2-A **Matrix: Water**

Analysis Batch: 491318

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 491000** %Rec.

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits 0.200 0.189 Chromium mg/L 80 - 120

0.200

0.200

MB MB

Eurofins TestAmerica, Buffalo

Page 156 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: MB 480-488390/1-A

Matrix: Water

Analysis Batch: 488655

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 488390

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 19:43	1
Antimony, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 19:43	1
Arsenic, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 19:43	1
Barium, Dissolved	ND		0.20		mg/L		08/23/19 08:45	08/23/19 19:43	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 19:43	1
Boron, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 19:43	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/23/19 08:45	08/23/19 19:43	1
Calcium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 19:43	1
Chromium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 19:43	1
Cobalt, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 19:43	1
Copper, Dissolved	ND		0.025		mg/L		08/23/19 08:45	08/23/19 19:43	1
Iron, Dissolved	ND		0.10		mg/L		08/23/19 08:45	08/23/19 19:43	1
Lead, Dissolved	ND		0.0030		mg/L		08/23/19 08:45	08/23/19 19:43	1
Magnesium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 19:43	1
Manganese, Dissolved	ND		0.015		mg/L		08/23/19 08:45	08/23/19 19:43	1
Nickel, Dissolved	ND		0.040		mg/L		08/23/19 08:45	08/23/19 19:43	1
Potassium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 19:43	1
Silver, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 19:43	1
Sodium, Dissolved	ND		5.0		mg/L		08/23/19 08:45	08/23/19 19:43	1
Thallium, Dissolved	ND		0.010		mg/L		08/23/19 08:45	08/23/19 19:43	1
Vanadium, Dissolved	ND		0.050		mg/L		08/23/19 08:45	08/23/19 19:43	1
Zinc, Dissolved	ND		0.020		mg/L		08/23/19 08:45	08/23/19 19:43	1

Lab Sample ID: LCS 480-488390/2-A

Matrix: Water

Analysis Batch: 488917

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 488390

Analysis Batch: 466917	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum, Dissolved	10.0	9.47		mg/L		95	80 - 120
Antimony, Dissolved	0.200	0.212		mg/L		106	80 - 120
Arsenic, Dissolved	0.200	0.191		mg/L		95	80 - 120
Barium, Dissolved	0.200	0.199	J	mg/L		100	80 - 120
Beryllium, Dissolved	0.200	0.197		mg/L		98	80 - 120
Boron, Dissolved	0.200	0.196		mg/L		98	80 - 120
Cadmium, Dissolved	0.200	0.193		mg/L		96	80 - 120
Calcium, Dissolved	10.0	9.81		mg/L		98	80 - 120
Chromium, Dissolved	0.200	0.194		mg/L		97	80 - 120
Cobalt, Dissolved	0.200	0.183		mg/L		91	80 - 120
Copper, Dissolved	0.200	0.190		mg/L		95	80 - 120
Iron, Dissolved	10.0	9.91		mg/L		99	80 - 120
Lead, Dissolved	0.200	0.188		mg/L		94	80 - 120
Magnesium, Dissolved	10.0	9.46		mg/L		95	80 - 120
Manganese, Dissolved	0.200	0.192		mg/L		96	80 - 120
Nickel, Dissolved	0.200	0.190		mg/L		95	80 - 120
Potassium, Dissolved	10.0	8.90		mg/L		89	80 - 120
Silver, Dissolved	0.0500	0.0500		mg/L		100	80 - 120
Sodium, Dissolved	10.0	8.93		mg/L		89	80 - 120
Thallium, Dissolved	0.200	0.191		mg/L		96	80 - 120
Vanadium, Dissolved	0.200	0.191		mg/L		95	80 - 120

Eurofins TestAmerica, Buffalo

Page 157 of 314

2

3

<u>.</u> 5

7

9

11

13

15

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-488390/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 488917 **Prep Batch: 488390** LCS LCS Spike %Rec. D %Rec Analyte Added Result Qualifier Unit Limits Zinc, Dissolved 0.200 0.196 mg/L 80 - 120

Lab Sample ID: MB 480-488887/1-A

Matrix: Water

Analysis Batch: 489195

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 488887**

Alialysis Datcii. 403133						Trep Batch. 4000t		
Analyte		MB Qualifier R	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Aluminum, Dissolved	ND	0.2		mg/L		08/27/19 08:48		
Antimony, Dissolved	ND	0.02		mg/L		08/27/19 08:48		
Arsenic, Dissolved	ND	0.01)	mg/L		08/27/19 08:48	08/27/19 17:33	
Barium, Dissolved	ND	0.2)	mg/L		08/27/19 08:48	08/27/19 17:33	
Beryllium, Dissolved	ND	0.003)	mg/L		08/27/19 08:48	08/27/19 17:33	
Boron, Dissolved	ND	0.02)	mg/L		08/27/19 08:48	08/27/19 17:33	
Cadmium, Dissolved	ND	0.005)	mg/L		08/27/19 08:48	08/27/19 17:33	
Calcium, Dissolved	ND	5.)	mg/L		08/27/19 08:48	08/27/19 17:33	
Chromium, Dissolved	ND	0.01)	mg/L		08/27/19 08:48	08/27/19 17:33	
Cobalt, Dissolved	ND	0.05)	mg/L		08/27/19 08:48	08/27/19 17:33	
Copper, Dissolved	ND	0.02	5	mg/L		08/27/19 08:48	08/27/19 17:33	
Iron, Dissolved	ND	0.1)	mg/L		08/27/19 08:48	08/27/19 17:33	
Lead, Dissolved	ND	0.003)	mg/L		08/27/19 08:48	08/27/19 17:33	
Magnesium, Dissolved	ND	5.)	mg/L		08/27/19 08:48	08/27/19 17:33	
Manganese, Dissolved	ND	0.01	5	mg/L		08/27/19 08:48	08/27/19 17:33	
Nickel, Dissolved	ND	0.04)	mg/L		08/27/19 08:48	08/27/19 17:33	
Potassium, Dissolved	ND	5.)	mg/L		08/27/19 08:48	08/27/19 17:33	
Silver, Dissolved	ND	0.01)	mg/L		08/27/19 08:48	08/27/19 17:33	
Sodium, Dissolved	ND	5.)	mg/L		08/27/19 08:48	08/27/19 17:33	
Thallium, Dissolved	ND	0.01)	mg/L		08/27/19 08:48	08/27/19 17:33	
Vanadium, Dissolved	ND	0.05)	mg/L		08/27/19 08:48	08/27/19 17:33	
Zinc, Dissolved	ND	0.02)	mg/L		08/27/19 08:48	08/27/19 17:33	

Lab Sample ID: LCS 480-488887/2-A

Matrix: Water

Analysis Batch: 489195

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 488887

Analysis Batch. 409195	Spike	LCS	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum, Dissolved	10.0	9.14		mg/L		91	80 - 120
Antimony, Dissolved	0.200	0.207		mg/L		104	80 - 120
Arsenic, Dissolved	0.200	0.199		mg/L		99	80 - 120
Barium, Dissolved	0.200	0.200		mg/L		100	80 - 120
Beryllium, Dissolved	0.200	0.199		mg/L		99	80 - 120
Boron, Dissolved	0.200	0.196		mg/L		98	80 - 120
Cadmium, Dissolved	0.200	0.193		mg/L		96	80 - 120
Calcium, Dissolved	10.0	9.39		mg/L		94	80 - 120
Chromium, Dissolved	0.200	0.192		mg/L		96	80 - 120
Cobalt, Dissolved	0.200	0.180		mg/L		90	80 - 120
Copper, Dissolved	0.200	0.196		mg/L		98	80 - 120
Iron, Dissolved	10.0	9.95		mg/L		99	80 - 120
Lead, Dissolved	0.200	0.183		mg/L		92	80 - 120
Magnesium, Dissolved	10.0	9.61		mg/L		96	80 - 120

Eurofins TestAmerica, Buffalo

Page 158 of 314

Spike

Added

0.200

0.200

0.0500

10.0

10.0

0.200

0.200

0.200

Client: Waste Management Job ID: 480-157980-1

LCS LCS

0.199

0.193

9.39

9.20

0.188

0.201

0.199

0.0520

Result Qualifier

Unit

mg/L

mg/L

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-488887/2-A

Matrix: Water

Manganese, Dissolved

Potassium, Dissolved

Nickel, Dissolved

Silver, Dissolved

Sodium, Dissolved

Thallium, Dissolved

Vanadium, Dissolved

Analyte

Analysis Batch: 489195

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 488887

%Rec. Limits D %Rec 100 80 - 120 mg/L 80 - 120 mg/L 96 mg/L 94 80 - 120 104 mg/L 80 - 120 92 80 - 120 mg/L 80 - 120 mg/L 94

100

Lab Sample ID: MB 480-489092/1-A

Matrix: Water

Zinc. Dissolved

Analysis Batch: 489443

Client Sample ID: Method Blank Prep Type: Total Recoverable

80 - 120

80 - 120

Prep Batch: 489092

Allalysis Datcil. 409443	МВ	МВ						Frep Datch.	403032
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum, Dissolved	ND		0.20		mg/L		08/28/19 09:36	08/29/19 01:11	1
Antimony, Dissolved	ND		0.020		mg/L		08/28/19 09:36	08/29/19 01:11	1
Arsenic, Dissolved	ND		0.010		mg/L		08/28/19 09:36	08/29/19 01:11	1
Barium, Dissolved	ND		0.20		mg/L		08/28/19 09:36	08/29/19 01:11	1
Beryllium, Dissolved	ND		0.0030		mg/L		08/28/19 09:36	08/29/19 01:11	1
Boron, Dissolved	ND		0.020		mg/L		08/28/19 09:36	08/29/19 01:11	1
Cadmium, Dissolved	ND		0.0050		mg/L		08/28/19 09:36	08/29/19 01:11	1
Calcium, Dissolved	ND		5.0		mg/L		08/28/19 09:36	08/29/19 01:11	1
Chromium, Dissolved	ND		0.010		mg/L		08/28/19 09:36	08/29/19 01:11	1
Cobalt, Dissolved	ND		0.050		mg/L		08/28/19 09:36	08/29/19 01:11	1
Copper, Dissolved	ND		0.025		mg/L		08/28/19 09:36	08/29/19 01:11	1
Lead, Dissolved	ND		0.0030		mg/L		08/28/19 09:36	08/29/19 01:11	1
Magnesium, Dissolved	ND		5.0		mg/L		08/28/19 09:36	08/29/19 01:11	1
Manganese, Dissolved	ND		0.015		mg/L		08/28/19 09:36	08/29/19 01:11	1
Nickel, Dissolved	ND		0.040		mg/L		08/28/19 09:36	08/29/19 01:11	1
Potassium, Dissolved	ND		5.0		mg/L		08/28/19 09:36	08/29/19 01:11	1
Sodium, Dissolved	ND		5.0		mg/L		08/28/19 09:36	08/29/19 01:11	1
Thallium, Dissolved	ND		0.010		mg/L		08/28/19 09:36	08/29/19 01:11	1
Vanadium, Dissolved	ND		0.050		mg/L		08/28/19 09:36	08/29/19 01:11	1
Zinc, Dissolved	ND		0.020		mg/L		08/28/19 09:36	08/29/19 01:11	1
_									

Lab Sample ID: MB 480-489092/1-A

Matrix: Water

Analysis Batch: 489670

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 489092

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Iron, Dissolved	ND		0.10	mg/L		08/28/19 09:36	08/29/19 15:52	1
Silver, Dissolved	ND		0.010	mg/L		08/28/19 09:36	08/29/19 15:52	1

MR MR

Sample ID: I CS 480-489092/2-A

Lab Sample ID: LGS 460-469092/2-A				Cilei	it Sai	חו npie	: Lab Control Sample
Matrix: Water					P	rep Ty	oe: Total Recoverable
Analysis Batch: 489443							Prep Batch: 489092
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum, Dissolved	10.0	8.74		mg/L		87	80 - 120

Eurofins TestAmerica, Buffalo

Page 159 of 314

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-489092/2-A **Matrix: Water**

Analysis Batch: 489443

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Recoverable

Prep Batch: 489092

Prep Batch: 489092

	Spike	LCS LC	S		%Rec.	
Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	
Antimony, Dissolved	0.200	0.196	mg/L	98	80 - 120	
Arsenic, Dissolved	0.200	0.178	mg/L	89	80 - 120	
Barium, Dissolved	0.200	0.187 J	mg/L	93	80 - 120	
Beryllium, Dissolved	0.200	0.186	mg/L	93	80 - 120	
Boron, Dissolved	0.200	0.183	mg/L	91	80 - 120	
Cadmium, Dissolved	0.200	0.180	mg/L	90	80 - 120	
Calcium, Dissolved	10.0	9.07	mg/L	91	80 - 120	
Chromium, Dissolved	0.200	0.182	mg/L	91	80 - 120	
Cobalt, Dissolved	0.200	0.171	mg/L	86	80 - 120	
Copper, Dissolved	0.200	0.175	mg/L	88	80 - 120	
Iron, Dissolved	10.0	9.21	mg/L	92	80 - 120	
Lead, Dissolved	0.200	0.173	mg/L	87	80 - 120	
Magnesium, Dissolved	10.0	9.08	mg/L	91	80 - 120	
Manganese, Dissolved	0.200	0.182	mg/L	91	80 - 120	
Nickel, Dissolved	0.200	0.180	mg/L	90	80 - 120	
Potassium, Dissolved	10.0	8.72	mg/L	87	80 - 120	
Sodium, Dissolved	10.0	8.55	mg/L	85	80 - 120	
Thallium, Dissolved	0.200	0.175	mg/L	88	80 - 120	
Vanadium, Dissolved	0.200	0.181	mg/L	90	80 - 120	
Zinc, Dissolved	0.200	0.190	mg/L	95	80 - 120	

Lab Sample ID: LCS 480-489092/2-A

Matrix: Water

Analysis Batch: 489670

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Silver, Dissolved	0.0500	0.0470		mg/L		94	80 - 120

Lab Sample ID: LCSD 480-489092/3-A

Matrix: Water							Prep Type: Total Recoverable					
Analysis Batch: 489443							Prep Ba	itch: 48	39092			
	Spike	LCSD	LCSD				%Rec.		RPD			
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit			
Aluminum, Dissolved	10.0	9.31		mg/L		93	80 - 120	6	20			
Antimony, Dissolved	0.200	0.204		mg/L		102	80 - 120	4	20			
Arsenic, Dissolved	0.200	0.187		mg/L		94	80 - 120	5	20			
Barium, Dissolved	0.200	0.198	J	mg/L		99	80 - 120	6	20			
Beryllium, Dissolved	0.200	0.193		mg/L		97	80 - 120	4	20			
Boron, Dissolved	0.200	0.189		mg/L		94	80 - 120	3	20			
Cadmium, Dissolved	0.200	0.189		mg/L		94	80 - 120	5	20			
Calcium, Dissolved	10.0	9.52		mg/L		95	80 - 120	5	20			
Chromium, Dissolved	0.200	0.193		mg/L		96	80 - 120	6	20			
Cobalt, Dissolved	0.200	0.181		mg/L		90	80 - 120	5	20			
Copper, Dissolved	0.200	0.184		mg/L		92	80 - 120	5	20			
Iron, Dissolved	10.0	9.66		mg/L		97	80 - 120	5	20			
Lead, Dissolved	0.200	0.182		mg/L		91	80 - 120	5	20			
Magnesium, Dissolved	10.0	9.59		mg/L		96	80 - 120	5	20			
Manganese, Dissolved	0.200	0.192		mg/L		96	80 - 120	5	20			
Nickel, Dissolved	0.200	0.189		mg/L		94	80 - 120	5	20			

Eurofins TestAmerica, Buffalo

Page 160 of 314

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCSD 480-489092/3-A

Matrix: Water

Analysis Batch: 489443

Client Sample ID: Lab Control Sample Dup Prep Type: Total Recoverable Prep Batch: 489092

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Potassium, Dissolved	10.0	9.10		mg/L		91	80 - 120	4	20	
Sodium, Dissolved	10.0	9.06		mg/L		90	80 - 120	6	20	
Thallium, Dissolved	0.200	0.183		mg/L		92	80 - 120	4	20	
Vanadium, Dissolved	0.200	0.192		mg/L		96	80 - 120	6	20	
Zinc, Dissolved	0.200	0.201		mg/L		101	80 - 120	6	20	

Lab Sample ID: LCSD 480-489092/3-A

Matrix: Water

Analysis Batch: 489670

Analyte		
Silver, Dissolved		_

Client Sample ID: Lab Control Sample Dup **Prep Type: Total Recoverable**

Prep Batch: 489092

%Rec. **RPD** %Rec Limits **RPD** Limit 80 - 120

Lab Sample ID: MB 480-489962/1-A **Client Sample ID: Method Blank Matrix: Water Prep Type: Total Recoverable**

LCSD LCSD

0.0489

Result Qualifier

Unit

ma/L

Spike

Added

0.0500

Analysis Batch: 490288 **Prep Batch: 489962** MR MR Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyte Analyzed $\overline{\mathsf{ND}}$ 0.20 09/04/19 08:41 09/04/19 23:28 Aluminum, Dissolved mg/L Antimony, Dissolved ND 0.020 mg/L 09/04/19 08:41 09/04/19 23:28 ND 0.010 09/04/19 08:41 09/04/19 23:28 Arsenic, Dissolved mg/L Barium, Dissolved ND 0.20 mg/L 09/04/19 08:41 09/04/19 23:28 Beryllium, Dissolved ND 0.0030 09/04/19 08:41 09/04/19 23:28 mg/L Boron, Dissolved ND 0.020 mg/L 09/04/19 08:41 09/04/19 23:28 Cadmium, Dissolved ND 0.0050 mg/L 09/04/19 08:41 09/04/19 23:28 Calcium, Dissolved ND 5.0 mg/L 09/04/19 08:41 09/04/19 23:28 Chromium, Dissolved ND 0.010 mg/L 09/04/19 08:41 09/04/19 23:28 Cobalt, Dissolved ND 0.050 09/04/19 08:41 09/04/19 23:28 mg/L 09/04/19 08:41 09/04/19 23:28 Copper, Dissolved ND 0.025 mq/L Iron, Dissolved ND mg/L 09/04/19 08:41 09/04/19 23:28 0.10 09/04/19 08:41 09/04/19 23:28 Lead, Dissolved ND 0.0030 mg/L Magnesium, Dissolved NΠ 09/04/19 08:41 09/04/19 23:28 5.0 mg/L Manganese, Dissolved ND 0.015 mg/L 09/04/19 08:41 09/04/19 23:28 Nickel, Dissolved ND 0.040 mg/L 09/04/19 08:41 09/04/19 23:28 Potassium, Dissolved ND 5.0 mg/L 09/04/19 08:41 09/04/19 23:28 Silver, Dissolved ND 0.010 09/04/19 08:41 09/04/19 23:28 mg/L ND Sodium, Dissolved 5.0 mg/L 09/04/19 08:41 09/04/19 23:28 Thallium. Dissolved ND 0.010 mg/L 09/04/19 08:41 09/04/19 23:28 ND 0.050 Vanadium, Dissolved mg/L 09/04/19 08:41 09/04/19 23:28

0.020

mg/L

Lab Sample ID: LCS 480-489962/2-A

Matrix: Water

Zinc, Dissolved

Analysis Batch: 490288

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 489962

09/04/19 08:41 09/04/19 23:28

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Aluminum, Dissolved	10.0	9.93		mg/L		99	80 - 120	
Antimony, Dissolved	0.200	0.219		mg/L		110	80 - 120	
Arsenic Dissolved	0.200	0.204		ma/l		102	80 120	

ND

Eurofins TestAmerica, Buffalo

Page 161 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-489962/2-A

Matrix: Water

Analysis Batch: 490288

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 489962

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium, Dissolved	0.200	0.213		mg/L		106	80 - 120	
Beryllium, Dissolved	0.200	0.203		mg/L		101	80 - 120	
Boron, Dissolved	0.200	0.202		mg/L		101	80 - 120	
Cadmium, Dissolved	0.200	0.201		mg/L		101	80 - 120	
Calcium, Dissolved	10.0	10.23		mg/L		102	80 - 120	
Chromium, Dissolved	0.200	0.213		mg/L		106	80 - 120	
Cobalt, Dissolved	0.200	0.194		mg/L		97	80 - 120	
Copper, Dissolved	0.200	0.193		mg/L		97	80 - 120	
Iron, Dissolved	10.0	10.03		mg/L		100	80 - 120	
Lead, Dissolved	0.200	0.196		mg/L		98	80 - 120	
Magnesium, Dissolved	10.0	10.43		mg/L		104	80 - 120	
Manganese, Dissolved	0.200	0.202		mg/L		101	80 - 120	
Nickel, Dissolved	0.200	0.201		mg/L		101	80 - 120	
Potassium, Dissolved	10.0	9.48		mg/L		95	80 - 120	
Silver, Dissolved	0.0500	0.0517		mg/L		103	80 - 120	
Sodium, Dissolved	10.0	9.48		mg/L		95	80 - 120	
Thallium, Dissolved	0.200	0.198		mg/L		99	80 - 120	
Vanadium, Dissolved	0.200	0.202		mg/L		101	80 - 120	
Zinc, Dissolved	0.200	0.216		mg/L		108	80 - 120	

Lab Sample ID: MB 480-490197/1-A

Matrix: Water

Zinc. Dissolved

Analysis Batch: 491325

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 490197

Result Qualifier RL **MDL** Unit D **Prepared** Dil Fac Analyte Analyzed $\overline{\mathsf{ND}}$ 0.20 09/06/19 10:59 09/11/19 02:35 Aluminum, Dissolved mg/L ND Antimony, Dissolved 0.020 mg/L 09/06/19 10:59 09/11/19 02:35 Arsenic, Dissolved ND 0.010 mg/L 09/06/19 10:59 09/11/19 02:35 Barium, Dissolved ND 0.20 mg/L 09/06/19 10:59 09/11/19 02:35 ND Beryllium, Dissolved 0.0030 09/06/19 10:59 09/11/19 02:35 mg/L Boron, Dissolved ND 09/06/19 10:59 09/11/19 02:35 0.020 mg/L ND Cadmium, Dissolved 0.0050 mg/L 09/06/19 10:59 09/11/19 02:35 Calcium, Dissolved ND mg/L 09/06/19 10:59 09/11/19 02:35 5.0

MB MB

ND

ND

Chromium, Dissolved 0.010 mg/L 09/06/19 10:59 09/11/19 02:35 Cobalt, Dissolved ND 0.050 mg/L 09/06/19 10:59 09/11/19 02:35 Copper, Dissolved ND 0.025 mg/L 09/06/19 10:59 09/11/19 02:35 ND Iron, Dissolved 0.10 mg/L 09/06/19 10:59 09/11/19 02:35 Lead, Dissolved ND 0.0030 09/06/19 10:59 09/11/19 02:35 mg/L ND 09/06/19 10:59 09/11/19 02:35 Magnesium, Dissolved 5.0 mg/L Manganese, Dissolved ND 0.015 mg/L 09/06/19 10:59 09/11/19 02:35 ND Nickel, Dissolved 0.040 mg/L 09/06/19 10:59 09/11/19 02:35 Potassium, Dissolved ND 5.0 mg/L 09/06/19 10:59 09/11/19 02:35 Silver, Dissolved ND 0.010 mg/L 09/06/19 10:59 09/11/19 02:35 Sodium, Dissolved ND 5.0 mg/L 09/06/19 10:59 09/11/19 02:35 09/06/19 10:59 09/11/19 02:35 Thallium, Dissolved ND 0.010 mg/L Vanadium, Dissolved ND 0.050 mg/L 09/06/19 10:59 09/11/19 02:35

Eurofins TestAmerica, Buffalo

09/06/19 10:59 09/11/19 02:35

Page 162 of 314

0.020

mg/L

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 480-490197/2-A

Matrix: Water

Analysis Batch: 491325

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 490197

Analysis Batch: 491325	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum, Dissolved	10.0	9.78		mg/L		98	80 - 120
Antimony, Dissolved	0.200	0.219		mg/L		110	80 - 120
Arsenic, Dissolved	0.200	0.201		mg/L		101	80 - 120
Barium, Dissolved	0.200	0.207		mg/L		104	80 - 120
Beryllium, Dissolved	0.200	0.206		mg/L		103	80 - 120
Boron, Dissolved	0.200	0.203		mg/L		102	80 - 120
Cadmium, Dissolved	0.200	0.204		mg/L		102	80 - 120
Calcium, Dissolved	10.0	10.09		mg/L		101	80 - 120
Chromium, Dissolved	0.200	0.202		mg/L		101	80 - 120
Cobalt, Dissolved	0.200	0.192		mg/L		96	80 - 120
Copper, Dissolved	0.200	0.198		mg/L		99	80 - 120
Iron, Dissolved	10.0	10.20		mg/L		102	80 - 120
Lead, Dissolved	0.200	0.195		mg/L		98	80 - 120
Magnesium, Dissolved	10.0	10.00		mg/L		100	80 - 120
Manganese, Dissolved	0.200	0.202		mg/L		101	80 - 120
Nickel, Dissolved	0.200	0.199		mg/L		99	80 - 120
Potassium, Dissolved	10.0	9.28		mg/L		93	80 - 120
Silver, Dissolved	0.0500	0.0497		mg/L		99	80 - 120
Sodium, Dissolved	10.0	9.09		mg/L		91	80 - 120
Thallium, Dissolved	0.200	0.203		mg/L		102	80 - 120
Vanadium, Dissolved	0.200	0.202		mg/L		101	80 - 120
Zinc, Dissolved	0.200	0.204		mg/L		102	80 - 120

Lab Sample ID: 480-157980-4 MS

Client Sample ID: MW-17 **Matrix: Ground Water Prep Type: Dissolved** Prep Batch: 488390 Analysis Batch: 488655

Analysis Batch: 488655	Sample	Sample	Spike	MS	MS				Prep Batch: 488390 %Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Aluminum, Dissolved	ND		10.0	9.88		mg/L		99	75 - 125
Antimony, Dissolved	ND		0.200	0.218		mg/L		109	75 - 125
Arsenic, Dissolved	ND		0.200	0.205		mg/L		102	75 - 125
Barium, Dissolved	ND		0.200	0.292		mg/L		98	75 - 125
Beryllium, Dissolved	ND		0.200	0.199		mg/L		100	75 - 125
Boron, Dissolved	0.025		0.200	0.231		mg/L		103	75 - 125
Cadmium, Dissolved	ND		0.200	0.200		mg/L		100	75 - 125
Calcium, Dissolved	121		10.0	127.8	4	mg/L		63	75 - 125
Chromium, Dissolved	ND		0.200	0.199		mg/L		99	75 - 125
Cobalt, Dissolved	ND		0.200	0.200		mg/L		95	75 - 125
Copper, Dissolved	ND		0.200	0.192		mg/L		96	75 - 125
Iron, Dissolved	0.52		10.0	10.47		mg/L		100	75 - 125
Lead, Dissolved	0.0031		0.200	0.195		mg/L		96	75 - 125
Magnesium, Dissolved	39.1		10.0	48.43		mg/L		93	75 - 125
Manganese, Dissolved	0.060		0.200	0.273		mg/L		106	75 - 125
Nickel, Dissolved	ND		0.200	0.195		mg/L		98	75 - 125
Potassium, Dissolved	ND		10.0	11.05		mg/L		97	75 - 125
Silver, Dissolved	ND		0.0500	0.0541		mg/L		108	75 - 125
Sodium, Dissolved	61.0		10.0	42.56	4	mg/L		-184	75 - 125
Thallium, Dissolved	ND		0.200	0.198		mg/L		99	75 - 125
Vanadium, Dissolved	ND		0.200	0.193		mg/L		96	75 ₋ 125

Eurofins TestAmerica, Buffalo

Page 163 of 314

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 480-157980	0-4 MS							Clie	ent Sample ID: MW-17	
Matrix: Ground Water									Prep Type: Dissolved	
Analysis Batch: 488655									Prep Batch: 488390	
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Zinc, Dissolved	ND		0.200	0.203		mg/L		100	75 - 125	

Lab Sample ID: 480-157980	-4 MSD							Clie	ent Sampl	e ID: M	IW-17
Matrix: Ground Water									Prep Type		
Analysis Batch: 488655									Prep Ba	itch: 48	
	Sample S	•	Spike		MSD				%Rec.		RPD
Analyte	Result (Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum, Dissolved	ND		10.0	9.74		mg/L		97	75 - 125	1	20
Antimony, Dissolved	ND		0.200	0.219		mg/L		110	75 - 125	0	20
Arsenic, Dissolved	ND		0.200	0.203		mg/L		101	75 - 125	1	20
Barium, Dissolved	ND		0.200	0.288		mg/L		96	75 - 125	1	20
Beryllium, Dissolved	ND		0.200	0.196		mg/L		98	75 - 125	1	20
Boron, Dissolved	0.025		0.200	0.228		mg/L		102	75 - 125	1	20
Cadmium, Dissolved	ND		0.200	0.199		mg/L		99	75 - 125	1	20
Calcium, Dissolved	121		10.0	124.1	4	mg/L		26	75 - 125	3	20
Chromium, Dissolved	ND		0.200	0.196		mg/L		97	75 - 125	2	20
Cobalt, Dissolved	ND		0.200	0.198		mg/L		95	75 - 125	1	20
Copper, Dissolved	ND		0.200	0.191		mg/L		95	75 - 125	1	20
Iron, Dissolved	0.52		10.0	10.39		mg/L		99	75 - 125	1	20
Lead, Dissolved	0.0031		0.200	0.193		mg/L		95	75 - 125	1	20
Magnesium, Dissolved	39.1		10.0	47.00		mg/L		79	75 - 125	3	20
Manganese, Dissolved	0.060		0.200	0.271		mg/L		105	75 - 125	1	20
Nickel, Dissolved	ND		0.200	0.193		mg/L		96	75 - 125	1	20
Potassium, Dissolved	ND		10.0	10.90		mg/L		96	75 - 125	1	20
Silver, Dissolved	ND		0.0500	0.0535		mg/L		107	75 - 125	1	20
Sodium, Dissolved	61.0		10.0	40.28	4	mg/L		-206	75 - 125	6	20
Thallium, Dissolved	ND		0.200	0.194		mg/L		97	75 - 125	2	20
Vanadium, Dissolved	ND		0.200	0.192		mg/L		96	75 - 125	1	20
Zinc, Dissolved	ND		0.200	0.201		mg/L		99	75 - 125	1	20

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 480-488391/1-A
Matrix: Water
Analysis Batch: 488670
MB MB

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 488391

AnalyteResult
Selenium, DissolvedQualifierRL
0.0010MDL
mg/LUnit
mg/LD
0.08/23/19 08:37Prepared
08/23/19 08:37Analyzed
08/24/19 10:17Dil Fac
08/24/19 10:17

Lab Sample ID: LCS 480-488391/2-A				Clie	nt Sai	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 488670							Prep Batch: 488391
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Selenium, Dissolved	0.0200	0.0199	-	ma/L		99	80 - 120

Eurofins TestAmerica, Buffalo

3

6

9

4 4

12

14

16

17

1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6020A - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 480-488398/1-A

Matrix: Water

Analysis Batch: 488669

MB MB

Result Qualifier RL **MDL** Unit Analyzed Analyte Prepared Selenium 0.0050 mg/L 08/23/19 08:37 08/24/19 11:19 ND

Spike

Added

0.0200

Spike

Added

0.0200

Spike

Added

0.0200

Spike

Added

0.0200

Spike

Added

0.0200

Sample Sample

Sample Sample

Result Qualifier

MB MB

MB MB Result Qualifier

 $\overline{\mathsf{ND}}$

ND

Result Qualifier

ND

Result Qualifier

LCS LCS

MS MS

MSD MSD

Result Qualifier

MDL Unit

LCS LCS

0.0188

Result Qualifier

MDL Unit

LCS LCS

0.0202

Result Qualifier

mg/L

mg/L

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

0.0186

0.0199

0.0201

RL

RL

0.0010

0.0050

Result Qualifier

Lab Sample ID: LCS 480-488398/2-A **Matrix: Water**

Analysis Batch: 488669

Analyte Selenium

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water Analysis Batch: 488669

Analyte Selenium

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 488669

Analyte

Selenium $\overline{\mathsf{ND}}$

Lab Sample ID: MB 480-488881/1-A

Matrix: Water

Analysis Batch: 489181

Analyte

Selenium

Lab Sample ID: LCS 480-488881/2-A

Matrix: Water

Analysis Batch: 489181

Analyte

Selenium

Lab Sample ID: MB 480-488889/1-A **Matrix: Water**

Analysis Batch: 489182

Lab Sample ID: LCS 480-488889/2-A **Matrix: Water**

Selenium, Dissolved

Analysis Batch: 489182

Analyte Selenium, Dissolved

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 488398

Dil Fac

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 488398**

%Rec.

Unit D %Rec Limits mg/L

D

D

Prepared

%Rec

Prepared

%Rec

101

80 - 120 93

Client Sample ID: MW-17

Prep Type: Total/NA **Prep Batch: 488398**

%Rec.

Limits

%Rec 75 - 125

99

Client Sample ID: MW-17

Prep Type: Total/NA

Prep Batch: 488398 %Rec. **RPD**

%Rec Limits RPD Limit 100 75 - 125 20

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 488881

Analyzed Dil Fac

08/27/19 08:35 08/27/19 18:36

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 488881

%Rec.

Limits 80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 488889

Analyzed 08/27/19 08:34 08/27/19 19:34

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 488889

%Rec.

Limits

80 - 120

Eurofins TestAmerica, Buffalo

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 480-489080/1-A

Analysis Batch: 489347

Matrix: Water

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte Selenium 0.0050 mg/L ND

Spike

Added

0.0200

Spike

Added

0.0200

Spike

Added

0.0200

Spike

Added

0.0200

Spike

Added

MB MB Result Qualifier

MB MB

 $\overline{\mathsf{ND}}$

Result Qualifier

 $\overline{\mathsf{ND}}$

LCS LCS

LCSD LCSD

Result Qualifier

MDL Unit

LCS LCS

LCSD LCSD

Result Qualifier

MDL Unit

LCS LCS

0.0183

Result Qualifier

mg/L

0.0205

0.0201

Result Qualifier

mg/L

0.0184

0.0188

RL

0.0010

Result Qualifier

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Lab Sample ID: LCS 480-489080/2-A

Matrix: Water

Analysis Batch: 489347

Analyte

Selenium

Lab Sample ID: LCSD 480-489080/23-A **Matrix: Water**

Analysis Batch: 489347

Analyte

Lab Sample ID: MB 480-489093/1-A

Matrix: Water

Selenium

Analysis Batch: 489346

Analyte

Selenium, Dissolved

Lab Sample ID: LCS 480-489093/2-A **Matrix: Water**

Analysis Batch: 489346

Analyte

Selenium, Dissolved

Lab Sample ID: LCSD 480-489093/3-A

Matrix: Water

Analysis Batch: 489346

Selenium, Dissolved

Lab Sample ID: MB 480-489919/1-A

Matrix: Water

Analyte

Analysis Batch: 490526

Selenium Lab Sample ID: LCS 480-489919/2-A

Matrix: Water

Analysis Batch: 490526

Analyte

0.0200 Selenium

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 489080

08/28/19 07:59 08/28/19 16:10

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 489080**

%Rec.

D %Rec Limits 92

80 - 120

Client Sample ID: Lab Control Sample Dup

D %Rec

94

Prep Type: Total/NA

Prep Batch: 489080 %Rec. **RPD**

Limits RPD Limit

80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 489093

Analyzed Dil Fac Prepared

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 489093

%Rec.

08/28/19 09:38 08/28/19 15:40

Limits

%Rec 103 80 - 120

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 489093 %Rec. **RPD**

%Rec Limits **RPD** Limit 100 80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 489919**

Prepared Analyzed 09/05/19 06:00 09/05/19 17:20

Client Sample ID: Lab Control Sample

%Rec

92

Prep Type: Total/NA

Prep Batch: 489919 %Rec.

Limits

80 - 120

Eurofins TestAmerica, Buffalo

RL

0.0050

Job ID: 480-157980-1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: LCSD 480-489919/23-A Client Sample ID: Lab Control Sample Dup

Matrix: Water

Prep Type: Total/NA Analysis Batch: 490526 **Prep Batch: 489919** Spike LCSD LCSD %Rec.

RPD Added Result Qualifier %Rec Limits RPD Limit Analyte Unit Selenium 0.0200 0.0183 91 80 - 120 20 mg/L n

Lab Sample ID: MB 480-489963/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Prep Batch: 489963**

Analysis Batch: 490524 MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.0010 09/04/19 08:33 09/05/19 15:27 Selenium, Dissolved ND mg/L

Lab Sample ID: LCS 480-489963/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA Analysis Batch: 490524 **Prep Batch: 489963**

Spike LCS LCS %Rec. Added Result Qualifier Unit Limits Analyte D %Rec Selenium, Dissolved 0.0200 92 80 - 120 0.0184 mg/L

Lab Sample ID: MB 480-490196/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 490991 MB MB

Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed

Selenium, Dissolved $\overline{\mathsf{ND}}$ 0.0010 09/06/19 10:50 09/09/19 13:17 mq/L

Lab Sample ID: LCS 480-490196/2-A

Matrix: Water

Analysis Batch: 490991 Spike LCS LCS

%Rec. Limits Analyte Added Result Qualifier Unit %Rec Selenium, Dissolved 0.0200 0.0194 97 80 - 120 mg/L

Lab Sample ID: MB 480-490409/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 490643

MB MB

MDL Unit Analyte Result Qualifier Prepared Analyzed

mg/L Selenium $\overline{\mathsf{ND}}$ 0.0050 09/06/19 06:30 09/06/19 13:30

Lab Sample ID: LCS 480-490409/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 490643 **Prep Batch: 490409**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Selenium 0.0200 0.0189 80 - 120 mg/L

Lab Sample ID: 480-157980-4 MS Client Sample ID: MW-17 **Matrix: Ground Water Prep Type: Dissolved**

Analysis Batch: 488670 Prep Batch: 488391 Sample Sample Spike MS MS %Rec.

Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Selenium, Dissolved ND 0.0200 0.0202 mg/L 101 75 - 125

Eurofins TestAmerica, Buffalo

Prep Batch: 490196

Prep Type: Total/NA

Prep Batch: 490196

Prep Batch: 490409

Client Sample ID: Lab Control Sample

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: 480-15798	0-4 MSD							Cli	ent Sampl	le ID: M	W-17
Matrix: Ground Water									Prep Typ	e: Diss	olved
Analysis Batch: 488670									Prep Ba	atch: 48	38391
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Selenium Dissolved	ND		0.0200	0.0200		ma/l		100	75 - 125		20

Lab Sample ID: 480-15814 Matrix: Ground Water	5-1 MS								•	ID: MW-50 Dissolved
Analysis Batch: 489346	Sample	Sample	Spike	MS	Me				Prep Bat %Rec.	ch: 489093
	•	•	•				_	0/ =		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Selenium, Dissolved	ND		0.0200	0.0203		mg/L		102	75 - 125	

Lab Sample ID: 480-15814 Matrix: Ground Water	5-1 MSD								ent Sampl Prep Type		
Analysis Batch: 489346	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.	itch: 48	3 <mark>9093</mark> RPD
Analyte Selenium, Dissolved	Result ND	Qualifier	Added 0.0200	Result 0.0198	Qualifier	Unit mg/L	D	%Rec 99	Limits 75 - 125	RPD 3	Limit 20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-488784/	1-A						Client Samp	le ID: Method	Blank
Matrix: Water								Prep Type: To	otal/NA
Analysis Batch: 488894								Prep Batch:	488784
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:20	1

Lab Sample ID: LCS 480-488784/2-A Matrix: Water Analysis Batch: 488894			Cli	ent Saı	mple ID	Prep Type: Total/NA Prep Batch: 488784	
Analysis Baton: 400004	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

Mercury —	0.00667	0.00675	mg/L	101 80 - 120
Lab Sample ID: MB 480-488785/1-A Matrix: Water Analysis Batch: 488894				Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 488785

Allalysis Datell. 400034								i rep baten.	1 00700
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		08/26/19 12:12	08/26/19 15:58	1

Lab Sample ID: LCS 480-488785/2-A				Clie	ent Sar	nple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 488894							Prep Batch: 488785
•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.00667	0.00658		mg/L		99	80 - 120

Eurofins TestAmerica, Buffalo

3

5

7

9

11

12

14

16

17

18

Project/Site: Chaffee Facility Western Exp-GW Baselin

Mercury

Mercury, Dissolved

Method: 7470A - Mercury (CVAA) (Continued)

ND

ND

Lab Sample ID: 480-157980-4 M	IS							Clie	nt Sample ID: MW-17
Matrix: Ground Water									Prep Type: Total/NA
Analysis Batch: 488894									Prep Batch: 488785
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.00708

mg/L

mg/L

106

80 - 120

08/27/19 11:20 08/27/19 14:21

0.00667

Lab Sample ID: 480-15798 Matrix: Ground Water	0-4 MSD							Clic	ent Sampl Prep Ty		
Analysis Batch: 488894	Sample	Sample	Spike	MSD	MSD				Prep Ba	•	
Analyte Mercury	Result	Qualifier	Added 0.00667	Result 0.00697	Qualifier	Unit mg/L	D	%Rec	Limits 80 - 120	RPD	Limit 20

Lab Sample ID: MB 480-489002 Matrix: Water	/1- A							le ID: Method Prep Type: To	
Analysis Batch: 489089								Prep Batch:	489002
•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		mg/L		08/27/19 11:20	08/27/19 14:21	1

0.00020

Lab Sample ID: LCS 480-489002/2-A	•						: Lab Control Sam	ple
Matrix: Water							Prep Type: Total/	/NA
Analysis Batch: 489089							Prep Batch: 4890	002
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00667	0.00697		mg/L		104	80 - 120	
Mercury, Dissolved	0.00667	0.00697		mg/L		104	80 - 120	

_ · · · · ,,		3	
Lab Sample ID: MB 480-489108/1-A		Clie	ent Sample ID: Method Blank
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 489303			Prep Batch: 489108
MB MB			•

Analyte		ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	ND		0.00020		mg/L		08/28/19 11:32	08/28/19 14:07	1

Lab Sample ID: LCS 480-489108/2-A	•					Client Sample ID: Lab Control Sampl						
Matrix: Water							Prep Type: Total/NA					
Analysis Batch: 489303							Prep Batch: 489108					
•	Spike	LCS	LCS				%Rec.					
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits					
Mercury Dissolved	0.00667	0.00712		ma/l		107	80 120					

Lab Sample ID: MB 480-489397/1-A Matrix: Water Analysis Batch: 489514				Client Sample ID: Method Blan Prep Type: Total/N Prep Batch: 48939					
-	MB	MB						-	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	ND		0.00020		mg/L		08/29/19 11:53	08/29/19 14:52	1

Eurofins TestAmerica, Buffalo

9/30/2019

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Prep Type: Total/NA

Prep Batch: 491032

Prep Type: Total/NA

Prep Batch: 491032

%Rec.

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LCS 480-489397/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 489514 **Prep Batch: 489397** Spike LCS LCS %Rec.

Added Result Qualifier %Rec Limits Analyte Unit Mercury, Dissolved 0.00667 0.00695 104 80 - 120 mg/L

Lab Sample ID: MB 480-489875/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 489986 Prep Batch: 489875**

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.00020 09/03/19 11:54 09/03/19 15:28 Mercury ND mg/L

Lab Sample ID: LCS 480-489875/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 489986 Prep Batch: 489875** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.00667 93 80 - 120 Mercury 0.00622 mg/L

Lab Sample ID: MB 480-491032/1-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 491285

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Mercury $\overline{\mathsf{ND}}$ 0.00020 09/10/19 11:40 09/10/19 15:41 mq/L

Lab Sample ID: LCS 480-491032/2-A **Client Sample ID: Lab Control Sample**

Analysis Batch: 491285

Matrix: Water

Spike LCS LCS Added Analyte Result Qualifier Unit %Rec

Limits 0.00667 0.00693 104 80 - 120 Mercury mg/L

Lab Sample ID: MB 480-491034/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 491285** Prep Batch: 491034

MR MR

MDL Unit Analyte Result Qualifier Prepared Analyzed 09/10/19 11:40 09/10/19 16:59 $\overline{\mathsf{ND}}$ 0.00020 ma/L

Mercury **Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 480-491034/2-A

Matrix: Water Prep Type: Total/NA **Analysis Batch: 491285** Prep Batch: 491034

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Mercury 0.00667 0.00690 mg/L 103 80 - 120

Lab Sample ID: MB 480-492571/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 492778

MB MB RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 0.00020 09/18/19 11:00 09/18/19 14:14 Mercury, Dissolved ND mg/L

Eurofins TestAmerica, Buffalo

Prep Batch: 492571

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: Lab Control Sample							
Prep Type: Total/NA							
Prep Batch: 492571							
%Rec.							
Rec Limits							
105 80 - 120							

Lab Sample ID: 480-157980)-4 MS							Clie	ent Sample ID: MW-17	
Matrix: Ground Water									Prep Type: Dissolved	
Analysis Batch: 489089									Prep Batch: 489002	
•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury. Dissolved	ND	-	0.00667	0.00675	-	ma/L		101	80 - 120	

Lab Sample ID: 480-157980	-4 MSD							Clie	ent Sampl	e ID: M	W-17
Matrix: Ground Water									Prep Type	e: Diss	olved
Analysis Batch: 489089									Prep Ba	itch: 48	39002
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury, Dissolved	ND		0.00667	0.00693		mg/L		104	80 - 120	3	20

Lab Sample ID: 480-157980)-10 MS							Clier	nt Sample	ID: MW-P(S)
Matrix: Ground Water									Prep Type	e: Dissolved
Analysis Batch: 489303									Prep Ba	tch: 489108
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury, Dissolved	ND		0.00667	0.00705		mg/L		106	80 - 120	

Lab Sample ID: 480-15/980-10 MSD									t Sample	ID: MW	-P(S)
Matrix: Ground Water									Prep Type	e: Diss	olved
Analysis Batch: 489303									Prep Ba	atch: 48	39108
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury, Dissolved	ND		0.00667	0.00708		mg/L		106	80 - 120	0	20

Method: 300.0 - Anions, Ion Chromatography

	Lab Sample ID: MB 480-488982/28	Client Sample ID: Method Blank
	Matrix: Water	Prep Type: Total/NA
	Analysis Batch: 488982	
- 1	MD MD	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20		mg/L			08/27/19 18:07	1

Lab Sample ID: MB 480-488982/4	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch, 400000	

, , , , , , , , , , , , , , , , , , , ,	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromide	ND		0.20		mg/L			08/27/19 12:13	1

Job ID: 480-157980-1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 480-488982/27 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488982 Spike LCS LCS %Rec. Added Result Qualifier %Rec Unit

Analyte Limits Bromide 5.00 94 90 - 110 4.68 mg/L

Lab Sample ID: LCS 480-488982/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488982 LCS LCS Spike %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits 5.00 Bromide 4.68 mg/L 94 90 - 110

Lab Sample ID: 480-157980-4 MS Client Sample ID: MW-17 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 488982

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Bromide 25.0 80 - 120 ND 24.70 mg/L 99

Lab Sample ID: 480-157980-4 MSD Client Sample ID: MW-17 Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 488982

Spike MSD MSD **RPD** Sample Sample %Rec. Added Analyte Result Qualifier Result Qualifier %Rec Limits **RPD** Limit Unit D Bromide ND 25.0 24.48 98 80 - 120 mg/L

Lab Sample ID: MB 480-489055/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Bromide

Analysis Batch: 489055

MB MB **Analyte** Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Bromide 0.20 08/28/19 02:52 ND mg/L

Lab Sample ID: LCS 480-489055/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489055

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits

5.00

Lab Sample ID: MB 480-489098/4 Client Sample ID: Method Blank

4.77

mg/L

95

90 - 110

Matrix: Water Prep Type: Total/NA

Analysis Batch: 489098

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Bromide $\overline{\mathsf{ND}}$ 0.20 mg/L 08/28/19 11:38

Lab Sample ID: LCS 480-489098/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489098

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Bromide 5.00 4.76 mg/L 95 90 - 110

Eurofins TestAmerica, Buffalo

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-490899/28 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 490899

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Bromide 0.20 09/09/19 19:26 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: MB 480-490899/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 490899

MB MB

Analyte Result Qualifier RL **MDL** Unit D **Prepared** Analyzed Dil Fac 0.20 Bromide ND mg/L 09/09/19 13:33

Lab Sample ID: LCS 480-490899/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 490899

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Bromide 5.00 90 4.50 mg/L 90 - 110

Lab Sample ID: LCS 480-490899/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 490899

Spike LCS LCS %Rec. Added Analyte Result Qualifier D %Rec Limits Unit Bromide 5.00 4.78 96 90 - 110 mg/L

Method: 310.2 - Alkalinity

Lab Sample ID: MB 480-488908/109 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 488908

MB MB Analyte Result Qualifier RI **MDL** Unit D Prepared Analyzed Dil Fac Alkalinity, Total $\overline{\mathsf{ND}}$ 5.0 mg/L 08/27/19 00:06

Lab Sample ID: MB 480-488908/125 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488908

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 5.0 08/27/19 00:19 Alkalinity, Total $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: MB 480-488908/90 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488908

MR MR Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac mg/L Alkalinity, Total $\overline{\mathsf{ND}}$ 5.0 08/26/19 23:46

Eurofins TestAmerica, Buffalo

9/30/2019

Job ID: 480-157980-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-17

Client Sample ID: MW-17

Prep Type: Total/NA

Prep Type: Total/NA

Client: Waste Management Project/Site: Chaffee Facility Western Exp-GW Baselin

Lab Sample ID: MB 480-488908/96

Matrix: Water

Analysis Batch: 488908

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Alkalinity, Total 5.0 mg/L 08/26/19 23:55 ND

Lab Sample ID: LCS 480-488908/110

Matrix: Water

Analysis Batch: 488908

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 50.0 Alkalinity, Total 51.97 mg/L 104 90 - 110

Lab Sample ID: LCS 480-488908/126

Matrix: Water

Analysis Batch: 488908

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec 50.0 Alkalinity, Total 50.67 mg/L 101 90 - 110

Lab Sample ID: LCS 480-488908/91

Matrix: Water

Analysis Batch: 488908

Spike LCS LCS %Rec. Added D %Rec Analyte Result Qualifier Limits Unit Alkalinity, Total 50.0 49.40 99 90 - 110 mg/L

Lab Sample ID: LCS 480-488908/97

Matrix: Water

Analysis Batch: 488908

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits 50.0 109 90 - 110 Alkalinity, Total 54.26 mg/L

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Analysis Batch: 488908

MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Alkalinity, Total 324 20.0 345.9 4 mg/L 109 60 - 140

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 488908

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Alkalinity, Total 324 20.0 355.1 4 156 60 - 140 mg/L

Lab Sample ID: MB 480-489320/73

Matrix: Water

Analysis Batch: 489320

MB MB RL Analyte Result Qualifier **MDL** Unit D Analyzed Dil Fac Prepared 5.0 08/28/19 21:10 Alkalinity, Total ND mg/L

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 3	310.2 - Al	kalinity
-----------	------------	----------

Lab Sample ID: LCS 480-489320/74				Clie	nt Sai	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 489320							
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

Lab Sample ID: MB 480-491046/19 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

54.07

mg/L

50.0

Analysis Batch: 491046

Alkalinity, Total

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND	5.0	mg/L			09/09/19 16:19	1

Lab Sample ID: MB 480-491046/43 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 491046

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Alkalinity, Total 5.0 09/09/19 17:01 ND mg/L

Lab Sample ID: MB 480-491046/51 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 491046

MB MB **MDL** Unit Result Qualifier RL Analyte Analyzed Dil Fac Prepared Alkalinity, Total ND 5.0 mg/L 09/09/19 17:07

Client Sample ID: Method Blank Lab Sample ID: MB 480-491046/70 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 491046

	IVID	IVID							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND		5.0	n	ng/L			09/09/19 17:17	1

MD MD

Lab Sample ID: MB 480-491046/80 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 491046

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	ND		5.0		mg/L			09/09/19 17:22	1

Lab Sample ID: LCS 480-491046/20 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 491046

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total	50.0	53.61		mg/L		107	90 - 110	

Lab Sample ID: LCS 480-491046/44 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 491046

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total	 50.0	49.72		mg/L		99	90 - 110	

Eurofins TestAmerica, Buffalo

108

90 - 110

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 310.2 - Alkalinity

Matrix: Water

Alkalinity, Total

Lab Sample ID: LCS 480-491046/52

Client Sample ID: Lab Control Sample Prep Type: Total/NA

100

90 - 110

Analysis Batch: 491046 Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit Alkalinity, Total 50.0 103 90 - 110

Lab Sample ID: LCS 480-491046/71 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

51.57

49.77

mg/L

mg/L

Analysis Batch: 491046

50.0

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Lab Sample ID: LCS 480-491046/81 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 491046 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit I imits D %Rec Alkalinity, Total 50.0 49.40 mg/L 90 - 110

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: MB 480-488376/123 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488376

MB MB

Analyte Result Qualifier RI **MDL** Unit Prepared Analyzed Dil Fac 0.050 Ammonia (as N) ND mg/L as N 08/22/19 11:33

Lab Sample ID: MB 480-488376/147 **Client Sample ID: Method Blank** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 488376

MB MB MDL Unit Analyte Result Qualifier RI Prepared Analyzed Dil Fac Ammonia (as N) $\overline{\mathsf{ND}}$ 0.050 mg/L as N 08/22/19 11:54

Lab Sample ID: LCS 480-488376/124 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488376

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit D %Rec Limits Ammonia (as N) 1.00 1.03 103 mg/L as N 90 - 110

Lab Sample ID: LCS 480-488376/148 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488376

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 90 - 110 Ammonia (as N) 1.00 1.03 mg/L as N 103

Eurofins TestAmerica, Buffalo

9/30/2019

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Method: 350.1 - Nitrogen, Ammonia (Continued)

Lab Sample ID: 480-157980-4 MS Client Sample ID: MW-17 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 488376

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit Ammonia (as N) ND F1 0.200 0.192 F1 72 90 - 110 mg/L as N

Lab Sample ID: 480-157980-4 MSD Client Sample ID: MW-17 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 488376

RPD MSD MSD %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit ND F1 0.200 Ammonia (as N) 0.193 F1 mg/L as N 72 90 - 110

Lab Sample ID: 480-157980-6 MS Client Sample ID: MW-L(I) **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 488376

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Ammonia (as N) ND F1 0.200 0.197 F1 85 90 - 110 mg/L as N

Lab Sample ID: MB 480-488778/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488778

MB MB Analyte Result Qualifier RL**MDL** Unit Dil Fac Prepared Analyzed Ammonia (as N) $\overline{\mathsf{ND}}$ 0.050 mg/L as N 08/26/19 09:08

Lab Sample ID: LCS 480-488778/28 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488778

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 1.00 101 90 - 110 Ammonia (as N) 1.01 mg/L as N

Lab Sample ID: MB 480-489211/27 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489211

MB MB Analyte Result Qualifier MDL Unit Prepared Analyzed Ammonia (as N) ND 0.050 mg/L as N 08/28/19 09:03

Lab Sample ID: MB 480-489211/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489211

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ammonia (as N) $\overline{\mathsf{ND}}$ 0.050 mg/L as N 08/28/19 08:42

Lab Sample ID: LCS 480-489211/28 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489211

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Ammonia (as N) 1.00 1.01 mg/L as N 101 90 - 110

Eurofins TestAmerica, Buffalo

LCS LCS

1.02

Result Qualifier

MDL Unit

MDL Unit

Result Qualifier Unit

LCS LCS

LCS LCS

MS MS

0.138 F1

Result Qualifier

1.01

Result Qualifier

1.02

mg/L as N

mg/L as N

mg/L as N

Unit

Unit

mg/L as N

mg/L as N

Unit

mg/L as N

Spike

Added

MB MB

MB MB

 $\overline{\mathsf{ND}}$

Result Qualifier

ND

Result Qualifier

1.00

RL

RL

0.050

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

0.200

0.050

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac

Client Sample ID: Lab Control Sample

%Rec

Prepared

Prepared

D %Rec

%Rec

%Rec

Prepared

69

101

102

102

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

%Rec

Limits

90 - 110

Client Sample ID: FIELD BLANK

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Analyzed

09/06/19 12:33

Client Sample ID: Lab Control Sample

90 - 110

Analyzed

09/06/19 08:12

Analyzed

09/06/19 08:33

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: LCS 480-489211/4

Matrix: Water

Analysis Batch: 489211

Analyte

Ammonia (as N)

Lab Sample ID: MB 480-490559/27 **Matrix: Water**

Analysis Batch: 490559

Analyte

Ammonia (as N)

Lab Sample ID: MB 480-490559/51

Matrix: Water

Analysis Batch: 490559

Analyte Ammonia (as N)

Lab Sample ID: LCS 480-490559/28 **Matrix: Water**

Analysis Batch: 490559

Analyte

Ammonia (as N)

Lab Sample ID: LCS 480-490559/52

Matrix: Water

Analysis Batch: 490559

Analyte

Ammonia (as N)

Lab Sample ID: 480-158409-1 MS **Matrix: Water**

Analysis Batch: 490559

Analyte

Ammonia (as N)

Lab Sample ID: MB 480-490641/27 **Matrix: Water**

Analysis Batch: 490641

Analyte Ammonia (as N)

Matrix: Water

Analysis Batch: 490641

Lab Sample ID: MB 480-490641/3

Analyte

Result Qualifier Ammonia (as N)

ND

MB MB

MB MB

ND

Result Qualifier

Sample Sample

ND F1

Result Qualifier

RL 0.050

RL

0.050

MDL Unit

MDL Unit

mg/L as N

mg/L as N

Prepared

Analyzed Dil Fac 09/06/19 12:12

9/30/2019

Prep Type: Total/NA

Eurofins TestAmerica, Buffalo

Dil Fac

Dil Fac

Spike

Added

1.00

Spike

Added

1.00

Spike

Added

0.200

Spike

Added

2.50

RI

0.15

Client: Waste Management Job ID: 480-157980-1

LCS LCS

LCS LCS

MS MS

0.159 F1

Result Qualifier Unit

MDL Unit

Result Qualifier Unit

MDL Unit

LCS LCS

2.32

mg/L as N

1.04

Result Qualifier

1.03

Result Qualifier

Unit

Unit

mg/L as N

mg/L as N

mg/L as N

mg/L as N

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 350.1 - Nitrogen, Ammonia

Lab Sample ID: LCS 480-490641/28

Matrix: Water

Analysis Batch: 490641

Analyte Ammonia (as N)

Lab Sample ID: LCS 480-490641/4 **Matrix: Water**

Analysis Batch: 490641

Analyte

Ammonia (as N)

Lab Sample ID: 480-158492-1 MS

Matrix: Ground Water

Analysis Batch: 490641

Analyte

Ammonia (as N)

Method: 351.2 - Nitrogen, Total Kjeldahl

Sample Sample

ND F1

Result Qualifier

MB MB

MB MB

 $\overline{\mathsf{ND}}$

ND

Result Qualifier

Lab Sample ID: MB 480-488505/1-A

Matrix: Water

Analysis Batch: 488896

Analyte

Total Kjeldahl Nitrogen

Lab Sample ID: LCS 480-488505/2-A

Matrix: Water

Analysis Batch: 488896

Analyte Total Kjeldahl Nitrogen

Lab Sample ID: MB 480-488630/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 488896

Result Qualifier

Total Kjeldahl Nitrogen

Lab Sample ID: LCS 480-488630/2-A

Analysis Batch: 488896

Total Kjeldahl Nitrogen

Added 2.50

Spike

RL

0.15

2.36

LCS LCS

Result Qualifier Unit mg/L as N

mg/L as N

D %Rec

Prepared

93

90 - 110

%Rec.

