

May 29, 2013

1550 Balmer Road Model City, NY 14107 (716) 286-1550 (716) 286-0211 Fax

Mr. Dennis Weiss, P.E. New York State Department of Environmental Conservation Region 9 270 Michigan Avenue Buffalo, New York 14203-2999

Re: Revised Tank System Design and Assessment Report for AWTS Arsenic Removal Tanks T-3010 A/B/C/D

Dear Mr. Weiss:

On April 8, 2013, CWM Chemical Services, LLC (CWM) submitted a design assessment report for a proposed Aqueous Wastewater Treatment System (AWTS) arsenic removal system, prepared by EnSol, Inc., as required by 6 NYCRR 373-2.10(c)(1). In response to elevated levels of arsenic in the site generated leachate, a new system of cartridge filters and adsorption tanks has been designed for addition to the AWTS treatment train to reduce the levels of arsenic in the treated effluent.

The arsenic removal system includes a series of four 4-foot diameter by 5-foot high, 470 gallon, coated carbon steel tanks (T-3010 A/B/C/D), four pre-filters, arsenic removal media, and miscellaneous equipment and attachments. The arsenic removal system will be installed in the Water Treatment Building located east of the AWTS Building. The arsenic removal system will be installed at the current location of the Multi-Media Filtration System consisting of tanks T-3004 and T-3005. Tanks T-3004 and T-3005 are currently in the process of being closed.

NYSDEC provided comments for this submittal in a letter dated April 19, 2013. Attached please find CWM's responses to each of the NYSDEC comments. Also attached is an updated design assessment report for your review and approval which addresses the NYSDEC comments and replaces the April 8, 2013 report in its entirety.

CWM is submitting the tanks T-3010 A/B/C/D arsenic removal system revised design assessment report to obtain NYSDEC technical approval of this tank system. After this approval is received, CWM intends to submit a permit modification request to add these tanks to the 6NYCRR Part 373 Permit #9-2934-00022/00097.

Please call Mr. Jonathan Rizzo at (716) 286-0354 or myself at (716) 286-0246 if you have any questions or comments.

[&]quot;I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."

May 29, 2013 Mr. Dennis Weiss, P.E. NYSDEC Re: Revised Tank System Design and Assessment Report for AWTS Arsenic Removal Tanks T-3010 A/B/C/D

Page - 2 -

Sincerely, CWM CHEMICAL SERVICES, LLC

Jeea. Banasse

Jill A. Banaszak Technical Manager Model City Facility

JPR/JAB/jpr

cc:	B. Rostami	- NYSDEC/Region 9
	On-site Monitors	- NYSDEC/Model City, NY
	M. Cruden	- NYSDEC/Albany, NY
	M. Mortefolio	- NYSDEC/Albany, NY
	A. Park	- USEPA/Region II
	J. Devald	- NCHD/Lockport, NY
	M. Mahar	- CWM/Model City, NY
	J. Rizzo	- CWM/Model City, NY
	T. Fogarty	- CWM/Model City, NY
	S. Rydzyk	- CWM/Model City, NY
	EMD Subject File	
	Q & A	

Response to NYSDEC Comments dated April 19, 2013

General Comment:

NYSDEC Comment:

"Based on the review of the above definitions, the Department has determined that the cartridge filters are a component of the new tanks T3020 A/B/C/D tank system. The specific function of this component is to filter micro particles so that the Siemens Filter tank is able to function properly.

It (cartridge filters) still requires secondary containment, will need to be inspected for leaks, etc. The tank system is part of a Wastewater Treatment Unit aka the AWTS. Therefore, the report must be revised to indicate these units as components of the Arsenic Removal Tanks T3010 A/B/C/D."

CWM Response:

Section 1.2 of the Design Assessment Report has been revised to incorporate the cartridge filters as components to the Arsenic Removal Tanks. The cartridge filters are designed to be located within the secondary containment of the Water Treatment Building and will be inspected daily in accordance with CWM site inspections. Upon technical approval of the Design Assessment Report, CWM will submit a Permit Modification Request which will include revisions to Attachment F (Preparedness and Prevention) to include inspection of the Tanks T-3010 A/B/C/D and components.

Specific Comments:

NYSDEC Comment:

1. Section 2.6, Page 2-2 - Process Description, Piping and Pumping System

"This section indicates that a combination of Flexible Hoses and HDPE piping will be used to connect the proposed tanks to one another and to the existing tank system. Although manufacturer's information on a variety of Flexible Hoses and HDPE piping is provided in Appendix C of the report, it is not clear what design information is applicable to the particular piping being proposed for this tank system. Therefore, the following design information must be provided for the particular Flexible Hoses and HDPE piping and other ancillary equipment (e.g., valves, connectors, etc.) to be used:

• An engineering evaluation of the proposed system's maximum operating pressure in comparison to the manufacturer's maximum pressure rating for the Flexible Hoses, HDPE piping and other ancillary equipment, as required by 6 NYCRR 373-2.10(c)(1)(i); and

Response to NYSDEC Comments dated April 19, 2013

• Design information and drawings with respect to the hose/piping supports, as required by 6 NYCRR 373-2.10(c)(5)."

CWM Response:

An evaluation of the flexible hoses, HDPE piping and other ancillary equipment has been completed by CWM's engineering design consultant. Section 2.6 of the Design Assessment Report has been revised to incorporate this evaluation. Additionally, typical design details for the hose and piping supports have been added to report drawings.

NYSDEC Comment:

2. <u>Section 2.6, Page 2-3</u> - Process Description, Piping and Pumping System

"It is stated on this page that the pressure on the cartridge filters will be relieved using a "Chicago Fitting" on the unit's piping to facilitate filter removal. Additional information must be provided as to how the liquid hazardous waste that is likely to be released during this de-pressurization will be managed and contained. Release to the secondary containment is not an appropriate method of containing intentional releases from a tank system, since the regulatory purpose of secondary containment is intended to be limited to unintentional tank system releases (e.g., releases from leaks, overflows and ruptures).

It also states that the removed cartridges will be removed for cleaning or replacement. Additional information must be provided regarding the cleaning of these cartridges with respect to containment of spent cleaning solutions and residues. For reasons stated above, secondary containment cannot be used for containing these solutions/residues. Also, with respect to cartridges to be discarded, additional information on their disposal should be provided which indicates compliance with hazardous waste regulations in light of the fact that they will be contaminated with listed hazardous wastes.

With respect to the adsorption tanks, it is stated here that the pressure will be relieved using a "Chicago Fitting" on the HDPE piping and the tank drained through a fitting at the tank's base to facilitate replacement. Additional information must be provided as to how the liquid hazardous waste that will be released during de-pressurization and draining will be managed and contained. Again, for reasons stated above, secondary containment is not appropriate such containment.

Response to NYSDEC Comments dated April 19, 2013

It is stated here that the adsorption tank's manufacturer (i.e., Siemens) will be responsible for the proper management of the tank(s) with the spent arsenic contaminated media. It is also stated that the Siemens adsorption tanks are approved as transportable hazardous waste containers by the US Department of Transportation and that Siemens is an approved carrier for transportation of hazardous waste. However, it should also state that each such containerized waste shipment will be properly manifested as hazardous waste.

With regard to both the periodic change-out of cartridge filters and the periodic replacement of adsorption tanks, CWM should develop a detailed step-by-step procedure for each, including the additional information requested above, and provide them for Department review. These procedures should be appropriately submitted for Department approval as additions to the AWTS Operations Manual."

CWM Response:

Section 2.6 of the Design Assessment Report has been revised to include a description as to how the cartridge filters and adsorption tanks will be de-pressurized and drained.

As stated in the report, pressure within the cartridge filters will be relieved by connecting a temporary drain hose to a Chicago fitting in the stainless steel piping between the two filters and draining the liquid within the cartridges to a portable container (i.e. 5 gallon container) and transferring the liquid to the AWTS for processing. The filter housing will then be opened and the spent cartridges removed and either cleaned or properly disposed of, including waste tracking, by CWM as hazardous waste (macroencapsulation) in accordance with applicable regulations and Site Wide Permit requirements. Cleaning of the cartridge filters will be accomplished by placing the cartridges in a container, transporting them to the adjacent A/T Building, and rinsing the cartridges above the Filter Press Sump located adjacent to tank T-910. The Filter Press Sump is permitted as a tank and as such has secondary containment, which is inspected daily. The rinse water and small particulates will be pumped to the alkalization tanks for processing.

De-pressurization of the adsorption tanks will be accomplished by connecting a temporary drain hose to a Chicago fitting in the HDPE pipe between the filters and adsorption tanks and draining the liquid to a portable container and transferring the liquid to the AWTS for processing. Once the pressure is relieved from the adsorption tanks, the tank will be removed from the Water Treatment Building and transported to the either the A/T Building or AWTS Front Unloading Containment Area. The adsorption tanks will be fully drained using the 2 inch drain valve at the bottom of the tank which will be connected to a vacuum truck located within the containment area. The liquid would be processed through the AWTS.

Response to NYSDEC Comments dated April 19, 2013

As an alternative, A/T personnel may transfer the liquids from the adsorption tanks and piping to the effluent holding tanks T-58 or T-125 through the outlet piping using the Chicago fitting connection and compressed air.

The Design Assessment Report has also been revised to state that each containerized waste shipment by Siemens (i.e., the tanks with spent media) will be properly manifested as hazardous waste.

CWM will revise the AWTS Operations & Maintenance (O&M) Manual to include the arsenic treatment system. The revision will include a discussion of the process operations and a detailed step-by-step procedure for periodic change-out of the cartridge filters and the periodic replacement of the adsorption tanks, including the information described above. The revision to the AWTS O&M Manual will be included in the Permit Modification Request upon approval of the Design Assessment Report.

NYSDEC Comment:

3. <u>Section 2.7, Page 2-3</u> - Overpressure Protection

This section states that the maximum working pressure of the adsorption tanks is 100 psi at 150 degrees Fahrenheit, and that they are not expected to operate above 50 psi at 110 degrees. This section should indicate the maximum operating pressure for the entire new system in relationship to maximum pressure rating provided by the manufacturer of each system component (e.g., HDPE piping, flexible hoses, tanks, valves, etc.). This section should also describe how operational pressures will be regulated by pumps and other devices within the system.

The new tank system is proposed to operate at above ambient pressure, and as such, is a closed system with no overfill prevention controls. Therefore, to control overpressurization of this closed system, this section states that the system will be equipped with two (2) pressure gauges that will be monitored through periodic inspections by CWM personnel. The Department considers this system of overpressure protection to be inadequate in that it will not prevent an overpressurization and potential rupture of tank system components (i.e., piping, hoses, tanks, etc.) caused by a malfunction of normal pressure regulation equipment at most times when the system is running unattended. Therefore, the system must include a high pressure sensor and alarm as well as an automatic cutoff linked to the alarm and appropriate feed pumps, to insure adequate overpressure protection. The sensor should be set at a pressure above that incurred during normal operation, but below the manufacturer's recommended pressure for system components. In

Response to NYSDEC Comments dated April 19, 2013

addition, tanks should be outfitted with pressure relief valves set to act as a backup in case of a failure in the electronic overpressure protection system.

CWM Response:

Section 2.6 of the Design Assessment Report has been revised to incorporate the maximum working pressures of the system components. As noted in Section 2.6, an evaluation of the proposed system's maximum operating pressure within the tanks in comparison to the maximum pressure rating for the ancillary equipment and components of the system was performed. As stated, the anticipated maximum operating pressure at any point in the system will not exceed the pressure rating of any individual component of the system. Considering the inlet pressure of the new arsenic removal system will be approximated by the outlet pressure from the carbon adsorber tanks T-3007/T-3008, the system pressure cannot exceed a maximum of 75 psi, due to the presence of pressure relief rupture disks located in the T-3007/T-3008 piping. As shown on Drawing C-210 in Appendix A of the Design Assessment Report, there is a rupture disk on each of the carbon tank outlet pipes that is rated at a burst pressure of 75 psig. The pressure relief devices that are intended to prevent over pressurization of the carbon tanks will also act to prevent over pressurization of the arsenic removal system tanks, as the feed pipe pressure (developed by the carbon feed pumps P-3003 A/B) will not exceed that of the rupture disk. As a result, the new arsenic removal system operating pressure is not expected to exceed 75 psi, well below the maximum system design pressure. Product information for the 3-inch SAF-T-GRAF rupture disk is included in Appendix C of the Design Assessment Report.

Additionally, in the event of a leak caused by rupture of the pressure relief device, the W/T Building is equipped with floor leak detection sensors that will alarm AWTS personnel of this condition and automatically shut off the carbon adsorber tanks' feed pumps P-3003 A/B. Additional high pressure sensors and alarms are not necessary.

NYSDEC Comment:

4. <u>Section 2.9, Page 2-4</u> - Secondary Containment and Leak Detection

This section indicates that the existing secondary containment provides over 100 percent (100%) containment for the capacity of the two (2) carbon absorber tanks (a combined 15,200 gallons), and implies that it is, therefore, more than adequate for the tanks in the new system which have a combined capacity of approximately 1965 gallons. However, 6 NYCRR 373-2.10(d)(4)(i)('a') also requires the secondary containment to have a capacity greater than all interconnected tanks, and it is unclear from the information provided in the report as to whether any of the tanks in the new system are interconnected with the carbon absorber tanks. If they are

Response to NYSDEC Comments dated April 19, 2013

interconnected in a manner that would cause both carbon absorber tanks and one (1) or more of the new tanks to empty into the secondary containment in the event of a pipe or tank leak or rupture, the total volume might exceed the capacity of the present secondary containment. Therefore, the report should include an evaluation of the piping connections between the carbon absorber tanks and the new tank system to determine if such interconnections exist (Note: A manual valve in the piping system between tanks is not considered by the Department as adequate protection against an interconnection since it is susceptible to operator error). If it is determined that such an interconnection does not exist, the report should contain a drawing detail of the actual piping between existing and new tanks and a description explaining why the tanks are not interconnected in the manner described above. If it is determined that such an interconnection does exist, the report should either explain why the existing secondary containment still has adequate capacity for all interconnected tanks and components, or indicate the installation of appropriate equipment/devices to interrupt the interconnection, or provide plans for increasing the secondary containment capacity for all interconnected tanks.

From the Department's review of Sheet 1 in the report, it appears that the new tank system will be in close proximity to the building's new overhead doors and wall. Based on the fact that the new system will be operated under pressure, it would seem that a leak in a pipe, hose or tank could spray on to the door or wall. It is uncertain based on the information provided in the report whether such a release would run down the door or wall and into the secondary containment or outside of the building. A sectional detail of the door, wall and steel secondary containment should be provided to illustrate that such a leak would be contained, or if the existing design will not prevent such a leak from migrating outside the building, design modifications should be provided to insure containment.

CWM Response:

After evaluating the piping connections between the carbon adsorbers and the new arsenic treatment tank system, CWM has determined that there is an interconnection between the tank systems, but in the event of a pipe or tank leak, it would be unlikely for the volume released to exceed the total containment volume of the secondary containment since a substantial amount of each tanks volume, carbon and arsenic adsorbers, contain solid media. The permitted secondary containment volume is based upon all the tanks containing 100 percent liquid. Nonetheless, in order to eliminate the interconnection, the piping drawing (Sheet 1 of Appendix A) has been revised to include a vertical pipe loop, above the highest point of the carbon tanks, and an anti-siphon/anti-vacuum device installed at that high point in the pipe to prevent a siphoning effect in the event of a tank or pipe leak. Section 2.9 of the Design Assessment Report has been revised to discuss the measures to mitigate tank interconnection

Response to NYSDEC Comments dated April 19, 2013

As an added measure to prevent the possibility of a leak from the connection of the flexible hose to the rigid pipe or tank, located near the north wall of the W/T Building, from potentially contacting the proposed overhead doors or building sidewall, these connection points have be re-located a minimum of 3-feet inward from the north wall, as shown on Sheet 1 in Appendix A. With respect to the possibility of the tanks leaking and spraying onto the building walls or new overhead doors, no additional design revisions have been made. The adsorber tanks have been designed, constructed, tested, and certified by Siemens in accordance with ASME code and applicable tank standards. The tanks will be inspected and hydrostatically tested prior to each use to verify the integrity of each tank.

NYSDEC Comment:

5. <u>Section 3.1, Page 3-1</u> - Design and Record Information

It is stated here that the Design Engineer did not perform compatibility studies of the tank system materials and the material (i.e., hazardous waste) to be managed by the system, however, that a review of the system materials indicated adequate compatibility with the waste. While the Department would agree that a detailed compatibility study is not necessary in this case, simply stating that the review of the materials indicated adequate compatibility is considered by the Department to be insufficient to demonstrate compatibility. At a minimum, the report should contain a comparison of manufacturers chemical resistance information for each construction material (e.g., tank interior coatings, stainless steel, HDPE piping, flexible hose and other such ancillary equipment) and the known chemical composition of the wastewater to be managed in the new tank system, to adequately demonstrate compatibility as required by 6 NYCRR 373-2.10(c)(1).

CWM Response:

The Design Assessment Report has been revised to include manufacturers chemical resistance information for each of the construction materials intended to be used for this tank installation in Appendix C. In addition, the report has been revised to include typical chemical analyses of the wastewater to be managed by the tank system in Appendix D. Section 3.1 of the report has been revised to include a discussion of the evaluation performed by the Design Consultant and their findings that no issues or areas of concern were found and it was determined that the materials of construction were compatible with the wastewater to be handled by the system.

NYSDEC Comment:

6. Section 3.2, Page 3-1 - Summary and Conclusions

Response to NYSDEC Comments dated April 19, 2013

This section states that Siemens, the adsorption tank manufacturer, will pre-certify the structural integrity and tightness. However, additional information must be provided with regard to verifying the installed system's integrity prior to use. An appropriate procedure for tightness testing of the new tanks and their ancillary equipment or other components must be provided that will confirm the installed system's integrity at its maximum operating pressure plus an amount of additional pressure to provide for an appropriate factor of safety, as required by 6 NYCRR 373-2.10(c)(4).

The report states that the initial installation of the new system will be inspected by an independent, qualified, installation Inspector or registered New York Professional Engineer prior to placing the system in use, as required by 6 NYCRR 373-2.10(c)(2). During regular tank change out installations, the report states that CWM personnel will inspect the system components prior to startup to insure they are installed properly and will visually inspect the system components to insure they are free of leaks. The Department has determined to treat such tank or other component change outs as "in-kind" replacements.

Although the Department has made this determination, during such change outs the compliance with the substantive requirements of 6 NYCRR 373-2.10(c)(2) and 6 NYCRR 373-2.10(c)(7) (i.e., installation certification by a qualified Inspector or Professional Engineer, and documentation of such) and compliance with 6 NYCRR 373-2.10(c)(4) (i.e., post-installation tightness testing) must be met. A qualified Inspector may be someone who is familiar with the equipment such as a Manufacturer's Qualified Installer.

Additionally, the change-out procedure for the adsorption tanks required by Comment No. 2 above, must indicate that the tightness testing required above for the initial installation will be repeated after each tank replacement per 6 NYCRR 373-2.10(c)(4), and that the system will be re-inspected by a qualified Inspector or Professional Engineer after each such replacement per 6 NYCRR 373-2.10(c)(2) and 6 NYCRR 373-2.10(c)(7).

CWM Response:

Section 3.2 of the Design Assessment Report has been revised to include additional procedures for tightness testing of the new tanks and their ancillary equipment or other components that will confirm the installed system's integrity.

Response to NYSDEC Comments dated April 19, 2013

The Design Assessment Report has also been revised to include that all in-kind replacement tanks provided by Siemens, subsequent to initial system installation as a result of tank change out activities, will be pre-certified by Siemens as to their structural integrity, adequate condition, and system tightness. All other system components and ancillary equipment will remain in place from the initial installation and will not be changed out on a regular basis. During regular tank change out installations CWM personnel will inspect the system components prior to startup to insure they are installed properly. In addition, in accordance with 6 NYCRR 373-2.10(C)(4) (i.e., post installation tightness testing) all tanks, along with the associated flexible hoses and their connections, involved in the change out will be re-tested for tightness following the procedure used during initial tank installation. To comply with the substantive requirements of 6 NYCRR 373-2.10(c)(2) and 6 NYCRR 373-2.10(c)(7) (i.e., installation certification by a qualified Inspector or Professional Engineer, and documentation of such), CWM Engineering or AWTS Supervisory personnel will be trained by Siemens as Manufacturer's Qualified Installers for the tanks. Documentation of each tank change out and associated tightness testing and installation inspections by the designated CWM Manufacturer's Qualified Installer will be maintained on site for Department review.

NYSDEC Comment:

7. <u>Figures</u>

In addition to the overhead depiction of the new system on Sheet 1, additional vertical depictions of all four (4) sides of the new system should be provided to indicate tank support structures and piping locations.

CWM Response:

The Design Assessment Report has been revised to include additional vertical depictions of the tank system including tank support structures and piping locations. Drawing Sheet 2 has been added to Appendix A to provide additional detail. Revisions to Sheet 1 in Appendix A have been made to indicate the location of various pipe supports to be installed, including the addition of Note 2.

Tank System Design and Assessment Report for AWTS Arsenic Removal Tanks T-3010 A/B/C/D

CWM Chemical Services, LLC Model City, New York

> April 2013 (Revised May 2013)

> > Prepared by

Inc. **Environmental Solutions**

Professional Engineering • Business Consulting

Ph (716) 285-3920 • Fx (716) 285-3928 E-Mail bshiah @ensolinc.com

Transmitted Via Hand Delivery

May 24, 2013

Mr. Stephen Rydzyk Engineer CWM Chemical Services, LLC 1550 Balmer Road, P.O. Box 200 Model City, New York 14107

Re: Tank System Design and Assessment Report for Tanks T-3010A/B/C/D (Revised) Model City, New York EnSol Project #: 13-7009-2

Dear Mr. Rydzyk:

Enclosed please find two copies of the revised Final Report titled, *Tank System Design and Assessment Report for AWTS Arsenic Removal Tanks* dated April 2013 (Revised May 2013), as prepared by EnSol, Inc. (EnSol). This report is provided to present applicable design and construction information for the proposed Arsenic Removal System, as described herein, to allow for the removal of elevated levels of arsenic from the treated effluent of the AWTS. The revised report incorporates revisions to the original report to address review comments by the NYSDEC as presented in their letter to CWM dated April 19, 2013.

The report includes an assessment and review of the structural integrity of the proposed tank system and compatibility of the materials of construction with the materials expected to be handled. This assessment is intended to satisfy the State and Federal Regulations listed under 6 NYCRR Part 373-2.10(c), and 40 CFR 264.192, respectively, with regards to design and installation of new tank systems or components.

The intent of this report is to provide sufficient information to the New York State Department of Environmental Conservation (NYSDEC) for review of the proposed system design and usage, and for subsequent approval to construct and operate the tank system.

If you have any questions or require additional information, please contact me at (716) 285-3920, ext. 212.

Sincerely,

ENSOL, INC.

Brown D. Ship

Brian D. Shiah, P.E. President

Tank System Design and Assessment Report for AWTS Arsenic Removal Tanks T-3010 A/B/C/D

CWM Chemical Services, LLC Model City, New York

April 2013 (Revised May 2013)

Prepared by EnSol, Inc. 661 Main Street Niagara Falls, New York 14301

Section	1.	Intr	oduction	1-1
		1.1	General Site Information	
		1.2	Project Purpose and Objective	
		1.3	Tank Inspection/Assessment Requirements and Guidelines	
Section	2.	Tan	k Location and Description	2-1
		2.1	Location	2-1
		2.2	Dimensions and Capacity	
		2.3	Structural Support and Foundation	
		2.4	Materials of Construction	
		2.5	Miscellaneous Attachments	
		2.6	Process Description, Piping, and Pumping System	
		2.7	Overpressure/Vacuum and Overfill Protection	
		2.8	Protective Coatings	
		2.9	Secondary Containment and Leak Detection	2-5
Section	3.	Ass	sessment and Certification	3-1
		3.1	Design and Record Information	
		3.2	Summary and Conclusions	

Figures

- 1. Regional Location Map
- 2. Facility Location Detail
- 3. Facility Layout Plan

Appendices

- A. Proposed Arsenic Removal System Drawings (EnSol)
 - Sheet 1 Proposed Layout Plan and Piping Diagram
 - Sheet 2 Platform and Piping Sections and Details
 - Sheet 24 Multi Media Filtration System P&ID (Proposed Updates)
 - Sheet 25 Adsorption System P&ID (Proposed Updates)
 - Sheet 25A Arsenic Removal System P&ID (Proposed)
- B. Proposed Tank Information (Siemens)
 - Tank Product Data
 - Design Specification / Application Memo
 - 3M Scotchkote Product Data
- C. Proposed Filters, Piping, and Equipment Information
 - Cartridge Filters (Harmsco)
 - Flex Hose Cut Sheet (Goodyear)
 - HDPE Pipe Data (Phillips Chevron)
 - Ball Valve & Hose Adapter (Grainger)

ENSOL, INC.

- Flange Gaskets (Durlon) Roller Cut Sheet (OMC) •
- •
- Rupture Disks (BS & B) ٠
- D. Carbon Effluent Analytical Laboratory Test Results

ENSOL, INC.

1. Introduction

1.1 General Site Information

CWM Chemical Services, LLC (CWM) owns and operates a commercial hazardous waste treatment, storage, and disposal facility (TSDF) in Model City, Niagara County, New York. This TSDF began operating in 1972 as ChemTrol Pollution Services, Inc. Due to corporate acquisitions and name changes, CWM, a subsidiary of Waste Management, Inc., is the present owner and operator of the facility. Waste Management, Inc. is based in Houston, Texas.

The facility is located on Balmer Road in Model City, New York, approximately 1.9 miles east of New York State Route 18 (Creek Road), and occupies land in the towns of Lewiston and Porter. A Regional Location Map and Facility Location Detail are presented in Figures 1 and 2, respectively. All existing waste management units on the site are located within the Town of Porter. The contiguous property along Balmer Road is also the location of offices for the Administrative, Sales and Marketing, Data Processing, Accounting, Environmental, and Engineering Departments.

The CWM Model City facility is permitted as a TSDF under the Resource Conservation and Recovery Act (RCRA). Numerous units at the site are used to store, treat, and dispose of a variety of liquid and solid organic and inorganic hazardous wastes. Storage, treatment, and disposal capabilities include an Aqueous Wastewater Treatment System (AWTS) utilizing chemical, physical, and biological treatment processes from which treated wastewater is discharged to the Niagara River in accordance with the facility's State Pollutant Discharge Elimination System (SPDES) Permit; secure landfilling of approved waste solids and semisolids, including polychlorinated biphenyls (PCBs); waste stabilization; container and tank storage; transformer decommissioning; and PCB treatment and storage. Figure 3 presents a Facility Layout Plan.

1.2 Project Purpose and Objective

The purpose of this report is to present applicable design and construction information for the proposed AWTS Arsenic Removal Tank System, and to document the results of an assessment conducted by EnSol, Inc. (EnSol) for this system. In response to elevated levels of arsenic in the site generated leachate a new system of cartridge filters and adsorption tanks has been designed for addition to the AWTS treatment train to reduce the levels of arsenic in the treated effluent. A pilot study was performed by Siemens Industry, Inc. (Siemens) to determine the effectiveness of this treatment system from which the appropriate sized cartridge filters and tanks were subsequently selected. As defined in 6 NYCRR 370.2 the cartridge filters are considered a component of the new tank system. The specific function of this component is to filter micro particles so that the Siemens adsorption tanks are able to function properly. It is intended that this report be used by CWM to aid in obtaining an approval from the New York State Department of Environmental Conservation (NYSDEC) as per 6 NYCRR 373-2.10(c) to install the new tank system including tanks, ancillary equipment and components, and to operate the tank system for the purpose stated above.

The objective of the assessment is to satisfy the applicable State and Federal Regulations for the installation of new tank systems as required by CWM's Sitewide Part 373 Permit #9-2934-020022/00097. As required by 6 NYCRR 373-2.10(c)(1), the owner or operator of a new tank system must obtain and submit to the NYSDEC a written assessment attesting that the tank system has sufficient structural integrity and is acceptable for storing hazardous waste.

The following information is included in this report for the proposed tank system: location, configuration, design parameters, operating procedures, materials of construction, provisions for secondary containment and leak detection, and the results of EnSol's assessment.

1.3 Tank Inspection/Assessment Requirements and Guidelines

An assessment of the subject tank system is required by State and Federal Regulations listed under 6 NYCRR 373-2.10(c) and 40 CFR 264.192, respectively, pertaining to Hazardous Waste Management Facilities. These regulations identify the assessment requirements to be met and associated activities to be performed related to the design and installation of new tank systems or components. The assessment procedure also requires an evaluation of the system design, as it pertains to the containment and detection of releases, in accordance with State and Federal Regulations listed under 6 NYCRR 373-2.10(d) and 40 CFR 264.193, respectively. Additional site-specific permit requirements may also be developed by the regulatory agencies, such as the CWM Tank and Sump Assessment Schedule included in CWM's Sitewide Permit.

In addition to general regulations and/or site-specific permit requirements, there are several recommended or applicable guidance documents pertaining to tank inspections, assessments, and design. EnSol personnel have used the primary guidance documents referenced below to conduct previous site inspections, assessments, and designs for tank systems, and to aid in the design and assessment contained herein.

- i. *Guide for Inspection of Refinery Equipment, Chapter XIII, Atmospheric and Low Pressure Storage Tanks,* American Petroleum Institute (API) publication, 4th edition, 1991.
- ii. *Tank Inspection, Repair, Alteration, and Reconstruction*, API Standard 653, 3rd Edition, December 2001.
- iii. *Requirements for Tank and Container Storage*, NYSDEC, Technical and Administrative Guidance Memorandum No. 3019, April 23, 1991.
- iv. *Concrete Secondary Containment for Tank and Container Storage*, NYSDEC, Technical and Administrative Guidance Memorandum No. 3021, March 11, 1991.
- v. Chemical Plant and Petroleum Refinery Piping, American Society of Mechanical Engineers (ASME) Standard B31.3-1990

2.1 Location

The adsorption tanks and cartridge filters are to be located within the Water Treatment (W/T) building where the current Multi-Media Filtration System (i.e. sand filters) is located. The out of service sand filter tanks are being closed and removed from the building along with all their piping and appurtenances. A new set of overhead doors will be installed on the north side of the building and a new platform support system will be erected within the building to accommodate the tanks and cartridge filters. The location of the Water Treatment Building is shown on the Figure 3, and a proposed internal layout of the building is shown on Sheet 1 of the design drawings by EnSol included in Appendix A.

2.2 Dimensions and Capacity

The four adsorption tanks will each be single chamber, cylindrical pressure vessels rated at 100 psi, with a dished bottom and roof, with exterior dimensions of 4 feet - 0 inches diameter x 5 feet - 0 inches high with an over all height of 8 feet. The design capacity of each tank is 470 gallons. This is the total volume of both the arsenic removal media and water. The tanks are the property of Siemens and will be leased for use in this system. The four pre-filters will be cartridge filters measuring 37 inches high with a diameter of 13 inches. The filter cartridge vessels are manufactured by Harmsco and have a pressure rating of 150 psi.

2.3 Structural Support and Foundation

Each tank is supported by four legs mounted to a skid frame which is used to lift the tanks by fork truck. The tanks will be placed on, and supported by, a structural steel platform and roller tray which will facilitate the changing of the tanks. Within the W/T building, a 12 feet wide x 14 feet 6 inch long structured platform will be erected in the location currently occupied by the sand filter tanks. The new platform will consist of two (2) 12 feet by 50 inch roller trays aligned with the new overhead doors which will be installed on the north side of the building. Each roller tray will hold a pair of adsorption tanks and, integral with the support platform, will be supported by the underlying reinforced concrete floor and raised concrete pad. A review of the existing W/T Building concrete floor, combined with the structural steel support frame design and anticipated loads was performed and the floor was found to be adequate to support the proposed system. An access platform will be at the same height as the roller trays for connecting and disconnecting the tanks. The access platform will be at the same height as the roller trays. The roller trays and access platform will be set at the same height as the existing entry way platform at the northwest corner of the building. The roller trays will be equipped with stabilization bars to lock the tanks into place and prevent them from shifting or rolling on the rollers during operations. Refer to the drawings in Appendix A and tank manufacturer information in Appendix B for additional details.

2.4 Materials of Construction

The adsorption tanks are 470 gallon steel tanks manufactured by Siemens and are constructed of 3/16-inch thick welded carbon steel. The tanks have a design operating pressure rating of 100 psi at 150 degrees Fahrenheit. Refer to Appendix B for additional design and construction specifications and manufacturers information. The filters are upflow cartridge filters manufactured by Harmsco, which are stainless steel filter vessels with a pressure rating of 150 psi.

2.5 Miscellaneous Attachments

As shown on the drawings in Appendix A and product literature in Appendix B, the adsorption tanks have one 4-inch diameter fluid inlet and one 4-inch diameter fluid outlet on the side of the tank. The tanks are also equipped with one 2-inch diameter media inlet and one 2-inch diameter media outlet, a 3/4" drain, and a 12 inch by 16 inch elliptical manway at the top the tank. Nozzle diameters range from 2-inches to 4-inches. The tank also includes two pressure gauge assemblies.

The filter assemblies are equipped with one 2-inch inlet and one 2-inch outlet nozzle at the bottom of the assembly. A 1-inch drain is also located at the bottom of each filter. The top of the filter housing is removable for changing the filter cartridges.

2.6 Process Description, Piping, and Pumping System

An Ion Exchange Application Memo (November 2012) was prepared by Siemens to present the preliminary treatability testing results on CWM wastewater. The finding of this testing was subsequently used to determine system requirements. Refer to Appendix B for details.

The proposed use of the adsorption tanks and cartridge filters will be for the removal of arsenic from the AWTS effluent prior to discharge to the site's treated effluent tanks, tanks T-58 and T-125. The study performed by Siemens determined the number and size of cartridge filters and adsorption tanks needed to meet the CWM treatment goals. The cartridge filters will be used to remove fine solids and prevent blinding of the adsorption media. The media is designed specifically to adsorb (remove) arsenic. As shown on Sheet 1 in Appendix A, the new tanks and piping system will tie into the existing piping from the carbon adsorption tanks inside of the W/T building. The arsenic treatment system is designed as two parallel treatment trains. Each treatment line will consist of two cartridge filters in series followed by a primary and a secondary adsorption tank in series. The two parallel systems will be piped and valved such that they can be operated individually or simultaneously. The arsenic removal system may also be by-passed if the wastewater being process does not contain arsenic.

A 2-inch high density polyethylene (HDPE) tee will be installed into the existing piping from the carbon adsorption tanks to divert water into the arsenic removal system. The 2-inch inlet pipe will then branch out to the two parallel systems. Each system will consist of the 2-inch HDPE pipe feeding into the first cartridge filter which is then connected to the second via a 2-inch stainless steel pipe. The piping will be equipped with isolation valves before and after the filters for replacing the filter cartridges. The 2-inch HDPE pipe will then run under the roller trays and extend up into the access area between the two roller trays. The pipes will be equipped with 3-inch camlock fittings. The adsorption tanks will also be equipped with 3-inch camlock fittings. A 3-inch flexible pressure rated chemical hose will be used to connect the adsorption tanks into the system for easier assembly and disassembly when changing the adsorption tanks. The flexible chemical hose will be connected to the top inlet of the first adsorption tank. Flexible hose will be installed from the bottom outlet of the first adsorption tank into the top inlet of the second adsorption tank. The bottom outlet of the second adsorption tank of each treatment line will be connected to a 3-inch HDPE header pipe by flexible hoses. The 3inch HDPE header pipe, which after combining with the other parallel system outlet, will feed back into the discharge piping from the carbon adsorption tanks. Isolation valves will be installed before and after the adsorption tanks for changing out the tanks. Treated water from the adsorption tanks is then directed to the AWTS effluent holding tanks T-125 or T-58.

The tanks are designed for a maximum operating pressure of 100 psi at 150 degrees Fahrenheit (per Siemens), although are not expected to operate above 50 psi at less than 110 degrees Fahrenheit. Based on these design and operating conditions, an engineering evaluation of the proposed system's maximum operating pressure in

comparison to the manufacturer's maximum pressure rating for the flexible hoses, HDPE piping, and other ancillary equipment, as required by 6 NYCRR 373-2.10(c)(1)(i) was performed. The following presents a summary of the manufacturer pressure rating for the various ancillary equipment and components:

- Cartridge Filters (Harmsco) Pressure rated to 150 psi
- Flexible Hoses (Goodyear) Pressure rated to 150 psi
- Ball Valves (Grainger) Pressure rated to 1,000 psi
- Male Hose Adapter (Grainger) Pressure rated to 125 psi
- HDPE Pipe (Chevron Phillips) Pressure rated to 200 psi
- Flange Gaskets (Durlon) Pressure rated to 1,500 psi

As shown, the pressure rating for each of the individual system components exceeds the maximum operating pressure of the tank. Product-specific information is provided in Appendix C for each of the items listed above.

Sheet 2 in Appendix A provides additional front and side views of the tank system showing the piping arrangement and design details with respect to the hose/piping supports, as required by 6 NYCRR 373-2.10(c)(5).

Regular inlet/outlet pressure differential monitoring and testing of the treated water will be performed to determine when the cartridge filters or arsenic adsorption tanks must be replaced. When an increased pressure differential is observed via pressure gauges on the inlet an outlet piping of the filter cartridges, the cartridge filters may have become clogged. That side of the system will be shut down and the filters will be isolated using the provided ball valves. Pressure within the filters will be relieved by connecting a temporary drain hose to a Chicago fitting in the stainless steel piping between the two filters and draining the liquid within the cartridges to a portable container (i.e. 5 gallon container) and transferring the liquid to the AWTS for processing. The filter housing will then be opened and the spent cartridges removed and either cleaned or properly disposed of, including waste tracking, by CWM as hazardous waste (macroencapsulation) in accordance with applicable regulations and Site Wide Permit requirements. Cleaning of the cartridge filters will be accomplished by placing the cartridges in a container, transporting them to the adjacent A/T Building, and rinsing the cartridges above the Filter Press Sump located adjacent to tank T-910. The Filter Press Sump is permitted as a tank and has secondary containment, which is inspected daily. The rinse water and small particulates will be pumped to the alkalization tanks for processing.

When arsenic levels in the treated effluent are no longer acceptable, the adsorption tanks will be replaced. It is assumed that the arsenic media in the primary tank will be spent before that of the secondary tank. When this occurs, the secondary tank will be moved into the primary tank position and a new tank with fresh arsenic media will be installed in the secondary tank position. This sequence will be continued for the life of the system. Siemens will be responsible for supplying replacement tank(s) with fresh media, and proper management of the tank(s) with the spent arsenic contaminated media. Changing out the adsorption tanks will be done by CWM through the new overhead doors located on the north side of the building. The side of the system to be changed will be isolated, and pressure will be relieved by connecting a temporary drain hose to a Chicago fitting in the HDPE pipe between the filters and adsorption tanks and draining the liquid to a portable container and transferring the liquid to the AWTS for processing. Once the pressure is relieved from the adsorption tanks, the flex hoses will be disconnected and the stabilization bars will be removed. A fork truck will be used to lift and roll the tanks out of the Water Treatment Building and transport them to the either the A/T Building or AWTS Front Unloading Containment Area. The adsorption tanks will be fully drained using the 2 inch drain valve at the bottom of the tank which will be connected to a vacuum truck located within the containment area. The liquid would be processed through the AWTS. As an alternative, A/T personnel may transfer the liquids from

the adsorption tanks and piping to the effluent holding tanks T-58 or T-125 through the outlet piping using the Chicago fitting connection and compressed air. The remaining tanks will be repositioned as needed and the new tanks will be installed. The tanks will be locked into place using the stabilization bars, and the flex hoses will be reconnected. Once the system is fully reconnected, the isolation valves will be opened and that system will be checked for leaks. If any leaks are found, the system will be isolated and any leaks will be repaired.

It is noted that, according to Siemens, all Siemens adsorption tanks are approved as transportable hazardous waste containers by the US Department of Transportation and Siemens is an approved carrier for transportation of Hazardous Waste. Siemens will pick up all spent tanks from CWM's facility and transport the spent tanks to Siemens's Roseville, Minnesota facility for processing and, as required, each such containerized waste shipment will be properly manifested as hazardous waste. All tanks will be verified by Siemens for proper flow and pressure tested for leaks prior to shipping to CWM.

Product literature for the proposed cartridge filters, flexible hoses, HDPE piping, valves and adapters, and rollers are included in Appendix C.

CWM will revise the AWTS Operations & Maintenance (O&M) Manual to include the arsenic treatment system. The revision will include a discussion of the process operations and a detailed step-by-step procedure for periodic change-out of the cartridge filters and the periodic replacement of the adsorption tanks, including the information described above. The revision to the AWTS O&M Manual will be included in the Permit Modification Request upon approval of this design assessment report.

2.7 Overpressure Protection

Primary overpressure protection will be provided by two pressure gauge assemblies which will be monitored during system operation by AWTS personnel to assure system pressures do not exceed that specified. As noted previously, the tanks are designed for a maximum working pressure of 100 psi at 150 degrees Fahrenheit (per Siemens), although are not expected to operate above 50 psi at less than 110 degrees Fahrenheit. Pressure gauges are included in the proposed system before and after each cartridge filter and each tank as shown on Sheet 1 and Sheet 25a in Appendix A.

As noted in Section 2.6 above, an evaluation of the proposed system's maximum operating pressure within the tanks in comparison to the maximum pressure rating for the ancillary equipment and components of the system was performed. As stated, the anticipated maximum operating pressure at any point in the system will not exceed the pressure rating of any individual component of the system. Considering the inlet pressure of the new arsenic removal system will be approximated by the outlet pressure from the carbon adsorber tanks T-3007/T-3008, the system pressure cannot exceed a maximum of 75 psi, due to the presence of pressure relief rupture disks located in the T-3007/T-3008 piping. As shown on Drawing C-210 in Appendix A, there is a rupture disk on each of the carbon tank outlet pipes that is rated at a burst pressure of 75 psig. The pressure relief devices that are intended to prevent over pressurization of the carbon tanks will also act to prevent over pressurization of the arsenic removal system tanks, as the feed pipe pressure (developed by the carbon feed pumps P-3003 A/B) will not exceed that of the rupture disk. As a result, the new arsenic removal system operating pressure is not expected to exceed 75 psi, well below the maximum system design pressure. Product information for the existing 3-inch SAF-T-GRAF rupture disks is included in Appendix C.

Additionally, in the event of a leak caused by rupture of the pressure relief device, the W/T Building is equipped with floor leak detection sensors that will alarm AWTS personnel of this condition and automatically shut off the carbon adsorber tanks' feed pumps P-3003 A/B.

2.8 Protective Coatings

The interior of the tanks will be coated with 3M Scotchkote 134 to a dry film thickness (DFT) of 10-15 mils, in accordance with the manufactures specifications. The tanks will be housed within the Water Treatment Building which is a heated structure; therefore the tanks will not require any additional external coatings to protect it from UV degradation or other environmental factors. The tank's exterior will be coated with a rust preventative epoxy primer (4-6 mils DFT) and finished with high build polyurethane (3-4 mils DFT). Manufacturer's Specifications, including chemical resistance data and chart for the 3M Scotchkote are included in Appendix B.

The cartridge filters are manufactured of 304 stainless steel, which has been electro-polished for increased resistant to corrosion. Product literature for the cartridge filters, including chemical resistance data and chart is included in Appendix C.

2.9 Secondary Containment and Leak Detection

Secondary containment for the adsorption tanks is provided by the existing secondary containment system installed within the Water Treatment Building. A perimeter coated steel secondary containment wall approximately 20-inches high provides a minimum of 100% secondary containment capacity for the carbon adsorbers and the arsenic removal systems, based on the capacity of the largest tank or all interconnected tanks within the building. As presented in the Site-wide Permit Secondary Containment Calculations, the W/T Buildings available secondary containment volume of 15,317 gallons exceeds the required secondary containment volume of 15,200 gallons (combined volume of the interconnected carbon adsorber tanks T-3007/T-3008).

As noted above in Section 2.7, the W/T Building is equipped with floor leak detection sensors that will alarm AWTS personnel in the event of a leak and automatically shut off the carbon adsorber tanks' feed pumps P-3003 A/B. It is noted, however, that due to the higher elevation of the carbon tanks compared to the arsenic removal tanks it is possible that a leak somewhere in the arsenic removal tank system at a lower elevation could allow the carbon tanks to drain out or inversely, due to a reduced pressure condition, for the arsenic removal tanks to be back siphoned, thereby, essentially creating an interconnected condition between the two systems. To prevent this, the inlet pipe to the arsenic removal system at the point of by-pass from the outlet pipe from the carbon system will be elevated, by use of a vertical pipe loop, above the highest point of the carbon tanks and an anti-siphon/anti-vacuum device installed at that high point in the pipe. Refer to Sheet 1 and Sheet 25a in Appendix A for further details.

As an added measure to prevent the possibility of a leak from the connection of the flexible hose to the rigid pipe or tank, located near the north wall of the W/T Building, from potentially contacting the proposed overhead doors or building sidewall, these connection points are located a minimum of 3-feet inward from the north wall, as shown on Sheet 1 in Appendix A.

Leak detection for the entire adsorption tank system will be provided by exterior visual means through daily inspection by CWM personnel. All system components and ancillary equipment including the tank sides, top, nozzles, and system piping are all visible for easy inspection and will be checked as part of the daily inspection. As noted previously, the W/T Building is also provided with floor leak detection sensors that will alarm AWTS personnel in the event liquid is detected on the floor of the secondary containment and the inlet feed pumps to the adsorption systems automatically shut off.

EnSol conducted an assessment and review of the proposed AWTS Arsenic Removal System components at CWM's Model City facility in order to assess the integrity and to confirm the compatibility of the components with materials that are to be handled.

3.1 Design and Record Information

EnSol reviewed available design and record information that were provided by CWM and/or the various equipment and tank manufacturers. Information regarding design standards, materials of construction, structural supports, hazardous characteristics of the waste stream to be handled, and corrosion protection systems (internal and external) was obtained from these sources. EnSol did not perform compatibility studies for the existing and proposed system components, although a review of and our close familiarity and extensive experience with the system materials of construction indicates adequate compatibility with the materials expected to be handled. Where available, manufacturer compatibility information was reviewed.

Regarding the chemical compatibility of the materials of construction with the materials expected to be handled (i.e., AWTS carbon adsorber tank effluent), Appendix C includes available manufacturer and/or material chemical resistance data for each of the system components to be used (refer to the end of each sub-section). Chemical compatibility and resistance information for the 3M Scotchkote Epoxy Coating used as the interior lining of the Siemens tanks is included at the end of Appendix B with other proposed tank information. Recent analytical laboratory test results for samples of the AWTS carbon effluent tested by CWM's on-site lab (for COD, Cyanide, pH, Sulfide, Volatiles, and Total Metals) and by an independent lab, Adirondack Environmental Services, Inc. (for PCB's and Semi-Volatiles) is included in Appendix D. EnSol performed a comparison of manufacturers chemical resistance information for each construction material (i.e., tank interior coatings, stainless steel, HDPE piping, flexible hose and other ancillary equipment) and the known chemical composition of the wastewater to be managed in the new tank system, to adequately demonstrate compatibility, as required by 6 NYCRR 373-2.10(c)(1). No issues or areas of concern were found and it was determined that the materials of construction were compatible with the wastewater to be handled by the system. It is also noted that all the materials of construction, including the specific products and manufacturers of the equipment in most cases, have been used extensively throughout the CWM Model City facility and other such sites for many years and have performed very well in much more aggressive environments than they will be exposed to in this system.

3.2 Summary and Conclusions

The proposed tank system is to be used by CWM for the removal of arsenic as part of the sites wastewater treatment process. The treatability study and design specification performed by Siemens was used to design the adsorption tanks and cartridge filter systems. The proposed system was specified and designed as a chemical-resistant pressure system that will provide maximum performance, within the specified limits, and to adequately remove arsenic from the treated wastewater. The system tanks, components, and ancillary equipment are expected to meet or exceed the conditions they will be exposed to.

In accordance with the requirements listed under 6 NYCRR 373-2.10(c)(2), the new tank system will be inspected by an independent, qualified, installation inspector or registered New York Professional Engineer prior to placing the system in use. In accordance with 6 NYCRR 373-2.10(c)(4), during installation and prior to initial service, the newly installed tanks will be hydrostatically tested for tightness in accordance with an established standard, such as American Petroleum Institute (API) Standard 653, using a full depth liquid test with water for minimum 24-hour duration. All new piping and ancillary equipment will be hydrostatically

pressure tested for tightness in accordance with an established standard, such as ANSI/ASME B 31.3, using water at a minimum pressure of 1.5 times maximum operating pressure or 112.5 psi (1.5 X 75 psi). In addition, during tank and pipe testing all systems will be visually inspected for signs of leaks or pressure loss and any deficiencies corrected. All initial testing will be observed and, along with the inspections, will be documented by the independent, qualified, installation inspector or registered New York Professional Engineer in written statements in accordance with 6 NYCRR 373-2.10(c)(7).

