

Title V Modification

NYSDEC Permit ID# 9-1462-00001/00013 Chaffee Landfill Chaffee, New York

Waste Management of New York, LLC

Table of Contents

1.	Introd	roduction1								
2.	Facili	ty Descript	ion	1						
	2.1	Existing Landfill Areas								
	2.2	Future La	andfill Areas	2						
	2.3	Landfill G	as Collection and Combustion System	2						
3.	Facili	ty Emissio	n Unit Descriptions	2						
	3.1	Emission	Unit Descriptions	2						
	3.2	Summary	of Project Emissions (New Emission Source LNDF4)	4						
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Landfill Gas Generation Fugitive Landfill Gas Landfill Gas Combustion Fugitive Dust Emissions – Area 7/8 Development Total Project Emissions – Area 7/8 Development	4 5 6						
	3.3	Summary	of Updated Total Facility Emissions	6						
		3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.7.1 3.3.7.2 3.3.7.3 3.3.7.4 3.3.7.5 3.3.7.6 3.3.7.7 3.3.8	Landfill Gas Generation Fugitive Landfill Gas Landfill Gas Combustion Engine Plant Tanks/Vents Leachate Storage Paint Booth Exempt Sources Propane Furnace [6NYCRR 201-3.2(C)(1)(i)] Natural Gas Furnace [6NYCRR 201-3.2(C)(1)(i)] Portable Gasoline Generators [6NYCRR 201-3.2(C)(3)(iii)] Dewatering Pump [6NYCRR 201-3.2(C)(3)(ii)] Odor Neutralizers [6NYCRR 201-3.2(C)(45)] Parts Washers [6NYCRR 201-3.2(C)(39)(i)] Storage of Petroleum Products [6NYCRR 201-3.2(C)(25)] Updated Total Facility Emissions	7 9 10 10 11 11 11 11 11 11 11 11						
4.	Regu	latory Disc	ussion	13						
5.	Title \	V Permit M	lodification Forms	14						
6.	6 NYCRR Part 212 Evaluation									

Figure Index

- Figure 1 LandGEM Modeled LFG Production from Area 7/8 Development
- Figure 2 LandGEM Modeled LFG Production from Existing Landfill Areas and Area 7/8 Development

Table Index

Table 1 Project Emission Potential - Area 7/8 Development Table 2 Summary of Landfill Gas Fugitive Emissions – Area 7/8 Development Table 2A Summary of Fugitive HAP Emissions - Area 7/8 Development Table 3 Summary of LFG Flare Emissions - Area 7/8 Development Table 3A Summary of Flare HAP Emissions - Area 7/8 Development Table 3B Summary of Flare Greenhouse Gas Emissions - Area 7/8 Development Table 4 Summary of Facility Potential Emissions Table 5 Summary of Landfill Gas Fugitive Emissions – Total Facility Table 5A Summary of Fugitive HAP Emissions – Total Facility Table 6 Summary of LFG Flare Emissions - Total Facility Table 6A Summary of Flare HAP Emissions - Total Facility Table 6B Summary of Flare Greenhouse Gas Emissions - Total Facility Table 7 Summary of Caterpillar 3516 Engine Emissions Table 7A Summary of Caterpillar 3516 Engine HAPS Emissions Table 7B Summary of Caterpillar 3516 Engine Greenhouse Gas Emissions Table 8 **Crankcase Ventilator Emissions** Table 9 Paint Booth Emissions Table 10 Summary of Exempt Emission Sources Table 10A Summary of Propane Heating Emissions Table 10B Summary of Natural Gas Heating Emissions Table 10C Portable Gasoline Generators Table 10D Diesel Dewatering Pump Table 10E Odor Neutralizers Table 10F Parts Washing Solvent Emissions

Appendix Index

Appendix A	Title V Air Permit Application Forms
Appendix B	Air Quality Modeling Report

1. Introduction

GHD has prepared the following emissions inventory of the Chaffee MSW landfill located in Chaffee, New York. The emissions inventory is intended as supporting information for the Title V Permit Modification for a proposed landfill expansion. This inventory includes the project emission potential from a proposed 5,081,955 cubic yard landfill expansion.

WMNY owns and operates the solid waste management facility located at 10860 Olean Road in Chaffee, New York under NYSDEC Part 360, Permit #9-1462-00001/00013 (Facility or Site). The Facility accepts municipal solid waste (MSW) and other non-hazardous wastes, mainly from Erie County. The landfill operations at the facility include tipping, covering, compacting, landfill cell construction, hauling, leachate collection and storage, and equipment maintenance operations. The landfill has an active landfill gas (LFG) collection system that conveys collected LFG to on-site flares and the Renewable Energy Facility, consisting of eight internal combustion engines. The engines are operated by Waste Management Renewable Energy LLC (WMRE) and are used to generate electricity for off-site use. The Standard Industrial Classification (SIC) for the Chaffee Landfill facility is 4953.

2. Facility Description

2.1 Existing Landfill Areas

There are currently three landfill areas at the facility: the Closed Landfill, the Western Expansion Landfill and the Valley Fill Expansion.

The Closed Landfill began accepting waste in 1958 and was capped and closed in 2010 with a total of 7.5 million tons of waste-in-place.

The Western Expansion Landfill opened in November 2007 and consists of six double lined landfill cells covering approximately 57.3 acres. The total design capacity of the Western Expansion Landfill is approximately 8,312,922 cubic yards.

A Title V Modification to authorize construction and operation of the Valley Fill Landfill Expansion was submitted on November 1, 2012 and was subsequently approved by NYSDEC. Initial construction of the Valley Fill Landfill Expansion commenced in September 2013. The capacity of the Valley Fill Expansion is 2,039,598 cubic yards and will increase life of the permitted facility by approximately 2.3 years.

For purposes of this document, the Existing Landfill is defined as the Closed Landfill, the Western Expansion Landfill, and the Valley Fill Expansion. The estimated total facility potential-to-emit for the Existing Landfill was summarized in the Title V Renewal Application that was submitted to NYSDEC in June 2019. Also included in the Title V Renewal Application was an assessment of facility compliance with 6 NYCRR Part 212.

2.2 Future Landfill Areas

A Title V Permit Modification/Application is accompanying this document to authorize construction/operation of the proposed Area 7/8 Development. The capacity of the Area 7/8 Development is approximately 5.1 million cubic yards and will allow the Facility to accept waste for an additional +/- 7 years, assuming the maximum permitted waste acceptance rate of 720,000 tons per year (600,000 tons per year (TPY) MSW and 120,000 TPY alternative daily cover (ADC)).

2.3 Landfill Gas Collection and Combustion System

LFG at the existing facility is currently collected in an active system and combusted to generate electricity. The collection system consists of vertical extraction wells and horizontal collectors. LFG is drawn from the landfill via blowers and directed through a gas header to eight internal combustion engines (eight Caterpillar 3516 engines) at the Renewable Energy Facility, where electricity is produced for sale on the open market. In addition, WMNY also operates one 99 MMBtu/hr (~ 3,300 cfm) enclosed flare and one 27.3 MMBtu/hr (~ 910 cfm) open flare used to combust the excess gas and as a back-up to the energy plant.

3. Facility Emission Unit Descriptions

3.1 Emission Unit Descriptions

This inventory has been developed to evaluate the current and future air emissions that will result from the proposed Area 7/8 Development.

The following is a list of existing and proposed new emission sources and controls from the Facility:

Emission Unit	Process	Source/Control	Description
L-00001	LGF	0LGF1	Existing 3,300-cfm Enclosed Flare (C)
		FLAR3	Existing 910-cfm Open Flare (C)
		LNDFL	Collected LFG – Original Landfill (S)
		LNDF2	Collected LFG – Western Expansion Landfill (S)
		LNDF3	Collected LFG – Valley Fill Expansion (S)
		* LNDF4	Collected LFG – Area 7/8 Development (S)
	LEA	TANKS	Leachate Storage Emissions (S)
	301	LNDFL	Fugitive LFG - Original Landfill (S)
		LNDF2	Fugitive LFG – Western Expansion Landfill (S)
		LNDF3	Fugitive LFG – Valley Fill Expansion (S)
		* LNDF4	Fugitive LFG – Area 7/8 Development (S)
	183	LNDFL	Fugitive Dust – Original Landfill (S)
		LNDF2	Fugitive Dust – Western Expansion Landfill (S)
		LNDF3	Fugitive Dust – Valley Fill Expansion (S)
		* LNDF4	Fugitive Dust – Area 7/8 Development (S)
M-00001	PSB	0PSB1	Paint Booth – Spray Gun (S)
		0PSB2	Paint Booth – Fabric Filters (C)
P-00001	601	ENG01	LFG Combustion – Engine #1 (C)
		ENG02	LFG Combustion – Engine #2 (C)
		ENG03	LFG Combustion – Engine #3 (C)
		ENG04	LFG Combustion – Engine #4 (C)
		ENG05	LFG Combustion – Engine #5 (C)
		ENG06	LFG Combustion – Engine #6 (C)
	602	ENG01	Insignificant Activities – Engine #1 (S)
		ENG02	Insignificant Activities – Engine #2 (S)
		ENG03	Insignificant Activities – Engine #3 (S)
		ENG04	Insignificant Activities – Engine #4 (S)
		ENG05	Insignificant Activities – Engine #5 (S)
		ENG06	Insignificant Activities – Engine #6 (S)
		ENG07	Insignificant Activities – Engine #7 (S)
		ENG08	Insignificant Activities – Engine #8 (S)
	603	ENG07	LFG Combustion – Engine #7 (C)
		ENG08	LFG Combustion – Engine #8 (C)

* Denotes proposed new sources S = Emission Source

C = Control Device

3.2 Summary of Project Emissions (New Emission Source LNDF4)

The following sections present discussions of the project emissions estimated for the Area 7/8 Development only (Emission Source LNDF4). Supporting calculations are provided as referenced.

3.2.1 Landfill Gas Generation

Based on information provided by WMNY, GHD calculated LFG generation estimates for the Area 7/8 Development. These estimates were based on historical actual and projected waste acceptance values utilizing the United States Environmental Protection Agency (USEPA) LandGEM Model Version 3.02.

A generation potential (L_o) value of 139.6 m³/Mg and generation rate (k) of 0.04 yr⁻¹ were utilized for the Area 7/8 Development. These modeling parameters were referenced from the Gas Collection and Control System (GCCS) Design Plan for the Facility and are considered very conservative (AP-42, Section 2.4 (11/98) calls out a L_o value of 100 m³/Mg for MSW landfills). The concentration of non-methane organic compounds (NMOC) in the LFG is assumed to be 595 ppm, per AP-42, and a methane content of 50 percent by volume is assumed.

A portion of the incoming MSW is comprised of C&D waste and inerts. For an estimate of future LFG generation rates, the total waste acceptance rate is assumed (conservatively) to be 720,000 TPY (600,000 TPY MSW and 120,000 TPY ADC (which is the permitted acceptance rate for the facility)). In order to be conservative, it is assumed that all of the incoming waste is putrescible (100 percent putrescible waste fraction assumed). An 85 percent collection efficiency was used to determine the amount of gas collected and the resulting fugitive emissions. Figure 1 presents the LFG model for the Area 7/8 Development, which shows the estimated amount of LFG generated. Based on these calculations, the peak year of LFG generation for the Area 7/8 Development will be approximately 2029, with a total of 2,466 cfm generated (approximately 2,096 cfm of collected LFG in 2029).

3.2.2 Fugitive Landfill Gas

It is not possible for a properly maintained and operated collection and soil cover system to collect and oxidize all generated landfill gas, therefore some is released to the atmosphere as fugitive emissions. The primary constituents of concern for LFG are methane, NMOC, volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). HAPs and VOCs are a portion of the NMOCs. The estimate of fugitive LFG was based on the expected LFG generation multiplied by one minus the assumed collection efficiency of the gas collection system. NMOC emissions were calculated based on an AP-42 value of 595 ppm, and VOCs were calculated as 39 percent of NMOC emissions, per AP-42. Calculated fugitive NMOC and VOC emissions for the peak years of gas generation (year 2029) are presented in Table 2. Emissions of speciated HAP compounds in the fugitive LFG were calculated using values compiled by the Waste Industry Air Coalition (WIAC). Speciated HAP emissions for the Area 7/8 Development were calculated for the peak year of fugitive emissions (year 2029) and are provided in Table 2A.

Fugitive greenhouse gas (GHG) emissions were calculated by assuming that LFG is approximately 50 percent methane and 50 percent carbon dioxide by volume. Total GHG emissions in terms of carbon dioxide equivalents were calculated using global warming potential values referenced from

40 CFR Part 98, Subpart A. Table 2 presents the calculated fugitive GHG emissions for the Area 7/8 Development (year 2029).

3.2.3 Landfill Gas Combustion

It is assumed that collected LFG from the Area 7/8 Development will be combusted in the onsite flares for the following reasons:

- The Renewable Energy Facility is the primary method of controlling LFG at the Facility; the landfill gas flares are used to combust the excess gas and as a back-up to the energy plant.
- The Renewable Energy Facility is operating near 100% capacity (except for downtime periods due to maintenance) and will continue to do so going forward. The average amount of LFG processed at the Renewable Energy Facility in 2018 was approximately 2,404 cfm and the plant was operational for 99.85% of the 2018 calendar year.

Combustion emissions for the LFG flares are presented in Table 3. The following information was used to estimate combustion emissions from the 99 MMBtu/hr (~ 3,300 cfm) enclosed flare and the 27.3 MMBtu/hr (~ 910 cfm) open flare:

- CO and NOx emissions for the enclosed flare are based on manufacturer guarantee information (Emission rate for CO = 0.20 lb/MMBtu; Emission rate for NOx = 0.06 lb/MMBtu). CO and NOx emissions for the open flare were referenced from the Title V Permit Minor Modification Application, dated December 2005 (Emission rate for CO = 0.22 lb/MMBtu; Emission rate for NOx = 0.052 lb/MMBtu)
- SO₂ emissions are based on a total reduced sulfur (TRS) concentration of 252 ppm and a 0 percent destruction efficiency (DE) [TRS concentration based on conservative estimate]
- NMOC emissions are based on a concentration of 595 ppm and a DE of 98 percent [referenced from USEPA AP-42, Section 2.4 (11/98)]
- VOC emissions are calculated assuming that VOCs are 39 percent of total NMOC [referenced from USEPA AP-42, Section 2.4 (11/98)]
- PM emissions are based on an emission rate of 17 pounds per million cubic feet of methane combusted [referenced from USEPA AP-42, Section 2.4 (11/98)].

Emissions of speciated HAP compounds in the combusted LFG were calculated based on values compiled by WIAC. The concentration of HCI was referenced from "Measurement of Toxic Emissions from Landfill: History and Current Developments (Sullivan, Patrick S. and Bins, John, November 2002)." A destruction efficiency of 98 percent was assumed in the calculations (except for mercury and HCI). Speciated HAP emissions for the flares were calculated for the peak year of gas generation (year 2029) and are provided in Table 3A.

GHG emissions from the flares were calculated by assuming that LFG is approximately 50 percent methane and 50 percent carbon dioxide by volume. Total GHG emissions in terms of carbon dioxide equivalents were calculated using global warming potential values referenced from 40 CFR Part 98, Subpart A. Table 3B presents the calculated GHG emissions from combustion of LFG in the flares.

3.2.4 Fugitive Dust Emissions – Area 7/8 Development

Off-road PM emissions are primarily caused by the moving and handling of soil by heavy equipment such as loaders, soil trucks and bulldozers. Operational vehicles and waste hauling vehicles also generate particulate emissions from traveling on both the paved and unpaved roads at the Facility. While the proposed Area 7/8 Development includes various construction activities, those activities are not expected to increase significantly above current levels. Similarly, the daily waste acceptance rate is not proposed to be increased, so the associated vehicle and equipment traffic will not increase significantly, other than to account for the change in traffic routes.

3.2.5 Total Project Emissions – Area 7/8 Development

Based on the calculations described in the previous sections, the total project emission potential for the Area 7/8 Development is presented below:

		Emissions (tons/year)									
	<i>NMOC</i>	VOCs	HAPs	Hi- HAP	NOx	со	SO ₂	PM 10	PM 2.5	Biogenic	Anthropogenic
										CO ₂	GHG
Landfill Fugitive Emissions										7,049	38,557
(2029)	12.7	5.0	1.2	0.4							
Flared LFG Emissions (2029)	1.4	0.6	0.7	0.1	15.6	57.5	22.7	4.7	4.7	59,726	2,889
Project Emission Potential	14.2	5.5	1.8	0.5	15.6	57.5	22.7	4.7	4.7	66,775	41,446
Allowable PSD/NSR	50	40			40	100	40	15	10		75,000
Thresholds											

Notes:

- A According to 6 NYCRR 231-4.1(b)(40)(iii), fugitive emissions are not included in the project emission potential.
- ^B Emissions are calculated based on LFG combustion by flaring; the method of control may be revisited depending on control technology options that may arise in the future

Table 1 presents a full summary of projected emissions from the Area 7/8 Development.

3.3 Summary of Updated Total Facility Emissions

The following sections present discussions of the updated facility potential emissions. Supporting calculations are provided as referenced.

3.3.1 Landfill Gas Generation

Based on information provided by WMNY, GHD updated the LFG generation estimates for all landfill areas (entire facility). These estimates were based on historical actual and projected waste acceptance values utilizing the United States Environmental Protection Agency (USEPA) LandGEM Model Version 3.02.

A generation potential (L_o) value of 139.6 m³/Mg and generation rate (k) of 0.04 yr⁻¹ were utilized for all landfill areas. These modeling parameters were referenced from the Gas Collection and Control System (GCCS) Design Plan for the Facility and are considered very conservative (AP-42, Section 2.4 (11/98) calls out a L_o value of 100 m³/Mg for MSW landfills). The concentration of non-methane organic compounds (NMOC) in the LFG is assumed to be 595 ppm, per AP-42, and a methane content of 50 percent by volume is assumed.

A portion of the incoming MSW is comprised of C&D waste and inerts. For an estimate of future LFG generation rates, the total waste acceptance rate is assumed (conservatively) to be 720,000 TPY (600,000 TPY MSW and 120,000 TPY ADC (which is the permitted acceptance rate for the facility)). In order to be conservative, it is assumed that all of the incoming waste is putrescible (100 percent putrescible waste fraction assumed). An 85 percent collection efficiency was used to determine the amount of gas collected and the resulting fugitive emissions. Figure 2 presents the updated LFG model for the entire facility, which shows the estimated amount of LFG generated. Based on these calculations, the peak year of LFG generation will be approximately 2029, with a total of 7,377 cfm generated from the entire facility (approximately 6,237 cfm of collected LFG in 2029).

3.3.2 Fugitive Landfill Gas

It is not possible for a properly maintained and operated collection and soil cover system to collect and oxidize all generated landfill gas, therefore some is released to the atmosphere as fugitive emissions. The primary constituents of concern for LFG are methane, NMOC, volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). HAPs and VOCs are a portion of the NMOCs. The estimate of fugitive LFG was based on the expected LFG generation multiplied by one minus the assumed collection efficiency of the gas collection system. NMOC emissions were calculated based on an AP-42 value of 595 ppm, and VOCs were calculated as 39 percent of NMOC emissions, per AP-42. Calculated fugitive NMOC and VOC emissions for the peak years of gas generation (year 2029) are presented in Table 5. Emissions of speciated HAP compounds in the fugitive LFG were calculated using values compiled by the Waste Industry Air Coalition (WIAC). Speciated HAP emissions for the entire facility were calculated for the peak year of fugitive emissions (year 2029) and are provided in Table 5A.

Fugitive greenhouse gas (GHG) emissions were calculated by assuming that LFG is approximately 50 percent methane and 50 percent carbon dioxide by volume. Total GHG emissions in terms of carbon dioxide equivalents were calculated using global warming potential values referenced from 40 CFR Part 98, Subpart A. Table 5 presents the calculated fugitive GHG emissions for the entire facility (year 2029).

3.3.3 Landfill Gas Combustion

Collected LFG is routed from the landfill areas through a gas header and directed to the Chaffee Landfill Renewable Energy Facility (REF) which consists of eight Caterpillar 3516 engines. The REF contains a treatment system in accordance with 40 CFR 60.752(b)(2)(iii)('C'). There are no emissions or vents associated with the gas treatment system that removes particulate > 10 microns, removes moisture with air to air cooler, and compresses the gas. Any remaining excess LFG is combusted in one (1) 99 MMBtu/hr (~ 3,300 cfm) enclosed flare, and one 27.3 MMBtu/hr (~ 910 cfm) open flare. Emission estimates were based on the use of all three of these control devices for the combustion of landfill gas. The following summarizes the capacity of these control devices:

Control Device	Capacity (cfm)
3516 Engines (8 total)	2,400
3,300 cfm enclosed flare	3,300
910 cfm open flare	910
Total	6,610

Combustion of LFG in either the engines or flares results in emissions of NMOC, VOCs, carbon monoxide (CO), oxides of nitrogen (NOx), sulfur dioxide (SO₂), particulate matter (PM), and HAPs, including hydrogen chloride (HCl).

Combustion emissions for the 99 MMBtu/hr (~ 3,300 cfm) enclosed flare and 27.3 MMBtu/hr (~ 910 cfm) open flare are presented in Table 6. It is assumed that the LFG is combusted primarily in the engines, with the enclosed and open flares combusting the remaining LFG. This combustion scenario is outlined below:

Control Device	Permitted Peak Combustion (cfm)
3516 Engines (8 total) 3,300 cfm enclosed flare 910 cfm open flare	2,400 2,927 910
Total	6,237

The following information was used to estimate combustion emissions from the 99 MMBtu/hr (\sim 3,300 cfm) enclosed flare and the 27.3 MMBtu/hr (\sim 910 cfm) open flare:

- CO and NOx emissions for the enclosed flare are based on manufacturer guarantee information (Emission rate for CO = 0.20 lb/MMBtu; Emission rate for NOx = 0.06 lb/MMBtu). CO and NOx emissions for the open flare were referenced from the *Title V Permit Minor Modification Application*, dated December 2005 (Emission rate for CO = 0.22 lb/MMBtu; Emission rate for NOx = 0.052 lb/MMBtu)
- SO₂ emissions are based on a total reduced sulfur (TRS) concentration of 252 ppm and a 0 percent destruction efficiency (DE) [TRS concentration based on conservative estimate]
- NMOC emissions are based on a concentration of 595 ppm and a DE of 98 percent [referenced from USEPA AP-42, Section 2.4 (11/98)]
- VOC emissions are calculated assuming that VOCs are 39 percent of total NMOC [referenced from USEPA AP-42, Section 2.4 (11/98)]
- PM emissions are based on an emission rate of 17 pounds per million cubic feet of methane combusted [referenced from USEPA AP-42, Section 2.4 (11/98)]

Emissions of speciated HAP compounds in the combusted LFG were calculated based on values compiled by WIAC. The concentration of HCI was referenced from "Measurement of Toxic Emissions from Landfill: History and Current Developments (Sullivan, Patrick S. and Bins, John, November 2002)." A destruction efficiency of 98 percent was assumed in the calculations (except for mercury and HCI). Speciated HAP emissions for the flares were calculated for the peak year of gas generation (year 2029) and are provided in Table 6A.

GHG emissions from the flares were calculated by assuming that LFG is approximately 50 percent methane and 50 percent carbon dioxide by volume. Total GHG emissions in terms of carbon dioxide equivalents were calculated using global warming potential values referenced from 40 CFR Part 98, Subpart A. Table 6B presents the calculated GHG emissions from combustion of LFG in the flares.

Potential combustion emissions for the eight existing Caterpillar 3516 engines are presented in Table 7. The following information was used to estimate combustion emissions from the internal combustion engines (all emission factors referenced from the *Chaffee Landfill PPP State Facility Permit Application*, dated February 2006):

- CO and NOx emissions for the existing Caterpillar 3516 engines are based on performance test results from similar engines (conservative estimate)
- SO₂ emissions are based on a total reduced sulfur (TRS) concentration of 252 ppm and a 0 percent destruction efficiency (DE) [TRS concentration based on conservative estimate]
- NMOC emissions are based on a concentration of 595 ppm and a DE of 98 percent [referenced from USEPA AP-42, Section 2.4 (11/98)]
- VOC emissions are calculated assuming that VOCs are 39 percent of total NMOC [referenced from USEPA AP-42, Section 2.4 (11/98)]
- PM emissions are based on an emission factor of 0.01 grains per cubic foot of LFG (based on engineering estimate)

Emissions of speciated HAP compounds in the combusted LFG were calculated based on values compiled by WIAC. The concentration of HCI was referenced from "Measurement of Toxic Emissions from Landfill: History and Current Developments (Sullivan, Patrick S. and Bins, John, November 2002)." A destruction efficiency of 98 percent was assumed in the calculations (except for mercury and HCI). Speciated HAP emissions for the internal combustion engines are provided in Table 7A.

GHG emissions for the existing internal combustion engines were calculated by assuming that LFG is approximately 50 percent methane and 50 percent carbon dioxide by volume. Total GHG emissions in terms of carbon dioxide equivalents were calculated using global warming potential values referenced from 40 CFR Part 98, Subpart A. GHG emissions for the internal combustion engines are provided in Table 7B.

3.3.4 Engine Plant Tanks/Vents

The following emission sources are located in the Renewable Energy Facility:

Existing Caterpillar 3516 Engine Plant:

- 8 Crankcase Breather Vents With Mist Eliminators
- 1 Coolant Tank
- 8 Oil Tanks
- 1 Condensate Tank
- 1 Gas Chromatograph Vent

Each IC engine has a crankcase breather vent. The breather vent in each engine removes the vapors generated within the crankcase. The breather vent for each engine is piped to individual mist eliminators. The mist eliminator units trap oil and water suspended in the breather vent exhaust and return the captured oil/water to the used oil tank. Emissions were estimated by assuming each engine consumes 16 gallons of engine oil per month, with 50 percent of the oil combusted by the engines and 50 percent released through the crankcase breather vent. The mist eliminator units remove 95 percent of this oil and return it to the used oil tank. Table 8 contains the calculations for the emissions of particulates from the crankcase breather vent.

Emissions from the engine oil tanks and the coolant tank are generated from the volatilization of liquids and from the working and breathing losses from the filling and unloading of the tanks. Emissions from these tanks are assumed to be insignificant (negligible).

Condensate knockouts are located within the energy plant to remove condensate from the LFG prior to combustion. Emissions from the condensate tank are assumed to be insignificant (negligible).

Emissions from the gas chromatograph vent are also assumed to be insignificant (negligible).

3.3.5 Leachate Storage

The leachate storage system consists of two above ground storage tanks within a secondary containment system; each tank has a capacity of approximately 405,000 gallons for a total storage volume of 810,000 gallons. There are also two small underground leachate storage tanks located on the east side of the Closed Landfill (one 12,000 gallon tank and one 25,000 gallon tank); however, these two horizontal tanks are considered exempt under 6 NYCRR 201-3.2(c)(26).

Emissions from the vertical storage tanks were estimated using the methodology from AP-42, Section 7.1 (Organic Liquid Storage Tanks, 11/06). The following information was used in the calculations:

- The leachate analytical data for the period of June 2014 through June 2017 was evaluated and the maximum detection value was used
- A throughput of 15 million gallons per year was utilized in the calculations

These calculations demonstrate that emissions from the leachate storage tanks are considered insignificant (refer to Attachment 1 of Appendix B for calculations).

3.3.6 Paint Booth

The Facility operates a paint spray booth to coat miscellaneous equipment, primarily facility vehicles and waste receptacles (Facility is already subject to 6 NYCRR Part 228-1). The booth is approximately 25-feet wide and 60-feet long. A high volume low pressure (HVLP) spray gun is used with a rated capacity of 0.117 gallons per minute. Emissions are vented through particulate filters, rated at 90 percent efficiency and exhausted through two identical stacks.

Table 9 presents the calculated emissions for the paint booth (calculated based on information provided in the SDS sheet for Sheboygan Paint Co. Premium WM Green Aqua Enamel). Based on a review of paint usage at the Facility over the last 10 years, it is not expected to exceed 1,000 gallons of paint in a given year.

3.3.7 Exempt Sources

The following sections give a description of emission sources that are considered exempt under 6 NYCRR 201-3.2(c). A summary of exempt sources at the Facility is presented in Table 10.

3.3.7.1 Propane Furnace [6NYCRR 201-3.2(C)(1)(i)]

Heat at the maintenance shop area is provided by a propane - gas fired furnace. The furnace is rated less than 10 million Btu/hour. A conservative propane throughput for the Facility was estimated based on an evaluation of previous emission statements. Emission factors for propane combustion were referenced from USEPA AP-42, Section 1.5 (7/08). Table 10A presents a summary of emissions from the propane furnace.

3.3.7.2 Natural Gas Furnace [6NYCRR 201-3.2(C)(1)(i)]

A natural gas furnace (< 10 million Btu/hour) is used to heat the office space area. A conservative natural gas throughput for the Facility was estimated based on evaluation of previous emission statements. Emission factors for natural gas combustion were referenced from USEPA AP-42, Section 1.4 (7/98). Table 10B presents a summary of emissions from natural gas combustion at the Facility.

3.3.7.3 Portable Gasoline Generators [6NYCRR 201-3.2(C)(3)(iii)]

The Site operates small portable gasoline generators that are all rated less than 20 horsepower. These small generators are operated by Site personnel on an as-needed basis. Emissions were calculated by assuming an operating time of 500 hours per year for one small gasoline generator, rated at 20 horsepower (extremely conservative estimate), utilizing emission factors from USEPA AP-42, Section 3.3 (10/96). Table 10C presents a summary of emissions for the portable gasoline generators.

3.3.7.4 Dewatering Pump [6NYCRR 201-3.2(C)(3)(ii)]

A dewatering pump powered by diesel fuel is used to remove water from gas extraction wells at the Facility. The dewatering pump is less than 80 horsepower and operates less than 500 hours per year. Emission factors for the dewatering pump were referenced from USEPA AP-42, Section 3.3 (10/96). Table 10D presents a summary of emissions for the dewatering pump.