Prep Type: Total/NA

90 - 110

Client Sample ID: Lab Control Sample

Limits

%Rec

103

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec. D %Rec Limits

90 - 110

Client Sample ID: MWSE-1

Prep Type: Total/NA

%Rec.

D %Rec I imits

80

90 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 488505

Analyzed Dil Fac

Prepared 08/23/19 09:14 08/26/19 13:55

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 488505

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

Prep Batch: 488630

Dil Fac

Client Sample ID: Lab Control Sample Prep Type: Total/NA

08/24/19 08:41 08/26/19 09:12

Prep Batch: 488630

%Rec. Limits

Eurofins TestAmerica, Buffalo

Project/Site: Chaffee Facility Western Exp-GW Baselin

Lab Sample ID: MB 480-490033/1-A

Method: 351.2 - Nitrogen, Total Kjeldahl (Continued)

Lab Sample ID: 480-15798	0-4 MS							Clie	ent Sample	e ID: MW-17
Matrix: Ground Water									Prep Typ	e: Total/NA
Analysis Batch: 488896									Prep Ba	tch: 488630
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Kjeldahl Nitrogen	ND		1.00	1.02		mg/L as N	_	102	90 - 110	

Lab Sample ID: 480-157980 Matrix: Ground Water	0-4 MSD							Clie	ent Sampl Prep Ty		
Analysis Batch: 488896									Prep Ba	atch: 4	88630
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Kjeldahl Nitrogen	ND		1.00	0.976		mg/L as N	_	98	90 - 110	4	20

Lab Sample ID: MB 480-48930 Matrix: Water Analysis Batch: 489787	67/1-A							ole ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		08/29/19 09:01	09/01/19 13:01	1

Lab Sample ID: LCS 480-489367/2-A				Client	Sai	mple ID	: Lab Cor	ntrol Sample
Matrix: Water							Prep Ty	pe: Total/NA
Analysis Batch: 489787							Prep Ba	atch: 489367
•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Kjeldahl Nitrogen	2.50	2.27		mg/L as N	_	91	90 - 110	

Matrix: water Analysis Batch: 490147								Prep Type: To Prep Batch: 4	
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N	_	09/04/19 08:05	09/04/19 12:44	1

Lab Sample ID: LCS 480-490033/2-A	Client Sample ID: Lab Control Samp								
Matrix: Water							Prep Type: Total/NA		
Analysis Batch: 490147							Prep Batch: 490033		
	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Kjeldahl Nitrogen	2.50	2.38		mg/L as N	_	95	90 - 110		

Lab Sample ID: 480-15809 Matrix: Water	3-3 MS							Clier	nt Sample ID: MW-Q(I) Prep Type: Total/NA
Analysis Batch: 490147									Prep Batch: 490033
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Total Kjeldahl Nitrogen	0.26	F1	1.00	1.13	F1	mg/L as N	_	88	90 - 110

Lab Sample ID: MB 480-490387	7/1-A						Client Samp	le ID: Method	Blank	
Matrix: Water								Prep Type: To	otal/NA	
Analysis Batch: 490924								Prep Batch:	490387	
-	MB	MB						-		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Kjeldahl Nitrogen	ND		0.15		mg/L as N		09/05/19 13:33	09/08/19 15:59	1	

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

9/30/2019

Job ID: 480-157980-1

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: LCS 480-490387/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA Analysis Batch: 490924 **Prep Batch: 490387** Spike LCS LCS %Rec.

Added Result Qualifier D %Rec Limits Analyte Unit Total Kjeldahl Nitrogen 2.50 2.28 mg/L as N 91 90 - 110

Lab Sample ID: MB 480-491906/1-A **Client Sample ID: Method Blank**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 492180 Prep Batch: 491906**

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed 0.15 09/13/19 10:03 09/15/19 09:54 Total Kjeldahl Nitrogen ND mg/L as N

Lab Sample ID: LCS 480-491906/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 492180 Prep Batch: 491906

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Kjeldahl Nitrogen 2.50 2.37 95 90 - 110 mg/L as N

Lab Sample ID: 480-158409-1 DU Client Sample ID: FIELD BLANK **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 492180 Prep Batch: 491906 Sample Sample DU DU

RPD Result Qualifier Result Qualifier Unit RPD Limit Analyte

Total Kjeldahl Nitrogen $\overline{\mathsf{ND}}$ 4.14 mg/L as N

Lab Sample ID: MB 480-492388/1-A

Matrix: Water Prep Type: Total/NA Analysis Batch: 492583 Prep Batch: 492388

MB MB

RI MDL Unit Dil Fac Analyte Result Qualifier Prepared Analyzed

Total Kjeldahl Nitrogen 0.15 mg/L as N 09/17/19 07:30 09/17/19 15:18

Lab Sample ID: LCS 480-492388/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 492583 Prep Batch: 492388**

LCS LCS Spike %Rec. Added Result Qualifier Unit Limits

Total Kjeldahl Nitrogen 2.50 2.39 mg/L as N 90 - 110

Client Sample ID: MW-O(I) Lab Sample ID: 480-158409-4 MS **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 492583 Prep Batch: 492388

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit Limits Total Kjeldahl Nitrogen ND 1 00 0.957 mg/L as N 96 90 - 110

Lab Sample ID: MB 480-492889/1-A **Client Sample ID: Method Blank**

Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 493403 Prep Batch: 492889

MB MB Result Qualifier RL Analyte MDL Unit Prepared Analyzed Dil Fac Total Kjeldahl Nitrogen 0.15 09/19/19 09:22 09/22/19 08:58 ND mg/L as N

Eurofins TestAmerica, Buffalo

9/30/2019

Client Sample ID: Method Blank

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 351.2 - Nitrogen, Total Kjeldahl

Lab Sample ID: LCS 480-492889/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 493403 **Prep Batch: 492889** Spike LCS LCS %Rec.

Analyte Added Result Qualifier %Rec Limits Unit 90 - 110 Total Kjeldahl Nitrogen 2.50 2.27 91 mg/L as N

Lab Sample ID: MB 480-494488/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 494800 Prep Batch: 494488**

MB MB

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.15 09/27/19 08:32 09/29/19 10:45 Total Kjeldahl Nitrogen ND mg/L as N

Lab Sample ID: LCS 480-494488/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 494800 Prep Batch: 494488** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec

Lab Sample ID: 480-158409-1 DU Client Sample ID: FIELD BLANK

2.44

2.50

Matrix: Water

Total Kjeldahl Nitrogen

Analysis Batch: 494800 Prep Batch: 494488 Sample Sample DU DU **RPD** Result Qualifier Result Qualifier Unit RPD Limit Analyte Total Kieldahl Nitrogen $\overline{\mathsf{ND}}$ $\overline{\mathsf{H}}$ ND mg/L as N 20

Method: 410.4 - COD

Client Sample ID: Method Blank Lab Sample ID: MB 480-488689/28 Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 488689

MB MB Analyte Result Qualifier RI MDI Unit Prepared Analyzed Dil Fac Chemical Oxygen Demand $\overline{\mathsf{ND}}$ 5.0 mg/L 08/23/19 18:15

Lab Sample ID: MB 480-488689/52 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488689

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 5.0 08/23/19 18:15 Chemical Oxygen Demand $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-488689/29 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488689

LCS LCS Spike %Rec. Added Result Qualifier Limits **Chemical Oxygen Demand** 25.0 25.67 mg/L 103 90 _ 110

Eurofins TestAmerica, Buffalo

9/30/2019

97

mg/L as N

90 - 110

Prep Type: Total/NA

%Rec.

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: MW-17

Client Sample ID: MW-17

Prep Type: Total/NA

Prep Type: Total/NA

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 41	10.4 - COD	(Continued)
------------	------------	-------------

Lab Sample ID: LCS 480-488689/53	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

Matrix: Water

Client: Waste Management

Analysis Batch: 488689 LCS LCS Spike

Added Result Qualifier Unit %Rec Limits Analyte Chemical Oxygen Demand 25.0 25.33 101 90 - 110 mg/L

Lab Sample ID: MB 480-488739/28 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488739 MB MB

Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 5.0 **Chemical Oxygen Demand** ND mg/L 08/25/19 14:34

Lab Sample ID: MB 480-488739/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488739

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared **Chemical Oxygen Demand** 5.0 08/25/19 13:28 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-488739/29 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488739

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier D %Rec Unit Chemical Oxygen Demand 25.0 26.22 mg/L 105 90 - 110

Lab Sample ID: LCS 480-488739/5

Matrix: Water

Analysis Batch: 488739

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Chemical Oxygen Demand 25.0 101 90 - 110 25.26 mg/L

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Analysis Batch: 488739

Spike MS MS Sample Sample %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Chemical Oxygen Demand 20.7 50.0 63.93 mg/L 87 75 - 125

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 488739

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Unit %Rec Limits Limit **Chemical Oxygen Demand** 20.7 50.0 63.28 85 75 - 125 mg/L

Lab Sample ID: MB 480-489045/3 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489045

MB MB RL **MDL** Unit Analyte Result Qualifier D Analyzed Dil Fac Prepared Chemical Oxygen Demand 5.0 08/27/19 11:23 $\overline{\mathsf{ND}}$ mg/L

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 410.4 - COD

Lab Sample ID: LCS 480-489045/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489045 LCS LCS Spike %Rec. Added Result Qualifier %Rec Limits Analyte Unit

90 - 110 **Chemical Oxygen Demand** 25.0 99 24.86 mg/L

Lab Sample ID: 480-157980-10 MS Client Sample ID: MW-P(S) Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 489045

MS MS %Rec. Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

50.0 **Chemical Oxygen Demand** 7.2 63.37 mg/L 112 75 - 125

Lab Sample ID: 480-157980-10 MSD Client Sample ID: MW-P(S) Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 489045

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit D **Chemical Oxygen Demand** 50.0 90 75 - 125 7.2 52.46 mg/L 19

Lab Sample ID: MB 480-489430/27 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 489430

MB MB

RL Analyte Result Qualifier MDL Unit Dil Fac D Prepared Analyzed

Chemical Oxygen Demand $\overline{\mathsf{ND}}$ 5.0 08/29/19 12:10 mg/L

Lab Sample ID: LCS 480-489430/28

Matrix: Water

Analysis Batch: 489430

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Chemical Oxygen Demand 25.0 25.83 103 90 - 110 mg/L

Lab Sample ID: MB 480-489521/27 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489521

MB MB

MDL Unit Result Qualifier Prepared Analyzed Dil Fac mg/L Chemical Oxygen Demand $\overline{\mathsf{ND}}$ 5.0 08/29/19 15:50

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-489521/28 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489521

Spike LCS LCS %Rec.

Added Result Qualifier Unit %Rec Limits **Chemical Oxygen Demand** 25.0 25.50 102 90 - 110 mg/L

Lab Sample ID: MB 480-490698/51 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 490698

MB MB RL Analyte Result Qualifier MDL Unit D Analyzed Dil Fac Prepared Chemical Oxygen Demand 5.0 09/06/19 14:05 $\overline{\mathsf{ND}}$ mg/L

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 410.4 - COD

Lab Sample ID: MB 480-490698/75

Matrix: Water

Analysis Batch: 490698

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 5.0 Chemical Oxygen Demand mg/L 09/06/19 14:05 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 480-490698/52

Matrix: Water

Analysis Batch: 490698

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

25.0 **Chemical Oxygen Demand** 26.79 mg/L 107

Lab Sample ID: LCS 480-490698/76

Matrix: Water

Analysis Batch: 490698

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits %Rec **Chemical Oxygen Demand** 25.0 90 - 110 26.47 mg/L 106

Lab Sample ID: MB 480-491715/3

Matrix: Water

Analysis Batch: 491715

MB MB

RL Analyte Result Qualifier **MDL** Unit Dil Fac D Prepared Analyzed Chemical Oxygen Demand $\overline{\mathsf{ND}}$ 5.0 09/12/19 12:35 mg/L

Lab Sample ID: LCS 480-491715/4

Matrix: Water

Analysis Batch: 491715

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Chemical Oxygen Demand 25.0 107 90 - 110 26.79 mg/L

Lab Sample ID: 480-158492-3 MS

Matrix: Ground Water

Analysis Batch: 491715

MS MS Sample Sample Spike %Rec. Result Qualifier Result Qualifier Added Unit %Rec Limits Chemical Oxygen Demand ND 50.0 54.39 mg/L 109 75 - 125

Method: 7196A - Chromium, Hexavalent

Lab Sample ID: MB 480-488350/25

Matrix: Water

Analysis Batch: 488350

MR MR

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac mg/L Chromium, hexavalent $\overline{\mathsf{ND}}$ 0.010 08/22/19 08:30

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

90 - 110

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MWSE-3

Client Sample ID: Method Blank

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 7196A - Chromium, Hexavalent (Continued)

Lab Sample ID: MB 480-488350/3	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 488350

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	ND		0.010		mg/L			08/22/19 08:30	1

Lab Sample ID: LCS 480-488350/26			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 488350	Omilia	100 100	N/Pag

	Spike	LCS LCS				%Rec.	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	0.0500	0.0498	mg/L	_	100	85 - 115	 _

Lab Sample ID: LCS 480-488350/4			Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 488350			
	Spike	LCS LCS	%Rec.

Analyte		Added	Result Qu	ualifier Unit	D	%Rec	Limits	
Chromium, hexavalent		0.0500	0.0510	mg/L		102	85 - 115	
_								

Lab Sample ID: 480-157980-4 MS	Client Sample ID: MW-17
Matrix: Ground Water	Prep Type: Total/NA
Analysis Batch: 488350	

_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	ND		0.0500	0.0546		mg/L		109	85 - 115	

Lab Sample ID: 480-157980-4 MSD	Client Sample ID: MW-17
Matrix: Ground Water	Prep Type: Total/NA
Analysis Batch: 488350	

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	ND		0.0500	0.0558		mg/L		112	85 - 115	2	20

Lab Sample ID: 480-157980-8 MS	Client Sample ID: MW-M(S)
Matrix: Ground Water	Prep Type: Total/NA
Analysis Batch: 488350	• •

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits
Anaivie Result Qualifier Added Result Qualifier Util D %Rec Liffils

Lab Sample ID: 480-157980-2 DU	Client Sample ID: MW-16
Matrix: Ground Water	Prep Type: Total/NA

Analysis Batch: 488350									
-	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Chromium, hexavalent	ND		ND		mg/L		 	NC	20

Lab Sample ID: 480-157980-7 DU	Client Sample ID: MW-M(I)
Matrix: Ground Water	Prep Type: Total/NA
Analysis Batch: 488350	

Alialysis balcii. 400000								
-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Chromium, hexavalent	ND		<u>ND</u>		mg/L		NC	20

Eurofins TestAmerica, Buffalo

9/30/2019

Page 186 of 314

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-50

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client: Waste Management Project/Site: Chaffee Facility Western Exp-GW Baselin

Lab Sample ID: MB 480-488637/3

Matrix: Water

Analysis Batch: 488637

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Chromium, hexavalent 0.010 08/24/19 08:15 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-488637/4

Matrix: Water

Analysis Batch: 488637

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chromium, hexavalent 0.0500 0.0498 mg/L 100 85 - 115

Lab Sample ID: MB 480-489096/3

Matrix: Water

Analysis Batch: 489096

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Chromium, hexavalent 0.010 08/27/19 11:11 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-489096/4

Matrix: Water

Analysis Batch: 489096

Spike LCS LCS %Rec. Added Analyte Result Qualifier D %Rec Limits Unit Chromium, hexavalent 0.0500 0.0510 102 85 - 115 mg/L

Lab Sample ID: 480-158145-1 MS

Matrix: Ground Water

Analysis Batch: 489096

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Chromium, hexavalent ND 0.0500 0.0450 90 85 - 115 mg/L

Lab Sample ID: MB 480-489758/3

Matrix: Water

Analysis Batch: 489758

MB MB

Result Qualifier

MDL Unit Prepared Analyzed mg/L Chromium, hexavalent ND 0.010 08/31/19 09:14

Lab Sample ID: LCS 480-489758/4

Matrix: Water

Analysis Batch: 489758

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits Chromium, hexavalent 0.0500 0.0498 100 85 - 115 mg/L

Lab Sample ID: 480-158409-4 MS

Matrix: Ground Water

Analysis batch: 409750										
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	ND		0.0500	0.0522		mg/L		104	85 - 115	

Eurofins TestAmerica, Buffalo

Client Sample ID: MW-O(I)

Page 187 of 314

NC

Prep Type: Total/NA

Client Sample ID: MWSE-4

Prep Type: Total/NA

20

Project/Site: Chaffee Facility Western Exp-GW Baselin

ND

Lab Sample ID: 480-158409-2 DU					Cilen	t Sample ום: ww	BA-1
Matrix: Ground Water						Prep Type: Tot	al/NA
Analysis Batch: 489758							
Sample	Sample	DU	DU				RPD
Analyte Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit

Lab Sample ID: MB 480-490115/3 **Client Sample ID: Method Blank**

ND

mg/L

Matrix: Water

Chromium, hexavalent

Analysis Batch: 490115

Client: Waste Management

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 0.010 Chromium, hexavalent ND mg/L 09/04/19 09:45

Lab Sample ID: LCS 480-490115/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 490115**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Chromium, hexavalent 0.0500 85 - 115 0.0522 mg/L 104

Lab Sample ID: 480-158492-4 MS Client Sample ID: MWSE-4 Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 490115

Sample Sample Spike MS MS %Rec. Limits Added Analyte Result Qualifier Result Qualifier D %Rec Unit

Chromium, hexavalent ND 0.0500 0.0498 100 85 - 115 mg/L

Lab Sample ID: 480-158492-4 DU

Matrix: Ground Water Analysis Batch: 490115

Sample Sample DU DU **RPD** Result Qualifier RPD Analyte Result Qualifier Unit D Limit Chromium, hexavalent ND ND mg/L

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-489794/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 489906 **Prep Batch: 489794** MB MB

MDL Unit Analyte Result Qualifier RL Prepared Analyzed Dil Fac 0.010 09/01/19 16:04 09/03/19 11:05 Cyanide, Total $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-489794/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489911 **Prep Batch: 489794** LCS LCS Spike %Rec. Unit Limits

Analyte Added Result Qualifier 90 - 110 Cyanide, Total 0.400 0.382 mg/L

9/30/2019

Project/Site: Chaffee Facility Western Exp-GW Baselin

Lab Sample ID: MB 480-490313/1-A

Analyte

Cyanide, Total

Method: 9012B - Cyanide, Total andor Amenable (Continued)

Lab Sample ID: LCS 480-4	89794/3-A			Clie	nt Sai	mple ID	: Lab Contro	ol Sample
Matrix: Water							Prep Type:	Total/NA
Analysis Batch: 489906							Prep Batc	h: 489794
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cyanide, Total	0.250	0.225		mg/L		90	90 - 110	

Lab Sample ID: 480-157980	0-4 MS							Clie	ent Sample ID: MW-17
Matrix: Ground Water									Prep Type: Total/NA
Analysis Batch: 489906									Prep Batch: 489794
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cvanide, Total	ND	F1	0.100	0.0850	F1	ma/L		85	90 - 110

Lab Sample ID: 480-15798	0-4 MSD							Clie	ent Sample	e ID: M	W-17
Matrix: Ground Water									Prep Typ	e: Tot	al/NA
Analysis Batch: 489906									Prep Ba	tch: 48	39794
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cyanide, Total	ND	F1	0.100	0.0838	F1	mg/L		84	90 - 110	1	15

Lab Sample ID: 480-157980 Matrix: Ground Water Analysis Batch: 489911		Sample	Spike	MS	MS			Clie	nt Sample ID: MW-P(I) Prep Type: Total/NA Prep Batch: 489794 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide, Total	ND	F1	0.100	0.0839	F1	mg/L		84	90 - 110

Matrix: Water								Prep Type: To	otal/NA
Analysis Batch: 490396								Prep Batch:	490313
-	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cvanide, Total	ND		0.010		ma/L		09/04/19 20:50	09/05/19 13:22	

Lab Sample ID: LCS 480-490313/2-A				Client	Sample ID	: Lab Control Sample
Matrix: Water						Prep Type: Total/NA
Analysis Batch: 490396						Prep Batch: 490313
-	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Cvanide Total	0.250	0.252		ma/l	101	90 - 110

Cyanide, Total	0.250	0.252	mg/L	101 90 - 110	
Lab Sample ID: MB 480-490819/1-A Matrix: Water Analysis Batch: 490939			Clie		ethod Blank be: Total/NA tch: 490819
M	R MR				

RL

0.010

MDL Unit

mg/L

Result Qualifier

ND

Lab Sample ID: LCS 480-490819/2-A Matrix: Water Analysis Batch: 490939	Spike	LCS	LCS	Clie	ent Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 490819 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Cyanide, Total	0.400	0.376		mg/L		94	90 - 110

Eurofins TestAmerica, Buffalo

Prepared

<u>09/08/19 14:57</u> <u>09/09/19 12:02</u>

Client Sample ID: Method Blank

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: LCS 480-490819/3-A

Matrix: Water

Analysis Batch: 490939

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 490819

Rec.

 Analyte
 Added Cyanide, Total
 Result Qualifier 0.250
 Unit mg/L
 D 96 90 - 110

Lab Sample ID: MB 480-491161/1-A

Matrix: Water

Analysis Batch: 491490

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 491161

MB MB

 Analyte
 Result
 Qualifier
 RL
 MDL mg/L
 Unit mg/L
 D mg/L
 Prepared prepared
 Analyzed pol/19/13:27
 Dil Fac prepared

Lab Sample ID: LCS 480-491161/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 491490 Prep Batch: 491161** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit Limits D %Rec Cyanide, Total 0.250 90 - 110 0.227 mg/L 91

Lab Sample ID: 480-158409-2 MS Client Sample ID: MWBA-1 **Matrix: Ground Water** Prep Type: Total/NA **Analysis Batch: 491490 Prep Batch: 491161** Sample Sample Spike MS MS %Rec. Added Limits Analyte Result Qualifier Result Qualifier D %Rec Unit

 Cyanide, Total
 ND
 F1
 0.100
 ND
 F1
 mg/L
 8
 90 - 110

Lab Sample ID: MB 480-491744/1-A

Matrix: Water

Client Sample ID: Method Blank
Prep Type: Total/NA

Analysis Batch: 491820 MB MB

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Cyanide, Total
 ND
 0.010
 mg/L
 09/12/19 14:04
 09/12/19 17:01
 1

Lab Sample ID: LCS 480-491744/2-A

Matrix: Water

Analysis Batch: 491820

Spike

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 491744
%Rec.

AnalyteAddedResult Organide, TotalQualifier OutputUnit OutputDescription%Rec DescriptionLimitsCyanide, Total0.4000.361mg/Lmg/L9090 - 110

Lab Sample ID: LCS 480-491744/3-A

Matrix: Water

Analysis Batch: 491820

Spike

Analyte

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 491744

Result Qualifier Unit D %Rec Limits

Analyte Added Result Qualifier Unit D %Rec Limits

Cyanide, Total 0.250 0.215 * mg/L 86 90 - 110

Lab Sample ID: MB 480-492183/1-A

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 492325

MB MB

Prep Batch: 492183

AnalyteResult
Cyanide, TotalQualifierRL
NDMDL
0.010Unit
mg/LD
09/15/19 15:19Prepared
09/15/19 15:19Analyzed
09/16/19 12:28Dil Fac
10 Fac
09/15/19 12:28

Eurofins TestAmerica, Buffalo

9/30/2019

Prep Batch: 491744

Project/Site: Chaffee Facility Western Exp-GW Baselin

Cyanide, Total

Cyanide, Total

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: LCS 480-492183/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 492325 Prep Batch: 492183** Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec

0.441

0.277

mg/L

mg/L

110

111

90 - 110

90 - 110

Lab Sample ID: LCS 480-492183/3-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 492183 Analysis Batch: 492325** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 0.250

0.400

Lab Sample ID: MB 480-492184/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 492324** Prep Batch: 492184 MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cyanide, Total 0.010 09/15/19 15:25 09/16/19 13:19 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-492184/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 492324** Prep Batch: 492184 Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier D %Rec Unit Cyanide, Total 0.400 0.407 102 90 - 110 mg/L

Lab Sample ID: MB 480-492463/1-A Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water** Analysis Batch: 492555 Prep Batch: 492463 MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.010 09/17/19 11:02 09/17/19 15:13 Cyanide, Total ND mg/L

Lab Sample ID: LCS 480-492463/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 492555 Prep Batch: 492463** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.400 0.368 mg/L 92 90 - 110

Lab Sample ID: LCS 480-492463/3-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 492555 Prep Batch: 492463** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Cyanide, Total 0.250 0.224 90 90 - 110 mg/L

Lab Sample ID: 480-158492-2 MS Client Sample ID: MWSE-2 **Matrix: Ground Water** Prep Type: Total/NA **Analysis Batch: 492555 Prep Batch: 492463** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Analyte Unit %Rec Limits ND F1 0.0892 F1 Cyanide, Total 0.100 mg/L 89 90 - 110

Eurofins TestAmerica, Buffalo

Page 191 of 314

RL

0.010

Spike

Added

0.400

Spike

Added

0.250

Spike

Added

0.100

Spike

Added

0.100

MDL Unit

LCS LCS

LCS LCS

Result Qualifier

MDL Unit

LCS LCS

MS MS

0.0973 F1

Result Qualifier

0.0898

Result Qualifier

mg/L

0.427

0.274

RI

0.0050

Result Qualifier

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 480-492820/1-A

Matrix: Water

Analysis Batch: 492894

MB MB

Analyte Result Qualifier Cyanide, Total ND

Lab Sample ID: LCS 480-492820/2-A

Matrix: Water Analysis Batch: 492894

Analyte

Cyanide, Total

Lab Sample ID: LCS 480-492820/3-B **Matrix: Water**

Analysis Batch: 492894

Analyte Cyanide, Total

Method: 9065 - Phenolics, Total Recoverable

Lab Sample ID: MB 480-490474/1-A

Matrix: Water

Analysis Batch: 490818

Analyte

Phenolics, Total Recoverable

Lab Sample ID: LCS 480-490474/2-A

Matrix: Water Analysis Batch: 490818

Analyte Phenolics, Total Recoverable

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water Analysis Batch: 490818

Analyte Phenolics, Total Recoverable

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 490818

Phenolics, Total Recoverable

Sample Sample Spike Result Qualifier 0.011 B F1

MB MB

0.00632

Sample Sample

0.011 BF1

Result Qualifier

Result Qualifier

Added 0.100 0.0982 F1

MSD MSD

Result Qualifier

Unit mg/L

87

Limits 90 - 110

%Rec.

RPD

Prep Type: Total/NA

Prep Batch: 490474

Limit

9/30/2019

RPD

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

09/18/19 18:35 09/19/19 08:35

Client Sample ID: Lab Control Sample

%Rec.

Limits

Client Sample ID: Lab Control Sample

90 - 110

%Rec.

Limits

90 - 110

Client Sample ID: Method Blank

09/05/19 23:15 09/08/19 10:54

Client Sample ID: Lab Control Sample

%Rec.

Limits

%Rec.

Limits

90 - 110

90 - 110

Prepared

D %Rec

D %Rec

Prepared

90

%Rec

D %Rec

110

107

Prep Type: Total/NA

Prep Batch: 492820

Prep Type: Total/NA **Prep Batch: 492820**

Prep Type: Total/NA

Prep Batch: 492820

Prep Type: Total/NA

Prep Batch: 490474

Prep Type: Total/NA

Prep Batch: 490474

Prep Type: Total/NA

Prep Batch: 490474

Client Sample ID: MW-17

Client Sample ID: MW-17

Analyzed

Analyzed

Dil Fac

Dil Fac

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 9065 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: 480-157980-9 MS Client Sample ID: MW-P(I) **Matrix: Ground Water** Prep Type: Total/NA Analysis Batch: 490818 **Prep Batch: 490474** Sample Sample Spike MS MS %Rec.

Result Qualifier Added Result Qualifier %Rec Limits Unit Phenolics, Total Recoverable 0.0074 B F1 0.100 0.0937 F1 90 - 110 mg/L 86

Lab Sample ID: MB 480-490714/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 490818 Prep Batch: 490714**

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.0050 09/07/19 00:56 09/08/19 11:04 Phenolics, Total Recoverable 0.00532 mg/L

Lab Sample ID: LCS 480-490714/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 490818 **Prep Batch: 490714**

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Phenolics, Total Recoverable 0.100 0.0901 90 90 - 110 mg/L

Lab Sample ID: MB 480-490716/1-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water Analysis Batch: 490818

MB MB **MDL** Unit Analyte Result Qualifier RLAnalyzed Dil Fac Prepared

09/07/19 01:20 09/08/19 11:33 Phenolics, Total Recoverable 0.00619 0.0050 mg/L

Lab Sample ID: LCS 480-490716/2-A Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA Analysis Batch: 490818 **Prep Batch: 490716** Spike LCS LCS %Rec.

Added Limits Analyte Result Qualifier Unit %Rec Phenolics, Total Recoverable 0.100 0.0917 92 90 - 110 mg/L

Lab Sample ID: MB 480-491834/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA Analysis Batch: 492044 **Prep Batch: 491834**

MR MR **MDL** Unit Result Qualifier Prepared Analyzed

09/12/19 20:24 09/13/19 17:56 Phenolics. Total Recoverable 0.00895 0.0050 ma/L

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-491834/2-A **Matrix: Water** Prep Type: Total/NA Analysis Batch: 492044 **Prep Batch: 491834**

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Phenolics, Total Recoverable 0 100 0.0989 mg/L 99 90 - 110

Lab Sample ID: MB 480-492055/1-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 492319 Prep Batch: 492055 MB MB

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 0.0050 09/13/19 23:44 09/15/19 14:42 Phenolics, Total Recoverable ND mg/L

Eurofins TestAmerica, Buffalo

Prep Batch: 490716

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: 9065 - Phenolics, Total Recoverable

Lab Sample ID: LCS 480-492055/2-A Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Prep Batch: 492055 Analysis Batch: 492319 Spike LCS LCS %Rec.

%Rec Added Result Qualifier Limits Analyte Unit 90 - 110 Phenolics, Total Recoverable 0.100 0.0933 93 mg/L

Lab Sample ID: 480-158409-1 MS Client Sample ID: FIELD BLANK Prep Type: Total/NA

Matrix: Water

Analysis Batch: 492319 Prep Batch: 492055 Spike MS MS %Rec. Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Phenolics, Total Recoverable 0.100 0.0088 F1 0.0848 F1 mg/L 76 90 - 110

Lab Sample ID: MB 480-492371/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 492515

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Phenolics, Total Recoverable 0.0050 09/16/19 23:07 09/17/19 10:24 0.00708 mg/L

Lab Sample ID: LCS 480-492371/2-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 492515

Spike LCS LCS

%Rec. Added Limits Analyte Result Qualifier D %Rec Unit

Phenolics, Total Recoverable 0.100 0.0908 91 90 - 110 mg/L

Lab Sample ID: 480-158492-1 MS

Matrix: Ground Water

Analysis Batch: 492515

Prep Batch: 492371 Sample Sample Spike MS MS %Rec. Added Limits Analyte Result Qualifier Result Qualifier Unit %Rec

Phenolics, Total Recoverable 0.0088 F1 B 0.100 0.0940 F1 85 90 - 110 mg/L

Lab Sample ID: MB 480-492372/1-A

Matrix: Water

Analysis Batch: 492515

MB MB

MDL Unit Result Qualifier Prepared Analyzed mg/L 09/16/19 23:12 09/17/19 10:24 Phenolics, Total Recoverable 0.00744 0.0050

Lab Sample ID: LCS 480-492372/2-A

Matrix: Water

Analysis Batch: 492515

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Phenolics, Total Recoverable 0.100 0.0943 90 - 110 mg/L

Eurofins TestAmerica, Buffalo

9/30/2019

Prep Batch: 492371

Prep Batch: 492371

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 492372

Prep Type: Total/NA

Prep Batch: 492372

Client Sample ID: MWSE-1

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Prep Type: Total/NA

Client Sample ID: DUP

Client Sample ID: MW-18BR

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-488596/3

Matrix: Water

Analysis Batch: 488596

MB MB

Analyte **Result Qualifier** RL **RL** Unit Prepared Analyzed Dil Fac Color 0.0100 Color Units 08/23/19 10:10 ND

Lab Sample ID: LCS 480-488596/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488596

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 30.0 Color Units Color 30.00 100 90 - 110

Lab Sample ID: 480-157980-4 MS Client Sample ID: MW-17 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 488596

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Color ND F1 20.0 Color Units 100 33 - 162 20.00

Lab Sample ID: 480-157980-4 MSD Client Sample ID: MW-17 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 488596

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Limits Analyte Result Qualifier D %Rec RPD Limit Unit Color ND F1 20.0 ND F1 Color Units 33 - 162 NC

Lab Sample ID: 480-157980-1 DU

Matrix: Ground Water

Analysis Batch: 488596

Sample Sample DU DU **RPD** Result Qualifier Analyte Result Qualifier Unit **RPD** Limit Color ND ND Color Units

Lab Sample ID: 480-157980-5 DU

Matrix: Ground Water

Analysis Batch: 488596

DU DU **RPD** Sample Sample Analyte **Result Qualifier** Result Qualifier Unit Limit Color 5.00 5.000 Color Units

Lab Sample ID: MB 480-488668/3

Matrix: Water

Analysis Batch: 488668

MB MB

Analyte Result Qualifier RL **RL** Unit Prepared Analyzed Color ND 0.0100 Color Units 08/24/19 10:16

Lab Sample ID: LCS 480-488668/4

Matrix: Water

Analysis Batch: 488668

Spike LCS LCS %Rec. Added Result Qualifier Unit Analyte D %Rec Limits 30.0 Color 30.00 Color Units 100 90 - 110

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MWBA-2

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: MB 480-489107/3

Matrix: Water

Analysis Batch: 489107

MB MB

Analyte **Result Qualifier** RL **RL** Unit Prepared Analyzed Dil Fac Color ND 0.0100 Color Units 08/27/19 14:20

Lab Sample ID: LCS 480-489107/4

Matrix: Water

Analysis Batch: 489107

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 30.0 100 Color 30.00 Color Units 90 - 110

Lab Sample ID: MB 480-489781/3

Matrix: Water

Analysis Batch: 489781

MB MB

Analyte Result Qualifier RL RL Unit Analyzed Dil Fac Prepared Color 0.0100 Color Units 09/01/19 08:10 ND

Lab Sample ID: LCS 480-489781/4

Matrix: Water

Analysis Batch: 489781

Spike LCS LCS %Rec. Added D %Rec Limits Analyte Result Qualifier Unit Color 30.0 30.00 Color Units 100 90 - 110

Lab Sample ID: 480-158409-3 DU

Matrix: Ground Water

Analysis Batch: 489781

Sample Sample DU DU **RPD** Result Qualifier Analyte Result Qualifier Unit **RPD** Limit Color ND ND Color Units

Lab Sample ID: MB 480-490392/3

Matrix: Water

Analysis Batch: 490392

MB MB

Analyte Result Qualifier

RL Unit Prepared Analyzed Color Units Color ND 0.0100 09/05/19 11:30

Lab Sample ID: LCS 480-490392/4

Matrix: Water

Analysis Batch: 490392

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Color 30.0 30.00 Color Units 100 90 - 110

Lab Sample ID: MB 480-492507/3

Matrix: Water

Analysis Batch: 492507

MB MB

Result Qualifier RL RL Unit Analyte Prepared Analyzed Dil Fac 0.0100 Color Color Units 09/17/19 11:30 ND

Eurofins TestAmerica, Buffalo

Client Sample ID: Method Blank

Spike

Added

30.0

Spike

Added

20.0

Spike

Added

20.0

Spike

Added

214

Spike

Added

500

RL

1.0

Client: Waste Management Job ID: 480-157980-1

LCS LCS

MS MS

MSD MSD

20.00 H

Result Qualifier

MDL Unit

LCS LCS

MS MS

Result Qualifier

208.0

960.0

Result Qualifier

mg/L

Unit

mg/L

Unit

mg/L

20.00 H

Result Qualifier

30.00

Result Qualifier

Unit

Unit

Unit

Color Units

Color Units

Color Units

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 2120B - Color, Colorimetric

Lab Sample ID: LCS 480-492507/4

Matrix: Water

Analysis Batch: 492507

Analyte

Color Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water Analysis Batch: 492507

Analyte

Color

Lab Sample ID: 480-157980-4 MSD **Matrix: Ground Water**

Analysis Batch: 492507

Analyte Color

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Sample Sample

ND H

Sample Sample

ND H

Result Qualifier

MB MB

Result Qualifier

Lab Sample ID: MB 480-489301/3

Matrix: Water

Analysis Batch: 489301

Analyte Result Qualifier Hardness ND

Lab Sample ID: LCS 480-489301/4

Matrix: Water Analysis Batch: 489301

Analyte

Hardness

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Analysis Batch: 489301

Analyte

Hardness Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 489301

Sample Sample Analyte Result Qualifier Hardness 470

Sample Sample

470

Result Qualifier

Spike Added 500

MSD MSD 980.0

Result Qualifier Unit mg/L %Rec

Limits 102

RPD Limit 74 - 130

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec

%Rec

%Rec

Prepared

97

D %Rec

D %Rec

100

100

D

D

100

%Rec.

Limits

%Rec.

Limits

%Rec.

Limits

33 - 162

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

I imits

%Rec.

Limits

%Rec.

74 - 130

90 - 110

Client Sample ID: MW-17

Client Sample ID: MW-17

Prep Type: Total/NA

Analyzed

08/28/19 11:20

33 - 162

90 - 110

Client Sample ID: MW-17

Client Sample ID: MW-17

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

RPD

O

Prep Type: Total/NA

Prep Type: Total/NA

RPD

Limit

Dil Fac

20

Eurofins TestAmerica, Buffalo

RPD

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 2340C - Hardness, Total (mg/l as CaC03) (Continued)

Lab Sample ID: MB 480-489771/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 489771

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Hardness 1.0 08/29/19 13:45 ND mg/L

Lab Sample ID: LCS 480-489771/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 489771

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 214 Hardness 212.0 mg/L 99 90 - 110

Lab Sample ID: 480-157980-6 MS Client Sample ID: MW-L(I) **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 489771

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Hardness 320 200 516.0 mg/L 98 74 - 130

Lab Sample ID: MB 480-491025/27 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 491025

MB MB Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed Hardness $\overline{\mathsf{ND}}$ 1.0 09/09/19 09:45 mg/L

Lab Sample ID: MB 480-491025/3 Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 491025

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.0 09/09/19 09:45 Hardness ND mg/L

Lab Sample ID: LCS 480-491025/28

Matrix: Water

Analysis Batch: 491025

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Hardness 214 208.0 mg/L 97 90 - 110

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 480-491025/4 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 491025

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Hardness 214 212.0 99 90 - 110 mg/L

Lab Sample ID: 480-158093-1 MS Client Sample ID: MW-N(I) **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 491025

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Hardness 430 500 950.0 mg/L 104 74 - 130

Eurofins TestAmerica, Buffalo

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MWSE-4

Client Sample ID: MWSE-4

Method: SM 2340C - Hardness, Total (mg/l as CaC03)

Lab Sample ID: MB 480-492252/3

Matrix: Water

Analysis Batch: 492252

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Hardness 1.0 09/15/19 11:45 ND mg/L

Lab Sample ID: LCS 480-492252/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 492252

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 214 Hardness 204.0 mg/L 95 90 - 110

Lab Sample ID: 480-158409-1 MS Client Sample ID: FIELD BLANK Prep Type: Total/NA

Matrix: Water

Analysis Batch: 492252

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier babb∆ Result Qualifier Limits Unit %Rec 200 Hardness ND 196.0 mg/L 98 74 - 130

Lab Sample ID: 480-158409-1 MSD Client Sample ID: FIELD BLANK Prep Type: Total/NA

Matrix: Water

Analysis Batch: 492252

Spike MSD MSD **RPD** Sample Sample %Rec. Added Analyte Result Qualifier Result Qualifier Limits RPD Limit Unit D %Rec Hardness ND 200 200.0 100 74 - 130 mg/L

Lab Sample ID: MB 480-492757/3

Matrix: Water

Analysis Batch: 492757

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.0 09/18/19 11:45 Hardness ND mg/L

Lab Sample ID: LCS 480-492757/4

Matrix: Water

Analysis Batch: 492757

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Hardness 214 216.0 mg/L 101 90 - 110

Lab Sample ID: 480-158492-4 MS

Matrix: Ground Water

Analysis Batch: 492757

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Hardness 252 200 448.0 98 74 - 130 mg/L

Lab Sample ID: 480-158492-4 MSD

Matrix: Ground Water

Analysis batch: 492757											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Hardness	252		200	444.0		mg/L		96	74 - 130	1	15

Eurofins TestAmerica, Buffalo

9/30/2019

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 480-488496/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488496

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Total Dissolved Solids 10.0 08/23/19 08:29 ND mg/L

Lab Sample ID: LCS 480-488496/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488496

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

500 **Total Dissolved Solids** 510.0 mg/L 102 85 - 115

Lab Sample ID: MB 480-488839/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488839

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared Total Dissolved Solids 10.0 08/26/19 14:39 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-488839/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488839

Spike LCS LCS %Rec. Added D %Rec Analyte Result Qualifier Limits Unit **Total Dissolved Solids** 500 455.0 91 85 - 115 mg/L

Lab Sample ID: MB 480-489206/1

Matrix: Water

Analysis Batch: 489206

MB MB

Analyte Result Qualifier

RL **MDL** Unit D Prepared Analyzed Dil Fac Total Dissolved Solids 10.0 08/28/19 09:29 ND mg/L

Lab Sample ID: LCS 480-489206/2

Matrix: Water

Analysis Batch: 489206

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 500 476.0 mg/L 95 85 - 115

Lab Sample ID: MB 480-490322/1

Matrix: Water

Analysis Batch: 490322

MB MB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids $\overline{\mathsf{ND}}$ 10.0 mg/L 09/05/19 10:32

Lab Sample ID: LCS 480-490322/2

Matrix: Water

Analysis Batch: 490322

Added Analyte **Total Dissolved Solids** 500

Spike

Result Qualifier 461.0

LCS LCS Unit mg/L

%Rec 92 %Rec. Limits

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

85 - 115

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: 480-158492-3 DU **Client Sample ID: MWSE-3** Prep Type: Total/NA

Matrix: Ground Water Analysis Batch: 490322

Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier RPD Limit Unit Total Dissolved Solids 54.0 56.00 mg/L

Lab Sample ID: MB 480-490326/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 490326

MB MB

Analyte Result Qualifier RL **MDL** Unit **Prepared** Analyzed Dil Fac 10.0 **Total Dissolved Solids** ND mg/L 09/05/19 10:44

Lab Sample ID: LCS 480-490326/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 490326

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec I imits **Total Dissolved Solids** 500 490.0 mg/L 98 85 - 115

Method: SM 4110B - Ion Chromatography

Lab Sample ID: MB 480-488983/28 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 488983

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.50 Chloride ND mg/L 08/27/19 18:07 Sulfate ND 2.0 mg/L 08/27/19 18:07

Lab Sample ID: MB 480-488983/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488983

MR MR

Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50		mg/L				08/27/19 12:13	1
Sulfate	ND		2.0		mg/L				08/27/19 12:13	1

Lab Sample ID: LCS 480-488983/27 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488983

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	48.49		mg/L		97	90 - 110	
Sulfate	50.0	48.13		mg/L		96	90 - 110	

Lab Sample ID: LCS 480-488983/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 488983

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 50.0	47.75		mg/L		96	90 - 110	
Sulfate	50.0	47.35		mg/L		95	90 - 110	

Prep Type: Total/NA

Client Sample ID: MW-17

Client Sample ID: MW-17

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

90 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: SM 4110B - Ion Chromatography (Continued)

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Analysis Ratch: 488983

Alialysis Datcil. 400303										
_	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	105		250	356.6		mg/L		101	81 - 120	
Sulfate	55.3		250	300.7		mg/L		98	80 - 120	

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 488983

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	105		250	358.7		mg/L		101	81 - 120	1	15
Sulfate	55.3		250	303.9		mg/L		99	80 - 120	1	15

Lab Sample ID: MB 480-489056/4

Matrix: Water

Analysis Batch: 489056

MB MB

Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed Chloride 0.50 ND mg/L 08/28/19 02:52 Sulfate ND 2.0 mg/L 08/28/19 02:52

Lab Sample ID: LCS 480-489056/3

Matrix: Water

Analysis Batch: 489056

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride		50.0	49.27		mg/L		99	90 - 110	
Sulfate		50.0	48.07		mg/L		96	90 - 110	

Lab Sample ID: MB 480-489099/4

Matrix: Water

Analysis Batch: 489099

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50		mg/L			08/28/19 11:38	1
Sulfate	ND		2.0		mg/L			08/28/19 11:38	1

Lab Sample ID: LCS 480-489099/3

Matrix: Water

Analysis Batch: 489099

Analysis Baton. 40000		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	50.0	49.31		mg/L	_	99	90 - 110	

50.0

Sulfate

Lab Sample ID: MB 480-489262/4

Matrix: Water

Analysis Batch: 489262

	INIB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50		mg/L			08/28/19 14:52	1
Sulfate	ND		2.0		mg/L			08/28/19 14:52	1

49.12

mg/L

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 4110B - Ion Chromatography

Lab Sample ID: LCS 480-489262/3

Matrix: Water

Analysis Batch: 489262

Client: Waste Management

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 50.0 50.90 90 - 110 mg/L 102 Sulfate 50.0 50.10 mg/L 100 90 - 110

Lab Sample ID: MB 480-490900/28

Matrix: Water

Analysis Batch: 490900

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50		mg/L			09/09/19 19:26	1
Sulfate	ND		2.0		mg/L			09/09/19 19:26	1

Lab Sample ID: MB 480-490900/4

Matrix: Water

Analysis Batch: 490900

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		0.50		mg/L			09/09/19 13:33	1
Sulfate	ND		2.0		mg/L			09/09/19 13:33	1

Lab Sample ID: LCS 480-490900/27

Matrix: Water

Analysis Batch: 490900

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride		50.0	51.06		mg/L		102	90 - 110	
Sulfate		50.0	51.11		ma/l		102	90 - 110	

Lab Sample ID: LCS 480-490900/3

Matrix: Water

Analysis Batch: 490900

Analysis Batch: 400000	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	50.0	49.81		mg/L		100	90 - 110	
Sulfate	50.0	49.99		mg/L		100	90 - 110	

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-488225/1

Matrix: Water

Analysis Batch: 488225

	USB (USB							
Analyte	Result (Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac
Biochemical Oxygen Demand	ND		2.0	r	mg/L			08/22/19 02:22	1

Lab Sample ID: LCS 480-488225/2

Matrix: Water

Analysis Datch: 400225							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biochemical Oxygen Demand		183.5		mg/L		93	85 - 115

Eurofins TestAmerica, Buffalo

Page 203 of 314

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-17

Client Sample ID: MW-17

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 5210B - BOD, 5-Day (Continued)

Lab Sample ID: USB 480-488444/1

Matrix: Water

Analysis Batch: 488444

USB USB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared Biochemical Oxygen Demand 2.0 08/22/19 18:45 ND mg/L

LCS LCS

Lab Sample ID: LCS 480-488444/2

Matrix: Water

Analysis Batch: 488444

Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 198 **Biochemical Oxygen Demand** 184.2 mg/L 93 85 - 115

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Analysis Batch: 488444

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Biochemical Oxygen Demand 198 ND 167.1 mg/L 84 51 - 143

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 488444

Spike MSD MSD **RPD** Sample Sample %Rec. Added Analyte Result Qualifier Result Qualifier %Rec Limits RPD Limit Unit D **Biochemical Oxygen Demand** $\overline{\mathsf{ND}}$ 198 173.0 87 51 - 143 mg/L

Lab Sample ID: USB 480-488619/1

Matrix: Water

Analysis Batch: 488619

USB USB

Analyte Result Qualifier

RL **MDL** Unit D Prepared Analyzed Dil Fac 2.0 08/23/19 17:14 **Biochemical Oxygen Demand** ND mg/L

Lab Sample ID: LCS 480-488619/2

Matrix: Water

Analysis Batch: 488619

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits mg/L Biochemical Oxygen Demand 198 161.3 81 85 - 115

Lab Sample ID: USB 480-489135/1

Matrix: Water

Analysis Batch: 489135

USB USB

Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Biochemical Oxygen Demand** ND 2.0 mg/L 08/28/19 02:28

Lab Sample ID: LCS 480-489135/2

Matrix: Water

Analysis Batch: 489135

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Biochemical Oxygen Demand 198 202.0 mg/L 102 85 - 115

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 5210B - BOD, 5-Day

Lab Sample ID: USB 480-489774/1

Matrix: Water

Analysis Batch: 489774

USB USB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Biochemical Oxygen Demand 2.0 mg/L 08/31/19 06:51 $\overline{\mathsf{ND}}$

Lab Sample ID: LCS 480-489774/2

Matrix: Water

Analysis Batch: 489774

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 198 **Biochemical Oxygen Demand** 175.7 mg/L 89 85 - 115

Lab Sample ID: USB 480-489775/1

Matrix: Water

Analysis Batch: 489775

USB USB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Biochemical Oxygen Demand 2.0 08/31/19 06:51 $\overline{\mathsf{ND}}$ mg/L

Lab Sample ID: LCS 480-489775/2

Matrix: Water

Analysis Batch: 489775

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier D %Rec Unit **Biochemical Oxygen Demand** 198 175.7 89 85 - 115 mg/L

Lab Sample ID: 480-158409-4 DU

Matrix: Ground Water

Analysis Batch: 489775

Sample Sample DU DU **RPD** Result Qualifier Analyte Result Qualifier Unit D **RPD** Limit Biochemical Oxygen Demand ND ND mg/L

Lab Sample ID: USB 480-490229/1

Matrix: Water

Analysis Batch: 490229

USB USB

Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 2.0 mg/L **Biochemical Oxygen Demand** ND 09/05/19 05:45

Lab Sample ID: LCS 480-490229/2

Matrix: Water

Analysis Batch: 490229

Spike LCS LCS %Rec. Added Result Qualifier Unit %Rec Limits **Biochemical Oxygen Demand** 198 187.4 95 mg/L 85 - 115

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-O(I)

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-17

Client Sample ID: MW-17 Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 5310C - TOC

Lab Sample ID: MB 480-488613/51

Matrix: Water

Analysis Batch: 488613

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Analyte Total Organic Carbon 1.0 08/23/19 09:07 ND mg/L

Lab Sample ID: MB 480-488613/75

Matrix: Water

Analysis Batch: 488613

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 1.0 Total Organic Carbon ND mg/L 08/23/19 15:07

Lab Sample ID: LCS 480-488613/52

Matrix: Water

Analysis Batch: 488613

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits D **Total Organic Carbon** 60.0 90 - 110 60.24 mg/L 100

Lab Sample ID: LCS 480-488613/76

Matrix: Water

Analysis Batch: 488613

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier D %Rec Unit **Total Organic Carbon** 60.0 60.55 101 90 - 110 mg/L

Lab Sample ID: 480-157980-4 MS

Matrix: Ground Water

Analysis Batch: 488613

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Total Organic Carbon ND 22.7 104 54 - 131 23.64 mg/L

Lab Sample ID: 480-157980-4 MSD

Matrix: Ground Water

Analysis Batch: 488613

%Rec. Spike MSD MSD **RPD** Sample Sample Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit mg/L Total Organic Carbon ND 22.7 23.13 102 54 - 131

Lab Sample ID: MB 480-489215/27

Matrix: Water

Analysis Batch: 489215

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Total Organic Carbon** $\overline{\mathsf{ND}}$ 1.0 mg/L 08/27/19 23:36

Lab Sample ID: MB 480-489215/4

Matrix: Water

Analysis Batch: 489215

MB MB

RL **MDL** Unit Analyte Result Qualifier D Analyzed Dil Fac Prepared 1.0 08/27/19 17:34 Total Organic Carbon ND mg/L

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Job ID: 480-157980-1

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-Q(I)

Client Sample ID: MW-Q(I)

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

Method: SM 5310C - TOC

Lab Sample ID: LCS 480-489215/28

Matrix: Water

Analysis Batch: 489215

Spike LCS LCS %Rec. Added Result Qualifier %Rec Limits Analyte Unit Total Organic Carbon 60.0 61.29 102 90 - 110 mg/L

Lab Sample ID: LCS 480-489215/5

Matrix: Water

Analysis Batch: 489215

LCS LCS Spike %Rec. Added Result Qualifier Unit D %Rec Limits 60.0 Total Organic Carbon 60.51 mg/L 101 90 - 110

Lab Sample ID: 480-158093-3 MS

Matrix: Water

Analysis Batch: 489215

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits Analyte Total Organic Carbon 44.0 54 - 131 ND 39.00 mg/L 89

Lab Sample ID: 480-158093-3 MSD

Matrix: Water

Analysis Batch: 489215

Spike MSD MSD **RPD** Sample Sample %Rec. Added Analyte Result Qualifier Result Qualifier %Rec Limits **RPD** Limit Unit D **Total Organic Carbon** $\overline{\mathsf{ND}}$ 44.0 39.49 90 54 - 131 mg/L

Lab Sample ID: MB 480-489502/4

Matrix: Water

Analysis Batch: 489502

MB MB Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **Total Organic Carbon** 1.0 08/28/19 15:19 ND mg/L

Lab Sample ID: LCS 480-489502/5

Matrix: Water

Analysis Batch: 489502

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits mg/L Total Organic Carbon 60.0 56.36 90 - 110

Lab Sample ID: MB 480-490772/27

Matrix: Water

Analysis Batch: 490772

MB MB Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Total Organic Carbon** $\overline{\mathsf{ND}}$ 1.0 mg/L 09/06/19 04:20

Lab Sample ID: MB 480-490772/4

Matrix: Water

Analysis Batch: 490772

MB MB

RL **MDL** Unit Analyte Result Qualifier D Analyzed Dil Fac Prepared 1.0 09/05/19 22:21 **Total Organic Carbon** ND mg/L

Prep Type: Total/NA

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method: SM 5310C - TOC

Lab Sample ID: LCS 480-490772/28	Client Sample ID: Lab Control Sample
Matrix: Water	Pren Type: Total/NA

Matrix: Water

Analysis Batch: 490772 Spike LCS LCS %Rec. Added Result Qualifier %Rec Analyte Unit Limits

Total Organic Carbon 60.0 100 90 - 110 60.28 mg/L Lab Sample ID: LCS 480-490772/5 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 490772

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 60.0 Total Organic Carbon 60.76 mg/L 101 90 - 110

Lab Sample ID: 480-158409-4 MS Client Sample ID: MW-O(I) **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 490772

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits Analyte D **Total Organic Carbon** 54 - 131 ND 44.0 39.82 mg/L 90

Lab Sample ID: 480-158409-4 MSD Client Sample ID: MW-O(I) **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 490772

Spike MSD MSD **RPD** Sample Sample %Rec. Added Analyte Result Qualifier Result Qualifier %Rec Limits RPD Limit Unit D **Total Organic Carbon** $\overline{\mathsf{ND}}$ 44.0 40.20 91 54 - 131 mg/L

Lab Sample ID: MB 480-491171/24 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 491171

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Total Organic Carbon** 1.0 09/08/19 00:38 ND mg/L

Lab Sample ID: LCS 480-491171/25

Matrix: Water

Analysis Batch: 491171

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Total Organic Carbon 60.0 60.83 mg/L 101 90 - 110

Lab Sample ID: 480-158492-1 MS Client Sample ID: MWSE-1 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 491171

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits **Total Organic Carbon** ND 44.0 33.55 76 54 - 131 mg/L

Lab Sample ID: 480-158492-1 MSD Client Sample ID: MWSE-1 **Matrix: Ground Water** Prep Type: Total/NA

Analysis Batch: 491171

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added RPD Analyte Result Qualifier Unit %Rec Limits Limit **Total Organic Carbon** ND 44.0 33.75 mg/L 54 - 131 20

Eurofins TestAmerica, Buffalo

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

GC/MS VOA

Analysis Batch: 488279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	8260C	
480-157980-2	MW-16	Total/NA	Ground Water	8260C	
480-157980-3	MW-16(S)	Total/NA	Ground Water	8260C	
480-157980-4	MW-17	Total/NA	Ground Water	8260C	
480-157980-5	MW-18BR	Total/NA	Ground Water	8260C	
480-157980-6	MW-L(I)	Total/NA	Ground Water	8260C	
480-157980-7	MW-M(I)	Total/NA	Ground Water	8260C	
480-157980-8	MW-M(S)	Total/NA	Ground Water	8260C	
480-157980-9	MW-P(I)	Total/NA	Ground Water	8260C	
480-157980-10	MW-P(S)	Total/NA	Ground Water	8260C	
480-157980-11	TRIP BLANK	Total/NA	Water	8260C	
MB 480-488279/7	Method Blank	Total/NA	Water	8260C	
LCS 480-488279/5	Lab Control Sample	Total/NA	Water	8260C	
480-157980-4 MS	MW-17	Total/NA	Ground Water	8260C	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	8260C	

Analysis Batch: 488663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-158093-1	MW-N(I)	Total/NA	Ground Water	8260C	
480-158093-2	MW-N(S)	Total/NA	Ground Water	8260C	
480-158093-3	MW-Q(I)	Total/NA	Water	8260C	
MB 480-488663/7	Method Blank	Total/NA	Water	8260C	
LCS 480-488663/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 489143

	Lab Sample ID 180-158145-1	Client Sample ID MW-50	Prep Type Total/NA	Matrix Ground Water	Method 8260C	Prep Batch
ľ	MB 480-489143/7	Method Blank	Total/NA	Water	8260C	
L	CS 480-489143/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 491215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	8260C	
480-158409-2	MWBA-1	Total/NA	Ground Water	8260C	
480-158409-3	MWBA-2	Total/NA	Ground Water	8260C	
480-158409-4	MW-O(I)	Total/NA	Ground Water	8260C	
480-158409-5	TRIP BLANK	Total/NA	Water	8260C	
MB 480-491215/8	Method Blank	Total/NA	Water	8260C	
LCS 480-491215/6	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 491707

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-5	TRIP BLANK	Total/NA	Water	8260C	
MB 480-491707/9	Method Blank	Total/NA	Water	8260C	
LCS 480-491707/11	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 491769

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	8260C	<u> </u>
480-158492-2	MWSE-2	Total/NA	Ground Water	8260C	
480-158492-3	MWSE-3	Total/NA	Ground Water	8260C	

Eurofins TestAmerica, Buffalo

Page 209 of 314

-0

Job ID: 480-157980-1

3

E

7

Q

10

10

13

14

17

18

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

GC/MS VOA (Continued)

Analysis Batch: 491769 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-4	MWSE-4	Total/NA	Ground Water	8260C	
MB 480-491769/7	Method Blank	Total/NA	Water	8260C	
LCS 480-491769/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 492966

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158878-6	TRIP BLANK	Total/NA	Water	8260C	
MB 480-492966/7	Method Blank	Total/NA	Water	8260C	
LCS 480-492966/5	Lab Control Sample	Total/NA	Water	8260C	

LCMS

Prep Batch: 322696

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158878-1	MWSE-1	Total/NA	Water	3535	
480-158878-2	MWSE-2	Total/NA	Water	3535	
480-158878-3	MWSE-3	Total/NA	Water	3535	
480-158878-4	MWSE-4	Total/NA	Water	3535	
480-158878-5	BLIND DUP	Total/NA	Water	3535	
MB 320-322696/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-322696/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-322696/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 323243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158878-1	MWSE-1	Total/NA	Water	537 (modified)	322696
480-158878-2	MWSE-2	Total/NA	Water	537 (modified)	322696
480-158878-3	MWSE-3	Total/NA	Water	537 (modified)	322696
480-158878-4	MWSE-4	Total/NA	Water	537 (modified)	322696
480-158878-5	BLIND DUP	Total/NA	Water	537 (modified)	322696
MB 320-322696/1-A	Method Blank	Total/NA	Water	537 (modified)	322696
LCS 320-322696/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	322696
LCSD 320-322696/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	322696