Thereafter, all in-kind replacement tanks provided by Siemens, subsequent to initial system installation as a result of tank change out activities, will be pre-certified by Siemens as to their structural integrity, adequate condition, and system tightness. All other system components and ancillary equipment will remain in place from the initial installation and will not be changed out on a regular basis. During regular tank change out installations, CWM personnel will inspect the system components prior to startup to insure they are installed properly. In addition, in accordance with 6 NYCRR 373-2.10(C)(4) (i.e., post installation tightness testing) all tanks, along with the associated flexible hoses and their connections, involved in the change out will be re-tested for tightness following the procedure used during initial tank installation. During start up after tank change out, CWM will visually inspect the system components to insure they are free of leaks and any deficiencies immediately addressed. To comply with the substantive requirements of 6 NYCRR 373-2.10(c)(2) and 6 NYCRR 373-2.10(c)(7) (i.e., installation certification by a qualified Inspector or Professional Engineer, and documentation of such), certain designated CWM Engineering or AWTS Supervisory personnel will be trained by Siemens as Manufacturer's Qualified Installers for the tanks. Documentation of each tank change out and associated tightness testing and installation inspections by the designated CWM Manufacturer's Qualified Installers for the tanks.

In order to satisfy the operational requirements listed under 6 NYCRR 373-2.10 to install new piping and operate the AWTS Arsenic Removal System, CWM must provide labels, signs, placards, tank identification, etc. specific to the proposed tank service. In addition, documentation of the date the tank system is initially placed into service and every time the tanks are replaced will be maintained.

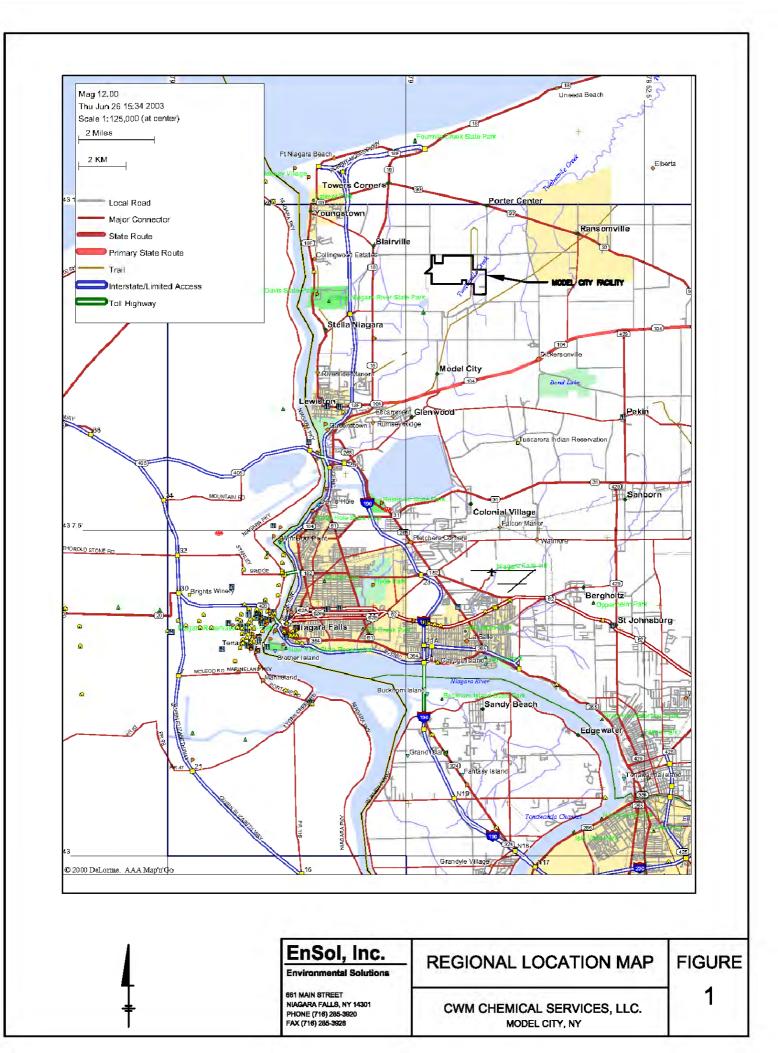
The assessment for the proposed AWTS Arsenic Removal System, as prepared by EnSol and presented in this report, includes consideration of the proposed tanks foundation, structural supports, secondary containment, leak detection, tank design standards, proposed equipment, chemical compatibility, and existing conditions. EnSol considers each of these items to be adequately designed and/or constructed for the intended use and, where applicable, to have sufficient structural strength. Proposed materials of construction for the systems appear to be sufficiently compatible with the materials expected to be handled. Considering the proposed use and service, the proposed tank systems identified herein were judged by EnSol to be adequate for its intended service, providing the tank systems operating temperature, pressure, and chemical exposure limitations are not exceeded.

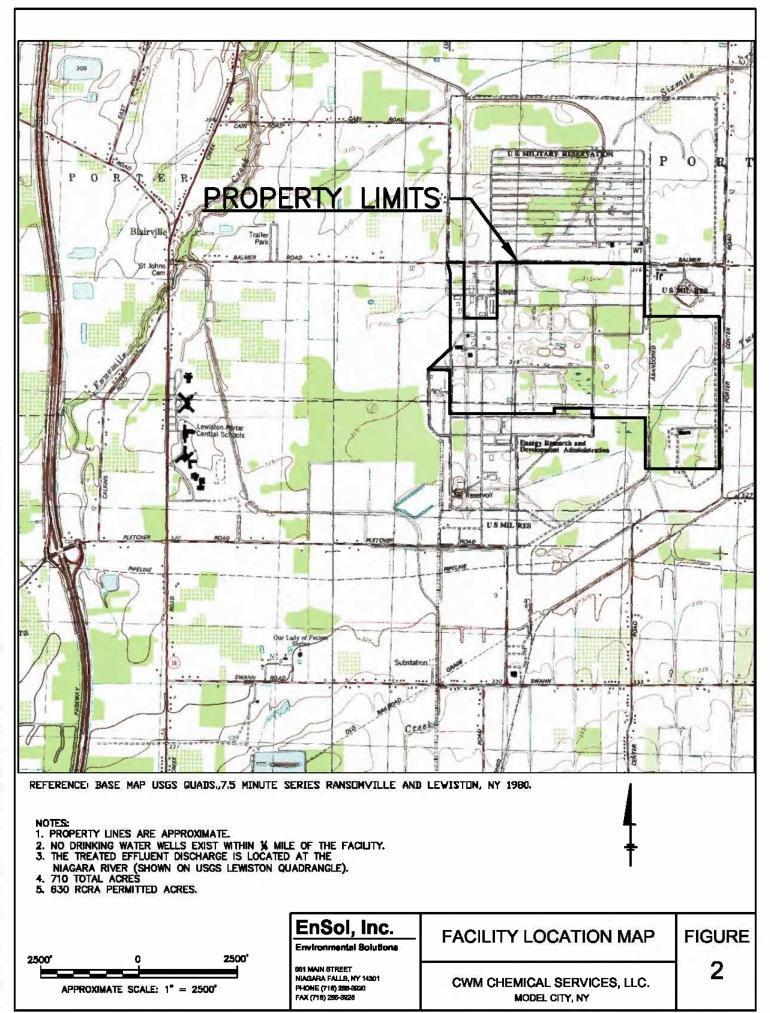
TANK SYSTEM DESIGN AND ASSESSMENT REPORT FOR AWTS ARSENIC REMOVAL TANKS T-3010 A/B/C/D

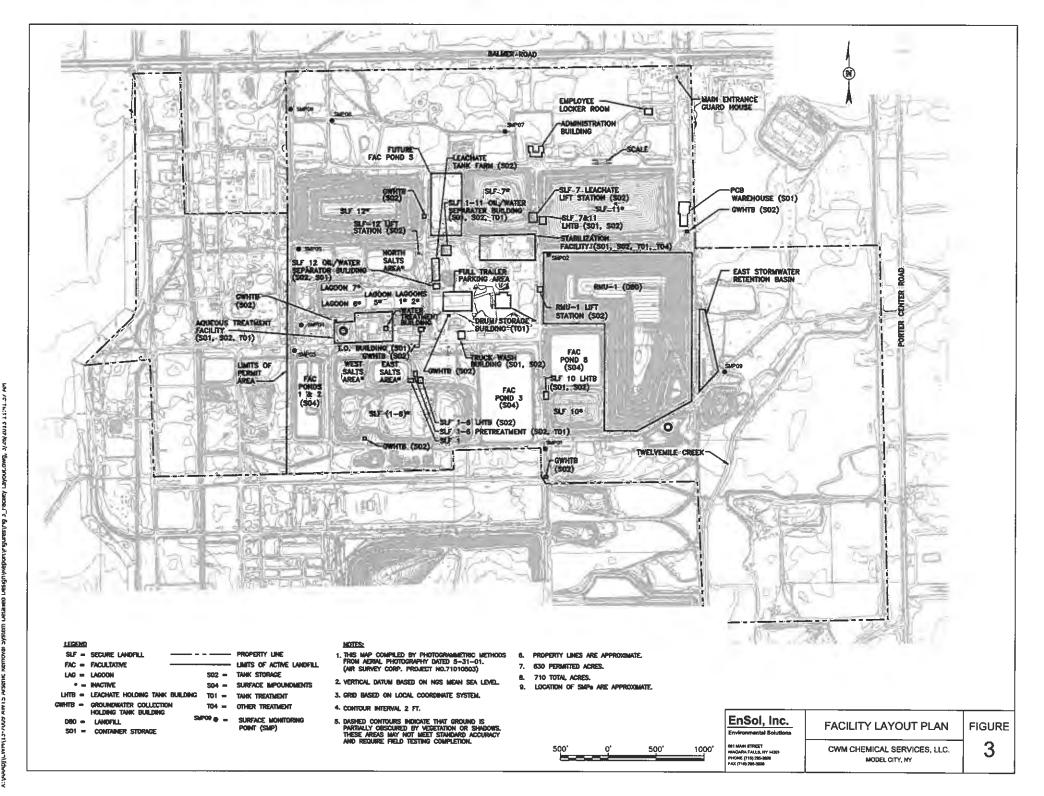
CWM Chemical Services, LLC Model City, New York Facility

CERTIFICATION

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

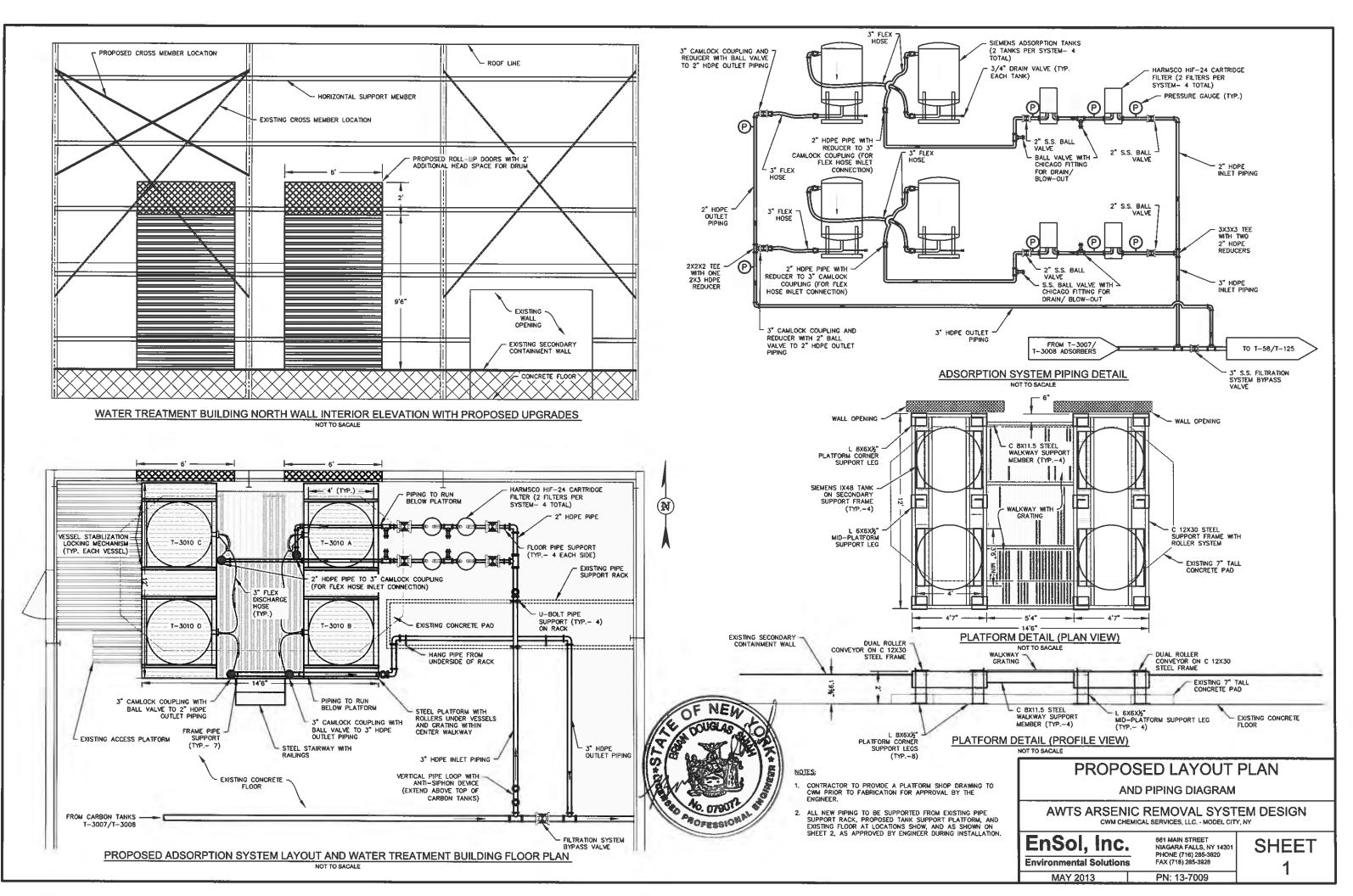


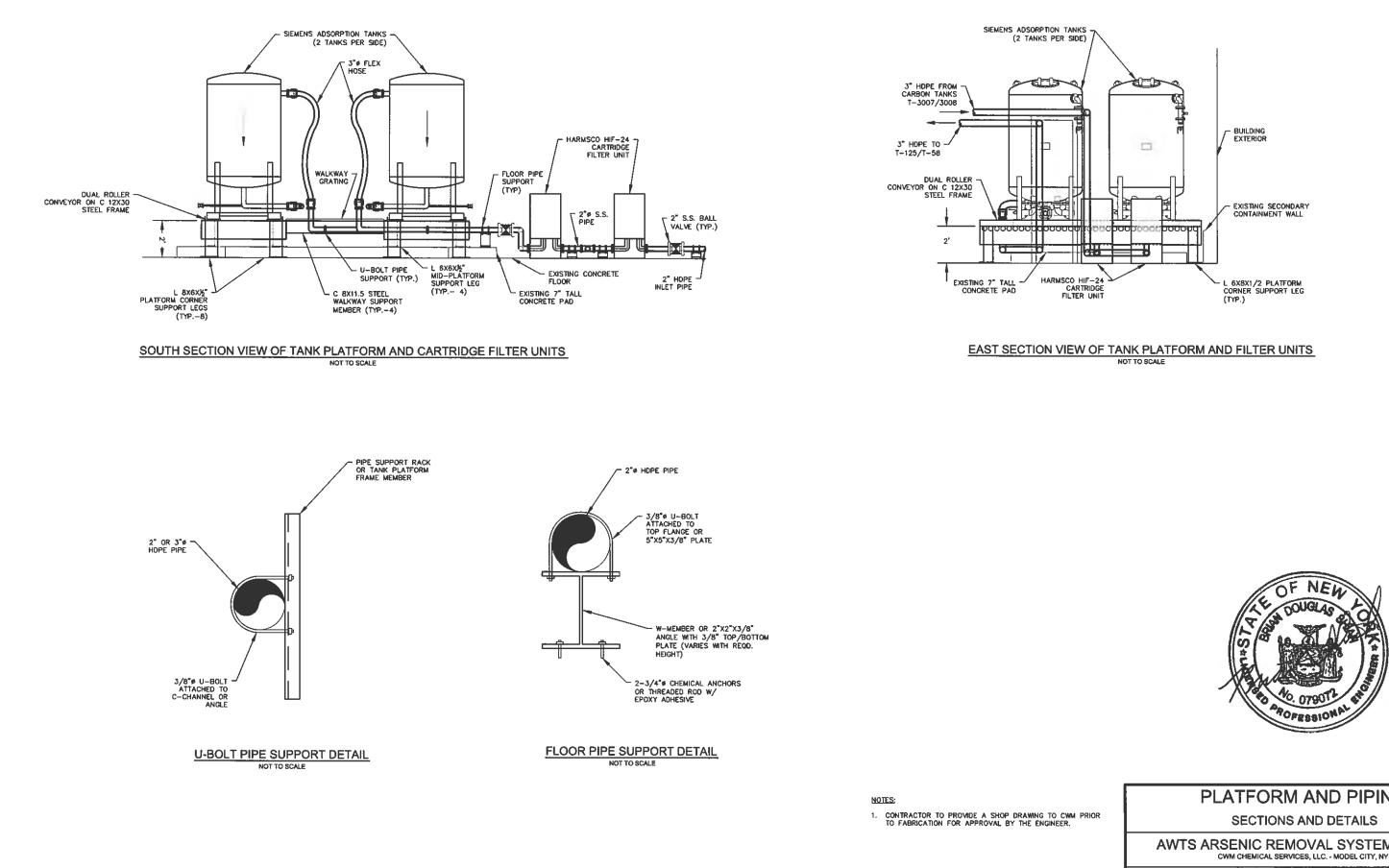

Brian D. Shiah, P.E. ENSOL, INC.


<u>5-24-13</u> Date

Figures

EnSol, Inc.

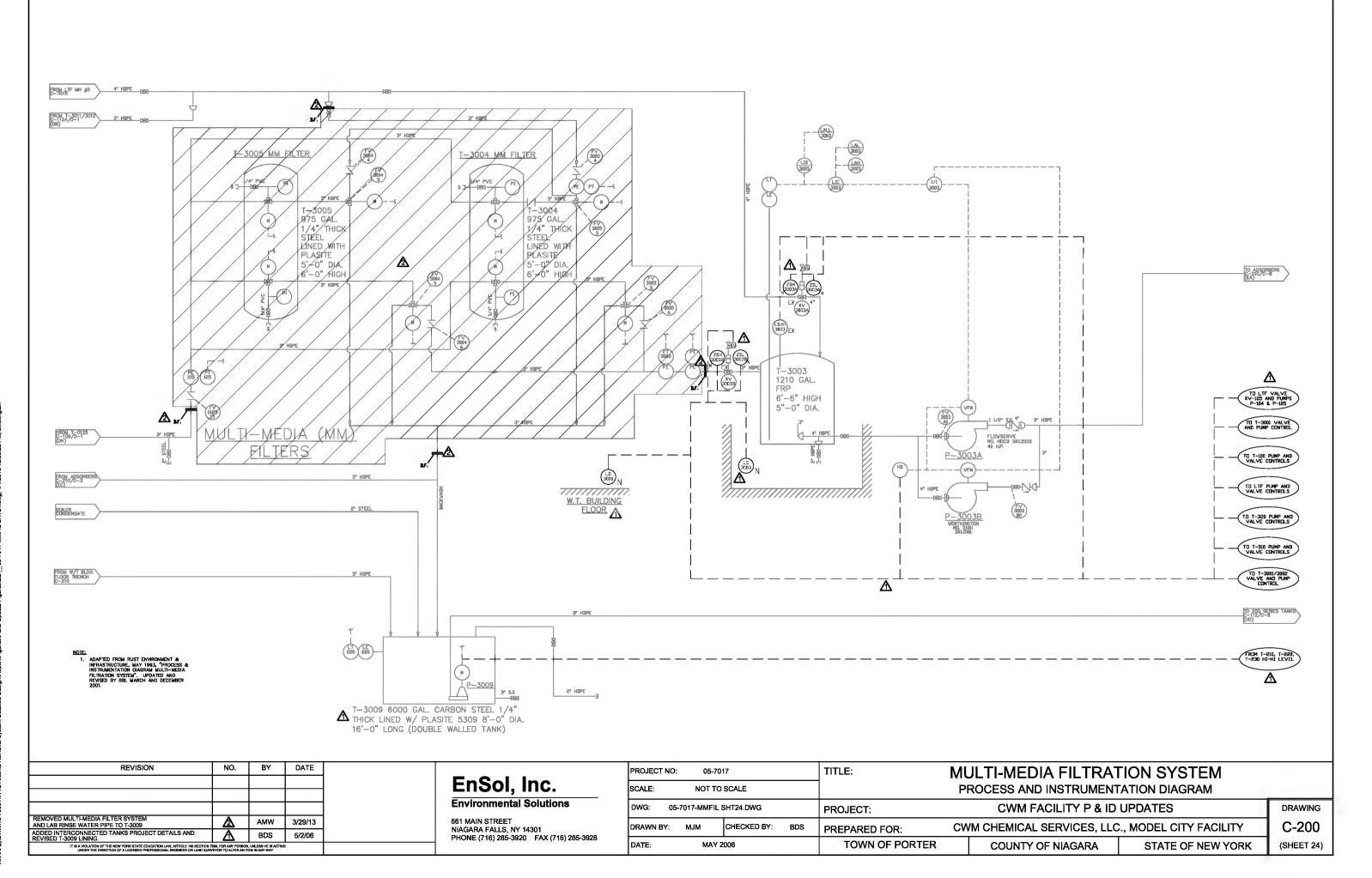


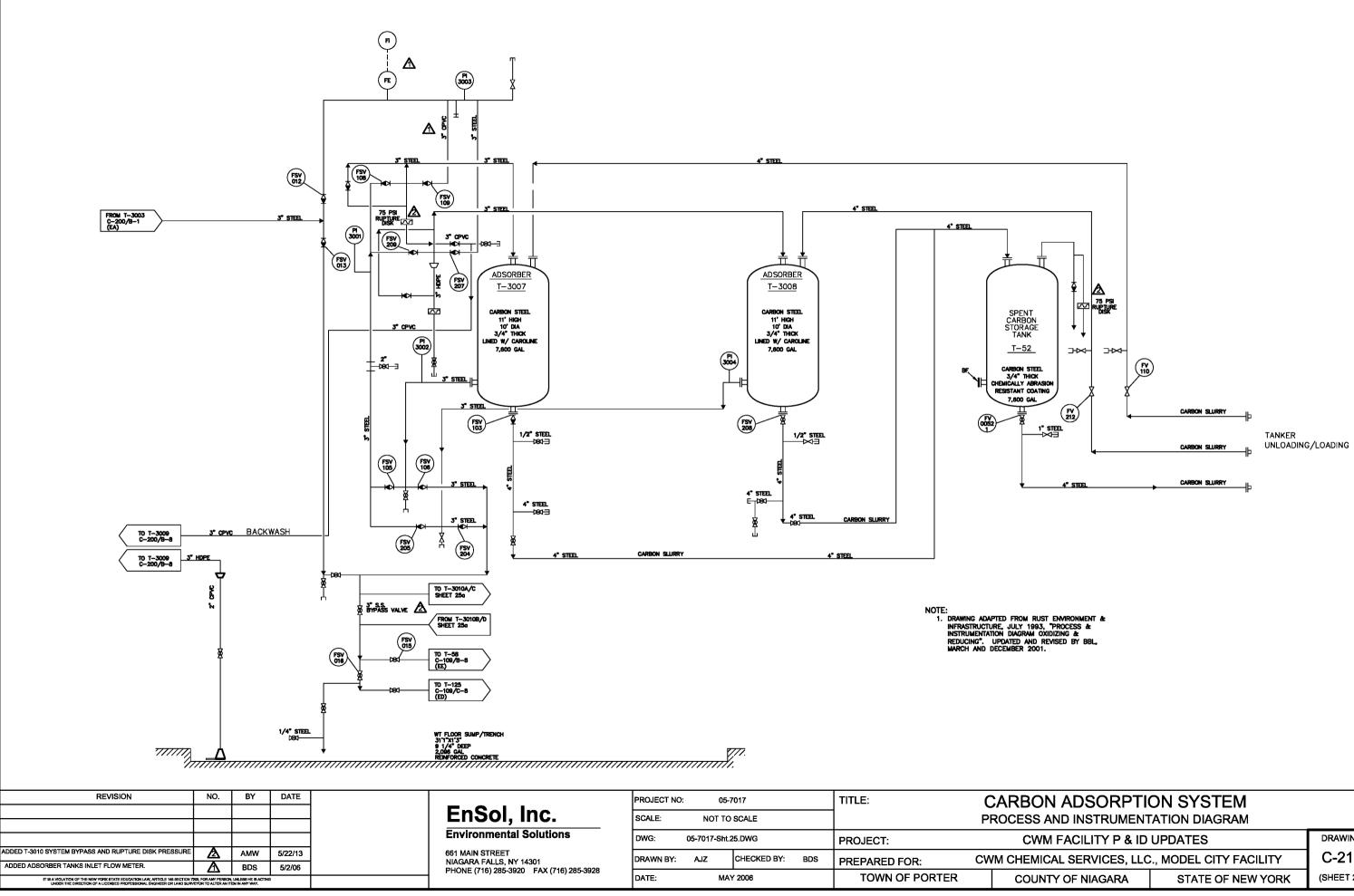

51U2 V02/0

Appendix A

Proposed Arsenic Removal System Drawings (EnSol)

EnSol, Inc.

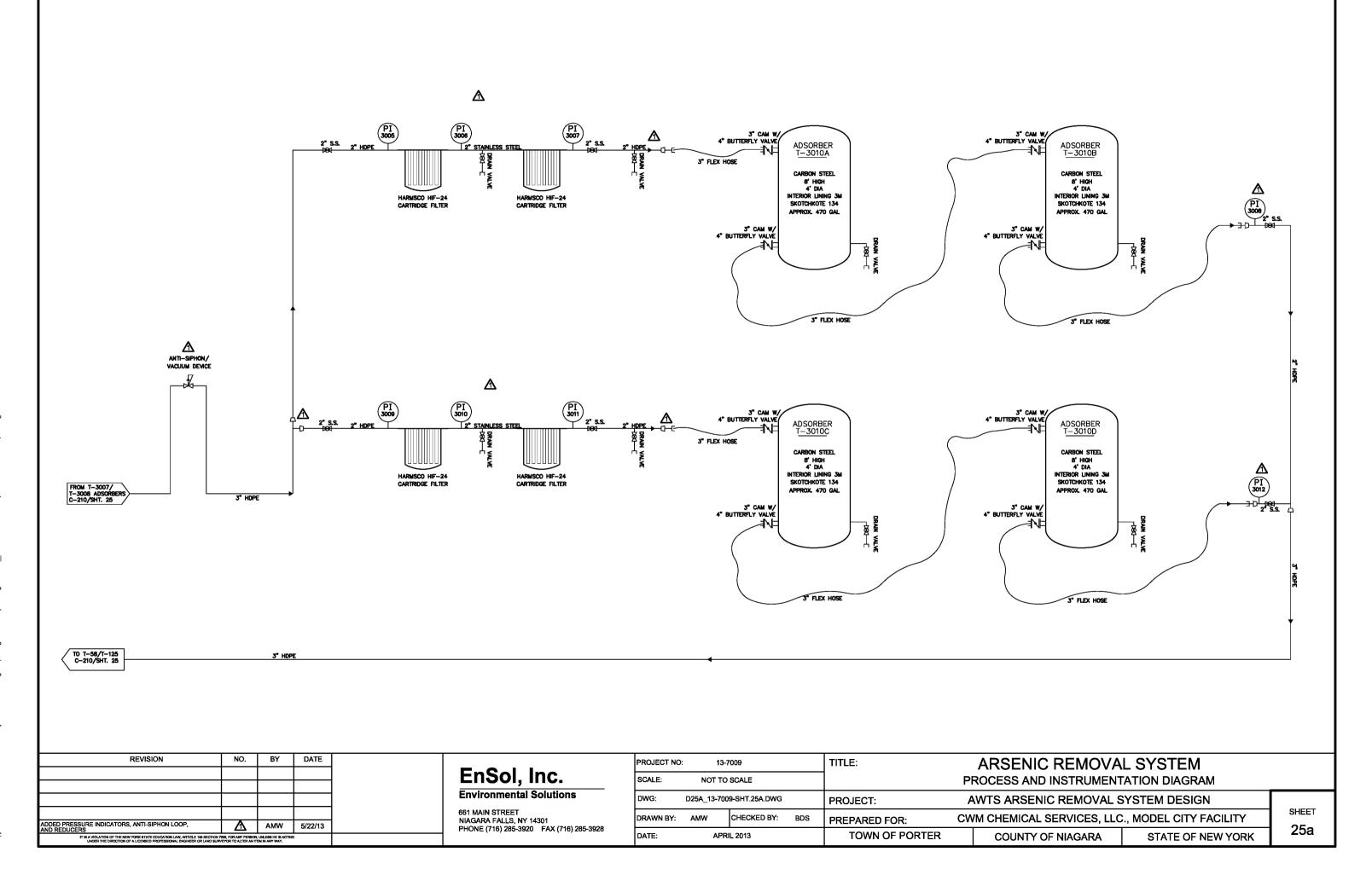



PLATFORM AND PIPING AWTS ARSENIC REMOVAL SYSTEM DESIGN CWM CHEMICAL SERVICES, LLC. - MODEL CITY, NY EnSol, Inc.

MAY 2013

661 MAIN STREET NIAGARA FALLS, NY 14301 PHONE (716) 285-3920 FAX (716) 285-3928 SHEET **Environmental Solutions** PN: 13-7009

2



CWM FACILITY P & ID UPDATES				
EMICAL SERVICES, LLC., MODEL CITY FACILITY				
OUNTY OF NIAGARA	STATE OF NEW YORK			

DRAWING	
C-210	

(SHEET 25)

Appendix B

Proposed Tank Information (Siemens)

EnSol, Inc.

Tank Product Data

(Siemens)

EnSol, Inc.

IX48HF

Description:

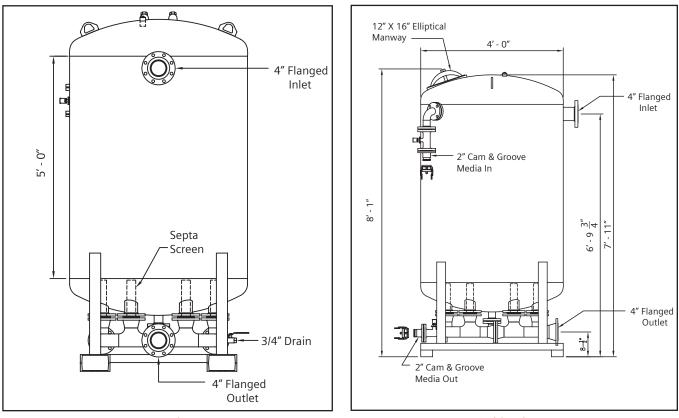
IX48HF vessels are designed to treat a wide range of contaminated process streams. The vessels are equipped with under drains capable of a nominal maximum flowrate of 200 gpm. Maximum flowrate is dependent on treatment media and application. Projects with very low discharge requirements will require reduced flow rates and longer media contact time for best performance and removal efficiency.

Standard Vessel Features

Diameter	48″
Side Shell Height	60″
Overall Height (Approx)	96″
Maximum Working Pressure100 psi @ 15	60 Deg F
Design Criteria	ASME
ASME Code StampedNo stamp on standard rental equ	uipment
Seismic rating	Zone 4
Media Volume (max)	60 cuft
Material Carb	on Steel
Manway type	Elliptical
One (1) upper head1	
SupportsTube	
LiftingLift	
Interior Surface PrepS	SPC-SP5
Interior Surface CoatingPlasite 4110 35 mil	DFT min
Exterior Surface PrimerRust Preventive Epoxy 3 mil	DFT min
Exterior Surface CoatingHigh Solids Urethane 3mil	DFT min
Standard Color	Blue

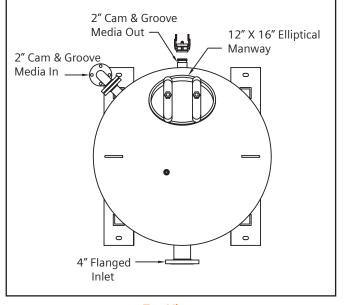
. . ..

Valve assembly, piping and miscellaneous

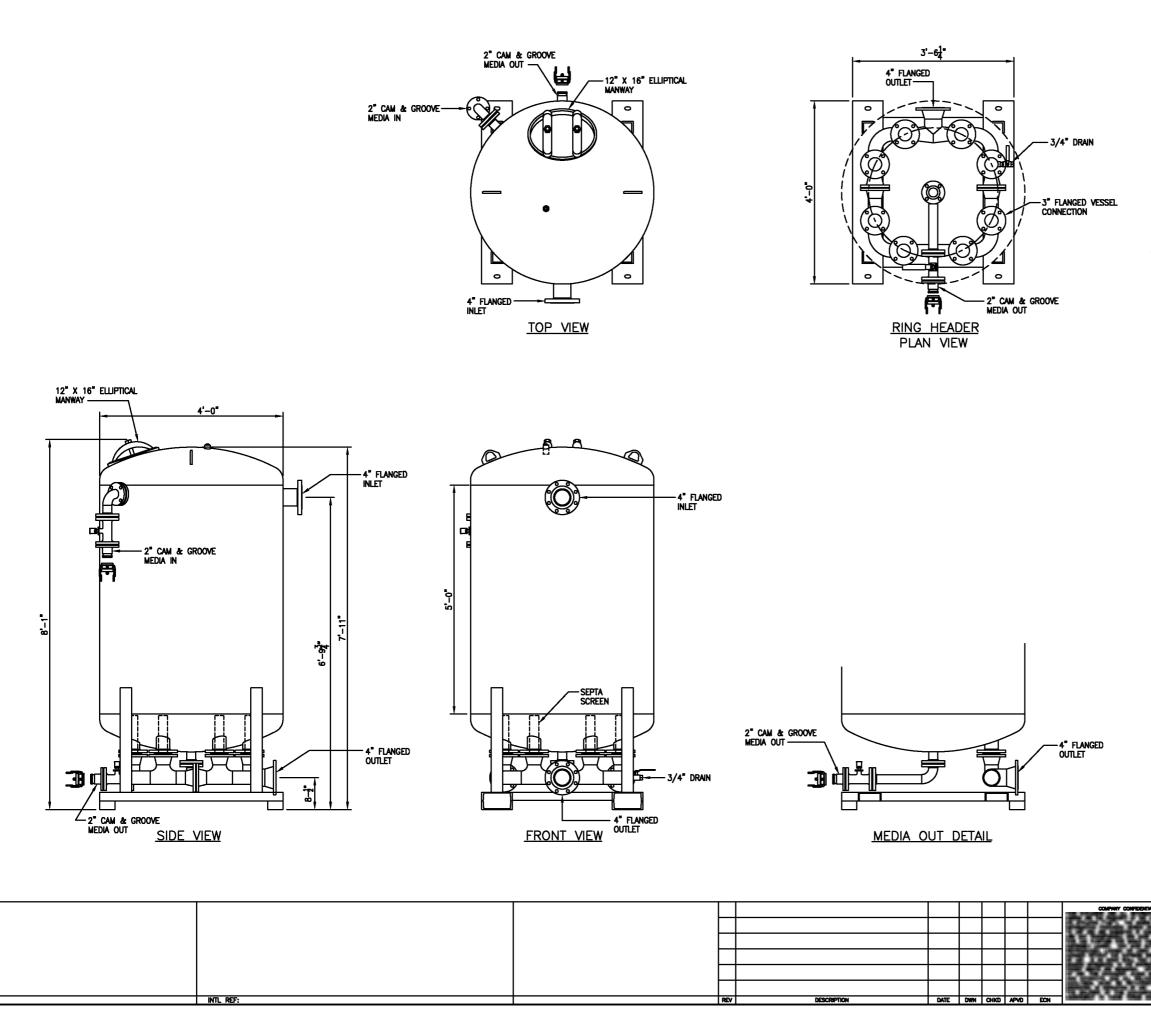

Piping:

Process4" butterfly valve with 3	" CAM inlet/outlet connections
Resin Transfer2" Flanged 316 Stair	nless Steel Full Port Ball Valve
Vent/Wash	2" Ball Valve
Sample Valve	
Pressure Gauge Assemblies	Two (2)

System weight


Vessel shipping weight1,	710 lb
Media weight3,	000 lb
Vessel operating weight8,	100 lb

SIEMENS


Front View

Siemens Water Technologies 2430 Rose Place Roseville, MN 55113 Tel: 651.638.1300 Fax: 651.633.6423 © 2008 Siemens Water Technologies Corp. ES-IX48HFdr-DS-0508 Subject to change without prior notice. The information provided in this literature contains merely general descriptions or characteristics of performance which in actual case of use do not always apply as described or which may change as a result of further development of the products. An obligation to provide the respective characteristics shall only exist if expressly agreed in the terms of the contract.

	2 1		
]	
	NOTES:		
1.	THIS DRAWING IS TO SHOW PIPING AND EQUIPMENT FOR CUSTOMER APPROVAL.		
2.	PROVIDE STAINLESS STEEL SCREENS AT SEPTA UNDER DRAIN.		
3.	VESSELS SHALL BE CARBON STEEL 100 PSI, NON-ASME CODE.		
4.	FINISH INTERIOR WITH SCOTCHKOTE 134, PREPARE AND APPLY STRICTLY IN ACCORDANCE WITH MANUFACTURERS RECOMMENDATIONS.	D	
5.	PIPING MATERIALS SHALL MEET: CS PIPE ASTM A-53 GRADE B (ERW); CS FITTINGS SA-234, ASME B16.9; SS THREADED FITTINGS ASTM A-351; SS PIPE ASTM A-312; SS BW FITTINGS ASTM A-403; MI THREADED FITTINGS ASME B-16.3.		
6.	FINISH EXTERIOR WITH POLYURETHANE 3-4 MILL DFT OVER EPOXY PRIMER 4-6 MIL DFT APPLIED PER MANUFACTURERS RECOMMENDATIONS.		
7.	System estimated weights: Shipping: 1,710 Lbs. With Resin Media: 5,460 Lbs. Operating: 8,065 Lbs.		
8.	GROUTING BY OTHERS IF REQUIRED.		
9.	DESIGNED FOR SEISMIC ZONE 4.		
10.	SYSTEM PROCESS CONNECTIONS: 4" 150# RF FLANGES, BOLTS STRADDLE CENTERLINE AS SHOWN.		
11.	MEDIA CAPACITY: 60 C.F.		
12.	MAX. PROCESS FLOW: 340 GPM		
13.	OPERATING TEMPERATURE 150° F MAX.	с	
		Η	
		в	
		Γ	
		Ц	
		A	
W.	CAR 0-20-06 CAR 0-20-06 SALES DRAWING		
÷		$\left \right $	
1.0	ENGINEER DATE		

	ENGINEER	DATE					
34	MANAGER	DATE	SIE	MENS	RED I	r Technologies BLUFF, CA 527-2664	
<u>e a a</u>	FILE:				(330)	JE/-2004	
			PROJECT	DRAWING		SHEET	REV
1000	SCALE:			IX48-ST-SALES		1 OF 1	

Design Specification / Application Memo

(Siemens)

EnSol, Inc.

Water Technologies Business Unit

Siemens Industry Inc., 2430 Rose Place, Roseville, MN 55113-2511

Ion Exchange Application Memo

To:	Jennifer Ellis
From:	Chris Riley
Date:	November 21, 2012
Client:	CWM Chemical Services Inc. (Model City, NY)
Subject:	Landfill Leachate Pond Water (WP# 12919743) Treatability Testing
cc:	Sam Mason, Jim Mathieu, Penny Skoby, Brandon Turk

The sample referenced above was received and analyzed and a full analytical report is given at the end of this memo. The sample had a pH of 7.77, a conductivity of $26,300\mu$ S/cm, a total suspended solids (TSS) of 136mg/L and contained 201μ g/L (ppb) of total arsenic (As) of which 160ppb was dissolved As. The treatment goal is to reduce the total As concentration to less than 20ppb.

A sample of the wastewater was passed through progressively-smaller filter pore-sizes to evaluate the prefiltration requirements; the data are given in the table below.

Filter Pore Size	25µm	10µm	5µm	1µm	0.45µm
Total As (ppb)	201	201	198	167	160

The sample, filtered to $1\mu m$, was processed through two columns of ASG media, in a series configuration, at an empty bed contact time (EBCT) of approximately 3.5 minutes. Column effluent samples were taken every at varying intervals through 560 bed volumes (BV) at which time the sample volume was exhausted. Analysis of the column effluent samples showed that every sample contained less than 1ppb of total As indicating excellent removal of As by the ASG media.

The system flowrate is expected to average 125 gallons per minute (gpm), 24 hours per day and 7 days per week. Based on this and the data above the following considerations and recommendations are given:

- 1. The recommended configuration is stepped filtration of 10-μm→1-μm followed by one 60-ft³ tank of CAR and two 60-ft³ tanks of ASG media in series (lead-lag).
- 2. The TSS of 136mg/L warrants the evaluation of a backwashable media filter, microfilter or other alternative to compare to bag and cartridge filters for TSS-removal.
- 3. Ultimate filtration to 1µm is required to remove particulate As (34ppb of which was removed with 1µm-filtration in this sample) that would otherwise pass through the media.
- 4. The CAR tank is required to remove TOC that may foul the ASG and reduce its effectiveness for As-removal.
- 5. Based on the flowrate, the As-concentration and the wastewater ionic background it is estimated that the lead ASG tank will last approximately 29 days.
- 6. The data indicate that there will be enough As on the spent ASG media to potentially fail TCLP. Based on experience with this media it will likely pass TCLP but this must be confirmed by the generator.

CWM Chemical Services Inc.

SIEMENS

ION EXCHANGE SYSTEM ENGINEERING REPORT

<u>Generator</u> :					
CWM Chemical	Services	Inc.	(Model	City,	NY)

Sample Description : Landfill Leachate Pond Water

Cations (ppm)	Total	Dissolved
Aluminum	BDL	BDL
Antimony	0.10	0.096
Barium	BDL	B DL
Beryllium	BDL	BDL
Cadmium	BDL	BDL
Calcium	200	187
Chromium(+3)	0.012	0.009
Copper	0.032	0.032
Iron	BDL	BDL
Lead	BDL	BDL
Magnesium	100	100
Manganese	BDL	BDL
Nickel	0.016	0.012
Potassium	562	550
Sodium	4,590	4,590
Thallium	BDL	BDL
Titanium	BDL	B DL
Zinc	0.022	0.022

Pa ram eter	Value	Units
pН	7.77	S.U. (by meter)
Conductivity	26,300	µS/cm
Color	Slight tan	
Odor	None	
Silica	22.5	mg/L SiO ₂
пос	25.5	mg/L
πss	136	mg/L
Total Mercury	BDL	µg/L
Dissolved Mercury	BDL	µg/L

<u>Sales Representative</u> : Jim Mathie u <u>Part Numbers:</u> WXCAR600 0CNWVD

	W	KASG600 0CNWVD
Anions (ppm)	Total	Dissolved
Bicarbonate	NA	NA
Carbonate	NA	NA
Ch loride	NA	7,635
Fluoride	NA	66.3
Hydroxide	NA	NA
Nitrate	NA	102
Phosphate	NA	2.10
Sulfate	NA	3,000
Arsenic	0.20	0.16
Chromium(+6)	BDL	BDL
Cyanide	BDL	BDL
Gold	NA	NA
Molybdenum	0.24	0.21
Palladium	NA	NA
Platinum	NA	NA
Selenium	BDL	BDL
Silver	BDL	BDL
Vanadium	0.10	0.09

Current Process Information	n
Flowrate (gpm)	125
Batch Size (gpd)	180,000
Operating Temp. (°F)	55
Hours/Day	24
Da ys/W eek	7
Process Water Source	Land fill Leachate
Water Reuse/Discharge	Discharge
Process Water Quality	Not Give n
Discharge Water Quality	As < 20ppb

Observations and Comments:

1) BDL = Below Detectable limits, NA = Not Analyzed

- Evaluation of particulate As showed the following: 25 μm filtration: 201ppb As, 10μm: 201ppb, 5μm: 198ppb,
 1μm: 167ppb, 0.45μm: 160ppb.
- 3) Bench-scale ASG treatment removed dissolved As to <1ppb through 560 bed volumes.
- 4) Spent ASG assumed D004 (arsenic) hazardous waste; TCLP recommended.

SIEMENS

Water Technologies Business Unit

ION EXCHANGE SYSTEM ENGINEERING REPORT

<u>GENERATOR</u> : CWM Chemical Services Inc. (Model City, NY)

Part Numbers: WXCAR6000CNWVD

Suggested Treatment System			
Pretreat	tment		
Maximum Temperature:	120 °F	. ·	
Optimum pH Range: Prefiltration Required:	5 to 8 S.U. 10 → 1 micron		

	lon Exchange	Treatme nt		· ·····
Туре	Size, cu. ft.	Number	Media	Tmt Code
Carbon	60	1	CAR	23
Cation	NA	NA	NA	NA
Arsenic	60	2	ASG	89
Mixed Bed	NA	NA	NA	NA

The suggested ion exchange system is based on the process information and sample analytical results shown on page 1 of this report.

<u>Post Treatme</u> Post-filtration Required:	nt		٦
Post-filtration Required:	NA	micron	

Estimated Canister Life Expectancy			
Туре	Gallons	Days	Changes/Yr.
Carbon	16,200,000	90	4
Cation	NA	NA	NA
Arsenic	5,231,250	29	13
Mixed Bed	NA	NA	NA

Carbon and resin service life Is estim ated based upon the sample and system shown above.

SIEMENS

Water Technologies Business Unit

ION EXCHANGE SYSTEM ENGINEERING REPORT

<u>ENERATOR</u> : WM Chemical Services Inc. (Model City, NY)	Part Numbers: WXCAR6000CN
Hazardous Waste Indicators	
ToxicUSEPA CodeCharacteristicWasteArsenicD004*ListedWasteNoneApplicableStateWasteNoneApplicable* ASG only	Highlighted toxics in the box at the left indicate that exhausted carbon and ion exchange resin from the treatment system is considered a RCRA hazardous waste for those components and is subject to all RCRA and DOT rules and regulations governing handling and transportation of hazardous wastes.

The absence of hazardous waste indicators is not to be interpreted to mean that Siemens Industry, Inc. implies or warrants that spent carbon and ion exchange resin resulting from waste water treatment is not a hazardous waste. The U.S. Environmental Protection Agency requires the generator of the waste to determine whether a waste is a hazardous waste according to regulations found in the Code of Federal Regulations, see 40 CFR 260. Siemens Industry, Inc. testing is for the purposes of treatability and compatibility with its treatment systems. Analytical methods are in ac cordance with Siemens Industry, Inc. standard operating procedures and may not strictly adhere to EPA or equivalent test methods.

November 21, 2012

Christopher T. Riley, P.E. Siemens Industry, Inc. Roseville, Minnesota

3M Scotchkote Product Data

(3M)

EnSol, Inc.

3M[™] Scotchkote[™] Fusion-Bonded Epoxy Coating 134

Product Description

3M[™] Scotchkote[™] Fusion-Bonded Epoxy Coating 134 is a one-part, heat curable, thermosetting epoxy coating designed for corrosion protection of metal. The epoxy is applied to preheated steel as a dry powder which melts and cures to a uniform coating thickness. This bonding process provides excellent adhesion and coverage on applications such as valves, pumps, pipe drains, hydrants and porous castings. Scotchkote 134 coating is resistant to wastewater, corrosive soils, hydrocarbons, harsh chemicals, and sea water. Powder properties allow easy manual or automatic application by electrostatic or air-spray equipment.

Product Features

- No primer required for most applications. .
- Particularly suitable for electrostatic or air-spray application on • preheated metal articles.
- Can be electrostatically applied to unheated metal parts and ٠ subsequently cured by baking.
- Long gel time allows application on large or complex articles, . minimizing fear of runs, sags, laminations, or unsightly overspray.
- Especially useful for coating the inside of pipe or other fabrications where a smooth, corrosion resistant coating is required.
- Can be machined by grinding or cutting to meet close tolerance requirements.
- Allows easy visual inspection of coated articles. .
- Can be painted with alkyd paint, acrylic lacquer, polyurethane, . or acrylic enamel for color coding.
- Will not sag, cold flow, or become soft in storage. Long term • storage under most climatic conditions.
- Lightweight for lower shipping costs. •
- Protects over wide temperature range. •
- Resists direct burial soil stress. •
- . High adhesion and toughness.
- Resists cavitation and cathodic disbondment. .
- Excellent chemical resistance.

- Suitable for elevated temperature service in presence of H₂S, • CO₂, CH₄, crude oil and brine when applied over phenolic primer such as Scotchkote 345.
- Long-term performance history in water, sewage, and other service environments.
- Scotchkote 134 coating has been tested and • certified to NSF /ANSI Standard 61, Drinking Water System Components. For NSF certified applications, max approved thickness is 60 mil (1.5 mm).