3.3.7.5 Odor Neutralizers [6NYCRR 201-3.2(C)(45)]

The Facility utilizes neutralizing agent sprayers as a means of controlling odor that occurs from fugitive emissions. VOC emissions were calculated assuming an estimated annual usage of 1,000 gallons per year and a volatilization factor of 97 percent (referenced from the MSDS sheet). Table 10E presents the emissions due to application of odor neutralizers.

3.3.7.6 Parts Washers [6NYCRR 201-3.2(C)(39)(i)]

The Facility utilizes two Model 250 parts washers (manufactured by Safety Kleen) for cleaning miscellaneous parts and tools. The tanks are remote reservoirs and are considered exempt under 6 NYCRR Part 201-3.2(c)(39)(i). Emissions were estimated assuming a maximum annual usage rate

of 1,000 gallons per year of Safety Kleen Premium Solvent. Table 10F presents the emissions for the parts washers at the Facility.

3.3.7.7 Storage of Petroleum Products [6NYCRR 201-3.2(C)(25)]

Unleaded gasoline is stored in a 300-gallon above-ground storage tank (AST) and on-road diesel fuel (hauling company) is stored in a 12,000-gallon under-ground storage tank (UST) for use by vehicles at the Facility. Emissions are generated from the volatilization of these liquids and from the working and breathing losses from the filling and unloading of the tanks. Emissions calculations for the storage tanks at the Facility were estimated utilizing TANKS 3.1 software and actual throughputs recorded by the Facility. In order to obtain a conservative estimate, the calculated emissions from the TANKS model output were doubled for the diesel and gasoline storage tanks.

Working and breathing losses from the filling and unloading of the following ASTs at the Facility are assumed to be negligible:

- 2,000 gallon off-road diesel
- 300 gallon transmission fluid
- 1,400 gallons used oil
- 500 gallon used oil
- (2) 500 gallon hydraulic oil
- 500 gallon lube oil
- 500 gallon motor oil
- 1,500 gallon lube oil
- 1,500 gallon used oil
- 1,000 gallon off-road diesel (Contractor Tank-Temp) (was removed from Site in June 2019 but may be utilized for future operations)

3.3.8 Updated Total Facility Emissions

The Area 7/8 Development will allow for waste acceptance through 2029 (at maximum waste receipts) and will generate a peak volume of 7,377cfm of LFG in 2029 (approximately 6,237 scfm of LFG collected and combusted). The potential emissions for the entire facility are presented below:

		Emissions (tons/year)									
	NMOC	VOCs	HAPs	Hi- HAP	NOx	со	SO ₂	PM10	PM _{2.5}	Biogenic	Anthropogenic
										CO₂	GHG
Facility Potential Emissions	42.1	25.7	5.6	1.5	150.9	341.5	67.6	24.8	24.8	210,111	126,348
Major Facility Thresholds	50	40		100 250 250 100 100 100,000				100,000			

Notes:

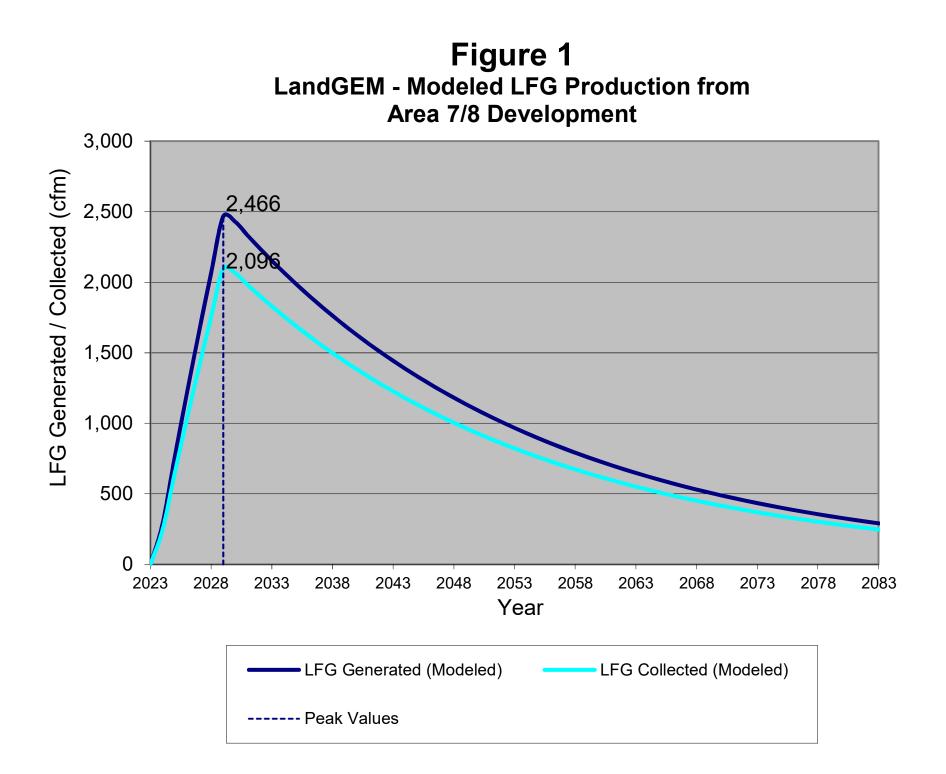
- A According to 6 NYCRR 231-4.1(b)(40)(iii), fugitive emissions are not included in the project emission potential.
- ^B Emissions are calculated based on LFG combustion by flaring; the method of control may be revisited depending on control technology options that may arise in the future

Table 4 presents a full summary of projected emissions from the entire facility.

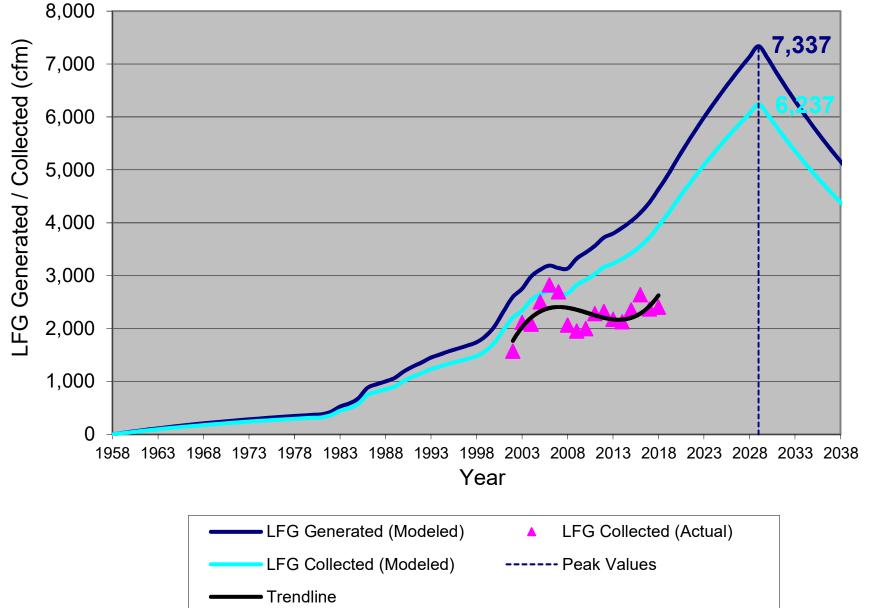
4. **Regulatory Discussion**

The following presents a discussion of the Chaffee Landfill applicability to certain regulatory requirements as a result of the Proposed Area 7/8 Development:

- 1. Title V (6 NYCRR Part 201): Chaffee Landfill is an existing permitted Title V Facility as a major source of CO, NOx and GHG. A modification to the existing Title V permit will be prepared to incorporate the Proposed Area 7/8 Development.
- 2. NSPS (40 CFR Subpart WWW, 6 NYCRR Part 208): The Facility is also subject to NSPS Operational Standards since NMOC emissions are greater than 50 million megagrams per year, and the landfill has a design capacity greater than 2.5 million megagrams.
- 3. MACT (40 CFR 63 Subpart AAAA): The existing Facility is also already subject to the MACT Standards. These rules require the existing Facility to perform routine monitoring and record-keeping, and also require semi-annual and annual compliance reporting. The proposed Area 7/8 Development will not require special permitting or monitoring requirements above those already in place at the Facility.
- 4. RACT (6 NYCRR Part 227): The facility is currently subject to RACT requirements as a major source of NOx (greater than 100 TPY). A RACT analysis for the existing enclosed flares was submitted to NYSDEC on December 16, 2011.
- 5. PSD: The Proposed Area 7/8 Development is not subject to PSD as the project emission potential is less than the project significance thresholds for all compounds, with the exception of GHG (> 75,000 TPY). However, due to the Supreme Court decision in 'Utility Air Regulatory Group vs. EPA (2014)', a project cannot be subject to PSD if the only pollutant to exceed the project significance threshold is GHG.
- 6. NANSR: The Proposed Area 7/8 Development is not subject to NANSR due to a potential significant net increase in NOx of less than 40 TPY to a major source (existing source emissions >100 TPY) located in a non-attainment region for ozone.
- 7. HAPs: Based on calculations for potential emissions, the Proposed Area 7/8 Development is not a major source of HAPs for single HAP totals greater than 10 TPY. Total HAPs are also below the major source threshold of 25 TPY.


5. Title V Permit Modification Forms

Appendix A contains the completed air permit application forms to authorize construction and operation of the Area 7/8 Development.


6. 6 NYCRR Part 212 Evaluation

New York's air toxics program was updated and promulgated on June 14, 2015, prior to the effective date of the current permit. Therefore, a Part 212 evaluation was completed as part of the recent Title V Renewal Application (June 2019) for the process emission sources at the Chaffee Landfill. The Part 212 evaluation was completed in accordance with the policy document, DAR-1.

GHD updated the modeling report that was provided in the July 2019 Title V Renewal application (which was conducted according to the latest modeling protocol, dated June 28, 2019) in order to include the Area 7/8 Development. An analysis of the modeled results demonstrates that the maximum modeled ground level concentrations are lower than the limits for all compounds shown in Tables 7 and 8 of Appendix B. Therefore, no further analysis is required under 6 NYCRR Part 212.

Figure 2 LandGEM - Modeled LFG Production from Existing Landfill Areas & Area 7/8 Development

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Project Emission Potential - Area 7/8 Development

	Potential Emissions (tons/year)												
Emission Unit ID	Process ID	Source ID	Emission Source	NMOC	VOCs	HAPs	Hi-HAP ¹	NOx	со	SO ₂	PM ₁₀	Anthropogeni c GHG ²	Biogenic CO ₂ ²
L-00001	301	LNDF4	Landfill Fugitive Emissions	12.7	5.0	12	0.4					38,557	7,049
L-00001	LGF		3,300 CFM Enclosed Flare Combustion Emissions	0.8	0.3	0.4	0.0	9.4	31.2	12.8	2.7	1,554	32,129
L-00001	LGF	LNDF4	910 CFM Open Flare Combustion Emissions	0.6	0.2	0.3	0.03	6.2	26.3	9.9	2.0	1,335	27,597
			Totals	14.2	5.5	1.8	0.5	15.6	57.5	22.7	4.7	41,446	66,775

Notes:

¹ High HAP is Toluene

 2 Total greenhouse gas emissions are expressed as tons of carbon dioxide equivalents (tons CO₂ eq)

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Landfill Gas Fugitive Emissions - Area 7/8 Development

Area 7/8 Development

Year	Total LFG Generated	Collection Efficiency	LFG to Collection System	Fugitive LFG	Fugitive LFG	Fugitive LFG	Fugitive NMOC Emissions	Fugitive VOC Emissions	Fugitive HAP Emissions	Fugitive CH₄ Emissions	Oxidized CO ₂ Emissions	Biogenic CO ₂	Total Anthropogenic GHG Emissions
	(cfm)	(%)	(cfm)	(cfm)	(ft ³ /yr)	(m ³ /yr)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
2029	2,466	85%	2,096	370	194,454,477	5,506,338	12.7	5.0	1.2	1,542.3	1,409.8	7,049.0	38,557

Notes:

Total landfill gas (LFG) Generated in average cubic feet per minute (cfm) from USEPA LandGEM Model run (version 3.02) Utilized LandGEM Model using the following parameters ($k = 0.04 \text{ yr}^{-1}$, Lo = 139.6 m³/Mg) Collection efficiency of 85% assumed for gas collection system LFG to Collection System = (Total LFG Generated) * (Collection Efficiency (%)) Fugitive LFG = (Total LFG Generated) * (100% - Collection Efficiency (%)) Fugitive LFG (ft³/yr) = (Fugitive LFG (cfm)) * (60 minutes per hour) * (8,760 hours per year) Fugitive LFG (m^3/vr) = (Fugitive LFG (ft^3/vr)) / (35.3147 cubic feet per cubic meter) NMOC concentration of 595 ppm referenced from USEPA AP-42, Chapter 2.4 (11/98) Conversion from NMOC in ppm to $mg/m^3 =$ 595 ppm x 86.18 molecular wt = 2.095.9 mg/m³ 24.47 Fugitive NMOC Emissions (lb/yr) = [Fugitive LFG (m³/yr)] * [2,095.9 mg of NMOC per m³ of LFG] * [2.2046 x10⁻⁶ pounds per mg] Fugitive NMOC Emissions (TPY) = (Fugitive NMOC Emissions (Ib/yr)) / (2000 pounds per ton) Fugitive VOC Emissions = Fugitive NMOC Emissions (tons/yr) * 39% (VOCs are 39% of total NMOC according to USEPA AP-42, Chapter 2.4 (11/98) Total Fugitive HAP Emissions determined from sum of individual speciated HAPs (see Table 2A)

Fugitive CH₄ emissions (TPY) = [Fugitive LFG (ft³/yr)] * [50% CH₄] * [0.0423 lb CH₄ / ft³ CH₄] * [75% oxidation factor] / [2,000 lb/ton]

Oxidized CO₂ emissions (TPY) = [Fugitive LFG (ft³/yr)] * [50% CH₄] * [0.116 lb CO₂ / ft³ CH₄] * [25% oxidized] / [2,000 lb/ton]

Fugitive Biogenic emissions (TPY) = { [Fugitive LFG (ft^3 /yr)] * [50% CO₂] * [0.116 lb CO₂ / ft^3 CO₂] / [2,000 lb/ton] } + Oxidized CO₂ Emissions

Anthropogenic GHG Emissions (tons CO₂ equivalents / year) = [Fugitive CH4 Emissions (TPY)] * 25

Equations:

(mg/m³) = (ppm) x (Molecular weight (g / mol)) x (1 atm) (298.15 K) x (0.08206 L*atm/K*mol) (assuming standard conditions of 1 atmosphere and 25° Celsius)

(lb/yr) = (Fugitive LFG Emission rate [m³/year]) x (mg/m³) x (2.205 x 10⁻⁶ [lb/mg])

 $(\mathsf{TPY}) = \frac{(\mathsf{lb/yr})}{(2,000 \; \mathsf{lb/ton})}$

Table 2A

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Fugitive HAP Emissions - Area 7/8 Development

Fugitive Emissions 6

Total LFG Generated =	2,466 cfm
LFG Collection Efficiency =	85%
Average LFG Collected =	2,096 cfm
Fugitive Emission Estimates =	370 cfm
Hours of Operation =	8,760

						rug		113		
CAS #	LFG Constituent			Molecular	Median ¹					HAP
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	mg/m ³	(TPY)
71-55-6	1,1,1-Trichloroethane		Х	133.41	0.168	0.001	8.34	0.00	0.92	0.004
79-34-5	1,1,2,2-Tetrachloroethane	х	Х	167.85	0.070	0.000	4.37	0.00	0.48	0.002
75-34-3	1,1-Dichloroethane	Х	Х	98.97	0.741	0.003	27.29	0.01	3.00	0.014
75-35-4	1,1-Dichloroethene	Х	Х	96.94	0.092	0.000	3.32	0.00	0.36	0.002
	1,2-Dichloroethane	Х	Х	98.96	0.120	0.001	4.42	0.00	0.49	0.002
78-87-5	1,2-Dichloropropane	Х	Х	112.99	0.023	0.000	0.97	0.00	0.11	0.000
67-63-0	•	Х		60.11	7.908	0.020	176.89	0.09	19.43	
67-64-1	Acetone			58.08	6.126	0.015	132.41	0.07	14.54	
107-13-1	Acrylonitrile	Х	Х	53.06	0.036	0.000	0.71	0.00	0.08	0.000
71-43-2	Benzene ³	Х	Х	78.11	0.972	0.003	28.25	0.01	3.10	0.014
75-27-4	Bromodichloromethane	Х		163.83	0.311	0.002	18.96	0.01	2.08	
106-97-8		Х		58.12	5.030	0.012	108.79	0.05	11.95	
75-15-0	Carbon disulfide	х	Х	76.13	0.320	0.001	9.07	0.00	1.00	0.005
56-23-5	Carbon tetrachloride	Х	Х	153.84	0.007	0.000	0.40	0.00	0.04	0.000
463-58-1		х	Х	60.07	0.183	0.000	4.09	0.00	0.45	0.002
	Chlorobenzene	Х	Х	112.56	0.227	0.001	9.51	0.00	1.04	0.005
75-45-6	Chlorodifluoromethane			86.47	0.355	0.001	11.42	0.01	1.25	
75-00-3	Chloroethane	х	Х	64.52	0.239	0.001	5.74	0.00	0.63	0.003
67-66-3	Chloroform	Х	Х	119.39	0.021	0.000	0.93	0.00	0.10	0.000
74-87-3	Chloromethane ²	х	Х	50.49	0.249	0.001	4.68	0.00	0.51	0.002
106-46-7	Dichlorobenzene	х	Х	147.00	1.607	0.010	87.91	0.04	9.66	0.044
75-71-8	Dichlorodifluoromethane			120.91	1.751	0.009	78.79	0.04	8.65	
75-43-4	Dichlorofluoromethane 4	Х		102.92	2.620	0.011	100.35	0.05	11.02	
75-09-2	Dichloromethane		Х	84.94	3.395	0.012	107.31	0.05	11.79	0.054
75-18-3	Dimethyl Sulfide	Х		62.13	6.809	0.018	157.43	0.08	17.29	
64-17-5	Ethanol	Х		46.08	118.618	0.232	2,034.06	1.02	223.41	
75-08-1	Ethyl mercaptan	Х		62.13	1.356	0.004	31.35	0.02	3.44	
	Ethylbenzene	Х	Х	106.16	6.789	0.031	268.21	0.13	29.46	0.134
106-93-4	Ethylene dibromide ²	х	Х	187.88	0.046	0.000	3.22	0.00	0.35	0.002
75-69-4	Fluorotrichloromethane	х		137.38	0.327	0.002	16.72	0.01	1.84	
110-54-3	Hexane	х	Х	86.18	2.324	0.009	74.53	0.04	8.19	0.037
7783-06-4	Hydrogen Sulfide			34.08	252.000	0.365	3,195.96	1.60	351.03	
7439-97-6	Mercury ⁴		Х	200.61	0.000292	0.000	0.02	0.00	0.00	0.000
78-93-3	Methyl ethyl ketone 5	х		72.11	10.557	0.032	283.29	0.14	31.12	
108-10-1	Methyl isobutyl ketone	х	Х	100.16	0.750	0.003	27.95	0.01	3.07	0.014
74-93-1	Methyl mercaptan	х		48.11	1.292	0.003	23.13	0.01	2.54	
109-66-0	Pentane ⁴	х		72.15	3.290	0.010	88.34	0.04	9.70	
127-18-4	Perchloroethylene		Х	165.83	1.193	0.008	73.62	0.04	8.09	0.037
74-98-6	Propane	х		44.09	14.757	0.028	242.12	0.12	26.59	
	Toluene ³	Х	Х	92.13	25.405	0.099	871.01	0.44	95.67	0.436
79-01-6	Trichloroethene	X	X	131.40	0.681	0.004	33.30	0.02	3.66	0.017
75-01-4	Vinyl chloride	X	X	62.50	1.077	0.003	25.05	0.01	2.75	0.013
1330-20-7		X	X	106.16	16.582	0.075	655.09	0.33	71.95	0.328
	,									

Notes:

1 Concentration of individual HAPs were taken from Waste Industry Air Coalition (WIAC)

2 Not designated as a HAP in Chapter 2.4 of AP-42 (11/98), but is listed in the USEPA National Emission Inventory (NEI) database

3 Used 'No or unknown co-disposal' concentration

4 No WIAC value given for compound; used USEPA AP-42 value

5 Delisted as a HAP by USEPA

6 Cover oxidation of 25% applied (based on 40 CFR 98, Subpart HH)

Equations:

(mg/m ³) =	(Molecular weight) x (1 atm) x (Median ppmv)
_	(298.15 K) x (0.08206 L*atm/K*mol)

$(lb/hr) = (mg/m^3) \times (2.205 \times 10^6 [lb/mg]) \times (Fugitive LFG Emission rate [ft^3/min]) \times (60 min/hr)$ (35.3147 ft³/m³)

 $(lb/yr) = (lb/hr) \times (8,760 \text{ hours/yr})$

(TPY) = <u>(Ib/yr)</u> (2,000 lb/ton)

Total HAPs 1.17

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of LFG Flare Emissions - Area 7/8 Development

					Flare Type	Ope	Operating Conditions			Estimated Potential Flare Emissions (TPY)						
						CFM	MMSCF	Hours	PM ₁₀	NMOC	СО	NOx	SO ₂	VOC ^A		
		nerated ^B =	,	cfm	Enclosed	1,186	623.6	8,760	2.7	0.8	31.2	9.4	12.8	0.3		
		Efficiency =			3,300 CFM Open	910	478.3									
To	Total LFG Combusted = 2,096 cfm LFG to Flares = 2,096 cfm							8,760	2.0	0.6	26.3	6.2	9.9	0.2		
	LFG to Flares = $2,096$ cfm															
							Total Emis	ssions (TPY)	4.7	1.4	57.5	15.6	22.7	0.6		
	Flare Emission Factors															
	Pounds per Million Standard Cubic Fee							ssions (lb/yr)	9,366.2	2,883.4	114,973.8	31,144.1	45,388.0	1,124.5		
Enclosed Flare	PM	NMOC	CO	NO _X	SO ₂								II			
3,300 CFM	8.50	2.62	100.00	30.00	41.19				Emission	Factor Dev	elonment					
Open Flare	8.50	2.62	110.00	26.00	41.19				-	FM Enclos						
910 CFM									CO:	0.20	lb/MMBtu					
									NOx:	0.06	lb/MMBtu					
									910	CFM Open	Flare					
^A Per AP-42, VOC emissions are calculated a									CO:	0.22	lb/MMBtu					
^B Based on amount of LFG generated in pea	ak year of L	FG product	ion in exis	ing and fut	ure landfill areas	S			NOx:	0.052	lb/MMBtu					
17 lb/10 ⁶ dscf methane per AP-42, section 2.4																
Based on 595 ppm per AP-42, section 2.4 (11										LFG Data:						
Emission rates (in units fo lb/MMBtu) reference									NMOC:	595	ppm					
Emission rates (in units fo lb/MMBtu) referenced from previous permit applications									TRS:	252	ppm					
Based on conservative TRS concentration of									CH₄:		of total LFG					
39% of NMOC per AP-42, section 2.4 (11/98)									VOC:	39.0%	of NMOC					
500 98.0	Btu/scf %															
98.0	70															

Notes:

PM NMOC CO NO_X SO₂ VOC

Heating value DE (of NMOC)

Total HAPs

0.66

Table 3A

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Flare HAP Emissions - Area 7/8 Development

Landfill Gas Flares - HAP Emission Estimates

Sas Flares - HAP Emission Estimates		
Total LFG Generated =	2,466	cfm
LFG Collection Efficiency =	85%	
Total LFG Collected =	2,096	cfm
Total LFG Collected to Flares =	2,096	cfm
Hours of Operation =	8,760	

		0,700		Uncontrolled Emissions							Controlled Emissions					
CAS #	LFG Constituent			Molecular	Median ¹					Avg.				HAP		
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	mg/m3	Control ⁶	lb/hr	lb/yr	TPY	(TPY)		
71-55-6	1,1,1-Trichloroethane		Х	133.41	0.168	0.007	63.02	0.03	0.92	98.0%	0.000	1.26	0.00	0.001		
79-34-5	1,1,2,2-Tetrachloroethane	х	Х	167.85	0.070	0.004	33.04	0.02	0.48	98.0%	0.000	0.66	0.00	0.000		
75-34-3	1,1-Dichloroethane	Х	Х	98.97	0.741	0.024	206.20	0.10	3.00	98.0%	0.000	4.12	0.00	0.002		
75-35-4	1,1-Dichloroethene	Х	X	96.94	0.092	0.003	25.08	0.01	0.36	98.0%	0.000	0.50	0.00	0.000		
107-06-2 78-87-5	1,2-Dichloroethane	x x	X X	98.96	0.120	0.004	33.39	0.02	0.49	98.0%	0.000	0.67	0.00	0.000		
67-63-0	1,2-Dichloropropane 2-Propanol	x	^	112.99 60.11	0.023 7.908	0.001 0.153	7.31 1,336.54	0.00 0.67	0.11 19.43	98.0% 98.0%	0.000 0.003	0.15 26.73	0.00 0.01	0.000		
67-64-1	Acetone	^		58.08	6.126	0.133	1,000.39	0.50	19.43	98.0%	0.003	20.73	0.01			
107-13-1	Acrylonitrile	х	х	53.06	0.036	0.001	5.37	0.00	0.08	98.0%	0.002	0.11	0.00	0.000		
71-43-2	Benzene ⁴	x	X	78.11	0.972	0.024	213.47	0.11	3.10	98.0%	0.000	4.27	0.00	0.002		
75-27-4	Bromodichloromethane	x	~	163.83	0.311	0.016	143.26	0.07	2.08	98.0%	0.000	2.87	0.00	0.002		
106-97-8	Butane ³	x		58.12	5.030	0.094	821.98	0.41	11.95	98.0%	0.002	16.44	0.01			
75-15-0	Carbon disulfide	X	х	76.13	0.320	0.004	68.50	0.03	1.00	98.0%	0.000	1.37	0.00	0.001		
56-23-5	Carbon tetrachloride	x	X	153.84	0.007	0.000	3.03	0.00	0.04	98.0%	0.000	0.06	0.00	0.000		
463-58-1	Carbonyl sulfide	X	X	60.07	0.183	0.004	30.91	0.02	0.45	98.0%	0.000	0.62	0.00	0.000		
108-90-7	Chlorobenzene	x	X	112.56	0.227	0.008	71.84	0.04	1.04	98.0%	0.000	1.44	0.00	0.001		
75-45-6	Chlorodifluoromethane			86.47	0.355	0.010	86.31	0.04	1.25	98.0%	0.000	1.73	0.00			
75-00-3	Chloroethane	х	Х	64.52	0.239	0.005	43.36	0.02	0.63	98.0%	0.000	0.87	0.00	0.000		
67-66-3	Chloroform	х	х	119.39	0.021	0.001	7.05	0.00	0.10	98.0%	0.000	0.14	0.00	0.000		
74-87-3	Chloromethane ²	х	х	50,49	0.249	0.004	35.35	0.02	0.51	98.0%	0.000	0.71	0.00	0.000		
106-46-7	Dichlorobenzene	x	X	147.00	1.607	0.076	664.20	0.33	9.66	98.0%	0.002	13.28	0.01	0.007		
75-71-8	Dichlorodifluoromethane			120.91	1.751	0.068	595.27	0.30	8.65	98.0%	0.001	11.91	0.01			
75-43-4	Dichlorofluoromethane ³	х		102.92	2.620	0.087	758.17	0.38	11.02	98.0%	0.002	15.16	0.01			
75-09-2	Dichloromethane		Х	84.94	3.395	0.093	810.81	0.41	11.79	98.0%	0.002	16.22	0.01	0.008		
75-18-3	Dimethyl Sulfide	х		62.13	6.809	0.136	1,189.47	0.59	17.29	98.0%	0.003	23.79	0.01			
64-17-5	Ethanol	х		46.08	118.618	1.754	15,368.46	7.68	223.41	98.0%	0.035	307.37	0.15			
75-08-1	Ethyl mercaptan	х		62.13	1.356	0.027	236.88	0.12	3.44	98.0%	0.001	4.74	0.00			
100-41-4	Ethylbenzene	х	Х	106.16	6,789	0.231	2,026.44	1.01	29.46	98.0%	0.005	40.53	0.02	0.020		
106-93-4	Ethylene dibromide 2	х	х	187.88	0.046	0.003	24.30	0.01	0.35	98.0%	0.000	0.49	0.00	0.000		
75-69-4	Fluorotrichloromethane	X		137.38	0.327	0.014	126.31	0.06	1.84	98.0%	0.000	2.53	0.00			
7647-01-0			х	36,46	9.430	0.110	966.71	0.48	14.05	0.0%	0.110	966.71	0.48	0.483		
110-54-3	Hexane	х	x	86.18	2.324	0.064	563.13	0.28	8.19	98.0%	0.001	11.26	0.01	0.006		
7783-06-4			~	34.08	252.000	2.757	24,147.24	12.07	351.03	98.0%	0.055	482.94	0.24	0.000		
7439-97-6	, ,		х	200.61	0.000292	0.000	0.16	0.00	0.00	0.0%	0.000	0.16	0.00	0.000		
78-93-3	Methyl ethyl ketone 7	х	~	72.11	10.557	0.244	2,140.44	1.07	31.12	98.0%	0.005	42.81	0.02	0.000		
108-10-1	, ,	x	х	100.16	0.750	0.244		0.11	31.12	98.0%	0.000	4.22	0.02	0.002		
	Methyl isobutyl ketone		^				211.21							0.002		
74-93-1	Methyl mercaptan Pentane ³	X		48.11	1.292	0.020	174.77	0.09	2.54	98.0%	0.000	3.50	0.00			
109-66-0		х	V	72.15	3.290	0.076	667.42	0.33	9.70	98.0%	0.002	13.35	0.01			
127-18-4	Perchloroethylene		Х	165.83	1.193	0.063	556.25	0.28	8.09	98.0%	0.001	11.13	0.01	0.006		
74-98-6	Propane	х		44.09	14.757	0.209	1,829.39	0.91	26.59	98.0%	0.004	36.59	0.02			
108-88-3	Toluene ⁴	Х	Х	92.13	25.405	0.751	6,580.94	3.29	95.67	98.0%	0.015	131.62	0.07	0.066		
79-01-6	Trichloroethene	Х	Х	131.40	0.681	0.029	251.60	0.13	3.66	98.0%	0.001	5.03	0.00	0.003		
75-01-4	Vinyl chloride	Х	Х	62.50	1.077	0.022	189.26	0.09	2.75	98.0%	0.000	3.79	0.00	0.002		
1330-20-7	Xylene	х	Х	106.16	16.582	0.565	4,949.54	2.47	71.95	98.0%	0.011	98.99	0.05	0.049		

Notes:

¹ Concentration of individual HAPs were taken from Waste Industry Air Coalition (WIAC)

² Not designated as a HAP in Chapter 2.4 of AP-42 (11/98), but is listed in the USEPA National Emission Inventory (NEI) database

³ No WIAC concentration specified; used AP-42 value

⁴ Used 'No or unknown co-disposal' concentration

⁵ HCI Concentration was taken from "Measurement of Toxic Emissions from Landfill: History and Current Developments".