Metals

Prep Batch: 488390

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Dissolved	Ground Water	3005A	_
480-157980-2	MW-16	Dissolved	Ground Water	3005A	
480-157980-3	MW-16(S)	Dissolved	Ground Water	3005A	
480-157980-4	MW-17	Dissolved	Ground Water	3005A	
480-157980-5	MW-18BR	Dissolved	Ground Water	3005A	
480-157980-6	MW-L(I)	Dissolved	Ground Water	3005A	
480-157980-7	MW-M(I)	Dissolved	Ground Water	3005A	
480-157980-8	MW-M(S)	Dissolved	Ground Water	3005A	
480-157980-9	MW-P(I)	Dissolved	Ground Water	3005A	
480-157980-10	MW-P(S)	Dissolved	Ground Water	3005A	
MB 480-488390/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-488390/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
480-157980-4 MS	MW-17	Dissolved	Ground Water	3005A	
480-157980-4 MSD	MW-17	Dissolved	Ground Water	3005A	

Job ID: 480-157980-1

10

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Prep Batch: 488391

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Dissolved	Ground Water	3020A	
480-157980-2	MW-16	Dissolved	Ground Water	3020A	
480-157980-3	MW-16(S)	Dissolved	Ground Water	3020A	
480-157980-4	MW-17	Dissolved	Ground Water	3020A	
480-157980-5	MW-18BR	Dissolved	Ground Water	3020A	
480-157980-6	MW-L(I)	Dissolved	Ground Water	3020A	
480-157980-7	MW-M(I)	Dissolved	Ground Water	3020A	
480-157980-8	MW-M(S)	Dissolved	Ground Water	3020A	
480-157980-9	MW-P(I)	Dissolved	Ground Water	3020A	
480-157980-10	MW-P(S)	Dissolved	Ground Water	3020A	
MB 480-488391/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-488391/2-A	Lab Control Sample	Total/NA	Water	3020A	
480-157980-4 MS	MW-17	Dissolved	Ground Water	3020A	
480-157980-4 MSD	MW-17	Dissolved	Ground Water	3020A	

Prep Batch: 488397

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	3005A	
480-157980-2	MW-16	Total/NA	Ground Water	3005A	
480-157980-3	MW-16(S)	Total/NA	Ground Water	3005A	
480-157980-4	MW-17	Total/NA	Ground Water	3005A	
480-157980-5	MW-18BR	Total/NA	Ground Water	3005A	
480-157980-6	MW-L(I)	Total/NA	Ground Water	3005A	
480-157980-7	MW-M(I)	Total/NA	Ground Water	3005A	
480-157980-8	MW-M(S)	Total/NA	Ground Water	3005A	
480-157980-9	MW-P(I)	Total/NA	Ground Water	3005A	
480-157980-10	MW-P(S)	Total/NA	Ground Water	3005A	
MB 480-488397/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-488397/2-A	Lab Control Sample	Total/NA	Water	3005A	
480-157980-4 MS	MW-17	Total/NA	Ground Water	3005A	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	3005A	

Prep Batch: 488398

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	3020A	_
480-157980-2	MW-16	Total/NA	Ground Water	3020A	
480-157980-3	MW-16(S)	Total/NA	Ground Water	3020A	
480-157980-4	MW-17	Total/NA	Ground Water	3020A	
480-157980-5	MW-18BR	Total/NA	Ground Water	3020A	
480-157980-6	MW-L(I)	Total/NA	Ground Water	3020A	
480-157980-7	MW-M(I)	Total/NA	Ground Water	3020A	
480-157980-8	MW-M(S)	Total/NA	Ground Water	3020A	
480-157980-9	MW-P(I)	Total/NA	Ground Water	3020A	
480-157980-10	MW-P(S)	Total/NA	Ground Water	3020A	
MB 480-488398/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-488398/2-A	Lab Control Sample	Total/NA	Water	3020A	
480-157980-4 MS	MW-17	Total/NA	Ground Water	3020A	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	3020A	

Eurofins TestAmerica, Buffalo

Page 211 of 314

Job ID: 480-157980-1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Analysis Batch: 488652

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	6010C	488397
480-157980-2	MW-16	Total/NA	Ground Water	6010C	488397
480-157980-3	MW-16(S)	Total/NA	Ground Water	6010C	488397
480-157980-4	MW-17	Total/NA	Ground Water	6010C	488397
480-157980-5	MW-18BR	Total/NA	Ground Water	6010C	488397
480-157980-6	MW-L(I)	Total/NA	Ground Water	6010C	488397
480-157980-7	MW-M(I)	Total/NA	Ground Water	6010C	488397
480-157980-8	MW-M(S)	Total/NA	Ground Water	6010C	488397
480-157980-9	MW-P(I)	Total/NA	Ground Water	6010C	488397
480-157980-10	MW-P(S)	Total/NA	Ground Water	6010C	488397
MB 480-488397/1-A	Method Blank	Total/NA	Water	6010C	488397
LCS 480-488397/2-A	Lab Control Sample	Total/NA	Water	6010C	488397
480-157980-4 MS	MW-17	Total/NA	Ground Water	6010C	488397
480-157980-4 MSD	MW-17	Total/NA	Ground Water	6010C	488397

Analysis Batch: 488655

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Dissolved	Ground Water	6010C	488390
480-157980-2	MW-16	Dissolved	Ground Water	6010C	488390
480-157980-3	MW-16(S)	Dissolved	Ground Water	6010C	488390
480-157980-4	MW-17	Dissolved	Ground Water	6010C	488390
480-157980-5	MW-18BR	Dissolved	Ground Water	6010C	488390
480-157980-6	MW-L(I)	Dissolved	Ground Water	6010C	488390
480-157980-7	MW-M(I)	Dissolved	Ground Water	6010C	488390
480-157980-8	MW-M(S)	Dissolved	Ground Water	6010C	488390
480-157980-9	MW-P(I)	Dissolved	Ground Water	6010C	488390
480-157980-10	MW-P(S)	Dissolved	Ground Water	6010C	488390
MB 480-488390/1-A	Method Blank	Total Recoverable	Water	6010C	488390
480-157980-4 MS	MW-17	Dissolved	Ground Water	6010C	488390
480-157980-4 MSD	MW-17	Dissolved	Ground Water	6010C	488390

Analysis Batch: 488669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	6020A	488398
480-157980-2	MW-16	Total/NA	Ground Water	6020A	488398
480-157980-3	MW-16(S)	Total/NA	Ground Water	6020A	488398
480-157980-4	MW-17	Total/NA	Ground Water	6020A	488398
480-157980-5	MW-18BR	Total/NA	Ground Water	6020A	488398
480-157980-6	MW-L(I)	Total/NA	Ground Water	6020A	488398
480-157980-7	MW-M(I)	Total/NA	Ground Water	6020A	488398
480-157980-8	MW-M(S)	Total/NA	Ground Water	6020A	488398
480-157980-9	MW-P(I)	Total/NA	Ground Water	6020A	488398
480-157980-10	MW-P(S)	Total/NA	Ground Water	6020A	488398
MB 480-488398/1-A	Method Blank	Total/NA	Water	6020A	488398
LCS 480-488398/2-A	Lab Control Sample	Total/NA	Water	6020A	488398
480-157980-4 MS	MW-17	Total/NA	Ground Water	6020A	488398
480-157980-4 MSD	MW-17	Total/NA	Ground Water	6020A	488398

Analysis Batch: 488670

_ •					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Dissolved	Ground Water	6020A	488391

Eurofins TestAmerica, Buffalo

Page 212 of 314

9

3

4

6

R

4.6

11

12

14

17

1

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals (Continued)

Analysis Batch: 488670 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-2	MW-16	Dissolved	Ground Water	6020A	488391
480-157980-3	MW-16(S)	Dissolved	Ground Water	6020A	488391
480-157980-4	MW-17	Dissolved	Ground Water	6020A	488391
480-157980-5	MW-18BR	Dissolved	Ground Water	6020A	488391
480-157980-6	MW-L(I)	Dissolved	Ground Water	6020A	488391
480-157980-7	MW-M(I)	Dissolved	Ground Water	6020A	488391
480-157980-8	MW-M(S)	Dissolved	Ground Water	6020A	488391
480-157980-9	MW-P(I)	Dissolved	Ground Water	6020A	488391
480-157980-10	MW-P(S)	Dissolved	Ground Water	6020A	488391
MB 480-488391/1-A	Method Blank	Total/NA	Water	6020A	488391
LCS 480-488391/2-A	Lab Control Sample	Total/NA	Water	6020A	488391
480-157980-4 MS	MW-17	Dissolved	Ground Water	6020A	488391
480-157980-4 MSD	MW-17	Dissolved	Ground Water	6020A	488391

Prep Batch: 488784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	7470A	
480-157980-2	MW-16	Total/NA	Ground Water	7470A	
480-157980-3	MW-16(S)	Total/NA	Ground Water	7470A	
480-157980-5	MW-18BR	Total/NA	Ground Water	7470A	
480-157980-6	MW-L(I)	Total/NA	Ground Water	7470A	
480-157980-7	MW-M(I)	Total/NA	Ground Water	7470A	
480-157980-8	MW-M(S)	Total/NA	Ground Water	7470A	
480-157980-9	MW-P(I)	Total/NA	Ground Water	7470A	
480-157980-10	MW-P(S)	Total/NA	Ground Water	7470A	
MB 480-488784/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-488784/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 488785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-4	MW-17	Total/NA	Ground Water	7470A	
MB 480-488785/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-488785/2-A	Lab Control Sample	Total/NA	Water	7470A	
480-157980-4 MS	MW-17	Total/NA	Ground Water	7470A	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	7470A	

Prep Batch: 488881

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	3020A	<u> </u>
480-158093-2	MW-N(S)	Total/NA	Ground Water	3020A	
480-158093-3	MW-Q(I)	Total/NA	Water	3020A	
MB 480-488881/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-488881/2-A	Lab Control Sample	Total/NA	Water	3020A	

Prep Batch: 488887

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-158093-1	MW-N(I)	Dissolved	Ground Water	3005A
480-158093-2	MW-N(S)	Dissolved	Ground Water	3005A
480-158093-3	MW-Q(I)	Dissolved	Water	3005A
MB 480-488887/1-A	Method Blank	Total Recoverable	Water	3005A
LCS 480-488887/2-A	Lab Control Sample	Total Recoverable	Water	3005A

Eurofins TestAmerica, Buffalo

Page 213 of 314

2

3

4

7

9

10

1 1

13

14

16

17

18

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Prep Batch: 488889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Dissolved	Ground Water	3020A	
480-158093-2	MW-N(S)	Dissolved	Ground Water	3020A	
480-158093-3	MW-Q(I)	Dissolved	Water	3020A	
MB 480-488889/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-488889/2-A	Lab Control Sample	Total/NA	Water	3020A	

Analysis Batch: 488894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	7470A	488784
480-157980-2	MW-16	Total/NA	Ground Water	7470A	488784
480-157980-3	MW-16(S)	Total/NA	Ground Water	7470A	488784
480-157980-4	MW-17	Total/NA	Ground Water	7470A	488785
480-157980-5	MW-18BR	Total/NA	Ground Water	7470A	488784
480-157980-6	MW-L(I)	Total/NA	Ground Water	7470A	488784
480-157980-7	MW-M(I)	Total/NA	Ground Water	7470A	488784
480-157980-8	MW-M(S)	Total/NA	Ground Water	7470A	488784
480-157980-9	MW-P(I)	Total/NA	Ground Water	7470A	488784
480-157980-10	MW-P(S)	Total/NA	Ground Water	7470A	488784
MB 480-488784/1-A	Method Blank	Total/NA	Water	7470A	488784
MB 480-488785/1-A	Method Blank	Total/NA	Water	7470A	488785
LCS 480-488784/2-A	Lab Control Sample	Total/NA	Water	7470A	488784
LCS 480-488785/2-A	Lab Control Sample	Total/NA	Water	7470A	488785
480-157980-4 MS	MW-17	Total/NA	Ground Water	7470A	488785
480-157980-4 MSD	MW-17	Total/NA	Ground Water	7470A	488785

Analysis Batch: 488917

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-488390/2-A	Lab Control Sample	Total Recoverable	Water	6010C	488390

Prep Batch: 488943

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-158093-1	MW-N(I)	Total/NA	Ground Water	3005A	
480-158093-2	MW-N(S)	Total/NA	Ground Water	3005A	
480-158093-3	MW-Q(I)	Total/NA	Water	3005A	
MB 480-488943/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-488943/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 489002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Dissolved	Ground Water	7470A	_
480-157980-2	MW-16	Dissolved	Ground Water	7470A	
480-157980-3	MW-16(S)	Dissolved	Ground Water	7470A	
480-157980-4	MW-17	Dissolved	Ground Water	7470A	
480-157980-5	MW-18BR	Dissolved	Ground Water	7470A	
480-158093-1	MW-N(I)	Total/NA	Ground Water	7470A	
480-158093-2	MW-N(S)	Total/NA	Ground Water	7470A	
480-158093-3	MW-Q(I)	Total/NA	Water	7470A	
MB 480-489002/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-489002/2-A	Lab Control Sample	Total/NA	Water	7470A	
480-157980-4 MS	MW-17	Dissolved	Ground Water	7470A	
480-157980-4 MSD	MW-17	Dissolved	Ground Water	7470A	

Page 214 of 314

Job ID: 480-157980-1

9/30/2019

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Pren	Batch:	489078

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	3005A	
MB 480-489078/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-489078/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-489078/24-A	Lab Control Sample Dup	Total/NA	Water	3005A	

Prep Batch: 489080

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	3020A	
MB 480-489080/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-489080/2-A	Lab Control Sample	Total/NA	Water	3020A	
LCSD 480-489080/23-A	Lab Control Sample Dup	Total/NA	Water	3020A	

Analysis Batch: 489089

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Dissolved	Ground Water	7470A	489002
480-157980-2	MW-16	Dissolved	Ground Water	7470A	489002
480-157980-3	MW-16(S)	Dissolved	Ground Water	7470A	489002
480-157980-4	MW-17	Dissolved	Ground Water	7470A	489002
480-157980-5	MW-18BR	Dissolved	Ground Water	7470A	489002
480-158093-1	MW-N(I)	Total/NA	Ground Water	7470A	489002
480-158093-2	MW-N(S)	Total/NA	Ground Water	7470A	489002
480-158093-3	MW-Q(I)	Total/NA	Water	7470A	489002
MB 480-489002/1-A	Method Blank	Total/NA	Water	7470A	489002
LCS 480-489002/2-A	Lab Control Sample	Total/NA	Water	7470A	489002
480-157980-4 MS	MW-17	Dissolved	Ground Water	7470A	489002
480-157980-4 MSD	MW-17	Dissolved	Ground Water	7470A	489002

Prep Batch: 489092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Dissolved	Ground Water	3005A	
MB 480-489092/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-489092/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
LCSD 480-489092/3-A	Lab Control Sample Dup	Total Recoverable	Water	3005A	

Prep Batch: 489093

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-158145-1	MW-50	Dissolved	Ground Water	3020A	
MB 480-489093/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-489093/2-A	Lab Control Sample	Total/NA	Water	3020A	
LCSD 480-489093/3-A	Lab Control Sample Dup	Total/NA	Water	3020A	
480-158145-1 MS	MW-50	Dissolved	Ground Water	3020A	
480-158145-1 MSD	MW-50	Dissolved	Ground Water	3020A	

Prep Batch: 489108

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-6	MW-L(I)	Dissolved	Ground Water	7470A	_
480-157980-7	MW-M(I)	Dissolved	Ground Water	7470A	
480-157980-8	MW-M(S)	Dissolved	Ground Water	7470A	
480-157980-9	MW-P(I)	Dissolved	Ground Water	7470A	
480-157980-10	MW-P(S)	Dissolved	Ground Water	7470A	
MB 480-489108/1-A	Method Blank	Total/NA	Water	7470A	

Eurofins TestAmerica, Buffalo

Page 215 of 314

2

Job ID: 480-157980-1

4

6

9

10

40

13

14

16

17

K

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals (Continued)

Prep Batch: 489108 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-489108/2-A	Lab Control Sample	Total/NA	Water	7470A	
480-157980-10 MS	MW-P(S)	Dissolved	Ground Water	7470A	
480-157980-10 MSD	MW-P(S)	Dissolved	Ground Water	7470A	

Analysis Batch: 489181

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	6020A	488881
480-158093-2	MW-N(S)	Total/NA	Ground Water	6020A	488881
480-158093-3	MW-Q(I)	Total/NA	Water	6020A	488881
MB 480-488881/1-A	Method Blank	Total/NA	Water	6020A	488881
LCS 480-488881/2-A	Lab Control Sample	Total/NA	Water	6020A	488881

Analysis Batch: 489182

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Dissolved	Ground Water	6020A	488889
480-158093-2	MW-N(S)	Dissolved	Ground Water	6020A	488889
480-158093-3	MW-Q(I)	Dissolved	Water	6020A	488889
MB 480-488889/1-A	Method Blank	Total/NA	Water	6020A	488889
LCS 480-488889/2-A	Lab Control Sample	Total/NA	Water	6020A	488889

Analysis Batch: 489194

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	6010C	488943
480-158093-2	MW-N(S)	Total/NA	Ground Water	6010C	488943
480-158093-3	MW-Q(I)	Total/NA	Water	6010C	488943
MB 480-488943/1-A	Method Blank	Total/NA	Water	6010C	488943
LCS 480-488943/2-A	Lab Control Sample	Total/NA	Water	6010C	488943

Analysis Batch: 489195

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Dissolved	Ground Water	6010C	488887
480-158093-2	MW-N(S)	Dissolved	Ground Water	6010C	488887
480-158093-3	MW-Q(I)	Dissolved	Water	6010C	488887
MB 480-488887/1-A	Method Blank	Total Recoverable	Water	6010C	488887
LCS 480-488887/2-A	Lab Control Sample	Total Recoverable	Water	6010C	488887

Analysis Batch: 489303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-6	MW-L(I)	Dissolved	Ground Water	7470A	489108
480-157980-7	MW-M(I)	Dissolved	Ground Water	7470A	489108
480-157980-8	MW-M(S)	Dissolved	Ground Water	7470A	489108
480-157980-9	MW-P(I)	Dissolved	Ground Water	7470A	489108
480-157980-10	MW-P(S)	Dissolved	Ground Water	7470A	489108
MB 480-489108/1-A	Method Blank	Total/NA	Water	7470A	489108
LCS 480-489108/2-A	Lab Control Sample	Total/NA	Water	7470A	489108
480-157980-10 MS	MW-P(S)	Dissolved	Ground Water	7470A	489108
480-157980-10 MSD	MW-P(S)	Dissolved	Ground Water	7470A	489108

Analysis Batch: 489346

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Dissolved	Ground Water	6020A	489093

Eurofins TestAmerica, Buffalo

Page 216 of 314

9

3

4

6

9

10

12

13

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals (Continued)

Analysis Batch: 489346 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-489093/1-A	Method Blank	Total/NA	Water	6020A	489093
LCS 480-489093/2-A	Lab Control Sample	Total/NA	Water	6020A	489093
LCSD 480-489093/3-A	Lab Control Sample Dup	Total/NA	Water	6020A	489093
480-158145-1 MS	MW-50	Dissolved	Ground Water	6020A	489093
480-158145-1 MSD	MW-50	Dissolved	Ground Water	6020A	489093

Analysis Batch: 489347

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	6020A	489080
MB 480-489080/1-A	Method Blank	Total/NA	Water	6020A	489080
LCS 480-489080/2-A	Lab Control Sample	Total/NA	Water	6020A	489080
LCSD 480-489080/23-	-A Lab Control Sample Dup	Total/NA	Water	6020A	489080

Prep Batch: 489397

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Dissolved	Ground Water	7470A	
480-158093-2	MW-N(S)	Dissolved	Ground Water	7470A	
480-158093-3	MW-Q(I)	Dissolved	Water	7470A	
480-158145-1	MW-50	Dissolved	Ground Water	7470A	
MB 480-489397/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-489397/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 489442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	6010C	489078
MB 480-489078/1-A	Method Blank	Total/NA	Water	6010C	489078
LCS 480-489078/2-A	Lab Control Sample	Total/NA	Water	6010C	489078
LCSD 480-489078/24-A	Lab Control Sample Dup	Total/NA	Water	6010C	489078

Analysis Batch: 489443

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Dissolved	Ground Water	6010C	489092
MB 480-489092/1-A	Method Blank	Total Recoverable	Water	6010C	489092
LCS 480-489092/2-A	Lab Control Sample	Total Recoverable	Water	6010C	489092
LCSD 480-489092/3-A	Lab Control Sample Dup	Total Recoverable	Water	6010C	489092

Analysis Batch: 489514

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Dissolved	Ground Water	7470A	489397
480-158093-2	MW-N(S)	Dissolved	Ground Water	7470A	489397
480-158093-3	MW-Q(I)	Dissolved	Water	7470A	489397
480-158145-1	MW-50	Dissolved	Ground Water	7470A	489397
MB 480-489397/1-A	Method Blank	Total/NA	Water	7470A	489397
LCS 480-489397/2-A	Lab Control Sample	Total/NA	Water	7470A	489397

Analysis Batch: 489665

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-489078/1-A	Method Blank	Total/NA	Water	6010C	489078
LCS 480-489078/2-A	Lab Control Sample	Total/NA	Water	6010C	489078
LCSD 480-489078/24-A	Lab Control Sample Dup	Total/NA	Water	6010C	489078

Page 217 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Analy	/sis	Batch:	489670
Allai	7313	Dateii.	400010

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Dissolved	Ground Water	6010C	489092
MB 480-489092/1-A	Method Blank	Total Recoverable	Water	6010C	489092
LCS 480-489092/2-A	Lab Control Sample	Total Recoverable	Water	6010C	489092
LCSD 480-489092/3-A	Lab Control Sample Dup	Total Recoverable	Water	6010C	489092

Prep Batch: 489875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	7470A	
MB 480-489875/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-489875/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 489919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	3020A	
480-158409-2	MWBA-1	Total/NA	Ground Water	3020A	
480-158409-3	MWBA-2	Total/NA	Ground Water	3020A	
480-158409-4	MW-O(I)	Total/NA	Ground Water	3020A	
MB 480-489919/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-489919/2-A	Lab Control Sample	Total/NA	Water	3020A	
LCSD 480-489919/23-A	Lab Control Sample Dup	Total/NA	Water	3020A	

Prep Batch: 489925

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	3005A	
480-158409-2	MWBA-1	Total/NA	Ground Water	3005A	
480-158409-3	MWBA-2	Total/NA	Ground Water	3005A	
480-158409-4	MW-O(I)	Total/NA	Ground Water	3005A	
MB 480-489925/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-489925/2-A	Lab Control Sample	Total/NA	Water	3005A	
LCSD 480-489925/23-A	Lab Control Sample Dup	Total/NA	Water	3005A	

Prep Batch: 489960

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-3	MW-Q(I)	Total/NA	Water	3005A	<u> </u>
MB 480-489960/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-489960/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 489962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Dissolved	Water	3005A	
480-158409-2	MWBA-1	Dissolved	Ground Water	3005A	
480-158409-3	MWBA-2	Dissolved	Ground Water	3005A	
480-158409-4	MW-O(I)	Dissolved	Ground Water	3005A	
MB 480-489962/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-489962/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 489963

Lab Sample ID 480-158409-1	Client Sample ID	Prep Type Dissolved	Matrix Water	Method 3020A	Prep Batch
480-158409-2	MWBA-1	Dissolved	Ground Water	3020A 3020A	
480-158409-3	MWBA-2	Dissolved	Ground Water	3020A	

Eurofins TestAmerica, Buffalo

9/30/2019

Page 218 of 314

-0

3

4

6

1

9

10

13

14

16

17

18

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-4	MW-O(I)	Dissolved	Ground Water	3020A	
MB 480-489963/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-489963/2-A	Lab Control Sample	Total/NA	Water	3020A	

Analysis Batch: 489986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	7470A	489875
MB 480-489875/1-A	Method Blank	Total/NA	Water	7470A	489875
LCS 480-489875/2-A	Lab Control Sample	Total/NA	Water	7470A	489875

Prep Batch: 490184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	3005A	
480-158492-2	MWSE-2	Total/NA	Ground Water	3005A	
480-158492-3	MWSE-3	Total/NA	Ground Water	3005A	
480-158492-4	MWSE-4	Total/NA	Ground Water	3005A	
MB 480-490184/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-490184/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 490196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Dissolved	Ground Water	3020A	
480-158492-2	MWSE-2	Dissolved	Ground Water	3020A	
480-158492-3	MWSE-3	Dissolved	Ground Water	3020A	
480-158492-4	MWSE-4	Dissolved	Ground Water	3020A	
MB 480-490196/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-490196/2-A	Lab Control Sample	Total/NA	Water	3020A	

Prep Batch: 490197

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Dissolved	Ground Water	3005A	
480-158492-2	MWSE-2	Dissolved	Ground Water	3005A	
480-158492-3	MWSE-3	Dissolved	Ground Water	3005A	
480-158492-4	MWSE-4	Dissolved	Ground Water	3005A	
MB 480-490197/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 480-490197/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 490288

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Dissolved	Water	6010C	489962
480-158409-2	MWBA-1	Dissolved	Ground Water	6010C	489962
480-158409-3	MWBA-2	Dissolved	Ground Water	6010C	489962
480-158409-4	MW-O(I)	Dissolved	Ground Water	6010C	489962
MB 480-489962/1-A	Method Blank	Total Recoverable	Water	6010C	489962
LCS 480-489962/2-A	Lab Control Sample	Total Recoverable	Water	6010C	489962

Analysis Batch: 490293

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-3	MW-Q(I)	Total/NA	Water	6010C	489960
MB 480-489960/1-A	Method Blank	Total/NA	Water	6010C	489960
LCS 480-489960/2-A	Lab Control Sample	Total/NA	Water	6010C	489960

Eurofins TestAmerica, Buffalo

3

4

6

7

9

10

12

1 A

17

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Prep Batch: 490409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	3020A	
480-158492-2	MWSE-2	Total/NA	Ground Water	3020A	
480-158492-3	MWSE-3	Total/NA	Ground Water	3020A	
480-158492-4	MWSE-4	Total/NA	Ground Water	3020A	
MB 480-490409/1-A	Method Blank	Total/NA	Water	3020A	
LCS 480-490409/2-A	Lab Control Sample	Total/NA	Water	3020A	

Analysis Batch: 490524

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Dissolved	Water	6020A	489963
480-158409-2	MWBA-1	Dissolved	Ground Water	6020A	489963
480-158409-3	MWBA-2	Dissolved	Ground Water	6020A	489963
480-158409-4	MW-O(I)	Dissolved	Ground Water	6020A	489963
MB 480-489963/1-A	Method Blank	Total/NA	Water	6020A	489963
LCS 480-489963/2-A	Lab Control Sample	Total/NA	Water	6020A	489963

Analysis Batch: 490526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	6020A	489919
480-158409-2	MWBA-1	Total/NA	Ground Water	6020A	489919
480-158409-3	MWBA-2	Total/NA	Ground Water	6020A	489919
480-158409-4	MW-O(I)	Total/NA	Ground Water	6020A	489919
MB 480-489919/1-A	Method Blank	Total/NA	Water	6020A	489919
LCS 480-489919/2-A	Lab Control Sample	Total/NA	Water	6020A	489919
LCSD 480-489919/23-A	Lab Control Sample Dup	Total/NA	Water	6020A	489919

Analysis Batch: 490550

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	6010C	490184
480-158492-2	MWSE-2	Total/NA	Ground Water	6010C	490184
480-158492-3	MWSE-3	Total/NA	Ground Water	6010C	490184
480-158492-4	MWSE-4	Total/NA	Ground Water	6010C	490184
MB 480-490184/1-A	Method Blank	Total/NA	Water	6010C	490184
LCS 480-490184/2-A	Lab Control Sample	Total/NA	Water	6010C	490184

Analysis Batch: 490643

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	6020A	490409
480-158492-2	MWSE-2	Total/NA	Ground Water	6020A	490409
480-158492-3	MWSE-3	Total/NA	Ground Water	6020A	490409
480-158492-4	MWSE-4	Total/NA	Ground Water	6020A	490409
MB 480-490409/1-A	Method Blank	Total/NA	Water	6020A	490409
LCS 480-490409/2-A	Lab Control Sample	Total/NA	Water	6020A	490409

Analysis Batch: 490991

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Dissolved	Ground Water	6020A	490196
480-158492-2	MWSE-2	Dissolved	Ground Water	6020A	490196
480-158492-3	MWSE-3	Dissolved	Ground Water	6020A	490196
480-158492-4	MWSE-4	Dissolved	Ground Water	6020A	490196
MB 480-490196/1-A	Method Blank	Total/NA	Water	6020A	490196

Job ID: 480-157980-1

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-490196/2-A	Lab Control Sample	Total/NA	Water	6020A	490196

Prep Batch: 491000

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	3005A	
MB 480-491000/1-A	Method Blank	Total/NA	Water	3005A	
LCS 480-491000/2-A	Lab Control Sample	Total/NA	Water	3005A	

Prep Batch: 491032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	7470A	_
480-158409-2	MWBA-1	Total/NA	Ground Water	7470A	
480-158409-3	MWBA-2	Total/NA	Ground Water	7470A	
480-158409-4	MW-O(I)	Total/NA	Ground Water	7470A	
MB 480-491032/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-491032/2-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 491034

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	7470A	
480-158492-2	MWSE-2	Total/NA	Ground Water	7470A	
480-158492-3	MWSE-3	Total/NA	Ground Water	7470A	
480-158492-4	MWSE-4	Total/NA	Ground Water	7470A	
MB 480-491034/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-491034/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 491285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	7470A	491032
480-158409-2	MWBA-1	Total/NA	Ground Water	7470A	491032
480-158409-3	MWBA-2	Total/NA	Ground Water	7470A	491032
480-158409-4	MW-O(I)	Total/NA	Ground Water	7470A	491032
480-158492-1	MWSE-1	Total/NA	Ground Water	7470A	491034
480-158492-2	MWSE-2	Total/NA	Ground Water	7470A	491034
480-158492-3	MWSE-3	Total/NA	Ground Water	7470A	491034
480-158492-4	MWSE-4	Total/NA	Ground Water	7470A	491034
MB 480-491032/1-A	Method Blank	Total/NA	Water	7470A	491032
MB 480-491034/1-A	Method Blank	Total/NA	Water	7470A	491034
LCS 480-491032/2-A	Lab Control Sample	Total/NA	Water	7470A	491032
LCS 480-491034/2-A	Lab Control Sample	Total/NA	Water	7470A	491034

Analysis Batch: 491316

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	6010C	489925
480-158409-2	MWBA-1	Total/NA	Ground Water	6010C	489925
480-158409-3	MWBA-2	Total/NA	Ground Water	6010C	489925
480-158409-4	MW-O(I)	Total/NA	Ground Water	6010C	489925
MB 480-489925/1-A	Method Blank	Total/NA	Water	6010C	489925
LCS 480-489925/2-A	Lab Control Sample	Total/NA	Water	6010C	489925
LCSD 480-489925/23-A	Lab Control Sample Dup	Total/NA	Water	6010C	489925

Eurofins TestAmerica, Buffalo

Page 221 of 314

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Metals

Analysis Batch: 491318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	6010C	491000
MB 480-491000/1-A	Method Blank	Total/NA	Water	6010C	491000
LCS 480-491000/2-A	Lab Control Sample	Total/NA	Water	6010C	491000

Analysis Batch: 491325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Dissolved	Ground Water	6010C	490197
480-158492-2	MWSE-2	Dissolved	Ground Water	6010C	490197
480-158492-3	MWSE-3	Dissolved	Ground Water	6010C	490197
480-158492-4	MWSE-4	Dissolved	Ground Water	6010C	490197
MB 480-490197/1-A	Method Blank	Total Recoverable	Water	6010C	490197
LCS 480-490197/2-A	Lab Control Sample	Total Recoverable	Water	6010C	490197

Prep Batch: 492571

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Dissolved	Water	7470A	
480-158409-2	MWBA-1	Dissolved	Ground Water	7470A	
480-158409-3	MWBA-2	Dissolved	Ground Water	7470A	
480-158409-4	MW-O(I)	Dissolved	Ground Water	7470A	
480-158492-1	MWSE-1	Dissolved	Ground Water	7470A	
480-158492-2	MWSE-2	Dissolved	Ground Water	7470A	
480-158492-3	MWSE-3	Dissolved	Ground Water	7470A	
480-158492-4	MWSE-4	Dissolved	Ground Water	7470A	
MB 480-492571/1-A	Method Blank	Total/NA	Water	7470A	
LCS 480-492571/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 492778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Dissolved	Water	7470A	492571
480-158409-2	MWBA-1	Dissolved	Ground Water	7470A	492571
480-158409-3	MWBA-2	Dissolved	Ground Water	7470A	492571
480-158409-4	MW-O(I)	Dissolved	Ground Water	7470A	492571
480-158492-1	MWSE-1	Dissolved	Ground Water	7470A	492571
480-158492-2	MWSE-2	Dissolved	Ground Water	7470A	492571
480-158492-3	MWSE-3	Dissolved	Ground Water	7470A	492571
480-158492-4	MWSE-4	Dissolved	Ground Water	7470A	492571
MB 480-492571/1-A	Method Blank	Total/NA	Water	7470A	492571
LCS 480-492571/2-A	Lab Control Sample	Total/NA	Water	7470A	492571

General Chemistry

Analysis Batch: 488225

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-3	MW-16(S)	Total/NA	Ground Water	SM 5210B	
USB 480-488225/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-488225/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 488350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	7196A	
480-157980-2	MW-16	Total/NA	Ground Water	7196A	

Eurofins TestAmerica, Buffalo

Page 222 of 314 9/30/2019

2

Job ID: 480-157980-1

Λ

5

6

8

10

11

13

. -

16

4 (

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 488350 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-3	MW-16(S)	Total/NA	Ground Water	7196A	
480-157980-4	MW-17	Total/NA	Ground Water	7196A	
480-157980-5	MW-18BR	Total/NA	Ground Water	7196A	
480-157980-6	MW-L(I)	Total/NA	Ground Water	7196A	
480-157980-7	MW-M(I)	Total/NA	Ground Water	7196A	
480-157980-8	MW-M(S)	Total/NA	Ground Water	7196A	
480-157980-9	MW-P(I)	Total/NA	Ground Water	7196A	
480-157980-10	MW-P(S)	Total/NA	Ground Water	7196A	
MB 480-488350/25	Method Blank	Total/NA	Water	7196A	
MB 480-488350/3	Method Blank	Total/NA	Water	7196A	
LCS 480-488350/26	Lab Control Sample	Total/NA	Water	7196A	
LCS 480-488350/4	Lab Control Sample	Total/NA	Water	7196A	
480-157980-4 MS	MW-17	Total/NA	Ground Water	7196A	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	7196A	
480-157980-8 MS	MW-M(S)	Total/NA	Ground Water	7196A	
480-157980-2 DU	MW-16	Total/NA	Ground Water	7196A	
480-157980-7 DU	MW-M(I)	Total/NA	Ground Water	7196A	

Analysis Batch: 488376

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	350.1	
480-157980-2	MW-16	Total/NA	Ground Water	350.1	
480-157980-3	MW-16(S)	Total/NA	Ground Water	350.1	
480-157980-4	MW-17	Total/NA	Ground Water	350.1	
480-157980-5	MW-18BR	Total/NA	Ground Water	350.1	
480-157980-6	MW-L(I)	Total/NA	Ground Water	350.1	
480-157980-7	MW-M(I)	Total/NA	Ground Water	350.1	
480-157980-8	MW-M(S)	Total/NA	Ground Water	350.1	
480-157980-9	MW-P(I)	Total/NA	Ground Water	350.1	
480-157980-10	MW-P(S)	Total/NA	Ground Water	350.1	
MB 480-488376/123	Method Blank	Total/NA	Water	350.1	
MB 480-488376/147	Method Blank	Total/NA	Water	350.1	
LCS 480-488376/124	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-488376/148	Lab Control Sample	Total/NA	Water	350.1	
480-157980-4 MS	MW-17	Total/NA	Ground Water	350.1	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	350.1	
480-157980-6 MS	MW-L(I)	Total/NA	Ground Water	350.1	

Analysis Batch: 488442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	353.2	
480-157980-2	MW-16	Total/NA	Ground Water	353.2	
480-157980-3	MW-16(S)	Total/NA	Ground Water	353.2	
480-157980-4	MW-17	Total/NA	Ground Water	353.2	
480-157980-5	MW-18BR	Total/NA	Ground Water	353.2	
480-157980-6	MW-L(I)	Total/NA	Ground Water	353.2	
480-157980-7	MW-M(I)	Total/NA	Ground Water	353.2	
480-157980-8	MW-M(S)	Total/NA	Ground Water	353.2	
480-157980-9	MW-P(I)	Total/NA	Ground Water	353.2	
480-157980-10	MW-P(S)	Total/NA	Ground Water	353.2	

Eurofins TestAmerica, Buffalo

Page 223 of 314

2

3

7

9

10

12

4 4

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 488444

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	SM 5210B	
480-157980-2	MW-16	Total/NA	Ground Water	SM 5210B	
480-157980-4	MW-17	Total/NA	Ground Water	SM 5210B	
480-157980-5	MW-18BR	Total/NA	Ground Water	SM 5210B	
480-157980-6	MW-L(I)	Total/NA	Ground Water	SM 5210B	
480-157980-7	MW-M(I)	Total/NA	Ground Water	SM 5210B	
480-157980-8	MW-M(S)	Total/NA	Ground Water	SM 5210B	
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 5210B	
480-157980-10	MW-P(S)	Total/NA	Ground Water	SM 5210B	
USB 480-488444/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-488444/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-157980-4 MS	MW-17	Total/NA	Ground Water	SM 5210B	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	SM 5210B	

Analysis Batch: 488496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	SM 2540C	_ · · <u></u>
480-157980-2	MW-16	Total/NA	Ground Water	SM 2540C	
480-157980-3	MW-16(S)	Total/NA	Ground Water	SM 2540C	
480-157980-4	MW-17	Total/NA	Ground Water	SM 2540C	
480-157980-5	MW-18BR	Total/NA	Ground Water	SM 2540C	
480-157980-6	MW-L(I)	Total/NA	Ground Water	SM 2540C	
480-157980-7	MW-M(I)	Total/NA	Ground Water	SM 2540C	
480-157980-8	MW-M(S)	Total/NA	Ground Water	SM 2540C	
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 2540C	
480-157980-10	MW-P(S)	Total/NA	Ground Water	SM 2540C	
MB 480-488496/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-488496/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Prep Batch: 488505

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	351.2	
480-157980-2	MW-16	Total/NA	Ground Water	351.2	
MB 480-488505/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-488505/2-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 488596

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	SM 2120B	_ :
480-157980-2	MW-16	Total/NA	Ground Water	SM 2120B	
480-157980-3	MW-16(S)	Total/NA	Ground Water	SM 2120B	
480-157980-4	MW-17	Total/NA	Ground Water	SM 2120B	
480-157980-5	MW-18BR	Total/NA	Ground Water	SM 2120B	
480-157980-6	MW-L(I)	Total/NA	Ground Water	SM 2120B	
480-157980-7	MW-M(I)	Total/NA	Ground Water	SM 2120B	
480-157980-8	MW-M(S)	Total/NA	Ground Water	SM 2120B	
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 2120B	
480-157980-10	MW-P(S)	Total/NA	Ground Water	SM 2120B	
MB 480-488596/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-488596/4	Lab Control Sample	Total/NA	Water	SM 2120B	
480-157980-4 MS	MW-17	Total/NA	Ground Water	SM 2120B	

Eurofins TestAmerica, Buffalo

Page 224 of 314

2

3

5

9

TU

11

13

14

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 488596 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-4 MSD	MW-17	Total/NA	Ground Water	SM 2120B	
480-157980-1 DU	DUP	Total/NA	Ground Water	SM 2120B	
480-157980-5 DU	MW-18BR	Total/NA	Ground Water	SM 2120B	

Analysis Batch: 488613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	SM 5310C	_
480-157980-2	MW-16	Total/NA	Ground Water	SM 5310C	
480-157980-3	MW-16(S)	Total/NA	Ground Water	SM 5310C	
480-157980-4	MW-17	Total/NA	Ground Water	SM 5310C	
480-157980-5	MW-18BR	Total/NA	Ground Water	SM 5310C	
480-157980-6	MW-L(I)	Total/NA	Ground Water	SM 5310C	
480-157980-7	MW-M(I)	Total/NA	Ground Water	SM 5310C	
480-157980-8	MW-M(S)	Total/NA	Ground Water	SM 5310C	
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 5310C	
480-157980-10	MW-P(S)	Total/NA	Ground Water	SM 5310C	
MB 480-488613/51	Method Blank	Total/NA	Water	SM 5310C	
MB 480-488613/75	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-488613/52	Lab Control Sample	Total/NA	Water	SM 5310C	
LCS 480-488613/76	Lab Control Sample	Total/NA	Water	SM 5310C	
480-157980-4 MS	MW-17	Total/NA	Ground Water	SM 5310C	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	SM 5310C	

Analysis Batch: 488619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	SM 5210B	
480-158093-2	MW-N(S)	Total/NA	Ground Water	SM 5210B	
480-158093-3	MW-Q(I)	Total/NA	Water	SM 5210B	
USB 480-488619/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-488619/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Prep Batch: 488630

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-4	MW-17	Total/NA	Ground Water	351.2	-
480-157980-5	MW-18BR	Total/NA	Ground Water	351.2	
480-157980-6	MW-L(I)	Total/NA	Ground Water	351.2	
480-157980-7	MW-M(I)	Total/NA	Ground Water	351.2	
480-157980-9	MW-P(I)	Total/NA	Ground Water	351.2	
480-157980-10	MW-P(S)	Total/NA	Ground Water	351.2	
MB 480-488630/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-488630/2-A	Lab Control Sample	Total/NA	Water	351.2	
480-157980-4 MS	MW-17	Total/NA	Ground Water	351.2	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	351.2	

Analysis Batch: 488637

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	7196A	
480-158093-2	MW-N(S)	Total/NA	Ground Water	7196A	
480-158093-3	MW-Q(I)	Total/NA	Water	7196A	
MB 480-488637/3	Method Blank	Total/NA	Water	7196A	
LCS 480-488637/4	Lab Control Sample	Total/NA	Water	7196A	

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 488668

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	SM 2120B	
480-158093-2	MW-N(S)	Total/NA	Ground Water	SM 2120B	
480-158093-3	MW-Q(I)	Total/NA	Water	SM 2120B	
MB 480-488668/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-488668/4	Lab Control Sample	Total/NA	Water	SM 2120B	

Analysis Batch: 488673

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	353.2	<u> </u>
480-158093-2	MW-N(S)	Total/NA	Ground Water	353.2	
480-158093-3	MW-Q(I)	Total/NA	Water	353.2	

Analysis Batch: 488689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	410.4	
480-157980-3	MW-16(S)	Total/NA	Ground Water	410.4	
480-157980-5	MW-18BR	Total/NA	Ground Water	410.4	
480-157980-6	MW-L(I)	Total/NA	Ground Water	410.4	
480-157980-7	MW-M(I)	Total/NA	Ground Water	410.4	
480-157980-8	MW-M(S)	Total/NA	Ground Water	410.4	
MB 480-488689/28	Method Blank	Total/NA	Water	410.4	
MB 480-488689/52	Method Blank	Total/NA	Water	410.4	
LCS 480-488689/29	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-488689/53	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 488739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-2	MW-16	Total/NA	Ground Water	410.4	
480-157980-4	MW-17	Total/NA	Ground Water	410.4	
480-157980-9	MW-P(I)	Total/NA	Ground Water	410.4	
MB 480-488739/28	Method Blank	Total/NA	Water	410.4	
MB 480-488739/4	Method Blank	Total/NA	Water	410.4	
LCS 480-488739/29	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-488739/5	Lab Control Sample	Total/NA	Water	410.4	
480-157980-4 MS	MW-17	Total/NA	Ground Water	410.4	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	410.4	

Analysis Batch: 488778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	350.1	
480-158093-2	MW-N(S)	Total/NA	Ground Water	350.1	
480-158093-3	MW-Q(I)	Total/NA	Water	350.1	
MB 480-488778/27	Method Blank	Total/NA	Water	350.1	
LCS 480-488778/28	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 488839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch	1
480-158093-1	MW-N(I)	Total/NA	Ground Water	SM 2540C	-
480-158093-2	MW-N(S)	Total/NA	Ground Water	SM 2540C	
480-158093-3	MW-Q(I)	Total/NA	Water	SM 2540C	
MB 480-488839/1	Method Blank	Total/NA	Water	SM 2540C	

Eurofins TestAmerica, Buffalo

_____ 3

4

6

9

10

12

13

4 =

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 488839 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-488839/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 488896

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	351.2	488505
480-157980-2	MW-16	Total/NA	Ground Water	351.2	488505
480-157980-4	MW-17	Total/NA	Ground Water	351.2	488630
480-157980-5	MW-18BR	Total/NA	Ground Water	351.2	488630
480-157980-6	MW-L(I)	Total/NA	Ground Water	351.2	488630
480-157980-7	MW-M(I)	Total/NA	Ground Water	351.2	488630
480-157980-9	MW-P(I)	Total/NA	Ground Water	351.2	488630
480-157980-10	MW-P(S)	Total/NA	Ground Water	351.2	488630
MB 480-488505/1-A	Method Blank	Total/NA	Water	351.2	488505
MB 480-488630/1-A	Method Blank	Total/NA	Water	351.2	488630
LCS 480-488505/2-A	Lab Control Sample	Total/NA	Water	351.2	488505
LCS 480-488630/2-A	Lab Control Sample	Total/NA	Water	351.2	488630
480-157980-4 MS	MW-17	Total/NA	Ground Water	351.2	488630
480-157980-4 MSD	MW-17	Total/NA	Ground Water	351.2	488630

Analysis Batch: 488908

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	310.2	 -
480-157980-2	MW-16	Total/NA	Ground Water	310.2	
480-157980-3	MW-16(S)	Total/NA	Ground Water	310.2	
480-157980-4	MW-17	Total/NA	Ground Water	310.2	
480-157980-5	MW-18BR	Total/NA	Ground Water	310.2	
480-157980-6	MW-L(I)	Total/NA	Ground Water	310.2	
480-157980-7	MW-M(I)	Total/NA	Ground Water	310.2	
480-157980-8	MW-M(S)	Total/NA	Ground Water	310.2	
480-157980-9	MW-P(I)	Total/NA	Ground Water	310.2	
480-157980-10	MW-P(S)	Total/NA	Ground Water	310.2	
480-158093-1	MW-N(I)	Total/NA	Ground Water	310.2	
480-158093-2	MW-N(S)	Total/NA	Ground Water	310.2	
480-158093-3	MW-Q(I)	Total/NA	Water	310.2	
MB 480-488908/109	Method Blank	Total/NA	Water	310.2	
MB 480-488908/125	Method Blank	Total/NA	Water	310.2	
MB 480-488908/90	Method Blank	Total/NA	Water	310.2	
MB 480-488908/96	Method Blank	Total/NA	Water	310.2	
LCS 480-488908/110	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-488908/126	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-488908/91	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-488908/97	Lab Control Sample	Total/NA	Water	310.2	
480-157980-4 MS	MW-17	Total/NA	Ground Water	310.2	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	310.2	

Analysis Batch: 488982

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	300.0	
480-157980-2	MW-16	Total/NA	Ground Water	300.0	
480-157980-3	MW-16(S)	Total/NA	Ground Water	300.0	
480-157980-4	MW-17	Total/NA	Ground Water	300.0	

Eurofins TestAmerica, Buffalo

Page 227 of 314

3

4

6

9

10

13

14

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 488982 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-5	MW-18BR	Total/NA	Ground Water	300.0	_
480-157980-6	MW-L(I)	Total/NA	Ground Water	300.0	
480-157980-7	MW-M(I)	Total/NA	Ground Water	300.0	
480-157980-8	MW-M(S)	Total/NA	Ground Water	300.0	
480-157980-9	MW-P(I)	Total/NA	Ground Water	300.0	
480-157980-10	MW-P(S)	Total/NA	Ground Water	300.0	
MB 480-488982/28	Method Blank	Total/NA	Water	300.0	
MB 480-488982/4	Method Blank	Total/NA	Water	300.0	
LCS 480-488982/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-488982/3	Lab Control Sample	Total/NA	Water	300.0	
480-157980-4 MS	MW-17	Total/NA	Ground Water	300.0	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	300.0	

Analysis Batch: 488983

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	SM 4110B	
480-157980-2	MW-16	Total/NA	Ground Water	SM 4110B	
480-157980-3	MW-16(S)	Total/NA	Ground Water	SM 4110B	
480-157980-4	MW-17	Total/NA	Ground Water	SM 4110B	
480-157980-5	MW-18BR	Total/NA	Ground Water	SM 4110B	
480-157980-6	MW-L(I)	Total/NA	Ground Water	SM 4110B	
480-157980-7	MW-M(I)	Total/NA	Ground Water	SM 4110B	
480-157980-8	MW-M(S)	Total/NA	Ground Water	SM 4110B	
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 4110B	
480-157980-10	MW-P(S)	Total/NA	Ground Water	SM 4110B	
MB 480-488983/28	Method Blank	Total/NA	Water	SM 4110B	
MB 480-488983/4	Method Blank	Total/NA	Water	SM 4110B	
LCS 480-488983/27	Lab Control Sample	Total/NA	Water	SM 4110B	
LCS 480-488983/3	Lab Control Sample	Total/NA	Water	SM 4110B	
480-157980-4 MS	MW-17	Total/NA	Ground Water	SM 4110B	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	SM 4110B	

Analysis Batch: 489045

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-10	MW-P(S)	Total/NA	Ground Water	410.4	
MB 480-489045/3	Method Blank	Total/NA	Water	410.4	
LCS 480-489045/4	Lab Control Sample	Total/NA	Water	410.4	
480-157980-10 MS	MW-P(S)	Total/NA	Ground Water	410.4	
480-157980-10 MSD	MW-P(S)	Total/NA	Ground Water	410.4	

Analysis Batch: 489055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	300.0	
480-158093-2	MW-N(S)	Total/NA	Ground Water	300.0	
480-158093-3	MW-Q(I)	Total/NA	Water	300.0	
MB 480-489055/4	Method Blank	Total/NA	Water	300.0	
LCS 480-489055/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 489056

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	SM 4110B	

Eurofins TestAmerica, Buffalo

Page 228 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis	Batch:	489056	(Continued)
MIIAIVSIS	Dattii.	403030	(Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-2	MW-N(S)	Total/NA	Ground Water	SM 4110B	
480-158093-3	MW-Q(I)	Total/NA	Water	SM 4110B	
MB 480-489056/4	Method Blank	Total/NA	Water	SM 4110B	
LCS 480-489056/3	Lab Control Sample	Total/NA	Water	SM 4110B	

Analysis Batch: 489096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method P	rep Batch
480-158145-1	MW-50	Total/NA	Ground Water	7196A	
MB 480-489096/3	Method Blank	Total/NA	Water	7196A	
LCS 480-489096/4	Lab Control Sample	Total/NA	Water	7196A	
480-158145-1 MS	MW-50	Total/NA	Ground Water	7196A	

Analysis Batch: 489098

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	300.0	
MB 480-489098/4	Method Blank	Total/NA	Water	300.0	
LCS 480-489098/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 489099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	SM 4110B	
MB 480-489099/4	Method Blank	Total/NA	Water	SM 4110B	
LCS 480-489099/3	Lab Control Sample	Total/NA	Water	SM 4110B	

Analysis Batch: 489107

Lab Sample ID 480-158145-1	Client Sample ID MW-50	Prep Type Total/NA	Matrix Ground Water	Method SM 2120B	Prep Batch
MB 480-489107/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-489107/4	Lab Control Sample	Total/NA	Water	SM 2120B	

Analysis Batch: 489130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	353.2	

Analysis Batch: 489135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	SM 5210B	
USB 480-489135/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-489135/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Analysis Batch: 489206

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	SM 2540C	
MB 480-489206/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-489206/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Analysis Batch: 489211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	350.1	
MB 480-489211/27	Method Blank	Total/NA	Water	350.1	
MB 480-489211/3	Method Blank	Total/NA	Water	350.1	

Eurofins TestAmerica, Buffalo

9/30/2019

Page 229 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 489211 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-489211/28	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-489211/4	Lab Control Sample	Total/NA	Water	350.1	

Analysis Batch: 489215

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	SM 5310C	
480-158093-2	MW-N(S)	Total/NA	Ground Water	SM 5310C	
480-158093-3	MW-Q(I)	Total/NA	Water	SM 5310C	
MB 480-489215/27	Method Blank	Total/NA	Water	SM 5310C	
MB 480-489215/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-489215/28	Lab Control Sample	Total/NA	Water	SM 5310C	
LCS 480-489215/5	Lab Control Sample	Total/NA	Water	SM 5310C	
480-158093-3 MS	MW-Q(I)	Total/NA	Water	SM 5310C	
480-158093-3 MSD	MW-Q(I)	Total/NA	Water	SM 5310C	

Analysis Batch: 489262

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 4110B	
MB 480-489262/4	Method Blank	Total/NA	Water	SM 4110B	
LCS 480-489262/3	Lab Control Sample	Total/NA	Water	SM 4110B	

Analysis Batch: 489301

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	SM 2340C	
480-157980-2	MW-16	Total/NA	Ground Water	SM 2340C	
480-157980-3	MW-16(S)	Total/NA	Ground Water	SM 2340C	
480-157980-4	MW-17	Total/NA	Ground Water	SM 2340C	
MB 480-489301/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-489301/4	Lab Control Sample	Total/NA	Water	SM 2340C	
480-157980-4 MS	MW-17	Total/NA	Ground Water	SM 2340C	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	SM 2340C	

Analysis Batch: 489320

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	310.2	
MB 480-489320/73	Method Blank	Total/NA	Water	310.2	
LCS 480-489320/74	Lab Control Sample	Total/NA	Water	310.2	

Prep Batch: 489367

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-3	MW-16(S)	Total/NA	Ground Water	351.2	
480-157980-8	MW-M(S)	Total/NA	Ground Water	351.2	
MB 480-489367/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-489367/2-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 489430

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	410.4
480-158093-2	MW-N(S)	Total/NA	Ground Water	410.4
480-158093-3	MW-Q(I)	Total/NA	Water	410.4
MB 480-489430/27	Method Blank	Total/NA	Water	410.4

Eurofins TestAmerica, Buffalo

Page 230 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-489430/28	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 489502

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	SM 5310C	<u> </u>
MB 480-489502/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-489502/5	Lab Control Sample	Total/NA	Water	SM 5310C	

Analysis Batch: 489521

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	410.4	
MB 480-489521/27	Method Blank	Total/NA	Water	410.4	
LCS 480-489521/28	Lab Control Sample	Total/NA	Water	410.4	

Analysis Batch: 489755

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	353.2
480-158409-2	MWBA-1	Total/NA	Ground Water	353.2
480-158409-3	MWBA-2	Total/NA	Ground Water	353.2
480-158409-4	MW-O(I)	Total/NA	Ground Water	353.2

Analysis Batch: 489758

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	7196A	
480-158409-2	MWBA-1	Total/NA	Ground Water	7196A	
480-158409-3	MWBA-2	Total/NA	Ground Water	7196A	
480-158409-4	MW-O(I)	Total/NA	Ground Water	7196A	
MB 480-489758/3	Method Blank	Total/NA	Water	7196A	
LCS 480-489758/4	Lab Control Sample	Total/NA	Water	7196A	
480-158409-4 MS	MW-O(I)	Total/NA	Ground Water	7196A	
480-158409-2 DU	MWBA-1	Total/NA	Ground Water	7196A	

Analysis Batch: 489771

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-5	MW-18BR	Total/NA	Ground Water	SM 2340C	
480-157980-6	MW-L(I)	Total/NA	Ground Water	SM 2340C	
480-157980-7	MW-M(I)	Total/NA	Ground Water	SM 2340C	
480-157980-8	MW-M(S)	Total/NA	Ground Water	SM 2340C	
480-157980-9	MW-P(I)	Total/NA	Ground Water	SM 2340C	
480-157980-10	MW-P(S)	Total/NA	Ground Water	SM 2340C	
MB 480-489771/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-489771/4	Lab Control Sample	Total/NA	Water	SM 2340C	
480-157980-6 MS	MW-L(I)	Total/NA	Ground Water	SM 2340C	

Analysis Batch: 489774

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	SM 5210B	
USB 480-489774/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-489774/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Page 231 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 489775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-2	MWBA-1	Total/NA	Ground Water	SM 5210B	
480-158409-3	MWBA-2	Total/NA	Ground Water	SM 5210B	
480-158409-4	MW-O(I)	Total/NA	Ground Water	SM 5210B	
USB 480-489775/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-489775/2	Lab Control Sample	Total/NA	Water	SM 5210B	
480-158409-4 DU	MW-O(I)	Total/NA	Ground Water	SM 5210B	

Analysis Batch: 489781

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	SM 2120B	_
480-158409-2	MWBA-1	Total/NA	Ground Water	SM 2120B	
480-158409-3	MWBA-2	Total/NA	Ground Water	SM 2120B	
480-158409-4	MW-O(I)	Total/NA	Ground Water	SM 2120B	
MB 480-489781/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-489781/4	Lab Control Sample	Total/NA	Water	SM 2120B	
480-158409-3 DU	MWBA-2	Total/NA	Ground Water	SM 2120B	

Analysis Batch: 489787

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-3	MW-16(S)	Total/NA	Ground Water	351.2	489367
480-157980-8	MW-M(S)	Total/NA	Ground Water	351.2	489367
MB 480-489367/1-A	Method Blank	Total/NA	Water	351.2	489367
LCS 480-489367/2-A	Lab Control Sample	Total/NA	Water	351.2	489367

Prep Batch: 489794

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
480-157980-1	DUP	Total/NA	Ground Water	9012B	_
480-157980-2	MW-16	Total/NA	Ground Water	9012B	
480-157980-3	MW-16(S)	Total/NA	Ground Water	9012B	
480-157980-4	MW-17	Total/NA	Ground Water	9012B	
480-157980-5	MW-18BR	Total/NA	Ground Water	9012B	
480-157980-6	MW-L(I)	Total/NA	Ground Water	9012B	
480-157980-7	MW-M(I)	Total/NA	Ground Water	9012B	
480-157980-8	MW-M(S)	Total/NA	Ground Water	9012B	
480-157980-9	MW-P(I)	Total/NA	Ground Water	9012B	
480-157980-10	MW-P(S)	Total/NA	Ground Water	9012B	
MB 480-489794/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-489794/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-489794/3-A	Lab Control Sample	Total/NA	Water	9012B	
480-157980-4 MS	MW-17	Total/NA	Ground Water	9012B	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	9012B	
480-157980-9 MS	MW-P(I)	Total/NA	Ground Water	9012B	

Analysis Batch: 489906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-2	MW-16	Total/NA	Ground Water	9012B	489794
480-157980-3	MW-16(S)	Total/NA	Ground Water	9012B	489794
480-157980-4	MW-17	Total/NA	Ground Water	9012B	489794
MB 480-489794/1-A	Method Blank	Total/NA	Water	9012B	489794
LCS 480-489794/3-A	Lab Control Sample	Total/NA	Water	9012B	489794
480-157980-4 MS	MW-17	Total/NA	Ground Water	9012B	489794