- Scotchkote 134 FBEC meets the requirements of AWWA Standard C213 and C550.
- Operating temperature dry is 235°F/ 113°C and wet is 175°F/79°C.

General Application Information

- 1. Remove oil, grease and loosely adhering deposits.
- 2. Abrasive blast clean the surface to NACE No. 2/SSPC-SP10 ISO 8501:1, Grade SA 2 1/2 near-white metal.
- 3. Apply mechanical masks or mask with materials such as Scotch Glass Cloth Tape 361 or Scotch Aluminum Foil Tape 425 as required.
- Preheat article to the desired application temperature per 4. cure specifications.
- Deposit Scotchkote 134 coating by powder spray to the 5. specified thickness.
- Cure according to cure specifications. 6.
- 7. Visually and electrically inspect for coating flaws after the coating has cooled.
- Repair all defects. 8.

Cure Specifications

Scotchkote 134 coating may be applied to metal articles which have been preheated to a temperature of 300°F/149°C to 475°F/246°C. After application, Scotchkote 134 coating must be cured according to the cure guide to achieve maximum performance properties.

If Scotchkote 134 coating is electrostatically applied to unheated parts, the cure time should be measured from the time the coated part reaches the cure temperature. After cure, the coating may be force cooled using air or water to facilitate inspection and handling.

3M[™] Scotchkote[™] Fusion-Bonded Epoxy Coating 134 Cure Guide

Temperature of Article at Time of Powder Application	Typical Gel Time	Cure Time
475°F/246°C	40 seconds	7 minutes
450°F/232°C	60 seconds	10 minutes
400°F/204°C	120 seconds	15 minutes
350°F/177°C	330 seconds	25 minutes
425°F/218°C	90 seconds	25 minutes for NSF/ANSI 61 approved applications

Typical Properties

Property	Value
Color	Forest Green
Specific Gravity - Powder (Air Pycnometer)	1.51
Coverage	127 ft²/lb/mil (0,66 m²/kg/mm)
Fluid Bed Density	33 lbs/ft³ (530 kg/m³)
Shelf Life at 80°F/27°C	18 months
Average Gel Time 400°F/204°C	120 seconds
Edge Coverage	12% to 18%
Minimum Explosive Concentration	0.03 oz/ft³ (30,6 g/m³)
Ignition Temperature	986°F/530°C
V.O.C. (As Supplied)	0 g/L, as calculated

Chemical/Pressure/Temperature Resistance

All tests performed on ScotchkoteTM Fusion Bonded Epoxy Coating 134 applied over a 1 mil/25,4 µm phenolic primer. Liquid phase for all test conditions: 33% kerosene, 33% toluene, 34% brine solution of 5% NaCl.

Test Conditions	Gas Phase	Results
Autoclave, 120°F/49°C 48 hours, 1500 psi/10.3 MPa	99.5% CO ₂ 0.5% H ₂ S	Excellent adhesion, no coating loss or blisters in aqueous, hydrocarbon, or gas phase
Autoclave, 150°F/66°C 48 hours, 2200 psi/15.2 MPa	80% CH ₄ 12% CO ₂ 8% H ₂ S	Excellent adhesion, no coating loss or blisters in aqueous, hydrocarbon, or gas phase
Autoclave, 200°F/93°C 24 hours, 3300 psi/22.8 MPa	86% CH ₄ 8% CO ₂ 6% H ₂ S	Excellent adhesion, no coating loss or blisters in aqueous, hydrocarbon, or gas phase
Autoclave, 300°F/149°C 24 hours, 3000 psi/20.7 MPa	90% CH 10% CO ₂ Trace H ₂ S	Excellent adhesion, no coating loss or blisters in aqueous, hydrocarbon, or gas phase

3M[™] Scotchkote Fusion-Bonded Epoxy Coating 134 Test Data

Property	Test Description	Results
Adhesion	Elcometer	> 3000 psi (glue failure)/ 210 kg/cm ²
Adhesion to Steel (Shear)	ASTM D 1002 10 mil/254 μm glue line	4300 psi/302 kg/cm ² cohesive failure
Impact	Gardner 5/8 in/1,6 cm diameter tup 1/8" x 3" x 3" (0,32 cm x 7,6 cm x 7,6 cm) steel panel	160 in-lbs 1,8 kg∙m
Hardness	Barcol ASTM D 2583	23
Abrasion Resistance	ASTM D 4060 CS-17 1000g weight / 5000 cycles	0,07 g loss
Thermal Shock	310°F/154°C to -320°F/-195°C coated pipe	10 cycles, no effect
Penetration	ASTM G 17 -40°F/-40°C to 240°F/116°C	0
Tensile Strength	ASTM D 2370	7300 psi/512 kg/cm ²
Elongation	ASTM D 2370	4.2%
Compressive Strength	ASTM D 695	12800 psi/900 kg/cm ²
Coefficient of Friction	API RP5L2-1968, App 8	23°
Electric Strength	ASTM D 149	1000 volts/mil (39,4 kv/mm)
Hot Water Resistance	160°F/71°C immersion / 120 days	Good adhesion, no blistering
Electrical Resistivity	ASTM D 257	1.2 x 10 ¹⁵ ohm∙cm
Thermal Conductivity	MIL-I-16923E	7 x 10 ⁻⁴ cal/sec/cm ² /°C/cm
Water Absorption	3M 10 mil/254 µm free film 30 days	6,5 g/m²
Fungus Resistance	MIL-STD 810-B Method 508	Funginert
Salt Fog	MIL-E-5272C	No effect
Weatherometer	ASTM G 23 5000 hours	Surface chalk
Soil Stress - Burial	Bureau of Reclamation 25 cycles	No effect
Salt Crock	30 day, 5 volt, 5% NaCl sand crock 230°F/110°C	Disbondment diameter 24 mm average
Bendability	3/8"/9,5 mm coupon mandrel bend at 73°F/23°C	30 pipe diameters 1.9° / diameter length

Handling and Safety Precautions

Read all Health Hazard, Precautionary and First Aid, Material Safety Data Sheet, and/or product label prior to handling or use.

Important Notice

All statements, technical information, and recommendations related to 3M's products are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using this product, you must evaluate it and determine if it is suitable for your intended application. You assume all risks and liability associated with such use. Any statements related to the product which are not contained in 3M's current publications, or any contrary statements contained on your purchase order shall have no force or effect unless expressly agreed upon, in writing, by an authorized officer of 3M.

3M

Infrastructure Protection Division

6801 River Place Blvd. Austin, TX 78726-9000 www.3M.com/corrosion

Please recycle. Printed in USA. © 3M 2012. All rights reserved. 80-6111-8506-9 Rev. A

Ordering Information/Customer Service

For ordering technical or product information, or a copy of the Material Safety Data Sheet, call: Phone: 800/722-6721 Fax: 877/601-1305

Warranty; Limited Remedy; Limited Liability.

Because conditions of product use are outside of our control and vary widely, the following is made in lieu of all express or implied warranties: this product will conform to 3M's published product specifications and be free from defects in material and manufacture on the date of your purchase. **3M MAKES NO OTHER WARRANTIES INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.** If this product is defective upon your receipt, your exclusive remedy shall be, at 3M's option, to replace the 3M product or refund the purchase price of the 3M product. **Except where prohibited by law, 3M will not be liable for any indirect, special, incidental or consequential loss or damage arising from this 3M product, regardless of the legal theory asserted.**

3M[™] Scotchkote[™] Fusion Bonded Epoxy Coating 134

Information, Properties and Test Result

Table of Contents

				PAGE
1	-	Introduct	tion	1
2	-	Descripti	ion	1
3	-	History.		1
4	-	Manufac	turing	1
5	-	Process a	and Quality Control	2
6	-	Packagin	ng, Storage and Shipping	2
7	-	Propertie	es of the Powder	3
8	-	Propertie	es of the Coating	3
		8.1	Hardness	3
		8.2	Tensile Strength	3
		8.3	Elongation	5
		8.4	Impact Resistance	5
		8.5	Adhesive Strength	5
		8.6	Penetration Resistance	5
		8.7	Bendability	5
		8.8	Thermal – Mechanical	5
		8.9	Volume Resistivity	6
		8.10	Electric Strength	6
		8.11	Weathering Resistance	6
		8.12	Cathodic Disbondment Resistance	
		8.13	Moisture Resistance	6
		8.14	Autoclave Testing	7
		8.15	Taste and Odor Production Potential	
		8.16	VOC Production Potential.	10

1 - Introduction

The cost of the coating is only a small fraction of the cost of a tubing string, yet the coating is the major means of assuring extended operation by preventing deterioration and service disruption due to corrosion loss. 3M[™] Scotchkote[™] Fusion Bonded Epoxy Coatings represent a significant improvement in internal coating technology for the oil, gas and water industries.

2 - Description

Scotchkote fusion bonded epoxy coating 134 is a one - part, heat curable, thermosetting epoxy coating designed for corrosion protection of metal. The epoxy is applied to preheated steel as a dry powder which melts and cures to a uniform, coating thickness. This bonding process provides excellent adhesion and coverage on applications such as valves, pumps, pipe drains, hydrants and porous castings. Scotchkote 134 FBEC assistant to waste water, corrosive soils, hydrocarbons, harsh chemicals and sea water. Powder properties allow easy manual or automatic application by electrostatic or air - spray equipment. When applied over a suitable primer, it is appropriate for operation at moderate temperatures and pressures in the presence of H₂O, CO₂ and CH₄, crude oil and brine.

Scotchkote 134 FBEC consists of a blend of epoxy resin and curing agent additives, pigments, catalysts, leveling and flow control agents. Possible combinations of raw materials are extensive; hence careful selection has been made by 3M so that the resultant coating will serve in the environment encountered. Scotchkote 134 FBEC has been designed to allow trouble - free, consistent production application at the coating plant. Selection of the chemical elements for the fusion bonded epoxy coating is very important. The molecular structure of the epoxy resin, the type and reactivity of the hardener, catalyst and additives all play an important role in the ultimate coatability and performance of the fusion bonded epoxy.

3M Company maintains a divisional laboratory group dedicated to the research and development of fusion bonded epoxy coating. The group's personnel have many years of experience in the formulation and evaluation of epoxy coatings. This effort is assisted by 3M staff laboratories with broad - based expertise in scientific disciplines applicable to coating and surface technology. In addition, 3M synthesizes and manufactures specialized epoxy resins, hardeners, catalysts and additives used to formulate Scotchkote FBE coatings to meet unusual performance and operational requirements.

3 - History

Scotchkote 134 FBEC has been used extensively in the oil and gas industry to coat the exterior and interior of line pipe. Over 40,000 miles (65,000 km) of Scotchkote coated pipe have been installed thoughout the world. This technology has been expanded through 3M research to develop chemically stable, high temperature/pressure resistant internal linings for use in drill pipe, primary and secondary recovery tubing, and pipe for oil, gas and water transportation. Coating properties have been proven by rigorous 3M autoclave testing, and the results verified by independent laboratory and customer investigation.

4 - Manufacturing

All Scotchkote fusion bonded epoxy coating powders are made using the fusion blend process developed by 3M. Ingredients are first pulverized, properly proportioned and homogeneously dry mixed. Next, the blended materials are carefully and thoroughly mixed in the molten state using a continuous melt mixer. The fused blend is cooled and then pulverized into the final powered form. Particle size distribution is carefully monitored to meet optimum application standards required by the various coating plants. The fusion blend process assures that each particle of the coating powder contains all active ingredients, thus eliminating changes in reactivity due to separation or stratification of ingredients during transportation and application.

5 - Process and Quality Control

Process control is essential to the quality of the finished product. 3M maintains rigid incoming quality inspection of raw materials, precise measurement and metering of critical components, controlled environmental conditions and processing temperatures for the chemical constituents, and a discerning outgoing inspection of the finished coating powder to assure uniformity of product application and performance. Among the quality control tests performed on 3M powder coatings are: gel time, cure, flow, fluidization, particle distribution, adhesion, impact, appearance and moisture content.

6 - Packaging, Storage and Shipping

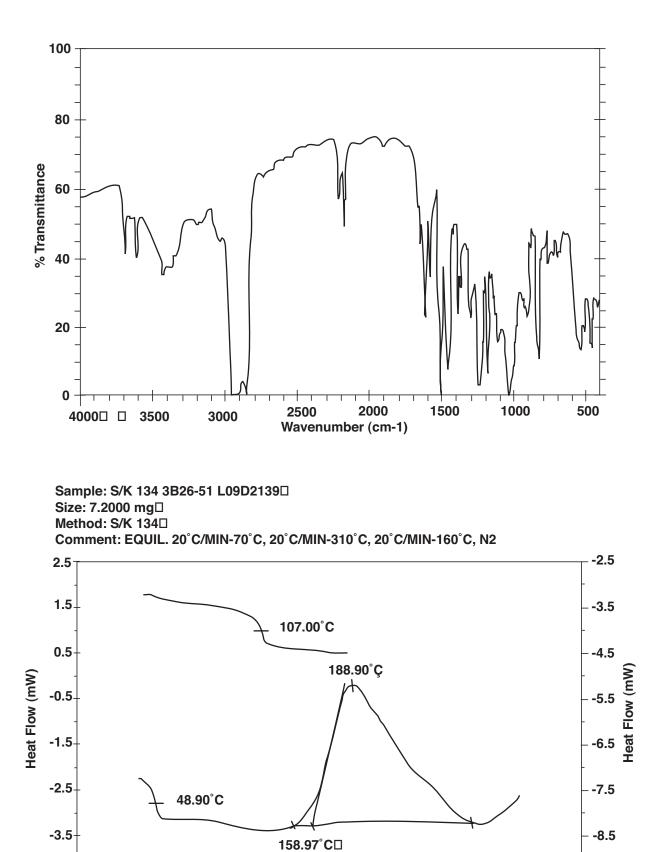
Scotchkote 134 FBEC is packaged in a heavy duty, polyethylene bag in a stout, easy open, fiberboard carton which is clearly labeled with product number and manufacturing identification. This package protects the coating powder from humidity and contamination during shipment and storage. The net weight is 65 U.S. lbs. (29.5 kilos). The sealed cartons are palletized on wooden pallets with net weight of 1170 lbs. (530 kilos) and securely banded for shipment. The packaged product must be shipped and stored at temperatures not exceeding $80^{\circ}F$ (27°C).

7 - Properties of the Powder

3M[™] Scotchkote[™] Fusion Bonded Epoxy Coating 134

Property	Test Method	Value
Classification	ASTM D 1763	Type 1, Grade 2
Color	_	Forest Green
Gloss	Gardener 60° gloss meter, 350° (177°C) application temperature	34 average
Specific Gravity (Powder)	Air Pycnometer	1.51
Coverage	Calculated from air pycnometer specific gravity of powder	125 ft²/lb/mil 0.66 m²/kg/mm
Gel time at 400°F (204°C)	Hot plate	120 sec average
Glass Plate Pill Flow	3M glass slide 300°F (149°C) 12 mm diameter, 0,85 gram pill, 1 min horizontal, 15 min. at 63° angle	75 - 100 mm average flow
Moisture Content at time of manufacture	Carl Fischer	<0.3%
Particle size	Alpine sieve analysis	>177 µm 1% <44 µm 45 - 55%
Heat of Polymerization	Differential Scanning Calorimeter	70 J/gm typical
Glass Transition Temperature of Cured Coating	Differential Scanning Calorimeter (midpoint)	107°C (225°F) typical

8 - Properties of the Coating


All tests have been conducted at 73°F (23°C) on unprimed surfaces unless otherwise noted.

8.1 Hardness

Property	Test Method	Test Results
Hardness	Barcol, ASTM D 2583	23
	ASTM D 785	89
	Rockwell M	55

8.2 Tensile Strength

Property	Test Method	Test Results
Tensile Strength	ASTM D 2370	7300 psi
	free film	513 kg/cm2

70.93 J/g

Temperature (°C)

-4.5

-9.5

General V4.0D DuPont 2100

8.3 Elongation

Property	Test Method	Test Results
Elongation	ASTM D 2370 free film	4.2%

8.4 Impact Resistance

Property	Test Method	Test Results
Impact	Gardener, 5/8 in. (16 mm) diameter tup, 0,125 in (3.2 mm) panel	160 in - Ibs. 18,1 J

8.5 Adhesive Strength

Property	Test Method	Test Results
Shear	ASTM D 1002, 10 mil (254 μm glue line)	4300 psi 302 kg/cm ²

8.6 Penetration Resistance

Property	Test Method	Test Results
Penetration	ASTM G 17 - 40° to 240°F (- 40° to 116°C)	0
Compression strength	ASTM D 695	12800 psi 900 kg/cm²

8.7 Bendability

Property	Test Method	Test Results
Bend	3/8 in. (9,5 mm) primed and unprimed coupon mandrel bend	Pipe Dia.=30 Elongation (%)=1.7 Angle of Deflection (°/PDL) =1.9

8.8 Thermal - Mechanical

Property	Test Method	Test Results
Thermal Conductivity	MIL - I - 16923E	7x10 - 4 cal/sec/cm2/C°/cm
Thermal Shock	3M, 10 cycles - 100° to 300°F (- 70° to 150°C)	Unaffected by thermal shock

8.9 Volume Resistivity

Property	Test Method	Test Results
Volume Resistivity	ASTM D 257	1.2 x 10 ¹⁵ ohm•cm

8.10 Electric Strength

Property	Test Method	Test Results
Electric Strength	ASTM D 149	1000 V/mil 40 kV/mm

8.11 Weathering Resistance

Property	Test Method	Test Results
Weathering Resistance	Weatherometer ASTM G 53, 5000 hrs.	Surface chalk
	Condensation test temp. 50°C Cycle time 4 hours UV/ Four hours condensation	No blistering
Salt Fog	MIL - E - 5272C	No blistering No discoloration No loss of adhesion

8.12 Cathodic Disbondment Resistance

Property	Test Method	Test Results
Cathodic Disbondment30 day, 5 voltResistance5% NaCl, sand crock230°F (110°C)	Disbondment radius 24 mmr average	
	4 day 3 volt 3% NaCl 71°C (160°F)	5 mmr average

8.13 Moisture Resistance

Property	Test Method	Test Results
Water Immersion	ASTM D 570 free film, 30 day 10 mil (250 mm)	6,5 g/m 2 weight gain

8.9 Volume Resistivity

Property	Test Method	Test Results
Volume Resistivity	ASTM D 257	1.2 x 10 ¹⁵ ohm•cm

8.10 Electric Strength

Property	Test Method	Test Results
Electric Strength	ASTM D 149	1000 V/mil 40 kV/mm

8.11 Weathering Resistance

Property	Test Method	Test Results
Weathering Resistance	Weatherometer ASTM G 53, 5000 hrs.	Surface chalk
	Condensation test temp. 50°C Cycle time 4 hours UV/ Four hours condensation	No blistering
Salt Fog	MIL - E - 5272C	No blistering No discoloration No loss of adhesion

8.12 Cathodic Disbondment Resistance

Property	Test Method	Test Results
Cathodic Disbondment Resistance	30 day, 5 volt 5% NaCl, sand crock 230°F (110°C)	Disbondment radius 24 mmr average
	4 day 3 volt 3% NaCl 71°C (160°F)	5 mmr average

8.13 Moisture Resistance

Property	Test Method	Test Results
Water Immersion	ASTM D 570 free film, 30 day 10 mil (250 mm)	6,5 g/m 2 weight gain

Notes on Autoclave Testing

Notes: All tests conducted on coatings applied over 1 mil (25.4 µm) liquid phenol primer.

'Pass' means excellent adhesion, no blisters, no swelling in a phases, i.e.: aqueous, hydrocarbon or gas phase. 'Fail' means loss of adhesion, or blisters, or excessive swelling in any phases.

8.14 Autoclave Testing

Property	Test Method	Test Results
Pressure / Temperature Duration	1500 psi (10.3 MPa) 120°F (49°C) 24 hours	Excellent adhesion, no coating loss or blisters in aqueous, hydrocarbon or gas phase
Gas Phase	99.5% CO ₂ 0.5% H ₂ S	
Liquid Phase	33.0% Kerosene 33.0% Toluene 34.0% Brine Solution (5% NaCl)	
Discharge	Discharge Rapid at Test Temperature	

Autoclave Test #1

Property	Test Method	Test Results
Pressure/Temperature Duration	5 psi (0.03 MPa) 68°F (20°C) 72 hours	Pass
Gas Phase	100% H ₂ S	
Liquid Phase	Turks Island Sea Water	
Discharge	Release pressure over 5 min. @ test temperature	

Autoclave Test #2

Property	Test Method	Test Results
Pressure/Temperature Duration	60 psi (0.4 MPa) 150°F (66°C) 24 hours	Pass
Gas Phase	100% CO ₂	
Liquid Phase	5% NaCl Brine	
Discharge	Release pressure over 1/2 hor period @ test temperature	ur

Autoclave Test #3

Property	Test Method	Test Results
Pressure/Temperature	450 psi (3.1 MPa)	Pass
Duration	185°F (85°C) 24 hours	
Gas Phase	15% CO₂ 84.9% N₂ 0.1% H₂S 71°C (160°F)	
Liquid Phase	Deionized Water Crude Oil	
Discharge	Release pressure over 5 m @ test temperature	in.

Autoclave Test #4

Property	Test Method	Test Results
Pressure/Temperature	2000 psi (13.8 MPa)	Pass
Duration	200°F (93°C) 16 hours	
Gas Phase	5% CO₂ 94.5% Methane 0.5% H₂S	
Liquid Phase	5% NaCl Brine	
Discharge	Cool for 4 hours then rapidly	release pressure

Autoclave Test #5

Property	Test Method	Test Results
Pressure/Temperature	3300 psi (22.8 MPa)	Pass
Duration	200°F (93°C) 24 hours	
Gas Phase	34%Brine(5%NaCl)33%Kerosene33%Toluene	
Liquid Phase	8% CO ₂ 86% Methane 6% H ₂ S	
Discharge	Cool overnight to ambient ro over 1/2 hr. period	elease pressure

Autoclave Test #6

Property	Test Method	Test Results
Pressure/Temperature	2500 psi (17.2 MPa)	Pass
Duration	200°F (93°C) 24 hours	
Gas Phase	10% CO ₂ 90% N ₂	
Liquid Phase	Wasia Water	
Discharge	Release pressure over 1/2 @ test temperature	hr. period

8

Autoclave Test #7

Property	Test Method	Test Results	
Pressure/Temperature	1500 psi (10.3 MPa)	Pass	
Duration	120°F (49°C) 48 hours		
Gas Phase	95.5% CO₂ 0.5% H₂S		
Liquid Phase	34% Brine (5% NaCl) 33% Kerosene 33% Toluene		

Discharge

Instant pressure release @ test temperature

Autoclave Test #8

Property	Test Method	Test Results
Pressure/Temperature	35 psi (0.2 MPa)	Pass
Duration	200°F (93°C) 24 hours	
Gas Phase	Air	
Liquid Phase	15% HCI	
Discharge	Force cool to ambient rele pressure over 5 min. perio	

Autoclave Test #9

Property	Test Method	Test Results	
Pressure/Temperature	2200 psi (15.2 MPa)	Pass	
Duration	150°F (66°C) 24 hours		
Gas Phase	12% CO ₂ 80% Methane 8% H ₂ S		
Liquid Phase	34% Brine (5% NaCl) 33% Kerosene 33% Toluene		
Discharge	Release pressure over 1/2 hr. period @ test temperature		

Autoclave Test #10

Property	Test Method	Test Results
Pressure/Temperature	ressure/Temperature 4000 psi (27.5 MPa)	
Duration	225°F (107°C) 24 hours	
Gas Phase	100% CO ₂	
Liquid Phase	5% NaCl Solution saturated with H ₂ S	
Discharge	Cool to ambient release pressure over 45 sec.	

Autoclave Test #11

Property	Test Method	Test Results	
Pressure/Temperature	150 psi (1.0 MPa)	Pass	
Duration	250°F (121°C) 24 hours		
Gas Phase	25% C0 ₂ 55% H ₂ S 10% Methane 10% N ₂		
Liquid Phase	28% NaCl Solution		
Discharge	Cool for 2 hours release pr	essure over 15 min.	

Autoclave Test #12

Property	Test Method	Test Results
Pressure/Temperature	3000 psi (20.7 MPa)	Slight swell
Duration	300°F (149°C) 24 hours	
Gas Phase	$\begin{array}{rrr} 10\% & CO_{_2} \\ 90\% & Methane \\ Trace & H_{_2}S \end{array}$	
Liquid Phase	34%Brine(5%NaCl)33%Kerosene33%Toluene	
Discharge	Cool to 104°F (40°C) rel	ease pressure over 1/2 hr.

8.15 Taste and Odor Production Potential

Property	Test Method	Test Results
		TON
Threshold Odor		5 days 10 days
Number (TON)	20°C	1 1
Ton of 10 or less s passing)	60°C	1 1
- Fareer (3)		Results: Pass
		Type Odor: None

8.16 VOC Production Potential

Property	Test Method	Test Results
VOC Analysis	5 day soak cycle	Pass. Appears clean and free of significant VOC contamination

3M is a trademark of 3M Company.

Important Notice

All statements, technical information and recommendations related to 3M Products are based on information believed to be reliable, but the accuracy or completeness is not guaranteed. Before using the 3M Product, you must evaluate it and determine if it is suitable for your intended application. Because conditions of Product use are outside of our control and vary widely you assume all risks and liability associated with such use. Any Product-related statements not contained in current 3M publications, or any contrary statements contained in your purchase order, shall have no force or effect unless expressly agreed to in writing by an authorized officer of 3M.

Warranty; Limited Remedy; Limited Liability.

3M warrants that Product will conform to 3M published specifications upon shipment. If Product is proven not to have met the specifications your exclusive

Infrastructure Protection Division 6801 River Place Blvd. Austin, TX 78726-9000 http://www.3M.com/corrosion remedy and 3M's sole obligation will be, at 3M's option, to replace the Product or to refund the purchase price of the Product. EXCEPT WHERE PROHIBITED BY LAW, THIS WARRANTY IS MADE IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR THOSE ARISING FROM A COURSE OF DEALING, CUSTOM OR USAGE OF TRADE. Buyer is an expert in its field and is responsible for determining if Products are suitable for a particular purpose or application. 3M has no obligation under this warranty with respect to any Product that has failed due to inadequate or improper storage, handling, surface preparation, application, or maintenance; failure to follow Product instructions; or alteration or damage to the Product caused by accident, neglect, or misuse. EXCEPT WHERE PROHIBITED BY LAW, IN NO EVENT SHALL 3M BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL LOSS OR DAMAGES (INCLUDING LOST PROFITS) ARISING FROM THIS PRODUCT, REGARDLESS OF THE LEGAL THEORY ASSERTED.

Please recycle. Printed in USA. © 3M 2012. All rights reserved. 80-6111-8429-4-C

Appendix C

Proposed Filters, Piping, And Equipment Information

EnSol, Inc.

HARMSCO[®] UP-FLOW FILTERS

Up-Flow -A design so superior it's patented!

Harmsco[®] Up-Flow Cartridge Filters outperform conventional filter designs!

Venting valves are not necessary and filtration efficiency is improved.

Fail safe wing nuts Wing nuts are used so no tools are required. Finger tight is generally sufficient. Hex nuts are recommended with 75 inch lbs. of torque above 100 psi.

Features:

- Rugged 304 stainless steel construction (316 optional)
- Electro-polished for increased resistance to corrosion
- Extensive choice of carbridge micron ratings and media including carbon
- . Flow rates to 800 GPM
- · Pressure rated to 150 psi and hydrostatically tested
- · Individual studs for safe, secure lid closure
- · Easy cartridge installation, removal and service
- Optional high temperature ratings
- Chemical resistant coating optional

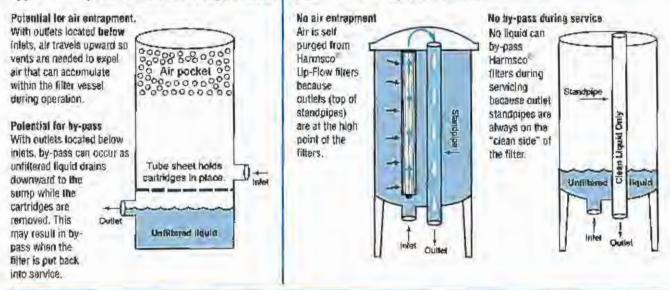
Specifications:

Filter vessel & metal components Holding rods, lifting rods & standpipes Pipe caps Rim gaskets O-Rings Bottom seals Wing nuts Temperature 304 stainless steel, electropolished for increased resistance to corrosion. CPVC, standard models; 304 stainless steel, All-Stainless models CPVC, standard models; 304 stainless steel, All-Stainless models. EPDM, standard. Buna-N and Viton available. Buna-N, standard. EPDM and Viton available. Buna-N, standard. EPDM and Viton available. Natural gum rubber, standard. EPDM and Buna-N available. Brass. (Brass hex nuts and stainless steel flat washers available.) Rated to 140°F (60°C) with CPVC rods, pipe caps, standpipes and standard Harmsco cartridges. To 200°F (93°C) for all stainless models with stainless steel rods, pipe caps and standpipes and Harmsco High-Temp cartridges. Temperature limits vary and depend on pressure and time under load. Rated for pressures to 150 psi (10 bar) maximum. Up to 800 GPM (Typical flow rates are 4-6 GPM per single length (9-3/4″) Harmsco cartridge. Published date is for guidelines only. Please consult pressure drop charts.)

Pressure Flow

Harmsco[®] Filtration Products

P.O. Box 14066, North Palm Beach, FL 33408 (561) 848-9628 • Toll Free: (800) 327-3248 Fax: (581) 845-2474 • e-mail: sales@harmsco.com



017 4/07

Typical Competitive Multi-Cartridge Filters

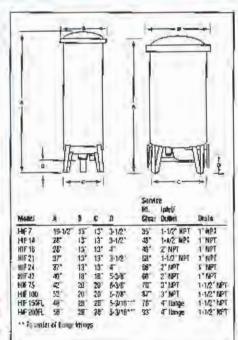
Harmsco[®] HIF Up-Flow Filters

Harmsco® All Stainless Filter Housing

Filters come with stainless steel holding rods, bottom plate and standpipes for high temperatures 200°F, (93°C) and aggressive chemicals. O-rings are Buna-N; rim gaskets are EPDM; other options, including viton available,

Note:

Optional 222 by that end configuration accepts seven cartridges and is available for HIF 755 through HIF 24SS.



AND F I

Model	Flow Rate	Pipe Size	Ship Wt	5
HIF 7SS	To 30 GPM	1-1/2"	30 lbs.	14 Kg
HIF 14SS	To 60 GPM	1-1/2"	40 lbs.	18 Kg
HIF 1655	To 75 GPM	2:	42 lbs.	19 Kg
HIF 24SS	To 100 GPM	2	52 lbs.	24 Kg

Harmsco[®] Filtration Products

(561) 848-9628 • Toll Free: (800) 327-3248 • Fax: (561) 845-2474 e-mail: sales@harmsco.com

HARMSCO[®] Up-Flow Cartridge Housings

Up-Flow Filtration

A design so superior it's patented.

This product is designed with a patented Up-flow technology which prevents the accumulation of air inside the filter housing keeping the filter operating at 100%.

all of why field NULLES WERE AND

HIF

Commercial/Industrial

Features

- 304 stainless steel construction, standard
- Electropolished finish, standard
- 150 psi (10.3 bar) pressure rating
- Flow Rates up to 800 gpm
- All filter housings hydrostatically tested
- Easy cartridge installation, removal and service
- Individual studs for safe, secure lid closure
- Extensive choice of cartridge micron ratings and media

Options:

316 stainless steel Chemical resistent coating Flanged options on HIF 24, HIF 42, HIF 75 and HIF 100

HIF 7

HIF 24

HIF 200FL

Not shown: HIF 14, HIF 16, HIF 21, HIF 42, HIF 75, HIF 100 and HIF 150FL

Applications

- Residential and Commercial Drinking Water
- **Cooling Tower Filtration**
- **Process Water**
- **Reverse Osmosis Pre-filtration**

- Ground Water Remediation
- **Utility Water**
- Industrial Waste Water Treatment
- Surface Water Treatment Rule (SWTR) LT2

HARMSCO[®] Filtration Products

Harmsco[®] Up-Flow Cartridge Housings

NSF

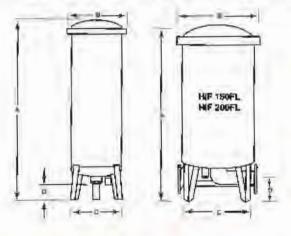
CHAHING 10

HIF 7

HE 14

HOF 16

HIF 42



Dimensions

-100 HIF 150FL

Cartridge Cluster Filtere

HIF 21

HIF 24

All cartridges in our 7, 14, 16, 21 and 24 models are arranged in a single "cartridge cluster," so all cartridges are removed at one time for easy cartridge cleaning or replacement.

Filler Model	A Height	8 Diameter	C Leg Width	D Height	Service Hi.	intel/Dullat	Drain
HIF7	19-1/2"	19"	13"	3-1/2"	35"	1-1/2" NPT	1" NPT
HF 14	28"	13"	13"	3-1/2"	48°	1-1/2" NPT	1" NPT
HIF TE	28"	13"	13"	4"	48	2" HPT	1" NPT
HIF 21	97"	13	13"	3-1/2"	68"	1-1/2" NPT	1" NPT
NIF 24	87"	13"	137	4*	68"	2" NPT	1" NPT
HF 42	40"	18"	18"	5-3/8"	68"	2"NPT	1"NPT
HIF 75	42"	20"	20"	6-3/8"	70*	3" NPT	1-3/2" NPT
HIF 100	52"	20"	20"	5-7/8*	87"	3" NPT	1-1/2" NPT
HIF 150FL	48"	28"	26"	5-3/16*	76"	4 flange	1-1/2" NPT
HIF 200FL	58"	28"	28"	5-3/16*	93"	4" йелде	1-1/2" NFT

HIF 200FL

Flanged options on HIF 24, HIF 42, HIF 75 and HIF 100

Ordering Information

Fliter Model	HIF 7	HEF 14	HIF 16	HF 21	HIF 24	HIF 42	HIF 75	HIF 100	HIF 1SEFL	HIF 280FL
Flow Rate* (GPM)	Up to 30	Up to 60	Up to 75	Lip to 90	Up to 100	Up to 175	Up to 300	Up to 400	Up to 600	Up to 800
How Aster (LPM)	Up to 113	Up to 226	Up to 284	Up to 340	Lip to 397	Up to 662	Up to 1,135	Up to 1,514	Up to 2,271	Up to 3,028
Flow Rate" (MWHR)	Up lo 7	Up 10 14	Up to 17	10 10 20	Up to 23	Up to 40	Up to 68	Up to St	Up to 138	Up to 181
Cartridges	7 - 9-3/4" "Singles"	7 - 19-1/2" "Doubles"	8 - 19-1/2" "Doubles"	7 - 29-1/4" "Triples"	8 - 29-1/4" "Triples"	14 - 29-1/4" "Triples"	25 - 29-1/4" "Triples"	50 - 19-1/2" "Doubles"	50 - 29-1/4" "Triples"	100 - 19-1/2" "Doubles"

"Flow rates shown above are for guidelines only. Actual flow rates are based on cartridge type, micron rating, viscosity, solids content and a number of other factors. For complete flow and pressure drop information please refer to your cartridge manufacturer guidelines.

Specifications

- Filter Vessel/Metal Components 304 stainless steel, electropolished for increased resistance to corrosion
 - Holding/Lifting Rods, Standpipes and Pipe Caps -CPVC, standard models; 304 stainless steel for All-Stainless models
 - Rim Gaskets EPDM, standard; Buna-N, Viton available
 - O-rings Buna-N, standard; EPDM, Viton available
- Bottom Seals natural gum rubber, standard; EPDM, Viton available

- Pressure rated for pressures to 150 PSI (10.3 bar) max
- Temperature rated to 140°F (60°C) with CPVC rods, pipe caps, standpipes and standard Harmsco cartridges; to 200°F (93°C) for all stainless models with stainless steel rods, pipe caps and standpipes, and Harmsco High-Temp cartridges
- Flow up to 800 gpm; typical flow rates are 4-5 gpm per single length (9-3/4")
- Wing Nuts brass; optional brass hex nuts and stainless steel flat washers

www.harmsco.com

Note: This publication is to be used as a guide. The data within has been obtained from many sources and is considered to be accurate. Harmsce does not assume liability for the accurate antiform completeness of this data. Changes to the data can be made without notification. Temperature, Pressure, How Rates, Differential Pressure, Chamles Combinations and other unknown factors can affect performance in unknown ways. Limited Warrenty: Harmsco warrante their products to be free of material and workmanthip defects. Determination of subjections of assistantly of Harmsco products for uses and applications contemplated by Buyer shall be the sole responsibility of Buyer. The and user/installed buyer shall be inside for the product's performance and subtability regarding their specific intended applications. End users should perform their own teste to determine subtability for each application.

HARMSCO[®] Filtration Products

P.O. Box 14066, North Palm Beach, FL 33408 (561) 848-9528 • Toll-free: (800) 327-3248 • Fax: (561) 845-2474 • E-mail: sales@havmsco.com

Made in USA © Harmsco, Inc. 018 10 7/11

Untitled Page from Cole-Parmer

Page 1 of 13

				United States		
Cole-Parmer	United States 1-868-356-4717 or Live Lite		elcome, in or register	Shopping Carl		
	1	Search		View Cars		
ihao All Products +	Shop by Service & Support		esources My Account	Gheck order stalk-		
Technical Resources	Chemical Compatibility	Results		-		
Resource Types:	A Chemical and their Competibil		and the second	Sharer		
Arocles and White Papers (404) Case Studies (105) Conversions and	Rating with your selected Math are listed below:	critel	((BALGEBER)	Cole-Parmer Chemicals Your formula for cost sevings & quality		
Technical Data (93) (+) Show more (4)	Material Selected: staloless ste	201 - 304		Excentional values/		
Product Respurces:	Chemical	Compatibility	Explanation of Footnotes	Typical		
Actuators (1)	Acetaldehyde	A-Excellent	1. Satisfactory to 72°F (22°C) 2. Satisfactory to 120%F (a8°C)	Savings		
Air Cleaners (1) Air Compressors (2)	Acetamide	8-Good	Ratings Chemical Effect	30-50%		
[+] Show more [96]	Acetate Salvent	A-Excellent	A = Excellent.	Compared As competitive-		
Industries:	Acetic Acid	D-Severe Effect	I = Good Minor Effect, alight correspon or	Lat prices		
Chemical Process (59) Electrochemistry (97)	Acetic Add 20%	B-Good	discillargeige, E = Faile Moderate Ell'ast.			
Energy (72)	Acetic Acid 60%	D-Severe Effect	test recommended for continuous use. Softeniiva.			
(+) Show more (18)	Acetic Acid, Giscial	C-Fair	loss of strength, swelling may octin			
Technical Resource Map	Atetic Anhydride	B-Good	D = Severe Effect, not recommended for ANV use.			
	Acetone	A-Excellent	N/A = Information not available.			
	Acetyl Bromide	NJA	and the second se			
	Acetyl Chioride (dry)	A-Excellent				
	Acetylene	A-Excellent				
	Acrylanitrike	A ¹ -Excellent				
	Adapic Add	A ¹ -Excellent				
	Alcohols: Amyl	A-Excellent				
	Alcohols: Benzyl	B-Good				
	Alcohols: Butyl	A-Excellent:				
	Alcohols: Diacetone	A-Excellent				
	Arcohois: Ethyl	A-Excellent				
	Alcohols (Hexy)	A-Excellent				
	Alcohols: Isobutyl	A-Excellent				
	Alcohols: [sopropy]	B-Good				
	Alcohols: Methyl	A-Excellent				
	Alcohols: Cicty	A-Excellent				
	Alcohols: Prepyl	A-Excellent				
	Aluminum Chioride	B-Good				
	Aluminum Chierde 20%	D-Severe Effect				
	Aluminum Fluoride	D-Severe Bleet				
	Aluminum Hydroxide	At-Excellent				
	Aluminum Nitrate	A-Excellent				
	Aluminum Potassum Sulfate 10%	A-Excellent				
	Aluminum Potassium Sulfate 100%					
	Aluminum Sulfate	B-Good				
	Aluma	N/A				
	Amines	A-Excellenc				
	Ammonia 10%	A-Excellent				
	Ammonia Nitrate	A-Excellent				
	Ammonia, annydrous	A-Excellent				
	Ammonia, annydrous Ammonia, liquid	A-Excellent 8 ² -Good				

Amminium Carbonate	B-Gand
Ammonium Caseinate	N/A.
Ammunium Chiaride	C-Fair
Ammonium Hydroxide	A ² -Excellent
Ammonium Niteose	A ² -Excellent
Ammonium Oxalate	A-Excellent
Ammaalum Persuitate	A-Excellent
Ammonium Phosphace, Dibasic	B-Good
Ammonium Phosphate, Mondoasic	Prising
Ammonium Phosphate, Tribasec	8-Good
Ammonium Sulfate	6+Grant
kmmonium Sulfite	8-Good
Ammonium Thiosulfate	N/A
Arriyi Acetate	A ² -Excellent
Amyl Alcohol	A-Excellent
Amyl Chloride	A ² -Excellent
andine	A-Excellent
Aniline Hydrochloride	D-Severe Effect
Antifreeze	MA
Aukinaday Trichlonde	D-Styler Effect
Mona Regia (80% HCI, 20% HND3)	
unochlar 1,248	5-Good
Ammatic Hydrocarbions	M/A
Ausenic Acial	A-Excellen.
Arsenic Salts	WA.
Asphalt	B-Good
Borium Carbonate	E ¹ -Good
Sarlum Chibride	A'-Excellent
Serium Cyanide	A ¹ -Excellent
Berlum Hydroxide	B'-Good
Barlum Nikrate	B'-Good
Barium Snifate	B1-Good
Panum Sulline	B ¹ -Good
	7
Date:	A-Bacellant
Craft Sugar Elquids	A-Excellent
e la maidanyda	B-Good
Cenzene	B-Good
Denzene Suffonic Acid	B-Good
Reveal: Acid	B-Good
5esizol	A ¹ -Excellent
Genzonitrile	D-Severe Effect
Benzy Chloride	C ^L -Fair
Bleaching Liquors	1%/A
Berax (Sodium Borate)	A-Excellent
Boule add	B ² -Good
Brewery Slop	N/A
Bramine	D-Severo Ellect
Butaviene -	AHENCENERIC
Hutane:	A ^d Excellent
Butanol (Bully) Alcohol)	A-Excellent
Suuren	C-Fái
Bultemilik	A-Excellent
	WA

WARNING

The information in this chart has been supp sources and is to be used ONLY as a guide i chemical compationity. Before perintanent it chemicals and under the specific conditions

Ratings of chemical behavior listed in this d Cote-Parnier has no knowledge of possible (goes not warrant (neither express nor impliaccurate or complete or that any naterial H

DANGER

Vieletions in chemical behavior during hondpersure, and endentrations can cause cou initial test.

SERIOUS INJURY MAY RESULT

Use swittible guards and/or personal protect

Pr		
Page 3	01	1.5

Busyl Ether	NA
Baiyi Polhalate	B ^k -Good
Butylacetata	8-Good
Eutylane	A-Excellent
Eutyric Add	a-Good
Solcium Blauliate	R/A
Seldium Biselficie	B-Good
Caldium Bismilite	E-Eoot
Calcium Carbonalia	A ² -Excellent
Caldium Chidrate	NJA
Calcium Chlande	C-Fall
Calcium Hydritaide	El-Gried
Calcium Hypochile	C ³ Fair
Calcium Alitrare	C ¹ Fair
Salcium Dalaie	A-Excellenc
Calcium Sulfake	BiSpett
Ealgon	4-Excellent
Cáne Tulce	A-Excellent
Earbolic Adid (Phenoli	B-Good
Carban Bisulfite	R-Excellent
Carbon Dipxide (pry)	e-Expelitent
Carbon Dieside (wet)	A-Excellenc
Carbon Disuide	A ¹ (Excellent
C&bon Monoxide	A-Excellent
Carbon Telradalonike	B-Good
Carbon Tetrachlomie (dnr)	B-Good
Carbon Tetradulodde (wei)	A ² (Éxcelient
Carbonated Water	A-Escellent
Carbonic Acid	A ¹ -Excellent
Caldup	A-Ehoellent
Ehioric Add	D-Severa Elfect
Chidrinated Gloc	na).ái
Chiprine (dry)	AL Excellenc
Chionine Wrater	C-Fair
Chibrine, Antivarous Liquid	© ^t ≤Falr
Chiamanetic Acid	
	B ¹ -Sood
Chlorobenzene (Mono) Chlorobrnmomestane	A-Estallent R/A
Chieroform	A-Executiont
Chlorosodionic Asia	E-Severa Effect
Chocolate Syrup	A-Excelient
Chromic Acid KU%	E-Good
Chromic Acid 30%	B ² -Good
Chromit: And 5%	B-Good
Shromic Add 50%	G-Fair
Chromion Salts	WA
Order	A-Excellenc
ENTIC AGO	8L Good
Clinic Olis	A-Excellenc
Claroxr (Bleach)	A-E-scelleni
idline	A-Excellent
Capper Chioride	D-Severe Effect
and the survey set	

Gopper Flubborake Gopper Nitrate	D-Severe Effect
Lopper Sulfate >5%	8-Excellenc
Copper Sulfate 5%:	8-Good A-Excellent
C) esols	A ² -Excellent
Стевулістисна	A ¹ -Excellent
Fupric Acid	D-Severe Elfect
Cyanic Add	A-Excellenc
Ovclohexane	A ¹ -Excellent
Cyclohexanone	AL-Excellent
Octorgents	A ¹ -Excellent
Dianesone Algoriol	B1-Spod
Elichipiobeatene	M/A
Dichibroginane	B-Good.
Diesel Fuel	A ¹ /Excellent
Dietnyi Ether	0 - Good
Diethylamine	M-Excellent
Diethylene Glycal	A'-Excellent
Dimethyl Anilline	18"-Goad
Dimethyl Formaduldo	A-Excellent
Diphenyi	B-Good
Diphenyl Oxide	B"+Good
Oves .	A-Excellent
Ensum Salts (Nagnesium Suttate)	A/Excellene
Elliane	A-Excellent
Ethánol	A-Excellent
Ethenolamine	A-Excellent
Ether	p-Excellent
Ethyl Acetate	8-Good
Ethyl Sexzoate	N/A
Biny Enloride	A-Escalant
Elliyi Ether	8-5000
Erhyl Sunface	0 Sevene Effect
Ethylene Bromide	A-Excellent
Ebytene Chloride	B-Geod
Sthylene Chlorobydrin	B-50ad
Ethylene Diamine	B ⁰ -Good
Ethylene Orchiokide	6-6440
Ethylene Glycol	6-Good
Ethylene Ouide	B-Good
Facty Acids	B-Good
Ferric Chloride	D-Severe Effect
Ferrild Altrate	8-Good
Fayle Sulfate	R ¹ -Good
Fernaus Chiloridie	D-Severe Ener
Frinous Sulfate	B-Shod
Fibóbinac Acid	B-Good
Plugnine	Cifair
Flugsilicia Acid	C-FAIr
Facmaülichyda 108%	ic fair
Formaldehvide 48%s	A ¹ -Excellent

Freen 113	N/A
Frenn 13	SI-Good
Freen 22	A-Excellent
Ereon TF	d-Excellent
Fredar II	é-Excellent
Phot Balce	A-Excellent
Fuel Calls	A-Excellent
Furan Resin	A ¹ Excentent
Furtwal	A-E>pallenc
Gallic Add	-Excellent
Gasoline (high-ammatic)	A+Excellent
Easoline, landad, ref.	A ¹ -Escellenic
Sasoline, unleaded	A ¹ Excellent:
581Abin	A ² Excellent:
GINCORE	A ¹ Excellenc
GINE, P.V.A	
	A -Excellenc
Gyrcerin	A*-EliceHenit
Giyanic Add	¢-Excellent
Gold Monocyanide	A-Excellent
Grape luice	A-Excellenc
Grease	NFS
Heptane	AlExcellent
Heriane	A-Excellent
Honey:	A-Excellent
Hydraulie Dil (Petro)	A-Escellent
Hydraulic Oli (Syn(hebc)	R+Excellent
Hydrazine Hydrobromic Add 100%	A-Excellent
Hydrobromic Acid 20%	D-Severe Elfed
Hydrochlavić Abid 209%	D-Severe Elfon
Hydroenlariz Acid 2095	D-Severe Elfag
Hydrochlaric Acta 37%	D-Savere Effect
Hydrochlanic Acid, Dry Gas	O-Severe Et/en
Hydrocyanic Aud	
	E ¹ -Sood
Hydrocyame Aciti (Gas 104%)	N/A
Hydrollowic Acid 100%	E2-2000
Hydrofioeric Add 20%	D-Severe Elict
hydronuovic Acld 50%	D-Severa Effeb
nyacanuoric acid 75%	D-Severe Elled
Hydroffbasilicic Add 100%	D-Severa Ellect
Hydrofiliosilleie: Aad 20%	C2-Paur
Hydrogen Gas	A-Excellent
Hyprogen Remitide 18%	B ⁴ -Good
Hydrogen Nerhälde 100%	B ² -Good
Hyprogen Nerhälde 30%	B ² -Good
Hydrogen Fernsitis 50%	Bi-Good
Hydrogen Sullide (aqua)	C-Páir
Hydrogen Solfide (dry)	C ¹ -Fair
(ivdrogumone	C Gond
HydroAyacelic Add 70%	19/A
Ink	C-Pair
Nedina	D-Severe Étiet
Indine (in alcohol)	IHA.