⁶ Control efficiency of 98% assumed for all speciated HAPs (except mercury and HCl)

⁷ Delisted as a HAP by USEPA

Equations:

(mg/m ³) =	(Molecular weight) x (1 atm) x (Median ppmv) (298.15 K) x (0.08206 L*atm/K*mol)
(lb/hr) =	(mg/m ³) x (2.205 x 10 ⁻⁶ [lb/mg]) x (LFG Combustion rate [ft ³ /min]) x (60 min/hr)
	(35.3147 ft ³ /m ³)
(lb/yr) =	(lb/hr) x (8,760 hours/yr)
(TPY) =	(lb/yr) (2,000 lb/ton)

(Controlled Emissions) = (Uncontrolled Emissions) x (100% - Average Control [%])

Table 3B

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Flare Greenhouse Gas Emissions - Area 7/8 Development

							Estimated Potential Flare Emissions (TPY)										
						Operating Hours	Combustion CO ₂	Combustion CH₄	Combustion N ₂ O	Escape CH₄	Collected CO 2	Biogenic CO 2	Anthropogenic GHG				
,	00 CFM Enclo to 910 CFM O			cfm cfm	Enclosed 3,300 CFM	8,760	17,896.7	1.1	0.2	65.9	18,084.8	35,981.4	1,740.7				
					Open 910 CFM	8,760	13,726.3	0.8	0.2	50.6	13,870.6	27,596.9	1,335.1				
	Flare Com	oustion Fac		Т		Total Emissions	31,623.0	1.9	0.4	116.5	31,955.4	63,578.3	3,075.8				
	CO ₂	CH₄	N ₂ O			(TPY)	01,020.0	1.5	0.4	110.5	01,000.4	00,070.0	3,073.0				
Enclosed 3,300 CFM	4,086.0	0.3	0.05	1		Total Emissions (lb/yr)	6.32E+07	3.89E+03	7.65E+02	233,053.7	6.39E+07	1.27E+08	6.15E+06				
Open	3,133.9	0.2	0.04	1		· · · ·							•				

Notes:

910 CFM

Combustion CO ₂	Combustic	n emission factor referenced from Table C-1 of 40 CFR Part 98, Subpa	rt C <u>Em</u>	issio	n Factor Deve	lopment
Combustion CH ₄	Combustic	n emission factor referenced from Table C-2 of 40 CFR Part 98, Subpa	irt C	E	nclosed Flare	es
Combustion N ₂ O	Combustic	n emission factor referenced from Table C-2 of 40 CFR Part 98, Subpa	irt C		EF	GWP
Escape CH ₄	Collected I	methane that escapes destruction in engines (1% of methane processed	d)		(kg/MMBtu)	(100 year)
Collected CO ₂	Portion of	collected LFG that already contains CO2 (50% of collected LFG)	C	O_2	52.07	1
Biogenic CO ₂	Sum of Co	mbustion CO ₂ and Collected CO ₂	0	CH₄	3.20E-03	25
Anthropogenic GHG	Sum of Co	mbustion CH_4 , Combustion N_2O and Escape CH_4	١	J₂O	6.30E-04	298
	expressed	as tons of CO ₂ equivalents				
					LFG Data:	
Heating value	500	Btu/scf	Heat Input (3,300 CFM Fla	re):	35.6	MMBtu/hr
LFG CH ₄ Concentration	50	%	LFG combusted (3,300 CFM Fla	re):	1,186	cfm
CH ₄ Destruction Efficiency	99	% (manufacturer guarantee DE for LFG Enclosed Flares)	Heat Input (910 CFM Fla	re):	27.3	MMBtu/hr
CH ₄ Density	0.0423	pounds per cubic foot (referenced from 40 CFR Part 98, Subpart HH)	LFG combusted (910 CFM Fla	re):	910	cfm
CO ₂ concentration	50	%				
CO ₂ density	0.116	pounds per cubic foot				

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Facility Potential Emissions

						P	otential Em	nissions (to	ns/year)			
Emission Unit ID	Process ID	Emission Source	NMOC	VOCs	HAPs	Hi-HAP ¹	NO _x	со	SO ₂	PM ₁₀	Anthropogeni c GHG ²	Biogenic CO ₂ ²
L-00001	183 / 301	Landfill Fugitive Emissions ³	37.8	14.8	3.5	1.3				14.9	114,703	20,970
L-00001	LGF	3,300 CFM Enclosed Flare Combustion Emissions	2.0	0.8	0.9	0.1	23.1	76.9	31.7	6.5	4,294	88,761
L-00001	LGF	910 CFM Open Flare Combustion Emissions	0.6	0.2	0.3	0.03	7.2	23.9	9.9	2.0	1,335	27,597
P-00001	601 / 603	Caterpillar 3516 Engine Combustion Emissions	1.7	0.6	0.8	0.1	119.7	240.3	26.0	0.9	5,722	72,783
P-00001	602	Crankcase Ventilator Emissions								0.1		
M-00001	PSB	Paint Booth Emissions		1.6						0.2		
L-00001	LEA	Leachate Tanks		0.1	0.1							
		Exempt Source Emissions		7.6	0.01		0.9	0.4	0.0	0.1	293	
		Totals	42.1	25.7	5.6	1.5	150.9	341.5	67.6	24.8	126,348	210,111

Notes:

¹ High HAP is Toluene

² Total greenhouse gas emissions are expressed as tons of carbon dioxide equivalents (tons CO_2 eq)

³ Fugitive landfill dust emissions referenced from State Facility Permit Application (June 2004) for the Western Expansion Landfill

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Landfill Gas Fugitive Emissions - Total Facility

Existing Landfill and Area 7/8 Development

Year	Total LFG Generated	Collection Efficiency	LFG to Collection System	Fugitive LFG	Fugitive LFG	Fugitive LFG	Fugitive NMOC Emissions	Fugitive VOC Emissions	Fugitive HAP Emissions	Fugitive CH₄ Emissions	Oxidized CO ₂ Emissions	Biogenic CO ₂	Total Anthropogenic GHG Emissions
	(cfm)	(%)	(cfm)	(cfm)	(ft ³ /yr)	(m ³ /yr)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
2029	7,337	85%	6,237	1,101	578,486,514	16,380,914	37.8	14.8	3.5	4,588.1	4,194.0	20,970.1	114,703

Notes:

Total landfill gas (LFG) Generated in average cubic feet per minute (cfm) from USEPA LandGEM Model run (version 3.02) Utilized LandGEM Model using the following parameters ($k = 0.04 \text{ yr}^{-1}$, Lo = 139.6 m³/Mg) Collection efficiency of 85% assumed for gas collection system LFG to Collection System = (Total LFG Generated) * (Collection Efficiency (%)) Fugitive LFG = (Total LFG Generated) * (100% - Collection Efficiency (%)) Fugitive LFG (ft³/yr) = (Fugitive LFG (cfm)) * (60 minutes per hour) * (8,760 hours per year) Fugitive LFG (m^3/vr) = (Fugitive LFG (ft^3/vr)) / (35.3147 cubic feet per cubic meter) NMOC concentration of 595 ppm referenced from USEPA AP-42, Chapter 2.4 (11/98) Conversion from NMOC in ppm to $mg/m^3 =$ 595 ppm x 86.18 molecular wt = 2.095.9 mg/m³ 24.47 Fugitive NMOC Emissions (lb/yr) = [Fugitive LFG (m³/yr)] * [2,095.9 mg of NMOC per m³ of LFG] * [2.2046 x10⁻⁶ pounds per mg] Fugitive NMOC Emissions (TPY) = (Fugitive NMOC Emissions (Ib/yr)) / (2000 pounds per ton) Fugitive VOC Emissions = Fugitive NMOC Emissions (tons/yr) * 39% (VOCs are 39% of total NMOC according to USEPA AP-42, Chapter 2.4 (11/98) Total Fugitive HAP Emissions determined from sum of individual speciated HAPs (see Table 2A) Fugitive CH₄ emissions (TPY) = [Fugitive LFG (ft³/yr)] * [50% CH₄] * [0.0423 lb CH4 / ft³ CH₄] * [75% oxidation factor] / [2,000 lb/ton]

Oxidized CO2 emissions (TPY) = [Fugitive LFG (ft³/yr)] * [50% CH4] * [0.116 lb CO2 / ft³ CH4] * [25% oxidized] / [2,000 lb/ton]

Fugitive Biogenic emissions (TPY) = { [Fugitive LFG (ft^3 /yr)] * [50% CO₂] * [0.116 lb CO₂ / ft^3 CO₂] / [2,000 lb/ton] } + Oxidized CO₂ Emissions

Anthropogenic GHG Emissions (tons CO₂ equivalents / year) = [Fugitive CH4 Emissions (TPY)] * 25

Equations:

(mg/m³) = (ppm) x (Molecular weight (g / mol)) x (1 atm) (298.15 K) x (0.08206 L*atm/K*mol) (assuming standard conditions of 1 atmosphere and 25° Celsius)

(lb/yr) = (Fugitive LFG Emission rate [m³/year]) x (mg/m³) x (2.205 x 10⁻⁶ [lb/mg])

(TPY) = (lb/yr) (2,000 lb/ton)

Table 5A

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Fugitive HAP Emissions - Total Facility

Total LFG Generated =	7,337 cfm
LFG Collection Efficiency =	85%
Average LFG Collected =	6,237 cfm
Fugitive Emission Estimates =	1,101 cfm
Hours of Operation =	8,760

	Hours of Operation =	8,760				F		6		
					•• ·· 1	Fug	itive Emissio	ns		
CAS #	LFG Constituent			Molecular					. 3	HAP
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	mg/m ³	(TPY)
71-55-6	1,1,1-Trichloroethane		Х	133.41	0.168	0.003	24.81	0.01	0.92	0.012
79-34-5	1,1,2,2-Tetrachloroethane	Х	Х	167.85	0.070	0.001	13.01	0.01	0.48	0.007
75-34-3	1,1-Dichloroethane	Х	Х	98.97	0.741	0.009	81.19	0.04	3.00	0.041
75-35-4	1,1-Dichloroethene	Х	Х	96.94	0.092	0.001	9.87	0.00	0.36	0.005
	1,2-Dichloroethane	Х	Х	98.96	0.120	0.002	13.15	0.01	0.49	0.007
78-87-5	1,2-Dichloropropane	Х	Х	112.99	0.023	0.000	2.88	0.00	0.11	0.001
67-63-0	2-Propanol	Х		60.11	7.908	0.060	526.25	0.26	19.43	
67-64-1	Acetone			58.08	6.126	0.045	393.89	0.20	14.54	
107-13-1		Х	Х	53.06	0.036	0.000	2.11	0.00	0.08	0.001
71-43-2	Benzene ³	Х	Х	78.11	0.972	0.010	84.05	0.04	3.10	0.042
75-27-4	Bromodichloromethane	Х		163.83	0.311	0.006	56.41	0.03	2.08	
106-97-8		Х		58.12	5.030	0.037	323.65	0.16	11.95	
75-15-0	Carbon disulfide	Х	Х	76.13	0.320	0.003	26.97	0.01	1.00	0.013
56-23-5	Carbon tetrachloride	Х	Х	153.84	0.007	0.000	1.19	0.00	0.04	0.001
463-58-1		Х	Х	60.07	0.183	0.001	12.17	0.01	0.45	0.006
108-90-7		Х	Х	112.56	0.227	0.003	28.29	0.01	1.04	0.014
75-45-6	Chlorodifluoromethane			86.47	0.355	0.004	33.98	0.02	1.25	
75-00-3	Chloroethane	Х	Х	64.52	0.239	0.002	17.07	0.01	0.63	0.009
67-66-3	Chloroform	Х	Х	119.39	0.021	0.000	2.78	0.00	0.10	0.001
74-87-3	Chloromethane ²	Х	Х	50.49	0.249	0.002	13.92	0.01	0.51	0.007
106-46-7		Х	Х	147.00	1.607	0.030	261.52	0.13	9.66	0.131
75-71-8	Dichlorodifluoromethane			120.91	1.751	0.027	234.38	0.12	8.65	
75-43-4	Dichlorofluoromethane 4	Х		102.92	2.620	0.034	298.52	0.15	11.02	
75-09-2	Dichloromethane		Х	84.94	3.395	0.036	319.25	0.16	11.79	0.160
75-18-3	Dimethyl Sulfide	Х		62.13	6.809	0.053	468.34	0.23	17.29	
64-17-5	Ethanol	Х		46.08	118.618	0.691	6,051.17	3.03	223.41	
75-08-1	Ethyl mercaptan	Х		62.13	1.356	0.011	93.27	0.05	3.44	
	Ethylbenzene	Х	Х	106.16	6.789	0.091	797.89	0.40	29.46	0.399
106-93-4	Ethylene dibromide ²	Х	Х	187.88	0.046	0.001	9.57	0.00	0.35	0.005
75-69-4	Fluorotrichloromethane	Х		137.38	0.327	0.006	49.73	0.02	1.84	
110-54-3	Hexane	Х	Х	86.18	2.324	0.025	221.73	0.11	8.19	0.111
	Hydrogen Sulfide			34.08	252.000	1.085	9,507.72	4.75	351.03	
7439-97-6	Mercury ⁴		Х	200.61	0.000292	0.000	0.06	0.00	0.00	0.000
78-93-3	Methyl ethyl ketone 5	Х		72.11	10.557	0.096	842.78	0.42	31.12	
108-10-1	Methyl isobutyl ketone	Х	Х	100.16	0.750	0.009	83.16	0.04	3.07	0.042
74-93-1	Methyl mercaptan	Х		48.11	1.292	0.008	68.81	0.03	2.54	
109-66-0	Pentane ⁴	х		72.15	3.290	0.030	262.79	0.13	9.70	
	Perchloroethylene		Х	165.83	1.193	0.025	219.02	0.11	8.09	0.110
74-98-6	Propane	х		44.09	14.757	0.082	720.30	0.36	26.59	
	Toluene ³	X	Х	92.13	25.405	0.296	2,591.17	1.30	95.67	1.296
79-01-6	Trichloroethene	X	X	131.40	0.681	0.011	99.06	0.05	3.66	0.050
75-01-4	Vinyl chloride	X	X	62.50	1.077	0.009	74.52	0.04	2.75	0.037
1330-20-7		X	X	106.16	16.582	0.222	1.948.83	0.97	71.95	0.974
							,			

Notes:

1 Concentration of individual HAPs were taken from Waste Industry Air Coalition (WIAC)

2 Not designated as a HAP in Chapter 2.4 of AP-42 (11/98), but is listed in the USEPA National Emission Inventory (NEI) database Used 'No or unknown co-disposal' concentration

3

4 No WIAC value given for compound; used USEPA AP-42 value

5 Delisted as a HAP by USEPA

6 Cover oxidation of 25% applied (based on 40 CFR 98, Subpart HH)

Equations:

$(mg/m^3) =$	(Molecular weight) x (1 atm) x (Median ppmv)	
_	(298.15 K) x (0.08206 L*atm/K*mol)	

$(lb/hr) = (mg/m^3) \times (2.205 \times 10^{-6} [lb/mg]) \times (Fugitive LFG Emission rate [ft³/min]) \times (60 min/hr)$

(35.3147 ft³/m³)

(lb/yr) = (lb/hr) x (8,760 hours/yr)

(TPY) = _____(lb/yr) (2,000 lb/ton)

Total HAPs 3.48

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of LFG Flare Emissions - Total Facility

-

							Ope	erating Conditions			Estimated Potential Flare Emissions (TPY)					
							CFM	MMSCF	Hours	PM ₁₀	NMOC	СО	NOx	SO ₂	VOC ^A	
	Tot	al LFG Ger	erated ^B =	7,337	cfm	Enclosed	2,927	1,538.4	8,760	6.5	2.0	76.9	23.1	31.7	0.8	
		Collection E	,			3,300 CFM										
	To	tal LFG Co	mbusted =		cfm	Open	910	478.3	8,760	2.0	0.6	23.9	7.2	9.9	0.2	
		3,837	cfm	910 CFM												
								Total Emis	sions (TPY)	8.6	2.6	100.8	30.2	41.5	1.0	
		Flare Emi														
		dard Cubio			Total Emis	ssions (lb/yr)	17,141.5	5,277.1	201,665.0	60,499.5	83,066.6	2,058.1				
		PM	NMOC	CO	NOx	SO ₂										
	Enclosed Flare 3,300 CFM	8.50	2.62	100.00	30.00	41.19				Emission	Factor Do	alanmant				
	Open Flare	26.00	41.19	Emission Factor Development 3.300 CFM Enclosed Flare												
	910 CFM	8.50	2.62	110.00	20.00	41.15	CO: 0.20 lb/MMBtu									
		J			Į	•				NOx:	0.06	lb/MMBtu				
Notes:																
										910	CFM Open	Flare				
	^A Per AP-42, VOC emissions are calculated a									CO:	0.22	lb/MMBtu				
	^B Based on amount of LFG generated in pea		G producti	ion in exist	ting and fut	ure landfill area	S			NOx:	0.052	lb/MMBtu				
PM	17 lb/10 ⁶ dscf methane per AP-42, section 2.4															
NMOC	Based on 595 ppm per AP-42, section 2.4 (11										LFG Data:					
CO	Emission rates (in units fo lb/MMBtu) reference									NMOC:	595	ppm				
NO _X	Emission rates (in units fo lb/MMBtu) reference	ions					TRS:	252	ppm							
SO ₂	Based on conservative TRS concentration of						CH ₄ :	50.0%	of total LFG							
VOC	39% of NMOC per AP-42, section 2.4 (11/98)									VOC:	39.0%	of NMOC				
Heating value DE (of NMOC)	500 98.0	Btu/scf %														
DE (UI NINOC)	98.0	70														

Total HAPs 1.208

Table 6A

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Flare HAP Emissions - Total Facility

Landfill Gas Flares - HAP Emission Estimates

Total LFG Generated =	7,337 cfm
LFG Collection Efficiency =	85%
Total LFG Collected =	6,237 cfm
Total LFG Collected to Flares =	3,837 cfm
Hours of Operation =	8,760

	Hours of Operation =	8,760													
						Uncontrolled Emissions				Controlled Emissions					
CAS #	LFG Constituent			Molecular	Median ¹					Avg.				HAP	
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	mg/m3	Control ⁶	lb/hr	lb/yr	TPY	(TPY)	
71-55-6	1,1,1-Trichloroethane		Х	133.41	0.168	0.013	115.33	0.06	0.92	98.0%	0.000	2.31	0.00	0.001	
79-34-5	1,1,2,2-Tetrachloroethane	х	Х	167.85	0.070	0.007	60.46	0.03	0.48	98.0%	0.000	1.21	0.00	0.001	
75-34-3	1,1-Dichloroethane	х	Х	98.97	0.741	0.043	377.38	0.19	3.00	98.0%	0.001	7.55	0.00	0.004	
75-35-4	1,1-Dichloroethene	х	Х	96.94	0.092	0.005	45.89	0.02	0.36	98.0%	0.000	0.92	0.00	0.000	
107-06-2	1,2-Dichloroethane	х	Х	98.96	0.120	0.007	61.11	0.03	0.49	98.0%	0.000	1.22	0.00	0.001	
78-87-5	1,2-Dichloropropane	х	Х	112.99	0.023	0.002	13.37	0.01	0.11	98.0%	0.000	0.27	0.00	0.000	
67-63-0	2-Propanol	Х		60.11	7.908	0.279	2,446.05	1.22	19.43	98.0%	0.006	48.92	0.02		
67-64-1	Acetone	N.		58.08	6.126	0.209	1,830.86	0.92	14.54	98.0%	0.004	36.62	0.02		
107-13-1	Acrylonitrile	Х	х	53.06	0.036	0.001	9.83	0.00	0.08	98.0%	0.000	0.20	0.00	0.000	
71-43-2	Benzene ⁴	Х	х	78.11	0.972	0.045	390.68	0.20	3.10	98.0%	0.001	7.81	0.00	0.004	
75-27-4	Bromodichloromethane	Х		163.83	0.311	0.030	262.18	0.13	2.08	98.0%	0.001	5.24	0.00		
106-97-8	Butane ³	х		58.12	5.030	0.172	1,504.34	0.75	11.95	98.0%	0.003	30.09	0.02		
75-15-0	Carbon disulfide	х	х	76.13	0.320	0.014	125.36	0.06	1.00	98.0%	0.000	2.51	0.00	0.001	
56-23-5	Carbon tetrachloride	Х	х	153.84	0.007	0.001	5.54	0.00	0.04	98.0%	0.000	0.11	0.00	0.000	
463-58-1	Carbonyl sulfide	Х	Х	60.07	0.183	0.006	56.57	0.03	0.45	98.0%	0.000	1.13	0.00	0.001	
108-90-7	Chlorobenzene	Х	Х	112.56	0.227	0.015	131.48	0.07	1.04	98.0%	0.000	2.63	0.00	0.001	
75-45-6	Chlorodifluoromethane	N.		86.47	0.355	0.018	157.96	0.08	1.25	98.0%	0.000	3.16	0.00		
75-00-3	Chloroethane	Х	х	64.52	0.239	0.009	79.35	0.04	0.63	98.0%	0.000	1.59	0.00	0.001	
67-66-3	Chloroform	Х	х	119.39	0.021	0.001	12.90	0.01	0.10	98.0%	0.000	0.26	0.00	0.000	
74-87-3	Chloromethane ²	Х	Х	50.49	0.249	0.007	64.69	0.03	0.51	98.0%	0.000	1.29	0.00	0.001	
106-46-7	Dichlorobenzene	х	Х	147.00	1.607	0.139	1,215.59	0.61	9.66	98.0%	0.003	24.31	0.01	0.012	
75-71-8	Dichlorodifluoromethane			120.91	1.751	0.124	1,089.43	0.54	8.65	98.0%	0.002	21.79	0.01		
75-43-4	Dichlorofluoromethane ³	х		102.92	2.620	0.158	1,387.57	0.69	11.02	98.0%	0.003	27.75	0.01		
75-09-2	Dichloromethane		Х	84.94	3.395	0.169	1,483.90	0.74	11.79	98.0%	0.003	29.68	0.01	0.015	
75-18-3	Dimethyl Sulfide	Х		62.13	6.809	0.249	2,176.89	1.09	17.29	98.0%	0.005	43.54	0.02		
64-17-5	Ethanol	х		46.08	118.618	3.211	28,126.48	14.06	223.41	98.0%	0.064	562.53	0.28		
75-08-1	Ethyl mercaptan	х		62.13	1.356	0.049	433.52	0.22	3.44	98.0%	0.001	8.67	0.00		
100-41-4	Ethylbenzene	х	Х	106.16	6.789	0.423	3,708.68	1.85	29.46	98.0%	0.008	74.17	0.04	0.037	
106-93-4	Ethylene dibromide ²	х	Х	187.88	0.046	0.005	44.47	0.02	0.35	98.0%	0.000	0.89	0.00	0.000	
75-69-4	Fluorotrichloromethane	х		137.38	0.327	0.026	231.17	0.12	1.84	98.0%	0.001	4.62	0.00		
7647-01-0	Hydrogen Chloride 5		х	36.46	9.430	0.202	1,769.22	0.88	14.05	0.0%	0.202	1,769.22	0.88	0.885	
110-54-3	Hexane	х	х	86.18	2.324	0.118	1,030.61	0.52	8.19	98.0%	0.002	20.61	0.01	0.010	
7783-06-4	Hydrogen Sulfide			34.08	252.000	5.045	44,192.90	22.10	351.03	98.0%	0.101	883.86	0.44		
7439-97-6	Mercury ³		х	200.61	0.000292	0.000	0.30	0.00	0.00	0.0%	0.000	0.30	0.00	0.000	
78-93-3	Methyl ethyl ketone 7	х		72.11	10.557	0.447	3,917.31	1.96	31.12	98.0%	0.009	78.35	0.04		
108-10-1	Methyl isobutyl ketone	x	х	100.16	0.750	0.044	386.55	0.19	3.07	98.0%	0.001	7.73	0.00	0.004	
74-93-1	Methyl mercaptan	X	~	48.11	1.292	0.044	319.85	0.16	2.54	98.0%	0.001	6.40	0.00	0.004	
109-66-0	Pentane ³	x		72.15	3.290				9.70	98.0%	0.003				
		^	v			0.139	1,221.48	0.61				24.43	0.01	0.040	
127-18-4	Perchloroethylene	~	Х	165.83	1.193	0.116	1,018.02	0.51	8.09	98.0%	0.002	20.36	0.01	0.010	
74-98-6	Propane	х		44.09	14.757	0.382	3,348.04	1.67	26.59	98.0%	0.008	66.96	0.03		
108-88-3	Toluene ⁴	Х	Х	92.13	25.405	1.375	12,044.05	6.02	95.67	98.0%	0.027	240.88	0.12	0.120	
79-01-6	Trichloroethene	Х	Х	131.40	0.681	0.053	460.46	0.23	3.66	98.0%	0.001	9.21	0.00	0.005	
75-01-4	Vinyl chloride	х	Х	62.50	1.077	0.040	346.38	0.17	2.75	98.0%	0.001	6.93	0.00	0.003	
1330-20-7	Xylene	х	Х	106.16	16.582	1.034	9,058.37	4.53	71.95	98.0%	0.021	181.17	0.09	0.091	

Notes:

1

Concentration of individual HAPs were taken from Waste Industry Air Coalition (WIAC) Not designated as a HAP in Chapter 2.4 of AP-42 (11/98), but is listed in the USEPA National Emission Inventory (NEI) database No WIAC concentration specified; used AP-42 value 2

3

4

Used 'No or unknown co-disposal' concentration HCI Concentration was taken from "Measurement of Toxic Emissions from Landfill: History and Current Developments". 5

Control efficiency of 9% assumed for all speciated HAPs (except mercury and HCl) Delisted as a HAP by USEPA 6

7

Equations:

(mg/m ³) =	(Molecular weight) x (1 atm) x (Median ppmv)	
	(298.15 K) x (0.08206 L*atm/K*mol)	
(lb/hr) =	$(mg/m^3) \times (2.205 \times 10^{-6} [lb/mg]) \times (LFG Combustion rate [ft3/min]) \times (60 min/hr)$	
	(35.3147 ft ³ /m ³)	
(lb/yr) = (lb/hr) x (8,760 hours/yr)	
(TPY) =	(lb/yr)	
	(2,000 lb/ton)	

(Controlled Emissions) = (Uncontrolled Emissions) x (100% - Average Control [%])

Table 6B

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Flare Greenhouse Gas Emissions - Total Facility

								E	Estimated Poten	tial Flare Emis	ssions (TPY)		
						Operating Hours	Combustion CO ₂	Combustion CH₄	Combustion N ₂ O	Escape CH₄	Collected CO ₂	Biogenic CO 2	Anthropogenic GHG
LFG to 3,300 CFM Enclosed Flare = 2,927 cfm LFG to 910 CFM Open Flare = 910 cfm			Enclosed 3,300 CFM	8,760	44,148.3	2.7	0.5	162.7	44,612.3	88,760.5	4,294.0		
					Open 910 CFM	8,760	13,726.3	0.8	0.2	50.6	13,870.6	27,596.9	1,335.1
	Flare Comb	oustion Fac	tors	_									
	Pounds p CO ₂	er Hour of CH₄	Operation N ₂ O			Total Emissions (TPY)	57,874.6	3.6	0.7	213.3	58,482.9	116,357.5	5,629.1
osed) CFM	10,079.5	0.6	0.12			Total Emissions (lb/yr)	1.16E+08	7.11E+03	1.40E+03	426,521.5	1.17E+08	2.33E+08	1.13E+07
1	3,133.9	0.2	0.04			· · · ·	•	•	•			•	•

GWP

(100 year)

1

25

298

MMBtu/hr

cfm MMBtu/hr

910 CFM Notes:

Enclosed

3,300 CFM Open

Combustion CO ₂	Combustic	on emission factor referenced from Table C-1 of 40 CFR Part 98, Subpart C	Emission F	actor Develop	ment
Combustion CH ₄	Combustic	on emission factor referenced from Table C-2 of 40 CFR Part 98, Subpart C	Enc	losed Flares	
Combustion N ₂ O	Combustic	on emission factor referenced from Table C-2 of 40 CFR Part 98, Subpart C		EF	C
Escape CH ₄	Collected	methane that escapes destruction in engines (1% of methane processed)		(kg/MMBtu)	(10
Collected CO ₂	Portion of	collected LFG that already contains CO ₂ (50% of collected LFG)	CO ₂	52.07	
Biogenic CO ₂	Sum of Co	ombustion CO ₂ and Collected CO ₂	CH ₄	3.20E-03	
Anthropogenic GHG	Sum of Co	mbustion CH_4 , Combustion N_2O and Escape CH_4	N ₂ O	6.30E-04	
	expressed	as tons of CO ₂ equivalents			
				LFG Data:	
Heating value	500	Btu/scf	Heat Input (3,300 CFM Flare):	87.8	MMB
LFG CH ₄ Concentration	50	%	LFG combusted (3,300 CFM Flare):	2,927	cfm
CH ₄ Destruction Efficiency	99	% (manufacturer guarantee DE for LFG Enclosed Flares)	Heat Input (910 CFM Flare):	27.3	MMBt
CH ₄ Density	0.0423	pounds per cubic foot (referenced from 40 CFR Part 98, Subpart HH)	LFG combusted (910 CFM Flare):	910	cfm
CO ₂ concentration	50	%			

CO₂ density 0.116 pounds per cubic foot

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Caterpillar 3516 Engine Emissions

							Operating		Estimated F	Potential 3516 Engine Emissions (TPY)				
							Hours	PM ₁₀	NMOC	СО	NO _x	SO ₂	VOC ^A	
	otal Number of 35 to Renewable Ene	0		cfm	Engin	e #1	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
			•		Engin	e #2	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
					Engin	e #3	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
					Engin	e #4	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
					Engin	e #5	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
					Engin	e #6	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
					Engin	e #7	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
					Engin	e #8	8,760	0.1	0.2	30.0	15.0	3.2	0.1	
	3516 Engine Er	nission Fact	ors											
		Pounds per		eration]	Total Emissions	0.9	1.7	240.3	119.7	26.0	0.6	
	PM	NMOC	со	NOx	SO ₂		(TPY)							
3516 Engines	0.03	0.05	6.86	3.42	0.74		Total Emissions (lb/yr)	1,802.1	3,300.9	480,656.8	239,441.6	51,959.2	1,287.3	

Notes:

^A Per AP-42, VOC emissions are calculated as 39% of NMOC emissions.