Eurofins TestAmerica, Buffalo

7

Ŏ

10

11

13

14

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 489906 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-4 MSD	MW-17	Total/NA	Ground Water	9012B	489794

Analysis Batch: 489911

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	9012B	489794
480-157980-5	MW-18BR	Total/NA	Ground Water	9012B	489794
480-157980-6	MW-L(I)	Total/NA	Ground Water	9012B	489794
480-157980-7	MW-M(I)	Total/NA	Ground Water	9012B	489794
480-157980-8	MW-M(S)	Total/NA	Ground Water	9012B	489794
480-157980-9	MW-P(I)	Total/NA	Ground Water	9012B	489794
480-157980-10	MW-P(S)	Total/NA	Ground Water	9012B	489794
LCS 480-489794/2-A	Lab Control Sample	Total/NA	Water	9012B	489794
480-157980-9 MS	MW-P(I)	Total/NA	Ground Water	9012B	489794

Prep Batch: 490033

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	351.2	
480-158093-2	MW-N(S)	Total/NA	Ground Water	351.2	
480-158093-3	MW-Q(I)	Total/NA	Water	351.2	
MB 480-490033/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-490033/2-A	Lab Control Sample	Total/NA	Water	351.2	
480-158093-3 MS	MW-Q(I)	Total/NA	Water	351.2	

Analysis Batch: 490115

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	7196A	_
480-158492-2	MWSE-2	Total/NA	Ground Water	7196A	
480-158492-3	MWSE-3	Total/NA	Ground Water	7196A	
480-158492-4	MWSE-4	Total/NA	Ground Water	7196A	
MB 480-490115/3	Method Blank	Total/NA	Water	7196A	
LCS 480-490115/4	Lab Control Sample	Total/NA	Water	7196A	
480-158492-4 MS	MWSE-4	Total/NA	Ground Water	7196A	
480-158492-4 DU	MWSE-4	Total/NA	Ground Water	7196A	

Analysis Batch: 490147

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	351.2	490033
480-158093-2	MW-N(S)	Total/NA	Ground Water	351.2	490033
480-158093-3	MW-Q(I)	Total/NA	Water	351.2	490033
MB 480-490033/1-A	Method Blank	Total/NA	Water	351.2	490033
LCS 480-490033/2-A	Lab Control Sample	Total/NA	Water	351.2	490033
480-158093-3 MS	MW-Q(I)	Total/NA	Water	351.2	490033

Analysis Batch: 490214

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	353.2	
480-158492-2	MWSE-2	Total/NA	Ground Water	353.2	
480-158492-3	MWSE-3	Total/NA	Ground Water	353.2	
480-158492-4	MWSE-4	Total/NA	Ground Water	353.2	

Eurofins TestAmerica, Buffalo

Page 233 of 314

2

3

4

6

0

10

11

13

14

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 490229

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	SM 5210B	
480-158492-2	MWSE-2	Total/NA	Ground Water	SM 5210B	
480-158492-3	MWSE-3	Total/NA	Ground Water	SM 5210B	
480-158492-4	MWSE-4	Total/NA	Ground Water	SM 5210B	
USB 480-490229/1	Method Blank	Total/NA	Water	SM 5210B	
LCS 480-490229/2	Lab Control Sample	Total/NA	Water	SM 5210B	

Prep Batch: 490313

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	9012B	
480-158093-2	MW-N(S)	Total/NA	Ground Water	9012B	
480-158093-3	MW-Q(I)	Total/NA	Water	9012B	
MB 480-490313/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-490313/2-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 490322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	SM 2540C	
480-158492-2	MWSE-2	Total/NA	Ground Water	SM 2540C	
480-158492-3	MWSE-3	Total/NA	Ground Water	SM 2540C	
480-158492-4	MWSE-4	Total/NA	Ground Water	SM 2540C	
MB 480-490322/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-490322/2	Lab Control Sample	Total/NA	Water	SM 2540C	
480-158492-3 DU	MWSE-3	Total/NA	Ground Water	SM 2540C	

Analysis Batch: 490326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	SM 2540C	
480-158409-2	MWBA-1	Total/NA	Ground Water	SM 2540C	
480-158409-3	MWBA-2	Total/NA	Ground Water	SM 2540C	
480-158409-4	MW-O(I)	Total/NA	Ground Water	SM 2540C	
MB 480-490326/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 480-490326/2	Lab Control Sample	Total/NA	Water	SM 2540C	

Prep Batch: 490387

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	351.2	
MB 480-490387/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-490387/2-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 490392

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	SM 2120B	
480-158492-2	MWSE-2	Total/NA	Ground Water	SM 2120B	
480-158492-3	MWSE-3	Total/NA	Ground Water	SM 2120B	
480-158492-4	MWSE-4	Total/NA	Ground Water	SM 2120B	
MB 480-490392/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-490392/4	Lab Control Sample	Total/NA	Water	SM 2120B	

Eurofins TestAmerica, Buffalo

Page 234 of 314

9

3

4

6

8

10

11

13

4 5

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 490396

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	9012B	490313
480-158093-2	MW-N(S)	Total/NA	Ground Water	9012B	490313
480-158093-3	MW-Q(I)	Total/NA	Water	9012B	490313
MB 480-490313/1-A	Method Blank	Total/NA	Water	9012B	490313
LCS 480-490313/2-A	Lab Control Sample	Total/NA	Water	9012B	490313

Prep Batch: 490474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	Distill/Phenol	
480-157980-2	MW-16	Total/NA	Ground Water	Distill/Phenol	
480-157980-4	MW-17	Total/NA	Ground Water	Distill/Phenol	
480-157980-5	MW-18BR	Total/NA	Ground Water	Distill/Phenol	
480-157980-6	MW-L(I)	Total/NA	Ground Water	Distill/Phenol	
480-157980-7	MW-M(I)	Total/NA	Ground Water	Distill/Phenol	
480-157980-8	MW-M(S)	Total/NA	Ground Water	Distill/Phenol	
480-157980-9	MW-P(I)	Total/NA	Ground Water	Distill/Phenol	
480-157980-10	MW-P(S)	Total/NA	Ground Water	Distill/Phenol	
MB 480-490474/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-490474/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
480-157980-4 MS	MW-17	Total/NA	Ground Water	Distill/Phenol	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	Distill/Phenol	
480-157980-9 MS	MW-P(I)	Total/NA	Ground Water	Distill/Phenol	

Analysis Batch: 490559

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	350.1	
480-158409-2	MWBA-1	Total/NA	Ground Water	350.1	
480-158409-3	MWBA-2	Total/NA	Ground Water	350.1	
480-158409-4	MW-O(I)	Total/NA	Ground Water	350.1	
MB 480-490559/27	Method Blank	Total/NA	Water	350.1	
MB 480-490559/51	Method Blank	Total/NA	Water	350.1	
LCS 480-490559/28	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-490559/52	Lab Control Sample	Total/NA	Water	350.1	
480-158409-1 MS	FIELD BLANK	Total/NA	Water	350.1	

Analysis Batch: 490641

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	350.1	_
480-158492-2	MWSE-2	Total/NA	Ground Water	350.1	
480-158492-3	MWSE-3	Total/NA	Ground Water	350.1	
480-158492-4	MWSE-4	Total/NA	Ground Water	350.1	
MB 480-490641/27	Method Blank	Total/NA	Water	350.1	
MB 480-490641/3	Method Blank	Total/NA	Water	350.1	
LCS 480-490641/28	Lab Control Sample	Total/NA	Water	350.1	
LCS 480-490641/4	Lab Control Sample	Total/NA	Water	350.1	
480-158492-1 MS	MWSE-1	Total/NA	Ground Water	350.1	

Analysis Batch: 490698

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	410.4	
480-158409-2	MWBA-1	Total/NA	Ground Water	410.4	

Eurofins TestAmerica, Buffalo

9/30/2019

Page 235 of 314

3

ŏ

10

4.0

13

14

17

Ц

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 490698 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-3	MWBA-2	Total/NA	Ground Water	410.4	
480-158409-4	MW-O(I)	Total/NA	Ground Water	410.4	
MB 480-490698/51	Method Blank	Total/NA	Water	410.4	
MB 480-490698/75	Method Blank	Total/NA	Water	410.4	
LCS 480-490698/52	Lab Control Sample	Total/NA	Water	410.4	
LCS 480-490698/76	Lab Control Sample	Total/NA	Water	410.4	

Prep Batch: 490714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	Distill/Phenol	
480-158093-3	MW-Q(I)	Total/NA	Water	Distill/Phenol	
MB 480-490714/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-490714/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Prep Batch: 490716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	Distill/Phenol	
MB 480-490716/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-490716/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Analysis Batch: 490772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	SM 5310C	
480-158409-2	MWBA-1	Total/NA	Ground Water	SM 5310C	
480-158409-3	MWBA-2	Total/NA	Ground Water	SM 5310C	
480-158409-4	MW-O(I)	Total/NA	Ground Water	SM 5310C	
MB 480-490772/27	Method Blank	Total/NA	Water	SM 5310C	
MB 480-490772/4	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-490772/28	Lab Control Sample	Total/NA	Water	SM 5310C	
LCS 480-490772/5	Lab Control Sample	Total/NA	Water	SM 5310C	
480-158409-4 MS	MW-O(I)	Total/NA	Ground Water	SM 5310C	
480-158409-4 MSD	MW-O(I)	Total/NA	Ground Water	SM 5310C	

Analysis Batch: 490818

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	9065	490474
480-157980-2	MW-16	Total/NA	Ground Water	9065	490474
480-157980-4	MW-17	Total/NA	Ground Water	9065	490474
480-157980-5	MW-18BR	Total/NA	Ground Water	9065	490474
480-157980-6	MW-L(I)	Total/NA	Ground Water	9065	490474
480-157980-7	MW-M(I)	Total/NA	Ground Water	9065	490474
480-157980-8	MW-M(S)	Total/NA	Ground Water	9065	490474
480-157980-9	MW-P(I)	Total/NA	Ground Water	9065	490474
480-157980-10	MW-P(S)	Total/NA	Ground Water	9065	490474
480-158093-1	MW-N(I)	Total/NA	Ground Water	9065	490714
480-158093-3	MW-Q(I)	Total/NA	Water	9065	490714
480-158145-1	MW-50	Total/NA	Ground Water	9065	490716
MB 480-490474/1-A	Method Blank	Total/NA	Water	9065	490474
MB 480-490714/1-A	Method Blank	Total/NA	Water	9065	490714
MB 480-490716/1-A	Method Blank	Total/NA	Water	9065	490716
LCS 480-490474/2-A	Lab Control Sample	Total/NA	Water	9065	490474

Eurofins TestAmerica, Buffalo

9/30/2019

2

3

4

6

8

10

11

13

14

16

1/

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 490818 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-490714/2-A	Lab Control Sample	Total/NA	Water	9065	490714
LCS 480-490716/2-A	Lab Control Sample	Total/NA	Water	9065	490716
480-157980-4 MS	MW-17	Total/NA	Ground Water	9065	490474
480-157980-4 MSD	MW-17	Total/NA	Ground Water	9065	490474
480-157980-9 MS	MW-P(I)	Total/NA	Ground Water	9065	490474

Prep Batch: 490819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	9012B	
MB 480-490819/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-490819/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-490819/3-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 490899

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	300.0	
480-158409-2	MWBA-1	Total/NA	Ground Water	300.0	
480-158409-3	MWBA-2	Total/NA	Ground Water	300.0	
480-158409-4	MW-O(I)	Total/NA	Ground Water	300.0	
480-158492-1	MWSE-1	Total/NA	Ground Water	300.0	
480-158492-2	MWSE-2	Total/NA	Ground Water	300.0	
480-158492-3	MWSE-3	Total/NA	Ground Water	300.0	
480-158492-4	MWSE-4	Total/NA	Ground Water	300.0	
MB 480-490899/28	Method Blank	Total/NA	Water	300.0	
MB 480-490899/4	Method Blank	Total/NA	Water	300.0	
LCS 480-490899/27	Lab Control Sample	Total/NA	Water	300.0	
LCS 480-490899/3	Lab Control Sample	Total/NA	Water	300.0	

Analysis Batch: 490900

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	SM 4110B	
480-158409-2	MWBA-1	Total/NA	Ground Water	SM 4110B	
480-158409-3	MWBA-2	Total/NA	Ground Water	SM 4110B	
480-158409-4	MW-O(I)	Total/NA	Ground Water	SM 4110B	
480-158492-1	MWSE-1	Total/NA	Ground Water	SM 4110B	
480-158492-2	MWSE-2	Total/NA	Ground Water	SM 4110B	
480-158492-3	MWSE-3	Total/NA	Ground Water	SM 4110B	
480-158492-4	MWSE-4	Total/NA	Ground Water	SM 4110B	
MB 480-490900/28	Method Blank	Total/NA	Water	SM 4110B	
MB 480-490900/4	Method Blank	Total/NA	Water	SM 4110B	
LCS 480-490900/27	Lab Control Sample	Total/NA	Water	SM 4110B	
LCS 480-490900/3	Lab Control Sample	Total/NA	Water	SM 4110B	

Analysis Batch: 490924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	351.2	490387
MB 480-490387/1-A	Method Blank	Total/NA	Water	351.2	490387
LCS 480-490387/2-A	Lab Control Sample	Total/NA	Water	351.2	490387

Eurofins TestAmerica, Buffalo

Page 237 of 314

2

3

4

6

10

12

1 4

15

17

16

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 490939

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	9012B	490819
MB 480-490819/1-A	Method Blank	Total/NA	Water	9012B	490819
LCS 480-490819/2-A	Lab Control Sample	Total/NA	Water	9012B	490819
LCS 480-490819/3-A	Lab Control Sample	Total/NA	Water	9012B	490819

Analysis Batch: 491025

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	SM 2340C	
480-158093-2	MW-N(S)	Total/NA	Ground Water	SM 2340C	
480-158093-3	MW-Q(I)	Total/NA	Water	SM 2340C	
480-158145-1	MW-50	Total/NA	Ground Water	SM 2340C	
MB 480-491025/27	Method Blank	Total/NA	Water	SM 2340C	
MB 480-491025/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-491025/28	Lab Control Sample	Total/NA	Water	SM 2340C	
LCS 480-491025/4	Lab Control Sample	Total/NA	Water	SM 2340C	
480-158093-1 MS	MW-N(I)	Total/NA	Ground Water	SM 2340C	

Analysis Batch: 491046

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	310.2	_
480-158409-2	MWBA-1	Total/NA	Ground Water	310.2	
480-158409-3	MWBA-2	Total/NA	Ground Water	310.2	
480-158409-4	MW-O(I)	Total/NA	Ground Water	310.2	
480-158492-1	MWSE-1	Total/NA	Ground Water	310.2	
480-158492-2	MWSE-2	Total/NA	Ground Water	310.2	
480-158492-3	MWSE-3	Total/NA	Ground Water	310.2	
480-158492-4	MWSE-4	Total/NA	Ground Water	310.2	
MB 480-491046/19	Method Blank	Total/NA	Water	310.2	
MB 480-491046/43	Method Blank	Total/NA	Water	310.2	
MB 480-491046/51	Method Blank	Total/NA	Water	310.2	
MB 480-491046/70	Method Blank	Total/NA	Water	310.2	
MB 480-491046/80	Method Blank	Total/NA	Water	310.2	
LCS 480-491046/20	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-491046/44	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-491046/52	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-491046/71	Lab Control Sample	Total/NA	Water	310.2	
LCS 480-491046/81	Lab Control Sample	Total/NA	Water	310.2	

Prep Batch: 491161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	9012B	
480-158409-2	MWBA-1	Total/NA	Ground Water	9012B	
MB 480-491161/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-491161/2-A	Lab Control Sample	Total/NA	Water	9012B	
480-158409-2 MS	MWBA-1	Total/NA	Ground Water	9012B	

Analysis Batch: 491171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	SM 5310C	
480-158492-2	MWSE-2	Total/NA	Ground Water	SM 5310C	
480-158492-3	MWSE-3	Total/NA	Ground Water	SM 5310C	

Eurofins TestAmerica, Buffalo

Page 238 of 314

3

4

6

0

4.0

44

4 4

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 491171 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-4	MWSE-4	Total/NA	Ground Water	SM 5310C	
MB 480-491171/24	Method Blank	Total/NA	Water	SM 5310C	
LCS 480-491171/25	Lab Control Sample	Total/NA	Water	SM 5310C	
480-158492-1 MS	MWSE-1	Total/NA	Ground Water	SM 5310C	
480-158492-1 MSD	MWSE-1	Total/NA	Ground Water	SM 5310C	

Analysis Batch: 491490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	9012B	491161
480-158409-2	MWBA-1	Total/NA	Ground Water	9012B	491161
MB 480-491161/1-A	Method Blank	Total/NA	Water	9012B	491161
LCS 480-491161/2-A	Lab Control Sample	Total/NA	Water	9012B	491161
480-158409-2 MS	MWBA-1	Total/NA	Ground Water	9012B	491161

Analysis Batch: 491715

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	410.4	
480-158492-2	MWSE-2	Total/NA	Ground Water	410.4	
480-158492-3	MWSE-3	Total/NA	Ground Water	410.4	
480-158492-4	MWSE-4	Total/NA	Ground Water	410.4	
MB 480-491715/3	Method Blank	Total/NA	Water	410.4	
LCS 480-491715/4	Lab Control Sample	Total/NA	Water	410.4	
480-158492-3 MS	MWSE-3	Total/NA	Ground Water	410.4	

Prep Batch: 491744

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-3	MWBA-2	Total/NA	Ground Water	9012B	
480-158409-4	MW-O(I)	Total/NA	Ground Water	9012B	
MB 480-491744/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-491744/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-491744/3-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 491820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-3	MWBA-2	Total/NA	Ground Water	9012B	491744
480-158409-4	MW-O(I)	Total/NA	Ground Water	9012B	491744
MB 480-491744/1-A	Method Blank	Total/NA	Water	9012B	491744
LCS 480-491744/2-A	Lab Control Sample	Total/NA	Water	9012B	491744
LCS 480-491744/3-A	Lab Control Sample	Total/NA	Water	9012B	491744

Prep Batch: 491834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-3	MW-16(S)	Total/NA	Ground Water	Distill/Phenol	
MB 480-491834/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-491834/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Prep Batch: 491906

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	351.2	
480-158492-1	MWSE-1	Total/NA	Ground Water	351.2	
480-158492-2	MWSE-2	Total/NA	Ground Water	351.2	

Eurofins TestAmerica, Buffalo

Page 239 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Prep Batch: 491906 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-3	MWSE-3	Total/NA	Ground Water	351.2	
480-158492-4	MWSE-4	Total/NA	Ground Water	351.2	
MB 480-491906/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-491906/2-A	Lab Control Sample	Total/NA	Water	351.2	
480-158409-1 DU	FIELD BLANK	Total/NA	Water	351.2	

Analysis Batch: 492044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-3	MW-16(S)	Total/NA	Ground Water	9065	491834
MB 480-491834/1-A	Method Blank	Total/NA	Water	9065	491834
LCS 480-491834/2-A	Lab Control Sample	Total/NA	Water	9065	491834

Prep Batch: 492055

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	Distill/Phenol	
480-158409-3	MWBA-2	Total/NA	Ground Water	Distill/Phenol	
480-158409-4	MW-O(I)	Total/NA	Ground Water	Distill/Phenol	
MB 480-492055/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-492055/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
480-158409-1 MS	FIELD BLANK	Total/NA	Water	Distill/Phenol	

Analysis Batch: 492180

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	351.2	491906
480-158492-1	MWSE-1	Total/NA	Ground Water	351.2	491906
480-158492-2	MWSE-2	Total/NA	Ground Water	351.2	491906
480-158492-3	MWSE-3	Total/NA	Ground Water	351.2	491906
480-158492-4	MWSE-4	Total/NA	Ground Water	351.2	491906
MB 480-491906/1-A	Method Blank	Total/NA	Water	351.2	491906
LCS 480-491906/2-A	Lab Control Sample	Total/NA	Water	351.2	491906
480-158409-1 DU	FIELD BLANK	Total/NA	Water	351.2	491906

Prep Batch: 492183

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	9012B	
480-158492-3	MWSE-3	Total/NA	Ground Water	9012B	
480-158492-4	MWSE-4	Total/NA	Ground Water	9012B	
MB 480-492183/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-492183/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-492183/3-A	Lab Control Sample	Total/NA	Water	9012B	

Prep Batch: 492184

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	9012B	
MB 480-492184/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-492184/2-A	Lab Control Sample	Total/NA	Water	9012B	

Analysis Batch: 492252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	SM 2340C	
480-158409-2	MWBA-1	Total/NA	Ground Water	SM 2340C	

Eurofins TestAmerica, Buffalo

Page 240 of 314

5

3

4

6

Q

44

12

. .

15

45

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 492252 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-3	MWBA-2	Total/NA	Ground Water	SM 2340C	
MB 480-492252/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-492252/4	Lab Control Sample	Total/NA	Water	SM 2340C	
480-158409-1 MS	FIELD BLANK	Total/NA	Water	SM 2340C	
480-158409-1 MSD	FIELD BLANK	Total/NA	Water	SM 2340C	

Analysis Batch: 492319

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	9065	492055
480-158409-3	MWBA-2	Total/NA	Ground Water	9065	492055
480-158409-4	MW-O(I)	Total/NA	Ground Water	9065	492055
MB 480-492055/1-A	Method Blank	Total/NA	Water	9065	492055
LCS 480-492055/2-A	Lab Control Sample	Total/NA	Water	9065	492055
480-158409-1 MS	FIELD BLANK	Total/NA	Water	9065	492055

Analysis Batch: 492324

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158145-1	MW-50	Total/NA	Ground Water	9012B	492184
MB 480-492184/1-A	Method Blank	Total/NA	Water	9012B	492184
LCS 480-492184/2-A	Lab Control Sample	Total/NA	Water	9012B	492184

Analysis Batch: 492325

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	9012B	492183
480-158492-3	MWSE-3	Total/NA	Ground Water	9012B	492183
480-158492-4	MWSE-4	Total/NA	Ground Water	9012B	492183
MB 480-492183/1-A	Method Blank	Total/NA	Water	9012B	492183
LCS 480-492183/2-A	Lab Control Sample	Total/NA	Water	9012B	492183
LCS 480-492183/3-A	Lab Control Sample	Total/NA	Water	9012B	492183

Prep Batch: 492371

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	Distill/Phenol	
480-158492-2	MWSE-2	Total/NA	Ground Water	Distill/Phenol	
480-158492-3	MWSE-3	Total/NA	Ground Water	Distill/Phenol	
480-158492-4	MWSE-4	Total/NA	Ground Water	Distill/Phenol	
MB 480-492371/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-492371/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	
480-158492-1 MS	MWSE-1	Total/NA	Ground Water	Distill/Phenol	

Prep Batch: 492372

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-2	MW-N(S)	Total/NA	Ground Water	Distill/Phenol	
480-158409-2	MWBA-1	Total/NA	Ground Water	Distill/Phenol	
MB 480-492372/1-A	Method Blank	Total/NA	Water	Distill/Phenol	
LCS 480-492372/2-A	Lab Control Sample	Total/NA	Water	Distill/Phenol	

Prep Batch: 492388

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-3	MWBA-2	Total/NA	Ground Water	351.2	
480-158409-4	MW-O(I)	Total/NA	Ground Water	351.2	

Eurofins TestAmerica, Buffalo

Page 241 of 314

2

3

4

0

10

40

13

14

16

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Prep Batch: 492388 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 480-492388/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-492388/2-A	Lab Control Sample	Total/NA	Water	351.2	
480-158409-4 MS	MW-O(I)	Total/NA	Ground Water	351.2	

Prep Batch: 492463

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-2	MWSE-2	Total/NA	Ground Water	9012B	
MB 480-492463/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-492463/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-492463/3-A	Lab Control Sample	Total/NA	Water	9012B	
480-158492-2 MS	MWSE-2	Total/NA	Ground Water	9012B	

Analysis Batch: 492507

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-4	MW-17	Total/NA	Ground Water	SM 2120B	
MB 480-492507/3	Method Blank	Total/NA	Water	SM 2120B	
LCS 480-492507/4	Lab Control Sample	Total/NA	Water	SM 2120B	
480-157980-4 MS	MW-17	Total/NA	Ground Water	SM 2120B	
480-157980-4 MSD	MW-17	Total/NA	Ground Water	SM 2120B	

Analysis Batch: 492515

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-2	MW-N(S)	Total/NA	Ground Water	9065	492372
480-158409-2	MWBA-1	Total/NA	Ground Water	9065	492372
480-158492-1	MWSE-1	Total/NA	Ground Water	9065	492371
480-158492-2	MWSE-2	Total/NA	Ground Water	9065	492371
480-158492-3	MWSE-3	Total/NA	Ground Water	9065	492371
480-158492-4	MWSE-4	Total/NA	Ground Water	9065	492371
MB 480-492371/1-A	Method Blank	Total/NA	Water	9065	492371
MB 480-492372/1-A	Method Blank	Total/NA	Water	9065	492372
LCS 480-492371/2-A	Lab Control Sample	Total/NA	Water	9065	492371
LCS 480-492372/2-A	Lab Control Sample	Total/NA	Water	9065	492372
480-158492-1 MS	MWSE-1	Total/NA	Ground Water	9065	492371

Analysis Batch: 492555

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-2	MWSE-2	Total/NA	Ground Water	9012B	492463
MB 480-492463/1-A	Method Blank	Total/NA	Water	9012B	492463
LCS 480-492463/2-A	Lab Control Sample	Total/NA	Water	9012B	492463
LCS 480-492463/3-A	Lab Control Sample	Total/NA	Water	9012B	492463
480-158492-2 MS	MWSE-2	Total/NA	Ground Water	9012B	492463

Analysis Batch: 492583

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-3	MWBA-2	Total/NA	Ground Water	351.2	492388
480-158409-4	MW-O(I)	Total/NA	Ground Water	351.2	492388
MB 480-492388/1-A	Method Blank	Total/NA	Water	351.2	492388
LCS 480-492388/2-A	Lab Control Sample	Total/NA	Water	351.2	492388
480-158409-4 MS	MW-O(I)	Total/NA	Ground Water	351.2	492388

Eurofins TestAmerica, Buffalo

Page 242 of 314

9

3

4

6

8

10

12

13

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry

Analysis Batch: 492757

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-4	MW-O(I)	Total/NA	Ground Water	SM 2340C	
480-158492-1	MWSE-1	Total/NA	Ground Water	SM 2340C	
480-158492-2	MWSE-2	Total/NA	Ground Water	SM 2340C	
480-158492-3	MWSE-3	Total/NA	Ground Water	SM 2340C	
480-158492-4	MWSE-4	Total/NA	Ground Water	SM 2340C	
MB 480-492757/3	Method Blank	Total/NA	Water	SM 2340C	
LCS 480-492757/4	Lab Control Sample	Total/NA	Water	SM 2340C	
480-158492-4 MS	MWSE-4	Total/NA	Ground Water	SM 2340C	
480-158492-4 MSD	MWSE-4	Total/NA	Ground Water	SM 2340C	

Prep Batch: 492820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-2	MWBA-1	Total/NA	Ground Water	9012B	
480-158409-3	MWBA-2	Total/NA	Ground Water	9012B	
480-158409-4	MW-O(I)	Total/NA	Ground Water	9012B	
MB 480-492820/1-A	Method Blank	Total/NA	Water	9012B	
LCS 480-492820/2-A	Lab Control Sample	Total/NA	Water	9012B	
LCS 480-492820/3-B	Lab Control Sample	Total/NA	Water	9012B	

Prep Batch: 492889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-2	MWBA-1	Total/NA	Ground Water	351.2	<u> </u>
MB 480-492889/1-A	Method Blank	Total/NA	Water	351.2	
LCS 480-492889/2-A	Lab Control Sample	Total/NA	Water	351.2	

Analysis Batch: 492894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-2	MWBA-1	Total/NA	Ground Water	9012B	492820
480-158409-3	MWBA-2	Total/NA	Ground Water	9012B	492820
480-158409-4	MW-O(I)	Total/NA	Ground Water	9012B	492820
MB 480-492820/1-A	Method Blank	Total/NA	Water	9012B	492820
LCS 480-492820/2-A	Lab Control Sample	Total/NA	Water	9012B	492820
LCS 480-492820/3-B	Lab Control Sample	Total/NA	Water	9012B	492820

Analysis Batch: 493403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-2	MWBA-1	Total/NA	Ground Water	351.2	492889
MB 480-492889/1-A	Method Blank	Total/NA	Water	351.2	492889
LCS 480-492889/2-A	Lab Control Sample	Total/NA	Water	351.2	492889

Prep Batch: 494488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	351.2
MB 480-494488/1-A	Method Blank	Total/NA	Water	351.2
LCS 480-494488/2-A	Lab Control Sample	Total/NA	Water	351.2
480-158409-1 DU	FIELD BLANK	Total/NA	Water	351.2

Analysis Batch: 494800

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-1	FIELD BLANK	Total/NA	Water	351.2	494488
MB 480-494488/1-A	Method Blank	Total/NA	Water	351.2	494488

Eurofins TestAmerica, Buffalo

Page 243 of 314

9

3

4

6

8

10

4.0

13

14

16

17

Ц

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

General Chemistry (Continued)

Analysis Batch: 494800 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 480-494488/2-A	Lab Control Sample	Total/NA	Water	351.2	494488
480-158409-1 DU	FIELD BLANK	Total/NA	Water	351.2	494488

Field Service / Mobile Lab

Analysis Batch: 490099

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-157980-1	DUP	Total/NA	Ground Water	Field Sampling	
480-157980-2	MW-16	Total/NA	Ground Water	Field Sampling	
480-157980-3	MW-16(S)	Total/NA	Ground Water	Field Sampling	
480-157980-4	MW-17	Total/NA	Ground Water	Field Sampling	
480-157980-5	MW-18BR	Total/NA	Ground Water	Field Sampling	
480-157980-6	MW-L(I)	Total/NA	Ground Water	Field Sampling	
480-157980-7	MW-M(I)	Total/NA	Ground Water	Field Sampling	
480-157980-8	MW-M(S)	Total/NA	Ground Water	Field Sampling	
480-157980-9	MW-P(I)	Total/NA	Ground Water	Field Sampling	
480-157980-10	MW-P(S)	Total/NA	Ground Water	Field Sampling	

Analysis Batch: 491150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158093-1	MW-N(I)	Total/NA	Ground Water	Field Sampling	
480-158093-2	MW-N(S)	Total/NA	Ground Water	Field Sampling	
480-158093-3	MW-Q(I)	Total/NA	Water	Field Sampling	
480-158145-1	MW-50	Total/NA	Ground Water	Field Sampling	

Analysis Batch: 491928

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158409-2	MWBA-1	Total/NA	Ground Water	Field Sampling	
480-158409-3	MWBA-2	Total/NA	Ground Water	Field Sampling	
480-158409-4	MW-O(I)	Total/NA	Ground Water	Field Sampling	

Analysis Batch: 492103

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-158492-1	MWSE-1	Total/NA	Ground Water	Field Sampling	
480-158492-2	MWSE-2	Total/NA	Ground Water	Field Sampling	
480-158492-3	MWSE-3	Total/NA	Ground Water	Field Sampling	
480-158492-4	MWSE-4	Total/NA	Ground Water	Field Sampling	

Client: Waste Management Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: DUP

Date Collected: 08/21/19 12:35 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488279	08/22/19 14:20	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:02	LMH	TAL BUF
Total/NA	Prep	3005A			488397		NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 18:08	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37		TAL BUF
Dissolved	Analysis	6020A		1	488670			TAL BUF
Total/NA	Prep	3020A		4	488398	08/23/19 08:37		TAL BUF
Total/NA	Analysis	6020A		1	488669		KMP	TAL BUF
Dissolved Dissolved	Prep Analysis	7470A 7470A		1	489002 489089	08/27/19 11:20 08/27/19 14:49		TAL BUF TAL BUF
Total/NA	•	7470A 7470A		ı		08/26/19 12:12		
Total/NA	Prep Analysis	7470A 7470A		1	488784 488894	08/26/19 12:12		TAL BUF TAL BUF
Total/NA	Analysis	300.0		5		08/27/19 13:26		TAL BUF
Total/NA	Analysis	310.2		4	488908	08/26/19 23:54		TAL BUF
Total/NA	Analysis	350.1		1		08/22/19 11:36		TAL BUF
Total/NA	Prep	351.2			488505	08/23/19 09:14		TAL BUF
Total/NA	Analysis	351.2		1		08/26/19 11:59		TAL BUF
Total/NA	Analysis	353.2		1	488442	08/22/19 20:19	RLM	TAL BUF
Total/NA	Analysis	410.4		1	488689	08/23/19 18:15	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489911	09/03/19 12:13	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 10:54	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489301	08/28/19 11:20	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983	08/27/19 13:26	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 12:38	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 12:35	FLD	TAL BUF

Client Sample ID: MW-16
Date Collected: 08/21/19 11:18
Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-2 Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488279	08/22/19 14:47	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:06	LMH	TAL BUF
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 18:12	LMH	TAL BUF

Eurofins TestAmerica, Buffalo

Page 245 of 314

2

3

5

<u>'</u>

10

12

13

13

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16

Date Collected: 08/21/19 11:18 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3020A			488391	08/23/19 08:37	NSW	TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:24	KMP	TAL BUF
Total/NA	Prep	3020A			488398	08/23/19 08:37	NSW	TAL BUF
Total/NA	Analysis	6020A		1	488669	08/24/19 11:26	KMP	TAL BUF
Dissolved	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Dissolved	Analysis	7470A		1	489089	08/27/19 14:50	BMB	TAL BUF
Total/NA	Prep	7470A			488784	08/26/19 12:12	BMB	TAL BUF
Total/NA	Analysis	7470A		1	488894	08/26/19 15:43	BMB	TAL BUF
Total/NA	Analysis	300.0		5	488982	08/27/19 14:54	IMZ	TAL BUF
Total/NA	Analysis	310.2		4	488908	08/27/19 00:07	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488376	08/22/19 11:36	CLT	TAL BUF
Total/NA	Prep	351.2			488505	08/23/19 09:14	CAM	TAL BUF
Total/NA	Analysis	351.2		1	488896	08/26/19 11:59	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488442	08/22/19 20:20	RLM	TAL BUF
Total/NA	Analysis	410.4		1	488739	08/25/19 14:19	DLG	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489906	09/03/19 11:12	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 11:04	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489301	08/28/19 11:20	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983	08/27/19 14:54	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 12:53	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 11:18	FLD	TAL BUF

Client Sample ID: MW-16(S)

Date Collected: 08/21/19 11:10 Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-3	
Matrix: Ground Water	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488279	08/22/19 15:13	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:09	LMH	TAL BUF
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 18:16	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37	NSW	TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:26	KMP	TAL BUF
Total/NA	Prep	3020A			488398	08/23/19 08:37	NSW	TAL BUF
Total/NA	Analysis	6020A		1	488669	08/24/19 11:28	KMP	TAL BUF

Eurofins TestAmerica, Buffalo

Page 246 of 314

2

3

5

7

9

11

13

4 5

1=

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-16(S)

Date Collected: 08/21/19 11:10
Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-3

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Dissolved	Analysis	7470A		1	489089	08/27/19 14:51	BMB	TAL BUF
Total/NA	Prep	7470A			488784	08/26/19 12:12	BMB	TAL BUF
Total/NA	Analysis	7470A		1	488894	08/26/19 15:45	BMB	TAL BUF
Total/NA	Analysis	300.0		1	488982	08/27/19 15:08	IMZ	TAL BUF
Total/NA	Analysis	310.2		3	488908	08/27/19 00:07	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488376	08/22/19 11:37	CLT	TAL BUF
Total/NA	Prep	351.2			489367	08/29/19 09:01	CAM	TAL BUF
Total/NA	Analysis	351.2		1	489787	09/01/19 11:48	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488442	08/22/19 21:11	RLM	TAL BUF
Total/NA	Analysis	410.4		1	488689	08/23/19 18:15	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489906	09/03/19 11:13	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			491834	09/12/19 20:24	AEF	TAL BUF
Total/NA	Analysis	9065		1	492044	09/13/19 17:56	SRW	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489301	08/28/19 11:20	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		1	488983	08/27/19 15:08	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488225	08/22/19 02:22	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 13:08	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 11:10	FLD	TAL BUF

Client Sample ID: MW-17 Date Collected: 08/21/19 13:20

Date Received: 08/21/19 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	 -	1	488279	08/22/19 15:39	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:13	LMH	TAL BUF
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 18:31	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37	NSW	TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:28	KMP	TAL BUF
Total/NA	Prep	3020A			488398	08/23/19 08:37	NSW	TAL BUF
Total/NA	Analysis	6020A		1	488669	08/24/19 11:30	KMP	TAL BUF
Dissolved	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Dissolved	Analysis	7470A		1	489089	08/27/19 14:52	BMB	TAL BUF
Total/NA	Prep	7470A			488785	08/26/19 12:12	BMB	TAL BUF
Total/NA	Analysis	7470A		1	488894	08/26/19 16:00	BMB	TAL BUF
Total/NA	Analysis	300.0		5	488982	08/27/19 19:35	IMZ	TAL BUF

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-157980-4

Matrix: Ground Water

Page 247 of 314

3

5

9

11

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-17

Date Collected: 08/21/19 13:20 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-4

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	310.2		4	488908	08/26/19 23:54	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488376	08/22/19 11:38	CLT	TAL BUF
Total/NA	Prep	351.2			488630	08/24/19 08:41	CAM	TAL BUF
Total/NA	Analysis	351.2		1	488896	08/26/19 10:32	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488442	08/22/19 21:12	RLM	TAL BUF
Total/NA	Analysis	410.4		1	488739	08/25/19 15:12	DLG	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489906	09/03/19 11:15	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 10:54	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2120B		1	492507	09/17/19 11:30	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489301	08/28/19 11:20	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983	08/27/19 19:35	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 15:38	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 13:20	FLD	TAL BUF

Client Sample ID: MW-18BR Date Collected: 08/21/19 13:05

Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-5

Matrix: Ground Water

Date Received	d: 08/21/19 1	7:30						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			488279	08/22/19 16:06	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:32	LMH	TAL BUF
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 18:49	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37	NSW	TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:47	KMP	TAL BUF
Total/NA	Prep	3020A			488398	08/23/19 08:37	NSW	TAL BUF
Total/NA	Analysis	6020A		1	488669	08/24/19 11:49	KMP	TAL BUF
Dissolved	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Dissolved	Analysis	7470A		1	489089	08/27/19 14:58	BMB	TAL BUF
Total/NA	Prep	7470A			488784	08/26/19 12:12	BMB	TAL BUF
Total/NA	Analysis	7470A		1	488894	08/26/19 15:46	BMB	TAL BUF
Total/NA	Analysis	300.0		5	488982	08/27/19 15:27	IMZ	TAL BUF
Total/NA	Analysis	310.2		2	488908	08/26/19 23:57	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488376	08/22/19 11:41	CLT	TAL BUF
Total/NA	Prep	351.2			488630	08/24/19 08:41	CAM	TAL BUF
Total/NA	Analysis	351.2		1	488896	08/26/19 10:32	KEB	TAL BUF

Eurofins TestAmerica, Buffalo

Page 248 of 314

2

3

7

9

11

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-18BR

Date Collected: 08/21/19 13:05 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-5

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	353.2			488442	08/22/19 20:30	RLM	TAL BUF
Total/NA	Analysis	410.4		1	488689	08/23/19 18:15	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489911	09/03/19 11:52	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 10:57	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489771	08/29/19 13:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983	08/27/19 15:27	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 13:23	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 13:05	FLD	TAL BUF

Client Sample ID: MW-L(I) Date Collected: 08/21/19 11:50 Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-6

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			488279	08/22/19 16:33	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:47	LMH	TAL BU
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 18:53	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37	NSW	TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:49	KMP	TAL BU
Total/NA	Prep	3020A			488398	08/23/19 08:37	NSW	TAL BU
Total/NA	Analysis	6020A		1	488669	08/24/19 11:51	KMP	TAL BUI
Dissolved	Prep	7470A			489108	08/28/19 11:32	BMB	TAL BUI
Dissolved	Analysis	7470A		1	489303	08/28/19 14:10	BMB	TAL BUI
Total/NA	Prep	7470A			488784	08/26/19 12:12	BMB	TAL BU
Total/NA	Analysis	7470A		1	488894	08/26/19 15:47	BMB	TAL BUI
Total/NA	Analysis	300.0		2	488982	08/27/19 15:41	IMZ	TAL BUI
Total/NA	Analysis	310.2		3	488908	08/26/19 23:57	SRW	TAL BU
Total/NA	Analysis	350.1		1	488376	08/22/19 11:43	CLT	TAL BUI
Total/NA	Prep	351.2			488630	08/24/19 08:41	CAM	TAL BUI
Total/NA	Analysis	351.2		1	488896	08/26/19 10:32	KEB	TAL BUI
Total/NA	Analysis	353.2		1	488442	08/22/19 20:31	RLM	TAL BU
Total/NA	Analysis	410.4		1	488689	08/23/19 18:15	CSS	TAL BU
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BU
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BU
Total/NA	Analysis	9012B		1	489911	09/03/19 11:54	MDL	TAL BUI

Eurofins TestAmerica, Buffalo

Page 249 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-L(I)

Date Collected: 08/21/19 11:50 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-6

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 10:57	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489771	08/29/19 13:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		2	488983	08/27/19 15:41	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 13:37	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 11:50	FLD	TAL BUF

Client Sample ID: MW-M(I)

Date Collected: 08/21/19 13:55

Lab Sample ID: 480-157980-7

Matrix: Ground Water

Date Collected: 08/21/19 13:55 Date Received: 08/21/19 17:30

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			488279	08/22/19 16:59	KMN	TAL BU
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BL
Dissolved	Analysis	6010C		1	488655	08/23/19 20:51	LMH	TAL BU
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BU
Total/NA	Analysis	6010C		1	488652	08/23/19 18:57	LMH	TAL BU
Dissolved	Prep	3020A			488391	08/23/19 08:37	NSW	TAL BL
Dissolved	Analysis	6020A		1	488670	08/24/19 10:51	KMP	TAL BL
Total/NA	Prep	3020A			488398	08/23/19 08:37	NSW	TAL BL
Total/NA	Analysis	6020A		1	488669	08/24/19 11:53	KMP	TAL BL
Dissolved	Prep	7470A			489108	08/28/19 11:32	BMB	TAL BL
Dissolved	Analysis	7470A		1	489303	08/28/19 14:11	BMB	TAL BL
Total/NA	Prep	7470A			488784	08/26/19 12:12		TAL BL
Total/NA	Analysis	7470A		1	488894	08/26/19 15:51	BMB	TAL BL
Total/NA	Analysis	300.0		2	488982	08/27/19 15:56	IMZ	TAL BU
Total/NA	Analysis	310.2		3	488908	08/26/19 23:57	SRW	TAL BL
Total/NA	Analysis	350.1		1	488376	08/22/19 11:45	CLT	TAL BL
Total/NA	Prep	351.2			488630	08/24/19 08:41	CAM	TAL BL
Total/NA	Analysis	351.2		1	488896	08/26/19 10:32	KEB	TAL BL
Total/NA	Analysis	353.2		1	488442	08/22/19 21:16	RLM	TAL BL
Total/NA	Analysis	410.4		1	488689	08/23/19 18:15	CSS	TAL BL
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BL
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BL
Total/NA	Analysis	9012B		1	489911	09/03/19 11:55		TAL BU
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BL
Total/NA	Analysis	9065		1	490818	09/08/19 10:57	KEB	TAL BU
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BU
Total/NA	Analysis	SM 2340C		1	489771	08/29/19 13:45	AJL	TAL BL
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BL

Eurofins TestAmerica, Buffalo

Page 250 of 314

2

3

5

9

11

13

15

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-M(I)

Date Collected: 08/21/19 13:55 Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-7

Matrix: Ground Water

Batch Batch Dilution **Batch Prepared** Method **Factor** or Analyzed **Prep Type** Type Run Number Analyst Lab Total/NA SM 4110B TAL BUF Analysis 2 488983 08/27/19 15:56 IMZ Total/NA SM 5210B 488444 08/22/19 18:45 BEF Analysis 1 TAL BUF Total/NA Analysis SM 5310C 1 488613 08/23/19 13:52 CLA TAL BUF Total/NA Analysis Field Sampling 1 490099 08/21/19 13:55 FLD TAL BUF

Client Sample ID: MW-M(S) Lab Sample ID: 480-157980-8

Matrix: Ground Water

Date Collected: 08/21/19 14:10 Date Received: 08/21/19 17:30

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488279	08/22/19 17:26	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 20:55	LMH	TAL BUF
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 19:01	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37		TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:54	KMP	TAL BUF
Total/NA	Prep	3020A			488398	08/23/19 08:37		TAL BUF
Total/NA	Analysis	6020A		1	488669	08/24/19 11:56		TAL BUF
Dissolved	Prep	7470A		4	489108	08/28/19 11:32		TAL BUF
Dissolved	Analysis	7470A		1		08/28/19 14:12		TAL BUF
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	488784	08/26/19 12:12 08/26/19 15:53		TAL BUF TAL BUF
Total/NA	Analysis	300.0		5		08/27/19 16:11	IMZ	TAL BUF
Total/NA	•			5				
	Analysis	310.2			488908			TAL BUF
Total/NA	Analysis	350.1		1		08/22/19 11:46		TAL BUF
Total/NA Total/NA	Prep Analysis	351.2 351.2		1	489367 489787		CAM	TAL BUF TAL BUF
				1				
Total/NA	Analysis	353.2				08/22/19 20:33		TAL BUF
Total/NA	Analysis	410.4		1	488689	08/23/19 18:15		TAL BUF
Total/NA	Analysis	7196A		1	488350			TAL BUF
Total/NA	Prep	9012B		4	489794			TAL BUF
Total/NA	Analysis	9012B		1	489911			TAL BUF
Total/NA Total/NA	Prep Analysis	Distill/Phenol 9065		1	490474	09/05/19 23:15 09/08/19 11:04		TAL BUF TAL BUF
Total/NA	•	SM 2120B		1		08/23/19 10:10		TAL BUF
	Analysis							
Total/NA	Analysis	SM 2340C		1	489771	08/29/19 13:45		TAL BUF
Total/NA	Analysis	SM 2540C		1		08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983			TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 14:07	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 14:10	FLD	TAL BUF

Eurofins TestAmerica, Buffalo

Page 251 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(I)

Date Collected: 08/21/19 12:35 Date Received: 08/21/19 17:30 Lab Sample ID: 480-157980-9

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488279	08/22/19 17:52		TAL BUF
Dissolved	Prep	3005A		4	488390	08/23/19 08:45		TAL BUF
Dissolved	Analysis	6010C		1	488655		LMH	TAL BUF
Total/NA Total/NA	Prep	3005A 6010C		1	488397 488652	08/23/19 08:49 08/23/19 19:16		TAL BUF TAL BUF
	Analysis			ı				
Dissolved Dissolved	Prep Analysis	3020A 6020A		1	488391 488670	08/23/19 08:37 08/24/19 10:56		TAL BUF TAL BUF
Total/NA	•	3020A		'	488398	08/23/19 08:37		TAL BUF
Total/NA	Prep Analysis	6020A		1	488669	08/24/19 11:58		TAL BUF
Dissolved	Prep	7470A		·	489108			TAL BUF
Dissolved	Analysis	7470A 7470A		1	489303			TAL BUF
Total/NA	Prep	7470A			488784	08/26/19 12:12		TAL BUF
Total/NA	Analysis	7470A		1	488894	08/26/19 15:54		TAL BUF
Total/NA	Analysis	300.0		5	488982	08/27/19 16:25	IMZ	TAL BUF
Total/NA	Analysis	310.2		3	488908	08/26/19 23:58	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488376	08/22/19 11:47	CLT	TAL BUF
Total/NA	Prep	351.2			488630	08/24/19 08:41	CAM	TAL BUF
Total/NA	Analysis	351.2		1	488896	08/26/19 10:32	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488442	08/22/19 20:35	RLM	TAL BUF
Total/NA	Analysis	410.4		1	488739	08/25/19 14:23	DLG	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489911	09/03/19 11:58	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 11:04	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489771	08/29/19 13:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983	08/27/19 16:25	IMZ	TAL BUF
Total/NA	Analysis	SM 4110B		5	489262	08/28/19 15:17	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 14:21	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	400000	08/21/19 12:35	E1 B	TAL BUF

Client Sample ID: MW-P(S)
Date Collected: 08/21/19 12:20
Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-10

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488279	08/22/19 18:19	KMN	TAL BUF
Dissolved	Prep	3005A			488390	08/23/19 08:45	NSW	TAL BUF
Dissolved	Analysis	6010C		1	488655	08/23/19 21:02	LMH	TAL BUF

Eurofins TestAmerica, Buffalo

Page 252 of 314

2

3

5

8

10

12

13

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-P(S)

Date Collected: 08/21/19 12:20 Date Received: 08/21/19 17:30

Lab Sample ID: 480-157980-10

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3005A			488397	08/23/19 08:49	NSW	TAL BUF
Total/NA	Analysis	6010C		1	488652	08/23/19 19:20	LMH	TAL BUF
Dissolved	Prep	3020A			488391	08/23/19 08:37		TAL BUF
Dissolved	Analysis	6020A		1	488670	08/24/19 10:58	KMP	TAL BUF
Total/NA	Prep	3020A			488398	08/23/19 08:37		TAL BUF
Total/NA	Analysis	6020A		1	488669	08/24/19 12:00	KMP	TAL BUF
Dissolved	Prep	7470A			489108	08/28/19 11:32	BMB	TAL BUF
Dissolved	Analysis	7470A		1	489303	08/28/19 14:15	BMB	TAL BUF
Total/NA	Prep	7470A			488784	08/26/19 12:12	BMB	TAL BUF
Total/NA	Analysis	7470A		1	488894	08/26/19 15:55	BMB	TAL BUF
Total/NA	Analysis	300.0		5	488982	08/27/19 16:40	IMZ	TAL BUF
Total/NA	Analysis	310.2		4	488908	08/26/19 23:58	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488376	08/22/19 11:48	CLT	TAL BUF
Total/NA	Prep	351.2			488630	08/24/19 08:41	CAM	TAL BUF
Total/NA	Analysis	351.2		1	488896	08/26/19 10:38	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488442	08/22/19 21:17	RLM	TAL BUF
Total/NA	Analysis	410.4		1	489045	08/27/19 11:23	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488350	08/22/19 08:30	CAM	TAL BUF
Total/NA	Prep	9012B			489794	09/01/19 16:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	489911	09/03/19 12:01	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490474	09/05/19 23:15	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 11:04	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488596	08/23/19 10:10	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	489771	08/29/19 13:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	488496	08/23/19 08:29	BBB	TAL BUF
Total/NA	Analysis	SM 4110B		5	488983	08/27/19 16:40	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488444	08/22/19 18:45	BEF	TAL BUF
Total/NA	Analysis	SM 5310C		1	488613	08/23/19 16:23	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	490099	08/21/19 12:20	FLD	TAL BUF

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-157980-11 Date Collected: 08/21/19 00:00 Date Received: 08/21/19 17:30

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260C			488279	08/22/19 18:46	KMN	TAL BUF

Client Sample ID: MW-N(I) Date Collected: 08/23/19 11:12

Date Received: 08/23/19 16:45

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488663	08/24/19 20:54	AMM	TAL BUF

Lab Sample ID: 480-158093-1

Page 253 of 314

Matrix: Ground Water

Matrix: Water

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(I)

Date Collected: 08/23/19 11:12 Date Received: 08/23/19 16:45 Lab Sample ID: 480-158093-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			488887	08/27/19 08:48	NSW	TAL BUF
Dissolved	Analysis	6010C		1	489195	08/27/19 19:12	LMH	TAL BUF
Total/NA	Prep	3005A			488943	08/27/19 08:48	EMB	TAL BUF
Total/NA	Analysis	6010C		1	489194	08/27/19 16:47	AMH	TAL BUF
Dissolved	Prep	3020A			488889	08/27/19 08:34	NSW	TAL BUF
Dissolved	Analysis	6020A		1	489182	08/27/19 20:34	KMP	TAL BUF
Total/NA	Prep	3020A			488881	08/27/19 08:35	NSW	TAL BUF
Total/NA	Analysis	6020A		1	489181	08/27/19 19:06	KMP	TAL BUF
Dissolved	Prep	7470A			489397	08/29/19 11:53	BMB	TAL BUF
Dissolved	Analysis	7470A		1	489514	08/29/19 15:00	BMB	TAL BUF
Total/NA	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Total/NA	Analysis	7470A		1	489089	08/27/19 14:25	BMB	TAL BUF
Total/NA	Analysis	300.0		5	489055	08/28/19 05:33	IMZ	TAL BUF
Total/NA	Analysis	310.2		4	488908	08/27/19 00:22	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488778	08/26/19 09:24	CLT	TAL BUF
Total/NA	Prep	351.2			490033	09/04/19 08:05	CLT	TAL BUF
Total/NA	Analysis	351.2		1	490147	09/04/19 13:38	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488673	08/24/19 12:32	RLM	TAL BUF
Total/NA	Analysis	410.4		1	489430	08/29/19 12:10	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488637	08/24/19 08:15	RLM	TAL BUF
Total/NA	Prep	9012B			490313	09/04/19 20:50	LAW	TAL BUF
Total/NA	Analysis	9012B		1	490396	09/05/19 13:35	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490714	09/07/19 00:56	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 11:20	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488668	08/24/19 10:16	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	491025	09/09/19 09:45	MJB	TAL BUF
Total/NA	Analysis	SM 2540C		1	488839	08/26/19 14:39	ZFM	TAL BUF
Total/NA	Analysis	SM 4110B		5	489056	08/28/19 05:33	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488619	08/23/19 17:14	SRW	TAL BUF
Total/NA	Analysis	SM 5310C		1	489215	08/27/19 22:36	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491150	08/23/19 11:12	FLD	TAL BUF

Client Sample ID: MW-N(S)
Date Collected: 08/23/19 11:00
Date Received: 08/23/19 16:45

Lab Sample ID: 480-158093-2
Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	488663	08/24/19 21:17	AMM	TAL BUF
Dissolved	Prep	3005A			488887	08/27/19 08:48	NSW	TAL BUF
Dissolved	Analysis	6010C		1	489195	08/27/19 19:16	LMH	TAL BUF
Total/NA	Prep	3005A			488943	08/27/19 08:48	EMB	TAL BUF
Total/NA	Analysis	6010C		1	489194	08/27/19 16:51	AMH	TAL BUF

Eurofins TestAmerica, Buffalo

Page 254 of 314

2

3

5

7

9

11

13

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-N(S)

Date Collected: 08/23/19 11:00 Date Received: 08/23/19 16:45 Lab Sample ID: 480-158093-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3020A			488889	08/27/19 08:34		TAL BUF
Dissolved	Analysis	6020A		1	489182	08/27/19 20:36	KMP	TAL BUF
Total/NA	Prep	3020A			488881	08/27/19 08:35	NSW	TAL BUF
Total/NA	Analysis	6020A		1	489181	08/27/19 19:08	KMP	TAL BUF
Dissolved	Prep	7470A			489397	08/29/19 11:53	BMB	TAL BUF
Dissolved	Analysis	7470A		1	489514	08/29/19 15:01	BMB	TAL BUF
Total/NA	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Total/NA	Analysis	7470A		1	489089	08/27/19 14:26	BMB	TAL BUF
Total/NA	Analysis	300.0		5	489055	08/28/19 05:47	IMZ	TAL BUF
Total/NA	Analysis	310.2		4	488908	08/27/19 00:27	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488778	08/26/19 09:25	CLT	TAL BUF
Total/NA	Prep	351.2			490033	09/04/19 08:05	CLT	TAL BUF
Total/NA	Analysis	351.2		1	490147	09/04/19 13:38	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488673	08/24/19 12:34	RLM	TAL BUF
Total/NA	Analysis	410.4		1	489430	08/29/19 12:10	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488637	08/24/19 08:15	RLM	TAL BUF
Total/NA	Prep	9012B			490313	09/04/19 20:50	LAW	TAL BUF
Total/NA	Analysis	9012B		1	490396	09/05/19 13:39	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			492372	09/16/19 23:12	AEF	TAL BUF
Total/NA	Analysis	9065		1	492515	09/17/19 10:36	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488668	08/24/19 10:16	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	491025	09/09/19 09:45	MJB	TAL BUF
Total/NA	Analysis	SM 2540C		1	488839	08/26/19 14:39	ZFM	TAL BUF
Total/NA	Analysis	SM 4110B		5	489056	08/28/19 05:47	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488619	08/23/19 17:14	SRW	TAL BUF
Total/NA	Analysis	SM 5310C		1	489215	08/27/19 22:50	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491150	08/23/19 11:00	FLD	TAL BUF

Client Sample ID: MW-Q(I)
Date Collected: 08/23/19 11:30

Date Received: 08/23/19 16:45

Lab Sam	ple ID:	480-1	158093-3
---------	---------	-------	----------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			488663	08/24/19 21:40	AMM	TAL BUF
Dissolved	Prep	3005A			488887	08/27/19 08:48	NSW	TAL BUF
Dissolved	Analysis	6010C		1	489195	08/27/19 19:20	LMH	TAL BUF
Total/NA	Prep	3005A			488943	08/27/19 08:48	EMB	TAL BUF
Total/NA	Analysis	6010C		1	489194	08/27/19 16:55	AMH	TAL BUF
Total/NA	Prep	3005A			489960	09/04/19 09:46	EMB	TAL BUF
Total/NA	Analysis	6010C		1	490293	09/04/19 21:10	LMH	TAL BUF
Dissolved	Prep	3020A			488889	08/27/19 08:34	NSW	TAL BUF
Dissolved	Analysis	6020A		1	489182	08/27/19 20:39	KMP	TAL BUF

Eurofins TestAmerica, Buffalo

Page 255 of 314

9

3

5

8

10

12

13

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-Q(I)

Date Collected: 08/23/19 11:30 Date Received: 08/23/19 16:45

Lab Sample ID: 480-158093-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3020A			488881	08/27/19 08:35	NSW	TAL BUF
Total/NA	Analysis	6020A		1	489181	08/27/19 19:11	KMP	TAL BUF
Dissolved	Prep	7470A			489397	08/29/19 11:53	BMB	TAL BUF
Dissolved	Analysis	7470A		1	489514	08/29/19 15:03	BMB	TAL BUF
Total/NA	Prep	7470A			489002	08/27/19 11:20	EMB	TAL BUF
Total/NA	Analysis	7470A		1	489089	08/27/19 14:30	BMB	TAL BUF
Total/NA	Analysis	300.0		5	489055	08/28/19 06:02	IMZ	TAL BUF
Total/NA	Analysis	310.2		4	488908	08/27/19 00:25	SRW	TAL BUF
Total/NA	Analysis	350.1		1	488778	08/26/19 09:25	CLT	TAL BUF
Total/NA	Prep	351.2			490033	09/04/19 08:05	CLT	TAL BUF
Total/NA	Analysis	351.2		1	490147	09/04/19 13:38	KEB	TAL BUF
Total/NA	Analysis	353.2		1	488673	08/24/19 12:35	RLM	TAL BUF
Total/NA	Analysis	410.4		1	489430	08/29/19 12:10	CSS	TAL BUF
Total/NA	Analysis	7196A		1	488637	08/24/19 08:15	RLM	TAL BUF
Total/NA	Prep	9012B			490313	09/04/19 20:50	LAW	TAL BUF
Total/NA	Analysis	9012B		1	490396	09/05/19 13:40	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490714	09/07/19 00:56	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 11:20	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	488668	08/24/19 10:16	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	491025	09/09/19 09:45	MJB	TAL BUF
Total/NA	Analysis	SM 2540C		1	488839	08/26/19 14:39	ZFM	TAL BUF
Total/NA	Analysis	SM 4110B		5	489056	08/28/19 06:02	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	488619	08/23/19 17:14	SRW	TAL BUF
Total/NA	Analysis	SM 5310C		1	489215	08/28/19 00:06	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491150	08/23/19 11:30	FLD	TAL BUF