Lodision	A-Excellent
Isondane	A ¹ -Excellenc
Isopropyl Acetate	C-Fáir
Isopropyi Ether	A-Socellent
Hotana	N/A
let Foel (JP3, JP4, J#5)	A-Excellent
Keroserio	A-Excellent
Fetones	A-Excellent
Latiquer Thioners	A ² -Escallent
Latquers	A ² -Excellent
Lattic Abid	6 ² -Good
Lard	A-Excellent
Later	ASEXCEINENT
Lend Acetata	E-Good
Lead Nilvala	E ¹ -Goot
Lead Sollamate	C-Fali
Ligroin	N/A
Linit	i-Excellenc
Unoleit Acid	B-Good
Lithium Chipfice	ALExceller
utnium Hydroxide	B-Good
Luonicantis	A ² -Emeilera
Lye: Ce(OH)2 Calcium Hydroxode	B ¹ -Good
Lye: KOH Potassium Hydrouide	5-Good
Lyc: NbOH Sodium Hydroxide	D-Good
Magnesium Bisulface	A1-Excellant
Hagnesium Camooate	6-Good
elagnasium Chlaride	D.Severe Effect
Magnesium Hydrowide	B-Good
Abgresium Nibraile	8-5096
Hugaesium Oxlde	A-Excellent
Magnesium Sulfate (Epsom Salts)	A Escentent
Haleic Acid	R+Excellent
Maleto Annydride	AfEncellenit
Habe Acid	A-Excellent
Mangapese Sulface	B-Good
flash	A-Evcellenc
Nayonnalse	C-Fair
Mejamirie	MAR.
Herzuric Chiodole (dilute)	D-Severa Effect
Mercuric Cyanide	C-Fag
Mércharchus Nairrate	A ¹ -Excellent
Menawy	A-Excellent
Methane	A-Excellent
Methanol (Methyl Alcoholg	A-EcceVent
Methyl Acetate	A-Examination)
Methyl Acetaine	A-Excellent
Hetnyl Acrylata	A-Educitoria
Methyl Alcohni 10%	R-Evicalienc
Methyl Bromide	A-Exchilent
Methyl Butyl Retone	A-Encellent
Methyl Callosalvo,	8-Egod
methyl Chipisde	A+Excellenc
the trive minimum	

Methyl Ethyl Ketone Paroxide	NZA
Methyl Jsobutyl Kecone	B-G000
Methyl Isopropyl Ketone	A-Escellent
methyl Methacrylate	5-Cood
nethylamina	P. Excellent
Hethylene Oxforide	B-Good
MUK	A-Excellent
Hinaral Spirits	A-Excellent
Molasses	A-Encelltwit
Musiwethionoscesiid acidi	ALExellen
Monoethanolamine	A-Excellent
Marphollue	M/A
Algoer bil	A'-Excellent
Nustard	A-Excellent
Naphtina	A-Excellent
Naphthalene	A-Expellent
Vatural Gas	A-Excellent
Nickel Chloride	D-Severa Effect
Nickel Nitrate	B-Sood
Nickel Sulfate	8-Good
Nitrating Acid (<158; HNO31	G-Fair
Nitrating Add (>15% H2504)	C-Fair
Nitrating Add (51% Add)	C-Fair
(Itrating Add (515% H2504)	C-Fair
Mitnic Add (20%)	A-Excellent
-	the second second
Wtric Acid (50%)	A ² -Excellent
Withic Acia (5-10%)	A-Excellent
rillinic Add (Concentrated)	A ¹ -Excellenc
Hitrobenzene	9-Good
Nitrogen Fertilizer	14/A
Pitrams have	4-Encellent
Pitrous Add	8-5000
Mia pus Oxide	8-Good
Dits (Anilloe	A-Excellent
OlisiAnise	NPA
Ulls: Bey	N/A
Dilis;Bone	AVM.
Oils: Castor	A-Excellent
Dils: Cinobinea	A-Excellent
Dills: Cityle	A+Excellent
Dilaticique	ALENCEMENT
DNS: Coconul	A-E-coellens
Dvis: Cold Liver	A-Excellenc
Des: Gom	A-6406lien4
Dils-Caltonseed	A-Excellent
Dils:Orbosote	E-Good
Oils: Dinsel Fuel (28, 30, 40, 30)	A-Excellent
Qils:Fuel (1, 2, 3, 54, 58, 6)	A-Excellent
Cill\$:Ginger	O-Severe Ellect
Sils:Hydraulic Oil (Petro)	A-Excellent
Olis: Hypraulic Oil (Synthetic)	A+Extellent
CiralLemon	A-Excellent
Dils/Linseed	A-E-CALENL
dis Mineral	A-Excellent

Linsective	A-Excellenc
Dis:Dange	A-Excellenc
Dis:Print	A-excellent
Cills Pepnuk	A-Ercellari:
Céla:Reppermint ·	4-Excellent
Cils Pine	A-Excellent
QMs:Rapesedd	A-Expellent
Olis, Russi	A ^L -Excellent
OllszSesame Seep	A-Etcosilene
Olis:Silicone	A-Excellent
Olls:Soyleean	A-Excellent
Olis:Sperm (whate)	A-Exactlent
Oils; Tainning	A-Excellent
Call : Transformen	A-Excellent
OBS:Turbine	A-Encellent
Ciela Raid	A-Excellent
Olsum 100%	A-Excellent
Disum 25%	B2-Good
Okatic Acid (cnid)	B-Good
Szona	B-Good
Pelmitic Acid	81-Good
Perallin	A-Excellenc
Pentarie	C-Fair
Perchloric Acia	C-Fair
Perchlamethylene	B-Geod
Potrolatum	A-Excellant
and the second s	
Petroieum	AL Estellent
Prenal (10%)	8-Good
Phenol (Europli¢ Acid)	B-Good
Phosphoric Acid (>48%)	D-Severa Effect
Phesphonic Acid (clude)	D-Severa Effect
Awaphonic Acid (molben)	N/A
Fitvisphonic Acid (S4D%)	D-Severe Effect
Masphoric Acid Anhydride	MA
Ntosphonus	A ² -Excellent
Phosphorus Trichionide	A Excellent
Photographic Developer	A-Excellen1
Photographic Solutions	D-Saveta Elfect
Anthallic Aufd	B4-Good
Phohatic Anhydride	st - E-coelized
Marit: Acid	8-Good
Plating Solutions, Andmony Plating 13097	A-Excellent
Plating Solutions, Arsenic Plating	A-Extellent
Rélag Sélations, "Bress Rélag: Nigh-Spood Bress Beth 110°F	NIA
Mening Solutions, Brass Meting: Regular Brass Bath 100* F	6-Excellent
Plating Solutions, Bronze Roung: Qu-Od Bronze Bath R T	à-Excellant
Mating Solutions, Bronze Maling: Co-Sn Bronze Bath 160° F	é-E≠ce¥ent
Galley Solutions, Broose Plaung: Cu-So Arrose Sath 2003 P	A-Excellent

Mating Syluppos, Cedmium Mating: Cyswide Bade 90%	AVA.
Making Solutions, Cadmium Making, Fluoborate Bath 100°F	A-Excellent
Mating Solutions, Chromium Nating: Barry Chrome Bath 95°F	N/A
Plating Solutions, Chromitium Plating: Black Chrome Bath 115+	MAR -
Nating Solutions, Chromium Nating, Chromic-Sulfurte Bath 130°F	(MA)
Plating Sciulions, Chromium Maang: Fluaride Bath 120°F	RV2
Plating Solutions, Otramium Plating: Fluosificate Bath 95*F	W/A.
Plotling Solutions, Copper Plating (Add): Copper Fluoburate Bath 1209F	A. Ettellant
Flating Sciubing, Copper Plating (Add), Copper Suifate Bath R.T.	N/A
Bating Solutions. Copper Plating Cyamidol: Copper Strike Bath 120%	N/A
Mating Solutions, Copper Mailing (Cyanitie): High-Speed Bath 180° F	1)/4
Plating Solutions, Conser Plating (Cyanide): Richelle Solt Bath 150*F	1076
Ploting Solutions, Copper Plating (Hisc): Copper (Electroless)	N/A
Plaking Solutions, Copper Plating (micc): Copper Pyrophosphate	W/s
Platting Solutions, Sold Platting: Acid 75°F	9/A
Plaung Solutions, Gold Plaung: Oyanide 150%	10A
Plating Solutions, Sold Plating: Weathal 75%	R/A
Having Solutions, Indian Sulfamate Plading R.T.	62/4
Plating Solutions, Jron Plating: Ferrors Am Suitate Bath LSUPF	W/A
Plating Solutions, from Plating: Ferrous Chloride Bath 1901F	19/A
Maxing Solutions, Iran Maxing: Ferrous Guifate Bath 150°F	NA
Plating Solutions, Jron Plating: Fluctorate Bath 14561	WA
Pieting Solutions, 1700 Pieting: Suffemate 140°F	ind.
neting Soloburs, Iran Neting: Solvete-Chloride Bern Jeave	684
Plating Solutions, Lead Ruccordie Ridling	ku/d
Nating Solutions, Nicker, Plating: Electroless 200°F	NIS
Halling Golucions, Michel Petting: Eluoborate 190-170°h	N/A
Making Solutions, Wich al Clauing: High-Chilodde 130-160*6	19746
Plating Solutions, Nickel Plating: Sulfamate 100-190°F	602.4
Plating Solutions, Nickel Plating: Wolls Type 115-160°F	1974
Malling Sylutions, Rhodium Plating 12056	NYA
	N/4

Ploting Solutions, Tin-Flupborake Plating 100*F	Inth
Rating Solutions; Tin-Lead Plating 1009F	N/A
Plating Sciultons, 2000 Plating: Acid Chiestel 1409F	8/6
Mabing Solutions, Zinc Nating; Acid Flugborate Bath R.T.	tila.
Plating Solutions, Zinc Plating: Acid Soliate Bath 150°F	N/#0
Pleting Solutions, Zinc Pleting: Alkaline Eyenide Bath R.T.	Mit.
Potasti (Pót/ssicm Carbonaie)	B+Good
Patazsiunt Biçarbonale	5-Good
Potassium Bremide	S-Good
Potassium Chibrate	8-500
Potastium Chloride	B1-Good
Potassium Oxomate	el-Good
Potassium Cyanide Solutions	B ¹ -Good
Potossium Dictiromaie	B-Good
Potassium Ferricyanide	B ¹ -Good
Patassium Ferrocyanice	B-Good
Patassium renneysinge Patassium riydniside (Caustic Patasti)	E-Eagd
Potassiana Hypothforite	C ¹ -Fair
Potassionin Tudide	h ¹ -Eycellero
Potassium Wirale	ÉvGood
Potossium Oxalate	E-Good
Potossium Permänganate	E-Grod
Pricessium Sulface	
Porassium Suifide	B-Good
Frapane (liquefied)	A-Excellent
Propylene	2.0. m
	E'-Good, B-Giand
Propylene Glycol Pyriding	A-Excellent:
Fyrografiic Acid	B ² -Good
(resurcina)	10/A
Rosins	A Exosletti
Rum Rust Inhibitors	A-Excellent A-Excellent
Salad Dressings	A-Excellen)
Sincylic Acid	e ⁴ -Gaud
San Evine (NACI saturated)	B ⁴ -Gaod
Sea Water	L'IFait
Swellar (Bleeched)	P-Excellent
Shell/ic (Orange)	A-Excellent
Silionig	A-E-collent
Silver Branide Silver Värger	G-Severe Effect
Soap Solutions	A-Broallena
Sota Ash (are Sodium Carbonate)	d-Existilent
Södlum Apetate	B-Good
S dium Aluminate.	A-E Wellerit
S-dium Banzbate	11/1

Sadium Elicarbonaje	d-Exterior
Sodium Bisulfaté	D-Savare effect
Sodiam Bisutfite	E ¹ -Good
Sodium Borate (Boras)	E ¹ -Good
Sadium Bromide	C/Fain
Sodium Carbonate	A-Esoahent
Sodium Chlorate	A-Excellent.
Sadium Chloride	BIGHUE
Spallum Chramate	Bread
Sowurn Exanida	A ⁴ -Escalant
Sediom Ferrocyanide	e-Good
Socium Fluarice	D-Severe Effect
Sodium tydnisulfite	9/A
Sodium Hydroxide (20%)	8-Ghort
Södlum Hydroxida (50%)	B-5000
Sodium Hydraxide (80%)	C-Fair
Soidium Hypochlanice (<20%)	C-Fair
Sodium Hypochiaite (100%)	D-Severe Effect
Sudium Hyposul/ate	A-Escallent
Sodium Météphosphate	A-Excellent
Sodium Metasiliçəte	A-Excellent
Sodium Albrate	B ^L -Good
Sodium Perborate	B-Geold
Sodium Penzade	A-Excellant
Sadium Polyphosphills	5-Good
Sodium Silicate	A-Excellent
Sodium Sulfate	B-Gast
Sodium Sulfide	5-Good
Sodium Saline	B-Good
Sodium Tetraborate	A2-Excellent
Sodiem Thinsulfate (hypo)	At-Excellent
Sorghum	A-Engelient
Soy Sauce	A-Evealient
Stannic Chinkide	D-Severe Effect
Stannic Flugborate	11/4-
Sannous Childride	St-Fair
Starth	A-Excellent
Sleede Acid	B-Good
Studdard Solverit	A-Exosilient
รัญกะกษ	a-Excellent
Sugar (LAquids)	A-E-cellent
Solfate (Liquors)	B-Good
Sulfor Chloride	D-Sevare Effect
Solfur Dieside	D-Severe Effect
Sultar Dioxide (ary)	D-Severa Effect
Sulfur Hoxallunride	N/A
Salfur Trioxide	A-Excellent
Setton Tripyete (tiry)	0-Severe shed
Bullovic Acid (\$10%)	D-Sovere Effect
Sumuric Addr (10+75%)	D-Severe Effert
30/funic Acid (25-100%)	C-Fair
Sulfunc Acid (Kold concentrated)	C-Fair
Swiftunic Actid (Box concentrated)	D-Severe Effect
	B1-Good

TURO	12	01	10	
------	----	----	----	--

Tallem	A-Excellent
Tannik Adid	BI-Good
Tanning Liquors	A ² -Excellenc
Tartaric Acid	C ² -Fair
Terracilloroethane	B-Good
Tetrachlorosthylene	W/A
Tehrahydrohwan	A-Excellent
Tin Salts	N/A
Toluene (Toluși)	A-Excellent
Tomato Julce	A-Escellent
Truchlanoapetic Asia	D-Severe Effect
Trichloroethane	BHGbod
Trichlaroothylene	B-Good
Trabloropopane	A-Excallent
Tricresylphosphate	B-ISOCH
Tdelhylamine	A-Excellent
Trisodium Phosphalz	8-Good
Turpentine	A-Excellent
Uraa	B-Good
Unić Acid	\$-Good
Vilne	A-Excellent
Vannish	A-Excellent
vegetable Juice	A-Excellent
Vinegar	A-Excellent
Vinyi Acetate	6-Good
Vinÿi Chlorid∈	82-Good
Water, Acid, Mine	B-6000
Water, Geronized	AL-Excellent
Water, Distilled	A-Excellent
Water, Fresh	A-Excellent
Water, Salt	B+Gapd
Weed Killers	A-Excellent
Whey	A-Excellent
Whiskey & Wines	A-Excellent
White Liquar (Pulp Hill)	A-Excallent:
White Water (Paper Mill)	A-Excellent
Kyleno	B-Geod
linc Chloride	B-Good
Zind Hydrosoffite	A-Excellent
Zinc Sulfabe	B ¹ -Good

Customer Service Teatron al Succort a nume Separe Chibrel, and Shipring, Inley Shipring, Inley Shipping, Sone Shipping, Sanswing, Shipping, Sanswing, FIRE

Contents Up How to Trace to Penetrack Automotel Changes Frite Tarabay Possing

Karole Up Hly.... Orient Di Alto Lavoic

Ginapersy ante Unnut US Prove 115 Proc. Tarleyney "Exchange," Bosiness went "Shangar Providentet Atmos

Pollom ()-

Stry Enformed of The Incert news; medically special official end man

Submitter (milty)

102101200000000

And product as all four incompleteners (Proce - Secondarity) per per demonstration dent photon, despendentes, according of the channes (Administration (Education) The period of the State of the State of The Second Second

C. M. MINDARS
 SEE East Equilation Committee (Excellent lines)
 See East Equilation Committee (Excellent lines)
 See East Equilation Committee (Excellent lines)

Flex Hose Cut Sheet

(Goodyear)

EnSol, Inc.

BROWN CHEMICAL TRANSFER HOSES TAKING LIGHTWEIGHT FLEXIBILITY TO THE **XTREME**!

Veyance Technologies Inc., the exclusive manufacturer of Goodyear Engineered Products branded hose, is proud to introduce Plicord[®] ExtremeFlex[™] Purple and Brown Chemical Transfer Hoses. They are our latest innovations in the chemical production and petroleum refining industries. Their advanced formulation and construction results in two incredibly flexible, lightweight hoses at a great value. Destined to be the new standard in chemical transfer hoses, ExtremeFlex[™] Purple and Brown feature technologically advanced rubber compounding that allows them to leap past other hoses in this category.

AMONG THEIR MANY COMPETITIVE ADVANTAGES, THEY ARE:

MORE FLEXIBLE:

Easier to move in and out of tight spaces and around corners.

LIGHTER WEIGHT: Easier to lift and carry, resulting in fewer workplace injuries.

LOWER FORCE TO BEND: Easier to connect and disconnect for increased productivity.

IMPROVED FLEX PERFORMANCE:

More durable and longer lasting.

INNOVATION BREEDS SUCCESS.

Veyance Technologies, Inc., the exclusive manufacturer of Goodyear Engineered Products, has the competitive advantage when it comes to rubber compounding due in part to our diverse product offering. From conveyor belts to tank tracks, we know how to use our cutting-edge research to meet the extremes of challenging environments and materials. We then bridge the knowledge from our latest finds into new categories. That's how the V-Wing line developed.

CHEM ONE[™] was born out of the need for a durable, lightweight and flexible hose that met the demands of chemical transfer applications. Once we had that under our belt, we expanded similar technology into the petroleum and food industries under the family name **ExtremeFlex**.[™] These new hoses have the advantage of giving you tremendous flexibility in a corrugated hose at a non-corrugated price.

Today, two new chemical transfer hoses – **Plicord[®] ExtremeFlex[™] Purple and Brown** – now feature the same innovations as the rest of the **V-Wing** line. So you can experience the ease of handling that comes with their improved flexibility and the lower force required to bend them, along with fewer workplace injuries due to their lightweight nature. You're getting high-tech chemical transfer solutions wrapped up in two colorful hoses.

No matter which **Goodyear Engineered Products** Industrial Hose you spec, you can be certain that success is near. Because we know how to compound for extremes.

All of our Chemical Hose temperature ratings are contingent on the specific chemical conveyed. Contact Customer Service at 1-800-235-4632 for any chemical above the temperature stated in the Goodyear Engineered Products Chemical Resistance Guide. Refer to the Chemical Resistance Guide for specific chemical and temperature compatibility.

CHEMICAL TRANSFER HOSE | DESIGNED FOR EXCELLENT CHEMICAL RESISTANCE

INDUSTRIES SERVED: Chemical production

APPLICATION: A high-tech, flexible and versatile chemical hose capable of handling a wide range of chemicals, acids and alcohols in both suction and discharge service.

CONSTRUCTION:

Tube: Black Versigard[®] (EPDM) synthetic rubber Cover: Corrugated Purple Versigard[®] (EPDM) synthetic rubber with yellow spiral stripe Reinforcement: Spiral-plied synthetic fabric with double wire helix

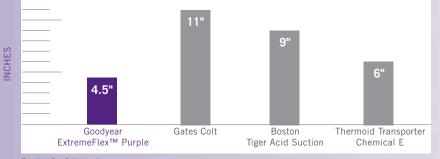
TEMPERATURE: -40°F to 221°F (-40°C to 104°C)

PACKAGING: 100' Exact cut length, coiled, polywrapped

BRANDING (SPIRAL): Goodyear® Plicord® ExtremeFlex[™] Purple 150 PSI Made in Canada

COUPLINGS: Use Goodyear Engineered Products Insta-Lock[™] Cam & Groove fittings with this product

NON-STOCK/SIZES: 400' Min. if not stocked


ORDER CODE: 546-721

PLICORD[®] EXTREMEFLEX[™] PURPLE

ID		NOM. OD		MAX. WP		BEND RADIUS		S VACUUM HG		G WEIGHT	
in.	mm.	in.	mm.	psi	mpa	in.	mm.	in.	mm.	lb./ft.	kg./m.
1½	38.00	1.92	48.70	150	1.03	2.25	57.2	29	737	0.73	1.09
2	51.20	2.44	61.90	150	1.03	3.00	76	29	737	0.95	1.42
3	76.10	3.54	89.80	150	1.03	4.50	114	29	737	1.76	2.62
4	102.10	4.57	116.10	150	1.03	6.00	152	29	737	2.41	3.59

GOOD FYEAD

COMPETITIVE ADVANTAGE: BETTER BEND RADIUS

Radius for 3-inch diameter

Plicord[®] eXtremeFlex[™] Brown

CHEMICAL TRANSFER HOSE | DESIGNED FOR EXCELLENT CHEMICAL RESISTANCE

INDUSTRIES SERVED: Chemical production and petroleum refining

APPLICATION: A high-tech flexible and versatile chemical hose capable of handling a wide variety of acids, alcohols, salt solutions and petroleum-based products.

CONSTRUCTION:

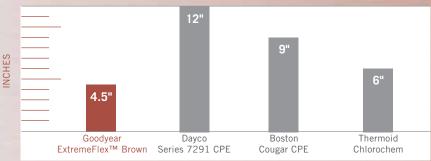
Tube: Black Chemrin[®] (CPE) synthetic rubber Cover: Corrugated Brown Versigard[®] (EPDM) synthetic rubber with white spiral stripe Reinforcement: Spiral-plied synthetic fabric with double wire helix

TEMPERATURE: -30°F to 275°F (-34°C to 135°C)

PACKAGING: 100' Exact cut length, coiled, polywrapped

BRANDING (SPIRAL): Goodyear[®] Plicord[®] ExtremeFlex[™] Brown w/ Chemrin[®] 150 PSI Made in Canada

COUPLINGS: Use Goodyear Engineered Products Insta-Lock[™] Cam & Groove fittings with this product


NON-STOCK/SIZES: 400' Min. if not stocked

ORDER CODE: 546-723

PLICORD[®] EXTREMEFLEX[™] BROWN

1	ID		NOM. OD		MAX. WP		BEND RADIUS		VACUUM HG		IGHT
in.	mm.	in.	mm.	psi	mpa	in.	mm.	in.	mm.	lb./ft.	kg./m.
1	25.30	1.42	36.00	150	1.03	1.50	38.10	29	737	0.50	0.75
1¼	32.00	1.63	41.50	150	1.03	2.00	50.80	29	737	0.57	0.85
11/2	38.00	1.92	48.70	150	1.03	2.25	57.20	29	737	0.74	1.10
2	51.20	2.44	61.90	150	1.03	3.00	76.00	29	737	0.97	1.45
3	76.20	3.54	89.80	150	1.03	4.50	114.00	29	737	1.80	2.68
4	102.10	4.57	116.10	150	1.03	6.00	152.00	29	737	2.47	3.68

COMPETITIVE ADVANTAGE: BETTER BEND RADIUS

Radius for 3-inch diameter

Gates is a registered trademark of The Gates Corporation. Boston is a trademark of Eaton Corporation. Thermoid is a registered trademark of HBD / Thermoid, Inc. Dayco is a registered trademark of Dayco Products, LLC. U . S . A . 1 - 8 0 0 - 2 3 5 - 4 6 3 2 FAX 1 - 8 0 0 - 7 6 2 - 4 0 1 7

C A N A D A 1 - 8 8 8 - 2 7 5 - 4 3 9 7 F A X 1 - 8 8 8 - 4 6 4 - 4 3 9 7

GOODYEAREP.COM/HOSE

The GOODYEAR (and Winged Foot Design) trademark is used by Veyance Technologies, Inc. under license from The Goodyear Tire & Rubber Company. Goodyear Engineered Products are manufactured and sourced exclusively by Veyance Technologies, Inc. or its affiliates. ©2010 Veyance Technologies, Inc. All Rights Reserved.

700-821-947-550 goodyearep.com 10GHOS027-04/10

Aftermarket Parts - Automotive, Conveyor Belt - Heavyweight and Lightweight, Government, Heavy Duty, Home and Garden, Hydraulics, Industrial Hose, Power Transmission Products, Powersports, Rubber Track, Seawing Offshore Oil Hose

CHEMICAL RESISTANCE CHARTS

APPLICATION WARNING

The products in this catalog have been tested under controlled laboratory conditions to meet specific test criteria. These tests are not intended to reflect the performance of the product or any other material in any specific application, but are intended to provide the user with application guidelines. The products are intended for use by knowledgeable persons having the technical skills necessary to evaluate their suitability for specific applications.

Since Veyance Technologies, Inc. has no control over the number and variety of applications for which its products may be purchased or the conditions under which its products may be used by others, Veyance Technologies assumes no responsibility for performance results and applications. This catalog, however, contains available information to allow the user to determine the product's acceptability and fitness for specific applications. No statement contained herein shall be construed as a license to operate, or as a recommendation or inducement to infringe existing patents or as an endorsement of products of specific manufacturers or systems.

Failure to follow procedures for selection, installation, care, maintenance and storage of hoses may result in the hose's failure to perform properly and may result in damage to property and/or serious injury. Please refer to the General Information section of the catalog for hose care, maintenance, and storage information.

All product design, dimensional, and general information in this catalog is subject to change without prior notice. Working pressures and other technical information have been prepared from actual test results and other data considered to be reliable. However, Veyance Technologies assumes no responsibility for the accuracy of this information under varied conditions found in field use.

CHEMICAL HOSE

Do not use chemical hose at temperatures or pressures above those recommended by the manufacturer. All operators must be thoroughly trained in the care and use of this hose and must, at all times, wear protective clothing. A hose or system failure could cause the release of poisonous, corrosive or flammable material.

Detailed information concerning storage, care and maintenance may be found in the Hose Handbook published by the Rubber Manufacturer's Association, 1400 K Street, N.W., Washington, D.C. 20005 and in SAE Recommended Practices J1273.

1

GOODYEAR ENGINEERED PRODUCTS CHEMICAL RESISTANCE CHARTS

RATINGS AND DEFINITIONS

The Goodyear Engineered Products Chemical Resistance Chart is to be used as a guide only.

- **A** The chemical is expected to have minor or no effect on the product. Product may be used for continuous service. Changes in working conditions, such as concentration of the chemical or temperature, may affect product performance and cause degradation of the product.
- **B** The product may be used for continuous or intermittent service, however the product properties will be affected by the exposure to the chemical. Changes in working conditions, such as concentration of the chemical or temperature, may affect product performance and cause degradation of the product.
- **X** The product should not be used with this chemical.
- Insufficient or no data available for this chemical. Further testing is recommended to determine compatibility of the chemical with the product.
- **Caution:** Unless otherwise specified, the ratings applied to tube stocks are based on fully concentrated or saturated solutions at 100°F under normal service conditions.
 - **Note:** Hose ratings are for the effect on the polymer only. The degree of resistance of a rubber compound to a specific chemical depends on many variables such as temperature, concentration, length of exposure, stability of chemical, etc. For a specific compound, many grades of polymers are available which can alter the compound's chemical resistance.

WHEN IN DOUBT, before using a specific product, contact your local Goodyear Engineered Products Sales Representative for assistance if unusual service conditions or high temperatures are present in the product application.

THIS CHEMICAL RESISTANCE CHART SUPERSEDES ALL PREVIOUSLY PUBLISHED INFORMATION REGARDING GOODYEAR ENGINEERED PRODUCTS CHEMICAL HOSE RESISTANCE RATINGS.

Common Name & Description	Veyance Technologies, Inc. Trade Name	Goodyear Engineered Products Examples with Polymer in the Tube
UHMWPE (Ultra High Molecular Weight Polyethylene)	Pliosyn™	Fabchem™
Butyl (Isobutylene and Isoprene)	Weatherex®	Gray Flexwing®
Hypalon® (Chlorosulfonated Polyethylene)	Hysunite™	Yellow Flexwing®
NR - Natural Rubber (Isoprene, natural)	Pureten™	Tan Flexwing®
Viton®	Flosyn®	Orange Flexwing®
Nitrile		Flexwing [®] Petroleum
CPE (Chlorinated Polyethylene)	Chemrin®	Brown Flexwing®
EPDM (Ethylene Propylene Diene)	Versigard®	Purple Flexwing®
EPDM (Heat Resistant)	Pyrosyn®	Flexsteel® 250 Steam, Whitewater®
Cross-Link Polyethylene (XLPE)	Speclar®	Blue Flexwing®, Green XLPE
Alphasyn® (Modified Cross-Link Polyethylene)	Alphasyn®	Viper™
Teflon®		Hi-Per [®]
316 Stainless Steel		Insta-Lock™
Aluminum		Insta-Lock™
Brass		Insta-Lock™

Caution: This chart and the following chemical resistance charts are intended to reflect the various tube compounds as they pertain to Goodyear Engineered Products petroluem and chemical hose. Always use a Goodyear Engineered Products petroleum or chemical hose when the hose is to be used for conveyance of petroleum or chemicals. Consult the following pages for chemical compatability of the various tube stocks.

®Hypalon is a registered trademark of DuPont Dow Elastoners L.L.C.
®Viton is a registered trademark of DuPont Dow Elastoners L.L.C.
®Teflon is a registed trademark of E.I. du Pont de Nemours and Company.
®Versigard is a registed trademark of The Goodyear Tire and Rubber Company.

polymer only! For explanation of ratings see	page 2. G	UIILACI	custo										00-400)Z.		
RATING SCALE				GOO	JDYI		ENGIN Hemic			PRODL F	JCTS	5			FIT	TING
A = May be used for Continuous Service				7	7	7	7 7		7	7 7		1	7	7	/	
$\mathbf{B} = May$ be used for			/ ,	@ .	20	/ ,	Flexwing Petroling	,	20	Green XLPE Blue EL		HI-PEDE & Viperm	/	/ ,	/	
Intermittent Service			z /	Yellow 5	Tan EL	Oranoo E	Flexwing Petrol	-	Purnic - Purning	Green XLPE Blue EL	Wing	8	Insta i	**	×/	* *
X = Do not Use				Lex .		WXa,	Wing		1		lex / g		\$/:	207		1-100
I = Insufficient Data, contact customer services		Fabres	Gray	Yello	Tan	0ran	Petr	Brow	Purn	Blue	Cher	HI-PENS		Insta_	Insta_1_	Insta-Lock
GASKET	~	<u> </u>	/	(/	,	ſ		/				<u> </u>		
$\mathbf{T} = \text{Teflon}^{\mathbb{R}}$ $\mathbf{V} = \text{Viton}^{\mathbb{R}}$	(°F)	믭		٩u							yn "			m		-
$\mathbf{B} = \text{Nitrile}$ $\mathbf{N} = \text{Neoprene}$	Temperature	UHMWPE	Butyl	Hypalon∘	R	Viton∘	Nitrile	Ъ	EPDM	XLPE	Al phasyn‴	Teflon∘	316 SS	Aluminum	Brass	Gasket
S = Silicone	pera			Ŧ	Z	>		0	ш	×	A	-	~	A	8	8
А	Tem				H	OSE	TUBE F	POLY	MER					Μ	ETAI	L
Acetaldehyde	100	В	В	Х	Х	Х	Х	1	Α	A	Α	A	А	В	Х	TS
Acetic Acid, Conc.	100	A	A	X	B	X	X	A	A	A	A	A	A	B	X	T
Acetic Acid, Dilute 10	150	B	A	X	A	X	X	A	A	A	A	A	A		X	TVN
Acetic Acid, Glacial	100	A	B	X	Х	Х	X	A	A	A	A	A	A	В	X	TS
Acetic Aldehyde	100	A	B	X	Х	Х	X	1	A	A	A	A	A	В	Х	T
Acetic Anhydride	100	В	A	В	Х	Х	Х	A	Α	А	A	A	A	В	Х	TS
Acetic Ester	100	В	В	Х	Х	Х	Х	В	Α	А	A	A	A	Α	Α	ΤV
Acetic Ether	100	В	В	Х	Х	Х	Х	В	Α	А	A	A	A	Α	Α	Т
Acetic Oxide	100	В	А	В	Х	Х	Х	A	Α	А	Α	A	Α	В	Х	Т
Acetone	100	А	А	Х	В	Х	Х	A	Α	Α	Α	Α	Α	Α	Ι	T
Acetone Cyanohydrin	100	В	Α	Х	Х	Х	Х	A	Α	А	Α	Α	Ι	Ι	Ι	TS
Acetyl Acetone	100	В	В	Х	Х	Х	Х	В	Ι	А	Α	A	Ι	В	Ι	Т
Acetyl Chloride	100	В	Х	Х	Х	В	Х	A	В	В	А	Α	В	Х	А	ΤV
Acetyl Oxide	100	В	А	В	Х	Х	Х	A	Α	А	Α	Α	Α	В	Х	Т
Acetylene (dry)	100	А	А	A	А	А	А	A	Α	А	Х	A	А	Ι	Ι	TVBNS
Acetylene Dichloride	100	В	Х	Х	Х	А	Х		Ι	А	Х	Α		Α	Х	ΤV
Acetylene Tetrachloride	100	В	Х	Х	Х	А	Х	I	Ι	А	I	A	Α	Х	Х	ΤV
Acrolein	100	В	А	В	В	А	В	1	Ι	А	А	Α	Ι	Ι	Ι	ΤV
Acrylic Acid	100	В	Х	Х	Х	А	Х	X	Х	А	А	A	Α	Ι	Ι	ΤV
Acrylonitrile	100	В	Х	Х	Х	Х	Х	A	Х	В	А	A	А	Х	Ι	T
Alk-Tri	100	Ι	Х	Х	Х	А	Х	1	Ι	А	Ι	Α	Α	Ι	Ι	ΤV
Allyl Alcohol	100	А	А	A	А	В	А	A	Α	А	А	Α	Α	Ι	А	TBN
Allyl Bromide	100	В	Х	Х	Х	В	Х	В	Ι	В	Ι	A		Ι	Ι	T
Allyl Chloride	100	В	Х	Х	Х	В	Х	В	Х	В	Ι	A	A	Х	Х	TS
Alum	150	А	A	A	A	А	А	A	Α	A	A	A	A	Ι	Х	TVBNS
Aluminum Acetate	100	А	A	A	Х	Х	Х	A	Α	А	A	A	A	Ι	Х	T
Aluminum Chloride	150	Α	A	A	Α	Α	A	A	Α	А	A	A	Ι	Ι	Х	TVB
Aluminum Formate	100	A	В	X	Х	Х	X			A	A	A				T
Aluminum Hydroxide	150	A	A	В	Α	Х	В	A	Α	A	A	A	A	Ι	Х	TS
Aluminum Sulfate	150	A	A	A	A	A	A	A	A	A	A	A	A	Х	X	TVBNS
Aminoethanol	100	A	A	B	B	1	<u>B</u>	A		A	A	A	A	B		TBN
Aminoethylethanolamine	100	A	A	B	В		В	A		A	A	A		Ι		T
Ammonia			NO H	OSE	RECO	MME	NDED F	UR TH	IS AI	PPLICAT	ION					

CHEMICAL CI	HA	R1	ΓS)												
This chemical chart is offered as a guide on polymer only! For explanation of ratings see [\backslash	
RATING SCALE				GOO	DY		ENGIN HEMIC			PRODU	JCTS	5			FIT	TING
A = May be used for Continuous Service				7	_					E / /		14	_	_	/	
$\mathbf{B} = May$ be used for			/ /	ę,	20	/ ,	100	,	20	28	. /	Viper"	/	/ /	/ ,	/ /
Intermittent Service		/.	*	Wing	lexwi	Wing	exw	<u>_</u>	lexwi	LPE	Xwing	ه چ	_ /	c/	হ/	হ হ
X = Do not Use I = Insufficient Data, contact		Fahchor	א בי	1011	Tan EL	line, Kar	Flexwing Petrolo	nue -		Green XLPE Blue FL		HI-PENS & VI	Inst- i	Insta ,	Insta-1	Insta-Lock
customer services		Fai	li ²	/e/	la _{ll}	6	Per Fil	Bri	_ m	Blu	/5	/ 🛱	/ 🦉	Sill	Sill Sill	<i>Sl</i>
GASKET	(°F)										12			E		
$\mathbf{T} = \text{Teflon}^{\mathbb{B}}$ $\mathbf{V} = \text{Viton}^{\mathbb{B}}$	ire (UHMWPE	<u>N</u>	Hypalon∘		Viton∞	Nitrile	ш	EPDM	щ	Al phasyn‴	Teflon∘	316 SS	Aluminum	Brass	Gasket
B = Nitrile N = Neoprene S = Silicone	eratı	3	Butyl	Hy	R	Vite	Nit	CPE	E	XLPE	Alp	Tef	316	Alu	Bra	Gas
	Temperature				H	OSE	TUBE F	POLY	MER					Μ	ETAI	
A Ammonio Cunzio Sulfato	-	٨	Δ	•	v	٨	٨	٨	٨	Δ	Δ	•				TVD
Ammonia Cupric Sulfate Ammonium Chloride	150 150	A	A	A	X	A	A	A	A	A A	A	A	A	X	X	TVB TVBN
Ammonium Hydroxide	150	A	A	B	A	X	X	A	X	A	A	A	A	X	^ I	TNS
Ammonium Nitrate (ANFO)	150	A	A	D			^ L HOSE				A	A	A	B	X	TVBS
Ammonium Phosphate	150	Α	Α	A	A	A	A	A	A	A	Α	A	A	X	X	TVBNS
Ammonium Sulfate	150	A	A	A	A	A	X	A	A	A	A	A	A	X	X	TVNS
Ammonium Sulfide	150	A	A	A	A	A	X	A	A	A	A	A	A	X	X	TVN
Ammonium Sulfite	150	A	A	A	A	A	A	A	A	A	A	A	A	X	1	TVBN
Ammonium Thiosulfate	100	Α	A	A	A	А	Α	A	Α	А	A	A	A	В	Х	TVBN
Amyl Acetate	100	Α	A	В	Х	Х	Х	Х	В	Α	Α	Α	A	A	1	Т
Amyl Alcohol	100	Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	1	Α	TBNS
Amyl Chloride	100	Α	Х	Х	Х	А	Х	Х	Х	А	В	Α	Α	Х	Ι	ΤV
Amyl Oleate	100	Α	Х	Х	Х	Ι	В	Ι	Ι	А	Ι	Α	Ι	1	Ι	Т
Amyl Phenol	100	Α	Х	Х	Х	А	Х	Ι	Ι	А	Ι	Α	Ι	Ι	Ι	ΤV
Amyl Phthalate	100	Α	А	Х	Х	Х	Х	Ι	Ι	А	Ι	Α	Ι	1	Ι	T
Amylamine	100	Α	В	Х	Х	Х	Х	В	Х	Α	Ι	A	Ι		Ι	T
Anethole	100	Х	Х	Х	Х	В	Х	Х		Х		A				Т
Anhydrous Ammonia										APPLIC						
Aniline	100	Α	A	Х	Х	Α	X	В	A	A	A	A	A	B	Х	TV
Animal Grease	100	A	X	Х	Х	A	A	B	Х	A	A	A	A	A	-	TVB
Animal Oils	100	A	B	X	X	A	A	A	X	<u>A</u>	B	A	A	A	1	TVB
Antimony Pentachloride	100	A	X	X	X		X		X	B	B	A				T T
Aqua Ammonia Aromatia Spirita	150	A	A	B X	A X	A	B	B	B X	A	A	A	A	X	1	T V T V
Aromatic Spirits Aromatic Tar	100 100	A	X X	X	X	A	X X	B	X	A A	1	A	A		1	TV
Arquads	100	A	A	A	A	A	A	A	A	A	A	A			1	TVB
Arsenic Acid	100	A	A	A	A		X	A	A	A	A	A	A	X	X	TVB
Arsenic Chloride	100		X	X	X	X	X	X	X	X	X	A			1	TN
Arsenic Trichloride	100	· 	X	X	X	X	X	X	X	X	X	A	X			TN
Asphalt	500						L HOSE				- • •		A	1		TVN
ASTM #1 Oil	100	Α	Х	В	X	A	A	A	Х	A	Α	A	A	A		TVBNS
ASTM #2 Oil	100	Α	Х	Х	Х	А	Α	Α	Х	Α	A	Α	A	A	Α	TVB
ASTM #3 Oil	100	Α	Х	Х	Х	А	А	Α	Х	А	Α	А	A	A	А	TVB

polymer only! For explanation of ratings see	Juge 2. 0	ontaot	ousto						-	PRODI			50 - 00			
A = May be used for							HEMIC								FIT	TING
Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data, contact customer services		Fabres	Grav Ei	Yellow	Tan Ei Tan Ei	Oranno -	Flexwing Petroi	Brown 5	Purnts -	Green XLPE Blue E.	Chemo.	HI-DED. & Viperm	Insta i	Insta I	Insta.1	Insta-Lock
GASKET	(°F)															
T = Teflon®V = Viton®B = NitrileN = NeopreneS = Silicone	Temperature (°	UHMWPE	Butyl	Hypalon∞	NR	Viton®	Nitrile	CPE	EPDM	XLPE	Alphasyn	Teflon∞	316 SS	Aluminum	Brass	Gasket
В	Tem				Н	OSE	TUBE I	POLY	MER					Μ	ETA	
Barium Carbonate	150	A	A	Α	Α	A	A	A	Α	A	Α	A	A	Х	Ι	TVBN
Barium Chloride	150	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	A	Х	I	TVBN
Barium Hydroxide	150	Α	А	Α	А	В	Α	A	Α	А	Α	Α	A	Х	Х	TBNS
Barium Sulfate	150	Α	А	Α	А	А	Α	A	Α	А	Α	Α	В	Α	Х	TVBS
Barium Sulfide	150	Α	А	Α	А	А	А	A	Α	А	А	Α	Α	Х	Х	TVBS
Benzal Chloride	100	Α	В	Ι	Ι	I	Х	X	Ι	А	Ι	Α	В	Х	Ι	T
Benzaldehyde	100	А	В	Х	Х	Х	Х	Х	В	А	В	Α	Α	В	Ι	T
Benzene (Benzol)	100	Α	Х	Х	Х	А	Х	Х	Х	В	В	Α	Α	Α	Α	ΤV
Benzine (Ligroin)	100	Α	Х	Х	Х	А	А	1	Х	Α	В	Α	А	Α	1	TVB
Benzine Solvent (Ligroin)	100	Α	Х	Х	Х	А	Α	1	Х	Α	Ι	Α	Α	Α	Ι	TVBS
Benzoic Acid	100	А	В	В	Х	Ι	Ι	A	В	А	А	Α	В	В	Х	TVN
Benzoic Aldehyde	100	Α	В	Х	Х	Х	Х	X	В	Α	Ι	Α	A	Ι	В	T
Benzotrichloride	100	Х	Ι	Ι	Ι	Ι	Х	X	Х	Х	Х	Α	Ι	Ι	Ι	T
Benzoyl Chloride	100	Х	Ι	Ι	Ι	Ι	Х	X	Х	В	Х	Α	В	Ι	Ι	T
Benzyl Acetate	100	Α	А	В	Х	Х	Х	В	Ι	А	В	Α	В	Ι	Ι	T
Benzyl Alcohol	100	Α	А	Х	Х	A	Х	A	Х	А	А	A	A	В	Ι	TVS
Benzyl Chloride	100	А	Х	Х	Х	А	Х	X	Х	А	Ι	A	A	Х	Х	ΤV
Bichromate of Soda	150	Α	А	Х	Ι	Ι	I	1	Ι	А	А	Α	Ι	Ι	Ι	T
Black Sulfate Liquor	150	Α	Х	В	В	В	В	A	В	А	А	Α	A	Х	Х	TVBN
Black Sulfate Liquor	275	Х	Х	Х	Х	Х	Х	A	Х	Х	Х	Α	A	Х	Х	T
Bleach	100	Х	В	Х	Х	В	Х		Α	Х	В	A	Х	Х	Х	TV
Brine	150	Α	Α	A	Α	А	Α	A	Α	А	A	A	A	Х		TVBNS
Bromine	100	Х	Х	Х	Х	В	Х		Х	Х	Х	A	Х	Х	Х	TV
Bromo Benzene	100	В	Х	Х	Х	В	Х	X	Х	Х	Х	A		Ι		TV
Bromo Toluene	100	Х	Х	Х	Х	В	Х	X	Х	Х	Х	A				T
Bromochloromethane	100	Х	В	Х	Х	В	Х	X		Х	A	A	A	Х	Х	T
Bunker C.	100	В	Х	Х	Х	A	A		Х	A	В	A	A		Ι	TVB
Bunker Oil	100	B	Х	X	Х	A	A		Х	X	B	A	A		1	TVB
Butanol	100	A	A	A	A	B	A	A	A	A	A	A	A			TBN
Butyl (Normal) Alcohol	100	A	A	A	A	B	A	A	A	A	A	A	A			TBN
Butyl (Secondary) Alcohol	100	A	A	A	A	B	A	A	A	A	A	A	A		1	TBN
Butyl Acetate	100	A	A	B	X	X	X	B	B	A	B	A	A	В		T
Butyl Acetoacetate	100	А	Х	Х	Х	Х	Х	X		A	В	A				T