PM Based on 0.01 grains/dscf LFG (1 grain = 1.43×10^{-4} lbs)

NMOC Based on 595 ppm per AP-42, section 2.4 (11/98), and 98% destruction efficiency

CO Based on February 2006 State Facility Application, prepared by McMahon & Mann

 NO_{X} Based on February 2006 State Facility Application, prepared by McMahon & Mann

 SO_2 Based on conservative TRS concentration of 252 ppm

VOC 39% of NMOC per AP-42, section 2.4 (11/98)

Heating value	500	Btu/scf
DE (of NMOC)	98.0	%

Engine Power 1,148 Bhp

Emission Factor Development

Caterpillar 3516 Engines

- referenced from Chaffee Landfill PPP State Facility Permit Application, prepared February 2006:

CO:	2.71	g/bhp-hr
NOx:	1.35	g/bhp-hr

LFG Data: 300

LFG combusted /engine:

/engine:	300	cfm
NMOC:	595	ppm
TRS:	252	ppm
CH ₄ :	50.0%	of total LFG

Table 7A

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Caterpillar 3516 Engine HAPS Emissions

Landfill Gas Engines - HAP Emission Estimates

Total LFG Collected to Existing 3516 Engines = 2,400 cfm

10	Hours of Operation =	2,400	cim											
							Cor	trolled Emissi	ions					
CAS #	LFG Constituent			Molecular	Median ¹					Avg.				HAP
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	mg/m3	Control ⁶	lb/hr	lb/yr	TPY	(TPY)
71-55-6	1,1,1-Trichloroethane		Х	133.41	0.168	0.008	72.14	0.04	0.92	98.0%	0.000	1.44	0.00	0.001
79-34-5	1,1,2,2-Tetrachloroethane	х	х	167.85	0.070	0.004	37.82	0.02	0.48	98.0%	0.000	0.76	0.00	0.000
75-34-3	1,1-Dichloroethane	X	х	98.97	0.741	0.027	236.05	0.12	3.00	98.0%	0.001	4.72	0.00	0.002
75-35-4	1,1-Dichloroethene	х	х	96.94	0.092	0.003	28.71	0.01	0.36	98.0%	0.000	0.57	0.00	0.000
107-06-2 78-87-5	1,2-Dichloroethane 1,2-Dichloropropane	X X	X X	98.96 112.99	0.120 0.023	0.004 0.001	38.22 8.36	0.02	0.49 0.11	98.0% 98.0%	0.000	0.76 0.17	0.00	0.000 0.000
67-63-0	2-Propanol	x	^	60.11	7.908	0.001	1.530.04	0.00	19.43	98.0% 98.0%	0.000	30.60	0.00	0.000
67-64-1	Acetone	~		58.08	6.126	0.173	1,145.23	0.57	14.54	98.0%	0.003	22.90	0.02	
107-13-1	Acrylonitrile	х	х	53.06	0.036	0.001	6.15	0.00	0.08	98.0%	0.000	0.12	0.00	0.000
71-43-2	Benzene ⁴	x	X	78.11	0.972	0.028	244.38	0.12	3.10	98.0%	0.001	4.89	0.00	0.002
75-27-4	Bromodichloromethane	x	~	163.83	0.311	0.019	164.00	0.08	2.08	98.0%	0.000	3.28	0.00	0.002
106-97-8	Butane ³	x		58.12	5.030	0.107	940.98	0.47	11.95	98.0%	0.002	18.82	0.01	
75-15-0	Carbon disulfide	x	х	76.13	0.320	0.009	78.41	0.04	1.00	98.0%	0.000	1.57	0.00	0.001
56-23-5	Carbon tetrachloride	x	x	153.84	0.007	0.000	3.47	0.00	0.04	98.0%	0.000	0.07	0.00	0.000
463-58-1	Carbonyl sulfide	x	x	60.07	0.183	0.004	35.38	0.02	0.45	98.0%	0.000	0.71	0.00	0.000
108-90-7	Chlorobenzene	x	X	112.56	0.227	0.009	82.24	0.04	1.04	98.0%	0.000	1.64	0.00	0.001
75-45-6	Chlorodifluoromethane			86.47	0.355	0.011	98.81	0.05	1.25	98.0%	0.000	1.98	0.00	
75-00-3	Chloroethane	х	Х	64.52	0.239	0.006	49.63	0.02	0.63	98.0%	0.000	0.99	0.00	0.000
67-66-3	Chloroform	х	х	119.39	0.021	0.001	8.07	0.00	0.10	98.0%	0.000	0.16	0.00	0.000
74-87-3	Chloromethane ²	х	х	50.49	0.249	0.005	40.47	0.02	0.51	98.0%	0.000	0.81	0.00	0.000
106-46-7	Dichlorobenzene	х	х	147.00	1.607	0.087	760.36	0.38	9.66	98.0%	0.002	15.21	0.01	0.008
75-71-8	Dichlorodifluoromethane			120.91	1.751	0.078	681.45	0.34	8.65	98.0%	0.002	13.63	0.01	
75-43-4	Dichlorofluoromethane 3	х		102.92	2.620	0.099	867.94	0.43	11.02	98.0%	0.002	17.36	0.01	
75-09-2	Dichloromethane		х	84.94	3.395	0.106	928.20	0.46	11.79	98.0%	0.002	18.56	0.01	0.009
75-18-3	Dimethyl Sulfide	х		62.13	6.809	0.155	1,361.67	0.68	17.29	98.0%	0.003	27.23	0.01	
64-17-5	Ethanol	х		46.08	118.618	2.008	17,593.47	8.80	223.41	98.0%	0.040	351.87	0.18	
75-08-1	Ethyl mercaptan	х		62.13	1.356	0.031	271.17	0.14	3.44	98.0%	0.001	5.42	0.00	
100-41-4	Ethylbenzene	х	х	106.16	6.789	0.265	2,319.82	1.16	29.46	98.0%	0.005	46.40	0.02	0.023
106-93-4	Ethylene dibromide 2	х	х	187.88	0.046	0.003	27.82	0.01	0.35	98.0%	0.000	0.56	0.00	0.000
75-69-4	Fluorotrichloromethane	x		137.38	0.327	0.017	144.60	0.07	1.84	98.0%	0.000	2.89	0.00	
7647-01-0	Hydrogen Chloride 5	~	х	36.46	9.430	0.126	1,106.67	0.55	14.05	0.0%	0.126	1,106.67	0.55	0.553
110-54-3	Hexane	х	X	86.18	2.324	0.074	644.66	0.32	8.19	98.0%	0.001	12.89	0.01	0.006
7783-06-4	Hydrogen Sulfide	X	~	34.08	252.000	3.156	27,643.21	13.82	351.03	98.0%	0.063	552.86	0.28	0.000
	, .		х	200.61	0.000292	0.000	0.19	0.00	0.00	0.0%	0.000	0.19	0.20	0.000
78-93-3	Methyl ethyl ketone 7	х	^	72.11	10.557	0.000	2,450.33	1.23	31.12	98.0%	0.000	49.01	0.00	0.000
108-10-1	Methyl isobutyl ketone	х	х	100.16	0.750	0.028	241.79	0.12	3.07	98.0%	0.001	4.84	0.00	0.002
74-93-1	Methyl mercaptan	х		48.11	1.292	0.023	200.07	0.10	2.54	98.0%	0.000	4.00	0.00	
109-66-0	Pentane ³	Х		72.15	3.290	0.087	764.05	0.38	9.70	98.0%	0.002	15.28	0.01	
127-18-4	Perchloroethylene		Х	165.83	1.193	0.073	636.78	0.32	8.09	98.0%	0.001	12.74	0.01	0.006
74-98-6	Propane	Х		44.09	14.757	0.239	2,094.24	1.05	26.59	98.0%	0.005	41.88	0.02	
108-88-3	Toluene 4	Х	Х	92.13	25.405	0.860	7,533.71	3.77	95.67	98.0%	0.017	150.67	0.08	0.075
79-01-6	Trichloroethene	Х	Х	131.40	0.681	0.033	288.03	0.14	3.66	98.0%	0.001	5.76	0.00	0.003
75-01-4	Vinyl chloride	Х	Х	62.50	1.077	0.025	216.66	0.11	2.75	98.0%	0.000	4.33	0.00	0.002
1330-20-7	Xylene	Х	Х	106.16	16.582	0.647	5,666.13	2.83	71.95	98.0%	0.013	113.32	0.06	0.057

Notes: 1

Concentration of individual HAPs were taken from Waste Industry Air Coalition (WIAC)

2 Not designated as a HAP in Chapter 2.4 of AP-42 (11/98), but is listed in the USEPA National Emission Inventory (NEI) database

3 No WIAC concentration specified; used AP-42 value

4 Used 'No or unknown co-disposal' concentration

5 HCI Concentration was taken from "Measurement of Toxic Emissions from Landfill: History and Current Developments".

6 Control efficiency of 98% assumed for all speciated HAPs (except mercury and HCI)

7 Delisted as a HAP by USEPA

Equations:

(Molecular weight) x (1 atm) x (Median ppmv) (298.15 K) x (0.08206 L*atm/K*mol) (mg/m³) =

(lb/hr) = ______(mg/m³) x (2.205 x 10⁻⁶ [lb/mg]) x (LFG Combustion rate [ft³/min]) x (60 min/hr) (35.3147 ft³/m³)

(lb/yr) = (lb/hr) x (8,760 hours/yr)

(TPY) = (lb/yr) (2,000 lb/ton)

(Controlled Emissions) = (Uncontrolled Emissions) x (100% - Average Control [%])

Total HAPs 0.756

Table 7B

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Caterpillar 3516 Engine Greenhouse Gas Emissions

				E	stimated Poter	ntial 3516 Engin	e Emissions	(TPY)	
		Operating Hours	Combustion CO ₂	Combustion CH ₄	Combustion N ₂ O	Escape CH ₄	Collected CO ₂	Biogenic CO ₂	Anthropogenie GHG
nes = 8 nes = 2,400 cfm	Engine #1	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
,	Engine #2	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
	Engine #3	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
	Engine #4	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
	Engine #5	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
	Engine #6	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
	Engine #7	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
	Engine #8	8,760	4,525.2	0.3	0.1	27.7	4,572.7	9,097.9	715.3
bustion Factors									
$ \begin{array}{c c} \hline \\ Ir of Operation \\ I_4 \\ N_2 O \\ \end{array} $		Total Emissions (TPY)	36,201.3	2.2	0.4	221.4	36,581.8	72,783.0	5,722.1
0.01		Total Emissions (lb/yr)	7.24E+07	4.45E+03	8.76E+02	442,879.0	7.32E+07	1.46E+08	1.14E+07

Total Number of 3516 Engines = 8 LFG to Existing Caterpillar 3516 Engines = 2,400 cf

	3516 Engine Combustion Factor							
	Pounds per Hour of Operation							
	CO ₂	CH₄	N ₂ O					
3516 Engines	1,033.1	0.1	0.01					

Notes:

Combustion CO ₂	2 Combustion emission factor referenced from Table C-1 of 40 CFR Part 98, Subpart C Emission Factor Development						
Combustion CH ₄	Combustion emission factor referenced from Table C-2 of 40 CFR Part 98, Subpart C Existing Caterpillar 3516 Engin						
Combustion N ₂ O	Combustic	mbustion emission factor referenced from Table C-2 of 40 CFR Part 98, Subpart C				GWP	
Escape CH $_4$ Collected methane that escapes destruction in engines (1.66% of methane processed)						(100 year)	
Collected CO ₂ Portion of collected LFG that already contains CO ₂ (50% of collected LFG) CO					52.07	1	
Biogenic CO ₂	Biogenic CO ₂ Sum of Combustion CO ₂ and Collected CO ₂ CH				3.20E-03	25	
Anthropogenic GHG Sum of Combustion CH ₄ , Combustion N ₂ O and Escape CH ₄ N_2 C					6.30E-04	298	
	expressed	as tons of CO ₂ equivalents					
					LFG Data:		
Engine Power	1,148	Bhp		Heat Input:	9.0	MMBtu/hr	
Heating value	500	Btu/scf	LFG combus	sted /engine:	300	cfm	
LFG CH ₄ Concentration	50	%					
CH ₄ Destruction Efficiency	98.34	98.34 % (based on results of engine source tests; information gathered by the Solid Waste Industry for Climate Solutions (SWICS))					
CH₄ Density	0.0423	pounds per cubic foot (referenced from 40 CFR Pa	irt 98, Subpart HH)				
CO ₂ concentration	50	%					

CO₂ density 0.116 pounds per cubic foot

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Crankcase Ventilator Emissions

Crankcase Ventilator (CCV) emissions (as particulate matter) can be estimated using the following equations:

	$(100 - \psi)$	U ₃₅₁₆ =	= 16 gal/month =	192	GPY
$E_{PM} = U^* \rho_{oil}^* f_{emitted} \qquad E_{controlled}$	$=E_{PM}*\frac{(100-\varphi)}{100}$		Specific gravity (oil) = $f_{ansatz} =$	0.89 0.5	
where,			$f_{combusted} = $ $\psi =$	0.5 95	%
$E_{PM} = Uncontrolled particulate matter emissions (in tons per y U = Oil consumption rate in 1 engine (in gallons per year (G \rho_{oil} = Density of Oil (in pounds per gallon (lb/gal))f_{emitted} = Fraction of oil that is emitted through crankcase ventilations of the second se$	GPY)) = 8.33 lb/gal * SG _{oil} =	7.41	y Ib/gal		,.
$E_{controlled}$ = Controlled PM emissions [with Smog-Hog mist eliminato ψ = Efficiency of Smog-Hog oil mist eliminator	or] (TPY)				
Estimated Crankcase Ventilator Emissions CCV #1 (Engines 1 - 8 [3516 engines]):	Uncontrolled PM Emissions		Controlled PM	Emissions	<u>></u>
E _{PM} = (192 GPY) * (7.4 lb/gal) * (0.5) * 8 engines =	5,694 lb/year = 2.8 TPY	E _{controlled} =	(1.4 TPY) * (0.05) =	0.14	TPY

Assumptions:

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Paint Booth Emissions

Manufacture/Paint Description	Paint Number	Max Quantity (gal/yr)	Paint Density (Lb/gal)	VOC Weight (Lb/gal)	% Ammonia	% Glycol Ether Compound	% Secondary Butyl Alcohol		Inspeciated VOC
CAS Number					7644-41-7	111-76-2	78-92-2		0NY998-10-0
Sheboygan Paint Co. Premium WM Green Aqua Enamel	73-5184F	1,000	9.41	2.70	0.33%	7.26%	4.60%		Contains VOC value from VOC weight and % Secondary Butyl Alcohol
Totals Lbs/yr				2,700	31.1	683.2	432.9	329.4	3,132.9
Totals Tons/yr				1.35	0.0155	0.34	0.22	0.16	1.57

Table 10

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Exempt Emission Sources

Trivial/Exempt Source	VOC	со	NOx	SO ₂	PM ₁₀	NMOC	HAPs	CO ₂
	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)	(TPY)
Heating Equipment (Propane)	0.002	0.02	0.03	0.0002	0.001			25.0
Heating Equipment (Natural Gas)	0.01	0.168	0.20	0.00	0.015			240.0
Portable Gasoline Generators	0.08	0.035	0.06	0.003	0.004			5.4
Dewatering Pump	0.05	0.134	0.62	0.04	0.044			23.0
Odor Neutralizers	4.04							
Parts Washers	3.35						0.01	
UST (Diesel Fuel)	0.004							
AST (Gasoline)	0.02							
New Oil Tanks	*							
Used Oil Tanks	*							
Coolant Tanks	*							
Totals	7.55	0.35	0.90	0.05	0.06	0.00	0.01	293.40

Notes:

* Source emits a negligible amount of emissions

Table 10A

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Propane Heating Emissions

Maximum propane combusted per year	4.000
------------------------------------	-------

10³ gallons

		Emission Calculations:			
				Lbs/yr	Tons/yr
PM=	<u>0.70</u> <u>lb.</u> 10 ³ gal	4.000000 10 ³ gal propane	=	2.800	0.00140
SO _{X =}	<u>0.1</u> l <u>b.</u> X 10 ³ gal	4.000000 10 ³ gal propane	=	0.400	0.00020
NO _{X =}	<u>13</u> l <u>b.</u> 10 ³ gal	4.000000 10 ³ gal propane	=	52.000	0.02600
VOC =	<u>1</u> <u>lb. X</u> 10 ³ gal	4.000000 10 ³ gal propane	=	4.000	0.00200
CO =	<u>7.5</u> l <u>b.</u> X 10 ³ gal	4.000000 10 ³ gal propane	=	30.000	0.01500
CO ₂ =	<u>12,500</u> <u>lb. X</u> 10 ³ gal	4.000000 10 ³ gal propane	=	50,000	25.00000

* Emissions factors from AP-42 7/2008, section 1.5 (Assume a sulfur content of 1%)

Table 10B

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Summary of Natural Gas Heating Emissions

Maximum Usage

4.00 MMScf per year

		En	nission Calculations:			
					Lbs/yr	TPY
PM ₁₀ =	<u>7.6 Lb PM</u> MMscf	Х	4.0 <u>MMscf</u> Year	=	30.4	0.015
SO _{X =}	0.6 Lb SO _x MMscf	Х	4.0 <u>MMscf</u> Year	Ī	2.4	0.001
NO _{X =}	<u>100 Lb NO_x</u> MMscf	Х	4.0 <u>MMscf</u> Year	=	400	0.200
VOC =	<u>5.5 Lb VOC</u> MMscf	Х	4.0 <u>MMscf</u> Year	=	22	0.011
CO =	84 Lb CO MMscf	Х	4.0 <u>MMscf</u> Year	=	336	0.168
CO ₂ =	<u>120,000 Lb CO₂</u> MMscf	Х	4.0 <u>MMscf</u> Year	=	480,000	240.0

* Emissions factors from AP-42 7/98 Section 1.4.

Table 10C

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Portable Gasoline Generators

Max. Hours of Operation Engine Power 500 hours per year20 HP

			Emissior	Calculations:				
							Lbs/yr	TPY
PM ₁₀ =	<u>0.000721 Lb PM</u> hp-hr	Х	20 HP	Х	500 <u>Hours</u> Year	=	7.21	0.004
SO _{X =}	<u>0.000591 Lb SO_x</u> hp-hr	Х	20 HP	Х	500 <u>Hours</u> Year	=	5.91	0.003
NO _{X =}	<u>0.011 Lb NO_x</u> hp-hr	Х	20 HP	Х	500 <u>Hours</u> Year	=	110	0.05
VOC =	<u>0.015 Lb VOC</u> hp-hr	Х	20 HP	Х	500 <u>Hours</u> Year	=	150	0.075
CO =	0.00696 Lb CO hp-hr	Х	20 HP	Х	500 <u>Hours</u> Year	=	69.6	0.03
CO ₂ =	<u>1.08 Lb CO₂</u> hp-hr	Х	20 HP	Х	500 <u>Hours</u> Year	=	10,800.0	5.4

* Emissions factors from AP-42 10/96, section 3.3

Table 10D

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Diesel Dewatering Pump

Max. Hours of Operation Engine Power 500 hours per year80 HP

			Emissior	Calculations:				
							Lbs/yr	TPY
PM ₁₀ =	<u>0.00220 Lb PM</u> hp-hr	Х	80 HP	Х	500 <u>Hours</u> Year	=	88	0.044
SO _{X =}	<u>0.00205 Lb SO_x</u> hp-hr	Х	80 HP	Х	500 <u>Hours</u> Year	=	82	0.041
NO _{X =}	<u>0.031 Lb NO_x</u> hp-hr	Х	80 HP	Х	500 <u>Hours</u> Year	=	1240	0.620
VOC =	0.00247 Lb VOC hp-hr	Х	80 HP	Х	500 <u>Hours</u> Year	=	98.8	0.049
CO =	0.00668 Lb CO hp-hr	Х	80 HP	Х	500 <u>Hours</u> Year	=	267.2	0.134
CO ₂ =	<u>1.15 Lb CO₂</u> hp-hr	Х	80 HP	Х	500 <u>Hours</u> Year	=	46,000.0	23.0

* Emissions factors from AP-42 10/96, section 3.3

Table 10E

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Odor Neutralizers

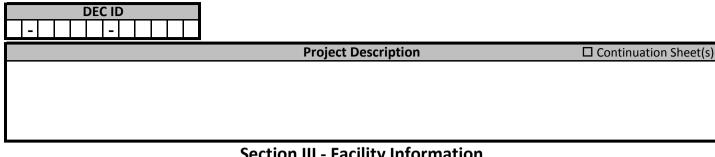
Estimated Annual Usage Percent Volatilzation 1,000 gallons per year97 % (based on MSDS sheet)

			Emission Cal	culations:			
VOC =	<u>1,850 gallons</u> year	Х	97 % volatilized	Х	8.34 <u>lbs</u> gallon	Lbs/yr 8,089.8	TPY 4.045

Table 10F

Emissions Inventory Chaffee Landfill Waste Management of New York, LLC

Parts Washing Solvent Emissions


Manufacture/Solvent Description	Max Quantity (gal/yr)	Density (Lb/gal)	VOC Weight (Lb/gal)	% Distillates	% Perchloroethylene
CAS Number				64742-47-8	127-18-4
Safety-Kleen 105 Solvent Recycled	1,000	6.70	6.70	99.8%	0.2%
Totals Lbs/yr			6,700.0	6,686.6	13.4
Totals Tons/yr			3.35	3.34	0.0067

Appendix A Title V Air Permit Application Forms

New York State Department of Air Permit Application	of Environmental Conse	ervation		EW YORK	Department of Environmental Conservation
DEC ID	Application II	the second s			lication Type
9 - 1 4 6 2 - 0 0 0 0 1		1/00013	1 1	State	Facility × Title V
	Section I - Certifica	tion			
	Certification				
I certify under penalty of law that this document and a assure that qualified personnel properly gather and ev gathering the information required to complete this a penalties for submitting false information, including th	valuate the information submitted. Basec pplication, I believe the information is tru	I on my inquiry of the pe ie, accurate, and comple	erson or p	ersons dire	ctly responsible for
Responsible Official Steven Poggi	<u>\</u>	Ti	tle ^{Dia}	rector of Disp	osal Operations-NE/UNY Are
Signature Stuent a	age	D	ate 7	1211:	2020
	Professional Engineer Cert	ification		<u> </u>	
I certify under penalty of law that I have personally ex attachments as they pertain to the practice of enginee of fines and imprisonment for knowing violations.	amined, and am familiar with, the statem	ents and information su			
Professional Engineer Richard Snyder		N	YS Licer	se No. (166242
Signature Lucha	Ann		ate 7	1211	2020
Sec	tion II - Identification I	nformation			
	Type of Permit Action Rec				
New Renewal × Signi Application for the construction of		trative Amendment involves the constr			dification
Application for the construction of	Facility Information	and the second sec	action	of new er	mission unic(s)
Name Chaffee Landfill	Tackity information				
Location Address 10860 Olean Road					
City / * Town / Village Chaffee				Zip	4030
	er/Firm Information				ness Taxpayer ID
Name Waste Management of New Yo				TTT	4 2 0 6 7 9 7
Street Address 10860 Olean Road				1-1-1	
City Chaffee	State/Province NY	Country L	ISA	1	Zip 14030
owner classification. Federal 3	itate Municipal × Owner/Firm Contact Infor	Corporation/Partne	ersnip		dividual
Name Michael Mahar	Owner/Firm Contact mor	mauon		716	-496-5192
					and the second
			1		96-7325
	and the second	Title	Distr	ict Man	ager
Street Address 10860 Olean Road City Chaffee		- I- I	ICA	-	14020
City Chance	State/Province NY	Country L	JSA		Zip 14030
Name Michael Mahar	Facility Contact Informa	ition		716	-496-5192
E-mail Address MMahar@wm.com					96-7325
	and the second			1.0.00	
		Title	Distri	ict Mana	iyei
Street Address 10860 Olean Road City Chaffee	State (Dawnis NIV		10 4		. 14000
Version 3 - 5/30/2019	State/Province NY	Country L	JJA	2	²¹¹ (14030)

-						Tacincy in				
						ity Classificati				
	🗆 Hospita		Residential		-	/Institutional	Commercia			Jtility
						(Title V Appli				
1	□ Verm		Massachus			land Denns		ll Land:		
	□ Ne	ew Hamps	shire 🗆 (Connecti	icut 🗆 Ne	ew Jersey 🔲	Ohio Tribal La	and:		
		SIC Cod	de(s)				NA	ICS Code(s)		
					Faci	lity Descriptio	on		Continu	uation Sheet(s)
					1.66		/11			
l										
1										
			Со	mplian	ce Statem	ents (Title V A	Applications O	only)		
l certify	that as of th	e date of		-		-		le requirements.	∃Yes □	No
-					=	-		rements at the tin		
				-	-			the "Compliance	-	-
	-			-				at the facility that		
	nce with all a		-	-			emission anits	at the facility that	, are oper	аны <u>ш</u>
		• •	•	-	•	•	ser as to assur	e compliance for t	ha durati	an of the
	•		•					•	ne duraci	on of the
-	-				-	pliance plan po				
For al	l emission u	nits subje	ect to any a	pplicabl	e requirem	ents that will be	ecome effective	e during the term	of the pe	rmit, this
facility w	vill meet suc	h require	ments on a	a timely	basis.					
Comp	liance certif	ication re	ports will l	be subm	itted at leas	st once per yea	r. Each report v	vill certify complia	ince statu	us with respect
-			-			etermine the sta	-			
		· · · ·								
Title	Tuno	Dart	Suba	1		ble Federal R	· ·		T	uation Sheet(s)
Title	Туре	Part	Subpa	art	Section	Subdivision	Paragraph	Subparagraph	Clause	Subclause
									Γ	
	ļi			ł		ļ!			 	
				F	acility Sta	te Only Requi	irements		Continu	uation Sheet(s)
Title	Туре	Part	Subpa		Section	Subdivision	Paragraph	Subparagraph	Clause	Subclause
									 	
									 	
		f	f			÷	1		f	

	DEC IE												
					Facility	/ C o	mpliance Cert	ificati	ion		Г	1 Continu	ation Sheet(s)
					- aciney		Rule Citation	mear					
Title T	Туре	Part	Sub	part	Sectio	on	Subdivision	Para	agraph	Subparagr	aph	Clause	Subclause
□ Applicable	e Federa	l Require	ment			С	AS Number			Contami	nant N	Name	
State Only	/ Require	ement		🗆 Ca	pping								
							oring Informa						
U Work P	ractice	Involving	Specific	Operatio			bient Air Monit e Activity Des			cord Keeping	g/Mair	itenance	Procedures
Work Pract		<u> </u>		Proce	ss Mater				r	Referer	nce Tes	st Metho	d
Type Code	e	Code			Descr	iptic	n						
			Monitore	d Param	notor								
Code			women		scription				Μ	anufacturer's	s Nam	e/Model	Number
Limit Limit Units													
Upper	r	Lo	ower		Code				[Description			
	A			_	_				_	Davi		Denvine	
Code	Averagi	ng Metho Descrip			Code		nitoring Freque Descrip			Code	orung	g Require Descri	
						Т							
					Facil	itv	Emissions Sun	marv	1		Г] Continu	ation Sheet(s)
CAS Num	bor				ntamina					Potential to			al Emissions
				0			ante			(tons/yı	r)	(p	ounds/yr)
0NY075 - 0					PM-1								
0NY750 - 0					PM-2								
007446 - 0					Sulfur Di								
0NY210 - 0					kides of N								
000630 - 0					arbon Mo								
007439 - 9					ead (eler								
0NY998 - 0							Compounds						
0NY100 - 0				Total Ha	azardous	Air I	Pollutants						
0NY750 - 0	0 - 0			Carbo	n Dioxide	Equ	uivalents						

Department of Environmental Conservation

DEC ID 1 4 6 2 0 0 0 0

Section III - Facility Information

Facility Description (continuation)

Chaffee Landfill presently operates eight (8) Caterpillar 3516 Internal Combustion (IC) engines at its Renewable Energy Facility (REF).