Client Sample ID: MW-50 Date Collected: 08/26/19 13:45 Date Received: 08/26/19 16:30

Lab Sample ID: 480-158145-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	489143	08/28/19 16:37	RJF	TAL BUF
Dissolved	Prep	3005A			489092	08/28/19 09:36	JAL	TAL BUF
Dissolved	Analysis	6010C		1	489443	08/29/19 01:53	AMH	TAL BUF
Dissolved	Prep	3005A			489092	08/28/19 09:36	JAL	TAL BUF
Dissolved	Analysis	6010C		1	489670	08/29/19 16:33	AMH	TAL BUF
Total/NA	Prep	3005A			489078	08/28/19 08:05	JAL	TAL BUF
Total/NA	Analysis	6010C		1	489442	08/29/19 00:44	AMH	TAL BUF
Total/NA	Prep	3005A			491000	09/10/19 06:30	NSW	TAL BUF
Total/NA	Analysis	6010C		1	491318	09/10/19 19:14	LMH	TAL BUF
Dissolved	Prep	3020A			489093	08/28/19 09:38	JAL	TAL BUF
Dissolved	Analysis	6020A		1	489346	08/28/19 15:49	KMP	TAL BUF

Eurofins TestAmerica, Buffalo

Page 256 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-50

Date Collected: 08/26/19 13:45 Date Received: 08/26/19 16:30

Lab Sample ID: 480-158145-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3020A			489080	08/28/19 07:59	JAL	TAL BUF
Total/NA	Analysis	6020A		1	489347	08/28/19 17:15	KMP	TAL BUF
Dissolved	Prep	7470A			489397	08/29/19 11:53	BMB	TAL BUF
Dissolved	Analysis	7470A		1	489514	08/29/19 15:18	BMB	TAL BUF
Total/NA	Prep	7470A			489875	09/03/19 11:54	BMB	TAL BUF
Total/NA	Analysis	7470A		1	489986	09/03/19 15:45	BMB	TAL BUF
Total/NA	Analysis	300.0		1	489098	08/28/19 14:48	IMZ	TAL BUF
Total/NA	Analysis	310.2		3	489320	08/28/19 21:18	SRW	TAL BUF
Total/NA	Analysis	350.1		1	489211	08/28/19 09:07	CLT	TAL BUF
Total/NA	Prep	351.2			490387	09/05/19 13:33	CAM	TAL BUF
Total/NA	Analysis	351.2		1	490924	09/08/19 16:47	KEB	TAL BUF
Total/NA	Analysis	353.2		1	489130	08/28/19 00:41	BEF	TAL BUF
Total/NA	Analysis	410.4		1	489521	08/29/19 15:50	CSS	TAL BUF
Total/NA	Analysis	7196A		1	489096	08/27/19 11:11	MJB	TAL BUF
Total/NA	Prep	9012B			490819	09/08/19 14:57	AJL	TAL BUF
Total/NA	Analysis	9012B		1	490939	09/09/19 12:19	MDL	TAL BUF
Total/NA	Prep	9012B			492184	09/15/19 15:25	MDL	TAL BUF
Total/NA	Analysis	9012B		1	492324	09/16/19 13:40	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			490716	09/07/19 01:20	AEF	TAL BUF
Total/NA	Analysis	9065		1	490818	09/08/19 12:27	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	489107	08/27/19 14:20	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	491025	09/09/19 09:45	MJB	TAL BUF
Total/NA	Analysis	SM 2540C		1	489206	08/28/19 09:29	ZFM	TAL BUF
Total/NA	Analysis	SM 4110B		1	489099	08/28/19 14:48	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	489135	08/28/19 02:28	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	489502	08/28/19 18:59	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491150	08/26/19 13:45	FLD	TAL BUF

Client Sample ID: FIELD BLANK

Date Collected: 08/30/19 11:00 Date Received: 08/30/19 16:15

Lab Sample ID: 480-158409-1 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	491215	09/11/19 01:29	BTP	TAL BUF
Dissolved	Prep	3005A			489962	09/04/19 08:41	EMB	TAL BUF
Dissolved	Analysis	6010C		1	490288	09/05/19 00:10	LMH	TAL BUF
Total/NA	Prep	3005A			489925	09/05/19 06:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	491316	09/10/19 16:12	LMH	TAL BUF
Dissolved	Prep	3020A			489963	09/04/19 08:33	EMB	TAL BUF
Dissolved	Analysis	6020A		1	490524	09/05/19 15:53	KMP	TAL BUF
Total/NA	Prep	3020A			489919	09/05/19 06:00	EMB	TAL BUF
Total/NA	Analysis	6020A		1	490526	09/05/19 18:20	KMP	TAL BUF

Page 257 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: FIELD BLANK

Lab Sample ID: 480-158409-1 Date Collected: 08/30/19 11:00 **Matrix: Water** Date Received: 08/30/19 16:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BUF
Dissolved	Analysis	7470A		1	492778	09/18/19 14:28	BMB	TAL BUF
Total/NA	Prep	7470A			491032	09/10/19 11:40	BMB	TAL BUF
Total/NA	Analysis	7470A		1	491285	09/10/19 16:04	BMB	TAL BUF
Total/NA	Analysis	300.0		1	490899	09/09/19 13:47	IMZ	TAL BUF
Total/NA	Analysis	310.2		1	491046	09/09/19 16:37	SRW	TAL BUF
Total/NA	Analysis	350.1		1	490559	09/06/19 08:34	CLT	TAL BUF
Total/NA	Prep	351.2			491906	09/13/19 10:03	CAM	TAL BUF
Total/NA	Analysis	351.2		1	492180	09/15/19 11:59	KEB	TAL BUF
Total/NA	Prep	351.2			494488	09/27/19 08:32	CAM	TAL BUF
Total/NA	Analysis	351.2		1	494800	09/29/19 12:00	KEB	TAL BUF
Total/NA	Analysis	353.2		1	489755	08/31/19 09:27	RLM	TAL BUF
Total/NA	Analysis	410.4		1	490698	09/06/19 14:05	CSS	TAL BUF
Total/NA	Analysis	7196A		1	489758	08/31/19 09:14	AJL	TAL BUF
Total/NA	Prep	9012B			491161	09/09/19 19:35	LAW	TAL BUF
Total/NA	Analysis	9012B		1	491490	09/11/19 13:57	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			492055	09/13/19 23:44	AEF	TAL BUF
Total/NA	Analysis	9065		1	492319	09/15/19 14:51	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	489781	09/01/19 08:10	MJB	TAL BUF
Total/NA	Analysis	SM 2340C		1	492252	09/15/19 11:45	MDL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490326	09/05/19 10:44	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		1	490900	09/09/19 13:47	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	489774	08/31/19 06:51	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	490772	09/06/19 03:05	CLA	TAL BUF

Client Sample ID: MWBA-1 Date Collected: 08/30/19 14:22 Date Received: 08/30/19 16:15

Lab Sample ID: 480-158409-2 **Matrix: Ground Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			491215	09/11/19 01:53	BTP	TAL BUF
Dissolved	Prep	3005A			489962	09/04/19 08:41	EMB	TAL BUF
Dissolved	Analysis	6010C		1	490288	09/05/19 00:14	LMH	TAL BUF
Total/NA	Prep	3005A			489925	09/05/19 06:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	491316	09/10/19 16:16	LMH	TAL BUF
Dissolved	Prep	3020A			489963	09/04/19 08:33	EMB	TAL BUF
Dissolved	Analysis	6020A		1	490524	09/05/19 15:55	KMP	TAL BUF
Total/NA	Prep	3020A			489919	09/05/19 06:00	EMB	TAL BUF
Total/NA	Analysis	6020A		1	490526	09/05/19 18:22	KMP	TAL BUF
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BUF
Dissolved	Analysis	7470A		1	492778	09/18/19 14:29	BMB	TAL BUF
Total/NA	Prep	7470A			491032	09/10/19 11:40	BMB	TAL BUF
Total/NA	Analysis	7470A		1	491285	09/10/19 16:05	BMB	TAL BUF

Eurofins TestAmerica, Buffalo

Page 258 of 314

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-1

Date Collected: 08/30/19 14:22 Date Received: 08/30/19 16:15 Lab Sample ID: 480-158409-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			490899	09/09/19 14:02	IMZ	TAL BUF
Total/NA	Analysis	310.2		3	491046	09/09/19 17:09	SRW	TAL BUF
Total/NA	Analysis	350.1		1	490559	09/06/19 08:36	CLT	TAL BUF
Total/NA	Prep	351.2			492889	09/19/19 09:22	CAM	TAL BUF
Total/NA	Analysis	351.2		1	493403	09/22/19 10:27	KEB	TAL BUF
Total/NA	Analysis	353.2		1	489755	08/31/19 09:28	RLM	TAL BUF
Total/NA	Analysis	410.4		1	490698	09/06/19 14:05	CSS	TAL BUF
Total/NA	Analysis	7196A		1	489758	08/31/19 09:14	AJL	TAL BUF
Total/NA	Prep	9012B			491161	09/09/19 19:35	LAW	TAL BUF
Total/NA	Analysis	9012B		1	491490	09/11/19 14:02	MDL	TAL BUF
Total/NA	Prep	9012B			492820	09/18/19 18:35	LAW	TAL BUF
Total/NA	Analysis	9012B		1	492894	09/19/19 08:54	CLT	TAL BUF
Total/NA	Prep	Distill/Phenol			492372	09/16/19 23:12	AEF	TAL BUF
Total/NA	Analysis	9065		1	492515	09/17/19 10:36	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	489781	09/01/19 08:10	MJB	TAL BUF
Total/NA	Analysis	SM 2340C		1	492252	09/15/19 11:45	MDL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490326	09/05/19 10:44	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		2	490900	09/09/19 14:02	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	489775	08/31/19 06:51	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	490772	09/06/19 03:20	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491928	08/30/19 14:22	FLD	TAL BUF

Client Sample ID: MWBA-2

Date Collected: 08/30/19 13:45

Lab Sample ID: 480-158409-3

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	491215	09/11/19 02:17	BTP	TAL BUF
Dissolved	Prep	3005A			489962	09/04/19 08:41	EMB	TAL BUF
Dissolved	Analysis	6010C		1	490288	09/05/19 00:18	LMH	TAL BUF
Total/NA	Prep	3005A			489925	09/05/19 06:30	EMB	TAL BUF
Total/NA	Analysis	6010C		1	491316	09/10/19 16:20	LMH	TAL BUF
Dissolved	Prep	3020A			489963	09/04/19 08:33	EMB	TAL BUF
Dissolved	Analysis	6020A		1	490524	09/05/19 15:57	KMP	TAL BUF
Total/NA	Prep	3020A			489919	09/05/19 06:00	EMB	TAL BUF
Total/NA	Analysis	6020A		1	490526	09/05/19 18:25	KMP	TAL BUF
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BUF
Dissolved	Analysis	7470A		1	492778	09/18/19 14:30	BMB	TAL BUF
Total/NA	Prep	7470A			491032	09/10/19 11:40	BMB	TAL BUF
Total/NA	Analysis	7470A		1	491285	09/10/19 16:07	BMB	TAL BUF
Total/NA	Analysis	300.0		2	490899	09/09/19 14:17	IMZ	TAL BUF
Total/NA	Analysis	310.2		3	491046	09/09/19 17:09	SRW	TAL BUF
Total/NA	Analysis	350.1		1	490559	09/06/19 08:37	CLT	TAL BUF

Eurofins TestAmerica, Buffalo

Page 259 of 314

2

3

5

8

11

12

14

16

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWBA-2

Date Collected: 08/30/19 13:45 Date Received: 08/30/19 16:15 Lab Sample ID: 480-158409-3

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	351.2			492388	09/17/19 07:30	CLT	TAL BUF
Total/NA	Analysis	351.2		1	492583	09/17/19 16:31	KEB	TAL BUF
Total/NA	Analysis	353.2		1	489755	08/31/19 09:46	RLM	TAL BUF
Total/NA	Analysis	410.4		1	490698	09/06/19 14:05	CSS	TAL BUF
Total/NA	Analysis	7196A		1	489758	08/31/19 09:14	AJL	TAL BUF
Total/NA	Prep	9012B			491744	09/12/19 14:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	491820	09/12/19 17:20	MDL	TAL BUF
Total/NA	Prep	9012B			492820	09/18/19 18:35	LAW	TAL BUF
Total/NA	Analysis	9012B		1	492894	09/19/19 08:55	CLT	TAL BUF
Total/NA	Prep	Distill/Phenol			492055	09/13/19 23:44	AEF	TAL BUF
Total/NA	Analysis	9065		1	492319	09/15/19 14:51	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	489781	09/01/19 08:10	MJB	TAL BUF
Total/NA	Analysis	SM 2340C		1	492252	09/15/19 11:45	MDL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490326	09/05/19 10:44	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		2	490900	09/09/19 14:17	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	489775	08/31/19 06:51	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	490772	09/06/19 03:35	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491928	08/30/19 13:45	FLD	TAL BUF

Client Sample ID: MW-O(I)

Date Collected: 08/30/19 11:39

Lab	Sample	ID:	480-1	58409-4
			_	

Matrix: Ground Water

Date Receive	d: 08/30/19 1	6:15							_
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			491215	09/11/19 02:42	BTP	TAL BUF	
Dissolved	Prep	3005A			489962	09/04/19 08:41	EMB	TAL BUF	
Dissolved	Analysis	6010C		1	490288	09/05/19 00:21	LMH	TAL BUF	
Total/NA	Prep	3005A			489925	09/05/19 06:30	EMB	TAL BUF	
Total/NA	Analysis	6010C		1	491316	09/10/19 16:24	LMH	TAL BUF	
Dissolved	Prep	3020A			489963	09/04/19 08:33	EMB	TAL BUF	
Dissolved	Analysis	6020A		1	490524	09/05/19 16:07	KMP	TAL BUF	
Total/NA	Prep	3020A			489919	09/05/19 06:00	EMB	TAL BUF	
Total/NA	Analysis	6020A		1	490526	09/05/19 18:27	KMP	TAL BUF	
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BUF	
Dissolved	Analysis	7470A		1	492778	09/18/19 14:32	BMB	TAL BUF	
Total/NA	Prep	7470A			491032	09/10/19 11:40	BMB	TAL BUF	
Total/NA	Analysis	7470A		1	491285	09/10/19 16:08	BMB	TAL BUF	
Total/NA	Analysis	300.0		2	490899	09/09/19 14:31	IMZ	TAL BUF	
Total/NA	Analysis	310.2		3	491046	09/09/19 17:09	SRW	TAL BUF	
Total/NA	Analysis	350.1		1	490559	09/06/19 08:38	CLT	TAL BUF	
Total/NA	Prep	351.2			492388	09/17/19 07:30	CLT	TAL BUF	
Total/NA	Analysis	351.2		1	492583	09/17/19 16:31	KEB	TAL BUF	
Total/NA	Analysis	353.2		1	489755	08/31/19 09:30	RLM	TAL BUF	

Eurofins TestAmerica, Buffalo

Page 260 of 314

2

3

5

8

10

12

14

10

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MW-O(I)

Lab Sample ID: 480-158409-4 Date Collected: 08/30/19 11:39 **Matrix: Ground Water**

Date Received: 08/30/19 16:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	410.4		1	490698	09/06/19 14:05	CSS	TAL BUF
Total/NA	Analysis	7196A		1	489758	08/31/19 09:14	AJL	TAL BUF
Total/NA	Prep	9012B			491744	09/12/19 14:04	MDL	TAL BUF
Total/NA	Analysis	9012B		1	491820	09/12/19 17:21	MDL	TAL BUF
Total/NA	Prep	9012B			492820	09/18/19 18:35	LAW	TAL BUF
Total/NA	Analysis	9012B		1	492894	09/19/19 08:56	CLT	TAL BUF
Total/NA	Prep	Distill/Phenol			492055	09/13/19 23:44	AEF	TAL BUF
Total/NA	Analysis	9065		1	492319	09/15/19 14:51	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	489781	09/01/19 08:10	MJB	TAL BUF
Total/NA	Analysis	SM 2340C		1	492757	09/18/19 11:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490326	09/05/19 10:44	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		2	490900	09/09/19 14:31	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	489775	08/31/19 06:51	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	490772	09/06/19 04:49	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	491928	08/30/19 11:39	FLD	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 08/30/19 09:00

Date Received: 08/30/19 16:15

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	491215	09/11/19 03:06	BTP	TAL BUF

Client Sample ID: MWSE-1

Date Collected: 09/03/19 13:10

Date Received: 09/03/19 16:50

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	491769	09/12/19 22:26	OMI	TAL BUF
Dissolved	Prep	3005A			490197	09/06/19 10:59	JAL	TAL BUF
Dissolved	Analysis	6010C		1	491325	09/11/19 03:26	AMH	TAL BUF
Total/NA	Prep	3005A			490184	09/05/19 05:35	JAL	TAL BUF
Total/NA	Analysis	6010C		1	490550	09/05/19 16:50	AMH	TAL BUF
Dissolved	Prep	3020A			490196	09/06/19 10:50	JAL	TAL BUF
Dissolved	Analysis	6020A		1	490991	09/09/19 13:50	KMP	TAL BUF
Total/NA	Prep	3020A			490409	09/06/19 06:30	EMB	TAL BUF
Total/NA	Analysis	6020A		1	490643	09/06/19 14:00	KMP	TAL BUF
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BUF
Dissolved	Analysis	7470A		1	492778	09/18/19 14:33	BMB	TAL BUF
Total/NA	Prep	7470A			491034	09/10/19 11:40	BMB	TAL BUF
Total/NA	Analysis	7470A		1	491285	09/10/19 17:15	BMB	TAL BUF
Total/NA	Analysis	300.0		5	490899	09/09/19 14:46	IMZ	TAL BUF
Total/NA	Analysis	310.2		3	491046	09/09/19 17:22	SRW	TAL BUF

Eurofins TestAmerica, Buffalo

Lab Sample ID: 480-158409-5

Lab Sample ID: 480-158492-1

Matrix: Ground Water

Page 261 of 314

Matrix: Water

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-1

Date Collected: 09/03/19 13:10 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-1

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	350.1			490641	09/06/19 12:35	CLT	TAL BUF
Total/NA	Prep	351.2			491906	09/13/19 10:03	CAM	TAL BUF
Total/NA	Analysis	351.2		1	492180	09/15/19 12:17	KEB	TAL BUF
Total/NA	Analysis	353.2		1	490214	09/04/19 21:06	RLM	TAL BUF
Total/NA	Analysis	410.4		1	491715	09/12/19 12:35	CSS	TAL BUF
Total/NA	Analysis	7196A		1	490115	09/04/19 09:45	RLM	TAL BUF
Total/NA	Prep	9012B			492183	09/15/19 15:19	MDL	TAL BUF
Total/NA	Analysis	9012B		1	492325	09/16/19 12:50	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			492371	09/16/19 23:07	AEF	TAL BUF
Total/NA	Analysis	9065		1	492515	09/17/19 10:24	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	490392	09/05/19 11:30	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	492757	09/18/19 11:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490322	09/05/19 10:32	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		5	490900	09/09/19 14:46	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	490229	09/05/19 05:45	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	491171	09/07/19 23:08	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	492103	09/03/19 13:10	FLD	TAL BUF

Client Sample ID: MWSE-2 Date Collected: 09/03/19 11:50

Date Received: 09/03/19 16:50

Lab Sample I	D: 480-158492-2	2
Ma	atrix: Ground Wate	r

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	491769	09/12/19 22:49	OMI	TAL BUI
Dissolved	Prep	3005A			490197	09/06/19 10:59	JAL	TAL BUI
Dissolved	Analysis	6010C		1	491325	09/11/19 03:30	AMH	TAL BU
Total/NA	Prep	3005A			490184	09/05/19 05:35	JAL	TAL BU
Total/NA	Analysis	6010C		1	490550	09/05/19 16:54	AMH	TAL BUI
Dissolved	Prep	3020A			490196	09/06/19 10:50	JAL	TAL BU
Dissolved	Analysis	6020A		1	490991	09/09/19 13:52	KMP	TAL BU
Total/NA	Prep	3020A			490409	09/06/19 06:30	EMB	TAL BU
Total/NA	Analysis	6020A		1	490643	09/06/19 14:09	KMP	TAL BU
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BU
Dissolved	Analysis	7470A		1	492778	09/18/19 14:34	BMB	TAL BU
Total/NA	Prep	7470A			491034	09/10/19 11:40	BMB	TAL BU
Total/NA	Analysis	7470A		1	491285	09/10/19 17:16	BMB	TAL BU
Total/NA	Analysis	300.0		5	490899	09/09/19 22:06	IMZ	TAL BU
Total/NA	Analysis	310.2		3	491046	09/09/19 17:22	SRW	TAL BU
Total/NA	Analysis	350.1		1	490641	09/06/19 12:36	CLT	TAL BU
Total/NA	Prep	351.2			491906	09/13/19 10:03	CAM	TAL BU
Total/NA	Analysis	351.2		1	492180	09/15/19 12:17	KEB	TAL BU
Total/NA	Analysis	353.2		1	490214	09/04/19 21:07	RLM	TAL BU
Total/NA	Analysis	410.4		1	491715	09/12/19 12:35	CSS	TAL BU

Eurofins TestAmerica, Buffalo

Page 262 of 314

4

3

5

-

10

12

4 /

15

17

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-2

Date Collected: 09/03/19 11:50 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-2

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7196A		1	490115	09/04/19 09:45	RLM	TAL BUF
Total/NA	Prep	9012B			492463	09/17/19 11:02	MDL	TAL BUF
Total/NA	Analysis	9012B		1	492555	09/17/19 15:34	MDL	TAL BUF
Total/NA	Prep	Distill/Phenol			492371	09/16/19 23:07	AEF	TAL BUF
Total/NA	Analysis	9065		1	492515	09/17/19 10:24	KEB	TAL BUF
Total/NA	Analysis	SM 2120B		1	490392	09/05/19 11:30	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	492757	09/18/19 11:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490322	09/05/19 10:32	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		5	490900	09/09/19 22:06	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	490229	09/05/19 05:45	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	491171	09/07/19 23:53	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	492103	09/03/19 11:50	FLD	TAL BUF

Client Sample ID: MWSE-3

Date Collected: 09/03/19 14:25 Date Received: 09/03/19 16:50

Total/NA

Total/NA

Total/NA

Analysis

Analysis

Prep

9012B

9065

Distill/Phenol

Lab Sample ID: 480-158492-3

Matrix: Ground Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C	Kuii	_ <u> </u>	491769	09/12/19 23:14		TAL BUI
Dissolved	Prep	3005A			490197	09/06/19 10:59	JAL	TAL BUI
Dissolved	Analysis	6010C		1	491325	09/11/19 03:34	AMH	TAL BUI
Total/NA	Prep	3005A			490184	09/05/19 05:35	JAL	TAL BU
Total/NA	Analysis	6010C		1	490550	09/05/19 16:57	AMH	TAL BU
Dissolved	Prep	3020A			490196	09/06/19 10:50	JAL	TAL BUI
Dissolved	Analysis	6020A		1	490991	09/09/19 13:54	KMP	TAL BUI
Total/NA	Prep	3020A			490409	09/06/19 06:30	EMB	TAL BU
Total/NA	Analysis	6020A		1	490643	09/06/19 14:11	KMP	TAL BU
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BU
Dissolved	Analysis	7470A		1	492778	09/18/19 14:38	BMB	TAL BU
Total/NA	Prep	7470A			491034	09/10/19 11:40	BMB	TAL BU
Total/NA	Analysis	7470A		1	491285	09/10/19 17:17	BMB	TAL BU
Total/NA	Analysis	300.0		1	490899	09/09/19 16:16	IMZ	TAL BU
Total/NA	Analysis	310.2		1	491046	09/09/19 16:37	SRW	TAL BUI
Total/NA	Analysis	350.1		1	490641	09/06/19 12:37	CLT	TAL BU
Total/NA	Prep	351.2			491906	09/13/19 10:03	CAM	TAL BU
Total/NA	Analysis	351.2		1	492180	09/15/19 12:17	KEB	TAL BU
Total/NA	Analysis	353.2		1	490214	09/04/19 21:08	RLM	TAL BU
Total/NA	Analysis	410.4		1	491715	09/12/19 12:35	CSS	TAL BU
Total/NA	Analysis	7196A		1	490115	09/04/19 09:45	RLM	TAL BU
Total/NA	Prep	9012B			492183	09/15/19 15:19	MDL	TAL BU

Eurofins TestAmerica, Buffalo

TAL BUF

TAL BUF

TAL BUF

Page 263 of 314

492325 09/16/19 12:54 MDL

492371 09/16/19 23:07 AEF

492515 09/17/19 10:24 KEB

2

3

5

8

10

4.0

13

1 T 4 E

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-3

Date Collected: 09/03/19 14:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-3

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2120B		1	490392	09/05/19 11:30	CSS	TAL BUF
Total/NA	Analysis	SM 2340C		1	492757	09/18/19 11:45	AJL	TAL BUF
Total/NA	Analysis	SM 2540C		1	490322	09/05/19 10:32	CSS	TAL BUF
Total/NA	Analysis	SM 4110B		1	490900	09/09/19 16:16	IMZ	TAL BUF
Total/NA	Analysis	SM 5210B		1	490229	09/05/19 05:45	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	491171	09/08/19 01:09	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	492103	09/03/19 14:25	FLD	TAL BUF

Client Sample ID: MWSE-4

Date Collected: 09/03/19 12:25 Date Received: 09/03/19 16:50 Lab Sample ID: 480-158492-4

Matrix: Ground Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			491769	09/12/19 23:37	OMI	TAL BU
Dissolved	Prep	3005A			490197	09/06/19 10:59	JAL	TAL BU
Dissolved	Analysis	6010C		1	491325	09/11/19 03:38	AMH	TAL BU
Total/NA	Prep	3005A			490184	09/05/19 05:35	JAL	TAL BU
Total/NA	Analysis	6010C		1	490550	09/05/19 17:01	AMH	TAL BU
Dissolved	Prep	3020A			490196	09/06/19 10:50	JAL	TAL BU
Dissolved	Analysis	6020A		1	490991	09/09/19 14:04	KMP	TAL BU
Total/NA	Prep	3020A			490409	09/06/19 06:30	EMB	TAL BU
Total/NA	Analysis	6020A		1	490643	09/06/19 14:13	KMP	TAL BU
Dissolved	Prep	7470A			492571	09/18/19 11:00	BMB	TAL BU
Dissolved	Analysis	7470A		1	492778	09/18/19 14:40	BMB	TAL BU
Total/NA	Prep	7470A			491034	09/10/19 11:40	BMB	TAL BU
Total/NA	Analysis	7470A		1	491285	09/10/19 17:18	BMB	TAL BU
Total/NA	Analysis	300.0		2	490899	09/09/19 16:31	IMZ	TAL BU
Total/NA	Analysis	310.2		2	491046	09/09/19 17:20	SRW	TAL BU
Total/NA	Analysis	350.1		1	490641	09/06/19 12:38	CLT	TAL BU
Total/NA	Prep	351.2			491906	09/13/19 10:03	CAM	TAL BU
Total/NA	Analysis	351.2		1	492180	09/15/19 12:17	KEB	TAL BU
Total/NA	Analysis	353.2		1	490214	09/04/19 13:58	RLM	TAL BU
Total/NA	Analysis	410.4		1	491715	09/12/19 12:35	CSS	TAL BU
Total/NA	Analysis	7196A		1	490115	09/04/19 09:45	RLM	TAL BU
Total/NA	Prep	9012B			492183	09/15/19 15:19	MDL	TAL BU
Total/NA	Analysis	9012B		1	492325	09/16/19 12:56	MDL	TAL BU
Total/NA	Prep	Distill/Phenol			492371	09/16/19 23:07	AEF	TAL BU
Total/NA	Analysis	9065		1	492515	09/17/19 10:24	KEB	TAL BU
Total/NA	Analysis	SM 2120B		1	490392	09/05/19 11:30	CSS	TAL BU
Total/NA	Analysis	SM 2340C		1	492757	09/18/19 11:45	AJL	TAL BU
Total/NA	Analysis	SM 2540C		1	490322	09/05/19 10:32	CSS	TAL BU
Total/NA	Analysis	SM 4110B		2		09/09/19 16:31		TAL BU

Eurofins TestAmerica, Buffalo

2

5

0

11

13

15

17

Ш

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: MWSE-4

Date Collected: 09/03/19 12:25 Date Received: 09/03/19 16:50

Lab Sample ID: 480-158492-4

Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 5210B			490229	09/05/19 05:45	EY	TAL BUF
Total/NA	Analysis	SM 5310C		1	491171	09/08/19 01:24	CLA	TAL BUF
Total/NA	Analysis	Field Sampling		1	492103	09/03/19 12:25	FLD	TAL BUF

Client Sample ID: TRIP BLANK

Date Collected: 09/03/19 08:00 Date Received: 09/03/19 16:50

Lab Sample ID: 480-158492-5

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			491707	09/12/19 17:33	BTP	TAL BUF

Client Sample ID: MWSE-1

Date Collected: 09/09/19 12:35

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			322696	09/12/19 07:48	MYV	TAL SAC
Total/NA	Analysis	537 (modified)		1	323243	09/13/19 21:30	P1N	TAL SAC

Client Sample ID: MWSE-2

Date Collected: 09/09/19 11:20

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-2

Matrix: Water

Batch **Batch** Dilution Batch **Prepared** Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA 3535 322696 09/12/19 07:48 MYV TAL SAC Prep Total/NA Analysis 537 (modified) 323243 09/13/19 21:39 P1N TAL SAC 1

Client Sample ID: MWSE-3

Date Collected: 09/09/19 13:41 Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			322696	09/12/19 07:48	MYV	TAL SAC
Total/NA	Analysis	537 (modified)		1	323243	09/13/19 21:49	P1N	TAL SAC

Client Sample ID: MWSE-4

Date Collected: 09/09/19 11:46

Date Received: 09/09/19 15:40

Lab S	Sample	ID:	480-158878-4
			Matrix: Water

d	Analyst	Lab
48	MYV	TAL SAC

Batch **Batch** Dilution Batch Prepared or Analyze **Prep Type** Type Method Run Factor Number Total/NA Prep 3535 322696 09/12/19 07:4 Total/NA Analysis 537 (modified) 323243 09/13/19 21:59 P1N TAL SAC

Eurofins TestAmerica, Buffalo

9/30/2019

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Client Sample ID: BLIND DUP

Date Received: 09/09/19 15:40

Lab Sample ID: 480-158878-5 Date Collected: 09/09/19 11:46 **Matrix: Water**

Batch **Batch** Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab TAL SAC Total/NA Prep 3535 322696 09/12/19 07:48 MYV Total/NA TAL SAC Analysis 537 (modified) 323243 09/13/19 22:08 1

Client Sample ID: TRIP BLANK Lab Sample ID: 480-158878-6

Matrix: Water

Date Collected: 09/09/19 09:00 Date Received: 09/09/19 15:40

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 492966 09/20/19 00:45 KMN TAL BUF

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Laboratory: Eurofins TestAmerica, Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ıthority		rogram	Identification Number	Expiration Date
ew York	N	ELAP	10026	03-31-20
The following analytes the agency does not do		ort, but the laboratory is not o	certified by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyte	
8260C		Ground Water	Tetrahydrofuran	
8260C		Water	Tetrahydrofuran	
Field Sampling		Ground Water	Depth to Water from Top of 0	Casing
Field Sampling		Ground Water	Field EH/ORP	
Field Sampling		Ground Water	Odor	
Field Sampling		Ground Water	pH, Field	
Field Sampling		Ground Water	Specific Conductance	
Field Sampling		Ground Water	Temperature, Field	
Field Sampling		Ground Water	Turbidity	
Field Sampling		Ground Water	Well Depth	
Field Sampling		Water	Depth to Water from Top of 0	Casing
Field Sampling		Water	Field EH/ORP	
Field Sampling		Water	Odor	
Field Sampling		Water	pH, Field	
Field Sampling		Water	Specific Conductance	
Field Sampling		Water	Temperature, Field	
Field Sampling		Water	Turbidity	
Field Sampling		Water	Well Depth	

15

17

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Dat
Alaska (UST)	State Program	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	DoD	L2468	01-20-21
ANAB	DOE	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	08-09-21
Arizona	State	AZ0708	08-11-20
Arizona	State Program	AZ0708	08-11-20
Arkansas DEQ	State Program	88-0691	06-17-20
California	State	2897	01-31-20
California	State Program	2897	01-31-20
Colorado	State	CA0004	08-31-20
Colorado	State Program	CA00044	08-31-20
Connecticut	State	PH-0691	06-30-21
Connecticut	State Program	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-20
Florida	NELAP	E87570	06-30-20
Hawaii	State	<cert no.=""></cert>	01-29-20
Hawaii	State Program	N/A	01-29-20
Illinois	NELAP	200060	03-17-20 *
Illinois	NELAP	200060	03-17-20
Kansas	NELAP	E-10375	10-31-19
Kansas	NELAP	E-10375	10-31-19
Louisiana	NELAP	30612	06-30-20
Louisiana	NELAP	01944	06-30-20
Maine	State Program	CA0004	04-14-20
Michigan	State	9947 9947	01-29-20
Michigan	State Program		01-31-20
Nevada	State Program	CA00044	07-31-20
New Hampshire	NELAP	2997	04-20-20
New Jersey	NELAP	CA005	06-30-20
New York	NELAP	11666	04-01-20
New York	NELAP	11666	04-01-20
Oregon	NELAP	4040	01-29-20
Oregon	NELAP	4040	01-29-20
Pennsylvania	NELAP	68-01272	03-31-20
Pennsylvania	NELAP	68-01272	03-31-20
Texas	NELAP	T104704399	05-31-20
Texas	NELAP	T104704399-19-13	05-31-20
US Fish & Wildlife	Federal	LE148388-0	07-31-20
US Fish & Wildlife	US Federal Programs	58448	07-31-20
USDA	Federal	P330-18-00239	01-17-21
USDA	US Federal Programs	P330-18-00239	07-31-21
USEPA UCMR	Federal	CA00044	12-31-20
Utah	NELAP	CA00044	02-29-20
Vermont	State	VT-4040	04-16-20
Vermont	State Program	VT-4040	04-16-20
Virginia	NELAP	460278	03-14-20
√irginia	NELAP	460278	03-14-20
Washington	State	C581	05-05-20

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-157980-1

Project/Site: Chaffee Facility Western Exp-GW Baselin

Laboratory: Eurofins TestAmerica, Sacramento (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Washington	State Program	C581	05-05-20
West Virginia (DW)	State	9930C	12-31-19
West Virginia (DW)	State Program	9930C	12-31-19
Wyoming	State Program	8TMS-L	01-28-19 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

Method Method Description		Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL BUF
537 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
6010C	Metals (ICP)	SW846	TAL BUF
6020A	Metals (ICP/MS)	SW846	TAL BUF
7470A	Mercury (CVAA)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
310.2	Alkalinity	MCAWW	TAL BUF
350.1	Nitrogen, Ammonia	MCAWW	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF
410.4	COD	MCAWW	TAL BUF
7196A	Chromium, Hexavalent	SW846	TAL BUF
9012B	Cyanide, Total andor Amenable	SW846	TAL BUF
9065	Phenolics, Total Recoverable	SW846	TAL BUF
SM 2120B	Color, Colorimetric	SM	TAL BUF
SM 2340C	Hardness, Total (mg/l as CaC03)	SM	TAL BUF
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL BUF
SM 4110B	Ion Chromatography	SM	TAL BUF
SM 5210B	BOD, 5-Day	SM	TAL BUF
SM 5310C	TOC	SM	TAL BUF
Field Sampling	Field Sampling	EPA	TAL BUF
3005A	Preparation, Total Metals	SW846	TAL BUF
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL BUF
3020A	Preparation, Total Metals	SW846	TAL BUF
351.2	Nitrogen, Total Kjeldahl	MCAWW	TAL BUF
3535	Solid-Phase Extraction (SPE)	SW846	TAL SAC
5030C	Purge and Trap	SW846	TAL BUF
7470A	Preparation, Mercury	SW846	TAL BUF
9012B	Cyanide, Total and/or Amenable, Distillation	SW846	TAL BUF
Distill/Phenol	Distillation, Phenolics	None	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Buffalo

Page 270 of 314

Job ID: 480-157980-1

Sample Summary

Client: Waste Management

480-158878-6

TRIP BLANK

Project/Site: Chaffee Facility Western Exp-GW Baselin

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-157980-1	DUP	Ground Water	08/21/19 12:35	08/21/19 17:30	
480-157980-2	MW-16	Ground Water	08/21/19 11:18	08/21/19 17:30	
480-157980-3	MW-16(S)	Ground Water	08/21/19 11:10	08/21/19 17:30	
480-157980-4	MW-17	Ground Water	08/21/19 13:20	08/21/19 17:30	
480-157980-5	MW-18BR	Ground Water	08/21/19 13:05	08/21/19 17:30	
480-157980-6	MW-L(I)	Ground Water	08/21/19 11:50	08/21/19 17:30	
480-157980-7	MW-M(I)	Ground Water	08/21/19 13:55	08/21/19 17:30	
480-157980-8	MW-M(S)	Ground Water	08/21/19 14:10	08/21/19 17:30	
480-157980-9	MW-P(I)	Ground Water	08/21/19 12:35	08/21/19 17:30	
480-157980-10	MW-P(S)	Ground Water	08/21/19 12:20	08/21/19 17:30	
480-157980-11	TRIP BLANK	Water	08/21/19 00:00	08/21/19 17:30	
480-158093-1	MW-N(I)	Ground Water	08/23/19 11:12	08/23/19 16:45	
480-158093-2	MW-N(S)	Ground Water	08/23/19 11:00	08/23/19 16:45	
480-158093-3	MW-Q(I)	Water	08/23/19 11:30	08/23/19 16:45	
480-158145-1	MW-50	Ground Water	08/26/19 13:45	08/26/19 16:30	
480-158409-1	FIELD BLANK	Water	08/30/19 11:00	08/30/19 16:15	
480-158409-2	MWBA-1	Ground Water	08/30/19 14:22	08/30/19 16:15	
480-158409-3	MWBA-2	Ground Water	08/30/19 13:45	08/30/19 16:15	
480-158409-4	MW-O(I)	Ground Water	08/30/19 11:39	08/30/19 16:15	
480-158409-5	TRIP BLANK	Water	08/30/19 09:00	08/30/19 16:15	
480-158492-1	MWSE-1	Ground Water	09/03/19 13:10	09/03/19 16:50	
480-158492-2	MWSE-2	Ground Water	09/03/19 11:50	09/03/19 16:50	
480-158492-3	MWSE-3	Ground Water	09/03/19 14:25	09/03/19 16:50	
480-158492-4	MWSE-4	Ground Water	09/03/19 12:25	09/03/19 16:50	
480-158492-5	TRIP BLANK	Water	09/03/19 08:00	09/03/19 16:50	
480-158878-1	MWSE-1	Water	09/09/19 12:35	09/09/19 15:40	
480-158878-2	MWSE-2	Water	09/09/19 11:20	09/09/19 15:40	
480-158878-3	MWSE-3	Water	09/09/19 13:41	09/09/19 15:40	
480-158878-4	MWSE-4	Water	09/09/19 11:46	09/09/19 15:40	
480-158878-5	BLIND DUP	Water	09/09/19 11:46	09/09/19 15:40	

Water

09/09/19 09:00 09/09/19 15:40

Job ID: 480-157980-1

3

A

5

7

9

10

12

. .

10

17

Quantitation Limit Exceptions Summary

Client: Waste Management

Project/Site: Chaffee Facility Western Exp-GW Baselin

The requested project specific reporting limits listed below were less than laboratory standard quantitation limits (PQL) but greater than or equal to the laboratory method detection limits (MDL). It must be noted that results reported below lab standard quantitation limits may result in false positive/false negative values and less accurate quantitation. Routine laboratory procedures do not indicate corrective action for detections below the laboratory's PQL.

Method	Analyte	Matrix	Prep Type	Unit	Client RL	Lab PQL
8260C	2-Butanone (MEK)	Ground Water	Total/NA	ug/L	5.0	10
8260C	2-Butanone (MEK)	Water	Total/NA	ug/L	5.0	10
8260C	Acetone	Ground Water	Total/NA	ug/L	5.0	10
8260C	Acetone	Water	Total/NA	ug/L	5.0	10
6010C	Antimony	Ground Water	Total/NA	mg/L	0.015	0.02
6010C	Antimony	Water	Total/NA	mg/L	0.015	0.02
6010C	Arsenic	Ground Water	Total/NA	mg/L	0.010	0.015
6010C	Arsenic	Water	Total/NA	mg/L	0.010	0.015
6010C	Arsenic, Dissolved	Ground Water	Dissolved	mg/L	0.010	0.015
6010C	Arsenic, Dissolved	Water	Dissolved	mg/L	0.010	0.015
6010C	Lead	Ground Water	Total/NA	mg/L	0.0030	0.01
6010C	Lead	Water	Total/NA	mg/L	0.0030	0.01
6010C	Lead, Dissolved	Ground Water	Dissolved	mg/L	0.0030	0.01
6010C	Lead, Dissolved	Water	Dissolved	mg/L	0.0030	0.01
6010C	Thallium	Ground Water	Total/NA	mg/L	0.010	0.02
6010C	Thallium	Water	Total/NA	mg/L	0.010	0.02
6010C	Thallium, Dissolved	Ground Water	Dissolved	mg/L	0.010	0.02
6010C	Thallium, Dissolved	Water	Dissolved	mg/L	0.010	0.02
310.2	Alkalinity, Total	Ground Water	Total/NA	mg/L	5.0	10
310.2	Alkalinity, Total	Water	Total/NA	mg/L	5.0	10
351.2	Total Kjeldahl Nitrogen	Ground Water	Total/NA	mg/L as N	0.15	0.2
351.2	Total Kjeldahl Nitrogen	Water	Total/NA	mg/L as N	0.15	0.2
410.4	Chemical Oxygen Demand	Ground Water	Total/NA	mg/L	5.0	10
410.4	Chemical Oxygen Demand	Water	Total/NA	mg/L	5.0	10
9065	Phenolics, Total Recoverable	Ground Water	Total/NA	mg/L	0.0050	0.01
9065	Phenolics, Total Recoverable	Water	Total/NA	mg/L	0.0050	0.01
SM 2120B	Color	Ground Water	Total/NA	Color Units	0.0100	5
SM 2120B	Color	Water	Total/NA	Color Units	0.0100	5
SM 2340C	Hardness	Ground Water	Total/NA	mg/L	1.0	2
SM 2340C	Hardness	Water	Total/NA	mg/L	1.0	2

Job ID: 480-157980-1

					:						-		Andread Courses						
Client Information	Sampler. TB/SO			Gigl	Giglia, Denise L	J es					0								
Clent Contact	Phone			E-Ma	42						Т								
Timothy Bly				den	denise giglia@testamericainc.com	@tes	tamer	cainc	EOO.										
Company. TestAmerica Laboratories Inc								A	Analysis		Red								
Address	Due Date Requested:	d:			歷	r	H	L	L		T	1	-100	400-15/880 Chain of	Chai	of C	Custody		
10 Hazelwood Drive								_				-	-	-	1				eur
City. Amherst	TAT Requested (days):	ys):			開設							-			-	Day.	B - NaOH C - Zn Acetate	O-Ast	a02
State, Zip.								_							_		D - Nitric Acid	Sen - C	5048
NY, 14228	7							_			-	-			0		F - MeOH	R-Na	5203
Phone: 716-863-3438(Tel)	Purchase Order Requested	Requested			(0)				ale	soliti	1000000				150_E		G - Amchlor H - Ascorbic Acie	S-H28	O4 Dodecahydra
Email. timothy, bly@testamericainc.com	WO#				1000				overab	eloV a	-	-				_	J - DI Water	V-AC	U - Acetone V - MCAA
Project Name: Chaffee Facility Western Expansion/NY12 Event Desc: Chaffee						O85_			al Rec	nilesas	_			la	Taken to the		L-EDA	Z-othe	r (specify)
Site. New York	SSOW#.								doT ,e	3 096 1			burne S	doT ,a			Other:		
Samula Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (Wewater, Sesolid, Oewastefoll, BT=Tissue, AnAlr	benetli3 blei3 M\SM mnotre9	M2,0.005	350.1, 351.2, 41	2340C - Hardne	olles - Phenolic	8260C - NY Part	O IntoT - 20168	2540G_Calocher	FieldSampling -	9012B - Cyanida	21208, 363.2, 3	Total Number	Special	Special Instructions/Note:	ons/Note:
	X	X	Preserva	Preservation Code:	200	0,	1	-	s.		-	-	-		1-			X	V
MW-P(I)	8/21/19	1235	9	Water		-	-		-	60	2	-		-	01	-	DUP Taken		
DUP	8/21/19	1235	9	Water		-	-	-	-	ю	2	-	0	-	2	-	Taken @ MW-P(!)	(1)	
Matrix Spike	8/21/19	1320	9	Water		-	-	-	-	ю	N	-	0	-	2	1	Taken @ MW-17	1	
Matrix Spike Dup	8/21/19	1320	9	Water		-	1	-	1	6	2	1	0	-	2	1	Taken @ MW-17	7	
MW-16	8/21/19	1118	9	Water		-	1	٠	1	ю	2	1	0	-	2	1			
MW-16(S)	8/21/19	1110	9	Water		-	1	٢	+	6	2	1	0	-	2	-			
MW-17	8/21/19	1320	ව	Water		-	-	-	٢	9	2	1	0	-	2	1	MS/MSD Taken	-	
MW-18BR	8/21/19	1305	G	Water		-	1	-	+	9	2	-	0	-	2	+			
MW-L(I)	8/21/19	1150	9	Water		-	1	-	-	3	2	-	0	-	2	-			
MWV-E(S)	8/21/19	DRY	9	Water		0	0	0	0	0	0	0	0	0	0	0	Well DRY- No Sample	Sample	
MW-P(S)	8/21/19	1220	9	Water		-	-	-	٢	3	2	-	0	٦	2	-			
Possible Hazard Identification	Doison B	[] mknown	Radiological	ū	San	Dele [le Disposal (A I Return To Client	sal (A	fee	may t	oe ass	esse	assessed if san	aldmi	s are	retain] Arc	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	n 1 monti	nth) Months
ssted: I, II, III, IV, Other					Spe	cial Ir	Special Instructions/QC Requirements)/suoi	SC Re	adnire	ments								
Empty Kit Relinquished by:		Date:			Time:					ı		Me	hod of	Method of Shipment	4				
Relinquished by	Date/Time 8-21-19	1700	0	Company		Received by	od by:	1				1		Date/Time	:ewi			Company	λι
Relinquished by:	Date/Time:			Company		Received by	kq pa							Date/Time	me			Company	Ą.
Refinquished by:	Date/Time			Company		Received by	yd by	1	1	1	1			Date/Time	-	191	1736	Company	#S
Custody Spale Intact Custody Spal No					Ī	Contac	abamad rate Of the Control of the Day		100	C P	0	- de	0	1	6	,	0	100	

eurofins | Environment Testing Testing

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Environment Testing TestAmerica

💸 eurofins

				A COLUMN				Annual Property and Marie Street	1000	-11000	
Client Information	TB/SO			Giglia,	Giglia, Denise L	1		Califor Hadwing Model	(6)	480-134071-30195.2	5.2
Client Contact:	Phone:			E-Mail:							
Timothy Bly				deni	se giglia(gtesta	denise.giglia@testamericainc.com			Page 2 of 4	
Company: TestAmerica Laboratories, Inc							Analysi	Analysis Requested		Job #	
Address: 10 Hazelwood Drive	Due Date Requested:	÷			製造						**
City	TAT Requested (days):	/s):									A - Hexane
Amnerst State, Zip.					X SEE	\$0					0 - ASN802 0 - N8204S
NY, 14228					M	ilitale					2 - Na2S2O3
Phone: 716-863-3438(Tel)	PO# Purchase Order Requested	Requested			(0)	oV an				chlor corbic Acid	S - H2SO4 - TSP Dodecahyd
Email: timothy, bly@testamericainc.com	#OM					ilose8				J - Di Water	U - Acetone
Project Name. Chaffee Facility Western Expansion/NY12 Event Desc: Chaffee					10 897		sid-,		-	L-EDA	v - pri 4-5 L - other (specify)
Site. New York	SSOW#) asv	-	∀ 0∠‡∠			Other	
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (wwwater, 5rsolid, Orwastafoll, 8T=Tissue, ArAir)	Field Filtered	310.2 - Alkalinit 8260C - (MOD)	6010C, 6020A,			Total Number Special Inst	Special Instructions/Note:
	X	X	Preservat	Preservation Code:	12	4				\bigwedge	V
MW-P(I)	8/21/19	1235	g	Water		0	-			DUP Taken	
DUP	8/21/19	1235	9	Water		1	-			Taken @ MW-P(I)	
Matrix Spike	8/21/19	1320	9	Water		0				Taken @ MW-17	
Matrix Spike Dup	8/21/19	1320	o	Water		0	1			Taken @ MW-17	
MW-16	8/21/19	1118	9	Water		0					
MW-16(S)	8/21/19	1110	9	Water		1 0	1				
WW-17	8/21/19	1320	9	Water		0				MS/MSD Taken	
MW-18BR	8/21/19	1305	9	Water		1 0	1				
MW-L(!)	8/21/19	1150	9	Water		1 0	1				
MW-L(S)	8/21/19	DRY	9	Water		0 0	0			Well DRY - No Sample	ile
MW-P(S)	8/21/19	1220	9	Water		0				(B)	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	☐ Poison B ☐ Unkr	Unknown	Radiological	16	Sam	ple Dis Retur	le Disposal (A fee ma Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mod	ples are ret	tained longer than 1 n Archive For	nonth) Months
Deliverable Requested: I, III, III, IV, Other (specify)					Spec	ial Inst	Special Instructions/QC Requirements	irements:			
Empty Kit Relinquished by:		Date			Time:			Method of Shipment	pment.		
Relinquished by:	Date/Time. P-21-19/	OF 1 700		Company	æ	Received by	by	å	Date/Time.		Company
Relinquished by	Date/Time	,		Company	α	Received by	by.	۵	Date/Time:		Company
Relinquished by	Date/Time.			Company	0	Received	X 22	To the state of th	Date/Time 31-	02/1 51-	Statemos
Custody Spale Intact Custody Spal No						orine To	Conjec Temporal voice of and Other Demarks	Whor Demarks	-		

16 17 18

Table		Sampler			Lab PM	We	١					ſ	Carner	Tracke	Carner Tracking No(s)	(5		COC No			
1 1 1 1 1 1 1 1 1 1	Client Information	TB/SO			Gig	ia, Den	ise L								T.			480-13	4071-30	195.3	
Analysis Requirements Date Date Requested (1971)	Client Contact Timothy Bly	Ръдпе			E-Ma	ise gigli	ia@te	stame	ricain	C.COII	-							Page 3	3 of 4		
Annual transference	Company. TestAmerica Laboratories. Inc									Anal	sis	Red	uest	pa				Job #:			
17 Production 17 Produ	Address	Due Date Requeste	iq:						-	-				-	-			Presen	ration Coc	des:	
Company Comp	10 Hazelwood Drive City	TAT Requested (da	ıys):											_				A - HCL B - NaO	. =		
Sample Date Standard (denotication Committee of the Requested Committee of the Requested Committee of the Requested Committee of the Requested Committee of the Requested Committee of the Region Committee of t	Amherst State, Zip													-	_			C-Zn A	c Acid	O - AsnaO2 P - Na2O4S	
Company Continued by Continued	NY, 14228	****									1					0		F - MeO	5 1		
Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Date Sample Corporation Corporation Corporatio	Phone 716-863-3438(Tel)	Purchase Order	Requested			(0)				alc	selita		-	Thomas Co.		DEO_6		G - Amc	chlor orbic Acid		ahydrat
Sample Date Sample Date Sample Date Sample Date Sample Date	Email timothy bly@testamericainc.com	WO#						-11		veral	loV s	u			SIMIC	Vitrati	ţut		ater		
Sample S	Project Name Chaffee Facility Western Expansion/NY12 Event Desc: Ch	Project # 148002685								oseR l	niless	Carbo	7000		V-200000		elevex	CONTRACTOR OF THE	¥ .	W - pH 4-5 Z - other (speci	(Å
Sample Case Sample Case	Site: Now York	#MOSS					-	-			360 B	oju e 6.		SANT. MILL			y 'wr				
Sample Date Time Grapa Sample Date Time Grapa Sample Date Time Grapa Sample Date Time Grapa Sample Date Tim			Sample	Sample Type (C=comp,							260C - NY Part	10 latoT - 2018			ATTOMERY AND DESCRIPTION		196A - Chromiu				
ant □ Poison B □ Unknown □ Radiological Si/21/19 1410 G Water	Sample Identification	Sample Date	Time	G=grab) Preserva			- 2	20		0,	8			7		-	Z		pecial Ir	1structions/N	ote:
### ### ##############################	Mvv-M(t)	8/21/19	1355	9	Water		-	-	-		m	10	_	-	0	+	-				
ant Doison B Unknown Radiological Date: Date: Company Date/Time Date/Time Company	MW-M(S)	8/21/19	1410	9	Water		-	-		-	т	2	~	-		-	-	1000			
ant Date: Date: Date: Date: Date: Date: DateTime Company Company	Trip Blank 8	8/21/19	0800	9	Water		0	-	-	-	-	0	-	-		-	0				
ant Date: Date: Date: Date: Date: Date: Date: Date: Date: DateTime: DateTime: DateTi																		O LINGUIS			
ant Deison B Unknown Radiological Date: Date: Company DateTime DateTime Company									-				1	+	-	4					
ant Date: Date: Date: Date: Company DateTime Company Company										-											
ant DateTime DateTime DateTime DateTime DateTime Company Company Company														-				ve isi			
ant Date: Date: Date: Date: Date: Date: DateTime Company Company										-				-	-	4		TO AL			
ant Date: Date: Company Compa									-	-	\perp			+	-						
ant Deison B Unknown Rediological Date: Desertime Desertime Desertime Desertime Company										-				+				NO SE			
ant Poison B Unknown Radiological Special Instructions/OC Requirements: Date: Time: Time: Method of Shipment: Date/Time: D	Possible Hazard Identification]				Sa	mple	Dispo) Jesc	A fee	may	pe a	ssess	ed if	samp	les a	re ret	ined long	yer than	1 month)	
Date: Time: Time: Time: Method of Shipment: Date/Time: Company Received by: Date/Time: Da	Non-Hazard Flammable Skin Irritant		nown	Radiologic	la	-	2	eturn	To Cli	ent	-	7	sodsi	al By	Lab			rchive Fo		Months	
Date: Time: Method of Shipment: Date/Time: Date	Deliverable Requested: I, II, III, IV, Other (specify)					d's	ecial	nstru	ctions	200	ednii	emer									
Date/Time Company Received by Date/Time Date/T	Empty Kit Relinquished by:		Date:			Time							2	Aethod	of Ship.	ment					
Date/Time Company Received by Date/Time Company Received by Conjugative State Custody Seal No.	Relinquished by Relinquished b	Sterrime	170		Company		Recei	ved by:							Dat	e/Time	254			Company	
Date/Time Company Received by A 22 Date/Time Seal No.	Relinquished by:	Date/Time:			Company		Recei	ved by							Dat	е/Тіте	SEA.			Company	
Cooler Temperature(s) "C and Other Remarks:	Relinquished by:	Date/Time.			Company		Rece	Vedby	2	1	9	4	1	1	Dat	STime	7/2	5	173	Company	~
							Coole	rTemp	erature	(s) C a	and Ott	er Ren	narks		-	0				1)

Seurofins Environment Testing TestAmerica

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone (716) 691-2600 Fax (716) 691-7991									77.000	
Client Information	TB/SO			Giglia	Giglia, Denise L				480-134071-30195.4	95.4
Client Contact Timothy Blv	Phone			E-Wall	oiglia@ter	E-Mail. denise ciplia@testamericainc.com	E		Page.	
Company					0	V	Analysis Posmostod		# qof	
TestAmerica Laboratories, inc. Address:	Due Date Requested:	ü			100		lary sie iveduesteu		Preservation Codes:	35:
10 Hazelwood Drive										M - Hexane
City Amherst	TAT Requested (days):	ys):			MATE					N - None O - AsNaO2
State, Zip. NV 14228						seli			D - Nitric Acid E - NaHSO4	P - Na204S O - Na2SO3
Phone	#Od					slo\				R - Na2S2O3
716-863-3438(Tel)	Purchase Order	Requested			(O)	/ əui				T - TSP Dodecahydrate
Email: timothy biv@testamericainc.com	*OW					ləsel				U - Acetone V - MCAA
Project Name Chaffee Earlifty Mastern Evaneion/NV12 Event Decr. Chaffee	Project #:				10 56				K-EDIA L-EDA	W - pH 4-5 Z - other (specify)
Site					N a				Other:	
New York					SW	-		10 16		
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=crab)	Matrix (Wewster, Swoild, Owestsholl,	Field Filtered Perform MS/ 310.2 - Alkalin	8260C - (MOD		odmuN IstoT	Special In	Special Instructions/Note:
	\bigvee	X	1 (0	100	×	-		X		
MVV-M(I)	8/21/19	1355	O	Water	-	0				
MVV-M(S)	8/21/19	1410	ŋ	Water	+	1 0				
Trip Blank 8	8/21/19	0800	9	Water	0	2 0				
						+				
								Toll		
Possible Hazard Identification					Sample	Disposal (A	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	if samples are retaine	d longer than 1	month)
ole Skin Irritant	Poison B Unki	Unknown	Radiological	1	L Re	Return To Client	it Disposal By Lab	y Lab Arch	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)					Special	nstructions/Q	Special Instructions/QC Requirements:			
Empty Kit Relinquished by:		Date:			Time:		Metho	Method of Shipment.		
Relinquished by:	Date/Time. 72/-/2	1/700		Company	Receiv	Received by		Date/Time:		Company
Relinquished by:	Date/Time:			Company	Receiv	Received by:		Date/Time:		Company
Reinquished by:	Date/Time			Company	Receip	Received by	18	Date/Time 1-(S	1730	O Distance
Custody Seals Intact. Custody Seal No.					Cooler	r Temperature(s)	Cooler Temperature(s) °C and Other Remarks.	77		
A Yes A No					$\frac{1}{1}$					VAN. 017(4/2010

eurofins Environment Testing TestAmerica

Chain of Custody Record

Eurofins TestAmerica, Buffalo

S-72-19

ooler Temperature(s) "C and

Received by

TAL

8-23-19 1645 Date/Time

Date/Time

Date/Time:

S - H2SO4 T - TSP Dodecahydrate U - Acetone V - MCAA W - pH 4-5 Z - other (specify) Special Instructions/Note: N - None O - AsNaO2 P - Na2O4S O - Na2SO3 R - Na2S2O3 Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont Well DRY- No Sample 480-134071-30195.1 Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
E - NaHSO4
F - MeOH
G - Anchior
H - Ascorbic Acid Page 1 of 2 Job #: 1 - Ice J - DI Water K-EDTA L-EDA Archive For Total Number of containers 196A - Chromium, hexavalent N N 2 2120B, 353.2, 353.2 Nitrite, Nitrate Calc Method of Shipment 480-158093 Chain of Custody 90128 - Cyanide, Total 0 leldSampling - Field Parameters Analysis Requested 2640C_Calcd - Total Dissolved Solids -2210B - Biochemical Oxygen Demand Special Instructions/QC Requirements N 310C - Total Organic Carbon 3 3 3 -9066 - Phenolics, Total Recoverable denise giglia@testamericainc.com --350.1, 351.2, 410.4 Ciglia, Denise L E-Mail 000.0 28D, SM4110B 28D Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Preservation Code: Water (W-water, 5-solid, O-waste/oil Water Water Water Radiological (C=comb, G=grab) Sample Type O 0 0 O Purchase Order Requested Sample Time 1112 1130 1100 DRY Date: Unknown TAT Requested (days): Due Date Requested: Sample Date 8/23/19 8/23/19 8/23/19 Project Name. Chaffee Facility Western Expansion/NY12 Event Desc: Chaffee V48002685 Sampler. TB/SO Phone: Poison B Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Phone (716) 691-2600 Fax (716) 691-7991 Non-Hazard Flammable Possible Hazard Identification limothy bly@testamericainc.com Sompany. TestAmerica Laboratories, Inc Empty Kit Relinquished by Client Information Sample Identification 10 Hazelwood Drive 716-863-3438(Tel) Client Contact. Timothy Bly State, Zip. NY, 14228 MW-Q(S) MW-N(S) New York MW-Q(I) AW-N(I) Amherst

Environment Training

S eurofins

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298

10 Hazelwood Drive

Custody Seals Intact.

iquished by

Custody Seal No.