CHEMICAL CI	ΗA	R٦	ΓS													
This chemical chart is offered as a guide only polymer only! For explanation of ratings see p											-				\backslash	
RATING SCALE				GOO	DYE	EAR	ENGIN	IEER	ED	PRODU						
A = May be used for						CI	HEMIC	AL I	HOS	E					FII	TING
Continuous Service				/	/	/	1. /		/	/ /		ler	/	/	/	777
B = May be used for Intermittent Service		/	/ /	16°	Wing	00	Wing	/	Ving	Wing	20/	& 1/1	<i>'</i> /	,	/ /	· /
$\mathbf{X} = \text{Do not Use}$		1	*		Lex .	XWin	Ley B	<u></u>	r ex	XLPL XLPL		*. 8	•	30	<u>ਤੋ</u> /ਤੁ	5
I = Insufficient Data, contact customer services		Fabchor	Gray El	Yellow	Tan Er	Oranoo	Flexwi Petrolo	Brown	Purnto	Green XLPE Blue Fice	Chemo	HI-PEN	Install	Insta_Lock **	Insta-Lock	Insta-Lock
GASKET	(°F)															
T = Teflon [®] V = Viton [®]		UHMWPE	_	Hypalon∘			e		_		Alphasyn‴	۵	SS	Aluminum	s	et
B = Nitrile N = Neoprene	atur	MHN	Butyl	Hypa	NR	Viton®	Nitrile	CPE	EPDM	XLPE	Alph	Teflon∘	316 SS	Alum	Brass	Gasket
S = Silicone	Temperature					ост -								м	ETAL	
В	Te				н	12E	TUBE P	ULT								
Butyl Acrylate	100	В	Х	Х	Х	Х	Х	В	Х	В	В	Α	Ι	1	Ι	Т
Butyl Alcohol	100	А	А	Α	А	В	Α	A	Α	А	А	Α	Α	Ι	I	TBN
Butyl Aldehyde	100	А	В	Х	Х	Х	Х	В	Х	А	В	Α	Х	A	Х	T
Butyl Amine	100	А	В	Х	Х	Х	Х	В	Х	Α	В	Α	A	A	Ι	T
Butyl Benzene	100	А	Х	Х	Х	A	Х	X	Х	А	В	Α	Ι	Ι		TV
Butyl Benzl Phthalate	100	A	A	Х	Х	Х	Х			A		A				T
Butyl Bromide	100	В	Х	Х	Х	В	Х	X	X	В	В	A				T
Butyl Butyrate	100	B	X	X	Х	X	X	X		В		A				TV
Butyl Carbitol	100	A	A	A	X	I	X	A	B	A	A	A				T
Butyl Cellosolve	100	A B	A	A	X	X	X X	A	A	Х	A	A	A	A	X	T
Butyl Chloride Butyl Ether	100 100	A	X	X B	X X	A X	B	X	X	B	A	A	B			T V T
Butyl Ethyl Acetaldehyde	100	A	B	Х	X	X	X		^ I	A	B	A				T
Butyl Ethyl Ether	100	A	X	B	X		B		X	A	A	A				T
Butyl Phthalate	100	A	A	X	X	X	X			A	A	A	A	A	1	T
Butyl Stearate	100	A	X	X	X		A	B	X	A	B	A	A	A	A	TBS
Butylate	100	A					1	1	A	1		1			1	100
Butyraldehyde	100	A	В	Х	X	Х	X	В	X	A	В	A	X	A	Х	T
Butyric Acid	100	Α	Х	В	Х	1	Х	A	В	A	Α	Α	A	В		Т
Butyric Anhydride	100	А	Х	В	Х	I	Х	1	Ι	А	Ι	Α	I	1	Ι	T
с													•			
Cadmium Acetate	100	А	Α	Α	Х	Х	Х	A		А	А	Α	I	Ι	I	T
Calcium Acetate	100	А	Α	Α	Х	Х	Х	A	Α	А	Α	Α	Α	1	I	ТВ
Calcium Aluminate	100	А	Α	Α	Α	Α	А	A	Α	А	А	Α	Ι	1	I	TVB
Calcium Bichromate	150	Х	Α	Х	Ι	Ι	Ι	Ι		Х	Ι	Α	Ι	Ι	I	Т
Calcium Bisulfate	150	А	Α	Α	Α	Α	А	A	Α	А	А	Α	Α	Х	Х	TVBN
Calcium Bisulfite	150	А	Α	Α	А	Α	А	A	Α	Ι	А	Α	Α	X	Х	TVBNS
Calcium Carbonate	150	А	Α	Α	Α	Α	А	A	Α	А	А	Α	Α	1	Х	TVBNS
Calcium Chloride	150	А	Α	A	Α	Α	А	A	A	А	А	A	В	X	Х	TVBNS
Calcium Hydroxide (Caustic Lime)	100	А	Α	В	Α	Х	В	A	Α	А	Α	Α	Α	X	Х	TNS
Calcium Hypochlorite	100	В	В	Х	Х	В	Х	A	В	Х	Α	Α	Α	X	Х	TV
Calcium Nitrate	150	Α	A	A	Α	Α	A	A	A	Α	Α	Α	В	Х	Х	TVBN
Calcium Silicate	150	Α	Α	Α	А	Α	А	A	A	А	А	Α		A		TVBN

polymer only! For explanation of ratings see RATING SCALE	Jage 2. 0	Jinaci	custo							PRODU			55-40	52.		
$\mathbf{A} = May$ be used for				GUL	וזטנ		HEMIC				1013	2			FIT	TING
Continuous Service				7	/	7	/ /		/	/ /		Brin	/	7	/	7 /
B = May be used for			/ /	Yellow 5	Tan Eise Kwing	0	Flexwing Petroling	/	Purne -	Green XLPE Blue EL	20/	& Viper"			/ /	/ /
Intermittent Service X = Do not Use		Fahrho		exwii	Tan Er	XWing	Flexwing Petrol	<u></u>	Flexu	KLPE	Chemo.	16 m	Insta i	Insta ,	Insta_1	Insta-Lock
I = Insufficient Data, contact		pere	av E			ano	eXwij		l'nlo	Cen Lie Fi	lemo	HL-PENG	รี/รู	Sta. L	Sta. I	sta-l
customer services	_	2	E,	10	la,	6	12 0	4	/ ⁿ	15 16	15		1 4	/ Ľ	1	4
GASKET	(°F)													E		
$\mathbf{T} = \text{Teflon}^{\mathbb{R}}$ $\mathbf{V} = \text{Viton}^{\mathbb{R}}$		UHMWPE	λ	Hypalon∘		Viton∘	Nitrile		EPDM	щ	Al phasyn‴	Teflon∘	316 SS	Aluminum	Brass	Gasket
B = NitrileN = NeopreneS = Silicone	eratı	돌	Butyl	Ę	R	Vit	Nit	CPE	G	XLPE	Alp	Tef	31(Alu	Bra	Ga:
	Temperature				H	OSE '	TUBE I	POLY	MER					М	ETA	
С	-							_								
Calcium Sulfate	150	A	A	A	A	A	<u>A</u>	A	A	<u>A</u>	A	A	A		 	TVBS
Calcium Sulfhydrate	100	A	A	A	A	A	A	A	A	A	A	A			I	TVB
Calcium Sulfide	150	A	A	A	A	A	A	A	A	A	A	A	A	X	X	TVBN
Calcium Sulfite	150 100	A	A X	A B	X X	A	<u>А</u> Х	A	A	A A	A	A	B	B	X X	TVBNS
Caprylic Acid Carbitol	100	A	A	A	X		<u>х</u>	A	A	A	A	A	B	A	X	T
Carbitol Acetate	100	A	B	B	X		<u>х</u>		A	A	A	A		A	^	T
Carbolic Acid, Phenol	100	A	A	X	X	A	<u>х</u>	A	X	A	В	A	A	B	A	TV
Carbon Dioxide	100	A	A	A	A	A	A	A	A	A	A	A	A	B	1	TVBNS
Carbon Disulfide		~								APPLIC			1			
Carbon Tetrachloride	100	В	X	X	X	A	X	X	X	A A	B	A	A			TV
Carbonic Acid	100	A	A	A	A	A	A	A	A	A	A	A	A	B	В	TVBS
Casinghead Gasoline	100	В	Х	Х	Х	Α	A	В	Х	В	В	A	1	1	1	TVB
Caster Oil (Castor Oil)	100	Α	Α	Α	Х	Α	А	A	Α	Α	Α	A	Α	A	Ι	TVBS
Caustic Potash	150	Α	Α	В	А	Х	В	A	В	Α	Α	A	A	Х	Х	Т
Caustic Soda	150	А	Α	В	А	Х	В	A	Α	А	А	A	Α	Х	Х	TNS
Cellosize	100	А	А	Х	Х	I	Х			А	А	A	Ι	Ι	I	T
Cellosolve	100	А	А	A	Х	Х	Х		А	А	А	A	Α	A	Х	T
Cellosolve Acetate	100	Α	В	В	Х	Х	Х	X	В	Α	А	A	Α	Ι	Х	T
Chloracetic Acid	100	А	Х	Х	В	Х	Х	A	Х	А	А	A	Α	Х	Х	T
Chlorinated Solvents	100	В	Х	Х	Х	А	Х	В	Х	Α		A	В	Х	А	TV
Chlorine (Dry) (Gas)			NC							APPLIC	1					
Chlorine (Wet)	100	Х	Х	Х	Х	В	Х	X	Х	Х	Х	A	X	X	Х	TV
Chloroacetone	100	A		Х	Х	Х	Х	X	Х	А		A	A	X	Х	T
Chlorobenzene	100	В	Х	Х	Х	A	X	X	Х	A	В	A	A	B		TV
Chlorobenzol	100	A	Х	X	Х	A	X		X	A	B	A	A	B	-	TV
Chlorobutane	100	X	X	X	X	A	X	X		X		A				TV
Chloroethylbenzene	100	A	X	X	X	A	X		X	A		A				T V T V
Chloroform	100	B	X	XX	X X	B	X	X	X X	X	B	A	A	B X		
Chloropentane Chlorophenol	100 100	A	X	XX	XX	A B	<u>Х</u> Х	X X	X X	A X	I B	A	A	<u>л</u>		T V T V
Chloropropanone	100	A		X	X	D X	X	X	X	A	D	A				T
Chlorosulfonic Acid	100	X	X	X	X	X	X		X	X	X	A	B	X	X	T
	100	Λ	Λ	^	Λ	Λ	Λ		Λ	Λ	Λ	А	D	^	Λ	<u> </u>

CHEMICAL CI	HA	R ⁻	ΓS)											_	
This chemical chart is offered as a guide onl polymer only! For explanation of ratings see p																<u> </u>
RATING SCALE				GOC)DYI					PRODL	JCTS	5			EIT	TING
A = May be used for						C	HEMIC	AL I	HOS	E					F 11	IING
Continuous Service			/	/	/	/	1. /		/			Br	/	/	/	
B = May be used for Intermittent Service			/ /	16.®	Wing	00	Wing	/	wing.	Wing	8	& 1/j		, /	/ /	' /
$\mathbf{X} = \text{Do not Use}$				EXWI	Lex/	XWin	rey 18	m,	Flex1	KIP	EXWI	<i>"e</i> "	» /	30	<u>ਤੋ</u> /	3
I = Insufficient Data, contact		Fabric	av r	Yellow r.	12	anor	Flexwing Petroling		Purno -	Green XLPE Blue EL	lemo	HI-PEDE & Viperm	Insta i	Insta I	Insta-Lock	Insta-Lock
customer services		Fa	25	/ ×	ľa,	Oranoo	Flexwing Petrol	8	4	Green XLPE Blue EL	5	/ 1	1	/ [#]	1	4
GASKET	,Е													_		
$\mathbf{T} = \text{Teflon}^{\mathbb{B}}$ $\mathbf{V} = \text{Viton}^{\mathbb{B}}$	Le (UHMWPE	-	Hypalon∘		۹	<u>e</u>		Σ	ш	Al phasyn‴	°u	SS	Aluminum	s	(et
B = Nitrile N = Neoprene	ratu	UHN	Butyl	Hypi	NR	Viton®	Nitrile	CPE	EPDM	XLPE	Alph	Teflon∘	316 SS	Alun	Brass	Gasket
S = Silicone	Temperature (°F)													м	ETAI	
с	Tei				н	U2F	TUBE I	PULY	WER					IVI	ETAI	-
Chlorothene	100	Х	Х	Х	Х	А	Х	1	Х	А	Ι	A	A	Ι	Ι	ΤV
Chlorotoluene	100	Х	Х	Х	Х	А	Х	Х	Х	Х	Ι	Α	A	Ι	I	ΤV
Chlorpyrifos	100	Ι		Ι	I	Ι	1	1	Х	Ι	1	Ι	Ι	Ι	I	I
Chromic Acid 25%	100	В	Х	В	Х	Ι	Х	A	Х	Х	В	Α	В	Х	Х	ΤV
Coal Oil	100	Α	Х	Х	Х	А	А	A	Х	А	А	Α	A	Х	А	TVB
Coal Tar	100	Α	Х	Х	Х	А	Х	В	Х	А	А	Α	A	Ι	I	TVS
Coal Tar Naptha	100	Α	Х	Х	Х	А	Х	В	Х	А	А	Α	Α	А		ΤV
Copper Chloride	100	Α	Α	Α	Х	А	А	A	Α	А	А	Α	Х	Х	Х	TVBNS
Copper Hydrate	100	Α	Α	В	Х	Х	В	1	Ι	А	А	Α	I	Ι	I	ТΒ
Copper Hydroxide	100	Α	Α	В	Х	Х	В	1	Ι	А	А	Α	I	Ι		ТΒ
Copper Nitrate	100	Α	Α	Α	Х	А	А	A	Α	А	А	Α	Α	Х	Х	TVBNS
Copper Nitrite	100	Α	А	Α	Х	А	А	A	Α	А	А	Α	Ι	Ι	I	TVB
Copper Sulfate	100	Α	Α	A	Х	А	А	A	Α	А	А	Α	A	Х	Х	TVBNS
Copper Sulfide	100	А	Α	A	Х	А	А	A	А	А	А	A	Ι	Ι	I	TVB
Creosols	100	Α	Α	Х	Х	А	Х	A	Х	А	В	Α	A	Ι	Х	ΤV
Creosote	100	Α	Х	Х	Х	А	В	1	Х	А	В	A	Α	Ι	Ι	ΤV
Cresylic Acid	100	А	Α	Х	Х	Ι	Х	Х	Х	А	Ι	A	A	В	Х	ΤV
Crotonaldehyde	100	А	Α	Х	Х	Х	Х	A	Ι	А	А	Α	Ι	Ι	I	Т
Crude Oil	100	Α	Х	Х	Х	А	А	В	Х	А	В	Α	A	Α	I	TVB
Cumene	100	А	Х	Х	Х	А	Х	Х	Х	А	В	A	Ι	Ι	I	ΤV
Cupric Carbonate	100	Α	Α	A	Х	А	А	A	Α	А	А	A	Ι	Ι	Ι	TVBN
Cupric Chloride	100	Α	Α	A	Х	А	А	A	Α	А	А	A	В	Х	Ι	TVBNS
Cupric Nitrate	100	А	Α	A	Х	А	А	A	Α	А	А	A	В	Ι	I	TVBN
Cupric Nitrite	100	Α	Α	A	Х	А	А	A	Α	А	А	A	Ι	Ι	Ι	TVB
Cupric Sulfate	100	A	Α	A	Х	А	А	A	Α	А	A	A	Ι	Ι	I	TVBNS
Cyclohexane	100	Α	Х	Х	Х	А	В	A	Х	А	В	A	A	В	Х	ΤV
Cyclohexanol	100	Α	Х	Х	Х	В	В	A	Х	А	В	A	A	Х	Х	TVB
Cyclohexanone	100	A	Х	Х	Х	Х	Х	X	Х	А	В	A	A	Ι		T
Cyclopentane	100	Α	Х	Х	Х	А	В	В	Х	А	В	A		Ι	I	TVN
Cyclopentane, methyl	100	Α	Х	Х	Х	А	В		Х	А	В	A	Ι	Ι	I	ΤV
Cyclopentanol	100	Α	Х	Х	Х	В	В	A	Х	А	A	A		Ι	I	TVB
Cyclopentanone	100	А	Х	X	Х	Х	Х	X	Х	А	В	A		Ι		T

polymer only! For explanation of ratings see RATING SCALE		ontact	custo						-	PRODI			JJ-+0) <i>L</i> .		
$\mathbf{A} = May$ be used for				uot			HEMIC					•			FIT	TING
Continuous Service			<u> </u>	/	7	/	/ /		/	7 7		Brin	/	7	/	
B = May be used for Intermittent Service		/	/ /	Yellow 5	Tan Er.) on/	Flexwing Petroling	/	Purne	Green XLPE Blue EL	20/	HI-PERS & VIDER			/ /	/ /
$\mathbf{X} = \text{Do not Use}$		Fahrho		^E XWI	rlex,	Oranoo S	Flexwing Petrol		Flexu	KIPE	exwii		Insts (Insta ,	Insta-1	Insta-Lock
I = Insufficient Data, contact		pepe	av E			anos	eXwij	0 Min	l'ni	leen Ue E	Bm0	HI-PERO	<u>ل</u> ا الم	Sta. I	sta.1	sta-I
customer services		20	<i>Ŀ</i>	19	la la	6	14 00	19	\ q	6 6	25		/ 🛎	1	1	4
GASKET	(°F)													E		
$\mathbf{T} = \text{Teflon}^{\mathbb{R}}$ $\mathbf{V} = \text{Viton}^{\mathbb{R}}$		UHMWPE	Ā	Hypalon∞		Viton∘	Nitrile		EPDM	щ	Al phasyn‴	Teflon∘	316 SS	Aluminum	Brass	Gasket
B = NitrileN = NeopreneS = Silicone	eratı	퐁	Butyl	HyI	R	Vit	Nit	CPE	G	XLPE	Alp	Tef	31(Alu	Bra	Ga:
3 = Silicolle	Temperature				Н	OSE 1	TUBE F	POLY	MER					М	ETAI	
D	-															
D.D.T. in Kerosene	100	A	X	X	X	A	A	A	X	A	B	A			A	TVB
D.M.P.	100	X	X	X	X	X	X	X	X	X	A	A	A			TV
Decalin®	100	X	X	X	X	A	X	X	X	A	X	A				TV
Decanol	100 100	A	A	A	X X	B B	A	A	A	A	A	A			1	T B T B
Decyl Alcohol Decyl Aldehyde	100	A	X	A X	X	D X	X	A	A	A	B	A		1	1	T
Decyl Butyl Phthalate	100	A	A	X	X	X	 Х		1	A	D	A		1	1	 Т
Denatured Alcohol	100	A	A	A	A	B	A	A	A	A	A	A	A	B	A	TB
Diacetone Alcohol	100	A	A	В	B	X	X	A	X	A	A	A	A	1		T
Diamyl Phenol	100	A	X	X	X	A	X	A	X	A		A				TV
Diamylamine	100	A	A	X	B	1	B	A		A	B	A				ТВ
Diamylene	100	A	Х	Х	X	A	X	В	Х	A	B	A		1		ΤV
Dibenzyl Ether	100	A	В	Х	Х	I	Х	X	Х	A	В	A	A	A	Х	T
Dibromobenzene	100	В	Х	Х	Х	A	Х	1	Х	А		Α	1	Ι		ΤV
Dibutyl Amine	100	А	Х	Х	В	Х	В	A	Х	А	Α	Α	Ι	Ι	I	Т
Dibutyl Ether	100	Α	Х	В	Х	Х	Х	A	Х	А	Α	Α	A	Α	Х	T
Dibutyl Phthalate	100	Α	А	Х	Х	Х	Х	X	Α	А	Α	Α	A	Α	Ι	ΤV
Dibutyl Sebacate	100	А	А	Х	Х	χ	Х	В	Х	А	Ι	Α	I	Ι	Ι	TVS
Dicalcium Phosphate	100	А	А	Α	Α	А	А	A	Α	А	А	Α	I	Ι	Ι	TVB
Dicamba	100	А	I	Ι	I	I	Ι	Ι	Α	А		Α	Ι	Ι	Ι	Т
Dichloroacetic Acid	100	А	Х	Х	В	Х	Х	В	Ι	А	Ι	Α	Ι	Ι	Ι	T
Dichlorobenzene	100	А	Х	Х	Х	A	Х	X	Х	А	В	A	Α	В	Ι	ΤV
Dichlorobutane	100	А	Х	Х	Х	A	Х	X	Х	А	Ι	A		Ι		ΤV
Dichlorodifluoromethane	100	Ι	Х	Х	Х	В	В		Х	Ι	Х	A		Ι		TVB
Dichloroethane	100	A	Х	Х	Х	A	Х	X	Х	A	A	A		A		ΤV
Dichloroethyl Ether	100	A	Х	Х	Х		Х	B	Х	A	В	A				T
Dichloroethylene	100	X	Х	Х	Х	A	X			X	X	A		A	X	TV
Dichlorohexane	100	A	X	X	X	A	X	X	X	A	A	A				TV
Dichloropentane	100	A	X	X	X	A	X	X	X	A	B	A		l	1	TV
Dichloropropane	100	A	X	X	X	A	X	X	X	B		A	A	X	1	
Diesel Oil	150	A	X	X	X	A	A	A	X	A	B	A	A	A	1	TVB
Diethanol Amine	100	A	A X	X X	B X	•	B X	A X	I X	A	A B	A	A		1	T V
Diethyl Benzene	100	A	٨	Ā	٨	A	٨	λ	٨	A	В	A				1 1

CHEMICAL C	HA	R	٢S)											_	
This chemical chart is offered as a guide only polymer only! For explanation of ratings see i	-										-				\backslash	
RATING SCALE	Jage 2. 0	ontaot	ousto							PRODU			70 +00	52.		
A = May be used for				GUL	וזטנ		HEMIC				1013)			FIT	TING
Continuous Service				7	7	7	7 7		7	7 7		1.	7	7	/	
B = May be used for			/ /	e	19	/ /	ling,	/	20	100	b. /	Vipe		/ /		/ /
Intermittent Service		/.	».	Win	(eXM	Wing	lexu	=	eXWI	LPE	KWiji	مع بر	. /	1.15	چ	হ হ
X = Do not Use I = Insufficient Data, contact		1	12			Tex Tex	Wing	ulen me z		SELC Y	19 19	HL-PED	: \ :	107-6	9-10	
customer services		Fabric	6ra	Yellow r.	Tan EL	0ra	Flexwing Petroving	Bro	Purnto E	Green XLPE Blue Fig.	Che	HL-PEns & Viperm	Insta i	Insta ,	Insta-Lock	Insta-Lock
GASKET	(°F)															
T = Teflon [®] V = Viton [®]	و 1	NPE		on®			a				Alphasyn	®	S	Aluminum		et
$\mathbf{B} = \text{Nitrile}$ $\mathbf{N} = \text{Neoprene}$	atur	UHMWPE	Butyl	Hypalon∘	R	Viton∘	Nitrile	CPE	EPDM	XLPE	Alpha	Teflon∘	316 SS	Alum	Brass	Gasket
S = Silicone	Temperature											-				
D	Ten				H	OSE	TUBE I	POLY	MER					Μ	ETAL	
Diethyl Carbinol	100	Α	Α	A	Α	В	А	1	Ι	А	А	A	Ι	Ι	I	TBN
Diethyl Ketone	100	Α	В	Х	Х	Х	Х	Х	Х	А	В	Α	Ι	I	Ι	T
Diethyl Oxalate	100	Α	В	Х	В	Ι	Х	A	Х	А	В	A	Ι	1	Ι	T
Diethyl Phthalate	100	Α	Α	Х	Х	Х	Х	В	Х	А	В	Α	Ι	1	Ι	T
Diethyl Sebacate	100	Α	Α	Х	Х	Х	Х	В	Х	А	В	Α	A	A	Ι	T
Diethyl Sulfate	100	Α	В	Х	Х	Х	Х	A	Ι	А	Α	A	Х	1	Ι	TNS
Diethyl Triamine	100	Α	Α	Х	В	Ι	В	A	Ι	А	Α	Α	Ι	1	Ι	ТВ
Diethylamine	100	А	А	Х	В	Ι	В	В	В	А	В	A	A	Ι	Х	ΤВ
Diethylene Dioxide	100	А	В	Х	Х	Х	Х	В	Α	А	Α	A	Х	Х	Х	Т
Diethylene Glycol	100	А	А	A	Α	А	А	Х	Α	А	Α	Α	A	В	Α	TVBN
Diethylene Triamine	100	А	Α	Х	В	Ι	В	A	Ι	А	Α	Α	Ι	Ι	Х	T
Dihydroxydiethyl Ether	100	А	А	A	Α	А	А	A	Α	А	Α	Α	Ι	I	Ι	TVBN
Dihydroxyethyl Amine	100	А	А	Х	В	I	В	A	Ι	А	А	Α	I	Ι	Ι	ТΒ
Diisobutyl Ketone	100	А	В	Х	Х	Х	Х		В	А	В	Α	Ι	Ι		Т
Diisobutylene	100	Α	Х	Х	Х	Α	А	X	Х	А	В	A	Α	I	Ι	TVB
Diisoctyl Adipate	100	А	Α	Х	Х	Х	Х	1	Ι	А	Ι	A	Ι	Ι	Ι	T
Diisoctyl Phthalate	100	А	А	Х	Х	Х	Х	1	Ι	А	Ι	A	Ι	Ι	Ι	Т
Diisocyanate	100	Х	Х	Х	Х	Х	Х	X	Х	Х	В	Α	Ι	1	Ι	Т
Diisodecyl Adipate	100	А	А	Х	Х	Х	Х		Ι	А	Ι	A	Ι	Ι	Ι	T
Diisodecyl Phthalate	100	А	А	Х	Х	Х	Х	1	Ι	А	Ι	A	Ι		Ι	T
Diisopropanol Amine	100	А	Α	Х	В	Ι	В		Ι	А	В	A		1	Ι	ΤB
Diisopropyl Amine	100	A	Α	Х	В	Ι	В	1	Ι	Α	В	A				ΤB
Diisopropyl Ether	100	А	Х	В	Х	Ι	В		Х	А	В	A	A			ΤB
Diisopropyl Ketone	100	A	В	Х	Х	Х	Х		В	А	В	A	A	A		T
Dilauryl Ether	100	A		В	Х	I	В			A	В	A				ТВ
Dimethyl Amine		1								APPLIC						
Dimethyl Benzene	100	Α	Х	Х	Х	Α	Х	X	Х	Α	В	A	A		Ι	ΤV
Dimethyl Ether	100	A	Х	В	Х		В		Х	В	В	A			Ι	T B
Dimethyl Ketone	100	A	A	Х	В	Х	Х	A	Α	В	A	A	A	A	1	T
Dimethyl Phenol	100	A	Х	X	Х	A	Х		X	A	A	A				TV
Dimethyl Phthalate	100	A	A	X	Х	Х	Х	A	В	A	A	A	A			TV
Dimethyl Sulfate	100	A	В	Х	Х	Х	Х	A		A	A	A				T
Dimethyl Sulfide			N) HOS	E RE	COMI	MENDED	FOR	THIS	APPLIC	ATIO	N				

polymer only! For explanation of ratings see p RATING SCALE	page 2. O	Unitaci	CUSIO						-	PRODI			JJ-40.	JZ.		
A = May be used for				GUL	ווטנ		HEMIC					2			FIT	TING
Continuous Service			\square	/	/	/	7 7		/	7 7		Brin	/	7	/	
B = May be used for Intermittent Service			/ /	Yellow r.	Tan Ei-		Flexwing Petroling	/	Purne	Green XLPE Blue EL	20/	HI-PERCE & Viperm		. /	/ /	/ /
$\mathbf{X} = \text{Do not Use}$		Fabres		exwii	rlex,	Oranoo r.	Flexwing Petrol			KIPE	exmi	16 M	Insta i	Insta ,	Insta-10CH	Insta-Lock
I = Insufficient Data, contact		pere	av E			alloo	eXwij		l'nlo	een Ue E	l ma	HL-PED	<u>با</u> ال	Sta. L	sta. I	sta-l
customer services		29	25	/ ×	la,	6	12 0	B	/ ⁿ	19 19	15		/ 🛎	/ Ű	1	4
GASKET	(°F)													E		
$\mathbf{T} = \text{Teflon}^{\mathbb{B}}$ $\mathbf{V} = \text{Viton}^{\mathbb{B}}$	Ire	UHMWPE	<u>ک</u>	Hypalon∘		Viton®	Nitrile		EPDM	щ	Al phasyn	Teflon∘	316 SS	Aluminum	Brass	Gasket
B = NitrileN = NeopreneS = Silicone	eratı	돌	Butyl	łyl	NR	<u> </u>	Nit	CPE	G	XLPE	Alp	Tef	31(Alu	Bra	Ga:
	Temperature				Н	OSE '	TUBE F	POLY	MER					М	ETAI	
D																
Dimethyl Carbinol	100	A	A	A	A	B	<u>A</u>	A	A	A	A	A	A		<u> </u>	TBNS
Dinitrobenzene	100	A	X	X	X	A	X			A	B	A			1	TV
Dioctyl Adipate	100 100	A	A	X X	X B	X	<u>Х</u> В	X	B	A	B	A			1	 Т
Dioctyl Amine Dioctyl Phthalate	100	A	A B	X	X	I A	<u>к</u>	X	X	A	A	A	A		1	TV
Dioctyl Sebacate	100	A	A	X	X	X	X	X	^ B	A	A	A			1	TV
Dioxane	100	A	В	X	X	X	<u>х</u>	B	X	A	A	A	A		1	T
Dioxolane	100	A	X	X	X		X	B	X	A	B	A				T
Diphenyl Phthalate	100	A	A	X	X	X	X			A	A	A			I	T
Dipropyl Ketone	100	A	B	X	X	X	X	X		A	A	A				T
Dipropylamine	100	A	A	X	В		В	В		A	A	A		1		T
Dipropylene Glycol	100	А	A	A	Α	Α	Α	A	Ι	А	A	A	1	1	I	TVB
Disodium Phosphate	100	А	А	Α	Α	Ι	Α	A	Ι	Α	Α	A	A	I	В	ТВ
Divinyl Benzene	100	А	Х	Х	Х	Α	Х	Х	Х	А	В	A	Ι	Ι	Ι	ΤV
Dodecyl Benzene	100	А	Х	Х	Х	А	Х	Ι	Х	А	В	A	Ι	Ι	Ι	ΤV
Dodecyl Toluene	100	А	Х	Х	Х	Α	Х	Ι	Х	А	В	A	Ι	Ι	Ι	ΤV
Dow-Per	100	А	Х	Х	Х	А	Х	Ι	Х	А	В	A	Ι	Ι	Ι	ΤV
Dowtherm [®] A	100	А	Ι	Х	Х	Α	Х	Х	Х	А	А	A	Ι	A	Ι	ΤV
Dowtherm [®] E	100	А	Х	Х	Х	Α	Х	X	Х	Α	A	1	1	X	Ι	V
Dowtherm [®] SR-1	100	А	A	A	A	А	А		Ι	А	A	A				TVB
E																
Endolene	100	Ι		Ι		Ι	I		- I	Ι	1			I	Ι	Ι
Epichlorohydrin										APPLIC	1	_				
Ethanol	100	A	A	A	A	В	Α	A	Α	A	A	A	A	В	Α	TBN
Ethanol Amine	100	A	A	В	В		B	A	В	A	B	A	A	B		TB
Ethyl Acetate	100	A	B	X	Х	Х	X	B	A	A	A	A	A	A	A	T
Ethyl Acetoacetate	100	A	B	X	X	Х	X	A	B	A	A	A	B		1	T
Ethyl Acrylate	100	A	X	X	X	X	X	B	X	B	B	A	A	A	A	Т
Ethyl Alcohol Ethyl Aldehyde	100	A	A	A Inc	A	A			А	A Applic	A ATIO	A	A	В	A	TVBNS
Ethyl Aluminum Dichloride	100	Х	X	X	X	B	X	I	X	B		A	1	1	1	ΤV
Ethyl Benzene	100	A	X	X	X	A	<u>х</u>	X	X	A	B	A	A	A	X	TV
Ethyl Butanol	100	A	A	A	A	B	A	A	A	A	A	A	I I		1	TB
	100	Л	А		Λ	ט	А		Λ	л	А				1	

CHEMICAL CI	ΗA	R ⁻	ΓS	•												
This chemical chart is offered as a guide only polymer only! For explanation of ratings see p											-					<u> </u>
RATING SCALE				GOO	DYI					PRODL	JCTS	S			FIT	TING
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data, contact customer services 		Fabres	Grav Er.	Yellow 5.	Tan Er.	/	Flerwing Petrol		7	Green XLPE Blue FL	Chemo	HL-PEDG W Viper	Insta i	Insta ,	/ /	
GASKET	(°F)	ىپ		<u>م</u>										E		
T = Teflon® V = Viton® B = Nitrile N = Neoprene S = Silicone N	Temperature	UHMWPE	Butyl	Hypalon∘	NR	Viton®	Nitrile	CPE	EPDM	XLPE	Alphasyn™	Teflon®	316 SS	Aluminum	Brass	Gasket
E	Temp				H	OSE	TUBE I	POLY	MER					Μ	ETAI	-
Ethyl Butyl Acetate	100	Α	Α	В	Х	Х	Х	1	Ι	А	В	A	Ι	1	Ι	T
Ethyl Butyl Alcohol	100	Α	Α	A	А	В	А	A	Α	А	Α	A	Ι	1	Ι	ΤB
Ethyl Butyl Amine	100	Α	A	Х	В	Ι	В					A				ΤB
Ethyl Butyl Ketone	100	A	B	X	X	X	X	X		<u>A</u>	A	A				T
Ethyl Butyraldehyde Ethyl Chloride	100	A	В	X	X	X	X		ТШС	A Applic	В	A				T
Ethyl Dichloride		В	X	X		B	X	X	X	B	B	A	1		1	ΤV
Ethyl Ether		D								APPLIC				-		1 V
Ethyl Formate	100	A	В	X	Х	Х	Х	A	В	A	A	A	A	1	Ι	ΤV
Ethyl Hexanol	100	Α	Α	A	Α	В	А	A	Α	А	Α	A	Ι	1	Ι	TBN
Ethyl Hexoic Acid	100	Α	Х	В	Х	Ι	Х	1	Ι	А	Α	A	Ι	1	Ι	T
Ethyl Hexyl Acetate	100	А	Α	В	Х	Х	Х	1	Ι	А	В	A	Ι	1	Ι	T
Ethyl Hexyl Alcohol	100	Α	Α	A	Α	В	А	A	Α	Α	Α	A	Ι		Ι	TBN
Ethyl lodide	100	Х	Х	X	Х	В	Х	X	Х	В	B	A				TV
Ethyl Isobutyl Ether	100	A	X	B	X	I	B		X	A	B	A				T
Ethyl Methyl Ketone Ethyl Oxalate	100 100	A	B	XX	X	X	X X	A	X	A A	A B	A	A	A	A	T T V
Ethyl Phthalate	100	A	A	X	X	X	X	B	^	A	D I	A			1	T
Ethyl Propyl Ether	100	A	X	B	X	1	B	A	X	A	B	A			1	T B
Ethyl Propyl Ketone	100	A	B	X	X	X	X	1		A	A	A	i	i		T
Ethyl Silicate	100	А	Α	1	Х	Ι	А	A	Ι	А	Α	A	A	1	Ι	TBN
Ethyl Sulfate	100	Α	В	Х	Х	Х	Х	A	Ι	Α	Α	A	Х	1	Ι	TBS
Ethylamine			NC) HOS	SE RE	COMI	VENDED	FOR	THIS	APPLIC	ATIO	N				
Ethylene Bromide	100	Х	Х	Х	Х	В	Х	1	Х	В	В	A	Α	Х	Ι	ΤV
Ethylene Chloride	100	В	Х	Х	Х	В	Х	1	Х	В	В	A	A	В	Ι	ΤV
Ethylene Diamine	100	A	Α	Х	В	Ι	В		В	Α		A	A			ΤB
Ethylene Dibromide	100	X	X	X	X	B	X		X	B	B	A	A	X		TV
Ethylene Dichloride Ethylene Glycol	100	B	X	X	X	B	X	X	X	B	A	A	A	B		
Ethylhexil Phosphorodieth	150 100	A	A X	A X	A	A	A	A	A X	A X	A	A	A	A		TVBNS B
Etrymexit Phosphorodieth	100	A	X	X	X	A	X			A	B	A				TV
	100	~	A		Λ	~	A	L '			U			<u>'</u>		

RATING SCALE				GOO	DYI					PRODI	JCTS	S			FIT	TINO
A = May be used for				,		C	HEMIC	AL I	HOS	E					FII	TING
Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data, contact customer services		Fattor	Grav E.	Yellow 5.	Tan Er	Oranos -	Flexwing Petroi	Brown S	Purnic Flexwing	Green XLPE Blue En XLPE	Chemo.	H-DER & Viper		Insta I	Insta_1	Insta-Lock
GASKET	(F)													_		
$T = Teflon^{\ensuremath{\circledast}}$ $V = Viton^{\ensuremath{\circledast}}$ $B = Nitrile$ $N = Neoprene$ $S = Silicone$	Temperature (UHMWPE	Butyl	Hypalon∞	NR	Viton∘	Nitrile	CPE	EPDM	XLPE	Alphasyn	Teflon®	316 SS	Aluminum	Brass	Gasket
F	Terr				H	OSE	TUBE I	POLY	MER					Μ	ETA	L
Ferric Bromide	150	Α	А	Α	А	A	А	A	А	А	Α	A	Ι	Ι	Ι	TVB
Ferric Chloride	150	А	А	А	А	A	А	A	А	А	Α	A	Х	Х	Х	TVBNS
Ferric Sulfate	150	А	А	Α	А	A	A	A	А	А	Α	A	A	Х	Х	TVBN
Ferrous Acetate	100	А	А	Α	Х	Х	Х	1	Ι	А	Α	A	Ι	Ι	Ι	T
Ferrous Chloride	150	А	А	Α	А	В	А	A	Α	А	Α	A	Ι	Х	Х	ТВ
Ferrous Hydroxide	100	А	А	В	А	Х	В	1	Ι	А	Α	A	В	Ι	I	TN
Ferrous Sulfate	150	А	А	Α	А	A	A	A	Α	А	Α	A	В	Х	Х	TVBN
Fluoboric Acid 65%	150	В	А	Α	А	Ι	I	A	Ι	Ι	Α	A	Ι		Х	TN
Fluorine (wet)	100	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	В	Х	X	Х	T
Fluosilicic Acid 50%	150	В	Α	Α	Α	Ι	1	A	Ι	Ι	Α	A	A	X	Х	TN
Formaldehyde 40%	100	A	A	A	В	В	Α	A	Α	А	Α	A	A	В		TB
Formalin	100	Α	A	A	В	A	Α	A	Α	Α	Α	A	A	В		TVB
Formic Acid	100	A	A	Х	В	Х	Х	A	Α	В	Α	A	В		Х	TV
Freon® 12	100	A	Х	Х	Х	В	В		Х	В	Х	A	A		I	TN
Freon [®] 22	100	A	Х	Х	Х	Х	Х		Ι	В	Х	A	A		I	TN
Fuel A (ASTM)	100	В	Х	Х	Х	A	A		Х	В	В	A	A	A	A	TVB
Fuel B (ASTM)	100	В	Х	Х	Х	A	A		Х	В	В	A				TVB
Fuel Oil	100	A	Х	Х	Х	A	A	X	Х	В	В	A	A	A		TVB
Furfural	100	A	A	Ι		Х	Х	A	В	A	A	A	A	A	Х	T
Furfuryl Alcohol	100	А	Х	I		Х		A	I	А	A	A	A	A		T
G		1														
Gallic Acid	100	A	В	Ι	A			A	В		В	A	В			TS
Gasoline	100	В	Х	Х	Х	A	A	В	Х	В	В	A	A			TVB
Glacial Acetic Acid	100	A	В	Х	Х	Х	Х	В	A	А	A	A	A	В	Х	T
Gluconic Acid	100	A	Х	В	Х		Х	A	Ι	А	A	A	X	X	A	T
Glycerin	100	Α	A	A	Α	A	A	A	Α	В	A	A	A	A	A	TVBNS
Glyphosate	100	Α	Ι	Ι	1	1			Α		Ι	1		1	Ι	
Graffinite	100	Ι	Х	Х	Х	Х	A	A	Х	Х	Ι	1	1			В
Grease	100	A	Х	X	Х	A	A		Х	В	A	A	A	A	A	TVB
Green Sulfate Liquor	150	А	A	A	A		A	A	Α	А	A	A	A	X	Х	TBS
Н																
Heptanal	100	Α	Х	Х	Х	Х	Х	X	Ι	А	Ι	A	Ι	Ι	Ι	TB
Heptane	100	Α	Х	Х	Х	A	А	A	Х	В	В	A	Α	A		TVB

CHEMICAL CHARTS																
This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.																
RATING SCALE	GOODYEAR ENGINEERED PRODUCTS															
A = May be used for		CHEMICAL HOSE FITTING														IING
Continuous Service		e e e e e e e e e e e e e e e e e e e														
B = May be used for Intermittent Service		/	/ /	ing.®	Wing	20	Kwing	/	Wing	Wing	19	& Vi	/ /	2		
$\mathbf{X} = \text{Do not Use}$			<u>"</u> Щ.	i ww	, / [[]	SXWIII	ing the	<i>ш</i> л;	Flex	Flex KIP			₂/.	100	3	1007
I = Insufficient Data, contact customer services		Fabchem ^m Gray Flewning® Vellow Flewning Dan Flewning Detroleum Brown Flewning Green KLPE Blue Flewning Green KLPE Blue Flewning Green KLPE Insta-Lock ^m Insta-Lock ^m Insta-Lock ^m													Insta-Lock	
GASKET	,Е										a					
T = Teflon [®] V = Viton [®]		UHMWPE	-	Hypalon∘		<u>ء</u>	ھ		Σ	ш	Alphasyn™	ů	SS	Aluminum	SS	ket
B = Nitrile N = Neoprene	ratu	NHN	Butyl	Hyp	NR	Viton®	Nitrile	CPE	EPDM	XLPE	Alph	Teflon®	316 SS	Alun	Brass	Gasket
S = Silicone	Temperature (°F)				Н	nse '	TUBE I	ΡΟΙ Υ	MFR					м	ETAL	
Н																
Heptane Carboxylic Acid	100	A	Х	В	Х	A	Х	A	I	Α	A	A		Ι		TV
Hexaldehyde	100	А	Х	Х	Х	Х	Х		Х	А	В	A	A	A		T
Hexane	100	В	Х	X	Х	A	A	B	Х	В	В	A	A	A	Α	TVB
Hexanol	100	A	A	A	Α	В	A	A	Α	A	A	A	A	Ι		TB
Hexyl Methyl Ketone	100	А	В	Х	Х	Х	Х			A	A	A		Ι		T
Hexylamine	100	A	В	Х	Х	Х	Х	B		A	В	A		Ι		T
Hexylene	100	Х	Х	Х	Х	A	A		Х	Х		A		Ι		TVB
Hexylene Glycol	150	А	A	A	Α	A	A	A		A	A	A	A	В	Α	TVBN
Hexyl-Alcohol	100	A	A	A	Α	В	A	A	Х	A	A	A	A	Ι		TB
Hi-Tri	100	A	Х	Х	Х	A	Х		Х	A	В	A				TV
Hydrobromic Acid (37%)	150	В	A	A	A		Х	A	Α		A	A	Х	Х	Х	TN
Hydrochloric Acid 38%			_					I								
concentrated, fuming acid	125	A	B	X			Х	X		A		A	Х	X	Х	T
Hydrochloric Acid 37%	125	A	В	A	В	Х	Х	A	В	A	A	A	Х	Х	Х	T
Hydrofluoric Acid (10%)	125	A	A	A	Х		Х	A		A	A	A	A	Х	Х	TN
Hydrofluosilicic Acid	150	B	B	A	A			A	A		A	A	A	X	Х	T
Hydrogen Dioxide 10%	100	В	Х	Х	Х	A	Х		I			A	A	В	Х	TV
Hydrogen Dioxide over 10%	100	В	Х	X	Х		Х		Х			A		I	Х	T
Hydrogen Gas	100	-							THIS	APPLIC	ATION			-		
Hydrogen Peroxide 10% to 50%	100	B	Х	X	X	A	X	A	I	I		A		B	I	TVS
Hydrogen Peroxide over 50%	100	Х	Х	Х	Х	Х	Х	X	Х	Х		A	A	I	Х	T
										_						
lodine	100	A		A				A		В		A			X	TVB
Iron Acetate	100	A	A	A	Х	Х	Х			A	A	A				TNS
Iron Hydroxide	100	A	A	B	Х	Х	В			A	A	A				TN
Iron Salts	150	A	A	A	A	A	A	A	A	A	A	A				TVBN
Iron Sulfate	150	A	A	A	A	A	A	A	A	A	A	A				TVBN
Iron Sulfide	150	A	A	A	A	A	A	A	A	A	A	A				TVB
Isoamyl Acetate	100	A	A	B	X	X	X		X	A	B	A			1	T
Isoamyl Alcohol	100	A	A	A	A	B	A	A	A	A	A	A	A		A	TBN
Isoamyl Bromide	100	B	X	X	X	B	X	<u> </u>	X	B		A				TV
Isoamyl Butyrate	100	B	X	X	X	X	Х	<u> </u>		B	B	A	1		1	T
Isoamyl Chloride	100	Х	Х	Х	Х	В	Х			Х	В	A			T	ΤV

RATING SCALE	Jugo 2. 0	GOODYEAR ENGINEERED PRODUCTS																
A = May be used for							HEMIC								FIT	TING		
Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data, contact customer services		Fatres	Grav Er	Yellow 5	Tan Ei Exwing	Oranos -	Flexwing Petroing	Brown 5	Purnts -	Green XLPE Blue EL	Chemo.	HI-PEDG & Viperm	Insta i	Insta i	Insta-1	Insta-Lock		
GASKET	(°F)													E				
T = Teflon®V = Viton®B = NitrileN = NeopreneS = Silicone	Temperature (UHMWPE	Butyl	Hypalon∘	NR	Viton∘	Nitrile	CPE	EPDM	XLPE	Alphasyn."	Teflon∘	316 SS	Aluminum	Brass	Gasket		
	Tem	HOSE TUBE POLYMER ME														ETAL		
Isoamyl Ether	100	A	Х	В	Х	1	В	1	Х	A	1	A	1	I	I	T		
Isoamyl Phthalate	100	Α	Α	Х	Х	Х	Х	Т	Ι	Α	I	A	Ι	Ι	I	Т		
Isobutane			NC) HOS	SE RE	COMI	MENDED	FOR	THIS	APPLIC	ATIO	N						
Isobutanol	100	А	Α	A	Α	В	А	A	Α	А	А	A	A	Ι	Ι	TBNS		
Isobutyl Acetate	100	А	Α	В	Х	Х	Х	В	Х	А	В	A	A	В	Ι	Т		
Isobutyl Alcohol	100	А	Α	Α	Α	В	Х	A	Α	А	Α	A	Α	1	Ι	TNS		
Isobutyl Aldehyde	100	А	В	Х	Х	Х	Х	В	Ι	А	В	A	Ι	Ι		Т		
Isobutyl Amine	100	А	В	Х	Х	Х	Х	Ι	Ι	А	В	A	Ι	Ι	I	Т		
Isobutyl Bromide	100	В	Х	Х	Х	В	Х	1	Х	Х	I	A	Ι	1	Ι	ΤV		
Isobutyl Carbinol	100	А	Α	Α	Α	В	Α	A	А	А	Α	A	Α	1	Α	TBN		
Isobutyl Chloride	100	В	Х	Х	Х	В	Х	1	Х	Х	I	A	Ι	Ι	I	ΤV		
Isobutyl Ether	100	А	Х	В	Х	Ι	Х	1	Х	А	I	A	Ι	Ι	Ι	ТВ		
lsobutylene	100	А	Х	Х	Х	A	Х	1	Х	А	В	A	Ι	Ι	Ι	TV		
Isooctane	100	В	Х	Х	Х	A	А		Х	В	В	A	A	A	Α	TVBS		
Isopentane			NC) HOS	SE RE	COMI		FOR	THIS	APPLIC		N						
Isophorone	100	В	Α		Ι		Х		Α	В	В	A	В	A		T		
Isopropanol	100	А	A	A	A	В	A	A	Α	A	A	A	A			TVBS		
Isopropanol Amine	100	A	A	Х	В	Х	В			A	В	A				TB		
Isopropyl Acetate	100	A	A	Х	Х	Х	Х	B	Х	A	A	A	A			T		
Isopropyl Alcohol	100	A	A	A	A	В	A	A	A	A	A	A	A			TBNS		
Isopropyl Amine	100	A	В	Х	Х	Х	Х			A	B	A				T		
Isopropyl Benzene	100	A	X	X	X		Х	X	Х	A	В	A				TV		
Isopropyl Chloride				1	1			I FUR	-	APPLIC								
Isopropyl Ether	100	A	X	B	X		X		Х	A	B	A	A			ТВ		
Isopropyl Toluene	100	A	Х	Х	Х	A	Х		Х	А		A				TV		
J				-							-	-						
Jet Fuels					SI	PECIA	L HOSE	REQL	JIRED				A	A	A	TVB		
К	· · · · · ·																	
Kerosene	100	А	Х	Х	Х	A	A	A	Х	А	A	A	A	A		TVB		
L																		
Lauryl Alcohol	100	А	Α	Α	Α	В	А	A	Α	А	Α	A	Ι	Ι	Ι	ΤB		
Lead Acetate	100	А	Α	Х	Х	Х	Х	A	В	А	Α	A	Α	Х	Х	Т		

CHEMICAL CHARTS																
This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.																
RATING SCALE	GOODYEAR ENGINEERED PRODUCTS FITTING														TINO	
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use 																
I = Insufficient Data, contact customer services		Fabch	Gray E	Yellow	Tan Fr	Orano	Flexw, Petroi	Brown	Purne	Green Blue F	Chemi	HI-PENS	Insta	Instal	Insta-1 c.	Insta-Lock
GASKET	(°F)															
T = Teflon®V = Viton®B = NitrileN = NeopreneS = Silicone	Temperature (UHMWPE	Butyl	Hypalon∞	NR	Viton。	Nitrile	CPE	EPDM	XLPE	Alphasyn™	Teflon®	316 SS	Aluminum	Brass	Gasket
	Teml	HOSE TUBE POLYMER METAL														-
Lead Sulfate	150	A	A	A	Α	A	A	A	A	A	A	A	A	Х	Х	TVBN
Ligroin	100	A	X	X	X	A	A		X	A	B	A	A	A		TVB
Linseed Oil	100	A	A	В	Х	A	A	A	В		A	A	A	1	A	TVBNS
Liquefied Natural Gas (LNG)			NC) HOS	SE RE	COMI	MENDED	FOR	THIS	APPLIC	ATIO	N				
Liquefied Petroleum Gas (LPG)			NC) HOS	SE RE	COMI	MENDED	FOR	THIS	APPLIC	ATIO	N				
Lubricating Oils	100	Α	Х	Х	Х	Α	А	1	Х	Α		Α	Α	A	Α	ТVВ
м						1										
МІВК	100	А	Х	Х	Х	Х	Х	Х	Х	А	В	A	Х	Х	Х	Т
M.E.K.	100	Α	Х	Х	Х	Х	Х	Х	Х	Α	В	A	Х	Х	Х	Т
Magnesium Acetate	100	А	Α	A	Х	Х	Х	A	Ι	А	А	A	Ι	1	I	Т
Magnesium Chloride	150	А	Α	A	Α	A	А	A	Α	А	А	A	Α	Х	I	TVBS
Magnesium Hydrate	150	А	Α	В	Α	В	В	Ι	Ι	А	А	Α	Α	Х	I	ΤN
Magnesium Hydroxide	150	А	Α	В	Α	В	В	A	Α	А	А	Α	Α	Х	I	TVBN
Magnesium Sulfate	150	А	Α	Α	А	Α	А	A	В	А	А	Α	Α	Ι	I	TVBNS
Maleic Acid	100	А	Х	Х	Х	Ι	Х	Ι	Ι	В	I	Α	Α	В	Х	ΤV
Malic Acid	150	В	Ι	Α	Α	Ι	Ι	Ι	Ι	Ι		Α	Α	В	Х	TVBNS
Manganese Sulfate	150	А	Α	Α	Х	Α	А	A	Α	А	А	Α	Α	Ι	Ι	TVBN
Manganese Sulfide	150	А	Α	Α	Х	Α	А	A	Α	А	А	Α	Ι	Ι	I	TVB
Manganese Sulfite	150	А	Α	Α	Х	A	А	A	Α	А	А	Α	Ι		I	TVB
Methanol	100	А	Α	Α	Α	Х	А	A	Α	А	А	Α	Α		Ι	ТВ
Mesityl Oxide	100	А	В	Х	Х	Х	Х	В	Х	А	В	A	Α		I	T
Methallyl Alcohol	100	А	Α	Α	Α	В	А	A	Α	А	А	Α	- I	Ι	Ι	ТВ
Methyl (Wood) Alcohol	100	А	Α	Α	Α	Х	А	A	Α	А	А	A	Α		Ι	TBNS
Methyl Acetate	100	А	Α	В	Х	Х	Х	A	Α	А	А	A	A			T
Methyl Acetoacetate	100	А	В	Х	Х	Х	Х	A		А	А	A	Ι		Ι	T
Methyl Acetone					1			FOR	1	APPLIC						
Methyl Amyl Acetate	100	В	A	В	Х	Х	Х		Х	A	В	A			I	T
Methyl Amyl Alcohol	100	Α	Α	A	Α	В	A	A	Α	Α	Α	A			Ι	TBN
Methyl Amyl Carbinol	100	A	A	A	A	В	A	A	A	A	A	A	Ι		Ι	TB
Methyl Amyl Ketone	100	A	В	Х	Х	Х	Х	X		A	В	A			Ι	T
Methyl Benzene	100	A	X	X	Х	A	X	X	X	A	B	A	A	A	A	TV
Methyl Butanol	100	A	A	A	A	В	А	A	T	A	A	A	A		A	TBN