Chaffee Landfill also has on-site a 3,300 cfm enclosed flare and a 910 cfm open flare which are capable of combusting any excess landfill gas that is not being used by the engines. The enclosed flare comes with a manufacturer's maximum guarantee of 0.2 lb/MMBtu of Carbon Monoxide (CO).

Therefore, emission sources at the facility include fugitive emissions from the landfill; LFG combustion emissions from a 910-cfm flare, a 3,300 cfm enclosed flare, and eight IC engines; combustion emissions from heating equipment; emissions from surface coating operations; and evaporative emissions from fuel and oil storage tanks, leachate tanks, and parts washers.

Continuation Sheet <u>1</u> of <u>1</u>

NEW YORK STATE OF OPPORTUNITY Environmental Conservation

				l	DEG	C II)				
9	R	Ŀ	4	6	2	1	0	0	0	0	1

Section III - Facility Information

		Fac	ility Applicat	le Federa	l Requireme		ation)		
Title	Туре	Part	Subpart	Section	Subdivision	Paragraph	Subparagraph	Clause	Subclause
. 40	CFR	60	WWW	758	d		· · ·		
40	CFR	60	WWW	758	е	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
40	CFR	60	WWW	759	а		·		
40	CFR	60	WWW	759	b				
40	CFR	60	WWW	759	C		·		
40	CFR	61	М	154			· · · ·		
40	CFR	63	AAAA	1955	b				
40	CFR	60	А						
40	CFR	68							
40	CFR	82	F						
6	NYCRR	200		6					
6	NYCRR	200		7					
6	NYCRR	201	1	7					
6	NYCRR	201	1	8					
6	NYCRR	201	3	2	a				
6	NYCRR	201	3	3	а				
6	NYCRR	201	6						
6	NYCRR	202	1	1					
6	NYCRR	202	2	1					
6	NYCRR	202	2	5					
6	NYCRR	211		1					
6	NYCRR	212							
6	NYCRR	215		3					
6	NYCRR	208							
								7	

Continuation Sheet <u>1</u> of <u>1</u>

New York State Department of Environmental Conservation

Air Permit Application

DEC ID				,
	Section I	V - Emission Unit	Information	
		Emission Unit Descrip	tion	□ Continuation Sheet(s
Emission Unit	-			
		Building Informatio		□ Continuation Sheet(s
Building ID	Buildi	ing Name	Length (ft)	Width (ft) Orientation
Emission Unit	E	mission Unit Emissions	Summary	Continuation Sheet(s)
CAS Number		Contam	inant Name	
			_	
ERP (lbs/yr)	Potentia (lbs/hr)	al to Emit	Actual (lbs/hr)	Emissions (lbs (ur)
	(IDS/III)	(lbs/yr)	(105/111)	(lbs/yr)
CAS Number		Contam	inant Name	
CAS Number		Contain		
	Potentia	al to Emit	Actual	Emissions
ERP (lbs/yr)	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS Number		Contam	inant Name	
ERP (lbs/yr)	Potentia	al to Emit	Actual	Emissions
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)
CAS Number		Contam	inant Name	
ERP (lbs/yr)		al to Emit		Emissions
	(lbs/hr)	(lbs/yr)	(lbs/hr)	(lbs/yr)

[DEC ID											
	-											
		r			Emiss	ion Poin	t Info	ormatior	۱			Continuation Sheet(s)
Emission Poin	nt				-							
Ground	Heig	ht (ft)	Height Ab			iameter	Fxit	Temp. (°f	=)		Cross Se	
Elevation (ft))		Structure	(ft)	(i	n)	Exit	remp. (i	'	Length (in)		Width (in)
Exit Velocity (FPS)		Flow (FM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
Emission Poir	nt										<u> </u>	
Ground	lloig	h+ (f+)	Height Ab	ove	Inside D	iameter	- ··	- (0	- \	(Cross Se	ection
Elevation (ft)) Heig	ht (ft)	Structure	(ft)	(i	n)	Exit	Temp. (°F	-)	Length (in)		Width (in)
Exit Velocity (FPS)		Flow (FM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
Emission Poir	nt											
Ground	Heig	ht (ft)	Height Ab			iameter	Evit	Temp. (°f	=)		Cross Se	
Elevation (ft))		Structure	(ft)	(i	n)	LAIL	Temp. (I	,	Length (in)		Width (in)
Exit Velocity (FPS)		Flow (FM)	NYTM (E)	(KM)	NYTM (N) (KM)	E	Building		Distance to Prop Line (ft)	erty	Date of Removal
((,	,										
				Fm	nission S	ource/C	ontro	ol Inform	ati	ion		Continuation Sheet(s)
Emission So	ource		Date of	-	ate of	Date				ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Оре	eration	Remo	val	Code		Description	Nai	me/Model Number
Design			Design Ca	apacit	y Units				Wa	aste Feed		Waste Type
Capacity	Code			Descr	iption			Code		Description	Code	Description
Emission So	ource	[Date of	Da	ate of	Date	of		Cor	ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Оре	eration	Remo	val	Code		Description	Nai	me/Model Number
Design			Design Ca	apacit	y Units				Wa	aste Feed		Waste Type
Capacity	Code			Descr	iption			Code		Description	Code	Description
Emission Sc	ource	[Date of	Da	ate of	Date	of		Cor	ntrol Type		Manufacturer's
ID	Туре	Cor	struction	Оре	eration	Remo	val	Code		Description	Nai	me/Model Number
Design			Design Ca	apacit	y Units				Wa	aste Feed		Waste Type
Capacity	Code			Descr	iption			Code		Description	Code	Description

New York State Department of Environmental Conservation

Air Permit Application

DEC ID													
			Pro	cess Info	matic	n				Continuati	on Sh	ieet	t(s)
Emission Unit –	Ш				matric					Process			.(3)
			Pro	cess Des	riptio	n						<u> </u>	
Source Classification Code (SCC)		Total Th				<u> </u>	Throug	ghpu	t Quantity U				
,	Qua	ntity/Hr	Qua	ntity/Yr	Co	de			Descriptio	on			
Confidential				ng Schedul		_	Building		Floo	or/Locatio	n		
Operating at Maximum Capacity	citv	Hour	s/Day	Days	/Year		0			·			
	,						_						
			Emissio	on Point I	dentif	ier(s	s)						
		Emis	sion So	urce/Con	trol Id	lenti	ifier(s)			-			
Emission Unit -										Process			Γ
			Pro	cess Des	rintio	n					-	<u> </u>	
Source Classification Code (SCC)		Total Th					Throug	ghpu	t Quantity U				
	Qua	ntity/Hr	Qua	ntity/Yr	Co	de			Descriptio	on			
						_		_					
Confidential				ng Schedul			Building		Floo	or/Locatio	n		
Operating at Maximum Capacity	Hour	s/Day	Days	/Year		Ŭ							
						ļ							
			Emissio	on Point I	dentif	ier(s	S)						
		Emis	sion So	urce/Con	trol Id	lenti	ifier(s)						
					Ι	_	T	_			_		_
													_

DEC							
	-						
		Pro	cess Emissi	ons Summ	ary		□ Continuation Sheet(s)
Emission Unit	-						Process
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions
(lbs/hr)	(lbs/yr)	(standard units)	Units	How De	etermined	(lbs/hr)	(lbs/yr)
Emission Unit	-		•				Process
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions
(lbs/hr)	(lbs/yr)	(standard units)	Units		etermined	(lbs/hr)	(lbs/yr)
Emission Unit							Process
CAS Number		ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
CAS Number	Containin		70 mapat				EN NOW Determined
	Detential to Emit		Standard	Dotonti	ial ta Emit		tual Emissions
(lbs/hr)	Potential to Emit (lbs/yr)	(standard units)	Standard Units		ial to Emit etermined	(lbs/hr)	tual Emissions (lbs/yr)
(103/11)	(103/ 91)	(standard units)	Onics	TIOW DO		(103/111)	(103/ 91)
		Emissio	n Source Er	nissions Su	ummary		Continuation Sheet(s)
Emission Source							Process
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
	Potential to Emit		Standard		ial to Emit		tual Emissions
(lbs/hr)	(lbs/yr)	(standard units)	Units	How De	etermined	(lbs/hr)	(lbs/yr)
Emission Source							Process
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions
(lbs/hr)	(lbs/yr)	(standard units)	Units	How De	etermined	(lbs/hr)	(lbs/yr)
Emission Source							Process
CAS Number	Contamin	ant Name	% Thruput	% Capture	% Control	ERP (lbs/hr)	ERP How Determined
	Potential to Emit		Standard	Potenti	ial to Emit	Act	tual Emissions
(lbs/hr)	(lbs/yr)	(standard units)	Units		etermined	(lbs/hr)	(lbs/yr)

Department of Environmental Conservation

	DE	CID															
-		-															
	F	Emission		Emission	E	missio	n Unit	Applicable	e Fe	deral F	Rear	uirem	ents		🗆 Continu	uation	Sheet(s)
Emission U	nit	Point	Process	Source		Туре		Subpart		ection		odiv.	Parag		ubparag.	Cl.	Subcl.
						71								, -		_	
									_								
Emission U	nit E	mission	Process	Emission		Em		Unit State	-			1	S		Continu	uation	Sheet(s)
LIIIISSIOII O		Point	1100033	Source	Title	Туре	Part	Subpart	Se	ection	Sub	odiv.	Parag	g. Si	ubparag.	Cl.	Subcl.
				En	niccion	lloit	Com	oliance Ce	rtifi	icatio	2				🗆 Contini	uation	Shoot(c)
				E1	11551011			itation		catio						ation	Sileer(s)
Title	Туре	e Part	t s	ubpart	Sec	tion		division	Para	agraph	n T	Subi	paragra	aph	Clause	Sub	clause
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									-01-							
		laral Dagu	iromont			o Onli	/ Dogu	iromont			_				l Conning		
□ Applicab	ie rec	Emissi			Emiss		/ Requ	irement							l Capping		
Emission	Unit	Poin		rocess	Sour		C/	AS Number	•				Conta	mina	nt Name		
		1 0111			5001				_		-			-			
					Λ	lonit	oring	Informati	<u> </u>								
Continua	nus En	nission Ma	nitoring					Process or		ntrol D	evic	e Par	amete	rs as	a Surroga	ite	
Intermit			-				-	nvolving Sp					unicic	15 05	a Sunoge		
□ Ambient			-					/Maintena		-							
		0						vity Desc									
									•								
Work Pra	ctice			Proce	ess Mate	erial						R	eferen	ce Te	est Metho	Ч	
Туре Со	de	Code			Dese	criptio	n					I.	eleren			u	
		1	Monit	ored Parar	neter						N 4			N	/N 4 -	N	
Code				De	scriptio	n					wa	nurac	turer s	Nan	ne/Model	NUM	ber
		Limit								Limit	Unit	ts					
Upp	er		Lower		Code							escrip	tion				
	Ave	raging Me	thod			N/o	nitorir	ng Frequen	<u></u>				Ron	ortin	g Require	mente	
Code	Aver		ription		Code	-	mon	Descripti	-		_	Со		ortin		iption	
Cour		Dest			Coue			Descripti				0			Desci	1011	

		EC ID	<u> </u>													
-		-														
				Dete	rminat	tion o	of Non	-Applicab		itle V A	oplicatio	ons Only	r) 🗆	Contir	nuation S	heet(s)
Title			Dout	C				Rule Cita		Deve ev	anda L C		wanala	Claure		alawaa
Title	Тур	e	Part	Su	bpart		Sectior	subdiv	ision	Paragr	apn S	Subparag	rapn	Claus	se Sub	clause
Emissio	on Unit	Em	ssion F	Point	Process	s l	Emissio	on Source	-	plicable F		-	ent			
										ite Only F	Requirem	ent				
						N	lon-Ap	oplicability	y Desc	ription						
								Rule Cita	tion							
Title	Тур	e	Part	Su	bpart	9	Sectior	u Subdiv	rision	Paragr	aph S	Subparag	raph	Claus	se Sub	clause
Emissio	on Unit	Em	ssion F	Point	Process	s I	Emissio	on Source	D Ap	plicable F	ederal R	equireme	ent			
										ite Only F						
		<u> </u>				N	on- A	oplicabilit	y Deso	ription						
									-	-						
	_			_	_			Compliance	o Dlar		_	_] Cont	inuation	Sheet(s)
For any	omissi	on unit	s which		t in con	nlian		Complianc			on the a	policant			inuation	. ,
-			s whicl				<u>ce</u> at t	he time of p	permit	applicati	•		shall c	omplet	te the fol	. ,
For any Consent				С			<u>ce</u> at t	•	permit be sul	applicati	every 6 m	onths be	shall co ginnin	omplet		. ,
-	t Order		s E	C mission	ertified	progr	<u>ce</u> at t ess rep	he time of poorts are to	permit be sul Appli	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin	omplet g /	te the fol /	lowing:
Consent	t Order		s E	С	ertified		<u>ce</u> at t ess rep	he time of p	permit be sul Appli	applicati	every 6 m eral Req	onths be	shall co ginnin	omplet	te the fol	. ,
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of poorts are to	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin	omplet g / parag.	te the fol /	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.
Consent	t Order		SS E	C mission Source	ertified Title	progr Type	<u>ce</u> at t ess rep Part	he time of p ports are to Subpa	bermit be sul Appli rt	application omitted e cable Fed	every 6 m eral Req	onths be uirement	shall co ginnin Subp	omplet g / parag.	te the fol / Clause	lowing: Subcl.

New York State Department of Environmental Conservation

Air Permit Application

		Request for Emission Reduc	ction Cre	edits		□ Continuation Sheet(s)
Emission Sourc	e					
		Emission Reduction Des	scription	1		
		Contaminant Emission Red	uction D	Data	D	eduction
Baseline	Period /	_/to//			Date	Method
Dasenne	/	_/10//	-			
CAS Number		Contaminant Name				C (lbs/yr)
	_				Netting	Offset
		Facility to Use Future Re	eduction	<u>ו</u>	Applica	ition ID
Name			— —	Π		
Location Address						
City/	/ 🗖 Village	St	ate			Zip
		Use of Emission Reduction		ts		Continuation Sheet(s)
Emission Sourc	e					
		Proposed Project Desc	ription			
CAC Number		Contaminant Emissions Inc	crease D	ata	Dusis et Fue	
CAS Number		Contaminant Name			Project Em	ission Potential (lbs/yr)
		Statement of Compl	iance			
		o of this "owner/firm" are operating in o	complian			
-		ce certification requirements under Sec	tion 114((a)(3) (of the Clean Air	Act Amendments of 1990,
or are meeting th	e schedule of a co	Source of Emission Reduction	Credit -	Facili	ty	
				1 1	Pern	nit ID
Name			-		-	
Location Address						
	/ 🗆 Village	St	ate			Zip
Location Address	/ 🗆 Village CAS Number	St Contaminant Name	ate			C (lbs/yr)
Location Address			ate		ER	
Location Address			ate			C (lbs/yr)

Department of Environmental Conservation

	Conservation
DEC ID	
Supporting Documentation and Attachments	
Required Supporting Documentation	Date of Document
□ List of Exempt Activities (attach form)	
🗆 Plot Plan	
Process Flow Diagram	
Methods Used to Determine Compliance (attach form)	
Emissions Calculations	
Optional Supporting Documentation	Date of Document
Air Quality Model	
Confidentiality Justification	
□ Ambient Air Quality Monitoring Plan or Reports	
Stack Test Protocol	
Stack Test Report	
Continuous Emissions Monitoring Plan	
Lowest Achievable Emission Rate (LAER) Demonstration	
□ Best Available Control Technology (BACT) Demonstration	
Reasonably Available Control Technology (RACT) Demonstration	
Toxic Impact Assessment (TIA)	
Environmental Rating Demonstration	
□ Operational Flexibility Protocol/Description of Alternate Operating Scenarios	
Title IV Permit Application	
Emission Reduction Credit (ERC) Quantification (attach form)	
Baseline Period Demonstration	
Use of Emission Reduction Credits (attach form)	
□ Analysis of Contemporaneous Emissions Increase/Decrease	
Other Supporting Documentation	Date of Document

DEC ID										
-					I					

List of Exempt Activities

Instructions

Applicants for Title V facility permits must provide a listing of each exempt activity, as described in 6 NYCRR Part 201-3.2(c), that is currently operated at the facility. This form provides a means to fulfill this requirement.

In order to complete this form, enter the number and building location of each exempt activity. Building IDs used on this form should match those used in the Title V permit application. If a listed activity is not operated at the facility, leave the corresponding information blank.

	Combustion		
Rule Citation 201-3.2(c)	Description	Number of Activities	Building Location
(1)	Stationary or portable combustion installations where the furnace has a maximum heat input capacity less than 10 mmBtu/hr burning fuels other than coal or wood; or a maximum heat input capacity of less than 1 mmBtu/hr burning coal or wood. This activity does not include combustion installations burning any material classified as solid waste, as defined in 6 NYCRR Part 360, or waste oil, as defined in 6 NYCRR Subpart 225-2.		
(2)	Space heaters burning waste oil at automotive service facilities, as defined in 6 NYCRR Subpart 225-2, generated on-site or at a facility under common control, alone or in conjunction with used oil generated by a do-it-yourself oil changer as defined in 6 NYCRR Subpart 374-2.		
(3)(i)	Stationary or portable internal combustion engines that are liquid or gaseous fuel powered and located within the New York City metropolitan area or the Orange County towns of Blooming Grove, Chester, Highlands, Monroe, Tuxedo, Warwick, or Woodbury, and have a maximum mechanical power rating of less than 200 brake horsepower.		
(3)(ii)	Stationary or portable internal combustion engines that are liquid or gaseous fuel powered and located outside of the New York City metropolitan area or the Orange County towns of Blooming Grove, Chester, Highlands, Monroe, Tuxedo, Warwick, or Woodbury, and have a maximum mechanical power rating of less than 400 brake horsepower.		
(3)(iii)	Stationary or portable internal combustion engines that are gasoline powered and have a maximum mechanical power rating of less than 50 brake horsepower.		
(4)	Reserved.		
(5)	Gas turbines with a heat input at peak load less then 10 mmBtu/hour		

_

Rule Citation 201-3.2(c)	Description	Number of Activities	Building Location
(6)	Emergency power generating stationary internal combustion engines, as defined in 6 NYCRR Part 200.1(cq), and engine test cells at engine manufacturing facilities that are utilized for research and development, reliability performance testing, or quality assurance performance testing. Stationary internal combustion engines used for peak shaving and/or demand response programs are not exempt.		
	Combustion Related		
	Non-contact water cooling towers and water treatment systems for process cooling water and other water containers designed to cool, store or otherwise handle water that has not been in direct contact with gaseous or liquid process streams.		
	Agricultural		
	Feed and grain milling, cleaning, conveying, drying and storage operations including grain storage silos, where such silos exhaust to an appropriate emissions control device, excluding grain terminal elevators with permanent storage capacities over 2.5 million U.S. bushels, and grain storage elevators with capacities above one million bushels.		
(9)	Equipment used exclusively to slaughter animals, but not including other equipment at slaughterhouses, such as rendering cookers, boilers, heating plants, incinerators, and electrical power generating equipment.		
	Commercial - Food Service Industries		
(10)	Flour silos at bakeries, provided all such silos are exhausted through an appropriate emission control device.		
(11)	Emissions from flavorings added to a food product where such flavors are manually added to the product.		
	Commercial - Graphic Arts		
(12)	Screen printing inks/coatings or adhesives which are applied by a hand-held squeegee. A hand-held squeegee is one that is not propelled though the use of mechanical conveyance and is not an integral part of the screen printing process.		
(13)	Graphic arts processes at facilities located outside the New York City metropolitan area or the Orange County towns of Blooming Grove, Chester, Highlands, Monroe, Tuxedo, Warwick, or Woodbury whose facility-wide total emissions of volatile organic compounds from inks, coatings, adhesives, fountain solutions and cleaning solutions are less than three tons during any 12-month period.		Page 2 of 6

-	DEC ID		
Rule Citation 201-3.2(c)	Description	Number of Activities	Building Location
(14)	Graphic label and/or box labeling operations where the inks are applied by stamping or rolling.		
(15)	Graphic arts processes which are specifically exempted from regulation under 6 NYCRR Part 234, with respect to emissions of volatile organic compounds which are not given an A rating as described in 6 NYCRR Part 212.		
	Commercial - Other		
(16)	Gasoline dispensing sites registered with the department pursuant to 6 NYCRR Part 612.		
(17)	Surface coating and related activities at facilities which use less than 25 gallons per month of total coating materials, or with actual volatile organic compound emissions of 1,000 pounds or less from coating materials in any 12-month period. Coating materials include all paints and paint components, other materials mixed with paints prior to application, and cleaning solvents, combined. This exemption is subject to the following:(i) The facility is located outside of the New York City metropolitan area or the Orange County towns of Blooming Grove, Chester, Highlands, Monroe, Tuxedo, Warwick, or Woodbury; and(ii) All abrasive cleaning and surface coating operations are performed in an enclosed building where such operations are exhausted into appropriate emission control devices.		
(18)	Abrasive cleaning operations which exhaust to an appropriate emission control device.		
(19)	Ultraviolet curing operations.		
	Municipal/Public Health Related		
(20)	Landfill gas ventilating systems at landfills with design capacities less than 2.5 million megagrams (3.3 million tons) and 2.5 million cubic meters (2.75 million cubic yards), where the systems are vented directly to the atmosphere, and the ventilating system has been required by, and is operating under, the conditions of a valid 6 NYCRR Part 360 permit, or order on consent.		
	Storage Vessels		
(21)	Distillate fuel oil, residual fuel oil, and liquid asphalt storage tanks with storage capacities below 300,000 barrels.		
3/30/2015			Page 3 of 6

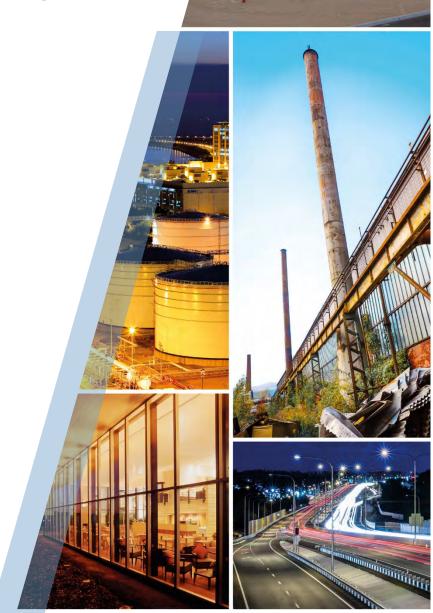
-					
Rule Citation 201-3.2(c)	Description	Number of Activities	Building Location		
(22)	Pressurized fixed roof tanks which are capable of maintaining a working pressure at all times to prevent emissions of volatile organic compounds to the outdoor atmosphere.				
(23)	External floating roof tanks which are of welded construction and are equipped with a metallic-type shoe primary seal and a secondary seal from the top of the shoe seal to the tank wall.				
	External floating roof tanks which are used for the storage of a petroleum or volatile organic liquid with a true vapor pressure less than 4.0 psi (27.6 kPa), are of welded construction and are equipped with one of the following:				
(24)	(i) a metallic-type shoe seal;				
(24)	(ii) a liquid-mounted foam seal;				
	(iii) a liquid-mounted liquid-filled type seal; or				
	(iv) equivalent control equipment or device.				
(25)	Storage tanks, including petroleum liquid storage tanks as defined in 6 NYCRR Part 229, with capacities less than 10,000 gallons, except those subject to 6 NYCRR Part 229 or Part 233.				
(26)	Horizontal petroleum or volatile organic liquid storage tanks.				
(27)	Storage silos storing solid materials, provided all such silos are exhausted through an appropriate emission control device. This exemption does not include raw material, clinker, or finished product storage silos at Portland cement plants.				
	Industrial				
(28)	Processing equipment at existing sand and gravel and stone crushing plants which were installed or constructed before August 31, 1983, where water is used for operations such as wet conveying, separating, and washing. This exemption does not include processing equipment at existing sand and gravel and stone crushing plants where water is used for dust suppression.				
(29)(i)	Sand and gravel processing or crushed stone processing lines at a non-metallic mineral processing facility that are a permanent or fixed installation with a maximum rated processing capacity of 25 tons of minerals per hour or less.				
3/30/2015		Г	Page 4 of 6		

l -				
Rule Citation 201-3.2(c)	Description	Number of Activities	Building Location	
(29)(ii)	Sand and gravel processing or crushed stone processing lines at a non-metallic mineral processing facility that are a portable emission source with a maximum rated processing capacity of 150 tons of minerals per hour or less.			
(29)(iii)	Sand and gravel processing or crushed stone processing lines at a non-metallic mineral processing facility that are used exclusively to screen minerals at a facility where no crushing or grinding takes place.			
(30)	Reserved.			
(31)	Surface coating operations which are specifically exempted from regulation under 6 NYCRR Part 228, with respect to emissions of volatile organic compounds which are not given an A rating pursuant to 6 NYCRR Part 212.			
(32)	Pharmaceutical tablet branding operations.			
(33)	Thermal packaging operations, including, but not limited to, therimage labeling, blister packing, shrink wrapping, shrink banding, and carton gluing.			
(34)	Powder coating operations.			
(35)	All tumblers used for the cleaning and/or deburring of metal products without abrasive blasting.			
(36)	Presses used exclusively for molding or extruding plastics except where halogenated carbon compounds or hydrocarbon solvents are used as foaming agents.			
(37)	Concrete batch plants where the cement weigh hopper and all bulk storage silos are exhausted through fabric filters, and the batch drop point is controlled by a shroud or other emission control device.			
(38)	Cement storage operations not located at Portland cement plants where materials are transported by screw or bucket conveyors.			
(39)(i)	Cold cleaning degreasers with an open surface area of 11 square feet or less and an internal volume of 93 gallons or less or, having an organic solvent loss of 3 gallons per day or less.			
39(ii)	Cold cleaning degreasers that use a solvent with a VOC content or five percent or less by weight, unless subject to the requirements of 40 CFR 63 Subpart T.			

Rule Citation 201-3.2(c)	Description	Number of Activities	Building Location	
(39)(iii)	Conveyorized degreasers with an air/vapor interface smaller than 22 square feet (2 square meters), unless subject to the requirements of 40 CFR 63 Subpart T.			
(39)(iv)	Open-top vapor degreasers with an open-top area smaller than 11 square feet (1 square meter), unless subject to the requirements of 40 CFR 63 Subpart T.			
	Miscellaneous			
(40)	Ventilating and exhaust systems for laboratory operations. Laboratory operations do not include processes having a primary purpose to produce commercial quantities of materials.			
(41)	Exhaust or ventilating systems for the melting of gold, silver, platinum and other precious metals.			
(42)	Exhaust systems for paint mixing, transfer, filling or sampling and/or paint storage rooms or cabinets, provided the paints stored within these locations are stored in closed containers when not in use.			
(43)	Exhaust systems for solvent transfer, filling or sampling, and/or solvent storage rooms provided the solvent stored within these locations are stored in containers when not in use.			
(44)	Research and development activities, including both stand-alone and activities within a major facility, until such time as the administrator completes a rule making to determine how the permitting program should be structured for these activities.			
(45)	The application of odor counteractants and/or neutralizers.			
(46)	Hydrogen fuel cells.			
(47)	Dry cleaning equipment that uses only water-based cleaning processes or those using liquid carbon dioxide.			
(48)	Manure spreading, handling and storage at farms and agricultural facilities.			

DEC ID

	-		
Methods Used to Determine Compliance			
Emission Unit		Method Used to Determine Compliance	Compliance
ID	Requirement		Date


Sheet _____ of _____

Appendix B Air Quality Modeling Report

Air Quality Modeling Report

Chaffee Landfill Chaffee, New York

Table of Contents

1.	Introd	duction1		
2.	Facility Overview			
	2.1	Facility Description		
	2.2	Land Use Classifications		
	2.3	Topography2	2	
3.	Modeling Methodology 2			
	3.1	Modeled Compounds		
	3.2	Facility Source Inventory 3	3	
		3.2.1Landfill Areas33.2.2Landfill Gas Flares43.2.2.13,300 SCFM Enclosed Flare43.2.2.2910 SCFM Open Flare53.2.3Landfill Gas Engines53.2.4Leachate Storage Tank53.2.5Sources Not Modeled6	1 5 5 5	
	3.3	Modeling Input Parameters6	3	
	3.4	Building Downwash Analysis		
	3.5	Meteorological Data		
	3.6	Modeled Receptors		
	3.7	Terrain Considerations7	,	
4.	Conc	Conclusion		

Figure Index

Figure 1 Facility Source Locations

Table Index

Table '	Landfill I	Fugitive VOC Emissions
Table 2	Enclose	d Flare VOC Emissions
Table 3	Open Fl	are VOC Emissions
Table 4	Summai	y of Criteria Pollutant Emission Rates
Table 4	A Summai	y of Landfill Gas Flare Emissions
Table 4	B Summai	y of Caterpillar 3516 Engine Emissions
Table \$	Summai	y of Landfill Source VOC Emission Rates
Table 6	Summai	y of Modeling Input Parameters
Table 7	Summai	ry of Criteria Pollutant Ground Level Concentrations
Table 8	Summai	ry of VOC Ground Level Concentrations

Attachment Index

Attachment 1 Vertical Leachate Storage Tank Calculations

1. Introduction

This document details the air dispersion modeling report to demonstrate that the Chaffee Landfill Facility (Facility or Site) is in compliance with the provisions of 6 NYCRR Part 212. The modeling report is intended as supporting information for the Title V Permit Modification for a proposed landfill expansion. This modeling report includes emissions from a proposed 5,081,955 cubic yard landfill expansion.