Chain of Custody Record

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Environment Testing Testing

Client Information	18/80			Giglia	Giglia, Denise L					480-13407	480-134071-30195.2
Client Contact Timothy Bly	Phone			E-Mail.	e.giglia@	E-Mail. denise.giglia@testamericainc.com	nc.com			Page: Page 2 of 2	12
Company.							Annhair	Andread of selection		Job #.	
Address:	Due Date Requested:	;pa	l				Allanysis	nancanha		Preservati	Preservation Codes:
10 Hazelwood Drive										A-HCL	
City	TAT Requested (days)	iys):								B - NaOH C - Zn Acetate	
State, Zlp. NY, 14228					V	səliles				D - Nitric Acid E - NaHSO4	04 O Na2SO3
Phone 716-863-3438(Tel)	PO#: Purchase Order Requested	Requested			(0	isloV				G - Amchlo	7
Email: Control of the first the firs	#OM					əuiləsi					
Project Name: Project # Pr	Project #					B 090				K-EDTA L-EDA	
Organice Facility Western Expansionary 12. Event Description Site.	#MOSS				ey) as	-				of con	
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (Wewater, Sesolid, Owaste/oll,	Field Filtered S Perform MS/M3	85e0C - (WOD) N				Total Number o	Special Instructions/Note:
combination and the committee of the com	$\langle \rangle$	X	Preserva	Preservation Code:	X	1					
MW-N(j)	8/23/19	1112	9	Water							
MW-N(S)	8/23/19	1100	9	Water		1					
MW-Q(I)	8/23/19	1130	9	Water		-					
MW-Q(S)	8/23/19	DRY	9	Water						Well DRY.	Well DRY- No Sample
Identification					Sami	ole Disposa	(A fee may	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	samples are reta	ained longer	than 1 month)
Non-Hazard Hammable Skin Imtant Deliverable Requested: I, III, IV, Other (specify)	Poison B Unknown		Kadiological		Spec	al Instructions/QC	Special Instructions/QC Requirements	Uisposai By Lab ements:		Archive For	Months
Empty Kit Relinquished by:		Date:			Time:			Method	Method of Shipment:		
Relinquished by:	P-23-R	549/		Company	α	Received by:			Date/Time:		Company
Relinquished by	Date/Time: //			Сотралу	œ	Received by			Date/Time:		Company
Relinquished by	Date/Time:			Company	8 /	Received by	1	1	Date-Time 23	3-19/	Car Company
Custody Seals Infact: Custody Seal No					0	ooler Temperal	Cooler Temperature(s) "C and Other Remarks	her Remarks:			11/2

... eurofins

10 Hazelwood Drive "Amherst." NY 14228-2298 Phone (716) 691-2600 Fax (716) 691-7991

Client Information	TB/SO/ZV			Giglia, Denise L	Denise	1							200			480-134071-30195.1	1-3019	5.1	
Client Contact.	Phone:			E-Mail:	Ociloin	Stocto	morio	o ocio	8		_					Page:	0		
I imotiny biy				dellise	Juliale	picala		2.0		1	1	1		1	1	rage of	1		
Company: TestAmerica Laboratories, Inc								An	Analysis		Requested	ted				300			
Address:	Due Date Requested:			-650		-	_			-			-		2000	Preservation Codes	lő	s:	
Or razerwood Dive	TAT Requested (days):			T											Merce	A - HCL B - NaOH		M - Hexane N - None	
Statistics of St							-									D - Nitric Acid E - NaHSO4		P - Na204S Q - Na2SO3	
Phone: 716-863-3438(Tel)	Po#: Purchase Order Re	Requested								sa	р	s		olso	800 (8.50	G - Amchlor H - Ascorbic		R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrat	d)
Email: timothy, bly@testamericainc.com	MO#:			ON 10								bilos b	2191	itrate_	100000000000000000000000000000000000000	J - DI Water		U - Acetone V - MCAA	
Project Name: Project Western Expansion/NY12 Event Desc: Chaffee V48002685	Project #: affee \ 48002685			səд) ə	10 89	Q82						evlossi			Con Page			W - pH 4-5 Z - other (specify)	
Site: New York	:#MOSS			lames	SD (Y		_	SS		_		O lato			- A - SHEET 1	Other:			
Sample Identification	Sample Date	Sample (0	Sample Type (C=comp,	Matrix (wewater, Sasolid, Orwastefold, Oliva	M/SM mrohe	\$00.0_28D, SM4 \$60.1, 351.2, 410	2010C, 6020A, 7	3340C - Hardnes	9065 - Phenolics	3260C - NY Part 3310C - Total Or	2310B - Biochen	T - bolsO_00462	FieldSampling -	51 20B, 353.2, 35	Imondo - Aaer	1edmuM lsto7	i i i	Special Instructions/Note:	
		1			X	10,	3000	0	-	-	-	1050	ш	-					
MW- 50	8/26/19	1345	9	Water		-	1	-	-	m		-	10	1 2	-	US-10			
						+	+			+	1								
						\vdash	-			\vdash	1	1	480-1	5814	Cha	480-158145 Chain of Custody	>		
					1	+	+	-		+	+	I	+	+	I				
							+			+	-		\Box	+					
		T				+	+				-			+					
· tuo	a accion		legipoloiped		San	J ple [le Disposal (A f	al (A	fee n	ay be	asse	ssed	assessed if sam	ples a	Tre ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	than 1	month)	
1			Boloon		Spe	cial In	Special Instructions/QC Requirements	D/suo	C Rec	quiren	ents:		200						1
Empty Kit Relinquished by:	٥	Date:			Time:							Meth	od of Sh	Method of Shipment:					
Relinquished by 20 2	1-97	911630	0 1	Company TAL		Received by:	ed by:	A AM.	100	N	5	50	9	Date/Time	°°	Philo	163	Company	
Relinquished by:	Date/Time:		0	Company		Received	ed by:							Date/Time	iei i	16/		Company	
Relinquished by	Date/Time:		O	Company		Received by	ed by							Date/Time	, e			Company	1
Custody Seals Intact: Custody Seal No.:						Cooler	Tempe	ature(s	°C and	d Other	Cooler Temperature(s) °C and Other Remarks	.s	F	7	#	175	KI		
												١	1		1			Ver: 01/16/2019	1

: eurofins

Environment Testing TestAmerica

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone (716) 691-2600 Fax (716) 691-7991

Amherst,* NY 14228-2298

10 Hazelwood Drive

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H2SO4
U - Acetone
U - Acetone
U - Acetone
U - Acetone
Z - other (specify) Ver: 01/16/2019 Special Instructions/Note: Months Company (Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont COC No. 480-134071-30195.2 reservation Codes G - Amchlor H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page 2 of 2 - Ice J - DI Water K - EDTA L - EDA Total Number of containers Date/Time: Aethod of Shipment 1Kolp Analysis Requested Cooler Temperature(s) °C and Other Remarks Special Instructions/QC Requirements denise.giglia@testamericainc.com Return To Client teceived by: Received by 8260C - (MOD) NY Part 360 Baseline Volatiles Lab PM: Giglia, Denise L 110.2 - Alkalinity, Total Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) E-Mail BT=Tissue, A=Air Water Matrix Preservation Code Company Company TAL Radiological Type (C=comp, G=grab) Sample O 08-26-19/163 Date/Time Purchase Order Requested Sample Time 1345 Unknown Date TAT Requested (days) Due Date Requested: Sample Date 8/26/19 Project #: 48002685 SSOW#: Date/Time Sampler TB/SO Phone: Poison B Project Name: Chaffee Facility Western Expansion/NY12 Event Desc: Chaffee \ Skin Irritant Other (specify Custody Seal No. - Flammable Deliverable Requested: I, II, III, IV, Possible Hazard Identification timothy.bly@testamericainc.com FestAmerica Laboratories, Inc. Empty Kit Relinquished by: elinquished by: 502Custody Seals Intact. △ Yes △ No Sample Identification Client Information 10 Hazelwood Drive Non-Hazard 716-863-3438(Tel) nquished by elinquished by Client Contact Timothy Bly State, Zip. NY, 14228 New York MW-50 Amherst

A 20 1 Special Instructions/Note: M - Hexane
N - None
O - AsNaO2
O - Na2OAS
Q - Na2SO3
R - Na2S2O3
S - Na2S2O3
T - TSP Dodecahyo
U - Acetone Months Company V-MCAA ed longer than 1 month) Well DRY- No Sample Well DRY- No Sample COC No. 480-134071-30195.1 reservation Codes: G - Amchlor H - Ascorbic Acid A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH Page 1 of 1 I - Ice J - Di Water K-EDTA L-EDA archive For Total Number of containers Date/730/19 0 0 0 7196A - Chromium, hexavalent Date/Time 0 0 2 0 N 2120B, 353.2, 353.2 Mitrite, Mitrate_Calc ethod of Shipment 0 0 9012B - Cyanide, Total -0 0 0 480-158409 Chain of Custody -0 Analysis Requested 0 0 2040C_Calcd - Total Dissolved Solids 0 0 0 S)(101115... 2 2 7 0 0 2 0 5310C - Total Organic Carbon Cooler Temperature(s) C and Other m 2 0 3 0 0 SSOC - NY Part 360 Baseline Volatiles Lab PM: Giglia, Denise L E-Mail: denise giglia@testamericainc.com 0 0 0 0 0 0 2340C - Hardness 0 0 -0 5010C, 6020A, 7470A Received by 0 0 0 Special In Re 0 -0 0 300.0 28D, SM4110B 28D Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) Water Preservation Code: Water Water Water Water Water Water (Wewater, Sesolid, Oewasta/oil Radiological Sample Type (C=comp, G=grab) 9 9 0 9 9 9 O 103-30-19/16/15 Date/Time. Purchase Order Requested Sample Time 1100 1422 1345 DRY DRY 1139 0060 Date: Unknown TAT Requested (days): Due Date Requested: Sample Date 8/30/19 8/30/19 8/30/19 8/30/19 8/30/19 8/30/19 8/30/19 Project #: 48002685 SSOW#: Date/Time Sampler. SO/ZV Poison B Project Name Chaffee Facility Western Expansion/NY12 Event Desc. Chaffee V Skin Irritant Other (specify) Custody Seal No. Phone (716) 691-2600 Fax (716) 691-7991 Flammable Deliverable Requested: I, II, III, IV. Possible Hazard Identification timothy.bly@testamericainc.com TestAmerica Laboratories, Inc Empty Kit Relinquished by: Custody Seals Intact:
A Yes A No Sample Identification Client Information 10 Hazelwood Drive 716-863-3438(Tel) Non-Hazard IELD BLANK inquished by: quished by: nquished by Client Contact. Timothy Bly State, Zip: NY, 14228 TANKER! Trip Blank New York MANBA-3 (I)O-MM WWBA-1 WWBA-2 Amherst

eurofins Environment Testing Testaments

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Amherst, NY 14228-2298

Eurofins TestAmerica, Buffalo

lient Information	SO/ZV			Ciglia,	Giglia, Denise L	le L					Carrier	Trackin	Carrier Tracking No(s)		3 84	480-134071-30195.3
Client Contact Timostry Riv	Phone			E-Mail	E-Mail denise niglia@testamericainc.com	@testa	americ	ainc co	me						Pa F	Page
Company Company								An	Analysis	Book	Roginostor	1	1			
Testerner Laboratories, Inc.	Due Date Requested:	ed:				-	-		-	-		31				
10 Hazelwood Drive					10				-			-				
City. Amherst	TAT Requested (days):	sys):			3 3 52 Y				_			-				Chain of Custody
State, Zip. NY, 14228					12				_				-1	180-1	8487	L-Na2SO3
Phone 716-863-3438(Tel)	Po#: Purchase Order Requested	Requested			(_		_	8	_	ols	-01	G - Amethor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email: timothy blv@testamericainc.com	#OM									0.1.0					S.	
Project Name Chaffee Facility Western Expansion/NY12 Event Desc: Chaffee V48002685	Project # 48002685					G82			_		1000		_		enistr	
Site: New York	SSOW#											_	_	200	100 10	Other:
Samole Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (Wevester, Smoold, Omwastefoll, BTTTERSUE, A-Alr)	benetilia biela Mi&M mroheq	300.0_28D, SM4 350.1, 351.2, 410	6010C, 6020A, 7	2340C - Hardnes	8260C - NY Part	6310C - Total Or	2510B - Blochen	7 - bale2_0aled - T	9012B - Cyanide	21208, 353.2, 35	Total Number	Special Instructions/Note:
	\bigvee	X	Preserva		X	S	Q	D	S	×	z	z	В	z	X	
MWSE 1	9/3/19	1310	9	Water		-	-	-	6	2	-	0	-	2	-	
MWSE 2	9/3/19	1150	O	Water		1	-	-	60	2	-	0	-	2	-	
MWSE 3	9/3/19	1425	9	Water	9	-	-	-	6	2	-	1	-	7		
MWSE 4	9/3/19	1225	9	Water		-	-	~	1 3	2	+	-	-	2	1	
TRIP BLANK	9/3/19	0080	9	Water		0	0	0	0	0	0	0	0	0	0	
									+			+				
Possible Hazard Identification					San	id aldı	sods	ICAR	ее ша	y be a	ssess	ed if s	ample	ss are	retained	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
(specify)	Poison B Unknown		Radiological	1	Spe	Special Instructions/QC Requirements	tructio	Client ns/QC	Requ	remer	Disposal By Lab ents:	al By L	qe.		Archive For	e For Months
Empty Kit Relinquished by:		Date			Time:			1			-	Method of Shipment	f Shipm	Dua	12/2	30
Reinquished by Mollice &	Date/Time Date/Time	1 61	05.91	Company		Received by	d by	3	9		1		Date/Time	Date/Time:	67	Company Company
Reinquished by:	Date/Time:			Company		Received by	d by.						Date	Date/Time.		Company
Custody Seals Intact: Custody Seal No.:						Cooler Temperature(s) °C and Other Remarks	empera	fure(s) %	C and O	ther Re	marks		'	#	13	< 218

Eurofins TestAmerica, Buffalo

	Sampler			Lab PM	W.			Carrier Tracking No(s)	g No(s):	COC No.	
Client Information	SO/ZV			Giglia	Giglia, Denise L	1				480-134071-30195.4	0195.4
Client Contact Timothy Bly	Phone			E-Mail denise	e.giglia@	testame	E-Mail. denise giglia@testamericainc.com			Page 4 of 4	
Company. TestAmerica Laboratories, Inc							Analysis Requested	Requested		Job #:	
Address 10 Hazelwood Drive	Due Date Requested:	ď;								Preservation Codes	0
City Amherst State, Zip	TAT Requested (days):	78);			200	6				A - HCL B - NaOH C - Zn Acetate D - Nitric Acid F - NaHSOA	M - Hexane N - None O - AsNaO2 P - Na2O4S O - Na2O3
NY, 14228 Phone:	#0d					elitalo				F - MeOH G - Amchior	
716-863-3438(Tel) Email	Purchase Order Requested Wo#	Kednested				V enile				H - Ascorbic Acid	
timothy bly@testamericainc.com Project name	Project #:						SI			K-EDTA L-EDA	W - pH 4-5 Z - other (specify)
Signature I deliny western Expansionny i.e. Event Bosse, ordinate New York	SSOW#				eY) 08	TIEG YI	Q-A07#			of con	
Samole Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (w=water, S=solid, Owwashioti, BT-Tissue, A-Air)	Field Filtered S Perform MS/M: 310.2 - Alkalinity	8560C - (MOD) N	6010C, 6020A, 7.			Total Number o	Special Instructions/Note:
	\bigvee	X		100		A					
MWSE 1	9/3/19	1310	9	Water	-	0	-				
MWSE 2	9/3/19	1150	9	Water	-	0	-				
MWSE 3	9/3/19	1425	Ø	Water	-	0	-				
MWSE 4	9/3/19	1225	9	Water		0	1				
TRIP BLANK	9/3/19	0800	9	Water	0	2	0				
Possible Hazard Identification Skin Initant Poi Non-Hazard Flammable Skin Initant Poi Dalverable Requested: 1 III IV Other (specify)	Poison B Unknown		Radiological		Specie	Return I	Sample Disposal (A fee may be ass Return To Client Disposations/OC Requirements	e assessed if san □ Disposal By Lab	amples are ret	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon Special Instructions/OC Requirements:	1 month) Months
Emoty Kit Relinquished by		Date			Time			Г	Method of Shipment		
Reinquished by	Date/Time		0	Company		Received by	allalo		1 Sultabo	9 11/15	Company &
Relinquished by.	Date/Time:		0	Company	Re	Received by			Date/Time: 1		Company
Retinquished by.	Date/Time		0	Company	Re	Received by.			Date/Time:		Company

Site Name: CA	FIELI FAFF86	DINFORMATION FORM	V 45. 457
No.:	Saimple	This Waste Measurement Field Information Form is Required this form is to be completed, in addition to any State Forms. The Field Form attracted along with the Chain of Custody Forms that accompany the sample containers (i.e. with the cooler that is returned to the inhoratory).	Laboratory Use Only/Lab ID:
PURGE DA Mote: For Passing	119 11250 L	120	
Purging and Sample Purging Device Sampling Device X-Other:	D B-Peristahie Pump B-Pinton	Pump	Lili (Dirmin or 61) in a
Well Elevation	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sample Tube Type: A-Teflon B-Stainlers Sand	X-Other C-PVC X-Other: D-Polypropylene
Total Well Depth	Depth to Wat (first TOC) Stick Up (fit) (from arrange)	fer (DTW) [5 5 4 (ft) Greundwater Elev	ettos
Sample Time (2400 Hr Clook)	Rate/Unit pH Conductance (SC/B) (std) (and control of Conductance (SC/B)	elsovation) chistorical data, unless required by Situ/Period. Well Lieuwan, DTW. and (C) Temp. (C) Temp. (C) Temp. (C) Temp. (C)	Caning N Material PVC Proceedings ment by
12:512 112:518 112:518 113:010 113:017 113:015 13:016 13:016 13:110 13:018 13:0	1	(may) (may) (may) (may) - ppm) 136 1316 1316 1316 1317 1311	(mV) (R) 211010 1870 1500 1500 14170 1330 1350 (13 30) 4-25 mV Stabilities State of the state of required over early necessary are required over early necessary are required over early necessary are assistent who will be formed over early necessary are assistent who will be formed over early necessary are assistent who will be formed over early necessary are assistent who will be formed over early necessary necessary and a state of the state of t
PURGING LOW	o flow @ now	c/ourn.	
sampled	@ 13:10		
//_	res were in accordance with applicable EPA, Stat	te, and WM protocols (if more than one sampler, all should sign):	
Date	lamé	Signature Company with Sample, YELLOW - Resursed to Class, FINK - Field Casy	TAL

Site Name: C	HAFFBE	FIELD	INFORM	ATION FO	RM		
No.:	Sample H	This This	form is to be complete	Field Information Form is d, in addition to any State Fo min of Cantody Forms that a ler that in returned to the lab	Seguirud	Laboratory Use	Only/Lab ID:
PURGE I Motor: For Passin	DATE PURG	25	125		11 1	AL VOL PURGE	WELL VI
Purging and Sam Purging Device Sampling Device X-Other:	(2400 H. Water Vol & Water Vol & Water Vol & Water Vol & Water Vol & B-Peristalitie & C-QED Blade	Dilling IS IN	line .	Hiter Types	OAS u er A-In-line Dispose B-Pressure	IN (core	PURGE of held data, helow the or fill in)
Wall Elevation (at TOC)		Dipth to Water		Tube Type:	A-Terion B-Stainless Steel	D-Polypropylene	-Other:
Total Well Depth (from TOC)	1	Stick Lin	vation)	1576(n)	Groundwater Eleva (site dates, from T	00	(2)
Sample Time (2400 Hr Clock)	Rate/Unit pi- (std)	Conductance (SC/EC)	storical data, unleds re Temp. (°C)	Turbidity	Elevation, DTW and G	n) Material Provendirater Elevation a eH/ORP	PVC.
al Field Pardiens are required from their Conditions (required)	*Ontional (i.e. complete stability of Logger or other Electronic form pH	11790 11719 11468 11404 11408 11408 11408 11408 11408 11408 11408 11408 11408 11408 11408 11408 11408 11408 11408	TEMP. (C) 2 4 Lings, passive sample dor.	, (intu)	front	ATTOM OFFI	Transcripto.
sampled Co	d low flow	rate of	150 m()	Min,			
-							
P.1231 19	dures were in accordance wi	in applicable EPA, State,	and WM protocols	(if more than one sample	ल, all should sign):		

Site Name: Site No.: D 9 0 3 1	Sate of MWS 63 Sample ID	LD INFORMATION This Waste Measurement Field Information I This form is to be completed, in addition to any submitted along with the Chain of Cuebody For containers (i.e. with the cooler that is returned to	State Forms. The Field Form is	Laboratory Use Only/Lab ID:
Parging and Sampling Purging Device Purging Device X-Other: Well Elevation (at TOC) Total Well Depth (from TOC)	(2400 Hr Clock) oling, replace "Woser Vot in Caring" "We Equipment Deditated: A- Submersible Pump D- B-Peristablic Pump E- C-QED Bladder Pump F- (from 7	(hexamin) Ill Vols Perged w/ Water Vol in Tubing Flow Cell of N Bailer Piston Pump Dipper/Bottle Sample Tube Type: to Water (DTW) 2256	(Gallons) or N 0.45 µ or A-In-line Disposable B-Pressure A-Teflon B-Stainless Steel Greandwater Elevatia (site datum, from TOC	VOL PURGED WELL VOL Gallons) PURGED dark changes, record field data, below. \(\mu\) (circle or fill in) C-Vacuum X-Other C-PVC X-Other: D-Polypropylene
13:45 13:45 13:45 13:45 13:45 14:20 14:20 14:25 14:25 14:25 14:26 8ugganted range for 3 consec. medicals Franchische requirements	(and) (µmhta/cm	03 152 (min) 03 152 (10) 02 150 02 148 04 166 03 165 04 166	9.3 7.6 4.7 4.2 2.2 1.9 1.8	eH/ORP (mV) 1536 1590 1630 1690 1740 1760
(MM DD YY) O 1 O 3 (9) Final Field Readings are received.	(std) (umbios/cm &	ANCE TEMP. TURBURE	TY DO (mg/L-ppm)	eH/ORP Other:
Weather Conditions (require Specific Comments (included)	red daily, or as conditions change): ing purge/well volume calculations is $30.6-22.$	Direction/Speed: NESmph (required): 56 - 8:04 × 0:163	Color: Outlook: Sunky 2 2 60 n one sampler, all should sign):	Other: Precipitation: Y or N

DISTRIB TION WHITE ON GINAL Sund

COMMENTS

Company

Sample, V.L.L.OW - Returned to Client, PINK - Field Copy

Client: Waste Management Job Number: 480-157980-1

Login Number: 157980 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Harper, Marcus D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Client: Waste Management Job Number: 480-157980-1

Login Number: 158093 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Harper, Marcus D

Question	A nowo-	Comm
Question Redirectivity either was not measured or if measured is at an helew	Answer	Comme
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Login Number: 158145 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Manhardt, Kara M

Creator. Mannarut, Kara M		
Question	Answer	Comme
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Login Number: 158409 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Harper, Marcus D

erouter risiper, marous z		
Question	Answer	Comme
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Login Number: 158492 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Wallace, Cameron

Question	Answer	Comn
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Login Number: 158878 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Stopa, Erik S

Creator. Stopa, Erik S		
Question	Answer	Commer
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	TAL
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Eurofins TestAmerica, Buffalo

Login Sample Receipt Checklist

Client: Waste Management Job Number: 480-157980-1

Login Number: 158878

List Number: 2

Creator: Kintaudi, Pauline W

List Source: Eurofins TestAmerica, Sacramento

List Creation: 09/11/19 01:36 PM

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	993303
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.6c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins TestAmerica, Buffalo

February 6, 2020 Sampling Event - PFAS wells MWSE-3 MWSE-4, Basin #1, Hosmer Brook

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

Laboratory Job ID: 320-58497-1

Client Project/Site: Chaffee Facility Western Expansion: PFAS

For:

Waste Management Chaffee Landfill 10860 Olean Road Chaffee, New York 14030-9799

Attn: Christopher Chapman

Authorized for release hus

Authorized for release by: 2/17/2020 4:06:43 PM

Katelyn Ferguson, Project Management Assistant I (716)691-2600

katelyn.ferguson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

E

6

0

9

10

12

13

14

1,

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	12
QC Sample Results	14
QC Association Summary	19
Lab Chronicle	20
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

4

6

8

46

11

13

14

Definitions/Glossary

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Qualifiers

		N/A	0
ш	U	V	J

RER

RPD

TEF

TEQ

RL

Qualifier	Qualifier Description
*	Isotope Dilution analyte is outside acceptance limits.
I	Value is EMPC (estimated maximum possible concentration).

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

2/17/2020

Page 3 of 25

3

1

5

6

9

10

13

14

15

Case Narrative

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Job ID: 320-58497-1

Laboratory: Eurofins TestAmerica, Sacramento

Narrative

Job Narrative 320-58497-1

Comments

No additional comments.

Receipt

The samples were received on 2/10/2020 9:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.5° C.

LCMS

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte were outside of the established ratio limits. The qualitative identification of the analyte have some degree of uncertainty. However, analyst judgment was used to positively identify the analyte.

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for M2-6:2 FTS in the following sample: Basin#1 (320-58497-3). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples were observed to contain brown sediment prior to extraction: MWSE-3 (320-58497-1), MWSE-3 (320-58497-1[MSD]) and MWSE-3 (320-58497-1[MSD]).

Method 3535: The following samples contain non-settleable particulate matter which clogged the solid-phase extraction column: MWSE-3 (320-58497-1), MWSE-3 (320-58497-1[MS]) and MWSE-3 (320-58497-1[MSD]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

А

0

8

4.6

11

40

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: MWSE-3 Lab Sample ID: 320-58497-1

No Detections.

Client Sample ID: MWSE-4 Lab Sample ID: 320-58497-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	19	1.8	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	27	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	43	1.8	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	10	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	26	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.6	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	5.7	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.9	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.8	1.8	ng/L	1	537 (modified)	Total/NA

Client Sample ID: Basin#1

Lab Sample ID: 320-58497-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	14	1.9	ng/L	. 1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	17	1.9	ng/L	. 1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	42	1.9	ng/L	. 1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	5.4	1.9	ng/L	. 1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	14	1.9	ng/L	. 1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	5.3	1.9	ng/L	. 1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	13 I	1.9	ng/L	. 1		537 (modified)	Total/NA

Client Sample ID: HBSW-1

Lab Sample ID: 320-58497-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	3.8	1.8	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.3	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	6.9	1.8	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.9	1.8	ng/L	1	537 (modified)	Total/NA

Client Sample ID: Blind Dup

Lab Sample ID: 320-58497-5

Analyte	Result Qualifier	RL	MDL U	Jnit	Dil Fac	D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	18	1.8	n	ng/L	1	_	537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	27	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	42	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	11	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	23	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	2.8	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	5.2	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	1.8	1.8	n	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.6 I	1.8	n	ng/L	1		537 (modified)	Total/NA

Client Sample ID: EQ Blank

Lab Sample ID: 320-58497-6

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Sacramento

2/17/2020

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: MWSE-3

Date Collected: 02/06/20 12:00 Date Received: 02/10/20 09:45

Lab Sample ID: 320-58497-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluoropentanoic acid (PFPeA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorohexanoic acid (PFHxA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluoroheptanoic acid (PFHpA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorooctanoic acid (PFOA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorononanoic acid (PFNA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:11	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L		02/12/20 06:02	02/12/20 18:11	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L		02/12/20 06:02	02/12/20 18:11	1
6:2 FTS `	ND		18		ng/L		02/12/20 06:02	02/12/20 18:11	1
8:2 FTS	ND		18		ng/L		02/12/20 06:02	02/12/20 18:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	50		25 - 150				02/12/20 06:02	02/12/20 18:11	
13C5-PFPeA DNU	52		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C2 PFHxA	53		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C4 PFHpA	54		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C4 PFOA	53		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C5 PFNA	52		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C2 PFDA	48		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C2 PFUnA	50		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C2 PFDoA	53		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C2 PFTeDA	55		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C3 PFBS	53		25 - 150				02/12/20 06:02	02/12/20 18:11	1
1802 PFHxS	50		25 - 150					02/12/20 18:11	1
13C4 PFOS	49		25 - 150				02/12/20 06:02	02/12/20 18:11	1
13C8 FOSA	45		25 - 150				02/12/20 06:02	02/12/20 18:11	1
d3-NMeFOSAA	48		25 - 150				02/12/20 06:02	02/12/20 18:11	1
d5-NEtFOSAA	51		25 - 150					02/12/20 18:11	
M2-6:2 FTS	56		25 - 150					02/12/20 18:11	1
M2-8:2 FTS	54		25 - 150				02/12/20 06:02		1

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: MWSE-4

Date Collected: 02/06/20 09:30 Date Received: 02/10/20 09:45

Lab Sample ID: 320-58497-2

Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	19		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluoropentanoic acid (PFPeA)	27		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorohexanoic acid (PFHxA)	43		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluoroheptanoic acid (PFHpA)	10		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorooctanoic acid (PFOA)	26		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorononanoic acid (PFNA)	2.6		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorodecanoic acid (PFDA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluoroundecanoic acid (PFUnA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorododecanoic acid (PFDoA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorotridecanoic acid (PFTriA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorotetradecanoic acid (PFTeA)	ND		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorobutanesulfonic acid (PFBS)	5.7		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluorohexanesulfonic acid (PFHxS)	1.9		1.8		ng/L		02/12/20 06:02	02/12/20 18:40	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.8		ng/L			02/12/20 18:40	
Perfluorooctanesulfonic acid (PFOS)	3.8		1.8		ng/L			02/12/20 18:40	
Perfluorodecanesulfonic acid (PFDS)	ND		1.8		ng/L			02/12/20 18:40	
Perfluorooctanesulfonamide (FOSA)	ND		1.8		ng/L			02/12/20 18:40	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		18		ng/L			02/12/20 18:40	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		18		ng/L			02/12/20 18:40	
6:2 FTS	ND		18		ng/L			02/12/20 18:40	
8:2 FTS	ND		18		ng/L		02/12/20 06:02	02/12/20 18:40	
Isotope Dilution	%Recovery	Qualifier Lin	nits				Prepared	Analyzed	Dil Fa
13C4 PFBA	80	25	- 150				02/12/20 06:02	02/12/20 18:40	
13C5-PFPeA DNU	94	25	<i>-</i> 150				02/12/20 06:02	02/12/20 18:40	
13C2 PFHxA	100	25	<i>-</i> 150				02/12/20 06:02	02/12/20 18:40	
13C4 PFHpA	103	25	- 150				02/12/20 06:02	02/12/20 18:40	
13C4 PFOA	98	25	<i>-</i> 150				02/12/20 06:02	02/12/20 18:40	
13C5 PFNA	102	25	₋ 150				02/12/20 06:02	02/12/20 18:40	
13C2 PFDA	98	25	₋ 150				02/12/20 06:02	02/12/20 18:40	
13C2 PFUnA	103	25	₋ 150				02/12/20 06:02	02/12/20 18:40	
13C2 PFDoA	103	25	- 150				02/12/20 06:02	02/12/20 18:40	
13C2 PFTeDA	99	25	₋ 150				02/12/20 06:02	02/12/20 18:40	
13C3 PFBS	97	25	₋ 150				02/12/20 06:02	02/12/20 18:40	
1802 PFHxS	96	25	- 150				02/12/20 06:02	02/12/20 18:40	
13C4 PFOS	94	25	₋ 150				02/12/20 06:02	02/12/20 18:40	
13C8 FOSA	94	25	- 150				02/12/20 06:02	02/12/20 18:40	
d3-NMeFOSAA	99	25	- 150				02/12/20 06:02	02/12/20 18:40	
d5-NEtFOSAA	96	25	- 150				02/12/20 06:02	02/12/20 18:40	
M2-6:2 FTS	111		₋ 150				02/12/20 06:02	02/12/20 18:40	
M2-8:2 FTS	94		₋ 150					02/12/20 18:40	

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: Basin#1

Lab Sample ID: 320-58497-3

Date	Col	lected:	02/0)6/20	10:00
Date	Rec	eived:	02/1	0/20	09:45

Method: 537 (modified) - Fluor Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	14		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluoropentanoic acid (PFPeA)	17		1.9		ng/L			02/12/20 18:50	1
Perfluorohexanoic acid (PFHxA)	42		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluoroheptanoic acid (PFHpA)	5.4		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorooctanoic acid (PFOA)	14		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorobutanesulfonic acid (PFBS)	5.3		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorooctanesulfonic acid (PFOS)	13	I	1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 18:50	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		02/12/20 06:02	02/12/20 18:50	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		02/12/20 06:02	02/12/20 18:50	1
6:2 FTS `	ND		19		ng/L		02/12/20 06:02	02/12/20 18:50	1
8:2 FTS	ND		19		ng/L		02/12/20 06:02	02/12/20 18:50	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	72		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C5-PFPeA DNU	85		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C2 PFHxA	93		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C4 PFHpA	101		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C4 PFOA	102		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C5 PFNA	105		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C2 PFDA	100		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C2 PFUnA	103		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C2 PFDoA	100		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C2 PFTeDA	77		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C3 PFBS	89		25 - 150					02/12/20 18:50	1
1802 PFHxS	88		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C4 PFOS	90		25 - 150				02/12/20 06:02	02/12/20 18:50	1
13C8 FOSA	92		25 - 150				02/12/20 06:02	02/12/20 18:50	1
d3-NMeFOSAA	107		25 - 150				02/12/20 06:02	02/12/20 18:50	1
d5-NEtFOSAA	110		25 - 150					02/12/20 18:50	1
M2-6:2 FTS	170	*	25 - 150					02/12/20 18:50	1
-									•

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: HBSW-1

Lab Sample ID: 320-58497-4

Matrix: Water

 Collected: Received:	

Method: 537 (modified) - Fluor Analyte	Result Qua	lifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	3.8	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluoropentanoic acid (PFPeA)	3.3	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorohexanoic acid (PFHxA)	6.9	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluoroheptanoic acid (PFHpA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorooctanoic acid (PFOA)	2.9	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorononanoic acid (PFNA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorotridecanoic acid (PFTriA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 18:59	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	18	ng/L		02/12/20 06:02	02/12/20 18:59	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	18	ng/L		02/12/20 06:02	02/12/20 18:59	1
6:2 FTS	ND	18	ng/L		02/12/20 06:02	02/12/20 18:59	1
8:2 FTS	ND	18	ng/L		02/12/20 06:02	02/12/20 18:59	1
Isotope Dilution	%Recovery Qua	lifier Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	81	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C5-PFPeA DNU	93	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C2 PFHxA	99	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C4 PFHpA	103	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C4 PFOA	98	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C5 PFNA	100	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C2 PFDA	103	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C2 PFUnA	103	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C2 PFDoA	98	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C2 PFTeDA	85	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C3 PFBS	96	25 - 150			02/12/20 06:02	02/12/20 18:59	1
1802 PFHxS	91	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C4 PFOS	95	25 - 150			02/12/20 06:02	02/12/20 18:59	1
13C8 FOSA	97	25 - 150			02/12/20 06:02	02/12/20 18:59	1
d3-NMeFOSAA	105	25 - 150				02/12/20 18:59	1
	400				02/12/20 06:02	02/12/20 18:59	
d5-NEtFOSAA	102	25 - 150					
d5-NEtFOSAA M2-6:2 FTS	102 134	25 - 150 25 - 150				02/12/20 18:59	1

3

5

8

10

12

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: Blind Dup

Lab Sample ID: 320-58497-5

Date Collected: 02/06/20 00:00 **Matrix: Water** Date Received: 02/10/20 09:45

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	18	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	1
Perfluoropentanoic acid (PFPeA)	27	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	1
Perfluorohexanoic acid (PFHxA)	42	1.8	ng/L			02/12/20 19:09	1
Perfluoroheptanoic acid (PFHpA)	11	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	1
Perfluorooctanoic acid (PFOA)	23	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	•
Perfluorononanoic acid (PFNA)	2.8	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	•
Perfluorodecanoic acid (PFDA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	
Perfluoroundecanoic acid (PFUnA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	
Perfluorododecanoic acid (PFDoA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	•
Perfluorotridecanoic acid (PFTriA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	
Perfluorotetradecanoic acid (PFTeA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	
Perfluorobutanesulfonic acid (PFBS)	5.2	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	
Perfluorohexanesulfonic acid (PFHxS)	1.8	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	•
Perfluorooctanesulfonic acid (PFOS)	3.6 1	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	•
Perfluorodecanesulfonic acid (PFDS)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	
Perfluorooctanesulfonamide (FOSA)	ND	1.8	ng/L		02/12/20 06:02	02/12/20 19:09	•
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	18	ng/L		02/12/20 06:02	02/12/20 19:09	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	18	ng/L		02/12/20 06:02	02/12/20 19:09	1
6:2 FTS	ND	18	ng/L		02/12/20 06:02	02/12/20 19:09	•
8:2 FTS	ND	18	ng/L		02/12/20 06:02	02/12/20 19:09	
sotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fa
13C4 PFBA	87	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C5-PFPeA DNU	97	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C2 PFHxA	100	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C4 PFHpA	105	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C4 PFOA	105	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C5 PFNA	102	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C2 PFDA	98	25 - 150			02/12/20 06:02	02/12/20 19:09	
13C2 PFUnA	100	25 - 150				02/12/20 19:09	
13C2 PFDoA	103	25 - 150				02/12/20 19:09	
13C2 PFTeDA	106	25 - 150				02/12/20 19:09	
13C3 PFBS	99	25 - 150 25 - 150				02/12/20 19:09	
1303 FFB3 1802 PFHxS	99 97	25 - 150 25 - 150				02/12/20 19:09	
13C4 PFOS	99					02/12/20 19:09	
		25 ₋ 150					
13C8 FOSA	94	25 - 150 25 - 150				02/12/20 19:09	
d3-NMeFOSAA	104	25 - 150				02/12/20 19:09	
d5-NEtFOSAA	103	25 - 150				02/12/20 19:09	1
M2-6:2 FTS	117	25 - 150				02/12/20 19:09	1
M2-8:2 FTS	106	25 ₋ 150			02/12/20 06:02	02/12/20 19:09	1

Eurofins TestAmerica, Sacramento

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: EQ Blank

Date Collected: 02/06/20 10:30 Date Received: 02/10/20 09:45 Lab Sample ID: 320-58497-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluoropentanoic acid (PFPeA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorohexanoic acid (PFHxA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorooctanoic acid (PFOA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorononanoic acid (PFNA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorodecanoic acid (PFDA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorododecanoic acid (PFDoA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorooctanesulfonic acid (PFOS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
Perfluorooctanesulfonamide (FOSA)	ND		1.9		ng/L		02/12/20 06:02	02/12/20 19:18	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		19		ng/L		02/12/20 06:02	02/12/20 19:18	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		19		ng/L		02/12/20 06:02	02/12/20 19:18	1
6:2 FTS	ND		19		ng/L		02/12/20 06:02	02/12/20 19:18	1
8:2 FTS	ND		19		ng/L		02/12/20 06:02	02/12/20 19:18	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	99		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C5-PFPeA DNU	103		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C2 PFHxA	103		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C4 PFHpA	100		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C4 PFOA	106		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C5 PFNA	104		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C2 PFDA	102		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C2 PFUnA	105		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C2 PFDoA	112		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C2 PFTeDA	111		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C3 PFBS	102		25 - 150				02/12/20 06:02	02/12/20 19:18	1
18O2 PFHxS	98		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C4 PFOS	103		25 - 150				02/12/20 06:02	02/12/20 19:18	1
13C8 FOSA	103		25 - 150				02/12/20 06:02	02/12/20 19:18	1
d3-NMeFOSAA	109		25 - 150				02/12/20 06:02	02/12/20 19:18	1
d5-NEtFOSAA	111		25 - 150					02/12/20 19:18	
M2-6:2 FTS	109		25 - 150				02/12/20 06:02	02/12/20 19:18	1
M2-8:2 FTS	107		25 - 150					02/12/20 19:18	1

2/17/2020

2

<u>ی</u>

6

8

10

12

14

Isotope Dilution Summary

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-58497-1	MWSE-3	50	52	53	54	53	52	48	50
320-58497-1 MS	MWSE-3	52	53	55	54	54	52	50	49
320-58497-1 MSD	MWSE-3	64	66	68	64	67	66	62	56
320-58497-2	MWSE-4	80	94	100	103	98	102	98	103
320-58497-3	Basin#1	72	85	93	101	102	105	100	103
320-58497-4	HBSW-1	81	93	99	103	98	100	103	103
320-58497-5	Blind Dup	87	97	100	105	105	102	98	100
320-58497-6	EQ Blank	99	103	103	100	106	104	102	105
LCS 320-356792/2-A	Lab Control Sample	99	97	104	102	99	101	99	103
MB 320-356792/1-A	Method Blank	97	99	99	96	102	102	104	102
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDoA	PFTDA	3C3-PFB	PFHxS	PFOS	PFOSA	-NMeFOS	-NEtFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
320-58497-1	MWSE-3	53	55	53	50	49	45	48	51
320-58497-1 MS	MWSE-3	49	53	54	52	49	43	50	49
320-58497-1 MSD	MWSE-3	58	64	69	66	62	53	57	58
320-58497-2	MWSE-4	103	99	97	96	94	94	99	96
320-58497-3	Basin#1	100	77	89	88	90	92	107	110
320-58497-4	HBSW-1	98	85	96	91	95	97	105	102
320-58497-5	Blind Dup	103	106	99	97	99	94	104	103
320-58497-6	EQ Blank	112	111	102	98	103	103	109	111
LCS 320-356792/2-A	Lab Control Sample	112	116	98	97	97	98	105	102
									100

Percent Isotope Dilution Recovery (Acceptance Limits)

		M262FTS	M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)
320-58497-1	MWSE-3	56	54
320-58497-1 MS	MWSE-3	56	48
320-58497-1 MSD	MWSE-3	71	61
320-58497-2	MWSE-4	111	94
320-58497-3	Basin#1	170 *	136
320-58497-4	HBSW-1	134	114
320-58497-5	Blind Dup	117	106
320-58497-6	EQ Blank	109	107
LCS 320-356792/2-A	Lab Control Sample	104	106
MB 320-356792/1-A	Method Blank	99	104

Surrogate Legend

PFBA = 13C4 PFBA

PFPeA = 13C5-PFPeA DNU

PFHxA = 13C2 PFHxA

PFHpA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

13C3-PFBS = 13C3 PFBS

2/17/2020

Page 12 of 25

Isotope Dilution Summary

Client: Waste Management

Project/Site: Chaffee Facility Western Expansion: PFAS

PFHxS = 1802 PFHxS PFOS = 13C4 PFOS PFOSA = 13C8 FOSA

d3-NMeFOSAA = d3-NMeFOSAA d5-NEtFOSAA = d5-NEtFOSAA

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS Job ID: 320-58497-1

3

6

7

9

11

12

14

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-356792/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 356875	Prep Batch: 356792

Analysis Batch: 356875								Prep Type: To Prep Batch:	
Analyte		MB Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		2.0		ng/L	=		02/12/20 16:08	1
Perfluoropentanoic acid (PFPeA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorohexanoic acid (PFHxA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorooctanoic acid (PFOA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorononanoic acid (PFNA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorodecanoic acid (PFDA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorododecanoic acid (PFDoA)	ND		2.0		ng/L		02/12/20 06:02	02/12/20 16:08	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		2.0		ng/L			02/12/20 16:08	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0		ng/L		02/12/20 06:02	02/12/20 16:08	1
Perfluorodecanesulfonic acid (PFDS)	ND		2.0		ng/L		02/12/20 06:02	02/12/20 16:08	1
Perfluorooctanesulfonamide (FOSA)	ND		2.0		ng/L		02/12/20 06:02	02/12/20 16:08	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		20		ng/L		02/12/20 06:02	02/12/20 16:08	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		20		ng/L		02/12/20 06:02	02/12/20 16:08	1
6:2 FTS	ND		20		ng/L		02/12/20 06:02	02/12/20 16:08	1
8:2 FTS	ND		20		ng/L		02/12/20 06:02	02/12/20 16:08	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	97		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C5-PFPeA DNU	99		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C2 PFHxA	99		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C4 PFHpA	96		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C4 PFOA	102		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C5 PFNA	102		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C2 PFDA	104		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C2 PFUnA	102		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C2 PFDoA	109		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C2 PFTeDA	117		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C3 PFBS	96		25 - 150				02/12/20 06:02	02/12/20 16:08	1
1802 PFHxS	93		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C4 PFOS	94		25 - 150				02/12/20 06:02	02/12/20 16:08	1
13C8 FOSA	94		25 - 150				02/12/20 06:02	02/12/20 16:08	1
d3-NMeFOSAA	99		25 - 150				02/12/20 06:02	02/12/20 16:08	1
d5-NEtFOSAA	100		25 - 150				02/12/20 06:02	02/12/20 16:08	1
M2-6:2 FTS	00							00//0/00 /0 00	
	99		25 - 150				02/12/20 06:02	02/12/20 16:08	1

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-3 Matrix: Water Analysis Batch: 356875	56792/2-A		Spike	LCS	LCS	Clie	ent Sai	mple ID	Prep Type: Total/NA Prep Batch: 356792 %Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorobutanoic acid (PFBA)			40.0	41.1		ng/L		103	76 - 136
Perfluoropentanoic acid (PFPeA)			40.0	40.8		ng/L		102	71 ₋ 131
Perfluorohexanoic acid (PFHxA)			40.0	38.9		ng/L		97	73 - 133
Perfluoroheptanoic acid (PFHpA)			40.0	41.6		ng/L		104	72 - 132
Perfluorooctanoic acid (PFOA)			40.0	40.4		ng/L		101	70 - 130
Perfluorononanoic acid (PFNA)			40.0	48.5		ng/L		121	75 - 135
Perfluorodecanoic acid (PFDA)			40.0	37.9		ng/L		95	76 ₋ 136
Perfluoroundecanoic acid (PFUnA)			40.0	38.8		ng/L		97	68 - 128
Perfluorododecanoic acid (PFDoA)			40.0	36.5		ng/L		91	71 - 131
Perfluorotridecanoic acid (PFTriA)			40.0	38.0		ng/L		95	71 - 131
Perfluorotetradecanoic acid (PFTeA)			40.0	37.7		ng/L		94	70 - 130
Perfluorobutanesulfonic acid (PFBS)			35.4	33.6		ng/L		95	67 - 127
Perfluorohexanesulfonic acid			36.4	34.6		ng/L		95	59 ₋ 119
(PFHxS)						Ü			
Perfluoroheptanesulfonic Acid (PFHpS)			38.1	38.5		ng/L		101	76 - 136
Perfluorooctanesulfonic acid (PFOS)			37.1	34.5		ng/L		93	70 - 130
Perfluorodecanesulfonic acid (PFDS)			38.6	40.3		ng/L		105	71 - 131
Perfluorooctanesulfonamide (FOSA)			40.0	38.4		ng/L		96	73 - 133
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)			40.0	38.5		ng/L		96	76 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	38.5		ng/L		96	76 - 136
6:2 FTS			37.9	35.2		ng/L		93	59 - 175
8:2 FTS	1.00	LCS	38.3	33.2		ng/L		87	75 - 135
lastana Dilutian			l imaida						
Isotope Dilution	%Recovery	Quaimer	Limits						
13C4 PFBA 13C5-PFPeA DNU	99 97		25 - 150 25 - 150						
			25 - 150 25 - 150						
13C2 PFHxA 13C4 PFHpA	104								
•	102		25 ₋ 150						
13C4 PFOA	99		25 - 150 25 - 150						
13C5 PFNA 13C2 PFDA	101		25 ₋ 150						
	99		25 ₋ 150						
13C2 PFUnA	103		25 ₋ 150						
13C2 PFDoA	112		25 - 150						
13C2 PFTeDA	116		25 - 150 25 - 150						
13C3 PFBS	98		25 ₋ 150						
1802 PFHxS	97		25 - 150						
13C4 PFOS	97		25 - 150						
13C8 FOSA	98		25 - 150						
d3-NMeFOSAA	105		25 - 150						

Eurofins TestAmerica, Sacramento

Page 15 of 25

2

3

4

_

0

10

12

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-356792/2-A

Lab Sample ID: 320-58497-1 MS

Matrix: Water

Matrix: Water

Analysis Batch: 356875

LCS LCS

Isotope Dilution	%Recovery Qualifier	Limits
M2-6:2 FTS	104	25 - 150
M2-8:2 FTS	106	25 - 150

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 356792

Client Sample ID: MWSE-3

Prep Type: Total/NA

Prep Batch: 356792

Analysis Batch: 356875	-	Sample Qualifier	Spike Added	MS Result	MS Qualifier	Unit	D %Rec	Prep Batch: 356792 %Rec. Limits
Perfluorobutanoic acid (PFBA)	ND		34.5	33.9		ng/L	95	76 - 136
Perfluoropentanoic acid (PFPeA)	ND		34.5	33.1		ng/L	96	71 - 131
Perfluorohexanoic acid (PFHxA)	ND		34.5	32.1		ng/L	93	73 - 133
Perfluoroheptanoic acid (PFHpA)	ND		34.5	35.5		ng/L	103	72 - 132
Perfluorooctanoic acid (PFOA)	ND		34.5	33.2		ng/L	96	70 - 130
Perfluorononanoic acid (PFNA)	ND		34.5	40.6		ng/L	118	75 - 135
Perfluorodecanoic acid (PFDA)	ND		34.5	33.2		ng/L	96	76 - 136
Perfluoroundecanoic acid (PFUnA)	ND		34.5	29.6		ng/L	86	68 - 128
Perfluorododecanoic acid (PFDoA)	ND		34.5	31.5		ng/L	91	71 - 131
Perfluorotridecanoic acid (PFTriA)	ND		34.5	32.8		ng/L	95	71 - 131
Perfluorotetradecanoic acid (PFTeA)	ND		34.5	33.8		ng/L	98	70 - 130
Perfluorobutanesulfonic acid (PFBS)	ND		30.5	29.2		ng/L	96	67 - 127
Perfluorohexanesulfonic acid (PFHxS)	ND		31.4	29.5		ng/L	93	59 - 119
Perfluoroheptanesulfonic Acid (PFHpS)	ND		32.9	35.0		ng/L	107	76 - 136
Perfluorooctanesulfonic acid (PFOS)	ND		32.1	29.5		ng/L	92	70 - 130
Perfluorodecanesulfonic acid (PFDS)	ND		33.3	29.3		ng/L	88	71 - 131
Perfluorooctanesulfonamide (FOSA)	ND		34.5	34.1		ng/L	99	73 - 133
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		34.5	31.9		ng/L	92	76 - 136
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		34.5	31.2		ng/L	90	76 - 136
6:2 FTS `	ND		32.7	29.6		ng/L	91	59 ₋ 175
8:2 FTS	ND		33.1	28.6		ng/L	86	75 - 135
	MS	MS						
Isotope Dilution	%Recovery	Qualifier	Limits					
12C4 DEDA	<u> </u>		25 150					

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	52		25 - 150
13C5-PFPeA DNU	53		25 - 150
13C2 PFHxA	55		25 - 150
13C4 PFHpA	54		25 - 150
13C4 PFOA	54		25 - 150
13C5 PFNA	52		25 - 150
13C2 PFDA	50		25 - 150
13C2 PFUnA	49		25 - 150
13C2 PFDoA	49		25 - 150

Eurofins TestAmerica, Sacramento

Page 16 of 25

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 320-58497-1 MS **Client Sample ID: MWSE-3 Matrix: Water** Prep Type: Total/NA **Analysis Batch: 356875 Prep Batch: 356792** MS MS

Isotope Dilution	%Recovery	Qualifier	Limits
13C2 PFTeDA	53		25 - 150
13C3 PFBS	54		25 - 150
1802 PFHxS	52		25 - 150
13C4 PFOS	49		25 - 150
13C8 FOSA	43		25 - 150
d3-NMeFOSAA	50		25 - 150
d5-NEtFOSAA	49		25 - 150
M2-6:2 FTS	56		25 - 150
M2-8:2 FTS	48		25 - 150

Lab Sample ID: 320-58497-1 MSD **Client Sample ID: MWSE-3** Matrix: Water Prep Type: Total/NA

13C5-PFPeA DNU

Analysis Batch: 356875									Prep Ba		56792
	-	Sample	Spike	_	MSD				%Rec.		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluorobutanoic acid (PFBA)	ND		36.6	36.9		ng/L		98	76 - 136	9	30
Perfluoropentanoic acid (PFPeA)	ND		36.6	35.2		ng/L		96	71 - 131	6	30
Perfluorohexanoic acid (PFHxA)	ND		36.6	35.5		ng/L		97	73 - 133	10	30
Perfluoroheptanoic acid (PFHpA)	ND		36.6	39.5		ng/L		108	72 - 132	10	30
Perfluorooctanoic acid (PFOA)	ND		36.6	35.3		ng/L		96	70 - 130	6	30
Perfluorononanoic acid (PFNA)	ND		36.6	43.9		ng/L		120	75 - 135	8	30
Perfluorodecanoic acid (PFDA)	ND		36.6	35.5		ng/L		97	76 - 136	6	30
Perfluoroundecanoic acid (PFUnA)	ND		36.6	33.1		ng/L		90	68 - 128	11	30
Perfluorododecanoic acid (PFDoA)	ND		36.6	33.2		ng/L		91	71 - 131	5	30
Perfluorotridecanoic acid (PFTriA)	ND		36.6	35.8		ng/L		98	71 - 131	9	30
Perfluorotetradecanoic acid (PFTeA)	ND		36.6	33.3		ng/L		91	70 - 130	2	30
Perfluorobutanesulfonic acid (PFBS)	ND		32.4	30.2		ng/L		93	67 - 127	4	30
Perfluorohexanesulfonic acid (PFHxS)	ND		33.3	32.2		ng/L		96	59 - 119	8	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND		34.9	37.5		ng/L		107	76 - 136	7	30
Perfluorooctanesulfonic acid (PFOS)	ND		34.0	30.9		ng/L		91	70 - 130	5	30
Perfluorodecanesulfonic acid (PFDS)	ND		35.3	29.0		ng/L		82	71 - 131	1	30
Perfluorooctanesulfonamide (FOSA)	ND		36.6	35.8		ng/L		98	73 - 133	5	30
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	ND		36.6	34.3		ng/L		94	76 - 136	7	30
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	ND		36.6	33.3		ng/L		91	76 - 136	6	30
6:2 FTS	ND		34.7	31.6		ng/L		91	59 - 175	6	30
8:2 FTS	ND		35.1	30.3		ng/L		86	75 - 135	6	30
	MSD	MSD									
Isotope Dilution	%Recovery	Qualifier	Limits								
13C4 PFBA	64	-	25 - 150								

Eurofins TestAmerica, Sacramento

2/17/2020

25 - 150

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: 320-58497-1 MSD	Client Sample ID: MWSE-3
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 356875	Prep Batch: 356792

Analysis Batch: 356875				Prep Batch: 356792
	MSD I	MSD		
Isotope Dilution	%Recovery (Qualifier	Limits	
13C2 PFHxA	68		25 - 150	
13C4 PFHpA	64		25 - 150	
13C4 PFOA	67		25 - 150	
13C5 PFNA	66		25 - 150	
13C2 PFDA	62		25 - 150	
13C2 PFUnA	56		25 - 150	
13C2 PFDoA	58		25 - 150	
13C2 PFTeDA	64		25 - 150	
13C3 PFBS	69		25 - 150	
18O2 PFHxS	66		25 - 150	
13C4 PFOS	62		25 - 150	
13C8 FOSA	53		25 - 150	
d3-NMeFOSAA	57		25 - 150	
d5-NEtFOSAA	58		25 - 150	
M2-6:2 FTS	71		25 - 150	
M2-8:2 FTS	61		25 - 150	

QC Association Summary

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

LCMS

Prep Batch: 356792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-58497-1	MWSE-3	Total/NA	Water	3535	
320-58497-2	MWSE-4	Total/NA	Water	3535	
320-58497-3	Basin#1	Total/NA	Water	3535	
320-58497-4	HBSW-1	Total/NA	Water	3535	
320-58497-5	Blind Dup	Total/NA	Water	3535	
320-58497-6	EQ Blank	Total/NA	Water	3535	
MB 320-356792/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-356792/2-A	Lab Control Sample	Total/NA	Water	3535	
320-58497-1 MS	MWSE-3	Total/NA	Water	3535	
320-58497-1 MSD	MWSE-3	Total/NA	Water	3535	

Analysis Batch: 356875

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-58497-1	MWSE-3	Total/NA	Water	537 (modified)	356792
320-58497-2	MWSE-4	Total/NA	Water	537 (modified)	356792
320-58497-3	Basin#1	Total/NA	Water	537 (modified)	356792
320-58497-4	HBSW-1	Total/NA	Water	537 (modified)	356792
320-58497-5	Blind Dup	Total/NA	Water	537 (modified)	356792
320-58497-6	EQ Blank	Total/NA	Water	537 (modified)	356792
MB 320-356792/1-A	Method Blank	Total/NA	Water	537 (modified)	356792
LCS 320-356792/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	356792
320-58497-1 MS	MWSE-3	Total/NA	Water	537 (modified)	356792
320-58497-1 MSD	MWSE-3	Total/NA	Water	537 (modified)	356792

Client Sample ID: MWSE-3

Date Collected: 02/06/20 12:00

Lab Sample ID: 320-58497-1 **Matrix: Water**

Date Received: 02/10/20 09:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			279.4 mL	10 mL	356792	02/12/20 06:02	AF	TAL SAC
Total/NA	Analysis	537 (modified)		1			356875	02/12/20 18:11	P1N	TAL SAC

Client Sample ID: MWSE-4 Lab Sample ID: 320-58497-2 **Matrix: Water**

Date Collected: 02/06/20 09:30 Date Received: 02/10/20 09:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			276.2 mL	10 mL	356792	02/12/20 06:02	AF	TAL SAC
Total/NA	Analysis	537 (modified)		1			356875	02/12/20 18:40	P1N	TAL SAC

Client Sample ID: Basin#1 Lab Sample ID: 320-58497-3

Date Collected: 02/06/20 10:00 Date Received: 02/10/20 09:45

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Туре Method Factor Amount **Amount** Number or Analyzed Run Analyst Lab 265.3 mL 356792 Total/NA 3535 02/12/20 06:02 AF TAL SAC Prep 10 ml Total/NA Analysis 537 (modified) 1 356875 02/12/20 18:50 P1N TAL SAC

Client Sample ID: HBSW-1 Lab Sample ID: 320-58497-4 Date Collected: 02/06/20 12:40 **Matrix: Water**

Date Received: 02/10/20 09:45

_	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			271.6 mL	10 mL	356792	02/12/20 06:02	AF	TAL SAC
Total/NA	Analysis	537 (modified)		1			356875	02/12/20 18:59	P1N	TAL SAC

Lab Sample ID: 320-58497-5 **Client Sample ID: Blind Dup** Date Collected: 02/06/20 00:00 **Matrix: Water**

Date Received: 02/10/20 09:45

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			271.9 mL	10 mL	356792	02/12/20 06:02	AF	TAL SAC
Total/NA	Analysis	537 (modified)		1			356875	02/12/20 19:09	P1N	TAL SAC

Client Sample ID: EQ Blank Lab Sample ID: 320-58497-6 Date Collected: 02/06/20 10:30 **Matrix: Water**

Date Received: 02/10/20 09:45

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			269.8 mL	10 mL	356792	02/12/20 06:02	AF	TAL SAC
Total/NA	Analysis	537 (modified)		1			356875	02/12/20 19:18	P1N	TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Sacramento

10

Accreditation/Certification Summary

Client: Waste Management Job ID: 320-58497-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
NAB	Dept. of Defense ELAP	L2468	01-20-21
NAB	Dept. of Energy	L2468.01	01-20-21
NAB	ISO/IEC 17025	L2468	01-20-21
rizona	State	AZ0708	08-11-20
rkansas DEQ	State	19-042-0	06-17-20
alifornia	State	2897	01-31-20 *
alifornia	State	2897	01-31-22
olorado	State	CA0004	08-31-20
onnecticut	State	PH-0691	06-30-21
lorida	NELAP	E87570	06-30-20
Georgia	State	4040	01-30-21
lawaii	State	<cert no.=""></cert>	01-29-20 *
awaii	State	<cert no.=""></cert>	01-29-21
inois	NELAP	200060	03-17-20
ansas	NELAP	E-10375	10-31-20 *
ouisiana	NELAP	01944	06-30-20
aine	State	2018009	04-14-20
chigan	State	9947	01-29-20 *
vada	State	CA000442020-1	07-31-20
w Hampshire	NELAP	2997	04-18-20
ew Jersey	NELAP	CA005	06-30-20
ew York	NELAP	11666	04-01-20
regon	NELAP	4040	01-29-21
ennsylvania	NELAP	68-01272	03-31-20
exas	NELAP	T104704399-19-13	05-31-20
S Fish & Wildlife	US Federal Programs	58448	07-31-20
SDA	US Federal Programs	P330-18-00239	07-31-21
tah	NELAP	CA000442019-01	02-29-20
ermont	State	VT-4040	04-16-20
rginia	NELAP	460278	03-14-20
ashington	State	C581	05-05-20
/est Virginia (DW)	State	9930C	12-31-19 *
/est Virginia (DW)	State	9930C	12-31-20
/yoming	State Program	8TMS-L	01-28-19 *

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-20 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Waste Management

Project/Site: Chaffee Facility Western Expansion: PFAS

MethodMethod DescriptionProtocolLaboratory537 (modified)Fluorinated Alkyl SubstancesEPATAL SAC3535Solid-Phase Extraction (SPE)SW846TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 320-58497-1

_

6

9

11

12

14

Sample Summary

Client: Waste Management Project/Site: Chaffee Facility Western Expansion: PFAS

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
320-58497-1	MWSE-3	Water		02/10/20 09:45	71000112
320-58497-2	MWSE-4	Water	02/06/20 09:30	02/10/20 09:45	
320-58497-3	Basin#1	Water	02/06/20 10:00	02/10/20 09:45	
320-58497-4	HBSW-1	Water	02/06/20 12:40	02/10/20 09:45	
320-58497-5	Blind Dup	Water	02/06/20 00:00	02/10/20 09:45	
320-58497-6	EQ Blank	Water	02/06/20 10:30	02/10/20 09:45	

Job ID: 320-58497-1

8 9

Environment Testing TestAmerica eurofins

Chain of Custody Record

Eurofins TestAmerica, Sacramento

Phone: 916-373-5600 Fax: 916-372-1059

West Sacramento, CA 95605

880 Riverside Parkway

N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3
S - H2SO4
T - TSP Dodecahydrate Special Instructions/Note: Ver: 01/16/2019 Z - other (specify) U - Acetone V - MCAA W - pH 4-5 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) COC No. 480-142003-31730.1 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Assorbic Acid Sho Page: Page 1 of 1 I - fce J - DI Water K - EDTA L - EDA Archive For 320-58497 Chain of Custody Total Number of containers Feb 10 Date/Time: Date/Time ethod of Shipment 5.50 Disposal By Lab **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements katelyn ferguson@testamericainc.com Return To Client Lab PM Ferguson, Katelyn M E-Mail: Received by: Received by: sceived by. PFC_IDA - PFAS, Standard List (21 Analytes) X Perform MS/MSD (Yes or No) Field Filtered Sample (Yes or No) mpany ©ET Preservation Code: Water Matrix Water Water Water Water Water Water Water Company ET Radiological (C=comp, G=grab) Sample Type 4362 0 (9) Jum 140 1200 Purchase Order Requested 1000 1240 10-30 3 Sample 13 Phone: 716-572. 030 Time Date: Unknown TAT Requested (days): Due Date Requested: Sample Date 2620 Project #. 48002685 SSOW#. Poison B (S.P.) Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Chaffee Landfill 10860 Olean Road Chaffee Facility Western Expansion Flammable Passible Hazard Identification Cummin Empty Kit Relinquished by: Custody Seals Intact: Client Information Sample Identification Christopher Chapman cchapman@wm.com Waste Management 716-863-3438(Tel) Non-Hazard NY, 14030-9799 M. LL. MWYE 3MSD MWSE-3MS yd beyshed by. Blind Dup EQ Blank New York MWSE-3 MWSE-4 HBSW-1 Chaffee Basin#1

02 9-you 16/bels Notine on

Page 24 of 25

2/17/2020

Client: Waste Management

Job Number: 320-58497-1

Login Number: 58497 List Source: Eurofins TestAmerica, Sacramento

List Number: 1

Creator: Kintaudi, Pauline W

oroator. Miladai, radino W		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	False	Sample containers do not list sample times
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	N/A	

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-166782-1

Client Project/Site: Chaffee Facility Western Expansion: PFAS

For:

Waste Management Chaffee Landfill 10860 Olean Road Chaffee, New York 14030-9799

Attn: Christopher Chapman

hately Fergisan

Authorized for release by: 3/16/2020 12:06:49 PM

Katelyn Ferguson, Project Management Assistant I (716)691-2600

katelyn.ferguson@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

__

5

6

Ω

9

10

1 2

13

14

15

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Isotope Dilution Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Field Data Sheets	22
Receipt Checklists	24

-6

4

6

8

10

12

10

15

Definitions/Glossary

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Qualifiers

1.	N/A	C
ш	V	J

Qualifier **Qualifier Description**

Isotope Dilution analyte is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Job ID: 480-166782-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-166782-1

Comments

No additional comments.