RATING SCALE	e page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.															
$\mathbf{A} = May$ be used for				GUL	וזטנ		HEMIC				1013				FIT	TING
Continuous Service				7	7	7	/ /		7	/ /) m. 16	7	7	/	/ /
$\mathbf{B} = May be used for$			/ /	Yellow 5	Tan Er		Flexwing Petroling	/	Purnic -	Green XLPE Blue EL	20/	HI-PERS & VIDER			/ /	/ /
Intermittent Service X = Do not Use		Fabrho		invii.	,exw	twing	rlexi	<u></u>	lexw	ILPE		<i>ه</i> ا	Insta i	Insta ,	Insta-1 _	Insta-Lock
I = Insufficient Data, contact		Je Por	א בי			line,	XWin trol	nue -		Cen ,	9 / 19 3 / 19	HI-PERO	<u></u>	1 4	1-1-	ta-1
customer services		Fai	ßr ⁱ	Ye,	lau	Oranoo E	Flexwing Petrol	Bri	/ d	B	15	/ ≒	/ šij	l su	lus sui	<u> </u>
GASKET	(°F)													_		
$\mathbf{T} = \text{Teflon}^{\text{@}}$ $\mathbf{V} = \text{Viton}^{\text{@}}$		UHMWPE	-	Hypalon∘		ů	e		×	ш	Al phasyn‴	Teflon∘	SS	Aluminum	SS	ket
B = Nitrile N = Neoprene	ratu	UHN	Butyl	Hyp	R	Viton®	Nitrile	CPE	EPDM	XLPE	Alph	Tefl	316 SS	Alun	Brass	Gasket
S = Silicone	Temperature				ш	0CE -	TUBE I		MED					м	ETAI	
М	Ē					USE		ULT								
Methyl Butanone	100	А	В	Х	Х	Х	Х	В	В	А	В	A	Ι	Ι	Ι	T
Methyl Butyl Ketone	100	А	В	Х	Х	Х	Х	X	Ι	А	В	Α	A	В	Ι	T
Methyl Carbitol	100	А	A	A	Х	Ι	Х	A	Ι	Α	A	A		Ι	Ι	T
Methyl Cellosolve	100	А	А	Α	Х	Ι	Х	A	Α	Α	Α	A	A	В	А	T
Methyl Chloride			NC) HOS	E RE	COMI	MENDED	FOR	THIS	APPLIC	ATION	1				
Methyl Cyclohexane	100	А	Х	Х	Х	В	Х	В	Х	В	Ι	Α	Ι	Ι	Ι	ΤV
Methyl Ethyl Ketone (M.E.K.)	100	А	Х	Х	Х	Х	Х	X	Х	А	В	Α	Х	Х	Х	T
Methyl Hexanol	100	Α	А	Α	В	А	А	A	Α	А	А	Α	Ι	Ι	I	TVB
Methyl Hexanone	100	А	В	Х	Х	Х	Х	X	Ι	Α	В	Α	Ι	Ι	Ι	T
Methyl Hexyl Ketone	100	А	В	Х	Х	Х	Х	X	Ι	А	В	Α	Ι	Ι	Ι	T
Methyl Isobutyl Carbinol	100	А	А	Α	А	В	А	A	Α	А	А	Α	В	Ι	Ι	TBN
Methyl Isobutyl Ketone (MIBK)	100	А	Х	Х	Х	Х	Х	X	Х	Α	В	Α	Х	Х	Х	T
Methyl Isopropyl Ketone	100	А	В	Х	Х	Х	Х	В	В	А	В	Α	A	Ι	Ι	T
Methyl Normal Amyl Ketone	100	А	В	Х	Х	Х	Х		Ι	А	В	Α	Ι	Ι	Ι	T
Methyl Propyl Carbinol	100	А	А	Α	А	В	А	A	Α	Α	А	Α	Ι	Ι	Ι	ТВ
Methyl Propyl Ether	100	Α	Х	В	Х	Ι	Х		Х	А	В	Α	Ι	Ι	Ι	T
Methyl Propyl Ketone	100	Α	В	Х	Х	Х	Х	В	Ι	А	В	Α	Ι	Ι	Ι	T
Methyl Tertiary Butyl Ether																
(MTBE) 100% Concentratel	100	Х	Х	Х	Х	Х	Х	X	Х	А	В	Ι	Ι	Ι	Ι	<u> </u>
Methylallyl Acetate	100	Α	А	В	Х	Х	Х		А	А	А	Α	Ι	Ι	Ι	T
Methylallyl Chloride	100	А	Х	Х	Х	Х	Х	X	Ι	В	Ι	Α	Ι	Ι	Ι	T
Methyldiethanolamine	100	Α	Х	Х	Х	Х	А	A	Х	А	А	Α	Ι	Ι	Ι	TB
Methylene Bromide	100	В	Х	Х	Х	В	Х		Х	В	А	A		Ι	I	ΤV
Methylene Chloride			NC) HOS	SE RE	COMI	MENDED	FOR	THIS	APPLIC	ATION	1				
Metribuzin	100	А	Ι	Ι	Ι	Ι	1		А	I	Ι	Α	Ι	Ι	Ι	Т
Mineral Spirits	100	А	Х	Х	Х	В	А		Х	А	В	Α	Α	А	Ι	ТВ
Monochloroacetic Acid	100	А	Х	Х	В	Ι	Х	A	Х	А	А	Α	Α	Х	Х	T
Monochlorobenzene	100	В	Х	Х	Х	А	Х	X	Х	В	В	Α	Α	В	В	ΤV
Monochlorodifluoromethane	100	Ι	Х	Х	Х	Х	Х		Ι	Ι	Ι	Α	Α	Ι	I	ΤN
Monoethanol Amine	100	А	А	Х	В	Ι	В	A	В	А	В	Α	Α	В		ΤN
Monoethyl Amine			NC		SE RE	COMI	MENDED	FOR	THIS	APPLIC	ATION	N				
Monoisopropanol Amine	100	А	А	Х	В	Ι	В		Ι	А	В	Α	Ι	Ι	Ι	ΤB
Muriatic Acid	125	А	Х	Х	Α		Х	A	Х	А	А	A	Х	Х	Х	Т

CHEMICAL CHARTS																
This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.																
RATING SCALE GOODYEAR ENGINEERED PRODUCTS ELTTING																
A = May be used for	CHEMICAL HOSE FITTING														IING	
Continuous Service		Linge														7
B = May be used for Intermittent Service		/	/ /	18°	Wing	00	Wing	/	Wing	Wing	20/	& 1/1		,	/ /	
$\mathbf{X} = \text{Do not Use}$			*	EXWI		X Win	lig lie	<u></u>	rlex,	XLPF		<i> </i>	» /	30	<u>ਤ</u> ੋ/ ਤੁ	5 S
I = Insufficient Data, contact		pch.	av E			anpe	exwi trois	UMU.		Leen Lie	lemo	pro/	5/ S	Star I	sta-1	Insta-Lock
customer services		Fabchem " Gray Flexwing= Ian Flexwing= Ian Flexwing Flexwing Petroleum Brown Flexwing Green XLPF Blue Flexwing Green XLPF Blue Flexwing Green XLPF Insta-Lock " Insta-Lock "													<u> </u>	
GASKET	(°F)										2			ء		
$\mathbf{T} = \text{Teflon}^{\mathbb{B}}$ $\mathbf{V} = \text{Viton}^{\mathbb{B}}$	Ire	UHMWPE	۲	Hypalon∘		Viton∞	Nitrile		N	ų	Alphasyn™	Teflon∘	316 SS	Aluminum	Brass	Gasket
$\mathbf{B} = \text{Nitrile} \mathbf{N} = \text{Neoprene}$	eratı	돌	Butyl	Hyp	R	Vito	Niti	CPE	EPDM	XLPE	Alp	Tef	316	Alu	Bra	Gas
S = Silicone	Temperature				Н	ISF 1	rube f		MFR					м	ETAL	
N				_								_				
N/Methylpyrrolidone	100	А	Х	Х	Х	Х	Х	X	Х	Α	Ι	A	Ι	1		T
Naphtha	100	А	Х	Х	Х	A	А	A	Х	A	A	A	A	A		TVBN
Naphthalene	100	A	Х	Х	Х	A	Х		Х	А		A	A	B		TV
Natural Gas	NO HOSE RECOMMENDED FOR THIS APPLICATION															
Neohexane	100	A	Х	Х	Х	A	A	B	Х	A	В	A	A	A		TVB
Neu-Tri	100	A	X	Х	Х	A	X		X	A	B	A				TV
Nickel Chloride	150	A	A	A	A	A	<u>A</u>	A	A	A	A	A	B	X	X	TVBS
Nickel Nitrate	150	A	A	A	A	A	A	A	A	A	A	A	B	X	X	TVBN
Nickel Sulfate	150	A B	A	A	A	A	A	A	A	A	A	A	A	X	X	TVBNS
Nitric Acid 25% Nitric Acid 37%	100	Х	B X	X X	X X	X X	<u>Х</u> Х	X	X X	B X	A A	A	A	XX	X	T V T V
Nitric Acid 40%-60%	100	X	X	X	X	X	X	X	X	X	B	A	A	X	X	TV
Nitric Acid 70%	100	X	X	X	X	X	X	X	X	X	B	A	B	X	X	T
Nitro Benzene	100	A	X	X	X	B	X	X	X	A	B	A	A	B	X	T
Nitrogen Gas	100	A	A	A	A	A	A	A	A	A	A	A	A			TVBNS
Nitrous Oxide	100	A	A	A	A	A	A	A	A	A	A	A	A	i	X	TVBNS
Nonenes	100	Α	Х	Х	Х	Α	A	1	Х	A	В	A	1	1		V B
0	1													-		L
Octadecanoic Acid	100	А	В	Х	Х	I	А	A	В	А	Α	Α	Α	В	Α	TB
Octane	100	В	Х	Х	Х	Α	Α	A	Х	В	В	A	В	1	В	TVB
Octanol	100	А	Α	A	Α	В	Α	A	Х	А	Α	A	Α	1	I	TBN
Octyl Acetate	100	А	Α	A	Х	Х	Х	Х	I	А	В	A	Ι	1	I	Т
Octyl Alcohol	100	А	Α	A	Α	В	А	A	Х	А	Α	A	A	1	Ι	ТВ
Octyl Aldehyde	100	А	Х	Х	Х	Х	Х	Ι	I	А	Ι	A	Ι	1	I	Т
Octyl Amine	100	А	В	Х	Х	Х	Х	В		А	В	Α		Ι	I	T
Octyl Carbinol	100	А	Α	Α	А	В	А	A	Α	А	А	Α		Ι	I	ТВ
Octylene Glycol	100	А	Α	Α	А	А	А	A	Α	А	Α	Α		Ι	I	TVB
Oil Petroleum	100	В	Х	Х	Х	А	А	A	Х	А	В	Α	Α	A	Х	TVB
Oleic Acid	100	А	В	Х	Х	Ι	В	A	Х	А	В	A	Α	В	Х	TB
Oleum	100	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	A	Т	X	Х	ΤV
Organic Fatty Acids	100	А	Х	Х	Х	Х	А	A	Х	А	В	A	Α	1		TB
Orthodichlorobenzene	100	A	Х	Х	Х	A	X		Х	A	В	A			Ι	TV
Orthodichlorobenzol	100	A	Х	Х	Х	A	Х		X	A		A				T V

CHEMICAL CHARTS

This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.

polymer only! For explanation of ratings see p RATING SCALE	Jage 2. 01	ontact	งนอเป										55-40	, <u>,</u>		
A = May be used for				uul	וזטי		HEMIC			PRODL E	013	,			FIT	TING
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data, contact customer services 		Fabrhold	Grav Er	Yellow c:	Tan Er.	7	Flexwing Petrol		7	1 /	Chemo.	HI-PEDE & Viper	Insta i	Insta i	Insta_1_	Insta-Lock
GASKET	(°F)													_		
T = Teflon®V = Viton®B = NitrileN = NeopreneS = Silicone	Temperature (UHMWPE	Butyl	Hypalon∞	NR	Viton∞	Nitrile	CPE	EPDM	XLPE	Alphasyn™	Teflon∞	316 SS	Aluminum	Brass	Gasket
0	Tem				H	OSE	TUBE F	POLY	MER					Μ	ETAI	-
Orthoxylene	100	В	Х	Х	Х	Α	Х	1	Х	А	В	Α	Ι	Ι	Ι	ΤV
Oxalic Acid	100	А	А	Х	Х	Ι	Х	A	В	I	В	Α	A	В	Х	TS
Oxygen			NC) HOS	E RE	COMI	MENDED	FOR	THIS	APPLIC	ATION	N				
Ozone	100	Α	В	В	Х	Ι	Х	A	Α	Ι	В	A	Ι	Ι	Ι	TS
Р																
Palmitic Acid	100	А	А	В	Х	I	А	A	В	В	В	Α	A	Ι	Х	TBS
Papermakers Alum	150	А	А	Α	А	А	А	A	Α	Α	А	Α	Ι	Ι	1	TVBN
Paradichlorobenzol	100	В	Х	Х	Х	А	Х	1	Х	Α	I	Α	Ι	Ι	1	ΤV
Paraffin	150	А	В	Х	Х	А	А	A	Х	Х	Ι	A	A	Α	А	TVB
Paraldehyde	100	Α	В	Х	Х	Х	Х	1	В	А	В	A	A	Α	Ι	Т
Paraxylene	100	А	Х	Х	Х	А	Х	1	Х	Α	В	Α	Ι	Ι	I	ΤV
Pelargonic Acid	100	А	А	Х	Х	Ι	А			Α	Ι	A	Ι	Ι	Ι	ТВ
Pentachloroethane	100	А	Х	Х	Х	А	Х	1	Х	Α	1	Α	А	В	Х	ΤV
Pentane	100	Х	Х	Х	Х	А	А	A	Х	В	Х	Α	В	Α	А	TVB
Pentanol	100	А	А	Α	Α	В	А	A	Α	А	А	Α	Ι	Ι	I	TBN
Pentanone	100	А	В	Х	Х	Х	Х	В		Α	В	Α	Ι	Ι	1	Т
Perchloroethylene	100	В	Х	Х	Х	А	Х	Х	Х	А	В	Α	Α	В	Х	ΤV
Petroleum Ether (Ligroin)	100	А	Х	Х	Х	А	А	A	Х	А	В	Α	Α	А	I	TVB
Petroleum - Crude	100	А	Х	Х	Х	А	А	A	Х	Α	В	Α	Α	А	Х	TVB
Petroleum Oils	100	А	Х	Х	Х	А	А	A	Х	А	В	Α	Α	А	Х	TVB
Phenol	125	А	А	Х	Х	А	Х	A	Х	А	В	Α	Α	В	В	ΤV
Phenolsulfonic Acid	100	Х	Х	Х	Х	Х	Х	A	Ι	В	В	A	В	Ι	Ι	T
Phenyl Chloride	100	А	Х	Х	Х	А	Х	Х	Х	А	В	Α	Α	В	Ι	ΤV
Phosphoric Acid 10%	150	А	Α	A	Α	Х	А	A	Α	А	А	Α	A	Х	Х	TVBN
Phosphoric Acid 10-85%	100	А	Α	A	В	Х	Х	A	Α	А	А	Α	Α	Х	Ι	TVN
Pine Oil	100	А	Х	Х	Х	А	Х	В	Х	А	В	Α	Α	Ι	Х	ΤV
Pinene	100	А	Х	Х	Х	Α	В	В	Х	А	В	Α	В	Ι	Ι	ΤV
Polyethylene Glycol	150	А	Α	Α	Α	А	А	A	Α	А	А	Α	I	Ι	Ι	TVBN
Polypropylene Glycol	150	А	Α	Α	Α	А	А	A	Α	А	А	Α	Ι	Ι	Ι	TVB
Potassium Acetate	100	А	Α	В	Х	Х	Х	A	В	А	Α	Α	Α	Х	Х	ТВ
Potassium Bisulfate	150	А	Α	Α	Α	А	А	A	Α	А	А	Α	Α	Ι	Х	TVBN
Potassium Bisulfite	150	А	Α	Α	Α	А	А	A	Α	А	А	Α	Ι	Ι	Ι	TVBN
Potassium Carbonate	150	А	А	A	А	А	А	A	Α	А	А	Α	Α	Х	Х	TVBN S

CHEMICAL CI	ΗA	R ⁻	ΓS)												
This chemical chart is offered as a guide only polymer only! For explanation of ratings see p																<u> </u>
RATING SCALE				GOO)DYI	EAR	ENGIN	IEER	ED	PRODU		5			гіт	TINO
A = May be used for						C	HEMIC	AL I	HOS	E					FII	TING
Continuous Service				/	/	/	1. /		/	/ /		Brin	/	/	/	
B = May be used for Intermittent Service		/	/ /	10°®	Wing	00	Wing	/	Ving	Wing	20/	& 1/1			/ /	/ /
$\mathbf{X} = \text{Do not Use}$			т. Щ.	IMXa	rex/	Xwin	ren la		¹ /ex	KLPL	cXM	<i>"Bu</i>		50	3	5
I = Insufficient Data, contact customer services		Fallcho	Brav E	Yellow	Tan EL	Oranoo E	Flexwi Petrou	Brown	Purnte	Green XLPE Blue FLOE	Chemo	HI-PERS & Viper	Insta i	Insta ,	Insta-Lock	Insta-Lock
GASKET	Ē															
T = Teflon [®] V = Viton [®]	e (°F)	VPE		οUo			a				Alphasyn™	_	s	Aluminum		ta l
$\mathbf{B} = \text{Nitrile}$ $\mathbf{N} = \text{Neoprene}$	atur	UHMWPE	Butyl	Hypalon∘	R	Viton∘	Nitrile	CPE	EPDM	XLPE	Alpha	Teflon®	316 SS	Alumi	Brass	Gasket
S = Silicone	Temperature	_														
Р	Ten				H	OSE	TUBE F	POLY	MER					M	ETA	<u>.</u>
Potassium Chloride	150	A	A	A	Α	A	Α	Α	Α	Α	A	A	A	Х	Х	TVBNS
Potassium Chromate	150	В	A	X	1		1	A	1	В	В	A	В	1		TVBN
Potassium Dichromate	150	В	A	Х	I	I	Ι	Α	Ι	В	В	A	A	В	Х	TVBNS
Potassium Hydrate	150	Α	A	В	Α	Х	В	A	В	Α	A	A	A	Х		TS
Potassium Hydroxide	150	В	Α	В	Α	Х	В	Α	В	Α	Α	A	A	Х	Х	TN
Potassium Nitrate	150	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A	A	В	Α	TVBNS
Potassium Permanganate	100	Α	Α	Α	Α	Α	В	Ι	Ι	Α	Α	A	A	I	I	TVS
Potassium Silicate	150	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	A	A	Ι	I	TVBNS
Potassium Sulfate	150	А	А	Α	А	А	Α	Α	Α	А	Α	A	A	В	А	TVBNS
Potassium Sulfide	150	А	А	Α	А	А	А	Α	Α	А	Α	A	Α	Х	Х	TVBNS
Potassium Sulfite	150	А	А	Α	А	А	А	Α	Α	А	Α	A	Α	Ι	Х	TVBNS
Propanediol	100	Α	А	Α	А	А	А	Α	Α	Α	Α	A	Т	I	I	TVBS
Propane Gas			NC) HOS	E RE	COMI	MENDED	FOR	THIS	APPLIC	ATIO	N				
Propanol	100	А	А	Α	А	В	А	Α	Α	А	Α	A	A		I	TVB
Propyl Acetate	100	А	A	В	Х	Х	Х	В	Х	А	В	A	A		I	Т
Propyl Alcohol	100	A	A	A	A	В	A	A	Α	Α	A	A	A		I	ТВ
Propyl Aldehyde	100	А	В	Х	Х	Х	Х	Х	Ι	A	В	A				T
Propyl Chloride						COMI		-	THIS	APPLIC	IOITA					
Propylene Diamine	100	A	A	X	В		В	A		A		A				ТВ
Propylene Dichloride	100	B	Х	X	Х	В	Х	X	Х	В		A	A	X		TV
Propylene Glycol	100	A	A	A	A	A	A	A	A	A	A	A	A			TVBS
Propylene Tetramer	100	A	Х	Х	Х	Х	A	A	Х	А	В					B
S	100	٨	٥	٨	٥	٥	٨	٨	٨	٨	٨		•		V	TUDNO
Sea Water	100	A	A	A	A	A	A	A	A	A	A	A	A		X	TVBNS
Sewage	100	A	X	A	X		A	A	A	A	A	A	A	X	I V	TBNS
Silicate of Soda	100 100	A	A	A	A	A	A	A	A X	A	A	A	A	X	X	TVBNS TBNS
Soap Soda Ash			X	X	X	X	A	A		X		A	A	X X	X	TVBNS
Soda Ash Soda, Caustic	100 100	A A	A	A B	A A	A X	A B	A	A A	A	A	A	A A	X	X	TNS
Soda, Lime	100	A	A	B	A	X	B	A	A	A	A	A	A		∧ ↓	TVB
Soda, Line Soda, Niter	100	A	A	A	A	A	A	A	B	A	A	A	A	B	1	TVB
Sodium Acetate	100	A	A	A	X	X	X	A	B	B	B	A	A		A	TNS
Sodium Aluminate	100	A	A	A	A	A	A	A	A	A	A	A	A			TVBN
		1 .		L								L	1 ⁽¹⁾			

CHEMICAL CHARTS

This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.

A = May be used for Continuous Service FITTING B = May be used for Intermittent Service CHEMICAL HOSE FITTING X = Do not Use I = Insufficient Data, contact customer services May be used for Intermittent Service <	polymer only! For explanation of ratings see p RATING SCALE	age 2. 00	Unitaci	custo										JJ-40.	JZ.			
Notified Service B May be used for Intermittent Service Service State of the service services I = Insufficient Data, contact customer services GASKET I = Teffor® V = Viton® B = Nitrile N = Neoprene S = Silicone Service State of the service services Motor With Service State of the service services Sodium Bisulfate Service State of the service services Service State of the service services Sodium Bisulfate Service State of the service services Motor Service State of the service services Motor Service State of the service services Sodium Bisulfate Service State of the service services Motor Service Service Service Service of the service services Sodium Bisulfate Sodium Bisulfate Sodium Carbonate Sodium Carbonate Sodium Carbonate Sodium Choride (Brine) Sodium Phyrochlorite (20%) Sodium Hydrochlorite Sodium Hydrochlorite <th col<="" th=""><th></th><th></th><th></th><th></th><th>GUL</th><th>וזענ</th><th></th><th></th><th></th><th></th><th></th><th>1013</th><th>></th><th></th><th></th><th>FIT</th><th>TING</th></th>	<th></th> <th></th> <th></th> <th></th> <th>GUL</th> <th>וזענ</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1013</th> <th>></th> <th></th> <th></th> <th>FIT</th> <th>TING</th>					GUL	וזענ						1013	>			FIT	TING
GASKET L <thl< th=""> L <thl< th=""></thl<></thl<>					7	7	7	7 7		7	7 7		1	7	7	/	/ /	
GASKET Image: Second	B = May be used for		,	/ /	e	jag.	/ /	ling	/	20	198	ða /	Vipe		/	/ ,	/ /	
GASKET Image: Second					Win	exw/	Wing	exu	<u></u>	exw	LPE	XWin	ه پر	, /	<u>ت</u> ر ا	হ/	5 5	
GASKET Image: Second			4	ה בי			yar,	XWin Tol	nn c		E EL			<u>-</u>	1 10	1 4	ta-Lo	
GASKET Image: Second			Fat	6ra	Yel	lan	0ra	Pet	Bro	Pull	Blu	C ⁴ 6	/ #		lns.	112	ll'su	
T = Teflon® V = Viton® N = Neoprene S <t< th=""><th>GASKET</th><th>Ð</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	GASKET	Ð																
S HOSE TUBE POLYMER METAL Sodium Bisulfate 150 A X T VBN Sodium Chormate 150 A A X I I I A A A A A A A A A A A A I T T Sodium Choride (Brine) 100	T = Teflon [®] V = Viton [®]	ي 9.	WPE	_	lon®		۹	ھ		5		asyn	۰U	ss	inum	s	et	
Sodium Bisulfate 150 A		ratuı	MHN	Buty	Hypa	NR	Vitor	Nitri	Б.	EPDI	XLPE	Alph	Teflo	316	Alun	Bras	Gasł	
Sodium Bisulfate 150 A	S = Silicone	npei													M	ETA		
Sodium Bisulfite150AA </th <th>s</th> <th>Tei</th> <th></th> <th></th> <th></th> <th>H</th> <th>U2F</th> <th>I UBE I</th> <th>ULY</th> <th>WER</th> <th></th> <th></th> <th></th> <th></th> <th>IVI</th> <th>ETAI</th> <th>-</th>	s	Tei				H	U2F	I UBE I	ULY	WER					IVI	ETAI	-	
Sodium Carbonate150AA </td <td>Sodium Bisulfate</td> <td>150</td> <td>А</td> <td>Α</td> <td>Α</td> <td>А</td> <td>А</td> <td>А</td> <td>A</td> <td>Α</td> <td>А</td> <td>Α</td> <td>Α</td> <td>Α</td> <td></td> <td>Х</td> <td>TVBNS</td>	Sodium Bisulfate	150	А	Α	Α	А	А	А	A	Α	А	Α	Α	Α		Х	TVBNS	
Sodium Chloride (Brine)150AAAAAAAAAAAAAAAAAAAAAXIITVBNSodium Chromate150XAXIIIIAA <t< td=""><td>Sodium Bisulfite</td><td>150</td><td>А</td><td>А</td><td>А</td><td>А</td><td>А</td><td>А</td><td>A</td><td>Α</td><td>А</td><td>А</td><td>Α</td><td>A</td><td>Х</td><td>Х</td><td>TVBNS</td></t<>	Sodium Bisulfite	150	А	А	А	А	А	А	A	Α	А	А	Α	A	Х	Х	TVBNS	
Sodium Chromate150XAXIIIIAIXIAAAAAATVBNSodium Dichromate150AAXIIIIAAAAAAIXTSodium Hydrate150AABAXBAAAAAAIXTSodium Hydrochlorite (20%)100ABXXBXIIBAAIIIITSodium Hydrosulfide100AXXXXAAAAAAXTTSodium Hydroxide (50%)150AABAXBAAAAAXXTTSodium Hypochlorite100BBXXBXAAAAAXXTTSodium Hypochlorite100BBXXBXAAAAAAXXTTSodium Hypochlorite100BBXXBXAAAAAAXXTVSSodium Sulfate150AAAAAAAAAAAAAAA		150	А	А	Α	А	А	А	A	Α	А	А	Α	Α		Ι	TVBNS	
Sodium Dichromate150AAXIIIIAAAAAAIXTSodium Hydrate150AABAXBAAAAABXTSodium Hydrochlorite (20%)100ABXXBXIIBAAIIIITSodium Hydrosulfide100AXXXXAAAAAAAIIIITSodium Hydroxide (50%)150AABAXBAAAAAAAXXTBNSodium Hydroxide (50%)150AABXXBXAAAAAAXXTBNSodium Hydroxide (50%)150AAAAAAAAAAAAAXXTVSSodium Nitrate150AAA<		150		А	Α	А	А	А	A	Α	Α	Α	Α	A	Х	Ι	TVBNS	
Sodium Hydrate150AABAXBAA <td>Sodium Chromate</td> <td>150</td> <td>Х</td> <td>Α</td> <td>Х</td> <td>Ι</td> <td>Ι</td> <td>I</td> <td>A</td> <td>Ι</td> <td>Х</td> <td>Ι</td> <td>A</td> <td>A</td> <td>Α</td> <td>А</td> <td>TVBN</td>	Sodium Chromate	150	Х	Α	Х	Ι	Ι	I	A	Ι	Х	Ι	A	A	Α	А	TVBN	
Sodium Hydrochlorite (20%)100ABXXBXIIBAAIIITSodium Hydrosulfide100AXXXXAAXAIAIIIITSodium Hydrosulfide100AXXXXAAAAIAIBITBSodium Hydroxide (50%)150AABAXBAAAAAXXTBNSodium Hypochlorite100BBXXBXAAAAAAXXTVSSodium Nitrate150AA		150	А	A	Х	Ι			A	Α	Α	A	A	A	Ι			
Sodium Hydrosulfide100AXXXXAAXAIAIBITBSodium Hydroxide (50%)150AABAXBAAAAAAXXTBNSodium Hypochlorite100BBXXBXAAAAAXXTVSSodium Nitrate150AAAAAAAAAAAABITVBNSodium Silicate150AA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>A</td> <td>Α</td> <td></td> <td></td> <td>Α</td> <td>В</td> <td>Х</td> <td>Х</td> <td><u> </u></td>									A	Α			Α	В	Х	Х	<u> </u>	
Sodium Hydroxide (50%)150AABAXBAAAAAAXXTBNSodium Hypochlorite100BBXXBXAAAXBAXXTVSSodium Nitrate150AAAAAAAAAAAABITVBNSodium Silicate150AAAAAAAAAAAAAAXXTVBNSodium Sulfate150AA <td></td> <td></td> <td>А</td> <td>-</td> <td>Х</td> <td></td> <td>В</td> <td>Х</td> <td> </td> <td> </td> <td>В</td> <td>A</td> <td>A</td> <td> </td> <td>Ι</td> <td> </td> <td></td>			А	-	Х		В	Х			В	A	A		Ι			
Sodium Hypochlorite100BBXXBXAAXBAXXTVSSodium Nitrate150AAAAAAAAAAAAAAAABAAAABITVSNSodium Silicate150AA												I		Ι	-			
Sodium Nitrate150AAAAAAAAAAAAAAAAAAABAAAAABITVBNSodium Silicate150AAA<																	<u> </u>	
Sodium Silicate150AA <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td>			_				_									Х		
Sodium Sulfate150AAAAAAAAAAAAAABXTVBNSodium Sulfide150AA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td> </td><td>TVBNS</td></t<>										-					-		TVBNS	
Sodium Sulfide150AAAAAAAAAAAAAAAAAAAXXTVBNSodium Sulfite150AAAAAAAAAAAAAAAAAAAAAIIITVBNSodium Sulphydrate100AXXXXXAAAAAAIIITBSodium Thiosulfate150AAAAAAAAAAAIXTVBNStannic Chloride150AAAAIAAAAAAXXT									<u> </u>					<u> </u>			TVBNS	
Sodium Sulfite150AAAAAAABAAAAIITVBNSodium Sulphydrate100AXXXXAAAABAIIITVBNSodium Sulphydrate100AXXXXAAAABAIIITTBSodium Thiosulfate150AAAAAAAAAAAAIXTVBNStannic Chloride150AAAAIAAAAAXXT														<u> </u>	-		TVBNS	
Sodium Sulphydrate100AXXXXAAXABAIIITSodium Thiosulfate150AAAAAAAAAAAAAIXTVBNStannic Chloride150AAAAIAAAAAAXXXTB														<u> </u>		X		
Sodium Thiosulfate150AAAAAAAAAAAIXTVBNStannic Chloride150AAAAIAAAAAAXXTB									<u> </u>	-				A		<u> </u>	<u> </u>	
Stannic Chloride 150 A A A A A A A A A A A A X X TB															1	I		
															I			
Stannic Suitide									<u> </u>					X		X	<u> </u>	
							1									l v		
							1			-				A	Λ			
									-					<u> </u>			TVB	
							-		-	_						A	TVB	
Styrene 100 A X X A A A A A A A I IVB Styrene 100 B X X A X X X X I A A I I IVB												-		<u> </u>		1		
	· · , · ·													A I	-	1	TVN	
							γ			1	-	1				1	TVN	
Sulfur Dioxide (Liquid) 100 B B I X X X I I D I A I <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>Δ</td> <td>1</td> <td>1</td> <td></td>										1		1		Δ	1	1		
									· ·					<u> </u>		· ·	TVN	
Sulfuric Acid 93% 100 X X B X B X B A A I X X TV																		
Sulfuric Acid 93-98% 100 X X X B X X I B A I X X TV					-				-	-								
Sulfuric Acid Fuming 100 X									-									
Sulfurous Acid 10% 150 A A A A I X A A A I X T							I							1				

CHEMICAL CI	ΗA	R	ΓS)												
This chemical chart is offered as a guide only polymer only! For explanation of ratings see p			-								-					<u> </u>
RATING SCALE				GOC	DYE					PRODU	JCTS	5			FIT	TING
A = May be used for Continuous Service				/	/	7			7	7 7		/ 12-	7	_	/	
$\mathbf{B} = May$ be used for			/ /	e /	20	/ /	Flexwing Petrolo	,	Purnto E	Green XLPE Blue FL	. /	Viper"	/	/ ,	/ /	
Intermittent Service		. / .	*	Xwing	exwi	Wing	'lexw	<u>_</u>	exwi	LPE	Xwing	ه چ		<u>ت</u> ر ا	হ /	হ হ
X = Do not Use I = Insufficient Data, contact		Fabrha	א בי	1011	Tan EL	line, rex	Flexwing Petrol			Green XLPE Blue Fich	Chemo.	bry d	Insta i	Insta ,	Insta-1 c.	Insta-Lock
customer services		Fal	6rá	Ye.	lan	6	Pei	Bri		Blu	15	/ 1	^{Sil}	l II	/ ^{su}	
GASKET	(°F)													я		
$\mathbf{T} = \text{Teflon}^{\mathbb{R}}$ $\mathbf{V} = \text{Viton}^{\mathbb{R}}$	ire (UHMWPE	yl (Hypalon∞		Viton∘	Nitrile	ш	EPDM	щ	Al phasyn‴	Teflon∘	316 SS	Aluminum	Brass	Gasket
B = Nitrile N = Neoprene S = Silicone	eratı	E	Butyl	Hyl	R	Ę	Nit	CPE	E	XLPE	Alp	Tef	316	Alu	Bra	Ga;
S = Shittone	Temperature				H	DSE ⁻	TUBE F	POLY	MER					Μ	ETAL	-
Sulfurous Acid 10-75%	100	Α	A	A	Α	Ι	Х	А	Α	A	A	Α	I	Х	Х	T
Sulphonate	100	Ι	Х	Х	Х	χ	Α	Α	Х	Х	I	Ι	Ι	Ι	Ι	В
Т	1															
Tall Oil	100	Α	Х	Х	Х	А	А	Ι	Х		Ι	Α	Α	Х	Х	TVB
Tallow	150	Α	Х	Х	Х	Ι	Α	Α	Х	I	Ι	Α	Α	Ι	Α	TBNS
Tannic Acid	150	Α	A	Α	Α	Ι	В	Α	Х	I	Ι	Α	Α	Х	I	TVBN
Tar					SP	ECIA	L HOSE	REQL	JIRED				Α	Α	Ι	Ι
Tartaric Acid	150	Α	А	Α	А	Ι	А	А	Α	А	Α	Α	А	Ι	А	TBN
Tergitol	100	Х	Ι	Ι	Ι	Ι	Ι	Ι			Ι	Α	Ι	Ι	Ι	T
Tertiary Butyl Alcohol	100	Α	А	Α	Α	В	А	А	Α	А	Α	А	Ι	Ι	Ι	ТВ
Tetrachlorobenzene 100	В	Х	Х	Х	В	Х	Ι	Х	В	I	A	Ι		Ι	T	
Tetrachloroethane	100	Α	Х	Х	Х	Α	Х	I	Х	X		Α	Α	Х	Х	TV
Tetrachloroethylene	100	A	Х	X	Х	A	X	Х	Х	A	B	A	A	B	X	TV
Tetrachloromethane	100	A	X	X	X	A	X	X	X	X	B	A	A			TV
Tetrachloronaphthalene Tetradecanol	100	B	X	X	X	B	X		X	X		A				Т Т В
Tetraethylene Glycol	100 150	A	A	A	A	B A	A	A	A	A A	A	A				TVB
Tetraethylene Lead	100	X	X	X	X	A	X	X	X	<u>А</u> Х	A I	A				TV
Tetrahydrofuran	100	B	X	X	X	X	X	X	X	В	X	A	A	B	X	T
THF	100	B	X	X	X	X	X	X	X	B	X	A	A	B	X	T
Thionyl Chloride	100	Х								-	Х	A	X	Х	X	T
Tin Chloride	100	Α	Α	Α	Α	Ι	Α	Α	Α	А	Α	Α	Х	Х	Х	TVB
Tin Tetrachloride	150	В	Α	Α	Α	Ι	Α	Α	Α	Α	Α	Α	Х	Х	Х	ТВ
Titanium Tetrachloride	100	В	Х	Х	Х	Α	В	Х	Х	А	В	Α	В	Х	Х	ΤV
Toluene	100	Α	Х	Х	Х	Α	Х	Х	Х	В	В	Α	Α	Α	А	ΤV
Toluidine	100	Х	I	Ι	Ι	Ι	Ι	Ι	Ι		Ι	Α	Ι	Ι	Ι	Т
Toluol	100	Α	Х	Х	Х	А	Х	Х	Х	А	В	А	Α	А	А	ΤV
Transformer Oil	100	Х	Ι	Ι	Ι	Ι	Ι	Ι	Ι		Ι	А	Α	Ι	Ι	T
Transmission Oil "A"	150	В	Х	Х	Х	Α	Α	Ι	Х	I	Ι	Α	Α	Α	Α	TVB
Tributoxy Ethysulphate	100	Ι	Α	Х	Х	Α	Х	Х	Α	Х	Ι	Ι	Ι	Ι	Ι	٧
Tributyl Amine	100	A	A	Х	В		В	A		A	A	A				T
Tributyl Phosphate	100	A	A	X	Х	X	X	Х	Х	<u>A</u>	1	A	A		X	T
Trichlorobenzene	100	В	Х	Х	Х	В	Х	Х	Х	В		Α		A		T

CHEMICAL CHARTS

This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632.

									-							
RATING SCALE				GOC	IYU		ENGIN Hemic			PRODU	JCTS	5			FIT	TING
A = May be used for Continuous Service				7	7	7	7 7		7	7 7		/ ž.	7	/	/	
B = May be used for		,	/ /	e,	Tan Ei-	/ ,	Flexwing Petroling	,	Purnic -	Green XLPE Blue Fig.		HI-PERS & Viperm		/ ,	/ ,	/ /
Intermittent Service				Wing	exwi	Wing	Iexw	=	exwi	E FE	^{wing}	8		**	*/	* *
X = Do not Use I = Insufficient Data, contact				7 I.C.		Na ,	Wing .			BIN XI	19 / 19 / 19 / 19 / 19 / 19 / 19 / 19 /		3/3	107-2	107-	a-Lon
customer services		Fahrho	6ra	Yellow r.	lan	Oranoo E	Flexwing Petrol	Bro	Pur	Blue	Che	HL-PENG	Insta i	Insta ,	Insta-1	Insta-Lock
GASKET	(°F)															
T = Teflon [®] V = Viton [®]	ڻ و	UHMWPE		Hypalon∞		۲	e		_		Al phasyn‴	e	SS	Aluminum	\$	et
B = Nitrile N = Neoprene	atur	UHM	Butyl	Hypa	NR	Viton®	Nitrile	CPE	EPDM	XLPE	Alpha	Teflon∘	316 SS	Alum	Brass	Gasket
S = Silicone	Temperature													M	FTA I	
т	Tei				Н	U2F	TUBE I	ULY	WER					IVI	ETAI	-
Trichloroethane	100	Α	Х	Х	Х	А	Х	В	Х	Х	В	A	Α	Ι	Ι	ΤV
Trichloroethylene	100	Х	Х	Х	Х	А	Х	X	Х	Х	В	A	Α	Ι	Ι	ΤV
Trichloropropane	100	Α	Х	Х	Х	А	Х		Х	А	Ι	A	A	Х	Ι	ΤV
Tricresylphosphate	100	Α	Α	Х	Х	А	Х	A	Α	А	Ι	A	A	Х	Ι	ΤV
Tridecanol	100	Α	А	A	Α	В	А	A	А	А	А	A	Ι	Ι	Ι	ТВ
Triethanolamine	100	Α	Α	Х	В	Х	В	A	Α	А	Α	A	A	Ι	Х	ТВ
Triethylamine	100	Α	Α	Х	В	Ι	В	A	Ι	А	Α	A	A	Ι	Ι	TVBN
Triethylene Glycol	150	Α	А	A	Α	Ι	А	A	Ι	А	А	A	A	А	Ι	ТВ
Trifluralin (Trefalin)	100	Α	Х	Х	Х	А	Х	X	Х	А	Ι	A	Ι	Ι	I	ΤV
Triphenyl Phosphate	100	Α	А	Х	Х	Ι	Х	1	Ι	А	Ι	A	A	Ι	Ι	T
Tripolyphosphate	100	Х	I	Ι	Ι	Ι			Ι		Ι	A	Ι	Ι	Ι	T
Trisodium Phosphate	150	Α	Α	A	Α	А	А	A	Α	А	Α	A	A	Х	Ι	TVBNS
Turpentine	100	Α	Х	Х	Х	А	А	В	Х	А	Х	A	A	Α	А	TVB
U																
Urea	100	Α	А	Ι	Ι	Ι	Х	A	Ι	А	А	A	A	В	Ι	TVBN
Undecanol	100	В	А	A	Α	В	А	A	Α	А	А	A	Ι	Ι	Ι	ТВ
v																
V.M. & P. Naptha	100	Α	Х	Х	Х	А	А	1	Х	А	Ι	A	Ι	Ι	Ι	TVBS
Vinyl Acetate	100	Α	Α	В	Х	Х	Х	A	Х	А	В	A	A	Ι	Х	ΤV
Vinyl Benzene	100	Α	Х	Х	Х	А	Х	Х	Х	А	Ι	A	A	Ι	Ι	ΤV
Vinyl Chloride			NC) HOS	E RE	COMI	IENDED	FOR	THIS	APPLIC	ATIO	N				
Vinyl Ether			NC) HOS	E RE	COMI	IENDED	FOR	THIS	APPLIC	ATIO	N				
Vinyl Toluene	100	Α	Х	Х	Х	А	Х	X	Х	А	Ι	A	1	Ι		ΤV
Vinyl Trichloride	100	Α	Х	Х	Х	А	Х	Х	Х	А	В	A	A	Ι	Ι	ΤV

CHEMICAL CHARTS This chemical chart is offered as a guide only. There are many variables to be considered with each application. Ratings are for tube polymer only! For explanation of ratings see page 2. Contact customer services for chemicals or polymers not listed at 800-235-4632. **RATING SCALE GOODYEAR ENGINEERED PRODUCTS** FITTING **CHEMICAL HOSE** A = May be used for Continuous Service Orange Flexwing Brown Flexwing Purple Flexwing Green XLPE Blue Flexwing Vellow Flexwing **B** = May be used for Tan Flexwing Gray Flexwing Intermittent Service 2 ChemOne^m f Insta-Lock Insta-Lock Insta-Lock Insta-Lock" Fabchem ** Flexwing Petroleum HI-PEP® **X** = Do not Use I = Insufficient Data, contact customer services GASKET Temperature (°F) Alphasyn." UHMWPE Aluminum Hypalon∘ **T** = Teflon[®] $\mathbf{V} = Viton^{\mathbb{R}}$ Teflon∘ 316 SS Gasket Brass Nitrile Butyl Viton® EPDM XLPE 띬 **B** = Nitrile $\mathbf{N} = \mathsf{Neoprene}$ ¥ **S** = Silicone METAL **HOSE TUBE POLYMER** W Water 180 А А А А А А А А А А А А L Т **TVBNS** Х Х Х χ А А Wax А χ А Х Х I T TVBN 100 А White Oil Х Х Х А 100 А I А А Х I L I I TVB Wood Alcohol Х А А 100 А А А А А А А А А T T TBNS Х ΤV Xylene (Xylol) 100 Х Х Х Х А χ Х А В А А Х T Т **Xylidine** 100 В Х Х Х Х χ Х Х В В А В A T Ζ Х TVBN Zinc Carbonate 150 А А А А А А А А А А А В В Zinc Chloride 150 А А А А А А А А А А А А Х Х **TVBNS** А Х I Х I Zinc Chromate 150 А I I А В L А I Zinc Phosphate 100 А χ Х χ Х A А Х А I L T TBNS А I Zinc Sulfate А А Х Х

150

А А А А А

А А

А

А

А

Т

Т

TVBNS

A = May be used for					
Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data A	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Acetaldehyde	70°	χ	χ	Ι	χ
Acetic Acid, Conc.	70°	χ	В	Ι	Ι
Acetic Acid, Dilute 10	70°	В	А	Ι	Ι
Acetic Acid, Glacial	70°	χ	В	Ι	Х
Acetic Aldehyde	70°	I	Х	Ι	Х
Acetic Anhydride	70°	χ	Х	χ	Х
Acetic Ester	70°	χ	Х	χ	В
Acetic Ether	70°	Х	Х	Х	Ι
Acetone	70°	χ	Х	Х	В
Acetone Cyanohydrin	70°	χ	Х	χ	Ι
Acetyl Acetone	70°	χ	Х	Х	Ι
Acetyl Chloride	70°	χ	Ι	χ	Х
Acetylene Dichloride	70°	Ι	Х	Ι	Х
Acetylene Tetrachloride	70°	Ι	Х	Ι	Ι
Acrylonitrile	70°	А	А	В	Ι
Allyl Alcohol	70°	χ	Х	Х	Х
Allyl Bromide	70°	χ	Х	χ	Ι
Allyl Chloride	70°	χ	Х	Х	Ι
Alum	70°	А	А	А	В
Aluminum Acetate	70°	Ι	Ι	Ι	Ι
Aluminum Chloride	70°	А	А	А	В
Aluminum Hydroxide	70°	А	А	А	Ι
Aluminum Sulfate	70°	А	А	А	В
Ammonia Cupric Sulfate	70°		χ	Ι	I
Ammonia Water	70°	Α	А	А	А
Ammonium Chloride	70°	А	А	А	В
Ammonium Hydroxide	70°	В	В	Ι	В
Ammonium Nitrate	70°	А	А	А	
Ammonium Phosphate	70°		Ι	Ι	В
Ammonium Sulfate	70°	А	А	А	В
Ammonium Sulfide	70°	А	А	А	I
Ammonium Sulfite	70°	Α	А	А	
Ammonium Thiosulfate	70°	A	А	I	Ι