The modeling report has been developed based on the following documentation:

- Policy DAR-1: Guidelines for the Evaluation and Control of Ambient Air Contaminants under Part 212 (June 29, 2016)
- DAR-10/NYSDEC Guidelines on Dispersion Modeling Procedures for Air Quality Impact Analysis (May 9, 2006)
- Appendix W of 40 CFR Part 51, USEPA (November 2005)
- Ambient Monitoring Guidelines for PSD, USEPA (May 1997)
- New Source Review Workshop Manual, USEPA (Draft, October 1990)

2. Facility Overview

2.1 Facility Description

WMNY owns and operates the solid waste management facility located at 10860 Olean Road in Chaffee, New York under NYSDEC Part 360, Permit #9-1462-00001/00013 (Facility or Site). The Facility accepts municipal solid waste (MSW) and other non-hazardous wastes. The landfill operations at the facility include tipping, covering, compacting, composting, solidification, landfill cell construction, hauling, leachate collection and discharge, and equipment maintenance operations. The landfill has an active LFG collection system that conveys collected LFG to on-site flares and the Renewable Energy Facility, consisting of eight internal combustion engines. The engines are operated by Waste Management Renewable Energy (WMRE) and are used to generate electricity for off-site use. The Standard Industrial Classification (SIC) for the Chaffee Landfill facility is 4953.

2.2 Land Use Classifications

The Facility is located in a predominantly rural area in the Town of Sardinia, New York.

The three nearest population centers are the Town of Sardinia (population 2,775; 2010 census), approximately 2.8 miles to the south; the Town of Yorkshire (population 3,913; 2010 census), approximately 3.8 miles to the south of southeast; and the Town of Holland (population 3,401; 2010 census), approximately 4.4 miles to the north of northwest. Land use in the vicinity of the Chaffee Landfill Facility primarily residential, agricultural, and commercial.

2.3 Topography

The topography around the Proposed Site is relatively flat. The base elevation of the Site is approximately 1,490 feet AMSL. However, the topography of the surrounding land ranges from approximately 1,430 feet AMSL to 1,525 feet AMSL.

3. Modeling Methodology

The modeling was performed using the most recent executable versions of the USEPA AERMOD modeling system:

- AERMET, version 18081
- AERSURFACE, version 13016
- AERMAP, version 18081
- AERMOD, version 18081R
- BPIP-PRIME, version 04274

Modeling was facilitated using the Lakes Environmental graphical user interface AERMOD View (version 9.3.0).

3.1 Modeled Compounds

WMNY modeled the high toxicity air contaminant (HTAC) compound emissions from the landfill that exceeded the thresholds listed in Table 2 of 6 NYCRR Part 212-2.2.

Total emission rates for the HTAC compounds that were modeled are provided in Table 5. The following HTAC compounds were included in the modeling analysis:

• Ethylene dibromide

In addition, WMNY modeled non-HTAC compounds that exceeded an annual emission rate of 100 pounds per year. The following non-HTAC compounds were included in the modeling analysis (see Table 5 for emission rates):

- 2-Propanol
- Acetone
- Butane
- Dichlorobenzene
- Dichlorodifluoromethane
- Dichlorofluoromethane
- Dichloromethane
- Dimethyl Sulfide
- Ethanol

- Ethylbenzene
- Ethylene dibromide
- Ethyl mercaptan
- Hydrogen Chloride
- Hexane
- Hydrogen Sulfide
- Methyl ethyl ketone
- Pentane
- Propane
- Toluene
- Trichloroethene
- Xylene

WMNY also modeled the following criteria pollutants from the flares to comply with 6 NYCRR Part 212:

- Carbon monoxide (CO)
- Oxides of Nitrogen (NOx)
- Sulfur Dioxide (SO₂)
- Particulate matter (PM)

At the request of NYSDEC, WMNY also modeled the following criteria pollutants from the engines to comply with 6 NYCRR Part 200.6:

• Oxides of Nitrogen (NOx)

3.2 Facility Source Inventory

The Section provides a summary of sources that were included in the modeling evaluation. A summary of the source inventory parameters is provided in Table 6. A plan site view of all emission sources is provided as Figure 1.

3.2.1 Landfill Areas

The following landfill areas were included in the modeling analysis:

- Original Landfill
- Western Expansion Landfill
- Valley Fill Expansion
- Area 7/8 Development

Emissions were calculated using a maximum estimated LFG generation rate of 7,337 cubic feet per minute (cfm) which will occur when the entire landfill reaches final grade. A collection efficiency of 85 percent and a cover oxidation factor of 25 percent (referenced from 40 CFR 98, Subpart HH) were utilized in the calculations.

Concentrations for each compound in the landfill gas were based on values compiled by the Waste Industry Air Coalition (WIAC). Table 1 presents a summary of fugitive emissions from the landfill areas.

3.2.2 Landfill Gas Flares

The Facility's site is the location for one enclosed flare and one open flare, used for controlling LFG. The two flares are owned and operated by WMNY at the Chaffee Landfill (one (1) 3,300 scfm enclosed flare and one (1) 910 scfm open flare).

3.2.2.1 3,300 SCFM Enclosed Flare

The existing 3,300 cfm enclosed flare has a physical release height of 40' with a 132" diameter flare tip. Per the USEPA document "Workbook of Screening Techniques for Assessing Impacts of Toxic Air Pollutants", an effective flare release height and effect flare stack diameter can be calculated, given the design heat release rate for the flare, as described below. Further, as described in the USEPA document, an assumed stack gas exit velocity of 20 m/s and gas exit temperature of 1,273 K will be used.

The effective flare release height was calculated using the following equation:

 $H_{eff} = H_s + [0.00456 \text{ x} (Q_T)^{0.478}]$

Where,

H_{eff} = effective flare release height (m)

H_s = physical flare stack height (m)

Q_T = total heat released (calories per second) assuming 55 percent radiative heat loss for methane

The effective flare stack diameter was calculated using the following equation:

 $D_{eff} = (9.88 \times 10^{-4}) \times (Q_H)^{0.5}$

Where,

D_{eff} = effective flare stack diameter (m)

Q_H = net heat available (calories per second) assuming 55 percent of total heat is lost to radiation

The design heat release used in the equations above for the effective release height and stack diameter of the 3,300 cfm flare is 87.8 MMBTU/hr, which is equivalent to 11.6 million Joules per second (11,579,935 Joules per second) and 2.8 million calories per second (2,765,767 calories per second).

Table 2 presents a summary of VOC emissions from the 3,300 cfm enclosed flare. Table 4 presents a summary of criteria pollutant emissions from the 3,300 cfm enclosed flare. Criteria pollutant emissions for the enclosed flare were referenced from the Title V Modification for the Area 7/8 Development.

3.2.2.2 910 SCFM Open Flare

The existing 910 cfm open flare has an actual release height of 23' with an 8" diameter flare tip. As with the enclosed flare, an assumed stack gas exit velocity of 20 meters per second (m/s) and gas exit temperature of 1,273 Kelvin (K) will be used.

The design heat release used in the equations above for the effective release height and stack diameter of the 910 cfm open flares is 27.3 MMBTU/hr, which is equivalent to 3.6 million Joules per second (3,600,365 Joules per second) and 0.9 million calories per second (859,916 calories per second).

Table 3 presents a summary of VOC emissions from the 910 scfm open flare. Table 4 presents a summary of criteria pollutant emissions from the 910 cfm open flare.

3.2.3 Landfill Gas Engines

The Landfill Gas-to-Energy (LFGTE) Facility consists of eight (8) CAT© Model G3516 gas fired reciprocating IC engines.

The CAT© G3516 IC engine has a power generation rating of 1,148 brake horsepower. Each engine is connected to a 0.825 MW generator, with a total electrical generation capacity of 6.6 MW for the G3516 IC engines. Engine #1 at the LFGTE Facility was source tested on September 26, 2011. The source tests indicated that, at operational capacity, the G3516 engine operates at 6,331 acfm at an exhaust temperature of 837 degrees F. Therefore, for the purposes of this report, all CAT© G3516 IC engines were assumed to operate at these conditions.

3.2.4 Leachate Storage Tank

The leachate storage system consists of two above ground storage tanks within a secondary containment tank; each tank has a capacity of approximately 405,000 gallons for a total storage volume of 810,000 gallons. There are also two small underground leachate storage tanks located on the east side of the Closed Landfill (one 12,000 gallon tank and one 25,000 gallon tank); however these two horizontal tanks are considered exempt under 6 NYCRR 201-3.2(c)(26).

Emissions from the vertical storage tanks were estimated using the methodology from AP-42, Section 7.1 (Organic Liquid Storage Tanks, 11/06). The following information was used in the calculations:

- The leachate analytical data for the period of June 2014 through June 2017 was evaluated and the maximum detection value was used
- A throughput of 15 million gallons per year was utilized in the calculations.

Attachment 1 presents the calculations for the vertical leachate storage tanks.

3.2.5 Sources Not Modeled

The following emissions sources were not included in the modeling analysis:

- Combustion sources, which include engines (these sources are not considered process operations as stated in 6 NYCRR 212 1.2(b)(18)). However, NOx emissions from the engines will be modeled only at the request of NYSDEC.
- Mobile sources (these sources are not considered process operations as stated in 6 NYCRR 212 1.2(b)(18))
- Temporary emission sources (as stated in 6 NYCRR 212 1.4(a))
- Exempt and trivial emission sources (as stated in 6 NYCRR 212 1.4(a))
- Paint Booth which is subject to 6 NYCRR Part 228-1 (as stated in 6 NYCRR 212-1.4(I), there are no A-listed contaminants in paint booth)

In addition, WMNY believes that criteria pollutants from the flares are exempt from modeling due to the following:

- 6 NYCRR Part 212-1.4 (i): process emission sources with emissions of oxides of sulfur, only with respect to oxides of sulfur emissions attributable solely to sulfur in fuel
- 6 NYCRR Part 212-1.4 (m): process emission sources with emissions of carbon monoxide or VOCs produced attributable solely to incomplete combustion of any fuel, except where material is heated, burned, combusted or otherwise chemically changed under oxygen deficient conditions by design
- 6 NYCRR Part 212-1.4 (r): process emission sources with respect to emissions of NOx produced by catalytic or thermal oxidizers used as air pollution control equipment
- The particulate matter emission rate from the exhaust of each of the flares is significantly less than 0.05 grains/dscf limit in 6 NYCRR Part 212-2.4 (b)(1)

However, WMNY has agreed to model CO, SO₂, NOx and PM from the enclosed flare and open flare.

3.3 Modeling Input Parameters

The model was run using the "regulatory default" mode, which specified the use of the following options:

- Stack-tip downwash-reduces effective stack height when plume exit velocity is less than 1.5 times the wind speed
- Plume buoyancy induces dispersion-increases the dispersion coefficient to account for the vertical movement of the plume
- Calms processing
- Allow missing meteorological data
- Elevated terrain

Source specific input parameters were entered into the Source Pathway of the model.

3.4 Building Downwash Analysis

Any Site structures that may impact the emission sources, with respect to influencing building downwash, were included and considered. Direction specific building dimensions were calculated utilizing BPIP-PRIME.

3.5 Meteorological Data

The 2014-2018 Buffalo, NY surface and profile meteorological data, as provided by the NYSDEC, was used in the analysis. Meteorological data from Buffalo, New York was utilized as representative meteorological data for the Facility as Buffalo, New York and the Facility have similar weather patterns.

The surface and profile meteorological data was processed using the ADJ_U* option in USEPA AERMET version 18081.

3.6 Modeled Receptors

For each pollutant, a multi-tier, uniform Cartesian grid centered on the Chaffee Landfill Facility was established.

Distance from Facility	Receptor Node Spacing
Up to 1 km	70 m
1 km to 2 km	200 m
2 km to 10 km	500 m

A property boundary receptor grid was established along the property boundary of the Chaffee Landfill Facility with a spacing of 20 m to capture the maximum property boundary concentration.

All receptors located within the Chaffee Landfill Facility property boundary were removed, as the site is fenced and public access is prohibited.

The need to evaluate elevated receptors within 2 km of the Chaffee Landfill Facility, such as rooftops, balconies and similar areas with public access, was not required.

3.7 Terrain Considerations

Although the topography of the region is relatively flat, the effects of terrain were considered as part of the modeling analyses. Elevations above mean sea level corresponding to the base elevation of the Chaffee Landfill Facility were assigned to all structures and sources modeled.

The digital terrain data was extracted from Multi-Resolution Land Characteristics (MRLC) Consortium viewer (https://www.mrlc.gov/viewerjs/). The data is available in the World Geodetic System (WGS84) at 1/9th arc second resolution in a geoTIFF format. The geoTIFF format is converted to the USGS DEM format (30 m resolution) before processing using the AERMAP executable.

4. Conclusion

Two copies of this modeling report were sent to the NYSDEC Region 9 Division of Environmental Permits for distribution to the appropriate NYSDEC personnel for technical review.

11192627-00(0001)GN-NI001 NOV 21/2019

Table 1 Landfill Fugitive VOC Emissions Chaffee Landfill

Fugitive Emission Estimates

Average LFG Generated ⁴ =	7,337	cfm
Average LFG Collection Efficiency 4 =	85%	
Average LFG Collected =	6,237	cfm
Fugitive Emission Estimates =	1,101	cfm
Hours of Operation =	8760	

		Hours	of Operation =	8760						
						F	ugitive Emissio	ons		
CAS #	LFG Constituent			Molecular	Median ¹				VOC	HAP
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	(TPY)	(TPY)
71-55-6	1,1,1-Trichloroethane	х	х	133.41	0.168	0.003	24.82	0.01	0.01	0.01
79-34-5	1,1,2,2-Tetrachloroethane	Х	х	167.85	0.07	0.001	13.01	0.01	0.01	0.01
75-34-3	1,1-Dichloroethane	Х	х	98.97	0.741	0.009	81.20	0.04	0.04	0.04
75-35-4	1,1-Dichloroethene	х	х	96.94	0.092	0.001	9.88	0.00	0.00	0.00
107-06-2	1,2-Dichloroethane	х	Х	98.96	0.12	0.002	13.15	0.01	0.01	0.01
78-87-5	1,2-Dichloropropane	х	х	112.99	0.023	0.000	2.88	0.00	0.00	0.00
67-63-0	2-Propanol	х		60.11	7.908	0.060	526.34	0.26	0.26	
67-64-1	Acetone	х		58.08	6.126	0.045	393.97	0.20	0.20	
107-13-1	Acrylonitrile	х	х	53.06	0.036	0.000	2.12	0.00	0.00	0.00
71-43-2	Benzene	х	х	78.11	0.972	0.010	84.07	0.04	0.04	0.04
75-27-4	Bromodichloromethane	X		163.83	0.311	0.006	56.42	0.03	0.03	
106-97-8	Butane ³	x		58.12	5.03	0.037	323.70	0.16	0.16	
75-15-0	Carbon disulfide	x	х	76.13	0.320	0.003	26.97	0.01	0.01	0.01
56-23-5	Carbon tetrachloride	x	X	153.84	0.007	0.000	1.19	0.00	0.00	0.00
463-58-1	Carbonyl sulfide	x	x	60.07	0.183	0.001	12.17	0.01	0.01	0.01
108-90-7	Chlorobenzene	x	x	112.56	0.227	0.003	28.29	0.01	0.01	0.01
75-45-6	Chlorodifluoromethane	x	X	86.47	0.355	0.004	33.99	0.02	0.02	0.01
75-00-3	Chloroethane	x	х	64.52	0.239	0.002	17.07	0.01	0.01	0.01
67-66-3	Chloroform	x	X	119.39	0.021	0.002	2.78	0.00	0.00	0.00
74-87-3	Chloromethane	x	x	50.49	0.249	0.002	13.92	0.00	0.00	0.00
106-46-7	Dichlorobenzene	x	X	147	1.607	0.002	261.57	0.13	0.01	0.01
75-71-8	Dichlorodifluoromethane	x	~	120.91	1.751	0.030	234.42	0.13	0.13	0.13
75-43-4	Dichlorofluoromethane ³	x		120.91	2.62	0.027	298.58	0.12	0.12	
75-09-2	Dichloromethane	^	х	84.94	3.395	0.034	296.56 319.31	0.15	0.15	0.16
75-18-3	Dimethyl Sulfide	х	~	62.13	6.809	0.053	468.42	0.10	0.23	0.10
64-17-5	Ethanol	x		46.08	118.618	0.691	6052.26	3.03	3.03	
75-08-1		x		62.13	1.356	0.091	93.29	0.05	0.05	
100-41-4	Ethyl mercaptan Ethylbenzene	x	х	106.16	6.789	0.011	93.29 798.03	0.05	0.05	0.40
	,	x	x							
106-93-4 75-69-4	Ethylene dibromide Fluorotrichloromethane	x	~	187.88 137.38	0.046	0.001 0.006	9.57 49.74	0.00 0.02	0.00 0.02	0.00
	HCl ²	^	V		0.327	0.006	49.74	0.02	0.02	
7647-01-0		х	x x	35.45	9.43	0.005	004 77	0.14	0.44	0.44
110-54-3	Hexane	~	~	86.18	2.324	0.025	221.77	0.11	0.11	0.11
7783-06-4	Hydrogen Sulfide Mercury ³		X	34.076	252	1.085	9508.32	4.75		0.00
7439-97-6			Х	200.61	2.92E-04	0.000	0.06	0.00		0.00
78-93-3	Methyl ethyl ketone	Х		72.11	10.557	0.096	842.93	0.42	0.42	
108-10-1	Methyl isobutyl ketone	X	Х	100.16	0.75	0.009	83.18	0.04	0.04	0.04
74-93-1	Methyl mercaptan	Х		48.11	1.292	0.008	68.83	0.03	0.03	
109-66-0	Pentane ³	Х		72.15	3.29	0.030	262.84	0.13	0.13	
127-18-4	Perchloroethylene	х	Х	165.83	1.193	0.025	219.06	0.11	0.11	0.11
74-98-6	Propane	X		44.09	14.757	0.082	720.43	0.36	0.36	
108-88-3	Toluene	х	Х	92.13	25.405	0.296	2591.64	1.30	1.30	1.30
79-01-6	Trichloroethene	х	Х	131.4	0.681	0.011	99.08	0.05	0.05	0.05
75-01-4	Vinyl chloride	х	Х	62.5	1.077	0.009	74.53	0.04	0.04	0.04
1330-20-7	Xylene	х	Х	106.16	16.582	0.223	1949.18	0.97	0.97	0.97

Notes:

¹ Concentration of individual HAPs were referenced from Waste Industry Air Coalition (WIAC)

² HCL Concentration was taken from "Measurement of Toxic Emissions from Landfill: History and Current Developments".

³ No WIAC concentration specified for compound; referenced AP-42 concentration

⁴ Maximum LFG Generated and collection efficiency referenced from updated LFG model

Equations:

(mg/m³) = (Molecular weight) x (1 atm) x (Median ppmv)

(298.15 K) x (0.08206 L*atm/K*mol)

(lb/hr) = (mg/m³) x (2.205 x 10⁻⁶ [lb/mg]) x (Fugitive LFG Emission rate [ft³/min]) x (60 min/hr)

(35.3147 ft³/m³)

(lb/yr) = (lb/hr) x (8,760 hours/yr)

(TPY) =

(2,000 lb/ton)

(lb/yr)

Table 2 Enclosed Flare VOC Emissions Chaffee Landfill

Landfill Gas Flares - HAP Emission Estimates

7,337 cfm

6,237 cfm

2,927 cfm

85%

8760

Average LFG Generated ⁴ = Average LFG Collection Efficiency ⁴ = Total LFG Collected = LFG Collected (Enclosed Flare) = Hours of Operation =

		Hours of	of Operation =	8760										
						Uncon			ntrolled Emissions			Controlled Emissions		
CAS #	LFG Constituent			Molecular	Median ¹				Avg.				voc	HAP
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	Control ⁵	lb/hr	lb/yr	TPY	(TPY)	(TPY)
71-55-6	1,1,1-Trichloroethane	X	X	133.41	0.168	0.010	87.99	0.04	98.0%	0.0002	1.76	0.00	0.00	0.00
79-34-5	1,1,2,2-Tetrachloroethane	x	x	167.85	0.07	0.005	46.13	0.02	98.0%	0.0001	0.92	0.00	0.00	0.00
75-34-3	1,1-Dichloroethane	x	x	98.97	0.741	0.033	287.92	0.14	98.0%	0.0007	5.76	0.00	0.00	0.00
75-34-3	1,1-Dichloroethene	x	x	96.97	0.092	0.003	35.01	0.14	98.0 <i>%</i> 98.0%	0.0007	0.70	0.00	0.00	0.00
107-06-2		x	x	96.94 98.96		0.004	46.62		98.0% 98.0%	0.0001	0.70	0.00	0.00	0.00
	1,2-Dichloroethane		X		0.12			0.02						
78-87-5	1,2-Dichloropropane	x	X	112.99	0.023	0.001	10.20	0.01	98.0%	0.0000	0.20	0.00	0.00	0.00
67-63-0	2-Propanol	х		60.11	7.908	0.213	1866.25	0.93	98.0%	0.0043	37.33	0.02	0.02	
67-64-1	Acetone	х		58.08	6.126	0.159	1396.88	0.70	98.0%	0.0032	27.94	0.01	0.01	
107-13-1	Acrylonitrile	х	Х	53.06	0.036	0.001	7.50	0.00	98.0%	0.0000	0.15	0.00	0.00	0.00
71-43-2	Benzene	х	Х	78.11	0.972	0.034	298.08	0.15	98.0%	0.0007	5.96	0.00	0.00	0.00
75-27-4	Bromodichloromethane	х		163.83	0.311	0.023	200.04	0.10	98.0%	0.0005	4.00	0.00	0.00	
106-97-8	Butane ³	х		58.12	5.03	0.131	1147.76	0.57	98.0%	0.0026	22.96	0.01	0.01	
75-15-0	Carbon disulfide	Х	х	76.13	0.320	0.011	95.65	0.05	98.0%	0.0002	1.91	0.00	0.00	0.00
56-23-5	Carbon tetrachloride	Х	х	153.84	0.007	0.000	4.23	0.00	98.0%	0.0000	0.08	0.00	0.00	0.00
463-58-1	Carbonyl sulfide	х	х	60.07	0.183	0.005	43.16	0.02	98.0%	0.0001	0.86	0.00	0.00	0.00
108-90-7	Chlorobenzene	х	х	112.56	0.227	0.011	100.32	0.05	98.0%	0.0002	2.01	0.00	0.00	0.00
75-45-6	Chlorodifluoromethane	х		86.47	0.355	0.014	120.52	0.06	98.0%	0.0003	2.41	0.00	0.00	
75-00-3	Chloroethane	х	х	64.52	0.239	0.007	60.54	0.03	98.0%	0.0001	1.21	0.00	0.00	0.00
67-66-3	Chloroform	х	х	119.39	0.021	0.001	9.84	0.00	98.0%	0.0000	0.20	0.00	0.00	0.00
74-87-3	Chloromethane	х	Х	50.49	0.249	0.006	49.36	0.02	98.0%	0.0001	0.99	0.00	0.00	0.00
106-46-7	Dichlorobenzene	х	х	147	1.607	0.106	927.45	0.46	98.0%	0.0021	18.55	0.01	0.01	0.01
75-71-8	Dichlorodifluoromethane	х		120.91	1.751	0.095	831.20	0.42	98.0%	0.0019	16.62	0.01	0.01	
75-43-4	Dichlorofluoromethane ³	x		102.92	2.62	0.121	1058.66	0.53	98.0%	0.0024	21.17	0.01	0.01	
75-09-2	Dichloromethane	~	х	84.94	3.395	0.129	1132.16	0.57	98.0%	0.0026	22.64	0.01	0.01	0.01
75-18-3	Dimethyl Sulfide	х	~	62.13	6.809	0.190	1660.89	0.83	98.0%	0.0038	33.22	0.02	0.02	0.01
64-17-5	Ethanol	x		46.08	118.618	2.450	21459.50	10.73	98.0%	0.0490	429.19	0.21	0.21	
75-08-1	Ethyl mercaptan	x		62.13	1.356	0.038	330.76	0.17	98.0%	0.0008	6.62	0.00	0.00	
100-41-4	Ethylbenzene	x	х	106.16	6.789	0.323	2829.59	1.41	98.0%	0.0065	56.59	0.03	0.03	0.03
106-93-4	Ethylene dibromide	x	x	187.88	0.046	0.323	33.93	0.02	98.0 <i>%</i> 98.0%	0.0003	0.68	0.00	0.03	0.03
75-69-4	Fluorotrichloromethane	×	~	137.38	0.046	0.004	33.93 176.37	0.02	98.0% 98.0%	0.0001	3.53	0.00	0.00	0.00
75-69-4	HCI ²	^	х					0.66				0.66	0.00	0.66
				35.45	9.43	0.150	1312.46		0.0%	0.1498	1312.46			
110-54-3	Hexane	х	Х	86.18	2.324	0.090	786.32	0.39	98.0%	0.0018	15.73	0.01	0.01	0.01
7783-06-4	Hydrogen Sulfide			34.076	252	3.849	33713.64	16.86	98.0%	0.0770	674.27	0.34		
7439-97-6	Mercury ³		Х	200.61	2.92E-04	0.000	0.23	0.00	0.0%	0.0000	0.23	0.00		0.00
78-93-3	Methyl ethyl ketone	х		72.11	10.557	0.341	2988.77	1.49	98.0%	0.0068	59.78	0.03	0.03	
108-10-1	Methyl isobutyl ketone	х	Х	100.16	0.75	0.034	294.93	0.15	98.0%	0.0007	5.90	0.00	0.00	0.00
74-93-1	Methyl mercaptan	х		48.11	1.292	0.028	244.04	0.12	98.0%	0.0006	4.88	0.00	0.00	
109-66-0	Pentane ³	х		72.15	3.29	0.106	931.94	0.47	98.0%	0.0021	18.64	0.01	0.01	
127-18-4	Perchloroethylene	Х	х	165.83	1.193	0.089	776.71	0.39	98.0%	0.0018	15.53	0.01	0.01	0.01
74-98-6	Propane	х		44.09	14.757	0.292	2554.43	1.28	98.0%	0.0058	51.09	0.03	0.03	
108-88-3	Toluene	х	Х	92.13	25.405	1.049	9189.18	4.59	98.0%	0.0210	183.78	0.09	0.09	0.09
79-01-6	Trichloroethene	х	Х	131.4	0.681	0.040	351.32	0.18	98.0%	0.0008	7.03	0.00	0.00	0.00
75-01-4	Vinyl chloride	х	х	62.5	1.077	0.030	264.27	0.13	98.0%	0.0006	5.29	0.00	0.00	0.00
1330-20-7	Xylene	х	Х	106.16	16.582	0.789	6911.21	3.46	98.0%	0.0158	138.22	0.07	0.07	0.07

Notes:

¹ Concentration of individual HAPs were referenced from Waste Industry Air Coalition (WIAC)

² HCL Concentration was taken from "Measurement of Toxic Emissions from Landfill: History and Current Developments".