Receipt

The samples were received on 2/27/2020 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.3° C.

LCMS

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery for M2-8:2 FTS and M2-6:2 FTS is above the method recommended limit for the following samples: HBSW-1 (480-166782-1), US-HBSW-1 (480-166782-2), DS-HBSW-1 (480-166782-3) and DUP (480-166782-4). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples contain a small amount dark particulates prior to extraction: HBSW-1 (480-166782-1), DS-HBSW-1 (480-166782-3) and DUP (480-166782-4)

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-363186.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

I.

6

Q

9

10

12

13

14

Detection Summary

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: HBSW-1

Lab Sample ID: 480-166782-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	3.4	1.6	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	3.6	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	7.4	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	2.9	1.6	ng/L	1	537 (modified)	Total/NA

Client Sample ID: US-HBSW-1

Lab Sample ID: 480-166782-2

No Detections.

Client Sample ID: DS-HBSW-1 Lab Sample ID: 480-166782-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.1	1.6	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	4.4	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	10	1.6	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.7	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	4.7	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	3.6	1.6	ng/L	1	537 (modified)	Total/NA

Client Sample ID: DUP

Lab Sample ID: 480-166782-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Perfluorobutanoic acid (PFBA)	4.0	1.6	ng/L		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	4.5	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	9.5	1.6	ng/L	1	537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.6	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	4.1	1.6	ng/L	1	537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.7	1.6	ng/L	1	537 (modified)	Total/NA

This Detection Summary does not include radiochemical test results.

3/16/2020

Page 5 of 25

2

3

6

8

9

11

12

14

15

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: HBSW-1

Date Received: 02/27/20 10:00

Lab Sample ID: 480-166782-1 Date Collected: 02/26/20 09:30

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	3.4	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluoropentanoic acid (PFPeA)	3.6	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorohexanoic acid (PFHxA)	7.4	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluoroheptanoic acid (PFHpA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorooctanoic acid (PFOA)	2.9	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorononanoic acid (PFNA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorodecanoic acid (PFDA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluoroundecanoic acid (PFUnA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorododecanoic acid (PFDoA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorotridecanoic acid (PFTriA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorooctanesulfonic acid (PFOS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
Perfluorooctanesulfonamide (FOSA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 16:49	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	16	ng/L		03/09/20 16:34	03/11/20 16:49	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	16	ng/L		03/09/20 16:34	03/11/20 16:49	1
6:2 FTS `	ND	16	ng/L		03/09/20 16:34	03/11/20 16:49	1
8:2 FTS	ND	16	ng/L		03/09/20 16:34	03/11/20 16:49	1
Isotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	59	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C5 PFPeA	80	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C2 PFHxA	91	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C4 PFHpA	97	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C4 PFOA	101	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C5 PFNA	98	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C2 PFDA	97	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C2 PFUnA	90	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C2 PFDoA	80	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C2 PFTeDA	70	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C3 PFBS	85	25 - 150			03/09/20 16:34	03/11/20 16:49	1
18O2 PFHxS	88	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C4 PFOS	93	25 - 150			03/09/20 16:34	03/11/20 16:49	1
13C8 FOSA	93	25 - 150			03/09/20 16:34	03/11/20 16:49	1
d3-NMeFOSAA	83	25 - 150			03/09/20 16:34	03/11/20 16:49	1
d5-NEtFOSAA	83	25 - 150			03/09/20 16:34	03/11/20 16:49	1
M2-6:2 FTS	185 *	25 - 150			03/09/20 16:34	03/11/20 16:49	1
M2-8:2 FTS	160 *	25 - 150			03/09/20 16:34	03/11/20 16:49	1

Client Sample Results

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: US-HBSW-1

Date Received: 02/27/20 10:00

Lab Sample ID: 480-166782-2 Date Collected: 02/26/20 12:00

Matrix: Water

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluoropentanoic acid (PFPeA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorohexanoic acid (PFHxA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluoroheptanoic acid (PFHpA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorooctanoic acid (PFOA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorononanoic acid (PFNA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorodecanoic acid (PFDA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluoroundecanoic acid (PFUnA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorododecanoic acid (PFDoA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorotridecanoic acid (PFTriA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorobutanesulfonic acid (PFBS)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluoroheptanesulfonic Acid	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
(PFHpS) Perfluorooctanesulfonic acid (PFOS)	ND		1.7	ng/L		03/09/20 16:34	03/11/20 16:58	1
Perfluorodecanesulfonic acid (PFDS)	ND		1.7	ng/L			03/11/20 16:58	· · · · · · · · · · · · · · · · · · ·
Perfluorooctanesulfonamide (FOSA)	ND		1.7	ng/L			03/11/20 16:58	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		17	ng/L			03/11/20 16:58	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		17	ng/L		03/09/20 16:34	03/11/20 16:58	1
6:2 FTS	ND		17	ng/L		03/09/20 16:34	03/11/20 16:58	1
8:2 FTS	ND		17	ng/L		03/09/20 16:34	03/11/20 16:58	1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
13C4 PFBA	71		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C5 PFPeA	86		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C2 PFHxA	97		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C4 PFHpA	105		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C4 PFOA	100		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C5 PFNA	102		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C2 PFDA	104		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C2 PFUnA	103		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C2 PFDoA	83		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C2 PFTeDA	93		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C3 PFBS	89		25 - 150			03/09/20 16:34	03/11/20 16:58	1
18O2 PFHxS	90		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C4 PFOS	98		25 - 150			03/09/20 16:34	03/11/20 16:58	1
13C8 FOSA	98		25 - 150			03/09/20 16:34	03/11/20 16:58	1
d3-NMeFOSAA	89		25 - 150			03/09/20 16:34	03/11/20 16:58	1
d5-NEtFOSAA	91		25 - 150			03/09/20 16:34	03/11/20 16:58	1
M2-6:2 FTS	169	*	25 - 150			03/09/20 16:34	03/11/20 16:58	1
M2-8:2 FTS	154	*	25 - 150			02/00/20 16:24	03/11/20 16:58	1

Client Sample Results

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: DS-HBSW-1

Date Received: 02/27/20 10:00

Lab Sample ID: 480-166782-3 Date Collected: 02/26/20 10:30

Matrix: Water

Method: 537 (modified) - Fluor Analyte	Result Q	ualifier RL	MDL		D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	4.1	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluoropentanoic acid (PFPeA)	4.4	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorohexanoic acid (PFHxA)	10	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluoroheptanoic acid (PFHpA)	1.7	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorooctanoic acid (PFOA)	4.7	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorononanoic acid (PFNA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorodecanoic acid (PFDA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluoroundecanoic acid (PFUnA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorododecanoic acid (PFDoA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorotridecanoic acid (PFTriA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorotetradecanoic acid (PFTeA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorobutanesulfonic acid (PFBS)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorohexanesulfonic acid (PFHxS)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorooctanesulfonic acid (PFOS)	3.6	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorodecanesulfonic acid (PFDS)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
Perfluorooctanesulfonamide (FOSA)	ND	1.6		ng/L		03/09/20 16:34	03/11/20 17:07	1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	16		ng/L		03/09/20 16:34	03/11/20 17:07	1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	16		ng/L		03/09/20 16:34	03/11/20 17:07	1
6:2 FTS `	ND	16		ng/L		03/09/20 16:34	03/11/20 17:07	1
8:2 FTS	ND	16		ng/L		03/09/20 16:34	03/11/20 17:07	1
Isotope Dilution	%Recovery Q	Qualifier Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	60	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C5 PFPeA	79	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C2 PFHxA	89	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C4 PFHpA	94	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C4 PFOA	100	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C5 PFNA	90	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C2 PFDA	106	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C2 PFUnA	95	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C2 PFDoA	93	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C2 PFTeDA	66	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C3 PFBS	87	25 - 150				03/09/20 16:34	03/11/20 17:07	1
1802 PFHxS	88	25 - 150				03/09/20 16:34	03/11/20 17:07	1
13C4 PFOS	92	25 - 150					03/11/20 17:07	1
13C8 FOSA	92	25 - 150					03/11/20 17:07	1
d3-NMeFOSAA	85	25 - 150				03/09/20 16:34	03/11/20 17:07	1
d5-NEtFOSAA	93	25 - 150					03/11/20 17:07	1
M2-6:2 FTS	183 *						03/11/20 17:07	1
M2-8:2 FTS	170 *						03/11/20 17:07	1

Client Sample Results

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: DUP Lab Sample ID: 480-166782-4

Date Collected: 02/26/20 00:00 **Matrix: Water** Date Received: 02/27/20 10:00

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Perfluorobutanoic acid (PFBA)	4.0	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluoropentanoic acid (PFPeA)	4.5	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorohexanoic acid (PFHxA)	9.5	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluoroheptanoic acid (PFHpA)	1.6	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorooctanoic acid (PFOA)	4.1	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorononanoic acid (PFNA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorodecanoic acid (PFDA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluoroundecanoic acid (PFUnA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorododecanoic acid (PFDoA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorotridecanoic acid (PFTriA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorotetradecanoic acid (PFTeA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorobutanesulfonic acid (PFBS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorohexanesulfonic acid (PFHxS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorooctanesulfonic acid (PFOS)	2.7	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorodecanesulfonic acid (PFDS)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
Perfluorooctanesulfonamide (FOSA)	ND	1.6	ng/L		03/09/20 16:34	03/11/20 17:16	
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND	16	ng/L		03/09/20 16:34	03/11/20 17:16	
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND	16	ng/L		03/09/20 16:34	03/11/20 17:16	,
6:2 FTS	ND	16	ng/L		03/09/20 16:34	03/11/20 17:16	
8:2 FTS	ND	16	ng/L		03/09/20 16:34	03/11/20 17:16	
sotope Dilution	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fa
13C4 PFBA	60	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C5 PFPeA	81	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C2 PFHxA	96	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C4 PFHpA	100	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C4 PFOA	99	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C5 PFNA	101	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C2 PFDA	100	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C2 PFUnA	111	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C2 PFDoA	91	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C2 PFTeDA	84	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C3 PFBS	88	25 - 150			03/09/20 16:34	03/11/20 17:16	
1802 PFHxS	94	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C4 PFOS	98	25 - 150			03/09/20 16:34	03/11/20 17:16	
13C8 FOSA	99	25 - 150			03/09/20 16:34	03/11/20 17:16	
d3-NMeFOSAA	91	25 - 150			03/09/20 16:34	03/11/20 17:16	
d5-NEtFOSAA	99	25 - 150			03/09/20 16:34	03/11/20 17:16	
M2-6:2 FTS	188 *	25 - 150				03/11/20 17:16	
M2-8:2 FTS	176 *	25 - 150				03/11/20 17:16	

Isotope Dilution Summary

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
		PFBA	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
480-166782-1	HBSW-1	59	80	91	97	101	98	97	90
480-166782-2	US-HBSW-1	71	86	97	105	100	102	104	103
480-166782-3	DS-HBSW-1	60	79	89	94	100	90	106	95
480-166782-4	DUP	60	81	96	100	99	101	100	111
LCS 320-363186/2-A	Lab Control Sample	96	93	99	107	98	99	111	96
LCSD 320-363186/3-A	Lab Control Sample Dup	94	90	97	99	101	92	100	103
MB 320-363186/1-A	Method Blank	93	92	98	100	100	94	108	93
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
		PFDoA	PFTDA	3C3-PFB	PFHxS	PFOS	PFOSA	-NMeFOS	-NEtFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
480-166782-1	HBSW-1	80	70	85	88	93	93	83	83
480-166782-2	US-HBSW-1	83	93	89	90	98	98	89	91
480-166782-3	DS-HBSW-1	93	66	87	88	92	92	85	93
480-166782-4	DUP	91	84	88	94	98	99	91	99
LCS 320-363186/2-A	Lab Control Sample	100	94	96	93	94	93	88	88
LCSD 320-363186/3-A	Lab Control Sample Dup	90	96	94	90	92	90	86	90
MB 320-363186/1-A	Method Blank	102	118	98	95	95	94	95	97
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	.imits)	
		M262FTS	M282FTS			• •			
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
480-166782-1	HBSW-1	185 *	160 *						
480-166782-2	US-HBSW-1	169 *	154 *						
480-166782-3	DS-HBSW-1	183 *	170 *						
480-166782-4	DUP	188 *	176 *						
LCS 320-363186/2-A	Lab Control Sample	137	146						
LCSD 320-363186/3-A	Lab Control Sample Dup	135	126						
MB 320-363186/1-A	Method Blank	148	150						
Surrogate Legend									
Surrogate Legella									

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

PFHxA = 13C2 PFHxA

PFHpA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

13C3-PFBS = 13C3 PFBS

PFHxS = 1802 PFHxS

PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3-NMeFOSAA = d3-NMeFOSAA

d5-NEtFOSAA = d5-NEtFOSAA

M262FTS = M2-6:2 FTS

M282FTS = M2-8:2 FTS

Page 10 of 25

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances

ND

8:2 FTS

Lab Sample ID: MB 320-363186/1-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 363749	Prep Batch: 363186

MB MB Result Qualifier RL **MDL** Unit Prepared Dil Fac Analyte Analyzed Perfluorobutanoic acid (PFBA) 2.0 03/09/20 16:34 03/11/20 16:22 $\overline{\mathsf{ND}}$ ng/L Perfluoropentanoic acid (PFPeA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorohexanoic acid (PFHxA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 2.0 Perfluoroheptanoic acid (PFHpA) ND ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorooctanoic acid (PFOA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorononanoic acid (PFNA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 ND Perfluorodecanoic acid (PFDA) 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluoroundecanoic acid (PFUnA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorododecanoic acid (PFDoA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorotridecanoic acid (PFTriA) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorotetradecanoic acid (PFTeA) 03/09/20 16:34 03/11/20 16:22 ND 2.0 ng/L Perfluorobutanesulfonic acid (PFBS) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorohexanesulfonic acid (PFHxS) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 ND 2.0 03/09/20 16:34 03/11/20 16:22 ng/L Perfluoroheptanesulfonic Acid (PFHpS) Perfluorooctanesulfonic acid (PFOS) ND 2.0 ng/L 03/09/20 16:34 03/11/20 16:22 Perfluorodecanesulfonic acid (PFDS) ND 2.0 03/09/20 16:34 03/11/20 16:22 ng/L ng/L Perfluorooctanesulfonamide (FOSA) ND 2.0 03/09/20 16:34 03/11/20 16:22 ND 03/09/20 16:34 03/11/20 16:22 20 N-methylperfluorooctanesulfonamidoa ng/L cetic acid (NMeFOSAA) ND 20 ng/L 03/09/20 16:34 03/11/20 16:22 N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA) ND 6:2 FTS 20 ng/L 03/09/20 16:34 03/11/20 16:22

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C4 PFBA	93		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C5 PFPeA	92		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C2 PFHxA	98		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C4 PFHpA	100		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C4 PFOA	100		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C5 PFNA	94		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C2 PFDA	108		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C2 PFUnA	93		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C2 PFDoA	102		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C2 PFTeDA	118		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C3 PFBS	98		25 - 150	03/09/20 16:34	03/11/20 16:22	1
1802 PFHxS	95		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C4 PFOS	95		25 - 150	03/09/20 16:34	03/11/20 16:22	1
13C8 FOSA	94		25 - 150	03/09/20 16:34	03/11/20 16:22	1
d3-NMeFOSAA	95		25 - 150	03/09/20 16:34	03/11/20 16:22	1
d5-NEtFOSAA	97		25 - 150	03/09/20 16:34	03/11/20 16:22	1
M2-6:2 FTS	148		25 - 150	03/09/20 16:34	03/11/20 16:22	1
M2-8:2 FTS	150		25 - 150	03/09/20 16:34	03/11/20 16:22	1

20

ng/L

1

03/09/20 16:34 03/11/20 16:22

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-3 Matrix: Water Analysis Batch: 363749	63186/2-A		Spike	LCS	LCS	Clie	ent Sample ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 363186 %Rec.
Analyte			Added	Result	Qualifier	Unit	D %Rec	Limits
Perfluorobutanoic acid (PFBA)			40.0	39.9		ng/L		76 - 136
Perfluoropentanoic acid (PFPeA)			40.0	39.0		ng/L	98	71 - 131
Perfluorohexanoic acid (PFHxA)			40.0	37.7		ng/L	94	73 - 133
Perfluoroheptanoic acid (PFHpA)			40.0	37.2		ng/L	93	72 - 132
Perfluorooctanoic acid (PFOA)			40.0	37.2		ng/L	93	70 - 130
Perfluorononanoic acid (PFNA)			40.0	37.1		ng/L	93	75 - 135
Perfluorodecanoic acid (PFDA)			40.0	34.5		ng/L	86	76 - 136
Perfluoroundecanoic acid			40.0	40.4		ng/L	101	68 - 128
(PFUnA)			40.0	20.0			100	74 404
Perfluorododecanoic acid			40.0	39.8		ng/L	100	71 - 131
(PFDoA) Perfluorotridecanoic acid			40.0	44.6		ng/L	112	71 - 131
(PFTriA)						J		
Perfluorotetradecanoic acid			40.0	39.6		ng/L	99	70 - 130
(PFTeA)			35.4	33.1		ng/L	94	67 - 127
Perfluorobutanesulfonic acid (PFBS)			35.4	33.1		TIG/L	94	07 - 127
Perfluorohexanesulfonic acid (PFHxS)			36.4	32.7		ng/L	90	59 - 119
Perfluoroheptanesulfonic Acid			38.1	38.8		ng/L	102	76 - 136
(PFHpS) Perfluorooctanesulfonic acid			37.1	35.2		ng/L	95	70 - 130
(PFOS)			20.6					71 - 131
Perfluorodecanesulfonic acid (PFDS)			38.6	35.2		ng/L	91	/1 - 131
Perfluorooctanesulfonamide (FOSA)			40.0	38.9		ng/L	97	73 - 133
N-methylperfluorooctanesulfona			40.0	39.1		ng/L	98	76 - 136
midoacetic acid (NMeFOSAA) N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)			40.0	37.4		ng/L	94	76 - 136
6:2 FTS			37.9	36.1		ng/L	95	59 - 175
8:2 FTS			38.3	34.7		ng/L	91	75 ₋ 135
	LCS	LCS				Ü		
Isotope Dilution	%Recovery	Qualifier	Limits					
13C4 PFBA	96		25 - 150					
13C5 PFPeA	93		25 - 150					
13C2 PFHxA	99		25 - 150					
13C4 PFHpA	107		25 - 150					
13C4 PFOA	98		25 - 150					
13C5 PFNA	99		25 - 150					
13C2 PFDA	111		25 - 150					
13C2 PFUnA	96		25 - 150					
13C2 PFDoA	100		25 - 150					
13C2 PFTeDA	94		25 - 150					
13C3 PFBS	96		25 - 150					
1802 PFHxS	93		25 - 150					
13C4 PFOS	94		25 - 150					
13C8 FOSA	93		25 - 150					
d3-NMeFOSAA	88		25 - 150					
d5-NEtFOSAA	88		25 - 150					

Eurofins TestAmerica, Buffalo

Page 12 of 25

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-363186/2-A

Lab Sample ID: LCSD 320-363186/3-A

Matrix: Water

Matrix: Water

Analysis Batch: 363749

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
M2-6:2 FTS	137		25 - 150
M2-8:2 FTS	146		25 - 150

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 363186

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Analysis Batch: 363749	Spike	LCSD	LCSD				Prep Ba	atch: 36	363186 RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Perfluorobutanoic acid (PFBA)	40.0	40.3		ng/L		101	76 - 136	1	30	
Perfluoropentanoic acid (PFPeA)	40.0	40.1		ng/L		100	71 - 131	3	30	
Perfluorohexanoic acid (PFHxA)	40.0	37.5		ng/L		94	73 - 133	1	30	
Perfluoroheptanoic acid (PFHpA)	40.0	37.9		ng/L		95	72 - 132	2	30	
Perfluorooctanoic acid (PFOA)	40.0	35.6		ng/L		89	70 - 130	4	30	
Perfluorononanoic acid (PFNA)	40.0	41.7		ng/L		104	75 ₋ 135	12	30	
Perfluorodecanoic acid (PFDA)	40.0	35.4		ng/L		89	76 - 136	3	30	
Perfluoroundecanoic acid (PFUnA)	40.0	35.8		ng/L		90	68 - 128	12	30	
Perfluorododecanoic acid (PFDoA)	40.0	43.2		ng/L		108	71 - 131	8	30	
Perfluorotridecanoic acid (PFTriA)	40.0	51.8		ng/L		130	71 - 131	15	30	
Perfluorotetradecanoic acid (PFTeA)	40.0	34.8		ng/L		87	70 - 130	13	30	
Perfluorobutanesulfonic acid (PFBS)	35.4	32.4		ng/L		92	67 - 127	2	30	
Perfluorohexanesulfonic acid (PFHxS)	36.4	33.4		ng/L		92	59 - 119	2	30	
Perfluoroheptanesulfonic Acid (PFHpS)	38.1	38.4		ng/L		101	76 - 136	1	30	
Perfluorooctanesulfonic acid (PFOS)	37.1	34.5		ng/L		93	70 - 130	2	30	
Perfluorodecanesulfonic acid (PFDS)	38.6	34.9		ng/L		90	71 - 131	1	30	
Perfluorooctanesulfonamide (FOSA)	40.0	37.1		ng/L		93	73 - 133	5	30	
N-methylperfluorooctanesulfona midoacetic acid (NMeFOSAA)	40.0	39.1		ng/L		98	76 - 136	0	30	
N-ethylperfluorooctanesulfonami doacetic acid (NEtFOSAA)	40.0	37.7		ng/L		94	76 - 136	1	30	
6:2 FTS	37.9	34.8		ng/L		92	59 ₋ 175	4	30	
8:2 FTS	38.3	35.8		ng/L		93	75 - 135	3	30	

LCSD LCSD

Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	94		25 - 150
13C5 PFPeA	90		25 - 150
13C2 PFHxA	97		25 - 150
13C4 PFHpA	99		25 - 150
13C4 PFOA	101		25 - 150
13C5 PFNA	92		25 - 150
13C2 PFDA	100		25 - 150
13C2 PFUnA	103		25 - 150
13C2 PFDoA	90		25 - 150

Eurofins TestAmerica, Buffalo

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Client Sample ID: Lab Control Sample Dup Lab Sample ID: LCSD 320-363186/3-A Matrix: Water

Prep Type: Total/NA Prep Batch: 363186

Analysis Batch: 363	749		Prep Batch: 363186
	LCSD LCSD		
Isotope Dilution	%Recovery Qualifi	er Limits	
13C2 PFTeDA	96	25 - 150	
13C3 PFBS	94	25 - 150	
1802 PFHxS	90	25 - 150	
13C4 PFOS	92	25 - 150	
13C8 FOSA	90	25 - 150	
d3-NMeFOSAA	86	25 - 150	
d5-NEtFOSAA	90	25 - 150	
M2-6:2 FTS	135	25 - 150	
M2-8:2 FTS	126	25 - 150	

QC Association Summary

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

LCMS

Prep Batch: 363186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-166782-1	HBSW-1	Total/NA	Water	3535	
480-166782-2	US-HBSW-1	Total/NA	Water	3535	
480-166782-3	DS-HBSW-1	Total/NA	Water	3535	
480-166782-4	DUP	Total/NA	Water	3535	
MB 320-363186/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-363186/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-363186/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 363749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-166782-1	HBSW-1	Total/NA	Water	537 (modified)	363186
480-166782-2	US-HBSW-1	Total/NA	Water	537 (modified)	363186
480-166782-3	DS-HBSW-1	Total/NA	Water	537 (modified)	363186
480-166782-4	DUP	Total/NA	Water	537 (modified)	363186
MB 320-363186/1-A	Method Blank	Total/NA	Water	537 (modified)	363186
LCS 320-363186/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	363186
LCSD 320-363186/3-A	Lab Control Sample Dup	Total/NA	Water	537 (modified)	363186

4

5

6

8

9

10

4.0

13

14

46

Lab Chronicle

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Client Sample ID: HBSW-1

Lab Sample ID: 480-166782-1 Date Collected: 02/26/20 09:30

Matrix: Water

Date Received: 02/27/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			363186	03/09/20 16:34	ĪH	TAL SAC
Total/NA	Analysis	537 (modified)		1	363749	03/11/20 16:49	S1M	TAL SAC

Client Sample ID: US-HBSW-1

Lab Sample ID: 480-166782-2

Matrix: Water

Date Collected: 02/26/20 12:00 Date Received: 02/27/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			363186	03/09/20 16:34	ĪH	TAL SAC
Total/NA	Analysis	537 (modified)		1	363749	03/11/20 16:58	S1M	TAL SAC

Client Sample ID: DS-HBSW-1

Lab Sample ID: 480-166782-3

Matrix: Water

Date Collected: 02/26/20 10:30 Date Received: 02/27/20 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			363186	03/09/20 16:34	ΙΗ	TAL SAC
Total/NA	Analysis	537 (modified)		1	363749	03/11/20 17:07	S1M	TAL SAC

Client Sample ID: DUP

Lab Sample ID: 480-166782-4 Date Collected: 02/26/20 00:00

Matrix: Water

Date Received: 02/27/20 10:00

Batch **Batch** Dilution Batch Prepared **Prep Type** Method Run **Factor** Number or Analyzed Analyst Type Lab Total/NA 3535 363186 03/09/20 16:34 IH TAL SAC Prep Total/NA Analysis 537 (modified) 363749 03/11/20 17:16 S1M TAL SAC

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Eurofins TestAmerica, Buffalo

Accreditation/Certification Summary

Client: Waste Management Job ID: 480-166782-1

Project/Site: Chaffee Facility Western Expansion: PFAS

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-20

Laboratory: Eurofins TestAmerica, Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	01-20-21
ANAB	Dept. of Defense ELAP	L2468	01-20-21
ANAB	Dept. of Energy	L2468.01	01-20-21
ANAB	ISO/IEC 17025	L2468	01-20-21
Arizona	State	AZ0708	08-11-20
Arkansas DEQ	State	19-042-0	06-17-20
California	State	2897	01-31-22
Colorado	State	CA0004	08-31-20
Connecticut	State	PH-0691	06-30-21
Florida	NELAP	E87570	06-30-20
Georgia	State	4040	01-30-21
Hawaii	State	<cert no.=""></cert>	01-29-21
Illinois	NELAP	200060	03-17-20
Kansas	NELAP	E-10375	10-31-20
Louisiana	NELAP	01944	06-30-20
Maine	State	2018009	04-14-20
Michigan	State	9947	01-29-20 *
Nevada	State	CA000442020-1	07-31-20
New Hampshire	NELAP	2997	04-18-20
New Jersey	NELAP	CA005	06-30-20
New York	NELAP	11666	04-01-20
Oregon	NELAP	4040	01-29-21
Pennsylvania	NELAP	68-01272	03-31-20
Texas	NELAP	T104704399-19-13	05-31-20
US Fish & Wildlife	US Federal Programs	58448	07-31-20
USDA	US Federal Programs	P330-18-00239	07-31-21
Utah	NELAP	CA000442019-01	02-28-21
Vermont	State	VT-4040	04-16-20
Virginia	NELAP	460278	03-14-20
Washington	State	C581	05-05-20
West Virginia (DW)	State	9930C	12-31-20
Wyoming	State Program	8TMS-L	01-28-19 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Method Summary

Client: Waste Management

Project/Site: Chaffee Facility Western Expansion: PFAS

MethodMethod DescriptionProtocolLaboratory537 (modified)Fluorinated Alkyl SubstancesEPATAL SAC3535Solid-Phase Extraction (SPE)SW846TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL SAC = Eurofins TestAmerica, Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 480-166782-1

6

7

9

a a

12

14

15

116

Sample Summary

Client: Waste Management Project/Site: Chaffee Facility Western Expansion: PFAS

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
480-166782-1	HBSW-1	Water	02/26/20 09:30	02/27/20 10:00	
480-166782-2	US-HBSW-1	Water	02/26/20 12:00	02/27/20 10:00	
480-166782-3	DS-HBSW-1	Water	02/26/20 10:30	02/27/20 10:00	
480-166782-4	DUP	Water	02/26/20 00:00	02/27/20 10:00	

Job ID: 480-166782-1

WASTE MANAGEMENT CHAIN OF CUSTODY

Internal Use Only

Ste Name (Print) Site Name: CLAFFE LANDE Site Location: 5ARD N.M. N.Y.	FOR	Signature: Spec Request: AC Event Name:	7	4	XIRTAM	BARD / GMOD	AOV0828	3.IATAM.C	BS60VOA T-METALS D-METALS PH, TSS, TDS PH, TSS, TDS PH, TSS, TDS ALK / CARB / BICARB HARDNESS TOC TOC TOC TOC TOC TOC TOC T	ALK / CARB / BICARB	SSENGRAH	NH ³ \ COD	7211 (72- 8	(SELLY TAINA !		480-16	6782 Ch	480-166782 Chain of Custody		
TA Sample No.	Client Sample ID	OI	San	Sampling Time					снгов	1			120	(S			-			
							INDIC	ATE P	CATE C	ATIVE	BY US	Y USI	SEY BE	Y BELC	M	(ARL)		Additio	nal Analy	Additional Analysis/Remarks
1-msq-	H85W-1	-	2(20/2)	0 9330	3	9								×						
UN-HOSM-	US-F185W-1	1-M	,	1500	3	9								×						
5 1485W-1	DS-HBSW-	1-M50	1	(0.30	3	5							,	8	-					
90	500		4	1	3	9								>						
																4-1				
RELINGUISHED B	Comme	10	COMPANY	DATE	No.		TIME		RECEIVED BY	O BY					COMPANY	ANA		DATE		TIME
RELINQUISHED B	BY		COMPANY	TPG,	111		TIME		RECEIVED BY	D BY					COMPANY	ANA		DATE		TIME
RELINQUISHED BY	34		COMPANY	DATE	ш		TIME		RECEIVED BY	D BY	K	3			COMPANY	DANY		DATE Q27	Ze	TIME OGO
Matrix Key WW = Wastewater W = Water/Groundwater S = Solid SI = Sludge		Container Key 1. Plastic 2. VOA Vial 3. Sterile Plastic 4. Amber Glass	er Key lastic lastic	Preservation Key 1. HCl, Cool to 4° 2. H2SO, Cool to 4° 3. HNO3, Cool to 4° 4. NaOH, Cool to 4°	o 4° o 10 4° l to 4°			COM	COMMENTS TH DRAYERT	E.E.	#	7	(800	48002685	1		Courier	8	3#	
H H H			Widemouth Glass Other	5. NaOH/Zn A 6. Cool to 4° 7. None	cetate,	Sool to	0.4										Bill of Lading:	ading:		

Ver. 01/16/2019

Sac

Company

26

3

O 3/03/

sceived by:

Company ETAB

17:00

S-3-30

3.4

coler Temperature(s) °C and Other Remarks

eceived by:

Company

Jate/Time:

188266

Custody Seals Intact: Custody Seal No.

Jate/Time

N - None
O - AsklaO2
P - Na2SO4S
Q - Na2SO3
R - Na2S203
S - Na2S203
V - MCAA
W - pH 4-5
Z - other (specify) Special Instructions/Note: Note: Since laboratory accreditations are subject to change, Eurofins TestAmerica places the ownership of method analyte & accreditation compilance upon out subcontract laboratories. This sample shipment is forwarded under chain-of-custody, if the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins TestAmerica alternoons will be provided. Any changes to accreditation status should be brought to Eurofins TestAmerica attention immediately, if all requested accreditations are current to date, return the signed Chain of Custody attesting to said complicance to Eurofins TestAmerica. Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitro Acid
E - NaHSO4
F - MeOH
F - Acorbic Acid
H - Ascorbic Acid
J - Ice
J - Ice
J - Ice
L - EDA 480-166782-1 COC No: 480-54615.1 Page 1 of 1 Total Number of containers 2 2 3 Method of Shipment State of Origin New York Analysis Requested Special Instructions/QC Requirements. E-Main.
katelyn ferguson@testamericainc.com
Accreditations Required (See note):
NELAP - New York Lab PM Ferguson, Katelyn M PFC_IDA/3636_PFC PFAS, Standard List (21 × × × × Perform MS/MSD (Yes or No) Time: Field Filtered Sample (Yes or No.) G=grab) BT=Tissue, A=Air Matrix Preservation Code Water Water Water Water (С=сошр, Sample Type Primary Deliverable Rank: 2 12:00 Eastern 10:30 Sample Eastern Eastern 09:30 Time (AT Requested (days): Due Date Requested: 3/10/2020 Sample Date 2/26/20 2/26/20 2/26/20 2/26/20 48002685 Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Chaffee Facility Western Expansion: PFAS Sample Identification - Client ID (Lab ID) 916-373-5600(Tel) 916-372-1059(Fax) Chaffee Facility Western Expansion Possible Hazard Identification TestAmerica Laboratones, Inc. DS-HBSW-1 (480-166782-3) US-HBSW-1 (480-166782-2) Empty Kit Relinquished by HBSW-1 (480-166782-1) 880 Riverside Parkway DUP (480-166782-4) Shipping/Receiving West Sacramento Inconfirmed CA, 95605

eurofins Environment Testing

Chain of Custody Record

Eurofins TestAmerica, Buffalo

Phone: 716-691-2600 Fax: 716-691-7991

Amherst, NY 14228-2298

inquished by:

FIELD INFORMATION FORM	WW AVA
Site Name: CHAFFEE LANDFILL This Waste Management Field Information Form is Required This form is to be completed, in addition to any State Forms. The Field Form is	WASTE MANAGEMENT
Site No.: Sample Point: Sample D	Laboratory Use Only/Lab ID:
80 11 11 11 11 11	
(MM DD YY) (2400 Hr Clock) (hermin) (Gallene)	AL VOL PURGED WELL VOLS (Gallons) PURGED
Note: For Passive Sampling, replace "Water Vol in Casing" and "Well Vols Purged" w/ Water Vol in Tubing/Flow Cell and Tubing/Flow Cell Vols Purged Purging and Sampling Equipment Dedicated: Y or N 0.45 \(\mu\) or Purging and Sampling Equipment Dedicated: Y or N 0.45 \(\mu\) or	d. Mark changes, record field data, below.
Purging Device A-Submersible Pump D-Bailer A-In-line Disposal	ble C-Vacuum
Sampling Device C-QED Bladder Pump F-Dipper/Bottle F-Pressure B-Pressure	X-Other C-PVC X-Other:
p-statilities steel	D-Polypropylene
Well Elevation (at TOC) Depth to Water (DTW) (from TOC) Groundwater Elev (from TOC) (det datum, from TOC)	
Well Elevation (at TOC) Total Well Depth (from TOC) Orongo (from TOC	Casing in) Material Groundwater Elevation must be current.
Sample Time Rate/Unit pH Conductance (SC/EC) Temp. Turbidity D.O. (2400 Hr Clock) (std) (μmhos/cm@25°C) (°C) (ntu) (mg/L - ppm)	eH/ORP DTW (mV) (ft)
14 14 14	
2 nd 2 nd	Tage Fra
SI Jan Jan AA SJRFACE WATE	
and an an an an an an an an an an an an an	IE .
CORAR SAM	91=
	V L
Suggested range for 3 consec. readings or +/- 0.2 +/- 3% - +/- 10% Stabilization Date Fields are Optional (i.e. complete stabilization per literature per l	+/- 25 mV Stabiliza
Stabilization Data Fields are Optional (i.e. complete stabilization readings for parameters required by WM, Site, or State). These fields can be used wh by State/Permit/Site. If a Data Logger or other Electronic format is used, fill in final readings below and submit electronic data separately to Site. It more first SAMPLE DATE DH CONDUCTANCE TEMP TUPPIDITY	tere four (4) field measurements are required as share are acceded, use separate sheet at form
(MM DD YY) (std) (umhos/cm @ 25°C) (°C) (ntu) (mg/L-ppm)	eH/ORP Other:
U22 b20 687 288 09 350 48 Final Field Readings are required (i.e. record field measurements, final stabilized readings, passive sample readings before sampling for all field para	meters required by State/Permit/Site.
Sample Appearance: Clear Odor: NO Color: NO	
Weather Conditions (required daily, or as conditions change): Direction/Speed: Colon. Outlook: 20044	SAM Precipitation: Y or
Specific Comments (including purge/well volume calculations if required):	
HOTEL REDOK UPSTEEM SURFACE WATER S	SAMPLE
THE STATE OF THE S	STATE
SANDER at 1200	
I certify that sampling procedures were in accordance with applicable EPA, State, and WM protocoly in more than one sampler, all should	
2,26,20 Michael Commisses My Jet	GEL Consistents
Date Name Signature Co	нирацу
DISTRIBUTION: WHITE/ORIGINAL - Stays with Sample, YELLOW - Returned to Chent, PINK - Field Con	73

Ni 8	Site CHA	Sample DS Sa	This form is submitted al	FORMATI Management Field Info to be completed, in addit ong with the Chain of Cu .e. with the cooler that is	rmation Form is Requi ion to any State Forms. stody Forms that accom	red The Field Form is pany the sample	Laboratory Use Only/I	Ab ID;
PURGE		(2400 Hr ()	TER VOL IN CAS (Gallons) ilow Cell and Tubing/Fl		VOL PURGED Gallons) Mark changes, record fie	WELL VOL® PURGED Id data, below.
PURGE/SAMPLE		Equipment Dedicated: A-Submersible B-Peristaltic Procession of the comment	Y or N Pump D-Bailer pmp E-Piston Pump		vice: Y or N	0.45 µ or	μ (circle o C-Vacuum X-Other	
i	Well Elevation (at TOC) Total Well Depth (from TOC)	(m	Depth to Water (DT /msl) (from TOC)	TW)	1 1 1	Groundwater Elevati site datum, from TO		(ft/msl)
	Total Well Depth (from TOC) Note: Total Well Depth	Stick Up, Casing Id. etc. are			(ft) I	Casing (in) D (in) levation, DTW, and Gr		st be current.
FIELD DATA STABILIZATION DATA (Optional)	Suggested range for 3 consec. re note Permit State II a Date State II a Date SAMPLE DATE (MAM DD YY) O 2 2 6 2 6	Optional (i.e. complete state a Logger or other Electronic pH (stil)	110	TEMP. (°C)	TURBIDITY (ntu)	DO (mg/L-ppm)	eH/ORP Or (mV) Ui	Settitate sheet we form. ther: nits
	Sample Appearance: Weather Conditions (res Specific Comments (incl	uding purge/well volum	ons change): Dir	odor: V ection/Speed: C :	Cole Outloo	ok: Clush, Sa		n: Y or N
FIELD COMMENTS	I certify that sampling no		Sample EPA, Str	at 1	030			1105
	2,26,20 Date	Name	er Commides	Signature	12	7	upany	

Client: Waste Management Job Number: 480-166782-1

Login Number: 166782 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Harper, Marcus D

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

Client: Waste Management Job Number: 480-166782-1

List Number: 166782 List Source: Eurofins TestAmerica, Sacramento
List Number: 2 List Creation: 03/03/20 04:48 PM

Creator: Guzman, Juan

Creator: Guzman, Juan		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	992881
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.4
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

2

A

5

7

Q

10

12

1/

10

16

Residual Chlorine Checked.

Hydrogeologic Investigation Report Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York June 2020, Revised April 2022

Appendix F

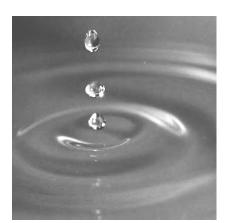
Water Well Survey Documentation

Consulting
Engineers and
Scientists

Water Well Survey Documentation Appendix F

Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York

Submitted to:


Waste Management of New York, LLC Chaffee, New York

Submitted by:

GEI Consultants, Inc., P.C. 100 Sylvan Pkwy, Suite 100 Amherst, NY 14228

July 2020

Project 1900192

Richard H. Frappa, P.G.

Senior Consultant/Hydrogeologist

Kelly R. McIntosh, P.E., Ph.D. Senior Consultant/Engineer

Table of Contents

1.	Private Water Well Survey			
	1.1	Background	1	
	1.2	2019 Water Well Survey	1	

Figures

1. Water Well Survey Search Area Results

Attachments

- 1. Sample Cover Letter with Water Well Survey Questionnaire
- 2. Water Well Survey Search Area Compiled Summary of Results

1. Private Water Well Survey

The Chaffee Landfill Facility is located in the Town of Sardinia, Erie County, New York and is owned and operated by Waste Management of New York, LLC under Solid Waste Management Facility (SWMF) Permit I.D 9 1462-00001/00006. A 6 NYCRR Part 360/363 Permit Application is being submitted for the Area 7/8 Development with partial overlap on the Closed Landfill, Western Landfill, and Valley Fill Landfill Areas. The preparation of a Hydrogeologic Investigation Report (HIR) is a permit application requirement and has been prepared per regulation 6 NYCRR Part 363-4.4(a). A survey of public and private water wells is required in 6NYCRR Part 363.4-4(g) and details are contained in this Appendix to the HIR.

1.1 Background

A water well survey of tax parcels within one-mile of the Western Landfill Area and Closed landfill was documented in April 2004 for the Part 360 permit approval for the Western Landfill development project. While Department regulations at that time (and currently) require the survey cover a one-mile downgradient distance and a one quarter mile upgradient distance from the project area, the 2004 survey was extended one mile in an upgradient direction due to the proximity of a groundwater flow divide in the Upper Water-Bearing Zone located near the WMNY southern property boundary.

The 2004 water well survey was conducted of 158 properties within the search area and excluded 72 homes located in the Hamlet of Chaffee (situated in the southeast corner of the search radius) that are supplied with water by the Chaffee Water Works Company. Of the 158 properties that received water well use questionnaires, 56 responses were received. A total of 47 respondents indicated the presence of water supply wells for home and/or farm use on the property. Two respondents, the Chaffee Community Baptist Church located on Allen Road located 1.1 miles southeast of the Chaffee Facility and Camp Seven Hill located one mile north of the Chaffee Facility, indicated community water supplies on the property.

1.2 2019 Water Well Survey

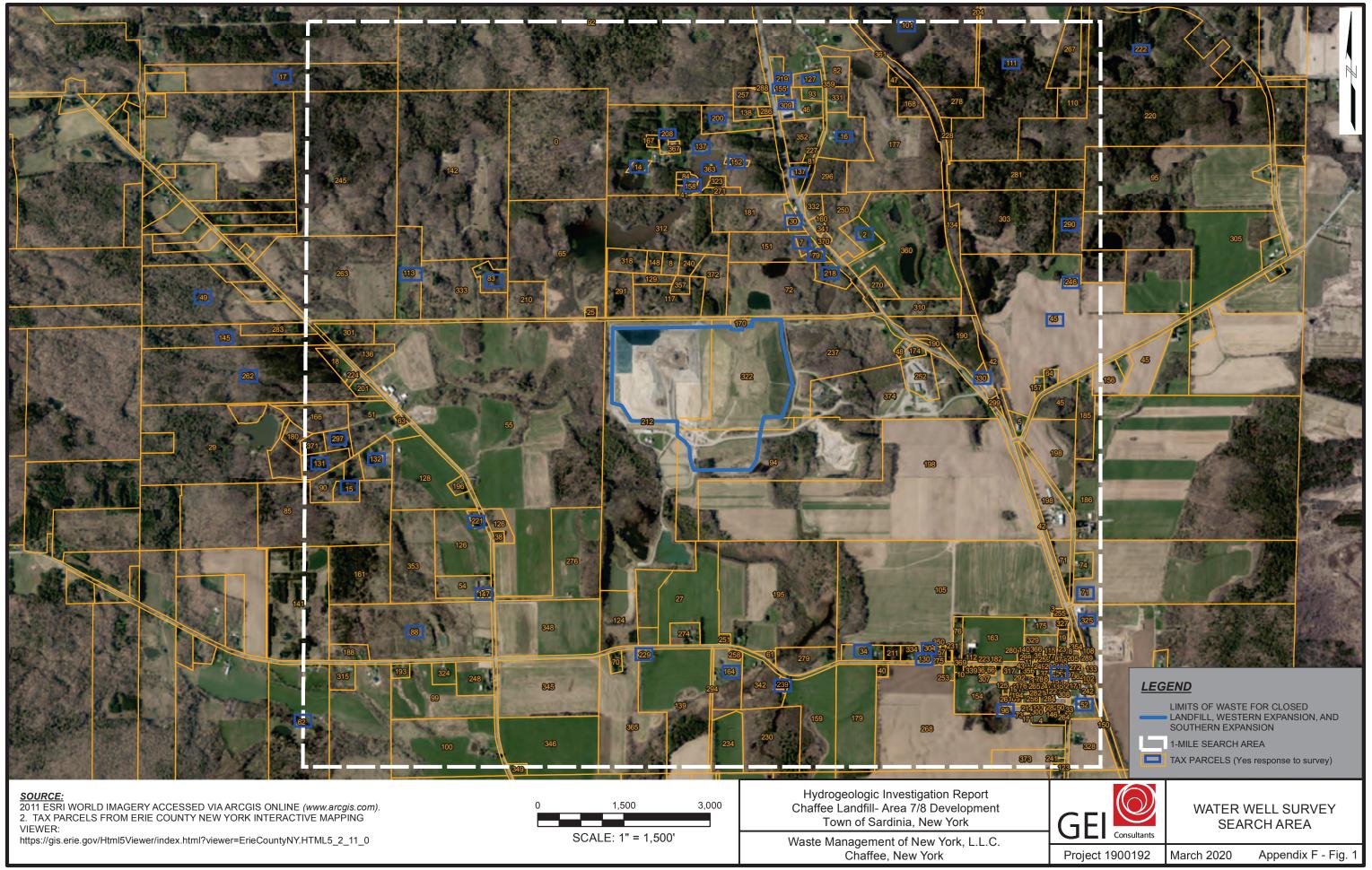
In 2019, the water well survey was updated to fulfill requirements in 6NYCRR Part 363.4-4(g) and included a search of landowners for tax parcels within a one-mile search radius of the limits of the Area 7/8 Development and existing boundaries of waste containment. The source of tax parcel information was obtained from the 2019 Erie County Office of GIS database. A letter requesting a list of customers was requested from the Chaffee Water Works Company to exclude from the survey. The request was submitted via courier with signed receipt of acceptance; however, no response was provided. Attempts were made to contact Chaffee Water Works by telephone but no responses to voicemails were received. Therefore, consistent with the 2004 survey, the 72 tax parcels located in the Hamlet of Chaffee and serviced by the Chaffee Water

Water Well Survey Documentation Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York July 2020

Works Company were excluded from the 2019 survey. Questionnaires were not mailed to parcels known to be owned by Waste Management subsidiaries. A total of 161 questionnaires were mailed via USPS to parcel owners within the survey area, with 63 responses received. Attachment 1 provides an example cover letter and questionnaire mailed to parcel owners. Attachment 2 is the 2004 list of Chaffee Water Works Company customers excluded from the 2019 water well survey. Attachment 3 summarizes the list of parcels receiving questionnaires and a summary of information provided. GEI has retained copies of questionnaire responses to maintain privacy of respondents.

1.3 2019 Water Well Survey Findings

Among the 63 respondents to the survey, 14 respondents indicated their parcel did not have a well and was either an undeveloped property or situated on Allen Road or Olean Road and serviced by municipal water provided by the Chaffee Water Works. The remaining 49 parcels reported having a well which was utilized for household or farm water supply. Figure F-1 identifies the location of tax parcels with water supply wells.


The majority of respondents reported drilled wells with well depths of 80 feet or more. Several wells are drilled through the overburden into bedrock – particularly parcels on Savage Road west of the Chaffee Facility. Based on well depth, most wells likely obtain water from the overburden. The closest domestic well to the Chafee Facility is situated at Parcel 218 located on Olean Rd. approximately 0.25 miles northeast of the Facility. The well was reported to be 80 feet deep and likely produces water from the overburden as bedrock is reported to be approximately 400 to 600 feet below the landfill facility. In a south direction from the Chaffee Facility, Parcel 164 is the closest private well and is located on Allen Road. The respondent reported to utilize a 100-foot deep well for household supply.

In the Hamlet of Chaffee, the Chaffee Water Works provides water to its customers from either an older water supply well screened in the upper 20 feet of sand and gravel outwash in the Sardinia Aquifer or a newer, deeper well screened in confined sand and gravel deposits (personal communication with Lynette Franz, dated December 16, 2019). The municipal water supply is located 1.1 miles southeast of the Area 7/8 Development.

2. References

McMahon & Mann Consulting Engineers, P.C. and Terra-Dynamics, Inc, February 2005. Hydrogeologic Report for Chaffee Western Landfill Expansion – Part 360 Permit Modification Application. Water Well Survey Documentation Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York July 2020

Figure

Attachment 1

Example Cover Letter and Water Well Survey Questionnaire in 2019

ADDRESS < MAIL MERGE>

Consulting Engineers and Scientists

Subject: Town of Sardinia – Public and Private Water Well Survey

Questionnaire

Dear Sir/Madame:

GEI Consultants, Inc., P.C. (GEI), on behalf of Waste Management of New York, is conducting a survey of public and private water wells located in the area of the Chaffee Landfill. The purpose of the survey is to fulfill obligations for hydrogeologic studies required for a soon to be completed landfill permit application in accordance with 6 NYCRR Part 363-4-4(g). The Erie County GIS property ownership database identified you as the owner of property near the Chaffee Landfill.

It would be greatly appreciated if you would complete the enclosed Well Information Questionnaire. Please return the completed questionnaire in the pre-addressed, stamped envelope as soon as possible. Completion of the survey will assist the NYSDEC in the assessment of water usage within a mile of the landfill.

Thank you for your time and consideration. Please contact the undersigned if you have questions.

Sincerely yours,

GEI Consultants, Inc., P.C.

Richard H. Frappa, P.G. Senior Hydrogeologist

/ Killyp

Enc. Questionnaire with addressed, stamped envelope

CHAFFEE AREA WATER WELL QUESTIONNAIRE

Name:
Address:
Phone: If Required, Best Time to Contact Owner:
 Do you have a water well? (It does not need to be working.) If No, check the box, Stop and please return survey. Yes No
If yes, where?
(sketch well location -add approx. distance from house in ft.)
House
Road
2. Is the well(s) currently used, unused, or abandoned (circle one)? If used, for what purpose Drinking Washing Clothes Shower/Bath Irrigation Seasonal Camp (circle all that apply)
3. If known, well depthfeet How old?Years How deep to water? fee
4. Is well open to groundwater in soil or bedrock?
5. If known, estimated well yield gpm Does well go dry? Yes \[\] No \[\]
6. Any problems with water quality (cloudy, odor, taste, iron staining)? Please describe below
7. Do you have well construction details? Please provide if able.