A = May be used for Continuous Service B = May be used for Intermittent Service A = Do not Use I = Insufficient DataaaaAmyl Acetate70°XXXXXAmyl Acetate70°XXXXXAmyl Acetate70°XXXXXAmyl Acetate70°IXIIAmyl Acetate70°IXXXXAmyl Chloride70°IXIIAmyl Phenol70°IXXXIAnimal Grease70°AAAIAnimal Oils70°AAAIAromatic Tar70°AAAIArsenic Chloride70°AAAIArsenic Trichloride70°AAAIAsphalt70°AAAIAsphalt70°AAAIBarium Carbonate70°AAAIBarium Sulfate70°AAAIBarium Sulfide70°AAAIBarium Sulfide70°AAAIBarium Chloride70°AAAIBarium Chloride70°AAAIBarium Chloride70°AAAIBarium Sulfate70°AA <td< th=""><th>Thermoplastic</th><th>: Hos</th><th>e</th><th></th><th></th><th></th></td<>	Thermoplastic	: Hos	e			
Amyl Alcohol 70° B B I X Amyl Chloride 70° X X X X X Amyl Phenol 70° I X I I Amyl Phenol 70° I X I I Amiline Oils 70° X X X X I Animal Grease 70° A A A I I Animal Oils 70° A A A X I Animal Oils 70° A A A X I Animal Oils 70° A A A X X Aqua Ammonia 70° A A I I Arsenic Chloride 70° A A I I Arsenic Trichloride 70° A A X X ASTM #1 0il 70° A A	Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Amyl Chloride 70° X X X X Amyl Phenol 70° I X I I Amyl Phenol 70° I X I I Amyl Phthalate 70° X X X I I Animal Grease 70° A A A I Animal Grease 70° A A A I Animal Oils 70° A A A I Animal Oils 70° A A A X I Arimal Oils 70° A A A X I Arenatic Tar 70° X X X I Arsenic Chloride 70° A A I I Arsenic Trichloride 70° A A X X Asphalt 70° A A A X Astm #1 0il 70° A A A I Barium Carbonate 70° A A <t< td=""><td>Amyl Acetate</td><td>70°</td><td>χ</td><td>Х</td><td>Х</td><td>Х</td></t<>	Amyl Acetate	70°	χ	Х	Х	Х
Amyl Phenol 70° I X I I Amyl Phthalate 70° I X I I Aniline Oils 70° X X X I Animal Grease 70° A A A I Animal Oils 70° A A A X Aqua Ammonia 70° A A A X Arsenic Acid 70° A A A I Arsenic Acid 70° A A A I Arsenic Chloride 70° A A I I Arsenic Trichloride 70° A A I I Asphalt 70° A A I I Asphalt 70° A A A X ASTM #1 Oil 70° A A I X ASTM #2 Oil 70° A A I X Barium Carbonate 70° A	Amyl Alcohol	70°	В	В	Ι	Х
Amyl Phthalate 70° IXIIAniline Oils 70° XXXIAnimal Grease 70° AAAIAnimal Oils 70° AAAXAqua Ammonia 70° IBBIAromatic Tar 70° AAAIArsenic Acid 70° AAAIArsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° AAAXASTM #1 Oil 70° AAAXASTM #2 Oil 70° AAAIBarium Carbonate 70° AAAIBarium Sulfate 70° AAAIBarium Sulfide 70° AAAIBenzaldehyde 70° XXXXBenzine Cligroin) 70° XXXBenzine Solvent (Ligroin) 70° XXXBenzoic Acid 70° IXIIBenzoic Aldehyde 70° IXIIBenzoic Aldehyde 70° IXIIBenzoic Aldehyde 70° IXIIBenzoic Aldehyde 70° IXII	Amyl Chloride	70°	χ	Х	χ	Х
Aniline Oils 70° X X X 1 Animal Grease 70° A A A 1 Animal Oils 70° A A A X Aqua Ammonia 70° I B B 1 Aromatic Tar 70° X X X I Arsenic Acid 70° A A A I Arsenic Chloride 70° A A I I Arsenic Chloride 70° A A I I Arsenic Trichloride 70° A A I I Asphalt 70° A A I I Asphalt 70° A A I X ASTM #1 Oil 70° A A A X ASTM #2 Oil 70° A A A I Barium Carbonate 70° A A A I Barium Sulfate 70° A A A I	Amyl Phenol	70°	Ι	χ	Ι	Ι
Animal Grease 70° AAAIAnimal Oils 70° AAAXAqua Ammonia 70° IBBIAromatic Tar 70° XXXIArsenic Acid 70° AAAIArsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° AAIIAsphalt 70° AAIXASTM #1 Oil 70° AAAIASTM #2 Oil 70° AAIXBarium Carbonate 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXI <td< td=""><td>Amyl Phthalate</td><td>70°</td><td>Ι</td><td>χ</td><td>Ι</td><td>Ι</td></td<>	Amyl Phthalate	70°	Ι	χ	Ι	Ι
Animal Oils 70° AAAXAqua Ammonia 70° IBBIAromatic Tar 70° XXXIArsenic Acid 70° AAAIArsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° AAIIAsphalt 70° AAIXASTM #1 Oil 70° AAAXASTM #2 Oil 70° AABXBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzaldehyde 70° XXXXBenzene (Benzol) 70° XXXXBenzine (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzoic Acid 70° IXIIBenzoic Aldehyde 70° IXIIBenzoic Aldehyde 70° IXIIBenzoic Aldehyde 70° IXII	Aniline Oils	70°	χ	χ	χ	Ι
Aqua Ammonia 70° IBBIAromatic Tar 70° XXXIArsenic Acid 70° AAAIArsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° AAIIAsphalt 70° AAIIAsphalt 70° AAAXASTM #1 Oil 70° AAAXASTM #2 Oil 70° AABXBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfide 70° AAAIBenzaldehyde 70° XXXXBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII <td>Animal Grease</td> <td>70°</td> <td>А</td> <td>А</td> <td>А</td> <td>Ι</td>	Animal Grease	70°	А	А	А	Ι
Aromatic Tar 70° XXXIArsenic Acid 70° AAAIArsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° AAIIAsphalt 70° AAAXXASTM #1 Oil 70° AAAXASTM #2 Oil 70° AABXASTM #3 Oil 70° AABXBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBenzyl Chloride 70° XXXXBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IX<	Animal Oils	70°	А	А	А	Х
Arsenic Acid 70° AAAIArsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° XXXXASTM #1 Oil 70° AAAXASTM #2 Oil 70° AAIXASTM #3 Oil 70° AABXBarium Carbonate 70° AAAIBarium Chloride 70° AAABarium Sulfate 70° AAABarium Sulfate 70° AAABenzyl Chloride 70° XXXBenzene (Benzol) 70° XXXBenzine Solvent (Ligroin) 70° XXXBenzoic Acid 70° IXIBenzoic Aldehyde 70° IXIBenzotrichloride 70° IXIBenzotrichloride 70° IXIBenzotrichloride 70° IXIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° I <td< td=""><td>Aqua Ammonia</td><td>70°</td><td>Ι</td><td>В</td><td>В</td><td>Ι</td></td<>	Aqua Ammonia	70°	Ι	В	В	Ι
Arsenic Chloride 70° AAIIArsenic Trichloride 70° AAIIAsphalt 70° XXXXASTM #1 0il 70° AAAXASTM #2 0il 70° AAAIXXXXXASTM #2 0il 70° AABXASTM #3 0il 70° AAAIBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzyl Chloride 70° XXXXBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Aldehyde 70° IXIIBenzotrichloride 70° IXIIBenzoyl Chloride 70° IXII	Aromatic Tar	70°	χ	χ	χ	I
Arsenic Trichloride 70° AAIIAsphalt 70° XXXXASTM #1 0il 70° AAAXASTM #2 0il 70° AAIXASTM #3 0il 70° AABXBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzyl Chloride 70° AAAIBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII	Arsenic Acid	70°	Α	А	А	Ι
Asphalt 70° XXXXASTM #1 0il 70° AAAXASTM #2 0il 70° AAIXASTM #3 0il 70° AABXBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfide 70° AAAIBenzyl Chloride 70° AAAIBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII	Arsenic Chloride	70°	А	А	Ι	Ι
ASTM #1 0il 70° AAAXASTM #2 0il 70° AAIXASTM #3 0il 70° AABXBarium Carbonate 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzyl Chloride 70° IXIIBenzene (Benzol) 70° XXXXBenzine (Ligroin) 70° XXXXBenzine Solvent (Ligroin) 70° IXIIBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII	Arsenic Trichloride	70°	Α	А	Ι	Ι
ASTM #2 0il 70° AAIXASTM #3 0il 70° AABXBBBBBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzyl Chloride 70° AAAIBenzaldehyde 70° XXXXBenzene (Benzol) 70° XXXXBenzine Solvent (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII	Asphalt	70°	χ	χ	χ	Х
ASTM #3 0il 70° AABXBBarium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Chloride 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBenzyl Chloride 70° IXIIBenzaldehyde 70° XXXXBenzene (Benzol) 70° XXXXBenzine (Ligroin) 70° XXXXBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII	ASTM #1 Oil	70°	А	А	А	Х
BBarium Carbonate70°AAAIBarium Chloride70°AAAIBarium Hydroxide70°AAAIBarium Sulfate70°AAAIBarium Sulfate70°AAAIBarium Sulfide70°AAAIBarium Sulfide70°XXIIBenzyl Chloride70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXIIBenzolyl Chloride70°IXII	ASTM #2 Oil	70°	А	А	Ι	Х
Barium Carbonate 70° AAAIBarium Chloride 70° AAAIBarium Hydroxide 70° AAAIBarium Sulfate 70° AAAIBarium Sulfate 70° AAAIBarium Sulfide 70° AAAIBenzyl Chloride 70° IXIIBenzaldehyde 70° XXXXBenzene (Benzol) 70° XXXXBenzine (Ligroin) 70° XXXXBenzoic Acid 70° BAABBenzoic Acid 70° IXIIBenzotrichloride 70° IXIIBenzotrichloride 70° IXII	ASTM #3 Oil	70°	А	А	В	Х
Barium Chloride70°AAAIBarium Hydroxide70°AAAIBarium Sulfate70°AAAIBarium Sulfide70°AAAIBarium Sulfide70°AAAIBenzyl Chloride70°IXIIBenzaldehyde70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzoyl Chloride70°IXII	В					
Barium Hydroxide70°AAAIBarium Sulfate70°AAAIBarium Sulfide70°AAAIBenzyl Chloride70°IXIIBenzaldehyde70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXII	Barium Carbonate	70°	А	А	А	Ι
Barium Sulfate70°AAAIBarium Sulfide70°AAAIBenzyl Chloride70°IXIIBenzaldehyde70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXII	Barium Chloride	70°	Α	А	Α	Ι
Barium Sulfide70°AAAIBenzyl Chloride70°IXIIBenzaldehyde70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXII	Barium Hydroxide	70°	А	А	А	Ι
Benzyl Chloride70°IXIIBenzaldehyde70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXII	Barium Sulfate	70°	Α	А	Α	Ι
Benzaldehyde70°XXXXBenzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXII	Barium Sulfide	70°	Α	А	А	I
Benzene (Benzol)70°XXXXBenzine (Ligroin)70°XXXXBenzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXII	Benzyl Chloride	70°	Ι	Х	Ι	I
Benzine (Ligroin)70°XXXXBenzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXIIBenzoyl Chloride70°IXII	Benzaldehyde	70°	χ	χ	χ	Х
Benzine Solvent (Ligroin)70°XXXXBenzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXIIBenzoyl Chloride70°IXII	Benzene (Benzol)	70°	χ	χ	χ	Х
Benzoic Acid70°BAABBenzoic Aldehyde70°IXIIBenzotrichloride70°IXIIBenzoyl Chloride70°IXII	Benzine (Ligroin)	70°	χ	χ	χ	Х
Benzoic Aldehyde70°IXIIBenzotrichloride70°IXIIBenzoyl Chloride70°IXII	Benzine Solvent (Ligroin)	70°	χ	Х	χ	Х
Benzotrichloride70°IXIIBenzoyl Chloride70°IXII	Benzoic Acid	70°	В	А	А	В
Benzoyl Chloride 70° I X I	Benzoic Aldehyde	70°		χ	Ι	I
		70°	Ι	χ	Ι	Ι
Benzyl Acetate 70° I X I I	Benzoyl Chloride	70°	Ι	χ	Ι	I
	Benzyl Acetate	70°	Ι	χ	I	I

I nermoplastic	, поз	e			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Benzyl Chloride	70°	Ι	Х	-	Ι
Bichromate of Soda	70°	I	А	Ι	I
Black Sulfate Liquor	70°	A	А	А	Ι
Bleach	70°	А	А	А	В
Brine	70°	A	А	А	В
Bromine	70°	χ	χ	χ	Х
Bromo Benzene	70°	I	Х	Ι	Х
Bromo Toluene	70°	I	Х	Ι	I
Bromochloromethane	70°	I	Х	Ι	Х
Butanol	70°	I	Х	Ι	В
Butyl (Normal) Alcohol	70°	I	Х	χ	В
Butyl (Secondary) Alcohol	70°	I	χ	χ	В
Butyl Acetate	70°	χ	Х	Ι	Х
Butyl Acetoacetate	70°		Х	Ι	I
Butyl Acrylate	70°	I	Х	Ι	I
Butyl Alcohol	70°	А	А	А	В
Butyl Benzene	70°	I	Х	Ι	Ι
Butyl Benzl Phthalate	70°	I	Х	Ι	Ι
Butyl Bromide	70°	I	Х	Ι	Ι
Butyl Butyrate	70°	I	Х	Ι	Ι
Butyl Chloride	70°	I	Х	Ι	I
Butyl Phthalate	70°	I	Х	Ι	Х
Butyric Acid	70°	I	χ	В	Ι
C					
Cadmium Acetate	70°	Ι	А	Ι	Ι
Calcium Acetate	70°	I	А	Ι	Ι
Calcium Aluminate	70°	I	А	Ι	Ι
Calcium Bichromate	70°	I	А	Ι	Ι
Calcium Bisulfate	70°	Ι	А	В	Ι
Calcium Bisulfite	70°	А	А	А	Ι
Calcium Carbonate	70°	А	А	А	Ι
Calcium Chloride	70°	А	А	А	Ι
Calcium Hydroxide (Caustic Lime)	70°	А	А	А	

Thermoplastic	: Hos	е			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Calcium Hypochlorite	70°	А	А	Ι	Ι
Calcium Nitrate	70°	A	Α	Ι	I
Calcium Silicate	70°	A	Α	Ι	Ι
Calcium Sulfate	70°	A	Α	А	Ι
Calcium Sulfide	70°	A	A	Ι	Ι
Calcium Sulfite	70°	A	Α	Ι	Ι
Carbolic Acid, Phenol	70°	Х	Х	χ	Х
Carbon Dioxide	70°	Α	Α	А	В
Carbon Disulfide	70°	Х	Х	χ	Х
Carbon Monoxide	70°	A	Α	Α	В
Carbon Tetrachloride	70°	χ	χ	χ	Х
Carbonic Acid	70°	Ι	А	А	I
Casinghead Gasoline	70°		χ	χ	Х
Caster Oil (Castor Oil)	70°	Α	Α	А	I
Caustic Potash	70°	A	Α	А	А
Caustic Soda	70°	Α	Α	А	В
Chlorinated Solvents	70°	1	Х	Ι	Ι
Chlorine (Dry)	70°	A	Α	А	В
Chlorine (Wet)	70°	В	χ	Ι	В
Chloroacetone	70°	1	Х	Ι	I
Chlorobenzene	70°	χ	Х	χ	Х
Chlorobutane	70°	1	χ	Ι	Ι
Chloroethylbenzene	70°	1	χ	Ι	I
Chloroform	70°	χ	Х	χ	χ
Chloropentane	70°	1	χ	Ι	Х
Chlorophenol	70°	1	Х	Ι	Ι
Chloropropanone	70°	1	χ	Ι	I
Chlorosulfonic Acid	70°	Ι	В	Ι	χ
Chlorothene	70°	1	χ	Ι	Х
Chlorotoluene	70°	χ	Х	χ	Х
Chromic Acid	70°	В	В	В	В
Copper Chloride	70°	Α	Α	А	В
Copper Hydrate	70°	I	Α	Ι	Ι

A = May be used for Continuous Service B = May be used for Intermittent ServiceIIICIAIICopper Hydroxide70°IAAICopper Nitrate70°AAAICopper Nitrate70°AAAICopper Sulfate70°AAAICopper Sulfate70°XXXXCreosol70°XXXXCrude Oil70°BABICupric Carbonate70°IAIICupric Chloride70°AAIICupric Carbonate70°XXXXCyclohexane70°XXXXCyclohexanol70°XXXXCyclohexanol70°IAIICyclohexanol70°IAIICyclohexanol70°IAIICyclohexanol70°IAIID.D.T.70°IAIIDecalin70°IAIIDecalin70°IAIIDu.T.70°IAIID.D.T.70°IAIIDecalin70°IAIIDecalin70°IA	mernioplastic					
Copper Nitrate 70° A A A I Copper Nitrite 70° A A A I Copper Sulfate 70° A A A I Copper Sulfide 70° A A A I Copper Sulfide 70° X X X X X Creosol 70° X X X X X X Creosote 70° I A I I I Cupric Carbonate 70° A A I I Cupric Chloride 70° A A I I Cupric Nitrate 70° A A I I Cupric Sulfate 70° A A I I Cyclohexanol 70° X X X X Cyclohexanol 70° I A I I Cyclohexanol 70° <td>Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data</td> <td>Temperature (°F)</td> <td>Polyurethane/Spirathane</td> <td>PVC/Pliovic Plus</td> <td>TPE/Arvac SW</td> <td>TPR/Green Hornet XF</td>	Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Copper Nitrate 70° A A A I Copper Nitrite 70° A A A I Copper Sulfate 70° A A A I Copper Sulfide 70° A A A I Copper Sulfide 70° X X X X X Creosol 70° X X X X X X Creosote 70° A A I I I Cupric Carbonate 70° A A I I Cupric Chloride 70° A A I I Cupric Nitrate 70° A A I I Cupric Sulfate 70° X X X X Cyclohexanol 70° X X X X Cyclopentanol 70° I A I I Cyclopentanol 70° </td <td>Copper Hydroxide</td> <td>70°</td> <td>Ι</td> <td>А</td> <td>Ι</td> <td>Ι</td>	Copper Hydroxide	70°	Ι	А	Ι	Ι
Copper Sulfate 70° A A A I Copper Sulfide 70° B A B I Creosol 70° X X X X X Creosote 70° X X X X X X Crude Oil 70° B A B X X X X Cupric Carbonate 70° I A I I I Cupric Chloride 70° A A I I I Cupric Nitrate 70° A A I I Cupric Sulfate 70° A A I I Cyclohexane 70° X X X X Cyclohexanol 70° X X X X Cyclohexanone 70° I A I I Cyclopentanol 70° I A I I		70°	A	А	А	I
Copper Sulfide 70° B A B I Creosol 70° X X X X X Creosote 70° X X X X X X Crude Oil 70° B A B X X X X Cupric Carbonate 70° I A I I I Cupric Chloride 70° A A I I I Cupric Nitrate 70° A A I I I Cupric Sulfate 70° A A I I Cyclohexane 70° X X X X Cyclohexanol 70° X X X X Cyclohexanol 70° I A I I Cyclopentanol 70° I A I I D.D.T. 70° I A I <	Copper Nitrite	70°	А	А	А	Ι
Creosol 70° X X X X X Creosote 70° X X X X X Crude Oil 70° B A B X Cupric Carbonate 70° I A I I Cupric Chloride 70° A A I I Cupric Nitrate 70° A A I I Cupric Nitrate 70° A A I I Cupric Sulfate 70° A A I I Cyclohexane 70° X X X X Cyclohexanol 70° X X X X Cyclopentanone 70° X X X X Cyclopentanone 70° I A I I D.D.T. 70° I A I I Decalin 70° I B I <td>Copper Sulfate</td> <td>70°</td> <td>A</td> <td>А</td> <td>А</td> <td>Ι</td>	Copper Sulfate	70°	A	А	А	Ι
Creosote 70° XXXXCrude Oil 70° BABXCupric Carbonate 70° IAIICupric Chloride 70° AAIICupric Nitrate 70° AAIICupric Nitrite 70° AAIICupric Sulfate 70° AAIICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclopentane, methyl 70° IAIICyclopentanone 70° IAIICyclopentanone 70° IAIIDDT 70° IAIIDD.T. 70° IAIIDecalin 70° IBIIDecalin 70° IBIIDecyl Alcohol 70° IABIDiacetone Alcohol 70° IABIDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXIIDibutyl Phthalate 70° IXII	Copper Sulfide	70°	В	А	В	Ι
Crude Oil 70° BABXCupric Carbonate 70° IAIICupric Chloride 70° AAIICupric Nitrate 70° AAIICupric Nitrite 70° AAIICupric Sulfate 70° AAIICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanol 70° IAIIDDTPDDTDDTTO^{\circ}IAIID.D.T. 70° IAIIID.D.T. 70° IBIIDecalin 70° IBIIDecanol 70° IBIIDecyl Butyl Phthalate 70° XXXDiacetone Alcohol 70° IABIDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXIIDibutyl Phthalate 70° IXXX	Creosol	70°	χ	Х	χ	Х
Cupric Carbonate 70° IAIICupric Chloride 70° AAIICupric Nitrate 70° AAIICupric Nitrite 70° AAIICupric Sulfate 70° AAIICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclohexanol 70° IAIICyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanol 70° IAIID.D.T. 70° IAIID.D.T. 70° IBIIDecalin 70° IBIIDecalo 70° IBIIDecyl Alcohol 70° IABIDiacetone Alcohol 70° IABIDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXII	Creosote	70°	χ	Х	χ	Х
Cupric Chloride 70° AAIICupric Nitrate 70° AAIICupric Nitrite 70° AAIICupric Sulfate 70° AAAICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanol 70° IAIIDDT 70° IAIIDDT 70° IAIIDDT 70° IAIIDecalin 70° IBIIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABIDibutyl Amine 70° IXXXDibutyl Phthalate 70° IXIIDibutyl Phthalate 70° IXII	Crude Oil	70°	В	А	В	Х
Cupric Nitrate 70° AAIICupric Nitrite 70° AAIICupric Sulfate 70° AAAICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanol 70° IAIID.D.T. 70° IAIID.D.T. 70° IAIID.D.T. 70° IBIIDecalin 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXIIDibutyl Phthalate 70° IXII	Cupric Carbonate	70°	Ι	А	Ι	Ι
Cupric Nitrite 70° AAIICupric Sulfate 70° AAAICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanone 70° IAIIDD 70° IAIID.D.T. 70° IAIIDecalin 70° IBIIDecanol 70° IBIIDecyl Alcohol 70° IABIDiacetone Alcohol 70° IABIDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXXX	Cupric Chloride	70°	А	А	Ι	Ι
Cupric Sulfate 70° AAAICyclohexane 70° XXXXCyclohexanol 70° XXXXCyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanone 70° IAIID.D.T. 70° IAIID.D.T. 70° IAIIDecalin 70° IBIIDecalol 70° IBIIDecyl Alcohol 70° IAIIDenatured Alcohol 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXII	Cupric Nitrate	70°	А	А	Ι	Ι
Cyclohexane 70° XXXXCyclohexanol 70° XXXXCyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanol 70° IAIICyclopentanol 70° IAIIDD 70° IAIID.D.T. 70° IAIID.D.T. 70° IBIIDecalin 70° IBIIDecalol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXXX	Cupric Nitrite	70°	Α	А	Ι	Ι
Cyclohexanol 70° XXXXCyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanone 70° IAIID.D.T. 70° IAIID.D.T. 70° IAIID.D.T. 70° IBIIDecalin 70° IBIIDecanol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXII	Cupric Sulfate	70°	Α	А	А	Ι
Cyclohexanone 70° XXXXCyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanone 70° IAIIDDDDDDD.D.T. 70° IAIID.D.T. 70° IBIIDecalin 70° IBIIDecanol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° XXX	Cyclohexane	70°	χ	χ	χ	Х
Cyclopentane, methyl 70° IAIICyclopentanol 70° IAIICyclopentanone 70° IAIIDDDDDDD.D.T. 70° IAIID.D.T. 70° IAIIDecalin 70° IBIIDecalol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° IXII	Cyclohexanol	70°	χ	χ	χ	Х
Cyclopentanol 70° IAIICyclopentanone 70° IAIIDDDDDDD.D.T. 70° IAIID.D.T. 70° IAIID.D.T. 70° IBIIDecalin 70° IBIIDecanol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° IXXXDibutyl Amine 70° IXIIDibutyl Phthalate 70° XXXX	Cyclohexanone	70°	χ	χ	χ	Х
Cyclopentanone70°IAIIDD.D.T.70°IAIID.D.T. in Kerosene70°XXXXDecalin70°IBIIDecanol70°IBIIDecyl Alcohol70°IAIIDecyl Butyl Phthalate70°XXXXDiacetone Alcohol70°IABIDiaryl Phenol70°XXXXDibtromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	Cyclopentane, methyl	70°		А	Ι	
DD.D.T.70°IAIID.D.T. in Kerosene70°XXXXDecalin70°IBIIDecanol70°IBIIDecyl Alcohol70°IAIIDecyl Butyl Phthalate70°XXXXDenatured Alcohol70°IABIDiacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibtromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	Cyclopentanol	70°	I	А	Ι	I
D.D.T. 70° IAIID.D.T. in Kerosene 70° XXXXDecalin 70° IBIIDecanol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° XXXXDenatured Alcohol 70° IABIDiacetone Alcohol 70° BABBDiamyl Phenol 70° XXXXDibromobenzene 70° IXIIDibutyl Amine 70° IXIIDibutyl Phthalate 70° XXXX	Cyclopentanone	70°	Ι	А	Ι	
D.D.T. in Kerosene 70° XXXXDecalin 70° IBIIDecanol 70° IBIIDecyl Alcohol 70° IAIIDecyl Butyl Phthalate 70° XXXXDenatured Alcohol 70° IABIDiacetone Alcohol 70° IABBDiamyl Phenol 70° XXXXDibromobenzene 70° IXIIDibutyl Amine 70° IXIIDibutyl Phthalate 70° XXXX	D					
Decalin70°IBIIDecanol70°IBIIDecyl Alcohol70°IAIIDecyl Butyl Phthalate70°XXXXDenatured Alcohol70°IABIDiacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	D.D.T.	70°	I	А	Ι	Ι
Decanol70°IBIIDecyl Alcohol70°IAIIDecyl Butyl Phthalate70°XXXXDenatured Alcohol70°IABIDiacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	D.D.T. in Kerosene	70°	χ	χ	χ	Х
Decyl Alcohol70°IAIIDecyl Butyl Phthalate70°XXXXDenatured Alcohol70°IABIDiacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	Decalin	70°	Ι	В	Ι	
Decyl Butyl Phthalate70°XXXXDenatured Alcohol70°IABIDiacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXX	Decanol	70°		В	Ι	Ι
Denatured Alcohol70°IABIDiacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXX	Decyl Alcohol	70°	I	А	Ι	Ι
Diacetone Alcohol70°BABBDiamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	Decyl Butyl Phthalate	70°	χ	Х	Х	Х
Diamyl Phenol70°XXXXDibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXX	Denatured Alcohol	70°		А	В	Ι
Dibromobenzene70°IXIIDibutyl Amine70°IXIIDibutyl Phthalate70°XXX	Diacetone Alcohol	70°	В	А	В	В
Dibutyl Amine70°IXIIDibutyl Phthalate70°XXXX	Diamyl Phenol	70°	Х	Х	Х	Х
Dibutyl Phthalate 70° X X X	Dibromobenzene	70°	Ι	Х	Ι	Ι
	Dibutyl Amine			Х	Ι	Ι
Dibutyl Sebacate 70° I X I I	Dibutyl Phthalate	70°	Х	Х	Х	Х
	Dibutyl Sebacate	70°		Х	Ι	

Thermoplastic	: Hos	e			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Dicalcium Phosphate	70°	В	А	В	Ι
Dichlorobenzene	70°	χ	Х	χ	Х
Dichlorobutane	70°	Ι	Х	Ι	I
Dichlorodiboromethane	70°	Х	Х	Х	Х
Dichloroethane	70°	Ι	Х	Ι	Ι
Dichloroethyl Ether	70°	Ι	Х	Ι	Х
Dichloroethylene	70°	Ι	Х	Ι	Х
Dichlorohexane	70°	Ι	Х	Ι	Х
Dichloromethane	70°	Ι	Х	Ι	Х
Dichloropentane	70°	I	Х	Ι	Х
Dichloropropane	70°	Ι	Х	Ι	Х
Diesel Oil	70°	Ι	В	χ	Х
Diethylamine	70°	Ι	Ι	Ι	Ι
Diethyl Benzene	70°	Ι	Х	Ι	Х
Diethyl Ketone	70°	Ι	Х	Ι	Ι
Diethyl Oxalate	70°	Ι	Х	Ι	I
Diethyl Phthalate	70°	Ι	Х	Ι	I
Diethyl Sebacate	70°	Ι	χ	Ι	Ι
Diethylene Glycol	70°	Ι	В	Ι	I
Diisobutyl Ketone	70°	Ι	Х	Ι	I
Diisoctyl Adipate	70°	Ι	Х	Ι	I
Diisoctyl Phthalate	70°	Ι	Х	Ι	I
Diisodecyl Adipate	70°	Ι	χ	Ι	I
Diisopropyl Amine	70°	Ι	Х	Ι	I
Diisopropyl Ketone	70°	Ι	Х	Ι	I
Dimethyl Amine	70°	Ι	Х	Ι	Ι
Dimethyl Benzene	70°	Ι	χ	Ι	I
Dimethyl Ketone	70°	Ι	χ	Ι	I
Dimethyl Phthalate	70°	Ι	χ	Ι	I
Dinitrobenzene	70°	Ι	χ	Ι	I
Dioctyl Adipate	70°	Ι	Х	Ι	I
Dioctyl Phthalate	70°	Χ	χ	χ	Х
Dioctyl Sebacate	70°	Ι	Х	Ι	Ι

Thermoplastic Hose

A= May be used for Continuous Service B= May be used for Intermittent Service X= Do not Use IIXIIDiphenyl Phthalate70°IXIIIDipropyl Ketone70°IXIIIDisodium Phosphate70°IXIIIDodecyl Benzene70°IXIIIEthanol70°AAAAAEthanol Amine70°IXXIIEthyl Acetate70°IXXIIEthyl Acetate70°IXXIIEthyl Acetate70°IXIIIEthyl Acetate70°IXIIIEthyl Acetate70°IXXIIEthyl Acetate70°IXIIIEthyl Acetate70°IXIIIEthyl Benzene70°IXIIIEthyl Butyl Acetate70°IXXXXEthyl Butyl Acetate70°IXIIEthyl Butyl Acetate70°IXXXXEthyl Butyl Acetate70°IXIIEthyl Butyl Acetate70°IXXXXEthyl Butyl Acetate70°I<	Inermoplastic	: HOS	e			
Dipropyl Ketone 70° I X I I Disodium Phosphate 70° A A A B Divinyl Benzene 70° I X I I Dodecyl Benzene 70° I X I I Dodecyl Benzene 70° A A A A Ethanol 70° A A A A Ethanol 70° B A A A Ethanol Amine 70° X X X B Ethyl Acetate 70° X X X I Ethyl Acetate 70° X X X I Ethyl Acetate 70° I X I I Ethyl Butzohol 70° I X I I Ethyl Butzohol 70° I X X X Ethyl Butzohol 70° I X X <td< th=""><th>Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data</th><th>Temperature (°F)</th><th>Polyurethane/Spirathane</th><th>PVC/Pliovic Plus</th><th>TPE/Arvac SW</th><th>TPR/Green Hornet XF</th></td<>	Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Dipropyl Ketone 70° I X I I Disodium Phosphate 70° A A A B Divinyl Benzene 70° I X I I Dodecyl Benzene 70° I X I I Dodecyl Benzene 70° A A A A Ethanol 70° A A A A Ethanol 70° B A A A Ethanol Amine 70° X X X B Ethyl Acetate 70° X X X I Ethyl Acetate 70° X X X I Ethyl Acetate 70° I X I I Ethyl Butzohol 70° I X I I Ethyl Butzohol 70° I X X X Ethyl Butzohol 70° I X X <td< td=""><td>Diphenyl Phthalate</td><td>70°</td><td>I</td><td>Х</td><td>T</td><td>1</td></td<>	Diphenyl Phthalate	70°	I	Х	T	1
Disodium Phosphate70°AAABDivinyl Benzene70°IXIIDodecyl Benzene70°IXIIEEthanol70°AAAAEthanol70°BABIEthanol Amine70°KXXXBEthyl Acetate70°IXIIEthyl Acetoacetate70°XXXIEthyl Acetoacetate70°IXIIEthyl Acetoacetate70°IXIIEthyl Acetoacetate70°IXIIEthyl Acetoacetate70°IXIIEthyl Benzene70°IXIIEthyl Butyl Acetate70°IXIIEthyl Butyl Acetate70°IXXXEthyl Butyl Acetate70°IXXXEthyl Dichloride70°IXXXEthyl Formate70°IXIIEthyl Hexyl Acetate70°IXXXEthyl Isobutyl Ether70°IXXXEthyl Isobutyl Ether70°IXXXEthyl Propyl Ketone70°IXIIEthyl Propyl Ketone70°IXXXEthyl Propyl Keto		70°	1	χ		Ι
Divinyl Benzene70°IXIIDodecyl Benzene70°IXIIEEthanol70°AAAAEthanol Amine70°BABIEthyl Acetate70°IXXXBEthyl Acetate70°IXXIIEthyl Acetace70°IXXXBEthyl Acetace70°IXXIIEthyl Acetace70°IXXIIEthyl Acetace70°IXIXIEthyl Butanol70°IXIIIEthyl Butyl Acetate70°IXIIEthyl Butyl Acetate70°IXXXXEthyl Butyl Acetate70°IXXXXEthyl Chloride70°IXXXXEthyl Dichloride70°IXIIEthyl Hexyl Acetate70°IXIIEthyl Isobutyl Ether70°IXXXXEthyl Isobutyl Ether70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°IXXXEthyl Propyl Ketone70°XXXXEthyl Propyl Keton	Disodium Phosphate	70°	Α	Α	A	В
E Ethanol 70° A A A Ethanol Amine 70° B A B I Ethyl Acetate 70° X X X B Ethyl Acetate 70° I X I I Ethyl Acetoacetate 70° X X X I Ethyl Acetoacetate 70° X X X I Ethyl Acetoacetate 70° X X X I Ethyl Acetoacetate 70° A A A A Ethyl Benzene 70° I X I I Ethyl Butyl Acetate 70° I X I I Ethyl Butyl Acetate 70° I X X X X Ethyl Butyl Ketone 70° I X X X X Ethyl Butyl Acetate 70° I X X X X <td< td=""><td></td><td>70°</td><td>Ι</td><td>χ</td><td>I</td><td>Ι</td></td<>		70°	Ι	χ	I	Ι
Ethanol 70° A A A A Ethanol Amine 70° B A B I Ethyl Acetate 70° X X X B Ethyl Acetate 70° X X X I Ethyl Acetace 70° X X X I Ethyl Acetace 70° X X X I Ethyl Acetace 70° A A A A Ethyl Benzene 70° I X I I Ethyl Butyl Acetate 70° I X I I Ethyl Butyl Acetate 70° I X I I Ethyl Butyl Acetate 70° I X X X Ethyl Butyl Ketone 70° X X X X Ethyl Dichloride 70° X X X X Ethyl Pormate 70° I X I<	Dodecyl Benzene	70°	Ι	χ	Ι	Ι
Ethanol Amine 70° B A B I Ethyl Acetate 70° X X X B Ethyl Acetate 70° I X X I Ethyl Acetoacetate 70° I X X I Ethyl Acetoacetate 70° A A A A Ethyl Acetoacetate 70° I X X I Ethyl Acohol 70° A A A A Ethyl Benzene 70° I X I I Ethyl Butyl Acetate 70° I A I I Ethyl Butyl Acetate 70° I A I I Ethyl Butyl Acetate 70° I X X X Ethyl Butyl Ketone 70° I X X X Ethyl Dichloride 70° I X X X Ethyl Hexyl Acetate 70° I	E					
Ethyl Acetate 70° X X X I Ethyl Acetoacetate 70° I X I I Ethyl Acrylate 70° X X X I Ethyl Acrylate 70° A A A A Ethyl Alcohol 70° I X I X Ethyl Benzene 70° I A A A Ethyl Butanol 70° I A I I Ethyl Butyl Acetate 70° I A I I Ethyl Butyl Acetate 70° I A I I Ethyl Butyl Acetate 70° I X X X Ethyl Butyl Ketone 70° I X X X Ethyl Chloride 70° X X X X Ethyl Ether X X X X Ethyl Hexyl Acetate 70° I X X X Ethyl Isobutyl Ether 70° X X	Ethanol	70°	А	А	A	Α
Ethyl Acetoacetate 70° I X I I Ethyl Acrylate 70° X X X I Ethyl Alcohol 70° A A A A Ethyl Benzene 70° I X I X Ethyl Benzene 70° I X I X Ethyl Butanol 70° I A I I Ethyl Butyl Acetate 70° I A I I Ethyl Butyl Acetate 70° I X X X X Ethyl Butyl Ketone 70° I X X X X Ethyl Dichloride X X X X X Ethyl Formate 70° I X I I I Ethyl Hexyl Acetate 70° I X X X X Ethyl Isobutyl Ether 70° I X X X	Ethanol Amine	70°	В	А	В	Ι
Ethyl Acrylate 70° X X X 1 Ethyl Alcohol 70° A A A A Ethyl Benzene 70° I X I X Ethyl Butanol 70° I A I I Ethyl Butyl Acetate 70° I X X X Ethyl Butyl Ketone 70° I X X X Ethyl Dichloride X X X X Ethyl Formate 70° I X I I Ethyl Hexyl Acetate 70° I X X X Ethyl Hexyl Alcohol 70° I X X X Ethyl Isobutyl Ether 70° I X	Ethyl Acetate	70°	χ	χ	χ	В
Ethyl Alcohol 70° A A A Ethyl Benzene 70° I X I X Ethyl Butanol 70° I X I I Ethyl Butanol 70° I X I I Ethyl Butyl Acetate 70° I X X X X Ethyl Dichloride X X X X X Ethyl Ether X X X X X Ethyl Hexyl Acetate 70° I X I I Ethyl Hexyl Acetate 70° I X X X Ethyl Isobutyl Ether 70° I X X X Ethyl Nethyl Ketone	Ethyl Acetoacetate	70°	I	χ	I	Ι
Ethyl Benzene 70° I X I X Ethyl Butanol 70° I A I I Ethyl Butyl Acetate 70° I X X X Ethyl Dichloride X X X X Ethyl Ether X X X X Ethyl Formate 70° I X I I Ethyl Hexyl Acetate 70° I X X X Ethyl Iodide 70° I X X X Ethyl Isobutyl Ether 70° I X X X Ethyl Nethyl Ketone 70° I	Ethyl Acrylate	70°	χ	χ	χ	Ι
Ethyl Butanol 70° I A I I Ethyl Butyl Acetate 70° I X I I Ethyl Butyl Acetate 70° I A I I Ethyl Butyl Alcohol 70° I A I I Ethyl Butyl Alcohol 70° I A I I Ethyl Butyl Ketone 70° I X I I Ethyl Dichloride X X X X Ethyl Dichloride 70° X X X X Ethyl Formate X X X X Ethyl Formate 70° I X I I Ethyl Hexyl Acetate 70° I X X X Ethyl Hexyl Alcohol 70° I X X X Ethyl Isobutyl Ether 70° I X X X Ethyl Nethyl Ketone 70° I X I I Ethyl Propyl Ether 70° I	Ethyl Alcohol	70°	А	А	А	А
Ethyl Butyl Acetate70°IXIIEthyl Butyl Alcohol70°IAIIEthyl Butyl Ketone70°IXXXEthyl ChlorideXXXXEthyl Dichloride70°XXXXEthyl EtherXXXXEthyl Formate70°IXIIEthyl Hexyl Acetate70°IXIIEthyl Iddide70°IXXXEthyl Isobutyl Ether70°IXXXEthyl Nethyl Ketone70°IXIIEthyl Nethyl Ketone70°IXXXEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXXEthyl Propyl Ketone70°XXXIEthyl Propyl Ketone70°XXXXEthylene Bromide70°XXXX	Ethyl Benzene	70°	Ι	χ	I	Х
Ethyl Butyl Alcohol 70° I A I I Ethyl Butyl Ketone 70° I X I I Ethyl Chloride X X X X Ethyl Dichloride 70° X X X X Ethyl Dichloride 70° X X X X Ethyl Dichloride 70° X X X X Ethyl Ether X X X X Ethyl Formate 70° I X I I Ethyl Hexyl Accetate 70° I X X X Ethyl Hexyl Alcohol 70° I A I I Ethyl Iodide 70° X X X X Ethyl Isobutyl Ether 70° I X I I Ethyl Methyl Ketone 70° I X X X Ethyl Propyl Ether 70° I X I I Ethyl Propyl Ketone 70° X X </td <td>Ethyl Butanol</td> <td>70°</td> <td>Ι</td> <td>А</td> <td>Ι</td> <td>Ι</td>	Ethyl Butanol	70°	Ι	А	Ι	Ι
Ethyl Butyl Ketone 70° I X I I Ethyl Chloride X X X X Ethyl Dichloride 70° X X X X Ethyl Dichloride 70° X X X X Ethyl Dichloride 70° X X X X Ethyl Ether X X X X Ethyl Formate 70° I X I I Ethyl Hexyl Acetate 70° I X I I Ethyl Hexyl Alcohol 70° I X X X Ethyl Iodide 70° I X X X Ethyl Isobutyl Ether 70° I X X X Ethyl Methyl Ketone 70° I X X X Ethyl Propyl Ether 70° I X I I Ethyl Propyl Ketone 70° I X I I Ethyl Propyl Ketone 70° X X <td>Ethyl Butyl Acetate</td> <td>70°</td> <td>Ι</td> <td>χ</td> <td>Ι</td> <td>Ι</td>	Ethyl Butyl Acetate	70°	Ι	χ	Ι	Ι
Ethyl ChlorideXXXXEthyl Dichloride70°XXXXEthyl EtherXXXXEthyl Formate70°IXIIEthyl Hexyl Acetate70°IXIIEthyl Hexyl Acetate70°IAIIEthyl Hexyl Alcohol70°IAIIEthyl Iodide70°XXXXEthyl Isobutyl Ether70°IXIIEthyl Methyl Ketone70°XXXXEthyl Propyl Ether70°IXIIEthyl Propyl Ether70°XXXIEthyl Propyl Ketone70°XXXXEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Butyl Alcohol	70°	Ι	А	I	Ι
Ethyl Dichloride70°XXXXEthyl EtherXXXXEthyl Formate70°IXIIEthyl Hexyl Acetate70°IXIIEthyl Hexyl Alcohol70°IXXXEthyl Iodide70°IXXXEthyl Isobutyl Ether70°IXXXEthyl Nethyl Ketone70°IXXXEthyl Oxalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXX	Ethyl Butyl Ketone	70°	Ι	χ	Ι	
Ethyl Ether X X X Ethyl Formate 70° I X I I Ethyl Formate 70° I X I I Ethyl Hexyl Acetate 70° I X I I Ethyl Hexyl Acetate 70° I X I I Ethyl Hexyl Alcohol 70° I A I I Ethyl Iodide 70° X X X X Ethyl Isobutyl Ether 70° I X I I Ethyl Nethyl Ketone 70° X X X X Ethyl Oxalate 70° I X I I Ethyl Propyl Ether 70° I X I I Ethyl Propyl Ketone 70° X X X I Ethylene Bromide 70° X X X X	Ethyl Chloride		Х	χ	χ	Х
Ethyl Formate70°IXIIEthyl Hexyl Acetate70°IXIIEthyl Hexyl Alcohol70°IXXXEthyl Iodide70°XXXXEthyl Isobutyl Ether70°IXIIEthyl Methyl Ketone70°IXXXEthyl Oxalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXX	Ethyl Dichloride	70°	Х	Х	χ	Х
Ethyl Hexyl Acetate70°IXIIEthyl Hexyl Alcohol70°IAIIEthyl Iodide70°XXXXEthyl Isobutyl Ether70°IXIIEthyl Methyl Ketone70°XXXXEthyl Oxalate70°IXIIEthyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Ether		Х	χ	χ	Х
Ethyl Hexyl Alcohol70°IAIIEthyl Iodide70°XXXXEthyl Isobutyl Ether70°IXIIEthyl Methyl Ketone70°XXXXEthyl Oxalate70°IXIIEthyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Formate	70°	Ι	χ	Ι	
Ethyl lodide70°XXXXEthyl loobutyl Ether70°IXIIEthyl Methyl Ketone70°XXXXEthyl Oxalate70°IXIIEthyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Hexyl Acetate	70°	Ι	χ	Ι	
Ethyl Isobutyl Ether70°IXIIEthyl Methyl Ketone70°XXXXEthyl Oxalate70°IXIIEthyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Hexyl Alcohol	70°	Ι	А	Ι	
Ethyl Methyl Ketone70°XXXXEthyl Oxalate70°IXIIEthyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl lodide	70°	Х	χ	χ	Х
Ethyl Oxalate70°IXIEthyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Isobutyl Ether	70°	Ι	χ	Ι	
Ethyl Phthalate70°IXIIEthyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Methyl Ketone	70°	Х	χ	χ	Х
Ethyl Propyl Ether70°IXIIEthyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Oxalate	70°	Ι	χ	Ι	Ι
Ethyl Propyl Ketone70°XXXIEthylene Bromide70°XXXXEthylene Chloride70°XXXX	Ethyl Phthalate	70°	Ι	Х	Ι	
Ethylene Bromide70°XXXEthylene Chloride70°XXX	Ethyl Propyl Ether	70°	Ι	Х	Ι	
Ethylene Chloride 70° X X X	Ethyl Propyl Ketone	70°	Х	Х	Х	
			Х	χ	Х	Х
Ethylene Dibromide 70° X X X	Ethylene Chloride	70°	Х	Х	Х	Х
	Ethylene Dibromide	70°	Х	χ	Х	Х

Thermoplastic	<mark>: Hos</mark>	e			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Ethylene Dichloride	70°	χ	χ	χ	χ
Ethylene Glycol	70°	А	А	А	А
F					
Ferric Bromide	70°	Α	А	А	В
Ferric Chloride	70°	Α	А	А	А
Ferric Sulfate	70°	Α	А	А	А
Ferrous Acetate	70°	А	А	А	I
Ferrous Chloride	70°	А	А	А	В
Ferrous Hydroxide	70°	Ι	А	А	Ι
Ferrous Sulfate	70°	А	А	А	А
Fluorine	70°	χ	Х	Х	Х
Fluosilicic Acid	70°	А	А	А	В
Formaldehyde	70°	Х	Х	В	А
Formalin	70°	Ι	Ι	А	А
Formic Acid (less than 50%)	70°	В	В	А	А
Formic Acid (more than 50%)	70°	В	Х	χ	В
Freon® 12	70°	В	В	В	Х
Freon [®] 22	70°	Х	Х	χ	Х
Fuel A (ASTM)	70°	А	В	В	Ι
Fuel B (ASTM)	70°	Α	В	χ	Х
Fuel Oil	70°	А	В	В	Х
Furfural	70°	Х	Х	Х	Х
G					
Gasoline	70°	Х	Х	χ	Х
Glacial Acetic Acid	70°	Х	В	Ι	Ι
Glycerin	70°	Α	А	А	В
Grease	70°	Α	А	А	В
Н					
Heptane	70°	Α	А	Х	Х
Hexane	70°	Α	А	В	Х
Hexanol	70°	В	А	В	В
Hexyl Methyl Ketone	70°		Х		I
Hexylene Glycol ®Freon is a registed trademark of E.I. du Pont de Nemour	70°		В		

®Freon is a registed trademark of E.I. du Pont de Nemours and Company.