³ No WIAC concentration specified for compound; referenced AP-42 concentration

⁴ Maximum LFG Generated and collection efficiency referenced from updated LFG model

⁵ Control efficiency of 98% applied for enclosed flare

Equations:

$(mg/m^3) =$	(Molecular weight) x (1 atm) x (Median ppmv)
	(298.15 K) x (0.08206 L*atm/K*mol)

 $(lb/hr) = (mg/m^3) \times (2.205 \times 10^{-6} [lb/mg]) \times (Fugitive LFG Emission rate [ft³/min]) \times (60 min/hr)$

(35.3147 ft³/m³)

(lb/yr) = (lb/hr) x (8,760 hours/yr)

(TPY) = (lb/yr) (2,000 lb/ton)

(Controlled Emissions) = (Uncontrolled Emissions) x (100% - Average Control [%])

Table 3 Open Flare VOC Emissions Chaffee Landfill

Landfill Gas Flares - HAP Emission Estimates

7,337 cfm

6,237 cfm

910 cfm

85%

Average LFG Generated ⁴ = Average LFG Collection Efficiency ⁴ = Total LFG Collected = LFG Collected (Open Flare) = Hours of Operation =

		LFG Collected (0			cfm									
		Hours o	f Operation =	= 8760										
						Unc	ontrolled Emiss	sions		Cor	trolled Emiss	ions		
CAS #	LFG Constituent			Molecular	Median ¹				Avg.				VOC	HAP
		VOC?	HAP?	Weight	ppmv	lb/hr	lb/yr	TPY	Control ⁵	lb/hr	lb/yr	TPY	(TPY)	(TPY)
71-55-6	1,1,1-Trichloroethane	х	Х	133.41	0.168	0.003	27.36	0.01	98.0%	0.0001	0.55	0.00	0.00	0.00
79-34-5	1,1,2,2-Tetrachloroethane	х	Х	167.85	0.07	0.002	14.34	0.01	98.0%	0.0000	0.29	0.00	0.00	0.00
75-34-3	1,1-Dichloroethane	х	Х	98.97	0.741	0.010	89.52	0.04	98.0%	0.0002	1.79	0.00	0.00	0.00
75-35-4	1,1-Dichloroethene	Х	Х	96.94	0.092	0.001	10.89	0.01	98.0%	0.0000	0.22	0.00	0.00	0.00
107-06-2	1,2-Dichloroethane	Х	Х	98.96	0.12	0.002	14.50	0.01	98.0%	0.0000	0.29	0.00	0.00	0.00
78-87-5	1,2-Dichloropropane	х	Х	112.99	0.023	0.000	3.17	0.00	98.0%	0.0000	0.06	0.00	0.00	0.00
67-63-0	2-Propanol	Х		60.11	7.908	0.066	580.24	0.29	98.0%	0.0013	11.60	0.01	0.01	
67-64-1	Acetone	х		58.08	6.126	0.050	434.31	0.22	98.0%	0.0010	8.69	0.00	0.00	
107-13-1	Acrylonitrile	х	Х	53.06	0.036	0.000	2.33	0.00	98.0%	0.0000	0.05	0.00	0.00	0.00
71-43-2	Benzene	х	Х	78.11	0.972	0.011	92.68	0.05	98.0%	0.0002	1.85	0.00	0.00	0.00
75-27-4	Bromodichloromethane	х		163.83	0.311	0.007	62.19	0.03	98.0%	0.0001	1.24	0.00	0.00	
106-97-8	Butane ³	х		58.12	5.03	0.041	356.85	0.18	98.0%	0.0008	7.14	0.00	0.00	
75-15-0	Carbon disulfide	х	Х	76.13	0.320	0.003	29.74	0.01	98.0%	0.0001	0.59	0.00	0.00	0.00
56-23-5	Carbon tetrachloride	х	Х	153.84	0.007	0.000	1.31	0.00	98.0%	0.0000	0.03	0.00	0.00	0.00
463-58-1	Carbonyl sulfide	х	Х	60.07	0.183	0.002	13.42	0.01	98.0%	0.0000	0.27	0.00	0.00	0.00
108-90-7	Chlorobenzene	х	Х	112.56	0.227	0.004	31.19	0.02	98.0%	0.0001	0.62	0.00	0.00	0.00
75-45-6	Chlorodifluoromethane	х		86.47	0.355	0.004	37.47	0.02	98.0%	0.0001	0.75	0.00	0.00	
75-00-3	Chloroethane	х	Х	64.52	0.239	0.002	18.82	0.01	98.0%	0.0000	0.38	0.00	0.00	0.00
67-66-3	Chloroform	х	х	119.39	0.021	0.000	3.06	0.00	98.0%	0.0000	0.06	0.00	0.00	0.00
74-87-3	Chloromethane	х	х	50.49	0.249	0.002	15.35	0.01	98.0%	0.0000	0.31	0.00	0.00	0.00
106-46-7	Dichlorobenzene	х	х	147	1.607	0.033	288.36	0.14	98.0%	0.0007	5.77	0.00	0.00	0.00
75-71-8	Dichlorodifluoromethane	х		120.91	1.751	0.030	258.43	0.13	98.0%	0.0006	5.17	0.00	0.00	
75-43-4	Dichlorofluoromethane 3	х		102.92	2.62	0.038	329.15	0.16	98.0%	0.0008	6.58	0.00	0.00	
75-09-2	Dichloromethane		х	84.94	3.395	0.040	352.01	0.18	98.0%	0.0008	7.04	0.00		0.00
75-18-3	Dimethyl Sulfide	х		62.13	6.809	0.059	516.39	0.26	98.0%	0.0012	10.33	0.01	0.01	
64-17-5	Ethanol	x		46.08	118.618	0.762	6672.06	3.34	98.0%	0.0152	133.44	0.07	0.07	
75-08-1	Ethyl mercaptan	x		62.13	1.356	0.012	102.84	0.05	98.0%	0.0002	2.06	0.00	0.00	
100-41-4	Ethylbenzene	x	х	106.16	6.789	0.100	879.76	0.44	98.0%	0.0020	17.60	0.01	0.01	0.01
106-93-4	Ethylene dibromide	x	X	187.88	0.046	0.001	10.55	0.01	98.0%	0.0000	0.21	0.00	0.00	0.00
75-69-4	Fluorotrichloromethane	x	~	137.38	0.327	0.006	54.84	0.03	98.0%	0.0001	1.10	0.00	0.00	0.00
7647-01-0	HCI ²	~	х	35.45	9.43	0.047	408.06	0.20	0.0%	0.0466	408.06	0.20	0.00	0.20
110-54-3	Hexane	х	X	86.18	2.324	0.028	244.48	0.12	98.0%	0.0006	4.89	0.00	0.00	0.00
7783-06-4	Hydrogen Sulfide	X	~	34.076	252	1.197	10482.05	5.24	98.0%	0.0239	209.64	0.10	0.00	0.00
7439-97-6	Mercury ³		х	200.61	2.92E-04	0.000	0.07	0.00	0.0%	0.0000	0.07	0.00		0.00
78-93-3	Methyl ethyl ketone	х	~	72.11	10.557	0.106	929.25	0.46	98.0%	0.0021	18.59	0.00	0.01	0.00
108-10-1	Methyl isobutyl ketone	x	х	100.16	0.75	0.010	91.70	0.40	98.0%	0.0021	1.83	0.00	0.00	0.00
74-93-1	Methyl mercaptan	x	~	48.11	1.292	0.009	75.87	0.03	98.0%	0.0002	1.52	0.00	0.00	0.00
109-66-0	Pentane ³	x		72.15	3.29	0.009	289.75	0.04	98.0%	0.0002	5.80	0.00	0.00	
127-18-4	Perchloroethylene	x	х	165.83	1.193	0.033	241.49	0.14	98.0%	0.0007	4.83	0.00	0.00	0.00
74-98-6	Propane	x	^	44.09	14.757	0.028	794.21	0.12	98.0%	0.0008	4.83	0.00	0.00	0.00
			~											0.02
108-88-3	Toluene	x	X	92.13	25.405	0.326	2857.05	1.43	98.0%	0.0065	57.14	0.03	0.03	0.03
79-01-6	Trichloroethene	x	X	131.4	0.681	0.012	109.23	0.05	98.0%	0.0002	2.18	0.00	0.00	0.00
75-01-4	Vinyl chloride	x	X	62.5	1.077	0.009	82.17	0.04	98.0%	0.0002	1.64	0.00	0.00	0.00
1330-20-7	Xylene	х	х	106.16	16.582	0.245	2148.79	1.07	98.0%	0.0049	42.98	0.02	0.02	0.02

Notes:

¹ Concentration of individual HAPs were referenced from Waste Industry Air Coalition (WIAC)

² HCL Concentration was taken from "Measurement of Toxic Emissions from Landfill: History and Current Developments".

(35.3147 ft³/m³)

³ No WIAC concentration specified for compound; referenced AP-42 concentration

⁴ Maximum LFG Generated and collection efficiency referenced from updated LFG model

⁵ Control efficiency of 98% applied for open flare

Equations:

$(mg/m^3) =$	(Molecular weight) x (1 atm) x (Median ppmv)
	(298.15 K) x (0.08206 L*atm/K*mol)

 $(lb/hr) = (mg/m^3) \times (2.205 \times 10^{-6} [lb/mg]) \times (Fugitive LFG Emission rate [ft^3/min]) \times (60 min/hr)$

(lb/yr) = (lb/hr) x (8,760 hours/yr)

(TPY) = (lb/yr) (2,000 lb/ton)

(Controlled Emissions) = (Uncontrolled Emissions) x (100% - Average Control [%])

Summary of Criteria Pollutant Emission Rates Chaffee Landfill Chaffee, New York

CAS #	Compound	Enclosed Flare ¹	Open Flare ¹	Engines ¹	Totals	Totals	Totals	1-hour standard	8-hour standard	24-hour standard	Annual Standard
		TPY	TPY	TPY	TPY	lb/year	lb/hr	(ug/m³)	(ug/m³)	(µg/m3)	(ug/m³)
630-08-0	Carbon Monoxide	76.92	23.91		100.83	201,665	23.02	40,000	10,000		
	Oxides of Nitrogen	23.08	7.17	119.72	149.97	299,941	34.24				
10102-44-0	Nitrogen Dioxide (annual) ²	17.31	5.38	89.79	112.48	224,956	25.68				100
10102-44-0	Nitrogen Dioxide (1-hour) ²	18.46	5.74	95.78	119.98	239,953	27.39	188			
	Sulfur Dioxide	31.68	9.85		41.53	83,067	9.48	196			80
	PM-10	6.54	2.03		8.57	17,142	1.96			150	
	PM-2.5	6.54	2.03		8.57	17,142	1.96			35	12

Notes:

² Tier II for NOx, per USEPA guidance

¹ Emissions referenced from 2019 Title V Modification - Southern Landifll Expansion

Table 4A

Modeling Protocol Chaffee Landfill Chaffee, NY

Summary of LFG Flare Emissions

					Flare Type	Operating Conditions		Estimated Flare Emissions (TPY)					
						CFM	MMSCF	Hours	PM 10	NMOC	СО	NOx	SO ₂
	al LFG Genera Collection Effic		7,337 85%	cfm	Enclosed 3,300 CFM	2,927	1,538.4	8,760	6.5	2.0	76.9	23.1	31.7
Tot	tal LFG Comb LFG to I	ousted = Flares =	- / -	cfm cfm	Open 910 CFM	910	478.3	8,760	2.0	0.6	23.9	7.2	9.9
							Total Emis	sions (TPY)	8.6	2.6	100.8	30.2	41.5
	Flare Emissi	ion Facto	ors										
	Pounds per Million Standard Cubic Feet						Total Emis	ssions (lb/yr)	17,141.5	5,277.1	201,665.0	60,499.5	83,066.6
	PM I	NMOC	СО	NOx	SO ₂								
Enclosed Flare	8.50	2.62	100.00	30.00	41.19								

Emission Factor	Development

3,300 CFM Enclosed Flare										
CO:	0.20	lb/MMBtu								
NOx:	0.06	lb/MMBtu								

Notes: ^A Based on amount of LFG generated in peak year of LFG production in existing and future landfill areas

41.19

110.00

26.00

			910 CFM Open Flare					
PM 1	17 lb/10 ⁶	dscf methane per AP-42, section 2.4 (11/98)	CO:	0.22	lb/MMBtu			
NMOC E	Based or	n 595 ppm per AP-42, section 2.4 (11/98), and 98% destruction efficiency	NOx:	0.052	lb/MMBtu			
CO E	Emission	rates (in units fo lb/MMBtu) referenced from previous permit applications						
NO _X E	Emission	rates (in units fo lb/MMBtu) referenced from previous permit applications		LFG Data	<u>:</u>			
SO ₂ 2	252 ppm	TRS concentration and 0% destruction efficiency, per AP-42, section 2.4 (11/98)	NMOC:	595	ppm			
			TRS:	252	ppm			
Heating value	500	Btu/scf	CH ₄ :	50.0%	of total LFG			
DE (of NMOC)	98.0	%	VOC:	39.0%	of NMOC			

3,300 CFM

Open Flare

910 CFM

8.50

2.62

Table 4B

Modeling Protocol Chaffee Landfill Chaffee, NY

Summary of Caterpillar 3516 Engine Emissions

							Operating	Estimated Potential 3516 Engine Emissions (TF				
							Hours	PM 10	NMOC	со	NOx	SO ₂
	Fotal Number of 35		8 2,400	cfm	Engine	e #1	8,760	0.1	0.2	30.0	15.0	3.2
			_,		Engine	#2	8,760	0.1	0.2	30.0	15.0	3.2
					Engine	#3	8,760	0.1	0.2	30.0	15.0	3.2
					Engine	#4	8,760	0.1	0.2	30.0	15.0	3.2
					Engine	#5	8,760	0.1	0.2	30.0	15.0	3.2
					Engine	#6	8,760	0.1	0.2	30.0	15.0	3.2
					Engine	e #7	8,760	0.1	0.2	30.0	15.0	3.2
					Engine	#8	8,760	0.1	0.2	30.0	15.0	3.2
	3516 Engine E	mission Fact	ors									
		Pounds per	Hour of Op	eration			Total Emissions	0.9	1.7	240.3	119.7	26.0
	PM	NMOC	со	NOx	SO ₂		(TPY)					
3516 Engines	0.03	0.05	6.86	3.42	0.74		Total Emissions (lb/yr)	1,802.1	3,300.9	480,656.8	239,441.6	51,959.2

Notes:

PM Based on 0.01 grains/dscf LFG (1 grain = 1.43×10^{-4} lbs)

NMOC Based on 595 ppm per AP-42, section 2.4 (11/98), and 98% destruction efficiency CO Based on February 2006 State Facility Application, prepared by McMahon & Mann

- NO_X Based on February 2006 State Facility Application, prepared by McMahon & Mann
- SO₂ Based on conservative TRS concentration of 252 ppm

Heating value	500	Btu/scf
DE (of NMOC)	98.0	%
Engine Power	1,148	Bhp

Emission Factor Development

Caterpillar 3516 Engines

- referenced from Chaffee Landfill PPP State Facility

Permit Application, prepared February 2006:

CO: 2.71 g/bhp-hr NOx:

1.35	g/bhp-hr

	LFG Data:	
LFG combusted /engine:	300	cfm
NMOC:	595	ppm
TRS:	252	ppm
CH ₄ :	50.0%	of total LFG
VOC:	39.0%	of NMOC

Summary of Landfill Source VOC Emission Rates Chaffee Landfill

Chaffee, New York

					AG Leachate Tank	AG Leachate Tank			Part 212			
CAS #	Compound	Landfill Emissions	Enclosed Flare	Open Flare	1	2	Totals	Totals	MEL	Totals	SGC	AGC
		lb/yr	lb/yr	lb/yr	lb/yr	lb/yr	lb/hr	lb/yr	(Ib/year)	TPY	(ug/m³)	(ug/m³)
71-55-6	1,1,1-Trichloroethane	24.82	1.76	0.55			0.0031	27.1		0.01	9000.0	5000.0
79-34-5	1,1,2,2-Tetrachloroethane ²	13.01	0.92	0.29			0.0016	14.2	1000	0.01		16.0
75-34-3	1,1-Dichloroethane	81.20	5.76	1.79			0.0101	88.8		0.04		0.63
75-35-4	1,1-Dichloroethene	9.88	0.70	0.22			0.0012	10.8		0.01		200.0
107-06-2	1,2-Dichloroethane	13.15	0.93	0.29			0.0016	14.4	100	0.01		0.038
78-87-5	1,2-Dichloropropane	2.88	0.20	0.06			0.0004	3.1	1000	0.00		4.0
67-63-0	2-Propanol	526.34	37.33	11.60			0.0657	575.3		0.29	98000.0	7000.0
67-64-1	Acetone	393.97	27.94	8.69	0.06	0.06	0.0492	430.7		0.22	180000.0	30000.0
107-13-1	Acrylonitrile ²	2.12	0.15	0.05			0.0003	2.3	25	0.00		0.015
71-43-2	Benzene	84.07	5.96	1.85			0.0105	91.9	100	0.05	1300.0	0.13
75-27-4	Bromodichloromethane ²	56.42	4.00	1.24			0.0070	61.7		0.03		70.0
106-97-8	Butane	323.70	22.96	7.14			0.0404	353.8		0.18	238000.0	
75-15-0	Carbon disulfide	26.97	1.91	0.59			0.0034	29.5		0.01	6200.0	700.0
56-23-5	Carbon tetrachloride 2	1.19	0.08	0.03			0.0001	1.3	100	0.00	1900.0	0.17
463-58-1	Carbonyl sulfide	12.17	0.86	0.27			0.0015	13.3		0.01	250.0	28.0
108-90-7	Chlorobenzene	28.29	2.01	0.62			0.0035	30.9		0.02		60.0
75-45-6	Chlorodifluoromethane	33.99	2.41	0.75			0.0042	37.1		0.02		50000.0
75-00-3	Chloroethane	17.07	1.21	0.38			0.0021	18.7		0.01		10000.0
67-66-3	Chloroform ²	2.78	0.20	0.06			0.0003	3.0	100	0.00	150.0	14.7
74-87-3	Chloromethane	13.92	0.99	0.31			0.0017	15.2		0.01	22000.0	90.0
106-46-7	Dichlorobenzene	261.57	18.55	5.77			0.0326	285.9		0.14		0.09
75-71-8	Dichlorodifluoromethane	234.42	16.62	5.17			0.0292	256.2		0.13		12000.0
75-43-4	Dichlorofluoromethane 5	298.58	21.17	6.58			0.0373	326.3		0.16		100.0
75-09-2	Dichloromethane	319.31	22.64	7.04			0.0398	349.0		0.17	14000.0	60.0
75-18-3	Dimethyl Sulfide	468.42	33.22	10.33			0.0584	512.0		0.26	14.0	4.8
64-17-5	Ethanol	6,052.26	429.19	133.44			0.7551	6,614.9		3.31		45000.0
75-08-1	Ethyl mercaptan	93.29	6.62	2.06			0.0116	102.0		0.05		3.1
100-41-4	Ethylbenzene	798.03	56.59	17.60			0.0996	872.2		0.44		1000.0
106-93-4	Ethylene dibromide ²	9.57	0.68	0.21			0.0012	10.5	5	0.01		0.0017
75-69-4	Fluorotrichloromethane	49.74	3.53	1.10			0.0062	54.4		0.03		5000.0
7647-01-0	HCI	0.00	1312.46	408.06			0.1964	1,720.5		0.86		20.0
110-54-3	Hexane	221.77	15.73	4.89			0.0277	242.4		0.88		700.0
7783-06-4	Hydrogen Sulfide	9,508.32	674.27	209.64				10,392.2		5.20	14.0	2.0
7439-97-6	Mercury ³	0.06	0.23	0.07			1.1863 0.0000	0.4		0.00	0.6	0.3
78-93-3	Methyl ethyl ketone	842.93	0.23 59.78	18.59	0.02	0.02	0.1052	0.4 921.3	5	0.00	13000.0	0.3 5000.0
108-10-1	Methyl isobutyl ketone	83.18	5.90	1.83	0.02		0.0104	90.9		0.05	31000.0	3000.0
		68.83	4.88	1.83								
74-93-1	Methyl mercaptan Pentane	262.84	18.64	5.80			0.0086 0.0328	75.2 287.3		0.04 0.14	14.0	2.3 42000.0
109-66-0												
127-18-4	Perchloroethylene	219.06	15.53	4.83			0.0273	239.4	1000	0.12	300.0	4.0
74-98-6	Propane	720.43	51.09	15.88			0.0899	787.4		0.39		43000.0
108-88-3	Toluene	2,591.64	183.78	57.14			0.3234	2,832.6		1.42	37000.0	5000.0
79-01-6	Trichloroethene	99.08	7.03	2.18			0.0124	108.3		0.05	14000.0	0.2
75-01-4	Vinyl chloride	74.53	5.29	1.64			0.0093	81.5	100	0.04	180000.0	0.110
1330-20-7	Xylene Tata kuala furan	1,949.18	138.22	42.98			0.2432	2,130.4		1.07	22000.0	100.0
400.00	Tetrahydrofuran				0.01	0.01	3.1284E-06	0.03		0.00	30000.0	350.0
108-39-4	3-Methylphenol				0.00001	0.00001	2.0832E-09	0.00002		0.00		180.0
106-44-5	4-Methylphenol				0.000004	0.000004	8.4766E-10	0.00001		0.00		18.0
108-95-2	Phenol				0.00001	0.00001	1.9344E-09	0.00002		0.00	5800.0	20.0

Compound Modeled?	Reason
(Y/N)	
No	Not an HTAC & less than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
No	HTAC, but emissions are less than Part 212 limit
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
No	HTAC, but emissions are less than Part 212 limit
No	Not an HTAC & less than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
No	Not an HTAC & less than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	HTAC & Emissions are greater than Part 212 limit
No	Not an HTAC & less than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
Yes	Not an HTAC but greater than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
Yes	Not an HTAC but greater than 100 lb/year
No	HTAC, but emissions are less than Part 212 limit
Yes	Not an HTAC but greater than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year
No	Not an HTAC & less than 100 lb/year

Summary of Modeling Input Parameters Chaffee Landfill Chaffee, New York

		UTM Coordi	nates, NAD83	Release	Gas Exit	Gas Exit	Inside
Source ID	Description	Х	Y	Height	Temperature	Velocity	Diameter
		(m)	(m)	(m)	(K)	(m/s)	(m)
EFLARE01	Enclosed Flare ⁽¹⁾	705,725.77	4,717,314.93	17.67	1,273.00	20.00	1.64
OFLARE01	Open Flare ⁽¹⁾	705,737.80	4,717,334.36	10.14	1,273.00	20.00	0.92
ENG01-ENG08	Engines (8 total, per engine)	various	various	8.84	720.40	58.94	0.25
LF	Landfill	various	various	38.38	Ambient		
LTANK01	Leachate Tank	704,773.02	4,717,028.24	7.01	Ambient	0.001	0.10
LTANK02	Leachate Tank	704,793.21	4,717,021.90	7.01	Ambient	0.001	0.10
				<u> </u>			

Notes:

(1) Calculated effective flare parameters

Summary of Criteria Pollutant Ground Level Concentrations Chaffee Landfill Chaffee, New York

Total Landfill Site AERMOD						Maximum Predicted GLC								Standards				Percent of Standards			
CAS No.	Compound	Emissi	on Rate	Version	1-Hour	8-Hour	24-Hour	2014	2015	2016	2017	2018	Annual	1-Hour	8-Hour	24-Hour	Annual	1-Hour	8-Hour	24-Hour	Annual
		(lb/hr)	(g/s)		(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(%)	(%)	(%)	(%)
630-08-0	Carbon Monoxide	2.30E+01	2.90E+00	v.18081	2.07E+01	1.69E+01								40,000	10,000			0.1%	0.2%		
10102-44-0	Nitrogen Dioxide, Tier 1, annual	2.57E+01	3.24E+00	v.18081				5.44E+00	5.59E+00	4.41E+00	4.52E+00	4.68E+00	5.59E+00				100				5.6%
10102-44-0	Nitrogen Dioxide, Tier 1, 1-hour	2.74E+01	3.45E+00	v.18081	7.61E+01									188				40.5%			
7446-09-5	Sulfur Dioxide	9.48E+00	1.19E+00	v.18081	7.54E+00			5.81E-01	5.47E-01	5.12E-01	5.12E-01	4.72E-01	5.81E-01	196			80	3.8%			0.7%
NA	PM-10	1.96E+00	2.47E-01	v.18081			1.03E+00									150				0.7%	
NA	PM-2.5	1.96E+00	2.47E-01	v.18081			4.57E-01	1.20E-01	1.13E-01	1.06E-01	1.06E-01	9.75E-02	1.13E-01 (1)			35	12			1.3%	0.9%

Note:

(1) PM-2.5 annual GLC is based on a three year average over five years.

Summary of VOC Ground Level Concentrations Chaffee Landfill Chaffee, New York

		Total Lan	dfill Site	AERMOD			Maxim	um Predict			Percent	Percent			
CAS No.	Compound	Emissic	on Rate	Version	1-Hour	2014	2015	2016	2017	2018	Max Annual	SGC	AGC	of SGC	of AGC
		(lb/hr)	(g/s)		(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(ug/m3)	(%)	(%)
67-63-0	2-Propanol		0.00E+00	v.18081	4.38E-01	5.01E-03	5.10E-03	4.40E-03	4.52E-03	4.39E-03	5.10E-03	98000	7000	0.0%	0.0%
67-64-1	Acetone		0.00E+00	v.18081	3.28E-01	3.76E-03	3.82E-03	3.30E-03	3.39E-03	3.29E-03	3.82E-03	180000	30000	0.0%	0.0%
71-43-2	Benzene		0.00E+00	v.18081	7.01E-02	8.20E-04	8.30E-04	7.30E-04	7.40E-04	7.30E-04	8.30E-04	1300	0.13	0.0%	0.6%
106-97-8	Butane		0.00E+00	v.18081	2.70E-01							238000		0.0%	
75-45-6	Dichlorobenzene		0.00E+00	v.18081		2.50E-03	2.54E-03	2.20E-03	2.26E-03	2.19E-03	2.54E-03		0.09		2.8%
106-46-7	Dichlorodifluoromethane		0.00E+00	v.18081		2.24E-03	2.28E-03	1.98E-03	2.02E-03	1.97E-03	2.28E-03		12000		0.0%
75-71-8	Dichlorofluoromethane		0.00E+00	v.18081		2.85E-03	2.90E-03	2.51E-03	2.57E-03	2.50E-03	2.90E-03		100		0.0%
75-09-2	Dichloromethane		0.00E+00	v.18081	2.66E-01	3.05E-03	3.10E-03	2.68E-03	2.75E-03	2.67E-03	3.10E-03	14000	60	0.0%	0.0%
75-18-3	Dimethyl Sulfide		0.00E+00	v.18081	3.90E-01	4.46E-03	4.54E-03	3.92E-03	4.03E-03	3.91E-03	4.54E-03	14	4.8	2.8%	0.1%
64-17-5	Ethanol		0.00E+00	v.18081		5.75E-02	5.84E-02	5.03E-02	5.19E-02	5.03E-02	5.84E-02		45000		0.0%
106-93-4	Ethylbenzene		0.00E+00	v.18081		7.59E-03	7.72E-03	6.66E-03	6.85E-03	6.65E-03	7.72E-03		1000		0.0%
75-69-4	Ethylene dibromide		0.00E+00	v.18081		1.30E-04	1.50E-04	1.60E-04	1.50E-04	1.60E-04	1.60E-04		0.0017		9.4%
7647-01-0	HCI		0.00E+00	v.18081		1.20E-02	1.14E-02	1.06E-02	1.06E-02	9.79E-03	1.20E-02		20		0.1%
110-54-3	Hexane		0.00E+00	v.18081		2.12E-03	2.16E-03	1.87E-03	1.91E-03	1.87E-03	2.16E-03		700		0.0%
7783-06-4	Hydrogen Sulfide		0.00E+00	v.18081	7.91E+00	9.03E-02	9.18E-02	7.91E-02	8.15E-02	7.91E-02	9.18E-02	14	2	56.5%	4.6%
78-93-3	Methyl ethyl ketone		0.00E+00	v.18081	7.02E-01	8.02E-03	8.15E-03	7.03E-03	7.24E-03	7.02E-03	8.15E-03	13000	5000	0.0%	0.0%
74-93-1	Pentane		0.00E+00	v.18081		2.51E-03	2.55E-03	2.21E-03	2.27E-03	2.21E-03	2.55E-03		42000		0.0%
109-66-0	Propane		0.00E+00	v.18081		6.86E-03	6.97E-03	6.02E-03	6.19E-03	6.00E-03	6.97E-03		43000		0.0%
74-98-6	Toluene		0.00E+00	v.18081	2.15702	2.46E-02	2.50E-02	2.16E-02	2.22E-02	2.16E-02	2.50E-02	37000	5000	0.0%	0.0%
108-88-3	Trichloroethene		0.00E+00	v.18081	8.26E-02	9.60E-04	9.70E-04	8.50E-04	8.70E-04	8.50E-04	9.70E-04	14000	0.2	0.0%	0.5%
79-01-6	Xylene		0.00E+00	v.18081	1.62E+00	1.85E-02	1.88E-02	1.62E-02	1.67E-02	1.62E-02	1.88E-02	22000	100	0.0%	0.0%

Attachment 1 Vertical Leachate Storage Tank Calculations

TANKS 4.0.9d Emissions Report - Detail Format Tank Indentification and Physical Characteristics

Identification	
User Identification	AG Leachate Tank
City	Chaffee
State	New York
Company	WMNY
Type of Tank	Vertical Fixed Roof Tank
Description	Leachate Storage
Tank Dimensions	
Shell Length (ft)	23.00
Diameter (ft)	56.00
Liquid Height (ft)	23.00
Avg. Liquid Height (ft)	11.50
Volume (gal)	405,366.00
Turnovers	18.50
Net Throughput (gal/yr)	7,500,000
Is tank heated (y/n)	N
Paint Characteristics	
Shell Color/Shade	White/White
Shell Condition	Good
Roof Color/Shade	White/White
Roof Condition	Good
Roof Characteristics	
Туре	Cone
Height (ft)	0.00
Slope (ft/ft) Cone Roof)	0.00
Breather Vent Settings	
Vacuum Settings (psig)	-0.03
Pressure Settings (psig)	0.03

Meterological Data used in Emissions Calculations: Buffalo, New York

(Avg Atmospheric Pressure = 14.37 psia)

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

Vertical Fixed Roof Tank Chaffee, New York

Chattee, New York							
	FROM TANKS						
Annual Emission Calculations	DETAILED PDF	AP-42 EQUATIONS		CALCULATION	<u>5</u>		
Standing Losses (lb)		$L_S = 365 V_V W_V K_F K_S$	L _S =	359.7439	lbs		
V _V = Vapor Space Volume (cu ft)		0 1 1 2 0	V _V =	37785.1768	cu ft		
W _v = Vapor Density (lb/cu ft)			W _V =	0.0011	lb / cu ft		
K _E = Vapor Space Expansion Factor			K _E =	0.0298			
K_S = Vented Vapor Saturation Factor			K _S =	0.7848			
Tank Vapor Space Volume							
V _v = Vapor Space Volume		$V_V = [(Pi/4) D^2] H_{VO}$	V _V =	37785.1768	cu ft		
D = Tank Diameter							
H _{VO} = Vapor Space Outage		$H_{VO} = H_S - H_L + H_{RO}$	H _{VO} =	15.3411	ft		
Hs = Tank Shell Length							
$H_L = Average Liquid Height$							
Roof Outage							
Roof Outage (Cone Roof)							
Roof Outage		$H_{RO} = 1/3 H_{R}$	H _{RO} =	3.8411	ft		
Roof Height							
$S_R = Roof Slope$		$H_R = S_R * R_S$	H _R =	0.5000	ft		
R _S = Shell Radius							
Vapor Density							
W _V = Vapor Density		$W_V = M_V P_{VA} / R T_{LA}$	$W_V =$	0.0011	lb / cu ft		
M _v = Vapor Molecular Weight			$M_V =$	18.0008	lb/lb-mole		
Vapor Pressure at Daily Average							
Liquid Surface Temperature			-		_		
T_{LA} = Daily Avg. Liquid Surface Temp		$T_{LA} = 0.44 T_{AA} + 0.56 T_{B} + 0.0079^* alpha^* I$	T _{LA} =	508.9255	R =	9.59	deg C
$T_{AA} = Daily Average Ambient Temp$		$T_{AA} = T_{AX} + T_{AN} / 2$	T _{AA} =	47.6792	deg F =	507.35	R
Ideal Gas Constant R				10.7310			
T _B = Liquid Bulk Temperature		$T_B = T_{AA} + 6$ alpha - 1	T _B =	507.3692	R		
Tank Paint Solar Absorptance (Shell)			_	0.17			
Tank Paint Solar Absorptance (Roof)				0.17			
I = Daily Total Solar Insulation				1,165.412	Btu/sqft d		
Factor				1,103.412	Blu/syll u		