Attachment 2

Chaffee Water Works Customer List from 2004 Water Well Survey

APPENDIX A CHAFFEE WATER WORKS CUSTOMERS

From: 2004 Water Well Survey for Western Landfill Development (MMCE, 2005)

FirstName	LastName	Addressi	City	State	PostalCode
Donn	Smith	Road 13490 Allen Road	Chaff ee	NY	14030
Horace K	Gasper	P.O. Box 97	Chaff ee	NY	14030
Harlan	Spruce	13499 Lake	Chaff ee	NY	14030
Owen	Stacey	Street 13489 Allen Road	Chaff ee	NY	14030
Richard	Szewczyk	13470 Grove Street	Chaff ee	NY	14030
Tom's	Auto	Route 16	Chaff	NY	14030
Bonnie	Tucker	13479 Grove Street	Chaff ee	NY	14030
Scott	Virga	13489 Lake Street	Chaff ec	NY	14030
John	Wallace	13470 Allen	Chaff ee	NY	14930
Richard	Wallace	Road 13460 Allen	Chaff ee	NY	14030
Robbie	Webber	Road 13450 Allen	Chaff ee	NY	14030
Thomas	Webber	Road 13539 Grove Street	Chaff ee	NY	14030
Jeremy	Schoepflin	P.O. Box 205, 11360 Olean Rd	Chaff ee	NY	14030
Henry	Williams	13489 Grove Street	Chaff ee	NY	14030
Hank	Williams Jr.	13669 Briggs Street	Chaff ee	NY	14030
Delbert	Wolcom	13379 Allen Road	Chaff ee	NY	14030

Street

11480

Olean

Chaff NY

ee

14030

James R

Shaw

Сотрапу

סטא זה צהסף

FirstName	LastName	Address1 Street	City	State	PostalCode
Shawn	Hediger	13349 Allen	Chaff ee	NY	14030
		Road	-		
Larry	Hittle	13480	Chaff	NY	14030
. ,		Lake	ee		
		Street			
Thomas	Hittle	13399	Chaff	NY	14030
		Allen	66		
_	·.	Road	O1 . M	ND /	1.4020
Duane	Hoits	13359	Chaff	NY	14030
		Allen Road	ee		
IOOF	Lodge	Route 16	Chaff	NY	14030
IOOF	Louge	Roule 10	ee	***	11050
Anna	Jackson	13499	Chaff	NY	14030
		Grove	ee		
		Street			
Violet	Jackson	13479	Chaff	NY	14030
		Allen	86		
N 4 l .	w	Road	Ch.er	NW	14020
Mark	Kandel	13500 Grove	Chaff	NI	14030
		Street	ee		
Ronald	Kenyon	P.O. Box	Chaff	NY	14030
KOIMIG	Acceyon.	12, 13519	ee		- · - - · -
		Allen			
		Road			
Ronald	Kenyon	11389	Chaff	NY	14030
		Olean	ee		
		Road			
Douglas	Kimball	11569	Chaff	NY	14030
		Olean	ee		
Doug	Kimball	Road 13519	Chaff	NY	14030
Doug	(Collsion	Lake	Citati	14.1	14950
	Shop)	Street	•		
Douglas	Kimball	13529	Chaff	NY	14030
	(Rental	Lake	ee		
	House)	Street			
Chris &	Kline	13529	Chaff	NY	14030
Jennifer		Grove	ee		
		Street			1.40.00
David	Kluiczynski	1261 West		NY	14052
		Blood	Auro		
Donald	Long	13519	ſB Chaff	NY	14030
Donmo	Long	Grove	ce	141	14950
		Street	•		
Terry	Lord	13345	Chaff	NY	14030
·· y		Allen	ee		
		Road			
Robert	Luther	13330	Chaff	NY	14030
		Allen	ęe		
		Road			

DUBLY OF HOLLING

FirstName Gene	LastName Alister	Address1 P.O. Box	City Chaff	State NY	PostalCode 14030
Joseph	Becht	23 13480 Allen	ce Chaff ee	NY	14030
Jeff	Bellinger	Road 11600 Olean Road	Chaff ee	NY	14030
Margaret	Blake	11460 Olean Road	Chaff ee	NY	14030
Debra	Brundage	P.O. Box 363	York shire	NY	14173
Chaffee Baptist	Ladies Aid	13510 Grove	Chaff ee	NY	14030
Chaffee Baptist	Parsonage	Street 13499 Allen	Chaff ee	NY	14030
Chaffee	Garden	Road Route 16	Chaff ee	NY	14030
Lawn & Roger	Dole	P.O. Box 24, 13659	Chaff ee	NY	14030
Gail	Dabolt	Briggs St. 13519 Lake	Chaff ee	NY	14030
Erla	Dyke	Street 13530 Grove	Chaff ee	NY	14030
Glenn	Echam	Street 13469 Allen Road	Chaff ee	NY	14030
John	Jacobs	11610 Olean Road	Chaff ee	NY	14030
Thomas	Farr	13439 Allen Road	Chaff ee	NY	14030
Carm	Feraldi	Alien Road	Chaff ee	NY	14030
Philip	Feraldi	13490 Allen Road	Chaff ee	NY	14030
Oliver & Jennifer	Frazzini	13440 Allen Road	Chaff ee.	NY	14030
Roger	Garbowski	11450 Olean Road	Chaff ee	NY	14030
Thomas	Gehen	11350 Olean Road	Chaff ee	NY	14030
Katie	Roblee	13469 Grove	Chaff ee	NY	14030

Attachment 3

2019 Water Well Survey Response Summary

Page 1 of 5

Attachment 3. Parcels Receiving Water Well Questionnaire and

Summary of Responses

Tax Parcel ID Number (FID)	Property Address	Does Property have a Water Well? (YES/NO)	Well Use	Well Depth/ Material Screened
1	11450 OLEAN RD	NO	N/A	N/A
2	0 OLEAN RD	YES	Drinking, household supply	Unknown / Unknown
3	0 OLEAN RD			
4	11590 OLEAN RD			
5	13520 CURRIERS RD			
2	10650 OLEAN RD	YES	Drinking, household supply	105 feet / Unknown
10	13350 ALLEN RD	ON	N/A	N/A
14	0 OLEAN RD	YES	Drinking, household supply	50 feet / Unknown
15	10982 SAVAGE RD	YES	Drinking, household supply	Unknown / Unknown
16	10479 S PROTECTION RD	YES	Drinking, household supply	65 feet / Unknown
17	0 SAVAGE RD	YES	Drinking; Girl Scouts - 7 Hill Camp	11 wells; 26 to 120 feet / Overburden
18	10890 SAVAGE RD			
23	11380 OLEAN RD			
27	0 ALLEN RD	ON	A/N	N/A
29	11000 SAVAGE RD			
30	10600 OLEAN RD	YES	Drinking, household supply	80 feet / Unknown
34	13210 ALLEN RD	YES	Drinking, household supply	Unknown / Unknown
38	11229 SAVAGE RD			
40	13239 ALLEN RD			
41	0 OLEAN RD			
45	0 CURRIERS RD	YES	Drinking, household supply	70 feet / Overburden
46	10440 S PROTECTION RD			
47	0 S PROTECTION RD			
49	0 SAVAGE RD	YES	Drinking, household supply	3 wells; 24 to 80 feet / Unknown
20	11500 OLEAN RD			
52	11489 OLEAN RD	YES	No drinking, garage/yard use	30 feet / Unknown
54	11300 SAVAGE RD			
22	10989 SAVAGE RD			
26	11430 OLEAN RD	YES	Not used	Unknown / Unknown
22	13316 ALLEN RD			
09	13449 GROVE ST			
62	12319 ALLEN RD	YES	Drinking, household supply	Unknown / Unknown
64	13580 CURRIERS RD			

Attachment 3.
Parcels Receiving Water Well Questionnaire and Summary of Responses

Tax Parcel ID Number (FID)	Property Address	Does Property have a Water Well? (YES/NO)	Well Use	Well Depth/ Material Screened
70	12819 ALLEN RD			
1.4	0 CURRIERS RD	YES	Drinking, household supply	2 wells; 45/185 feet / Soil
23	13469 LAKE ST			
74	11269 CURRIERS RD			
92	13340 ALLEN RD			
78	13490 GROVE ST			
62	10660 OLEAN RD	YES	Drinking, household supply	Unknown / Unknown
18	10500 S PROTECTION RD			
82	0 S PROTECTION RD			
83	12580 HAND RD	YES	Drinking, household supply	Unknown / Unknown
84	10500 OLEAN RD			
88	11400 SAVAGE RD	YES	Drinking, household supply	70 feet / Unknown
06	10972 SAVAGE RD			
66	10430 S PROTECTION RD			
96	0 MILLER AVE	NO	N/A	N/A
96	13439 LAKE ST	YES	Drinking, household supply	140 feet / Unknown
100	11580 SAVAGE RD			
101	13319 MILLER AVE	YES	Drinking, household supply	21 feet / Unknown
105	0 OLEAN RD	ON	N/A	N/A
108	13670 ALLEN RD			
110	13659 MILLER AVE			
111	13599 MILLER AVE	YES	Drinking, household supply	40 feet / Unknown
112	13355 ALLEN RD	ON	N/A	N/A
113	12470 HAND RD	YES	Drinking, household supply	60 feet / Unknown
123	11620 OLEAN RD	ON	A/N	N/A
127	10420 S PROTECTION RD	YES	Drinking, household supply	Unknown / Unknown
130	13290 ALLEN RD	YES	Drinking, household supply	40 feet / Overburden
131	10966 SAVAGE RD	YES	No drinking, seasonal camp	Unknown / Soil goes dry
132	10986 SAVAGE RD	YES	Drinking, household supply	50 feet / Unknown
133	11439 OLEAN RD			
136	0 SAVAGE RD			
137	0 HAND RD	YES	Drinking, household supply	280 feet / Unknown
138	10440 OLEAN RD			

Page 3 of 5

Attachment 3.
Parcels Receiving Water Well Questionnaire and Summary of Responses

Tax Parcel ID Number Property Address Does Property have a vater Well? (FID) 0 ALLEN RD ND 139 0 ALLEN RD ND 141 0 OALLEN RD YES 145 10840 SAVAGE RD YES 147 0 OLEAN RD YES 155 10000 OLEAN RD YES 156 0 CURRIERS RD YES 156 0 CURRIERS RD YES 160 10010 OLEAN RD YES 160 10010 OLEAN RD YES 169 13450 LAKE ST NO 181 0 OLEAN RD NO 182 11420 OLEAN RD NO 183 11420 OLEAN RD NO 188 1240 ALLEN RD NO 188 1240 ALLEN RD NO 189 11420 OLEAN RD YES 196 11440 SAVAGE RD NO 197 11440 OLEAN RD YES 201 11430 OLEAN RD YES 202 11409 OLEAN RD <t< th=""><th></th><th></th></t<>		
0 ALLEN RD 0 ALLEN RD 10840 SAVAGE RD 11320 SAVAGE RD 11320 SAVAGE RD 0 OLEAN RD 10409 OLEAN RD 10409 OLEAN RD 0 CURRIERS RD 99990 OLEAN RD 10409 OLEAN RD 10409 OLEAN RD 10409 OLEAN RD 10400 OLEAN RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 11240 ALLEN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD	Does Property have a Water Well? (YES/NO)	Well Depth/ Material Screened
0 ALLEN RD 10840 SAVAGE RD 11320 SAVAGE RD 0 OLEAN RD 10409 OLEAN RD 10409 OLEAN RD 10619 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13450 LAKE ST 13450 LAKE ST 11420 OLEAN RD 0 OLEAN RD 11209 CURRIERS RD 11209 CURRIERS RD 11209 CURRIERS RD 112400 ALLEN RD 12400 ALLEN RD 12400 ALLEN RD 114409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 114409 OLEAN RD 114409 OLEAN RD 114409 OLEAN RD 114409 OLEAN RD 114409 OLEAN RD 114409 OLEAN RD 114409 OLEAN RD	NO N/A	N/A
10840 SAVAGE RD 11320 SAVAGE RD 0 OLEAN RD 10409 OLEAN RD 10409 OLEAN RD 10409 OLEAN RD 10619 OLEAN RD 12955 ALLEN RD 13510 ALLEN RD 0 OLEAN RD 0 OLEAN RD 11209 CURRIERS RD 11420 OLEAN RD 11420 OLEAN RD 11420 OLEAN RD 11440 ALLEN RD 11440 ALLEN RD 11440 OLEAN RD 11440 OLEAN RD 11440 OLEAN RD 11440 OLEAN RD 11440 OLEAN RD 11440 OLEAN RD 11440 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11469 OLEAN RD 11459 OLEAN RD		
11320 SAVAGE RD 0 OLEAN RD 10500 OLEAN RD 10409 OLEAN RD 0 CURRIERS RD 99990 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13510 ALLEN RD 0 OLEAN RD 11420 OLEAN RD 11420 OLEAN RD 11420 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11400 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD	YES Drinking, household supply	120 feet / Unknown
0 OLEAN RD 10500 OLEAN RD 10409 OLEAN RD 0 CURRIERS RD 99990 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13510 ALLEN RD 0 OLEAN RD 0 OLEAN RD 11209 CURRIERS RD 11209 CURRIERS RD 112400 ALLEN RD 11240 OLEAN RD 112400 ALLEN RD 112400 ALLEN RD 112400 ALLEN RD 112400 ALLEN RD 112400 ALLEN RD 11250 ALLEN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD	YES Drinking, household supply	95 feet / Bedrock
10500 OLEAN RD 10409 OLEAN RD 0 CURRIERS RD 99990 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13510 ALLEN RD 0 OLEAN RD 0 OLEAN RD 11420 OLEAN RD 11420 OLEAN RD 11440 ALLEN RD 11440 SAVAGE RD 11429 OLEAN RD 11429 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11479 LEN RD 11469 OLEAN RD 11469 OLEAN RD 11469 OLEAN RD 11479 LEN RD 11479 LEN RD 11479 LEN RD 11479 OLEAN RD		
10409 OLEAN RD 0 CURRIERS RD 99990 OLEAN RD 10619 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13510 ALLEN RD 0 OLEAN RD 0 OLEAN RD 11209 CURRIERS RD 11209 CURRIERS RD 12479 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 OLEAN RD 11400 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD	YES Drinking, household supply	Unknown / Unknown
0 CURRIERS RD 99990 OLEAN RD 10619 OLEAN RD 12955 ALLEN RD 13510 ALLEN RD 13510 ALLEN RD 0 OLEAN RD 0 OLEAN RD 11209 CURRIERS RD 12400 ALLEN RD 12400 ALLEN RD 11420 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 13509 ALLEN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD	YES Drinking, household supply	Unknown / Unknown
99990 OLEAN RD 10619 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13450 LAKE ST 13510 ALLEN RD 0 OLEAN RD 0 ALLEN RD 11420 OLEAN RD 112400 ALLEN RD 112400 ALLEN RD 114400 ALLEN RD 11429 OLEAN RD 11429 OLEAN RD 11429 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD		
10619 OLEAN RD 12955 ALLEN RD 13450 LAKE ST 13510 ALLEN RD 0 OLEAN RD 0 OLEAN RD 11420 OLEAN RD 11209 CURRIERS RD 12470 ALLEN RD 12470 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11400 ALLEN RD 11450 ALLEN RD 11450 ALLEN RD 11450 ALLEN RD	YES Drinking, household supply	350 feet / Unknown; seasonal use
12955 ALLEN RD 13450 LAKE ST 13510 ALLEN RD 99999 S PROTECTION RD 0 OLEAN RD 11420 OLEAN RD 11209 CURRIERS RD 12470 ALLEN RD 12470 ALLEN RD 12470 ALLEN RD 11400 ALLEN RD 11429 OLEAN RD 11429 OLEAN RD 10450 OLEAN RD 10450 OLEAN RD 11409 OLEAN RD 11509 OLEAN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD 11509 ALLEN RD		
13510 ALLEN RD 13510 ALLEN RD 0 OLEAN RD 0 ALLEN RD 11420 OLEAN RD 112400 ALLEN RD 12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11429 OLEAN RD 11429 OLEAN RD 10450 OLEAN RD 10450 OLEAN RD 10450 OLEAN RD 10500 OLEAN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11450 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD	YES Drinking, household supply	100 feet / Overburden
13510 ALLEN RD 99999 S PROTECTION RD 0 OLLEAN RD 11420 OLEAN RD 11209 CURRIERS RD 12400 ALLEN RD 12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11429 OLEAN RD 10450 OLEAN RD 10450 OLEAN RD 10500 OLEAN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 11409 OLEAN RD 11409 OLEAN RD 11450 OLEAN RD 11450 OLEAN RD 11450 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD		
99999 S PROTECTION RD 0 OLEAN RD 0 ALLEN RD 11420 OLEAN RD 11209 CURRIERS RD 12400 ALLEN RD 12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11429 OLEAN RD 10450 OLEAN RD 10450 OLEAN RD 10500 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD		
0 OLEAN RD 0 ALLEN RD 11420 OLEAN RD 11209 CURRIERS RD 12400 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11429 OLEAN RD 11429 OLEAN RD 10450 OLEAN RD 11409 OLEAN RD 11509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 11409 OLEAN RD 11409 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD	NO NA	N/A
0 ALLEN RD 11420 OLEAN RD 11209 CURRIERS RD 12400 ALLEN RD 12479 ALLEN RD 13000 ALLEN RD 11140 SAVAGE RD 11429 OLEAN RD 10450 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11509 ALLEN RD 13509 ALLEN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11409 OLEAN RD 11450 OLEAN RD		
11209 CURRIERS RD 11209 CURRIERS RD 12400 ALLEN RD 12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11140 SAVAGE RD 10450 OLEAN RD 10500 OLEAN RD 11409 OLEAN RD 11500 OLEAN RD 13500 ALLEN RD 1350 ALLEN RD 13500 ALLEN RD 11459 OLEAN RD 11459 OLEAN RD 11459 OLEAN RD		
11209 CURRIERS RD 12400 ALLEN RD 12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11140 SAVAGE RD 10450 OLEAN RD 10500 OLEAN RD 11409 OLEAN RD 11509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 13509 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD		
12400 ALLEN RD 12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11140 SAVAGE RD 11429 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 11500 OLEAN RD 13250 ALLEN RD 13250 ALLEN RD 13250 ALLEN RD 13250 ALLEN RD 13479 LAKE ST		
12479 ALLEN RD 13460 LAKE ST 13000 ALLEN RD 11429 OLEAN RD 10450 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 11500 OLEAN RD 13550 ALLEN RD 13550 ALLEN RD 13550 ALLEN RD 13550 ALLEN RD 13550 ALLEN RD 13550 ALLEN RD		
13460 LAKE ST 13000 ALLEN RD 11140 SAVAGE RD 11429 OLEAN RD 10450 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 11500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD 13500 ALLEN RD		
13000 ALLEN RD 11140 SAVAGE RD 11429 OLEAN RD 10450 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 13500 ALLEN RD 1350 ALLEN RD 13550 ALLEN RD 13550 ALLEN RD 13550 ALLEN RD		
11140 SAVAGE RD 11429 OLEAN RD 10450 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 10500 OLEAN RD 13250 ALLEN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD		
11429 OLEAN RD 10450 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 10500 OLEAN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD		
10450 OLEAN RD 10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 10500 OLEAN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD	NO N/A	N/A
10930 SAVAGE RD 13509 ALLEN RD 11409 OLEAN RD 13250 ALLEN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD	YES Drinking, household supply	90 feet / Unknown
13509 ALLEN RD 11409 OLEAN RD 10500 OLEAN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD		
11409 OLEAN RD 10500 OLEAN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD		
10500 OLEAN RD 13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD		
13250 ALLEN RD 13479 LAKE ST 11459 OLEAN RD	YES Drinking, household supply	270 feet / Unknown
13479 LAKE ST 11459 OLEAN RD		
	NO N/A	N/A
218 10760 OLEAN RD YES	YES Drinking, household supply	80 feet / Unknown

Page 4 of 5

Attachment 3.
Parcels Receiving Water Well Questionnaire and Summary of Responses

		-		
Tax Parcel ID Number (FID)	Property Address	Does Property have a Water Well? (YES/NO)	Well Use	Well Depth/ Material Screened
219	10359 OLEAN RD	YES	Drinking, household supply	319 feet / Bedrock
220	0 MILLER AVE			
221	11200 SAVAGE RD	YES	Drinking, household supply	130 feet / Unknown
222	13729 MILLER AVE	YES	Drinking, household supply	50 feet / Unknown
227	0 S PROTECTION RD			
228	0 S PROTECTION RD			
229	12865 ALLEN RD	YES	Drinking, household supply	50 feet / Unknown
230	0 ALLEN RD	ON	N/A	Y/N
235	11410 OLEAN RD			
239	13079 ALLEN RD	YES	Drinking, household supply	18 feet / Overburden
242	11550 OLEAN RD			
245	0 SAVAGE RD			
246	13620 CURRIERS RD	YES	Information not for parcel	Information not for parcel
248	11430 SAVAGE RD			
251	12690 ALLEN RD			
257	10420 OLEAN RD			
258	12999 ALLEN RD			
262	10870 SAVAGE RD	YES	Drinking, household supply	60 feet / Unknown
267	13655 MILLER AVE			
268	0 OLEAN RD			
270	10759 OLEAN RD			
271	10500 OLEAN RD			
274	12920 ALLEN RD			
275	13310 ALLEN RD			
276	11329 SAVAGE RD			
278	0 S PROTECTION RD			
279	13140 ALLEN RD			
282	13529 LAKE ST			
283	10810 SAVAGE RD			
286	10430 OLEAN RD			
288	10400 OLEAN RD			
290	0 CURRIERS RD	YES	Drinking, household supply	80 feet / Unknown
296	0 S PROTECTION RD	ON	N/A	N/A

GEI Consultants, Inc., P.C.

Parcels Receiving Water Well Questionnaire and Summary of Responses Attachment 3.

•	-			
Tax Parcel ID Number (FID)	Property Address	Does Property have a Water Well? (YES/NO)	Well Use	Well Depth/ Material Screened
297	10946 SAVAGE RD	YES	Drinking, household supply	39 feet / Overburden
299	10959 OLEAN RD			
304	13300 ALLEN RD	YES	Drinking, household supply	21 feet / Overburden
208	13419 ALLEN RD			
608	10429 OLEAN RD	YES	Drinking, household supply	Unknown / Unknown
310	10799 OLEAN RD			
315	12329 ALLEN RD			
323	10500 OLEAN RD			
324	12509 ALLEN RD			
325	11349 CURRIERS RD	YES	Drinking, household supply	100 feet / Unknown
328	11569 OLEAN RD			
330	10945 OLEAN RD	YES	Drinking, commercial supply	85 feet / 75 gpm
331	10459 S PROTECTION RD			
332	0 OLEAN RD			
334	13270 ALLEN RD			
342	13045 ALLEN RD			
346	0 SAVAGE RD			
348	0 ALLEN RD			
349	0 SAVAGE RD			
350	0 ALLEN RD			
351	11550 OLEAN RD			
352	10460 S PROTECTION RD			
926	13459 ALLEN RD			
898	10500 OLEAN RD	YES	Drinking, household supply	130 feet / Artesian
298	67 OLEAN RD			
370	10659 OLEAN RD			
371	10952 SAVAGE RD			
372	13010 HAND RD			
373	11600 OLEAN RD	NO	N/A	N/A

A blank space indicates property owner did not return the water well questionnaire. $N/A = Not \ applicable$.

Hydrogeologic Investigation Report Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York June 2020, Revised April 2022

Appendix G

Soil Types and USDA Soil Mapping

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Erie County, New York

USDA Mapped Soils

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

This product is generated from the USDA-NRCS certified data as distance and area. A projection that preserves area, such as the Maps from the Web Soil Survey are based on the Web Mercator contrasting soils that could have been shown at a more detailed Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil projection, which preserves direction and shape but distorts Soil map units are labeled (as space allows) for map scales Source of Map: Natural Resources Conservation Service Albers equal-area conic projection, should be used if more line placement. The maps do not show the small areas of The soil surveys that comprise your AOI were mapped at 1:15,800. Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Coordinate System: Web Mercator (EPSG:3857) MAP INFORMATION Warning: Soil Map may not be valid at this scale. Version 19, Sep 16, 2019 Soil Survey Area: Erie County, New York of the version date(s) listed below. Web Soil Survey URL: Survey Area Data: 1:50,000 or larger. measurements. Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Nater Features **Fransportation 3ackground** MAP LEGEND W 8 ◁ ŧ Soil Map Unit Polygons Severely Eroded Spot Area of Interest (AOI) Soil Map Unit Points Miscellaneous Water Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Rock Outcrop Special Point Features **Gravelly Spot** Saline Spot Sandy Spot **Borrow Pit** Lava Flow Clay Spot **Gravel Pit** Area of Interest (AOI) Sinkhole Blowout Landfill 9 Soils

Date(s) aerial images were photographed: Jul 29, 2011—Oct 18,

Slide or Slip Sodic Spot

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

imagery displayed on these maps. As a result, some minor

shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Сс	Canandaigua silt loam	23.8	8.4%
Cd	Canandaigua mucky silt loam	1.9	0.7%
CeA	Castile gravelly loam, 0 to 3 percent slopes	15.5	5.5%
СеВ	Castile gravelly loam, 3 to 8 percent slopes	25.0	8.8%
CkA	Chenango gravelly loam, 0 to 3 percent slopes	0.5	0.2%
CkB	Chenango gravelly loam, 3 to 8 percent slopes	36.1	12.7%
CkC	Chenango gravelly loam, 8 to 15 percent slopes	27.4	9.6%
DcB	Darien silt loam, silty substratum, 3 to 8 percent slop es	3.3	1.2%
Dp	Dumps	15.1	5.3%
ErB	Erie channery silt loam, 3 to 8 percent slopes	6.7	2.4%
На	Halsey silt loam	38.8	13.6%
LgC	Langford channery silt loam, silty substratum, 8 to 15 percent slopes	10.8	3.8%
Pa	Palms muck	31.5	11.1%
Re	Red Hook silt loam	5.0	1.8%
RgA	Rhinebeck silt loam, 0 to 3 percent slopes	2.2	0.8%
RgB	Rhinebeck silt loam, 3 to 8 percent slopes	3.1	1.1%
RhC3	Rhinebeck silty clay loam, 8 to 15 percent slopes, seve relyeroded	4.7	1.6%
RkB	Rhinebeck gravelly loam, 3 to 8 percent slopes	14.4	5.1%
W	Water	18.9	6.6%
Totals for Area of Interest		284.7	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

Erie County, New York

Cc—Canandaigua silt loam

Map Unit Setting

National map unit symbol: 9rkd Elevation: 100 to 1,000 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Canandaigua and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canandaigua

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Silty and clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: silt loam H2 - 9 to 37 inches: silt loam H3 - 37 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.57 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 15 percent Available water storage in profile: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Lamson

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Canadice

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Lyons

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Niagara

Percent of map unit: 5 percent

Hydric soil rating: No

Lakemont

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Cd—Canandaigua mucky silt loam

Map Unit Setting

National map unit symbol: 9rkf Elevation: 100 to 1.000 feet

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Not prime farmland

Map Unit Composition

Canandaigua and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canandaigua

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Silty and clayey glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: mucky silt loam H2 - 9 to 37 inches: silt loam H3 - 37 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.57 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 15 percent Available water storage in profile: High (about 12.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D Hydric soil rating: Yes

Minor Components

Lakemont

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Canadice

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Lamson

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Niagara

Percent of map unit: 5 percent Hydric soil rating: No

Palms

Percent of map unit: 5 percent Landform: Marshes, swamps Hydric soil rating: Yes

CeA—Castile gravelly loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9rkg

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Castile and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Castile

Setting

Landform: Terraces, valley trains

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly loam H2 - 8 to 31 inches: very gravelly loam

H3 - 31 to 65 inches: stratified extremely gravelly sandy loam to loamy sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 5.95 in/hr)

Depth to water table: About 18 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: A/D Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

Hydric soil rating: No

Varysburg

Percent of map unit: 5 percent

Hydric soil rating: No

Chenango

Percent of map unit: 5 percent

Hydric soil rating: No

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

CeB—Castile gravelly loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9rkh

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Castile and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Castile

Setting

Landform: Valley trains, terraces

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly loam H2 - 8 to 31 inches: very gravelly loam

H3 - 31 to 65 inches: stratified extremely gravelly sandy loam to loamy sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 5.95 in/hr)

Depth to water table: About 18 to 24 inches

Frequency of flooding: None Frequency of ponding: None

Available water storage in profile: Low (about 3.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2w

Hydrologic Soil Group: A/D Hydric soil rating: No

Minor Components

Unnamed soils

Percent of map unit: 5 percent

Hydric soil rating: No

Chenango

Percent of map unit: 5 percent

Hydric soil rating: No

Varysburg

Percent of map unit: 5 percent

Hydric soil rating: No

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

CkA—Chenango gravelly loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9rkp Elevation: 600 to 1,800 feet

Mean annual precipitation: 36 to 48 inches

Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Chenango and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chenango

Setting

Landform: Valley trains, terraces

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly loam H2 - 8 to 30 inches: very gravelly loam

H3 - 30 to 60 inches: very gravelly loamy sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Castile

Percent of map unit: 5 percent

Hydric soil rating: No

Allard

Percent of map unit: 5 percent

Hydric soil rating: No

Valois

Percent of map unit: 5 percent

Hydric soil rating: No

Alton

Percent of map unit: 5 percent

Hydric soil rating: No

Varysburg

Percent of map unit: 5 percent

Hydric soil rating: No

CkB—Chenango gravelly loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9rkq Elevation: 600 to 1.800 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Chenango and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chenango

Setting

Landform: Valley trains, terraces

Landform position (two-dimensional): Summit Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly loam H2 - 8 to 30 inches: very gravelly loam

H3 - 30 to 60 inches: very gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2s

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Castile

Percent of map unit: 5 percent

Hydric soil rating: No

Allard

Percent of map unit: 5 percent

Hydric soil rating: No

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

Alton

Percent of map unit: 5 percent

Hydric soil rating: No

Valois

Percent of map unit: 5 percent

Hydric soil rating: No

CkC—Chenango gravelly loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9rkr Elevation: 600 to 1,800 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Chenango and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chenango

Setting

Landform: Valley trains, terraces

Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Gravelly loamy glaciofluvial deposits over sandy and gravelly glaciofluvial deposits, derived mainly from sandstone, shale, and siltstone

Typical profile

H1 - 0 to 8 inches: gravelly loam H2 - 8 to 30 inches: very gravelly loam

H3 - 30 to 60 inches: very gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 5.95 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Castile

Percent of map unit: 5 percent

Hydric soil rating: No

Allard

Percent of map unit: 5 percent

Hydric soil rating: No

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

Valois

Percent of map unit: 5 percent

Hydric soil rating: No

Alton

Percent of map unit: 5 percent

Hydric soil rating: No

DcB—Darien silt loam, silty substratum, 3 to 8 percent slop es

Map Unit Setting

National map unit symbol: 9rlh

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Darien, silty substratum, and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Darien, Silty Substratum

Setting

Landform: Drumlinoid ridges, hills, till plains

Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy till derived predominantly from calcareous gray shale

Typical profile

H1 - 0 to 13 inches: silt loam

H2 - 13 to 34 inches: silty clay loam

H3 - 34 to 48 inches: channery silty clay loam

H4 - 48 to 60 inches: silty clay loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

llion

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Danley

Percent of map unit: 5 percent

Hydric soil rating: No

Langford

Percent of map unit: 5 percent

Hydric soil rating: No

Honeoye

Percent of map unit: 5 percent

Hydric soil rating: No

Remsen

Percent of map unit: 5 percent

Hydric soil rating: No

Dp—Dumps

Map Unit Setting

National map unit symbol: 9rlm Elevation: 100 to 1,600 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Not prime farmland

Map Unit Composition

Dumps: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dumps

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

Hydric soil rating: Unranked

Minor Components

Mardin

Percent of map unit: 5 percent

Hydric soil rating: No

Darien

Percent of map unit: 5 percent

Hydric soil rating: No

Honeoye

Percent of map unit: 5 percent

Hydric soil rating: No

Canandaigua

Percent of map unit: 5 percent

Landform: Depressions Hydric soil rating: Yes

Lakemont

Percent of map unit: 5 percent Landform: Depressions

Hydric soil rating: Yes

ErB—Erie channery silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2wn35 Elevation: 330 to 2.460 feet

Mean annual precipitation: 31 to 70 inches
Mean annual air temperature: 39 to 52 degrees F

Frost-free period: 105 to 180 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Erie and similar soils: 80 percent Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Erie

Setting

Landform: Hills

Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope, interfluve

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Till

Typical profile

Ap - 0 to 9 inches: channery silt loam
E - 9 to 13 inches: channery silt loam
Bg - 13 to 15 inches: channery silt loam
Bx - 15 to 38 inches: channery silt loam
C - 38 to 72 inches: channery loam

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: 10 to 21 inches to fragipan Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.01

to 0.14 in/hr)

Depth to water table: About 7 to 14 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 10 percent

Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Available water storage in profile: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Langford

Percent of map unit: 10 percent

Landform: Hills

Landform position (two-dimensional): Backslope, shoulder Landform position (three-dimensional): Interfluve, side slope

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Fremont

Percent of map unit: 5 percent

Landform: Hills

Landform position (two-dimensional): Footslope, summit Landform position (three-dimensional): Base slope, interfluve

Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Chippewa

Percent of map unit: 5 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

Ha—Halsey silt loam

Map Unit Setting

National map unit symbol: 9rm6

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Not prime farmland

Map Unit Composition

Halsey and similar soils: 75 percent Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Halsey

Setting

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Loamy glaciofluvial deposits over sandy and gravelly glaciofluvial

deposits

Typical profile

H1 - 0 to 8 inches: silt loam

H2 - 8 to 20 inches: gravelly silt loam

H3 - 20 to 25 inches: very gravelly sandy loam H4 - 25 to 60 inches: stratified very gravelly sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.57 to 1.98 in/hr)

Depth to water table: About 0 to 6 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Low (about 5.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Fluvaquents

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

Wayland

Percent of map unit: 5 percent Landform: Flood plains Hydric soil rating: Yes

Unnamed soils

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

Farnham

Percent of map unit: 5 percent

Hydric soil rating: No

LgC—Langford channery silt loam, silty substratum, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9rmy

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Langford, silty substratum, and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Langford, Silty Substratum

Setting

Landform: Hills, till plains, drumlinoid ridges

Landform position (two-dimensional): Summit Landform position (three-dimensional): Crest

Down-slope shape: Concave Across-slope shape: Convex

Parent material: Loamy till derived from siltstone, sandstone, shale, and some

limestone

Typical profile

H1 - 0 to 6 inches: channery silt loam H2 - 6 to 16 inches: channery silt loam H3 - 16 to 40 inches: channery silt loam

H4 - 40 to 60 inches: silt loam

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: 15 to 28 inches to fragipan Natural drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 14 to 27 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Varysburg

Percent of map unit: 4 percent

Hydric soil rating: No

Hudson

Percent of map unit: 4 percent

Hydric soil rating: No

Erie

Percent of map unit: 4 percent

Hydric soil rating: No

Rhinebeck

Percent of map unit: 4 percent

Hydric soil rating: No

Darien

Percent of map unit: 4 percent

Hydric soil rating: No

Pa—Palms muck

Map Unit Setting

National map unit symbol: 9rp2 Elevation: 250 to 1,500 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Not prime farmland

Map Unit Composition

Palms and similar soils: 75 percent Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Palms

Setting

Landform: Swamps, marshes

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Talf

Down-slope shape: Concave Across-slope shape: Concave

Parent material: Organic material over loamy glacial drift

Typical profile

H1 - 0 to 38 inches: muck H2 - 38 to 60 inches: loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Very poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 1.98 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: None Frequency of ponding: Frequent

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Very high (about 19.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w Hydrologic Soil Group: B/D

Hydrologic Soil Group: B/I Hydric soil rating: Yes

Minor Components

Canandaigua

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Unnamed soils

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Lamson

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Edwards

Percent of map unit: 5 percent Landform: Marshes, swamps Hydric soil rating: Yes

Halsey

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Re—Red Hook silt loam

Map Unit Setting

National map unit symbol: 9rpf

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Red hook and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Red Hook

Setting

Landform: Valley trains, terraces

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy glaciofluvial deposits

Typical profile

H1 - 0 to 10 inches: silt loam H2 - 10 to 23 inches: loam

H3 - 23 to 60 inches: stratified channery loam to sandy loam

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to

high (0.20 to 1.98 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 1 percent

Available water storage in profile: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D Hydric soil rating: No

Minor Components

Halsey

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Farnham

Percent of map unit: 5 percent

Hydric soil rating: No

Castile

Percent of map unit: 5 percent

Hydric soil rating: No

Rhinebeck

Percent of map unit: 5 percent

Hydric soil rating: No

Unnamed soils

Percent of map unit: 5 percent

Hydric soil rating: No

RgA—Rhinebeck silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9rpk Elevation: 80 to 1,000 feet

Mean annual precipitation: 36 to 48 inches

Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Rhinebeck and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rhinebeck

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Clayey and silty glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: silt loam H2 - 9 to 37 inches: silty clay H3 - 37 to 70 inches: silty clay

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Churchville

Percent of map unit: 5 percent

Hydric soil rating: No

Odessa

Percent of map unit: 5 percent

Hydric soil rating: No

Hudson

Percent of map unit: 5 percent

Hydric soil rating: No

Niagara

Percent of map unit: 5 percent

Hydric soil rating: No

Canadice

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

RgB—Rhinebeck silt loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9rpl Elevation: 80 to 1,000 feet

Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Rhinebeck and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rhinebeck

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Clayey and silty glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: silt loam H2 - 9 to 37 inches: silty clay H3 - 37 to 70 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Churchville

Percent of map unit: 5 percent

Hydric soil rating: No

Niagara

Percent of map unit: 5 percent

Hydric soil rating: No

Hudson

Percent of map unit: 5 percent

Hydric soil rating: No

Canadice

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Odessa

Percent of map unit: 5 percent

Hydric soil rating: No

RhC3—Rhinebeck silty clay loam, 8 to 15 percent slopes, seve relyeroded

Map Unit Setting

National map unit symbol: 9rpm Elevation: 80 to 1,000 feet

Mean annual precipitation: 36 to 48 inches
Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Not prime farmland

Map Unit Composition

Rhinebeck, severely eroded, and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rhinebeck, Severely Eroded

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Clayey and silty glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: silty clay loam H2 - 9 to 37 inches: silty clay H3 - 37 to 70 inches: silty clay

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Churchville

Percent of map unit: 5 percent

Hydric soil rating: No

Varysburg

Percent of map unit: 5 percent

Hydric soil rating: No

Hudson

Percent of map unit: 5 percent

Hydric soil rating: No

Canadice

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Collamer

Percent of map unit: 5 percent

Hydric soil rating: No

RkB—Rhinebeck gravelly loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 9rpp Elevation: 80 to 1,000 feet

Mean annual precipitation: 36 to 48 inches

Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 115 to 195 days

Farmland classification: Prime farmland if drained

Map Unit Composition

Rhinebeck and similar soils: 75 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rhinebeck

Setting

Landform: Lake plains

Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Clayey and silty glaciolacustrine deposits

Typical profile

H1 - 0 to 9 inches: gravelly loam H2 - 9 to 37 inches: silty clay H3 - 37 to 70 inches: silty clay

Properties and qualities

Slope: 3 to 8 percent

Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 6 to 18 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum in profile: 15 percent

Available water storage in profile: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D Hydric soil rating: No

Minor Components

Canadice

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Niagara

Percent of map unit: 5 percent

Hydric soil rating: No

Churchville

Percent of map unit: 5 percent

Hydric soil rating: No

Custom Soil Resource Report

Varysburg

Percent of map unit: 5 percent

Hydric soil rating: No

Red hook

Percent of map unit: 5 percent

Hydric soil rating: No

W-Water

Map Unit Setting

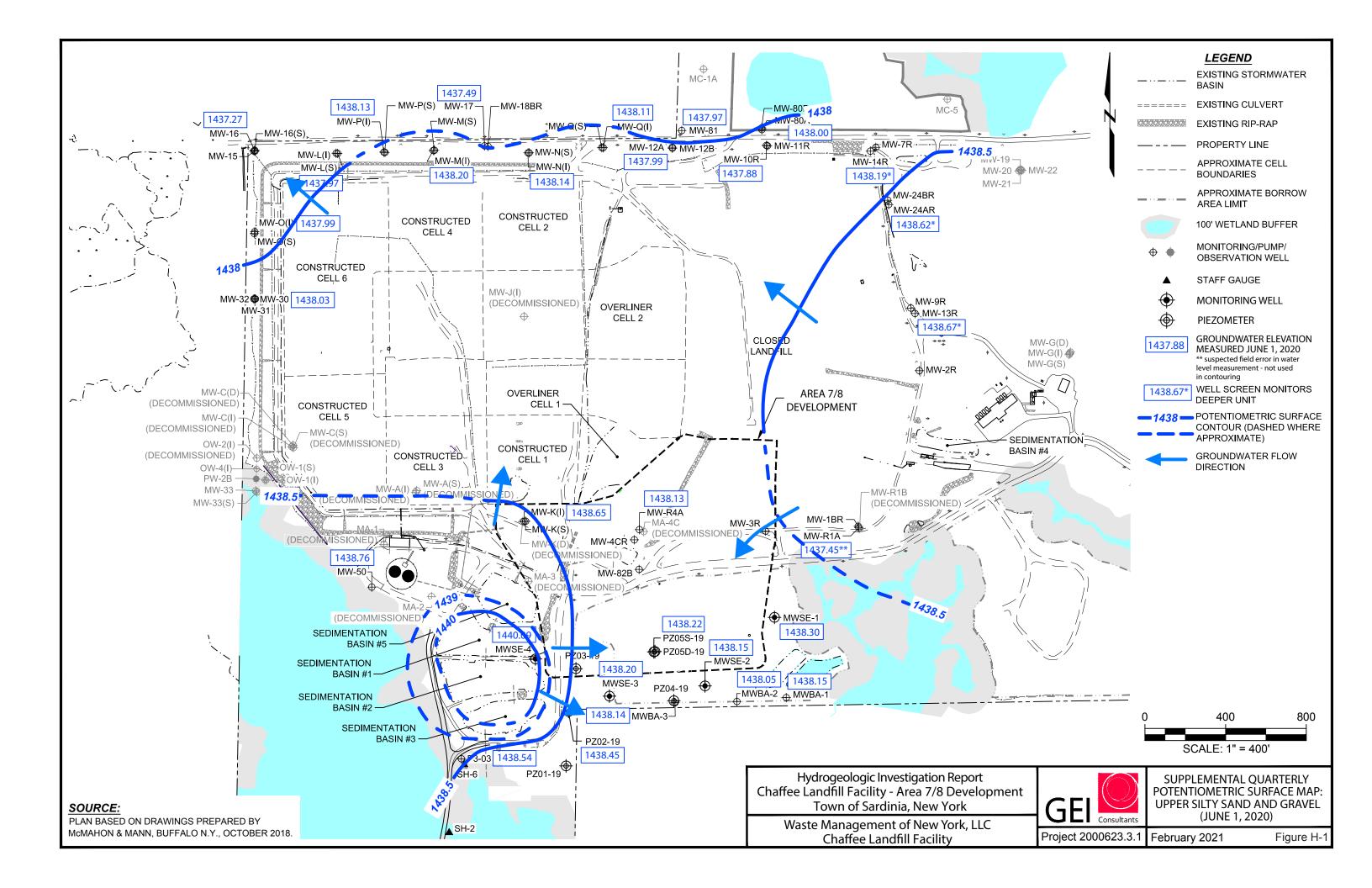
National map unit symbol: 9rr2

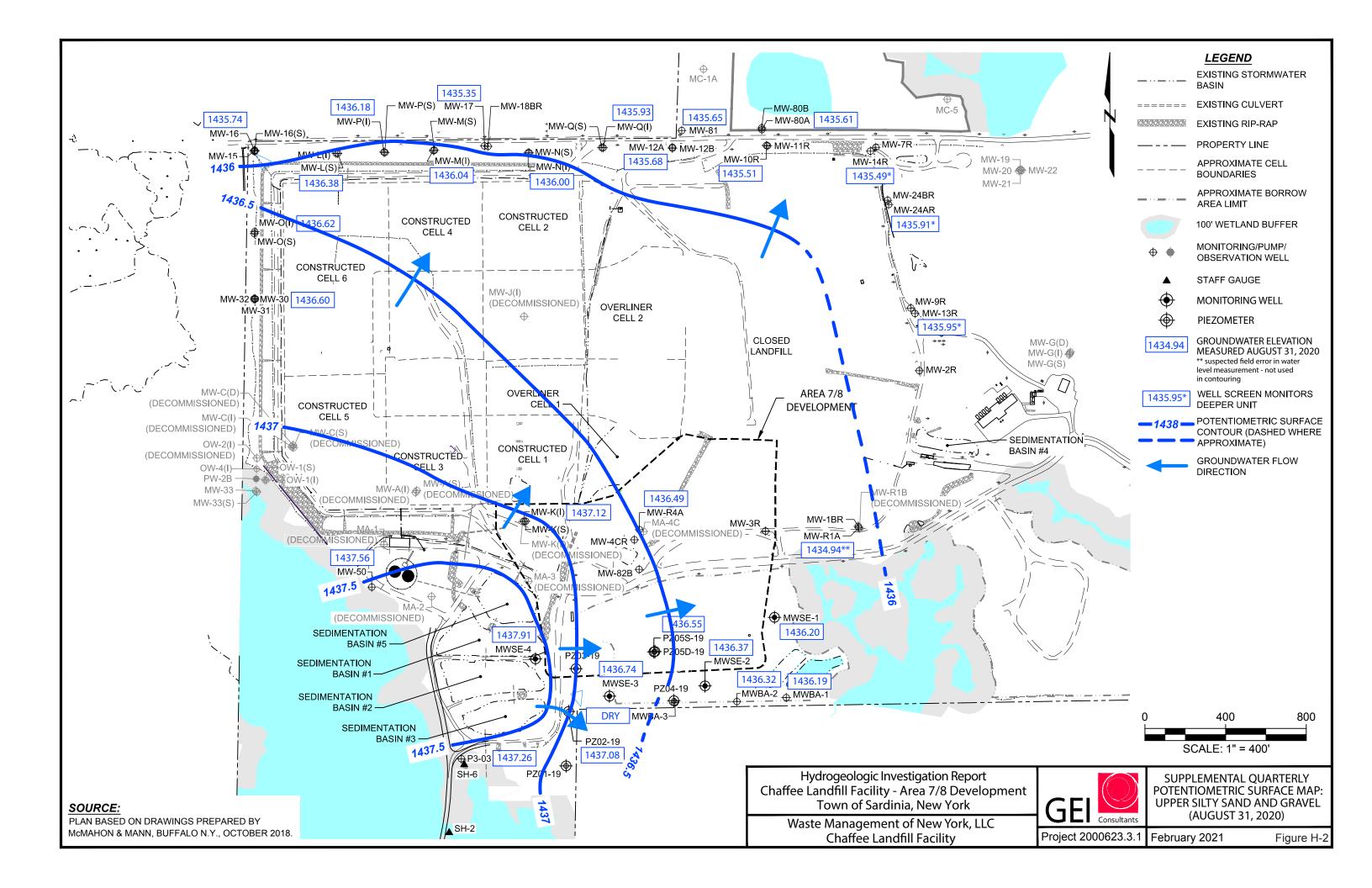
Mean annual precipitation: 36 to 48 inches Mean annual air temperature: 45 to 50 degrees F

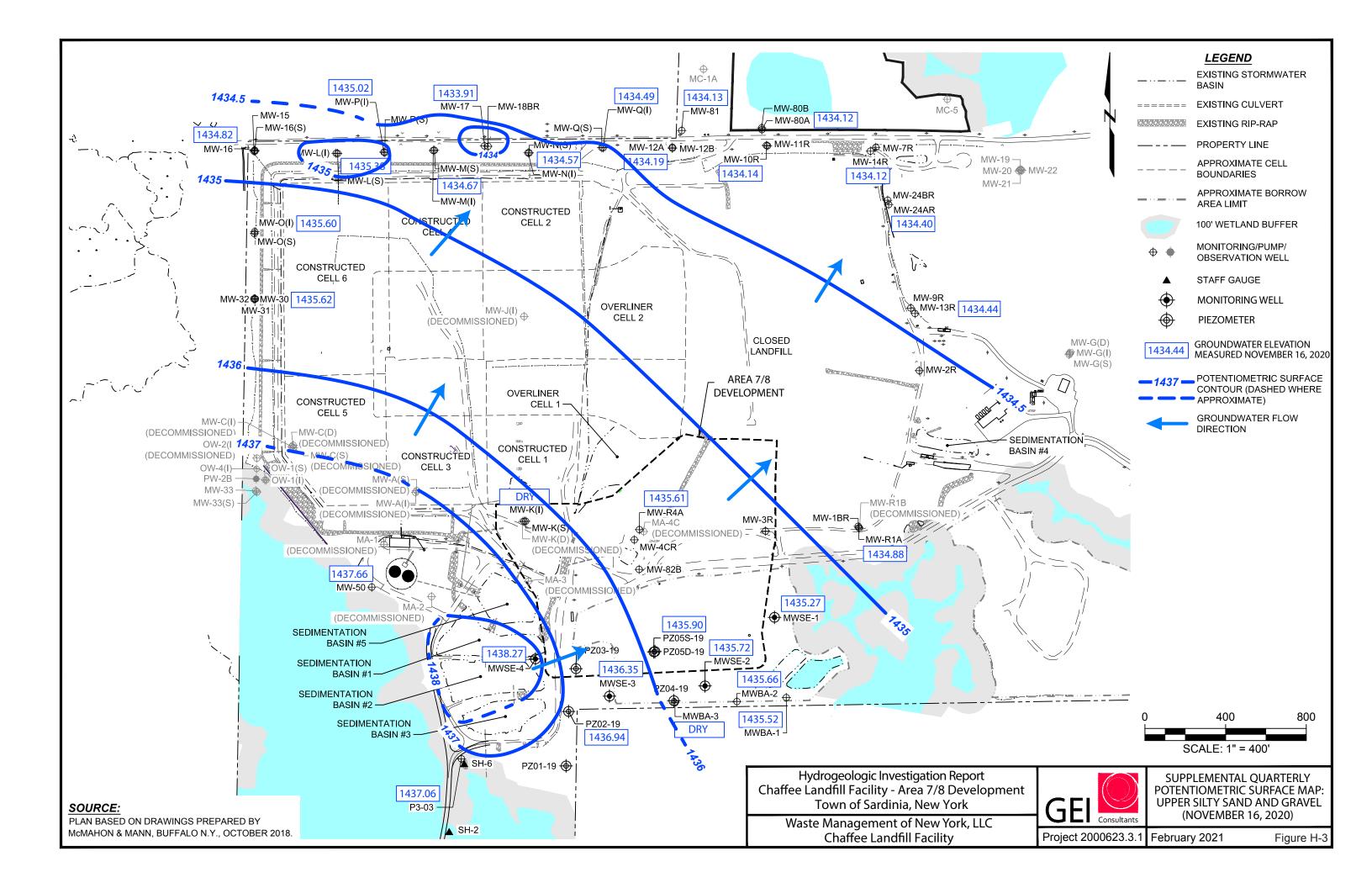
Frost-free period: 115 to 195 days

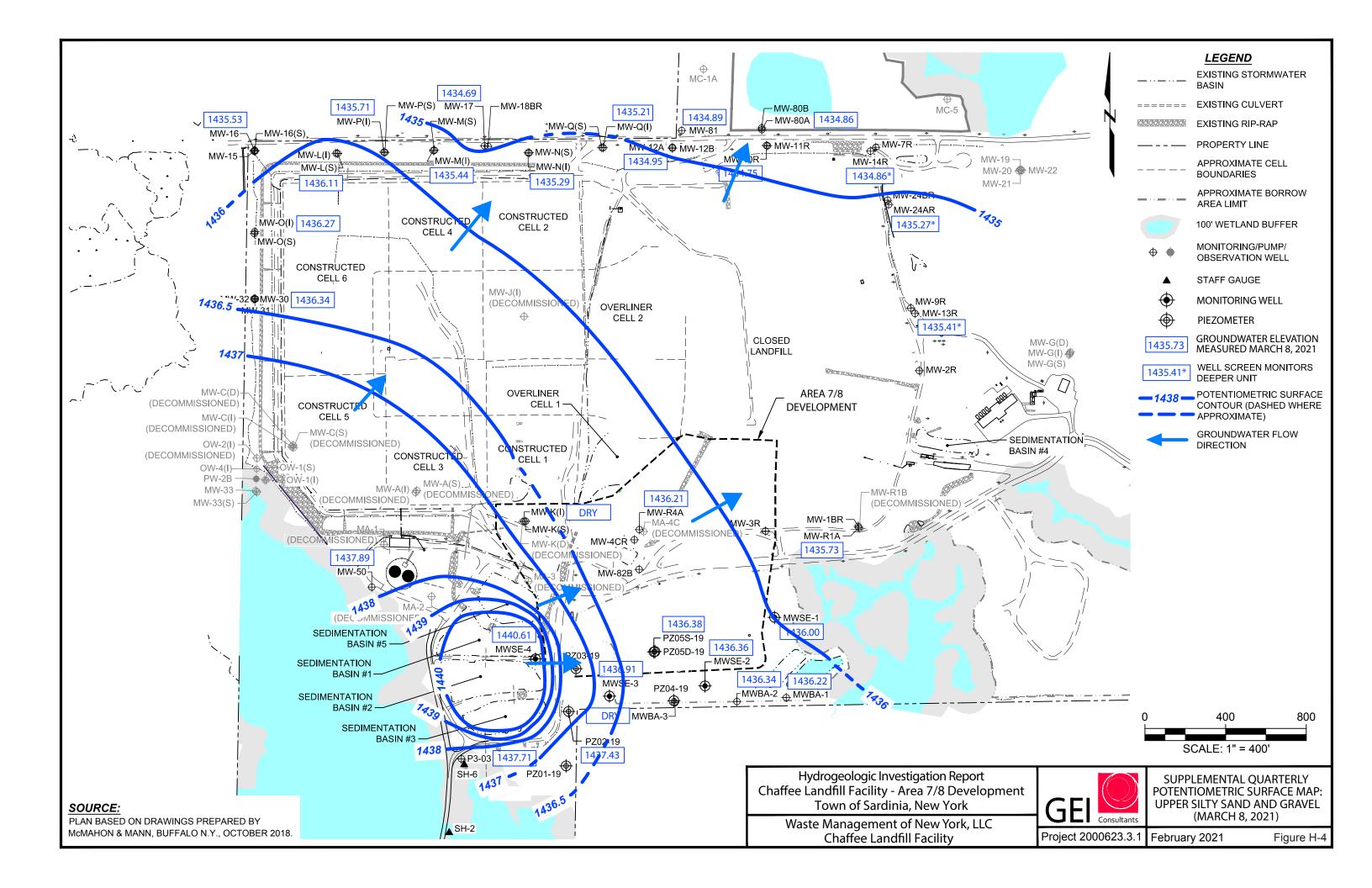
Farmland classification: Not prime farmland

Map Unit Composition


Water: 100 percent


Estimates are based on observations, descriptions, and transects of the mapunit.


Hydrogeologic Investigation Report Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York June 2020, Revised April 2022


Appendix H

Supplemental Upper Silty Sand and Gravel Groundwater Contour Maps (June 2020, August 2020, November 2020 and March 2021)

Hydrogeologic Investigation Report Chaffee Landfill Facility Area 7/8 Development Town of Sardinia, New York June 2020, Revised April 2022

Appendix I

Seepage Velocity Calculations

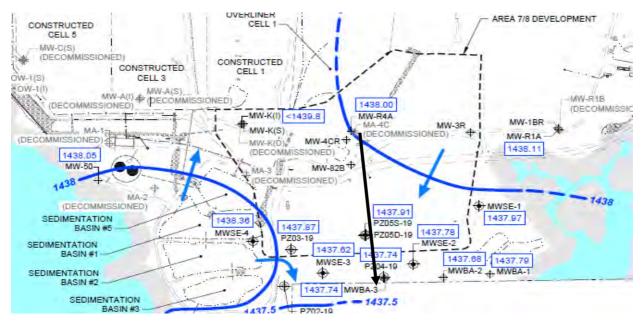
Appendix I - Seepage Velocity Calculations Area 7/8 Groundwater Seepage Velocity in the Upper Silty Sand and Gravel Unit

Calcs by: RHF Date: 3/30/2021 Checked by: MAC Date: 3/31/2021

The hydraulic gradient and groundwater seepage velocities were determined for the June and December 2019 and June and November 2020 groundwater gauging events as follows:

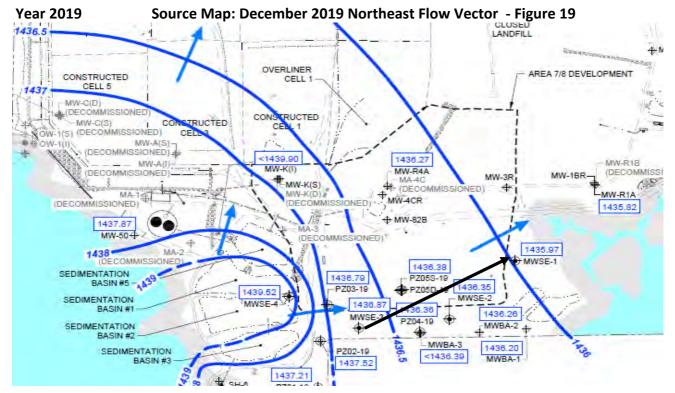
seepage velocity = v = K *i /η_e

where:


K = hydraulic conductivity* $i = \text{hydraulic gradient} = ((h_1-h_2))/L$ $\eta_e = \text{effective porosity**}$ $h_1 \text{ and } h_2 = \Delta \text{ groundwater elevation}$ L = horizontal distance

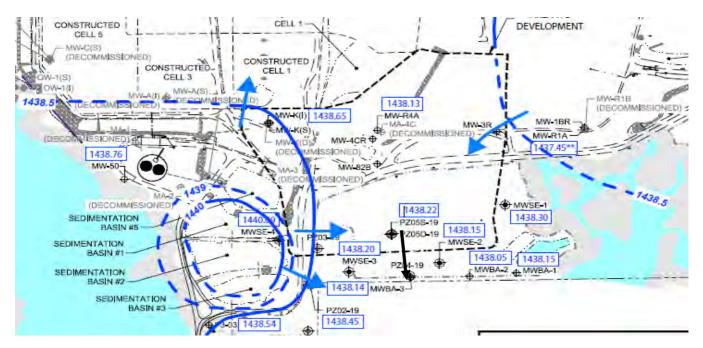
*Value for hydraulic conductivity from HIR Table 2.

Unit conversion is 1 cm/s = 2835 ft/day

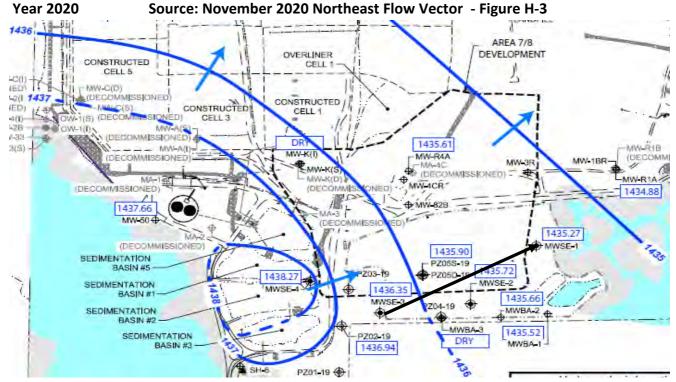

**Value for effective porosity gravelly sand from Fetter, 1994.

Year 2019 Source Map: June 2019 South Flow Vector - Figure 16

(South Groundwater Flow Vector Direction Wells MW-R4A to PZ04-19)


 $v = K *i / \eta_e$ k = 4.53x10-4 cm/S or 1.28 ft/day $\Delta h = 0.26 \text{ / } 840 \text{ ft}$ i = 0.00031 $\eta_e = 0.25$ v = 0.00159 ft/day or 0.58 ft/yr

(Northeast Groundwater Flow Vector Direction Wells MWSE-3 to MWSE-1)


 $v = K *i / \eta_e \qquad \qquad k = 4.53 x 10 - 4 \ cm/S \ or \qquad 1.28 \ ft/day$ $\Delta h = 0.90 \ / \ 896 \ ft$ i = 0.00100 $\eta_e = 0.25$ $v = 0.00516 \ ft/day \ or \qquad 1.88 \ ft/yr$

Year 2020 Source: June 2020 South Flow Vector - Figure H-1

(South Groundwater Flow Vector Direction Piezometers PZ05S-19 to PZ04-19)

 $v = K *i / \eta_e$ $k = 4.53 \times 10^{-4} \text{ cm/S or}$ 1.28 ft/day $\Delta h = 0.08 / 252 \text{ ft}$ i = 0.00032 $\eta_e = 0.25$ v = 0.00163 ft/day or 0.6 ft/yr

(Northeast Groundwater Flow Vector Direction Wells MWSE-3 to MWSE-1)

	Seepage Velocity Summary of South and Northeast Seasonal Flow Directions	
<u>Direction</u>	Individual events (velocity)	Average
South	2019 = 0.58 ft/yr	0.59 ft/yr
	2020 = 0.60 ft/yr	
		Net Vector Sum = 1.33 ft/year NE
Northeast	2019 = 1.88 ft/yr	2.07 ft/vr
	2020 = 2.26 ft/yr	2.07 19 91