 $H_{VO} = H_E/2$ for horizontal tank

0 deg F = 459.67 R

As per Table 7.1-6: White/Good = .17

 I_{AVG} = 1,165 Btu/ft²-d as per sources mentioned on page 6-5 of TANKS user manual

TANKS 4.0.9d Emissions Report - Detail Format Detail Calculations (AP-42)

RS = Shell Radius

0

u Annual Emission Calculations	FROM TANKS DETAILED PDF	AP-42 EQUATIONS	<u>c</u>	ALCULATION	<u>S</u>	
Vapor Space Expansion Factor						
K _E = Vapor Space Expansion Factor		$K_{E} = [delta T_{V}/T_{LA}] + [(deltaP_{V}-delta P_{B})/(P_{A}-P_{VA})]$	K _E =	0.0298		T _{AX} =
delta T _v = Daily Vapor Temperature Range		delta $T_V = 0.72(T_{AX}-T_{AN})+0.028^*$ alpha*I]	delta T _v =	17.2654	R	T _{AN} =
delta P _V = Daily Vapor Pressure Range delta P _B = Breather Vent			delta P _V =	0.0007	psia	
Press. Setting Range Vapor Pressure at Daily Average Liquid Surface Temperature Vapor Pressure at Daily Minimum Liquid Surface Temperature			delta P _B =	0.06	psia	
Vapor Pressure at Daily Maximum Liquid Surface Temperature Daily Avg. Liquid Surface Temp.				508.9255	R	
Daily Min. Liquid Surface Temp		$T_{LN} = T_{LA} - 0.25$ delta T_V	$T_{LN} =$	504.6092	R	
Daily Max. Liquid Surface Temp		$T_{LX} = T_{LA} + 0.25$ delta T_V	T _{LX} =	513.2419	R	
delta T _A = Daily Ambient Temp. Range			delta T _A =	16.2750	R	
<u>Vented Vapor Saturation Factor</u> Vented Vapor Saturation Factor Vapor Pressure at Daily Average Liquid Surface Temperature Vapor Space Outage		K _S = 1/[1+ (.053*P _{VA} *H _{VO})]	K _S =	0.7842		
Working Losses		$L_{\rm W} = 0.0010 \; M_{\rm V} \; P_{\rm VA} \; Q \; K_{\rm N} \; K_{\rm P}$	L _W =	1087.7588	lbs	
M _v = Vapor Molecular Weight			$M_V =$	18.0008	lb/lb-mole	
P _{VA} = Vapor Pressure at Daily Average Liquid Surface Temperature						
Q = Annual Net Throughput Annual Turnovers		1 bbl/yr = 42 US gal/yr	Q = N =	178,571.43 18.5018	bbl/yr	
K _N = Turnover Factor Maximum Liquid Volume		K _N = (180 + N)/6N	N = K _N =	1.0000		
Maximum Liquid Height Tank Diameter						
K _P = Working Loss Product Factor			K _P =	1.00		
Total Losses			L _T =	1447.5028	lbs	

As per sources listed on page 6-5 of TANKS user manual:

515.4867

499.2117

 $\label{eq:Q} \begin{aligned} \mathsf{Q} &= \mathsf{annual} \; \mathsf{net} \; \mathsf{throughput} = \mathsf{tank} \; \mathsf{capacity} \; [\mathsf{bbl}] \;^* \; \mathsf{annual} \\ & \mathsf{turnover} \; \mathsf{rate}, \; \mathsf{bbl/yr} \\ \mathsf{K}_{\mathsf{N}} &= \mathsf{working} \; \mathsf{loss} \; \mathsf{turnover} \; (\mathsf{saturation}) \; \mathsf{factor}, \\ & \mathsf{dimensionless}; \; \mathsf{see} \; \mathsf{Figure} \; \mathsf{7.1-18} \\ & \mathsf{for} \; \mathsf{turnovers} \; \mathsf{>36}, \; \mathsf{K}_{\mathsf{N}} = (\mathsf{180} + \mathsf{N}) / \mathsf{6N} \\ & \mathsf{for} \; \mathsf{turnovers} \; \mathsf{<36}, \; \mathsf{K}_{\mathsf{N}} = 1 \\ & \mathsf{K}_{\mathsf{P}} = \mathsf{working} \; \mathsf{loss} \; \mathsf{product} \; \mathsf{factor}, \; \mathsf{dimensionless} \\ & \mathsf{for} \; \mathsf{crude} \; \mathsf{oils} \; \mathsf{K}_{\mathsf{P}} = \mathsf{0.75} \end{aligned}$

TANKS 4.0.9d Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: Annual

Vertical Fixed Roof Tank Chaffee, New York

CALCULATED VALUES

Losses (lbs)						
	Working Loss	Breathing Loss	Total Emissions			
Total Leachate	1087.75883	359.74392	1447.50275			
2-Butanone	0.01791	0.00592	0.02383			
Acetone	0.04253	0.01406	0.05659			
Tetrahydrofuran	0.01030	0.00341	0.01370			
3-Methylphenol	0.00001	0.00000	0.00001			
4-Methylphenol	0.00000	0.00000	0.00000			
Phenol	0.00001	0.00000	0.00001			
Water	1087.68808	359.72052	1447.40860			

TANKS 4.0.9d Emissions Report - Detail Format Liquid Contents of Storage Tank

Vertical Fixed Roof Tank

Chaffee, New York

CALCULATED VALUES

		Daily Liqu	id Surface Te	mperature	Liquid	v	apor Pressure		Vapor	Liquid	Vapor	Mol								ected Compou	nds		
			(deg F)		Bulk Temp		(psia)		Mol Weight	Mass	Mass	Weight	Basis for Vapor Pressure		Table 7.1-3		CAS Number	MWi	Leachate Concentratio n ¹	C _i	C _i / MW _i	X _i	M _V = M _i [(P X _i)/P _{VA}]
Mixture/Component	Month	Avg.	Min	Max	(deg F)	Avg.	Min	Max	g/mol	Fraction	Fraction	g/mol	Calculation s	А	В	С		(g/mol)	(ug/L)				
Leachate	All	49.26	-	-	47.70	0.3384	-	-	18.0008	-	-	18.00	-	-	-	-			-	-	-	-	18.0008
2-Butanone						0.7848	-	-	72.1100	0.0000	0.0000	72.11		6.8645	1150.207	209.246		72.11	7100	0.0000071	0.000000	0.000002	0.0003
Acetone						2.2051	-	-	58.0800	0.0000	0.0000	58.08		7.117	1210.595	229.664		58.08	6000	0.000006	0.000000	0.000002	0.0007
Tetrahydrofuran						1.5255	-	-	72.1100	0.0000	0.0000	72.11		6.995	1202.29	226.25		72.11	2100	0.0000021	0.000000	0.000001	0.0002
3-Methylphenol						0.0008	-	-	108.1400	0.0000	0.0000	108.14		7.508	1856.36	199.07		108.14	2700	0.0000027	0.000000	0.000000	0.0000
4-Methylphenol						0.0003	-	-	108.1400	0.0000	0.0000	108.14		7.035	1511.08	161.85		108.14	2700	0.0000027	0.000000	0.000000	0.0000
Phenol						0.0016	-	-	94.1100	0.0000	0.0000	94.11		7.1330	1516.790	174.95		94.11	1250	0.00000125	0.000000	0.000000	0.0000
Water						0.3384	-	-	18.0000	1.0000	0.9999	18.00	0.3384 psia at 68 deg F via engineeringt oolbox.com	-	-	-		18.00	999978150	0.99997815	0.055554	0.999995	17.9997
		ł			• •				check:	1.0000	1.0000	ł		ļ	1		1				check:	1.00000	

about GHD

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. We provide engineering, environmental, and construction services to private and public sector clients.

Steve Wilsey@ghd.com 716.205.1982 ____

Bryan Szalda Bryan.Szalda@ghd.com 716.205.1894

www.ghd.com

2055 Niagara Falls Boulevard Niagara Falls, NY 14304 USA www.ghd.com

Our ref: 11222881

22 December 2021

Mr. Alan Zylinski New York State Department of Environmental Conservation Region 9 270 Michigan Avenue Buffalo, NY 14203

Closeout of Comments on Air Permit Application, dated March 10, 2021 - Chaffee Landfill Title V Permit Number 9-1462-00001/00013

Dear Mr. Zylinski:

On behalf of Waste Management of New York LLC (WMNY), GHD hereby presents this follow-up to comments provided by the New York State Department of Environmental Conservation (NYSDEC), dated March 10, 2021. GHD provided a response to the March 10, 2021, comments by NYSDEC on May 5, 2021. Based on an email from Mr. Michael Emery, dated October 25, 2021, NYSDEC indicated that all of the March 10, 2021, comments have been adequately addressed except for Comment 11. Comment 11 pertains to the applicability of the parts cleaners to 6NYCRR Part 226-1, Solvent Cleaning Processes. If the parts cleaners fit the trivial source citation under 6 NYCRR 201-3.3(c)(49), they do not need to be permitted but may still be subject to Part 226-1. The exceptions listed under 6 NYCRR 226-1.7 do not include cold cleaning degreasers. Therefore, NYSDEC requested that GHD re-evaluate the applicability of 6 NYCRR Part 226-1 to the Chaffee Landfill facility.

In response to this request, GHD is in agreement that even though the parts washers are trivial units, they will still be subject to 6 NYCRR Part 226-1. WMNY is currently assessing options being provided by the vendor in order to ensure compliance no later than December 1, 2022. A link to the vendor website with additional information is provided as: <u>https://www.safety-kleen.com/new-york-solvent-conversion</u>.

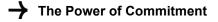
It is our understanding that the addressing of NYSDEC comments, dated March 10, 2021, did not result in any changes to the emissions information provided in the modelling report, dated July 2020. Therefore, there are no changes required to the AERMOD model evaluation that has already been provided to NYSDEC (that was done in accordance with 6 NYCRR Part 212). Please confirm that NYSDEC agrees with this assessment and that no more information is required as part of the air permit application process.

We appreciate your time and consideration in this matter. Please feel free to contact the undersigned if you have any questions, or if you would like clarification or additional information. We will quickly respond to any questions you have, and we appreciate your timely review.

Regards,

St.A. Wilson

Steven Wilsey Vice President


716-205-1982 steven.wilsey@ghd.com

cc: J. Rizzo, WMNY Chaffee M. Mahar, WMNY Chaffee

Bryan P. Syalda

Bryan P. Szalda Engineer

716-205-1894 bryan.szalda@ghd.com

Attachment 1 Water9 Model Evaluation

			Estimated	Condensate Storage Tank				
Compound			Concentration		Air Emissions			
	HAP	VOM	(% w)	(g/s)	(lbs/hr)	(ton/yr)		
1,4-dichlorobenzene (-p)	X	Х	0.08	3.58E-05	2.83E-04	1.24E-03		
Ethylbenzene	X	X	0.086	2.00E-04	1.58E-03	6.95E-03		
Tetrachloroethane	X		0.013	2.11E-04	1.67E-03	7.33E-03		
Toluene	X	Х	0.037	3.06E-04	2.42E-03	1.06E-02		
Xylene (total)	X	Х	0.042	1.66E-04	1.31E-03	5.77E-03		
Total VOM			2.58E-01	9.19E-04	7.27E-03	3.19E-02		
Total HAPs			0.245	7.08E-04	5.60E-03	2.46E-02		

High Acres Landfill Condensate Storage Tank Actual Emissions Water9 Model Calculations

EMERGENCY TELEPHONE NUMBER:

INFORMATION TELEPHONE NUMBER:

MATERIAL SAFETY DATA SHEET (MSDS)

TRADE NAME:	LANDFILL GAS CONDENSATE (AQUEOUS PHASE)

CHEMICAL NAME AND SYNONYMS: N/A - MIXTURE

LANDFILL NAME:

SECTION I

ADDRESS:

CITY:

STATE:

TELEPHONE NUMBER:

ZIP CODE:

(800) 424-9300

(708) 572-3088

APPROXIMATELY 1

NE

NE

3.5 - 5.6

SECTION II - HAZARDOUS INGREDIENTS

	<u>% (WT)</u>		PEL	UNITS
XYLENE (XYLOL, DIMETHYLBENZENE) CAS# 1330-20-7	< 0.01-0.042	100	100	PPM
TOLUENE (TOLUOL, METHYLBENZENE) CAS# 108-88-3	< 0.01-0.037	. 100	100	PPM
ETHYL BENZENE (PHENYL ETHANE) CAS# 100-41-4	< 0.01-0.086	100	100	PPM
1.4 DICHLOROBENZENE (P-DICHLOROBENZENE) CAS# 106-46-7	< 0.01-0.080	75	75	PPM
PERCHLOROETHYLENE (TETRACHLOROETHYLENE) CAS# 127-18-4	< 0.01-0.013	25	50	PPM
WATER CAS# 7732-18-5	BALANCE	NE	NE	NA

LANDFILL GAS CONDENSATE MAY ALSO CONTAIN TRACE QUANTITIES (<0.1%) OF VARIOUS COMPOUNDS NOT LISTED ABOVE. ABSOLUTE CONCENTRATIONS VARY BY SITE.

SECTION III - PHYSICAL DATA

BOILING POINT (F):	212 DEGREES (AS WATER)	SPECIFIC GRAVITY (WATER = 1):
VAPOR PRESSURE (mm/Hg):	760 AT 212 DEGREE F.	PERCENT VOLATILE BY VOLUME (%):
VAPOR DENSITY (AIR = 1):	NE	pH:
SOLUBILITY IN WATER:	100%	EVAPORATION RATE:
APPEARANCE AND ODOR:	CLEAR TO CLOUDY LIQUID - ODOR VARIES FROM NONE TO A CHARACTERISTIC	

SECTION IV - FIRE AND EXPLO	SION HAZA	RD DATA	
FLASH POINT (F):	NA		MSDS Dates
EXTINGUISHING MEDIA:	NA		Acquired 12-94
SPECIAL FIRE FIGHTING PROCEDURES:	NA		Archived
UNUSUAL FIRE & EXPLOSION HAZARDS:	NONE		
FLAMMABLE LIMITS:	LEL NA	UEL NA	

NA - NOT APPLICABLE

NE - NOT ESTABLISHED

UN - UNAVAILABLE

ECTION V - HEALTH HAZARD INFORMATION

GAS CONDENSATE (AQUEOUS PHASE) IS A MIXTURE OF WATER WITH VERY LOW CONCENTRATIONS OF ORGANIC MATERIALS. THE COMPOSITE HEALTH EFFECTS OF THIS MATERIAL MAY BE RELATED TO THE EFFECTS OF THESE COMPOUNDS AT DILUTED OR LOW CONCENTRATIONS.

XYLENE

INHALATION OF 200 PPM MAY RESULT IN MILDLY IRRITATIVE EFFECTS. HIGHER CONCENTRATIONS MAY CAUSE CENTRAL NERVOUS SYSTEM (CNS) DEPRESSION FOLLOWING TRANSIENT EUPHORIA. VERY SEVERE EXPOSURES MAY CAUSE COMA. CONCENTRATIONS OF 1,000 PPM ARE IMMEDIATELY DANGEROUS TO LIFE.

SKIN CONTACT MAY CAUSE IRRITATIVE SYMPTOMS INCLUDING BLISTERING AND ERYTHEMA OF THE SKIN.

EYE CONTACT MAY CAUSE CONJUNCTIVITIS. REVERSIBLE DAMAGE TO CORNEAL TISSUE HAS BEEN REPORTED.

CHRONIC EFFECTS OF EXPOSURE CONSIST OF REVERSIBLE DECREASES IN RED AND WHITE BLOOD CELL COUNTS WHICH HAVE BEEN REPORTED AT HIGH EXPOSURE LEVELS. ELEVATIONS IN LIVER AND KIDNEY ENZYME FUNCTIONS HAVE ALSO BEEN SEEN AT HIGH LEVELS. CHRONIC EXPOSURES MAY RESULT IN REVERSIBLE HEADACHE.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE CONSIST OF CONJUNCTIVITIS DERMATITIS AND ALLERGIC RHINITIS. IN RARE CASES PATIENTS WITH ABNORMAL LIVER FUNCTION TESTS MAY HAVE INCREASED LEVELS OF LIVER FUNCTION ENZYMES. EXPOSURES TO HIGH LEVELS OVER A LONG PERIOD OF TIME MAY WORSEN KIDNEY FUNCTION IN INDIVIDUALS WITH PRE-EXISTING KIDNEY DISEASE.

TOLUENE

INHALATION OF 200-600 PPM MAY CAUSE UPPER RESPIRATORY TRACT IRRITATION. DEPRESSION OF CENTRAL NERVOUS SYSTEM MANIFESTED BY HEADACHE, FATIGUE AND CONFUSION MAY OCCUR.

SKIN CONTACT MAY RESULT IN IRRITATION.

E CONTACT MAY CAUSE IRRITATIVE SYMPTOMS, RANGING FROM CONJUNCTIVITIS TO CORNEAL BURNS.

"CHRONIC EFFECTS OF INHALATION CONSIST OF LOSS OF COORDINATION, DIZZINESS AND WEAKNESS. REPEATED INHALATION OF EXTREMELY HIGH LEVELS MAY RESULT IN ENCEPHALOPATHY MANIFESTED BY BIZARRE BEHAVIOR AND ATAXIA. INHALATION OF HIGH LEVELS OVER A LONG PERIOD OF TIME MAY CAUSE AN ENLARGED LIVER.

PRE-EXISTING MEDICAL CONDITIONS POTENTIALLY WORSENED BY EXPOSURE CONSIST OF CONJUNCTIVITIS AND ALLERGIC RHINITIS. PATIENTS WITH ABNORMAL LIVER FUNCTIONS MAY SHOW TRANSIENT ELEVATIONS IN LIVER FUNCTION TESTS. ANEMIA MAY BE WORSENED (THIS MAY BE DUE TO CONTAMINATION WITH BENZENE). PATIENTS WITH NEUROLOGIC CONDITIONS SECONDARY TO ALCOHOL MAY RESULT IN WORSENED SYMPTOMS SECONDARY TO CHRONIC EXPOSURE TO HIGH LEVELS OF TOLUENE.

ETHYL BENZENE

INHALATION MAY RESULT IN IRRITATION OF THE UPPER AIRWAYS. AT HIGHER CONCENTRATIONS CNS DEPRESSION SIMILAR TO THAT OF XYLENE AND TOLUENE MAY OCCUR.

CHRONIC EXPOSURE TO HIGH LEVELS MAY CAUSE FATIGUE, HEADACHE AND IRRITABILITY. CHEMICAL HEPATITIS AND ELEVATION OF KIDNEY FUNCTION ENZYME LEVELS TESTS HAVE BEEN REPORTED WITH EXTREMELY HIGH EXPOSURES.

SKIN CONTACT MAY CAUSE IRRITATION. HIGH CONCENTRATIONS MAY RESULT IN A FIRST OR SECOND DEGREE BURN.

EYE CONTACT RESULTS IN IRRITATION AT LEVELS ABOVE 200 PPM.

PRE-EXISTING MEDICAL CONDITIONS POTENTIALLY WORSENED BY EXPOSURE CONSIST OF DERMATITIS, CONJUNCTIVITIS, ALLERGIC RHINITIS. PATIENTS WITH ABNORMAL LIVER OR KIDNEY FUNCTION TESTS MAY HAVE FURTHER ELEVATION OF LEVELS WITH EXTREMELY HIGH EXPOSURES TO ETHYL BENZENE.

1.4 DICHLOROBENZENE

EXPOSURE (INHALATION) TO LEVELS GREATER THAN 50 PPM MAY RESULT IN UPPER AIRWAY IRRITATION, HEADACHE AND TREMORS. EXTREMELY HIGH LEVELS MAY CAUSE ACUTE GLOMERULAR NEPHRITIS (KIDNEY DAMAGE) AND SEVERE LIVER DAMAGE LEADING TO CIRRHOSIS AND DEATH.

IN CONTACT MAY CAUSE IRRITATION. ONE CASE OF ALLERGIC DERMATITIS HAS BEEN REPORTED.

S E CONTACT TO LEVELS ABOVE 50 PM MAY CAUSE CONJUNCTIVITIS.

CHRONIC EXPOSURE MAY CAUSE HEMOLYTIC ANEMIA.

EMPLOYEE RIGHT-TO-KNOW PROGRAM page 26

GENERIC LANDFILL GAS CONDENSATE (AQUEOUS PHASE) MSDSP THIS DATA APPLIES TO MUNICIPAL SOLID WASTE LANDFILLS ONLY

ISSUED 03/08/91

1.4 DICHLOROBENZENE (continued)

DICHLOROBENZENE IS CLASSIFIED AS IARC GROUP 2B. IT IS DESCRIBED AS AN ANTICIPATED HUMAN CARCINOGEN ANIMAL SUFFICIENT EVIDENCE, HUMAN INADEQUATE EVIDENCE BY THE NTP. TUMORS OF THE KIDNEYS, LIVER, ADRENAL AND BLOOD HAVE BEEN REPORTED IN ANIMALS.

CONDITIONS WORSENED POTENTIALLY BY EXPOSURE CONSIST OF CONJUNCTIVITIS, DERMATITIS AND PRE-EXISTING LIVER FUNCTION ABNORMALITIES.

PERCHLORETHYLENE

EXPOSURE BY INHALATION TO CONCENTRATIONS ABOVE 100 PPM MAY CAUSE IRRITATION OF THE UPPER AIRWAYS. CNS DEPRESSION MANIFESTED BY HEADACHE, DIZZINESS, LIGHT-HEADEDNESS, CONFUSION AND DECREASED COORDINATION MAY OCCUR.

EXTREMELY HIGH EXPOSURES MAY CAUSE UNCONSCIOUSNESS, COMA AND DEATH (OVER 1,000 PPM). ELEVATION IN LIVER FUNCTION ENZYMES HAVE ALSO BEEN REPORTED AT HIGH CONCENTRATIONS.

CHRONIC EXPOSURES (7.5 YEARS) TO LEVELS OF 1-40 PPM HAVE RESULTED IN DECREASED "NEUROLOGIC RATING SCORES." THIS MAY MEAN IMPAIRMENT IN COGNITIVE FUNCTION. LONG-TERM EXPOSURES TO HIGHER LEVELS MAY RESULT IN CHRONIC HEADACHE AND DIZZINESS. PERIPHERAL NEUROPATHY HAS BEEN REPORTED AT THESE LEVELS. PERSISTENT LIVER DAMAGE HAS BEEN REPORTED AT LEVELS OF 60-450 PPM FOR SEVERAL YEARS.

PERCHLORETHYLENE IS ALSO CLASSIFIED AS (IARC - 2B). IT IS DESCRIBED AS AN ANTICIPATED HUMAN CARCINOGEN. ANIMAL EVIDENCE IS SUFFICIENT, HUMAN EVIDENCE IS INADEQUATE PER NTP. LIVER TUMORS IN MICE RESULTED FROM INHALATION AND INGESTION AND LEUKEMIA WAS FOUND INCREASED IN RATS EXPOSED BY INHALATION.

SKIN CONTACT WITH PERCHLORETHYLENE CAN PRODUCE AN IRRITATION WHICH MAY CAUSE A BURNING SENSATION AND ERYTHEMA.

TYE CONTACT WITH LEVELS ABOVE 100 PPM MAY RESULT IN IRRITATION.

MEDICAL CONDITIONS WHICH MAY BE AGGRAVATED BY CONTACT CONSIST OF CONJUNCTIVITIS, ALLERGIC RHINITIS, DERMATITIS. PATIENTS WITH PRE-EXISTING ABNORMALITIES OF LIVER FUNCTION MAY HAVE FURTHER ELEVATIONS WITH EXPOSURE TO HIGH LEVELS. NEUROLOGIC SYMPTOMS SUCH AS ATAXIA MAY ALSO BE WORSENED BY EXPOSURE TO HIGH LEVELS OVER LONG PERIODS OF TIME.

EMERGENCY FIRST-AID PROCEDURES

INHALATION: REMOVE TO FRESH AIR. PERFORM CARDIO-PULMONARY RESUSCITATION (CPR) IF PATIENT IS NOT BREATHING OR IF THERE IS NO PULSE. SEEK MEDICAL ATTENTION IF PATIENT IS/HAS BEEN UNCONSCIOUS OR EXPERIENCES DIFFICULTY IN BREATHING.

SKIN CONTACT: AFTER REMOVING ANY CONTAMINATED CLOTHING, WASH EFFECTED AREA THOROUGHLY WITH SOAP AND WATER. SEEK MEDICAL ATTENTION IF IRRITATION DEVELOPS OR PERSISTS.

EYE CONTACT: FLUSH EYES AND EYELIDS THOROUGHLY UNDER GENTLY RUNNING WATER FOR AT LEAST 15 MINUTES. SEEK MEDICAL ATTENTION IF IRRITATION DEVELOPS OR PERSISTS.

INGESTION: SEEK MEDICAL ATTENTION IMMEDIATELY. DO NOT GIVE ANYTHING BY MOUTH TO A PERSON THAT IS UNCONSCIOUS OR CONVULSING. KEEP PATIENTS HEAD AT LEVEL OF HIS/HER HIPS TO PREVENT BREATHING LIQUID INTO THE LUNGS. REPEAT EMESIS IN 20 MINUTES.

SECTION VI - REACTIVITY DATA

STABILITY: STABLE. AVOID INCOMPATIBLE MATERIALS.

INCOMPATIBLE MATERIALS: OXIDIZING AGENTS, CAUSTIC SODA, NITRIC ACID AND SULFURIC ACID AND WATER ACTIVE MATERIALS, SUCH AS METALLIC SODIUM AND MAGNESIUM.

AZARDOUS DECOMPOSITION PRODUCTS: COMBUSTION MAY PRODUCE WATER VAPOR (STEAM) AND LOW LEVELS OF CARBON MONOXIDE, ARBON DIOXIDE, HYDROGEN CHLORIDE, SULFUR DIOXIDE OR HYDROCARBON GASES/VAPORS.

H&S06.001

EMPLOYEE RIGHT-TO-KNOW PROGRAM page 27

GENERIC LANDFILL GAS CONDENSATE (AQUEOUS PHASE) MSDS THIS DATA APPLIES TO MUNICIPAL SOLID WASTE LANDFILLS ONLY

ISSUED 03/08/91

249-2493 M

SECTION VII - SPILL OR LEAK PROCEDURES

PROCEDURES: NOTIFY APPROPRIATE RESPONSE PERSONNEL RESTRICT ACCESS TO AREA. KEEP AWAY FROM ANY INCOMPATIBLE MATERIALS. CONTAIN LARGE SPILLS/LEAKS. ABSORB SPILLED MATERIAL WITH SAND, EARTH, VERMICULITE OR OTHER ABSORBENTS DESIGNED TO COLLECT WATER BASED PRODUCTS.

WASTE DISPOSAL METHOD: HANDLE AS A MUNICIPAL WASTEWATER. DISPOSE OF IN ACCORDANCE WITH FEDERAL, STATE AND LOCAL REGULATIONS.

SECTION VIII - SPECIAL PROTECTION INFORMATION

RESPIRATORY: USE A NIOSH/MSHA APPROVED ORGANIC VAPOR RESPIRATOR FOR CONCENTRATIONS ABOVE THE PEL/TLY BUT BELOW 10X THE PEL/TLV FOR THE INDICATED COMPOUNDS. WEAR A NIOSH/MSHA APPROVED SELF-CONTAINED BREATHING APPARATUS (SCBA) IN UNKNOWN ATMOSPHERES.

EYEWEAR: CHEMICAL SAFETY GOGGLES OR A FACESHIELD WHEN TRANSFERRING OR HANDLING OPEN CONTAINERS OF LIQUID. FULL FACEPIECE.

CLOTHING/GLOVES: NITRILE GLOVES AND BOOTS. NITRILE APRON FOR ROUTINE SPLASH PROTECTION. POLYETHYLENE OR SARANEX LAMINATED OVERALLS FOR SPILL CLEANUP.

VENTILATION: LOCAL EXHAUST MAY BE NECESSARY UNDER SOME HANDLING/USE CONDITIONS. SPECIFIC NEEDS SHOULD BE ADDRESSED BY SUPERVISORY OR HEALTH/SAFETY PERSONNEL.

`ECTION IX - SPECIAL PRECAUTIONS

CHARACTERISTIC ODOR PROVIDES GOOD WARNING PROPERTIES AT LOW VAPOR CONCENTRATIONS. GAS CONDENSATE CAN OCCUR IN TWO PHASES (ORGANIC AND AQUEOUS). THE ORGANIC PHASE IS A FLAMMABLE OR COMBUSTIBLE LIQUID (DEPENDENT ON THE LANDFILL SOURCE) WHICH WILL SEPARATE AND FLOAT ON TOP OF THE AQUEOUS PHASE. AN MSDS IS AVAILABLE FOR GAS CONDENSATE (ORGANIC PHASE).

APPROVAL:	NAME	TITLE	DATE

THE INFORMATION CONTAINED HEREIN HAS BEEN DEVELOPED BASED UPON CURRENT AVAILABLE SCIENTIFIC DATA. NEW INFORMATION MAY BE DEVELOPED FROM TIME TO TIME WHICH MAY RENDER THE CONCLUSIONS OF THIS REPORT OBSOLETE. THEREFORE, NO WARRANTY IS EXTENDED AS TO THE APPLICABLITY OF THIS INFORMATION TO THE USER'S INTENDED PURPOSE OR FOR THE CONSEQUENCES OF ITS USE OR MISUSE.