 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Hexyly-Alcohol	70°	I	А	Ι	Ι
Hydrobromic Acid	70°	А	А	В	В
Hydrochloric Acid	70°	А	В	А	А
Hydrofluoric Acid	70°	А	В	А	В
Hydrofluosilicic Acid	70°	В	В	Ι	I
Hydrogen Dioxide 10%	70°	Ι	А	А	
Hydrogen Dioxide (over 10%)	70°	Ι	А	А	Ι
Hydrogen Gas	70°	χ	Х	Х	В
Hydrogen Peroxide 10%	70°	А	А	А	В
Hydrogen Peroxide (over 10%)	70°	А	А	А	В
lodine	70°	χ	Х	χ	Х
Iron Acetate	70°	I	А	Ι	Ι
Iron Hydroxide	70°	I	А	А	I
Iron Salts	70°	Ι	А	А	В
Iron Sulfate	70°	Ι	А	А	Α
Iron Sulfide	70°	Ι	А	Ι	Ι
Isoamyl Acetate	70°	I	χ	Ι	Ι
Isoamyl Alcohol	70°	Ι	А	Ι	Ι
Isoamyl Bromide	70°	χ	χ	Х	Ι
Isoamyl Butyrate	70°	I	χ	Ι	Ι
Isoamyl Chloride	70°	I	χ	Ι	Ι
Isoamyl Ether	70°	I	χ	Ι	Ι
Isoamyl Phthalate	70°	Ι	χ	Ι	Ι
Isobutanol	70°	Ι	А	Ι	Α
Isobutyl Acetate	70°		χ	Ι	
Isobutyl Alcohol	70°	Ι	А	Ι	Α
Isooctane	70°		В	χ	
Isopentane			В	Ι	Ι
Isopropanol	70°	I	А	Ι	Α
Isopropyl Acetate	70°	χ	χ	χ	Ι
Isopropyl Alcohol	70°	А	А	В	В
Isopropyl Benzene	70°	Ι	Χ	I	Х

Thermoplastic	: Hos	e			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Isopropyl Chloride		Ι	χ	Ι	I
J					
Jet Fuels		χ	Х	Х	Х
К					
Kerosene	70°	χ	В	Х	Х
Ketones	70°	χ	Х	χ	Х
L					
Lead Acetate	70°	Α	А	А	В
Lead Sulfate	70°	Ι	Х	Ι	Ι
Linseed Oil	70°	А	А	А	Х
Lubricating Oils	70°	Α	В	В	Ι
М					
MIBK	70°	Ι	Х	I	Х
M.E.K.	70°	Х	Х	В	Х
Magnesium Acetate	70°	Ι	А	Ι	Ι
Magnesium Chloride	70°	Α	А	А	А
Magnesium Hydrate	70°	Ι	А	А	В
Magnesium Hydroxide	70°	А	А	А	А
Magnesium Sulfate	70°	А	А	А	А
Malic Acid	70°	В	А	В	В
Manganese Sulfate	70°	Ι	А	Ι	Ι
Manganese Sulfide	70°	Ι	А	Ι	Ι
Manganese Sulfite	70°	Ι	А	I	Ι
Methanol	70°	Α	А	А	А
Methallyl Alcohol	70°	Ι	А	Ι	I
Methyl (Wood) Alcohol	70°	В	В	А	А
Methyl Acetate	70°	Х	χ	Х	Х
Methyl Acetoacetate	70°	Ι	Х	Ι	Ι
Methyl Acetone	70°	Ι	Х	Ι	Х
Methyl Amyl Acetate	70°	Х	Х	χ	Х
Methyl Amyl Alcohol	70°	Ι	А	Ι	Ι
Methyl Amyl Ketone	70°	Ι	Х	Α	Ι
Methyl Benzene	70°		χ		Х

Thermoplastic	: Hos	е			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Methyl Butanol	70°		В		Х
Methyl Butyl Ketone	70°		X	 	<u> </u>
Methyl Cellosolve	70°		В	' 	
Methyl Chloride		X	X	Х	X
Methyl Ethyl Ketone	70°	χ	X	X	X
Methyl Hexyl Ketone	70°	X	X	X	X
Methyl Isobutyl Ketone	70°	X	X	X	X
Methyl Isopropyl Ketone	70°	χ	X	X	X
Methyl Normal Amyl Ketone	70°	Х	Х	Х	X
Methylallyl Chloride	70°	X	χ	Х	X
Methyl Propyl Ether	70°			A	Ι
Methyl Propyl Ketone	70°		χ		Ι
Methylallyl Acetate	70°		χ		Ι
Methylene Bromide	70°	χ	χ	χ	Ι
Methylene Chloride		χ	χ	χ	Х
Mineral Spirits	70°	I	В	I	Ι
Monochlorobenzene	70°	χ	χ	χ	Х
Monochlorodibluoromethane	70°	I	χ	I	Ι
Muriatic Acid	70°		В	А	В
N					
Naphtha	70°	В	В	В	Х
Naphthalene	70°	В	χ	В	Х
Natural Gas		se is r or this			1
Nickel Chloride	70°	А	А	А	В
Nickel Nitrate	70°	А	А	А	В
Nickel Sulfate	70°	А	А	А	Α
Nitric Acid 10%	70°	А	А	А	В
Nitric Acid 20%	70°	А	В	А	В
Nitric Acid 30%	70°	В	В	А	В
Nitric Acid 30-70%	70°	χ	χ	χ	Х
Nitro Benzene	70°	χ	χ	χ	Х
Nitrogen Gas	70°	А	А	А	Α
Nitrous Oxide	70°	А	А	Α	В

	-	0.	Ŭ		_
Thermoplastic	: Hos	е			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Octanol	70°		А	Ι	В
Octyl Acetate	70°	Ι	Х	Ι	Ι
Oil Petroleum	70°	А	В	А	Ι
Oleic Acid	70°	В	В	В	В
Oleum	70°	χ	χ	Х	Х
Orthodichlorobenzene	70°	Ι	Х	Ι	Ι
Orthodichlorobenzol	70°	Ι	χ	Ι	Ι
Oxalic Acid	70°	А	А	А	А
Oxygen		ose is for thi			d
Ozone	70°	В	В	В	В
Р					
Palmitic Acid	70°	В	В	В	В
Papermakers Alum	70°	Ι	А	Ι	Ι
Paradichlorobenzol	70°		χ	Ι	Ι
Paraffin	70°	В	А	В	Ι
Pentachloroethane	70°	Ι	Ι	χ	Ι
Pentane	70°	В	В	Ι	Х
Pentanol	70°	Ι	А	Ι	Ι
Perchloroethylene	70°	χ	Х	Х	Х
Petroleum Ether (Ligroin)	70°	А	В	Ι	Х
Petroleum - Crude	70°	А	В	Х	Х
Petroleum Oils	70°	А	В	χ	Х
Phenol	70°	χ	Х	χ	Х
Phenolsulfonic Acid	70°	Ι	Х	Ι	Ι
Phenyl Chloride	70°	Ι	Ι	χ	Х
Phosphoric Acid 10%	70°	А	А	А	А
Phosphoric Acid 10%-85%	70°	В	В	А	В
Polyethylene Glycol	70°	В	В	А	В
Polypropylene Glycol	70°	В	В	А	В
Potassium Acetate	70°		А	А	В
Potassium Bisulfate	70°	А	А	А	В
Potassium Bisulfite	70°	А	А	Α	В
Potassium Carbonate	70°	А	А	А	А

mernoplastic					
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Potassium Chloride	70°	Α	А	А	Α
Potassium Chromate	70°	Α	А	А	В
Potassium Dichromate	70°	Α	А	А	В
Potassium Hydrate	70°	Ι	А	Ι	В
Potassium Hydroxide	70°	В	А	А	В
Potassium Nitrate	70°	A	А	А	В
Potassium Silicate	70°	Ι	А	Ι	В
Potassium Sulfate	70°	A	А	А	В
Potassium Sulfide	70°	А	А	А	В
Potassium Sulfite	70°	Α	А	А	В
Propanediol	70°	Ι	А	Ι	В
Propanol	70°	Ι	А	Ι	В
Propyl Acetate	70°	I	χ	Ι	Ι
Propyl Alcohol	70°	Α	А	В	В
Propyl Chloride		Х	χ	χ	χ
Propylene Dichloride	70°	Х	χ	χ	χ
Propylene Glycol	70°	Α	Ι	А	Α
S					
Sea Water	70°	А	А	А	А
Silicate of Soda	70°	Ι	В	А	Α
Soda Ash	70°	A	А	А	А
Soda, Caustic	70°	A	В	А	Α
Soda, Lime	70°	Ι	В	А	Ι
Soda, Niter	70°	Ι	В	Ι	Α
Sodium Acetate	70°	А	В	А	В
Sodium Aluminate	70°	Ι	А	А	В
Sodium Bisulfate	70°	Α	А	А	Α
Sodium Bisulfite	70°	Ι	А	А	Α
Sodium Carbonate	70°	Α	А	А	Α
Sodium Chloride (brine)	70°	А	А	А	А
Sodium Chromate	70°		А	Ι	Ι
Sodium Dichromate	70°	А	А	А	В
Sodium Hydrate	70°	I	А	Ι	Ι

Thermoplastic	: Hos	е			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Sodium Hydrochlorite	70°	Α	А	В	В
Sodium Hydroxide	70°	Α	А	А	А
Sodium Hypochlorite	70°	А	А	А	А
Sodium Nitrate	70°	Α	А	А	А
Sodium Silicate	70°	Α	А	А	А
Sodium Sulfate	70°	Α	А	А	А
Sodium Sulfide	70°	Α	А	А	А
Sodium Sulfite	70°	Α	А	А	А
Sodium Thiosulfate	70°	А	А	А	А
Stannic Chloride	70°	Α	А	А	В
Stannic Sulfide	70°	Ι	А	Ι	I
Stannous Chloride	70°	Ι	А	Ι	Ι
Stannous Sulfide	70°	Ι	А	Ι	Ι
Stearic Acid	70°	А	А	А	А
Sulfonic Acid	70°	Ι	В	Ι	Ι
Sulfur Dioxide (Liquid)	70°	χ	χ	Х	Х
Sulfuric Acid (Dry)	70°	А	А	Α	А
Sulfuric Acid 25%	70°	Α	А	А	А
Sulfuric Acid 25-50%	70°	Α	А	Α	А
Sulfuric Acid 50-96%	70°	χ	χ	В	В
Sulfuric Acid Fuming	70°	χ	χ	χ	Х
Sulfurous Acid 10%	70°	В	В	В	А
Sulfurous Acid 10-75%	70°	χ	χ	χ	Х
T					
Tannic Acid	70°	В	В	В	А
Tar		Ι	χ	Ι	I
Tartaric Acid	70°	Α	А	Α	А
Tertiary Butyl Alcohol	70°	В	В	В	I
Tetrachlorobenzene	70°	Ι	χ	Ι	I
Tetrachloroethane	70°	Ι	χ	χ	Х
Tetrachloroethylene	70°	Ι	χ	χ	Х
Tetraethylene Glycol	70°	Ι	В	Ι	I
Tetrachloromethane	70°	Ι	χ	Ι	Х

mennoplastic	. 103	e			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Tetrachloronaphthalene	70°	Ι	χ	Ι	χ
Tetrahydrofuran	70°	Х	χ	χ	χ
Tin Chloride	70°	В	В	В	В
Tin Tetrachloride	70°	В	В	В	В
THF	70°	Ι	χ	Ι	χ
Toluene	70°	Х	χ	χ	χ
Toluidine	70°	Ι	χ	Ι	I
Toluol	70°	χ	χ	χ	χ
Transmission Oil "A"	70°	А	В	Ι	Ι
Tributyl Phosphate	70°	Х	χ	χ	χ
Trichlorobenzene	70°	Х	χ	χ	χ
Trichloroethane	70°	Ι	χ	χ	χ
Trichloroethylene	70°	Х	χ	χ	χ
Trichloropropane	70°	Ι	Ι	χ	χ
Triethanolamine	70°	В	В	В	I
Triethylene Glycol	70°	Ι	В	Ι	В
Triphenyl Phosphate	70°	В	χ	Ι	
Trisodium Phosphate	70°	В	В	А	А
Turpentine	70°	В	В	А	χ

Thermoplastic	: Hos	е			
 A = May be used for Continuous Service B = May be used for Intermittent Service X = Do not Use I = Insufficient Data 	Temperature (°F)	Polyurethane/Spirathane	PVC/Pliovic Plus	TPE/Arvac SW	TPR/Green Hornet XF
Urea	70°	А	А	А	А
Undecanol	70°	Ι	А	Ι	Ι
V					
V.M. & P. Naptha	70°	Ι	В	Ι	Ι
Vinyl Acetate	70°	Ι	Х	Ι	Х
Vinyl Benzene	70°	Ι	Х	Ι	Х
Vinyl Chloride		Х	Х	Х	Х
W					
Water	70°	Α	А	А	А
Wood Alcohol	70°	В	В	В	А
Х					
Xylene (Xylol)	70°	Х	Х	Х	Х
Xylidine	70°	Ι	Х	Ι	Ι
Z					
Zinc Carbonate	70°	Ι	А	А	В
Zinc Chloride	70°	А	А	А	В
Zinc Chromate	70°	А	А	А	Ι
Zinc Sulfate	70°	А	А	А	В

GENERAL INFORMATION

CHEMICAL PROPERTIES OF FLUROETHYLENEPROPYLENE (FEP)

AS STATED BY E.I. DU PONT DE NEMOURS

FEP fluorocarbon resins are attacked by certain halogenated complexes containing fluorine including: chlorine trifluoride, bromine trifluoride, iodine pentafluoride and fluorine itself.

FEP is also attacked by such metals as sodium or potassium, especially in their molten states. Great care should be used when mixing finely divided fluorocarbon polymers with finely divided metals, such as aluminum, magnesium or barium, since these can react violently if ignited or heated to a high temperature. Certain complexes of these metals with ammonia or naphthalene (in either solvent) also attack the products. Certain metal hydrides such as boranes, aluminum chloride and certain amines have also been observed to attack fluorocarbon resins at elevated temperatures.

The following materials are inert to FEP:

Alcohols Aliphatic Hydrocarbons Aromatics Esters Fluorocarbons Inorganic Oxidizing Agents Organic Acids Strong Mineral Acids Aldehydes Anhydrides Chlorocarbons Ethers Inorganic Bases Ketones Salt Solutions

FEP is a registered trademark of E.I. du Pont de Nemours.

METHOD FOR STEAM CLEANING GOODYEAR ENGINEERED PRODUCTS (CHEM ONE, VIPER, FABCHEM AND FABCHEM ARC)

5 IMPORTANT REQUIREMENTS

- 1) Hose must be **open-ended** during steam cleaning.
- 2) Temperature of Steam-Maximum 288°F.
- 3) Length of Cleaning Time-5 to 10 minutes...Not more than 15 minutes.
- 4) Care must be taken **not to score** the tube (liner) with the nozzle or wand end.
- 5) Prolonged steam jet contact on a specific area of the tube (liner) could cause tube damage.

U . S . A . 1 - 8 0 0 - B E L T - U S A or 1 - 8 0 0 - 2 3 5 - 8 8 7 2 F A X 1 - 8 0 0 - 3 2 9 - 2 3 5 8

> C A N A D A 1 - 8 0 0 - 2 6 3 - 7 7 8 8 F A X 1 - 8 0 0 - 9 3 9 - 9 9 1 9

GOODYEAREP.COM/HOSE

The GOODYEAR (and Winged Foot Design) trademark is used by Veyance Technologies, Inc. under license from The Goodyear Tire & Rubber Company. Goodyear Engineered Products are manufactured and sourced exclusively by Veyance Technologies, Inc. or its affiliates. ©2009 Veyance Technologies, Inc. All Rights Reserved.

09GHOS051 - 5/09

goodyearep.com

Aftermarket Parts - Automotive, Conveyor Belt - Heavyweight and Lightweight, Government, Heavy Duty, Home and Garden, Hydraulics, Industrial Hose, Power Transmission Products, Powersports, Rubber Track, Seawing Offshore Oil Hose

Ball Valve and Hose Adapter

(Grainger)

EnSol, Inc.

GRAINGER			printed May 20, 2013
	Adanto	r Malo	3 In, 316 SS
	Cam And x FNPT C	Groove C Connection	Coupling, Size 3 In, Male Adapter n, Max Working Pressure 125 nstruction 316 Stainless Steel
	Grainger		3LX43
	Price (ea Brand	.)	\$126.15 GRAINGER APPROVED
AU 147 181	Mfr. Mode	el#	VENDOR 3LX43
	Ship Qty.		1
	Sell Qty. Ship Wei	(Will-Call)	1 1.8
	Availabilit	. ,	Typically in Stock
	Catalog F		4066
	Price shown	may not refle	ect your price. Log in or register.
Additional Info			
Aluminum and Stainless Steel			
 Max. pressure: 250 psi (up to 2"); 125 psi to 212°F Interchangeable with all producing gasket Cam and Groove Couplings 			-
Couplings have Buna N seals and stainle	es stool pins. D	ull rings ar	nd locking pins are plated
carbon steel.			
carbon steel. Meet ASTMC 38000 and MIL-C-27487F s	specifications.	-	Accessories
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter	specifications.	-	Accessories Dust Cap, 3 In, 316 SS
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT	specifications.	-	
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item.	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I Sheet (MSDS).	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In,
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I Sheet (MSDS). Required Accessories There are currently no required accessorie	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In, Polypropylene
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I Sheet (MSDS). Required Accessories There are currently no required accessorie	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In, Polypropylene Item #: 4YLL5 Brand: GRAINGER APPROVED
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I Sheet (MSDS). Required Accessories There are currently no required accessories	specifications.	-	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In, Polypropylene Item #: 4YLL5
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I Sheet (MSDS). Required Accessories There are currently no required accessories	specifications.	Dptional A	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In, Polypropylene Item #: 4YLL5 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125 Material of Construction: 316 Stainless Stee Notes & Restrictions There are currently no notes or restrictions this item. MSDS This item does not require a Material Safety I Sheet (MSDS). Required Accessories There are currently no required accessories	specifications.	Detional A	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In, Polypropylene Item #: 4YLL5 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$66.95
carbon steel. Meet ASTMC 38000 and MIL-C-27487F : Tech Specs Item: Adapter Type: A Size: 3" Connection: Male Adapter x FNPT Max. Working Pressure (PSI): 125	specifications.	Dptional A	Dust Cap, 3 In, 316 SS Item #: 3LX51 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$143.25 Coupler, Female, 3 In, 316 SS Item #: 3LX49 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$245.00 Cap with Handle, 3 In, Polypropylene Item #: 4YLL5 Brand: GRAINGER APPROVED VENDOR Usually Ships: Typically in Stock Price (ea): \$66.95 Products currently no alternate products for the

Grainger Industrial Supply

printed February 8, 2013

Ball Valve, Two Piece, 2 In, 316 SS Body

Two Piece Ball Valve, FNPT Connection, Max. Pressure 1000 psi WOG, Full Port, Material of Construction 316 Stainless Steel, Seats PTFE, Ball Material 316 Stainless Steel, Stem Material 316 Stainless Steel, Stem Blowout Proof, Handle Stainless Steel, Lockable, With Vinyl Grip, Standards -

Grainger Item #	1WMY7
Price (ea.)	\$202.00
Brand	GRAINGER APPROVED VENDOR
Mfr. Model #	1WMY7
Ship Qty.	1
Sell Qty. (Will-Call)	1
Ship Weight (lbs.)	5.5
Availability	Ready to Ship
Catalog Page No.	4364

Price shown may not reflect your price. Log in or register.

Additional Info

316 Stainless Steel Ball Valves with Handle Options

Stainless steel handle with vinyl grip. Bottom-loaded stem resists blowout. 2-pc. valves with PTFE seats and FNPT connections. Vacuum service to 29" Hg. For use with water, oil, and gas in most corrosive industrial environments.

Rated: 1000 psi; 150 psi WSP Temp. range: -25° to 450°F

Tech Specs

Item: Ball Valve Type: Two Piece Connection: FNPT Max. Pressure: 1000 psi WOG Pipe Size: 2" Port: Full Material of Construction: 316 Stainless Steel Seats: PTFE Ball Material: 316 Stainless Steel Stem Material: 316 Stainless Steel Stem: Blowout Proof Handle: Stainless Steel, Lockable, With Vinyl Grip Temp. Range (F): -25 to 450 Degrees Overall Length (in.): 4-29/32

Notes & Restrictions

There are currently no notes or restrictions for this item.

MSDS

This item does not require a Material Safety Data Sheet (MSDS).

Required Accessories

There are currently no required accessories for this item.

There are currently no optional accessories for this item.

Alternate Products

Optional Accessories

Ball Valve, Two Piece, 2 In, 316 SS Body

Item #: 1WNA7 Brand: GRAINGER APPROVED VENDOR Usually Ships: Ready to Ship Price (ea): \$207.75

Repair Parts

A Repair Part may be available for this item. Visit our Repair Parts Center or contact your local branch for more information.

HDPE Pipe Data

(Chevron Phillips)

EnSol, Inc.

A DIVISION OF CHEVRON PHILLIPS CHEMICAL COMPANY LP

PERFORMANCE PIPE DRISCOPLEX[®] 4000/4100 Pipe Water and Wastewater Piping Systems

Corrosion Resistant Leak Proof Fused Joints Ideal for Trenchless Applications Flexible Hydraulically Efficient ID Will Not Tuberculate Reduces Surge Pressure Outstanding Resistance to Fatigue Excellent Impact Strength Thrust Blocks Not Needed Resistant to Sewer Gas Less Maintenance

Environmentally Friendly

DRISCO

When Performance Matters Rely on Us!

ASCE Report Card

The American Society for Civil Engineers (ASCE) issues a "report card" on the condition of America's infrastructure about once every five years. In the 2009 report they gave water and wastewater infrastructure a grade of D minus. EPA has identified the two biggest problems facing America's infrastructure as corrosion and leakage. DriscoPlex® 4000 and 4100 High Density Polyethylene (HDPE) pipes offer a solution. HDPE pipes do not undergo galvanic corrosion and are suited for "aggressive soils." They do not rust, rot, corrode, tuberculate, or support biological growth. DriscoPlex® 4000 and 4100 pipes are joined by heat fusion which means the pipes are essentially a continuous pipe without gasket joints to leak. The heat-fused joint is as strong as the pipe itself and fully restrained requiring no thrust blocks.

The Future for Water and Wastewater Piping

Polyethylene pipe's wide acceptance and use for natural gas distribution is the strongest statement that can be made about polyethylene pipe's corrosion resistance and leak-tight nature. Polyethylene pipe has been used for gas distribution pipe since the early 1960's. More than 95% of new gas distribution piping is polyethylene. By 2008, over 577,000 miles of polyethylene natural gas pipe and 39.6 million polyethylene pipe services were installed in the United States. Natural gas service is the most safety critical usage of piping in a municipality. Leakage cannot be tolerated. In addition to the excellent record in gas distribution, polyethylene pipe has been used for water in Europe and North America for 50 years. Recognizing these successes, more and more water and wastewater utilities are turning to polyethylene pipe for both trenchless construction and open-cut applications. For municipal usage, DriscoPlex® pipe is manufactured to ASTM F714, AWWA C901 and AWWA C906 standards. It meets the requirements of NSF/ANSI-61 (NSF/ANSI-14 where noted) and comes in either Iron Pipe Sizes or Ductile Iron Pipe Sizes, i.e. the outside diameter (OD) matches the OD of iron pipe or ductile iron pipe, respectively. In addition to pipe, standard products such as heat-fusion and electrofusion saddles, flanges, mechanical-joint adapters are available for hot tapping and connecting to pumps, hydrants or valves. Mechanical connections and hot taps requiring no fusion are available as well.

Performance Pipe Means the Highest Quality

Performance Pipe is a name you can trust in water and sewer piping. Performance Pipe has produced quality polyethylene piping products for fifty years. Our internal QA/QC requirements meet or exceed those required by industry standards. Each production line is continuously monitored throughout the manufacturing cycle to ensure that the product adheres to all internal quality control specifications and the manufacturing standard.

All nine of Performance Pipe's manufacturing facilities and our headquarters are certified in accordance with the latest edition of ISO 9001:2000. Certificates of Conformance are available through our website. Performance Pipe produces all pipe and molded fittings products in the United States. These products are compliant with the Buy American requirement of the 2009 American Recovery and Reinvestment Act.

When you select Performance Pipe DriscoPlex[®] 4000 and 4100 pipe and fittings, in addition to receiving quality products, you also gain access to our team of experts for technical support, sales and assistance. Our territory sales teams are dedicated to the municipal piping industry and are active

members of the ASTM International, Plastics Pipe Institute, American Water Works Association (AWWA) and many other industry associations. As a company we provide technical expertise and service to these organizations on an ongoing basis.

The unmatched quality and performance of Performance Pipe's polyethylene piping products is further enhanced and strengthened by more than five decades of quality polyolefin plastic resin production from our parent company Chevron Phillips Chemical Company LP.

Polyethylene Resin Continues to Improve

DriscoPlex® pipe and fittings for M&I applications are made from polyethylene materials that are engineered for high density, extra high molecular weight, and broad molecular weight distribution. These characteristics give DriscoPlex® products strength, flexibility, toughness and durability. Since the introduction of polyethylene piping materials in the 1950's, polyethylene resin manufacturers have worked continually to improve their resins. In 2005 "High Performance" polyethylene pipe materials were adopted in U.S. ASTM standards. The most improved of the new materials has a designation code of PE4710. Compared to PE3408 (now PE3608) materials, PE4710 resins have increased density, higher tensile strength and higher resistance to slow crack growth. These increased properties allow the pipe to meet higher performance requirements.

Performance Pipe manufactures pipe and fittings of high performance PE4710. Performance Pipe's PE4710 materials are listed in PPI TR-4 with a Hydrostatic Design Stress of 1000 psi at 73°F. Where

specifications and standards permit, PE4710 materials can be operated at higher pressures than PE3408 materials due to the higher Hydrostatic Design Stress rating at 73°F. PE4710 materials meet or exceed all of the requirements of the former PE3408 resin.

For a more detailed explanation of PE4710 materials and information regarding temperature, design factors and calculation of pressure rating, see <u>PP 816-TN PE3608 and PE4710 Materials Designation</u> <u>Codes and Pipe Pressure Ratings.</u> All Performance Pipe documents may be found at <u>www.performancepipe.com</u>.

Cell Classification for PE4710 Material

ASTM D3350, *Standard Specification for Polyethylene Plastics Pipe and Fittings Materials,* identifies polyethylene materials for pipe and fittings according to a cell classification system. Performance Pipe's DriscoPlex[®] 4000 and 4100 series pipe cell classification is listed in Table 1. For specific material properties see <u>PP101, "DriscoPlex® 4000 (DIPS)/4100 (IPS) Water, Wastewater and Industrial".</u>

Table 1: Cell Classifications

Performance Pipe	Material Designation Code (MDC) ASTM D3350 Cell					
Product Series	Present	Past	Classification			
DRISCOPLEX [®] 4000/4100 Pipe	PE4710	PE3408	445574C			

Bulletin PP 501 | July 2012

Page 3 of 18

©2012 Chevron Phillips Chemical Company LP

Performance Pipe, a division of Chevron Phillips Chemical Company LP | 5085 W. Park Blvd | Suite 500 | Plano, TX 75093 | Phone: 800-527-0662 | Fax: 972-599-7348

PE Durability and Disinfectants in Potable Water Applications

HDPE pipes are used extensively in municipal water applications throughout Europe and the United Kingdom – boasting the lowest failure rates of any piping material. HDPE pipes contain additives which protect the pipe from the oxidizing effects of disinfectants. At Performance Pipe, our HDPE water pipes meet AWWA requirements and are evaluated to the toxicological requirements of NSF/ANSI 61. A recent study by Jana Laboratories examined the projected lifespan of polyethylene pipe under typical operating conditions at utilities in Indiana, Florida, North Carolina, and California. Their findings indicate a life expectancy greater than 100 years. Read Jana Laboratories' report, <u>Impact of Potable Water Disinfectants on PE Pipe</u>.

DriscoPlex® Piping Products for Municipal Applications

Performance Pipe offers pipe for municipal applications that are manufactured to both ASTM and AWWA standards simultaneously. Performance Pipe products are generally stocked by standard distributors and, for many sizes and DR's, are readily Specialty products are available but available. generally not stocked and thus have to be produced at Performance Pipe manufacturing plants. Table 2 lists the various products, applicable standards, and the pipe material designation code. DriscoPlex® pipes series are identified by a four digit number code. For example, DriscoPlex® 4000 pipe.

DriscoPlex® Municipal Water and Wastewater Pipe Pipe Materials **DriscoPlex®** Pipe Applicable Features Size Range **Designation Codes** Standards Series Available (PPI TR-4) 4000 (DIPS) Black w/ blue AWWA C906 & ASTM Municipal potable 4" through F714 (4" to 42") stripes **PE4710** water, raw water, 42" DIPS NSF/ANSI 61 process water, sewer 4100 (IPS) AWWA C901 & ASTM Municipal potable D3035 (3" & smaller) Black pipe is 1-1/2" through water, raw water, standard ASTM F714 & AWWA **PE4710** 54" IPS C906 (4" to 54") and process water, sewer NSF/ANSI 61

Table 2. DriscoPlex® Pipes

For ¾" through 2" SIDR and CTS and for ¾" through 3" IPS for municipal potable water service lines consider 5100 Ultraline®. See PP410, "DriscoPlex® 5100 Series Ultraline® HDPE Water Service Pipe & Tubing".

DriscoPlex® Pipe is Manufactured to Both ASTM F714 and AWWA C906

DriscoPlex® 4000/4100 pipe meets or exceeds the requirements of ASTM F714 and AWWA C906. ASTM F714 designates a "Pressure Rating (PR)" whereas AWWA C906 designates a "Pressure Class, PC." Currently these are not calculated the same way and therefore are not equal. ASTM F714 recognizes PE4710 material, whereas AWWA C906 is being updated but currently treats PE4710 material as having the same PC as the former PE3408 material. For AWWA C906 ratings, see Appendix 1.

```
Bulletin PP 501 | July 2012
```

Page 4 of 18

Performance Pipe, a division of Chevron Phillips Chemical Company LP | 5085 W. Park Blvd | Suite 500 | Plano, TX 75093 | Phone: 800-527-0662 | Fax: 972-599-7348

The pressure rating of PE pipe varies with the pipe's Dimension Ratio (DR). The DR is equal to the average pipe outside diameter (OD) divided by the minimum wall thickness. The Plastics Pipe Institute's *Handbook of Polyethylene Pipe* gives the method for calculating the pressure rating. The pressure ratings for DriscoPlex® 4000/4100 pipe allowed by ASTM F714 are given in Table 3.

Water and force main sewer lines have frequent and recurring surges. The designer will consider both the pipe's working or pumping pressure and the total pressure (pumping pressure plus surge pressure) when determining an application's DR. Rating for both are given in Table 3 for easy comparison with design flow conditions.

	PE4710 Pipe Pressure Ratings Per ASTM F714 ¹											
Dimension Ratio	Working Pressure Rating (psi)	Allowable Total Pressure During Recurring Surge (psi)	Allowable Total Pressure During Occasional Surge (psi)									
9	250	375	500									
11	200	300	400									
13.5	160	240	320									
14.3	150	225	300									
17	125	185	250									
21	100	150	200									
26	80	120	160									

Table 3 DriscoPlex® 4000 and 4100 Pipe Pressure Ratings per ASTM F714 at 80°F

¹For Pressure Class and Working Pressure Ratings per AWWA C906, see Appendix 1. Ratings are for water and can vary for other fluids and temperature. Table 3 Working Pressure Ratings may be used with AWWA C901 pipe.

The temperature range for polyethylene pipe is -40°F to 140°F for pressure pipe and -40°F to 180°F for non-pressurized pipe, e.g. gravity flow. When DriscoPlex® pipe operates at a temperature above 80°F the Pressure Rating and Pressure Class of the pipe are decreased. The PR/PC for temperatures above 80°F may be determined by multiplying the PC in Table 3 by the temperature factor from Table 4.

Table 4: Service Temperature Design Factor

	Service Temperature Design Factor, F ¹											
Service Temperature, °F (°C)	<u><</u> 80 (27) ⁽¹⁾	<u><</u> 90 (32)	<u><</u> 100 (38)	<u><</u> 110 (43)	<u><</u> 120 (49)	<u><</u> 130 (54)	<u><</u> 140 (60)					
	1.0	0.9	0.8	0.71	0.63	0.57	0.50					

^{¬1}Use 80°F (27°C) service factor for service temperatures below 80°F (27°C). F_T for temperatures below 100°F are from AWWA M-55. F_T for temperatures above 100°F found by interpolation.

PPI Design & Engineering Calculator for PE Pipe is available on the Performance Pipe website.

DriscoPlex®4000/4100 Pipe Common Sizes

Tables 5 and 6 give dimensions and weights for commonly used DR's in the water and wastewater industry. For other available DR's, see PP152 and PP153, *Size and Dimension Sheets*. All pipes of a given nominal size are made to the same OD regardless of DR. Therefore, the average inside diameter (ID) varies with the pipe wall thickness. DriscoPlex® 4000/4100 pipe is available in 40 or 50 foot lengths and is also available in coils through 6" DIPS. *Packaging and Loading* information is available on our website.

Bulletin PP 501	July 2012
-----------------	-----------

Page 5 of 18

DIPS ASTM F714 PR AWWA C906 PC		DR 21 PR = 100 psi PC = 80 psi			DR 14.3 PR = 150 psi PC = 120 psi			DR 11 PR = 200 psi PC = 160 psi			DR 9 PR = 250 psi PC = 200 psi		
Pipe Size, in.	OD, in.	Min. Wall, in.	Avg. ID, in.	Wgt. Ibs/ft	Min. Wall, in.	Avg. ID, in.	Wgt. Ibs/ft	Min. Wall, in.	Avg. ID, in.	Wgt. Ibs/ft	Min. Wall, in.	Avg. ID, in.	Wgt. Ibs/ft
4	4.80	0.229	4.315	1.45	0.336	4.088	2.07	0.436	3.876	2.62	0.533	3.670	3.13
6	6.90	0.329	6.203	2.99	0.483	5.877	4.27	0.627	5.571	5.42	0.767	5.274	6.47
8	9.05	0.431	8.136	5.13	0.633	7.708	7.35	0.823	7.305	9.33	1.006	6.917	11.13
10	11.10	0.529	9.979	7.73	0.776	9.454	11.06	1.009	8.961	14.03	1.233	8.486	16.74
12	13.20	0.629	11.867	10.93	0.923	11.243	15.64	1.200	10.656	19.84	1.467	10.090	23.67
14	15.30	0.729	13.755	14.68	1.070	13.032	21.01	1.391	12.351	26.65	1.700	11.696	31.80
16	17.40	0.829	15.643	18.98	1.217	14.820	27.17	1.582	14.046	34.47	1.933	13.302	41.13
18	19.50	0.929	17.531	23.84	1.364	16.609	34.12	1.773	15.741	43.30	2.167	14.906	51.66
20	21.60	1.029	19.419	29.25	1.510	18.398	41.87	1.964	17.436	53.13	2.400	16.512	63.38
24	25.80	1.229	23.195	41.73	1.804	21.975	59.73	2.345	20.829	75.77	2.867	19.722	90.43
30	32.00	1.524	28.769	64.18	2.238	27.256	91.89	2.909	25.833	116.58			
†36	38.30	1.824	34.433	91.93	2.678	32.622	131.63	3.482	30.918	167.02			
†42	44.50	2.119	40.008	124.09	3.112	37.903	177.70						

Table 5 DriscoPlex® 4000 DIPS Pipe Sizing System

	PS		DR 21			DR 17			DR 13.5			DR 11			DR 9	
ASTM	F714 PR	P	R = 100	psi	PI	R = 125	psi	PI	R = 160	psi	PF	r = 200 p	osi	PF	PR = 250 psi	
AWWA	C906 PC		C = 80 p	osi		C = 100	psi		C = 130	psi		C = 160 p	osi		C = 200 p	osi
Pipe Size in.	OD, in.	Min. Wall, in.	Avg. ID, in.	Wgt. Ibs/ft	Min. Wall, in.	Avg. ID, in.	Wgt. Lbs/ft									
2	2.375				0.140	2.078	0.43	0.176	2.002	0.53	0.216	1.917	0.64	0.264	1.815	0.77
3	3.500				0.206	3.063	0.94	0.259	2.951	1.16	0.318	2.826	1.39	0.389	2.675	1.66
4	4.500	0.214	4.046	1.27	0.265	3.938	1.55	0.333	3.794	1.92	0.409	3.633	2.31	0.500	3.440	2.75
6	6.625	0.315	5.957	2.75	0.390	5.798	3.36	0.491	5.584	4.15	0.602	5.349	5.00	0.736	5.065	5.96
8	8.625	0.411	7.754	4.66	0.507	7.550	5.69	0.639	7.270	7.04	0.784	6.963	8.47	0.958	6.594	10.11
10	10.750	0.512	9.665	7.24	0.632	9.410	8.83	0.796	9.062	10.93	0.977	8.679	13.16	1.194	8.219	15.70
12	12.750	0.607	11.463	10.19	0.750	11.160	12.43	0.944	10.749	15.38	1.159	10.293	18.51	1.417	9.746	22.08
14	14.000	0.667	12.586	12.28	0.824	12.253	14.98	1.037	11.802	18.54	1.273	11.301	22.32	1.556	10.701	26.63
16	16.000	0.762	14.385	16.04	0.941	14.005	19.57	1.185	13.488	24.22	1.455	12.915	29.15	1.778	12.231	34.78
18	18.000	0.857	16.183	20.30	1.059	15.755	24.77	1.333	15.174	30.65	1.636	14.532	36.89	2.000	13.760	44.02
20	20.000	0.952	17.982	25.07	1.176	17.507	30.58	1.481	16.860	37.84	1.818	16.146	45.54	2.222	15.289	54.34
22	22.000	1.048	19.778	30.33	1.294	19.257	37.00	1.630	18.544	45.79	2.000	17.760	55.10	2.444	16.819	65.75
24	24.000	1.143	21.577	36.10	1.412	21.007	44.03	1.778	20.231	54.49	2.182	19.374	65.58	2.667	18.346	78.25
26	26.000	1.238	23.375	42.36	1.529	22.759	51.67	1.926	21.917	63.95	2.364	20.988	76.96	2.889	19.875	91.84
28	28.000	1.333	25.174	49.13	1.647	24.508	59.93	2.074	23.603	74.17	2.545	22.605	89.26	3.111	21.405	106.51
30	30.000	1.429	26.971	56.40	1.765	26.258	68.80	2.222	25.289	85.14	2.727	24.219	102.47	3.333	22.934	122.27
32	32.000	1.524	28.769	64.17	1.882	28.010	78.28	2.370	26.976	96.87	2.909	25.833	116.58	3.333	22.934	122.27
34	34.000	1.619	30.568	72.44	2.000	29.760	88.37	2.519	28.660	109.36	3.091	27.447	131.61			
36	36.000	1.714	32.366	81.21	2.118	31.510	99.07	2.667	30.346	122.60	3.273	29.061	147.55			
42	42.000	2.000	37.760	110.54	2.471	36.761	134.84	3.111	35.405	166.88						
48	48.000	2.286	43.154	144.38	2.824	42.013	176.12									
54	54.000	2.571	48.549	182.73	3.176	47.266	222.90									

Table 6 DriscoPlex® 4100 IPS Pipe Sizing System

Average inside diameter is calculated using Nominal OD and Minimum Wall plus 6% for use in estimating fluid flow. Actual ID will vary. When designing components to fit the pipe ID, refer to pipe dimensions and tolerances in the applicable pipe manufacturing specification.

PERFORMANCE ADVANTAGES OF DRISCOPLEX® 4000/4100 PIPE

Stripes

Stripes allow easy field identification of pipe. DriscoPlex® 4000 (DIPS) pipe comes standard with three pairs of blue stripe, but lavender, green, and no stripes is optional. The standard DriscoPlex® 4100 (IPS) is black, but blue, lavender and green striping is optional with 4 single stripes at 90 degrees apart.

Flow

DriscoPlex® 4000/4100 pipes are characterized as hydraulically smooth and typically have an absolute surface roughness (ɛ) of 0.000005 ft. The Hazen-Williams Friction Factor (C) equals 150 to 155 for polyethylene pipes. Even though the inside diameter of polyethylene pipe may be smaller for the same nominal size as metallic or concrete pipes, flow is often equal or greater through polyethylene pipe. For example, an 8" DR17 DriscoPlex® 4000 pipe has a lower pressure drop per given flow rate than an 8" CL350 concrete lined DI pipe (C equals 120). For gravity flow, the n-factor in the Manning equation is typically taken as 0.009 for clear water and 0.010 for sanitary sewer. For design information, see the *Handbook of Polyethylene Pipe*, Chapter 6.

Surge Pressure

When it comes to surges, polyethylene has two advantages over most piping materials. 1) As Table 3 shows, it has the capacity to handle surge pressures significantly in excess of its pressure rating. 2) It also has the lowest surge pressure of all common water pipes. For example, a 5 ft/sec velocity change in a DR17 Polyethylene pipe will produce a 56 psi surge, in a DR18 PVC pipe the surge is

88 psi, and in a Class 50 DI pipe the surge is 268 psi. Thus, with polyethylene pipe there are lower surge pressures and less wear and tear on valves, hydrants, and other system components and, when surges occur, HDPE pipes may be quite capable of handling them with a lower Pressure Class (PC) than required for other materials.

Fatigue

Repeated surges will cause fatigue stress in pipelines. This is particularly significant in certain thermoplastic pipes, excluding polyethylene. Fortunately, polyethylene has an excellent resistance to fatigue. The projected design life for DriscoPlex® 4000/4100 pipes exceeds 100 years for pipe operating at a velocity of 4 fps with a surge frequency of 4 times per hour continuously. See Bulletin <u>PP-402</u>, *Working Pressure Rating and Fatigue Life*.

Comparison with Other Piping Products

Polyethylene's superior performance is due to its fused joint, toughness, and flexibility. Comparisons of polyethylene to other piping materials based on PC alone can lead to costly over-designs, since the definition of "Pressure Class" varies from material to material (see AWWA C906, C905, etc). When correctly incorporating HDPE's lower surge magnitudes, higher surge allowances, and greater fatigue strength into the design, the PC required for HDPE may be much lower than the PC required for other pipe materials.

Impact Resistance

Polyethylene pipe is routinely used in mining applications above the Arctic Circle and can withstand water freezing internally. A product that can be handled in these extreme conditions has to have excellent impact resistance. The Izod Impact Strength of high density polyethylene using ASTM D256 Method A is 4 to 5 ft-lbs/in at 73°F, again a value significantly greater than other plastic pipe materials.

Rapid Crack Propagation

Impact damage, fatigue, or joint failure in metal or thermoplastic pipes under certain operating conditions can lead to long, running cracks that will propagate through fused joints and can travel hundreds of feet. This cracking is referred to as Rapid Crack Propagation (RCP). One published report cites an 1100 ft long crack that occurred in a fusion joined PVC pipeline. Polyethylene pipe has excellent resistance to RCP. In fact, laboratory testing has shown that RCP cannot occur in a water filled polyethylene pipe. PP838, *Preventing RCP in Fused Water Pipelines* indicates that the best way to avoid this type of cracking is to specify polyethylene pipe as opposed to other thermoplastic pipes.

INSTALLATION ADVANTAGES OF DRISCOPLEX® 4000/4100 PIPE

Heat Fusion of Polyethylene Pipe

Heat fusion of polyethylene pipe is proven, reliable, and timetested, with over 50 years of success. The procedure is standardized, published in ASTM F2620, and there are thousands of trained operators around the nation. Compared to fusing other types of thermoplastic pipes, the process for polyethylene pipe is easier to learn, more forgiving, and results in higher productivity rates. Joints have the same tensile strength as the pipe and no thrust blocks or restraints are required at fittings and bends. Polyethylene pipe can be fused and installed in subfreezing weather. See PP750, *Heat Fusion Joining Procedures and Qualification Guide*.

Exceptional for Trenchless Installations

DriscoPlex® pipe is flexible and tough. As a result, polyethylene pipes are well-suited for horizontal directional drilling, plowing, river and water crossings, pipe bursting and sliplining. Installers like the fact that polyethylene pipe is tough enough to stand up to rigors of field handling with higher impact resistance, greater ductility, more flexibility, and higher resistance to RCP than its closest thermoplastic competitor. There is a wealth of technical publications for trenchless usage of polyethylene pipe including the *Handbook of Polyethylene Pipe*. See Chapter 11 "Pipeline Rehabilitation by Sliplining with PE Pipe," Chapter 12, "Horizontal Directional Drilling," and Chapter 16, "Pipe Bursting."

Small Bend Radius; Big Installation Advantage

Installers often choose DriscoPlex® 4000/4100 pipe because of its flexibility and tight bend radius. The bend radius is the smallest radius to which a pipe can be bent without causing permanent damage. In open-cut and above-grade applications pipe may be strung around corners or over swales often eliminating fittings. Polyethylene water mains can typically be laid around a cul-de-sac without the use of fittings. In trenchless applications, a more flexible pipe results in shorter insertions pits and reduced costs.

Page 9 of 18

©2012 Chevron Phillips Chemical Company LP

For horizontal directional drilling, a tight bend radius greatly reduces laydown space, the area where pipe is placed prior to pullback. In tight suburban right-of-ways, it is often necessary to string pipe around corners or bends while awaiting pullback. Flexibility facilitates this and polyethylene pipe can be curved to a radius 1/10th of that of its closest thermoplastic pipe competitor. Thus, it is more convenient for the installer and less disruptive to the public by eliminating inconvenient street closures. In addition,

this extra flexibility provides a safety factor against damage during pullback as the polyethylene pipe will almost always have a tighter bending radius than the drill rod used to install it. Thus, polyethylene pipe is protected from overbending unlike other fused thermoplastic pipes.

Bend radius should not be confused with the length of the pipe required to make a specific turn. Table 7 gives both the bend radius and the length required to make a 90° bend. For additional information on bending see PP407, "*Small Bend Radius Big Installation Advantage*" and PP819, "*Field Bending of PE Pipe*".

			Ι	Drisco	Plex® 40	00/4100	Minim	um Be	nd Radiı	JS			
4100 IPS Size	Minimum Bend Radius (ft)			Length of Pipe Required to Make a 90 [°] Bend (ft)			4000 DIPS Size	Minimum Bend Radius (ft)			Length of Pipe Required to Make a 90° Bend (ft)		
(in)	DR 9	DR 11 DR 13.5	DR 17 DR 21	DR 9	DR 11 DR 13.5	DR 17 DR 21	(in)	DR 9	DR 11 DR 14.3	DR 21	DR 9	DR 11 DR 14.3	DR 21
2	4.0	4.9	5.3	6.2	7.8	8.4							
3	5.8	7.3	7.9	9.2	11.5	12.4							
4	7.5	9.4	10.1	11.8	14.7	15.9	4	8.0	10.0	10.8	12.6	15.7	17.0
6	11.0	13.8	14.9	17.3	21.7	23.4	6	11.5	14.4	15.5	18.1	22.6	24.4
8	14.4	18.0	19.4	22.6	28.2	30.5	8	15.1	18.9	20.4	23.7	29.6	32.0
10	17.9	22.4	24.2	28.1	35.2	38.0	10	18.5	23.1	25.0	29.1	36.3	39.2
12	21.3	26.6	28.7	33.4	41.7	45.1	12	22.0	27.5	29.7	34.6	43.2	46.7
14	23.3	29.2	31.5	36.7	45.8	49.5	14	25.5	31.9	34.4	40.1	50.1	54.1
16	26.7	33.3	36.0	41.9	52.4	56.5	16	29.0	36.3	39.2	45.6	56.9	61.5
18	30.0	37.5	40.5	47.1	58.9	63.6	18	32.5	40.6	43.9	51.1	63.8	68.9
20	33.3	41.7	45.0	52.4	65.5	70.7	20	36.0	45.0	48.6	56.5	70.7	76.3
22	36.7	45.8	49.5	57.6	72.0	77.8							
24	40.0	50.0	54.0	62.8	78.5	84.8	24	43.0	53.8	58.1	67.5	84.4	91.2
28	46.7	58.3	63.0	73.3	91.6	99.0							
30	50.0	62.5	67.5	78.5	98.2	106.0	30		66.7	72.0		104.7	113.1
32		66.7	72.0		104.7	113.1							
34		70.8	76.5		111.3	120.2							
36		75.0	81.0		117.8	127.2	36		79.8	86.2		125.3	135.4
42		87.5	94.5		137.4	148.4	42		92.7	100.1		145.6	157.3
48			108.0			169.6							
54			121.5			190.9							

Table 7. DriscoPlex® 4000/4100 Minimum Bend Radius

Bulletin PP 501 | July 2012

Page 10 of 18

©2012 Chevron Phillips Chemical Company LP

Performance Pipe, a division of Chevron Phillips Chemical Company LP | 5085 W. Park Blvd | Suite 500 | Plano, TX 75093 | Phone: 800-527-0662 | Fax: 972-599-7348

Safe Pull Strength

Most all trenchless methods using polyethylene pipe are pull-in or pullback techniques. Pull-in distance is often proportional to the pipe's safe pull strength, which is the maximum tensile force that can be applied to the pipe with adequate assurance that the pipe will not be damaged or changed in any way that could affect its long term performance. The maximum safe tensile stress in DriscoPlex® PE4710 pipe for a 10 hour pull is 1300 psi. Table 8 lists the safe pull strength for DriscoPlex® 4000/4100 pipe.

		Sat	fe Pull Str	ength for	ex® 4000/4	100 (PE4)	710)				
4100 IPS Nom. Size		Safe P	ull Streng	th (Ibs)		4000 DIPS Nom. Size	Safe Pull Strength (lbs)				
(in)	DR 9	DR 11	DR 13.5	DR 17	DR 21	(in)	DR 9	DR 11	DR 14.3	DR 21	
2	2,275	1,904	1,580	1,275	1,045						
3	4,941	4,135	3,431	2,770	2,269					-	
4	8,168	6,835	5,672	4,579	3,751	4	9,294	7,777	6,120	4,267	
6	17,704	14,814	12,294	9,924	8,129	6	19,204	16,070	12,647	8,818	
8	30,007	25,109	20,838	16,820	13,779	8	33,037	27,644	21,756	15,170	
10	46,614	39,005	32,371	26,130	21,404	10	49,699	41,587	32,728	22,821	
12	65,572	54,869	45,536	36,757	30,110	12	70,282	58,811	46,283	32,273	
14	79,060	66,155	54,903	44,317	36,303	14	94,424	79,012	62,181	43,358	
16	103,262	86,407	71,709	57,884	47,416	16	122,123	102,190	80,422	56,077	
18	130,691	109,359	90,757	73,259	60,011	18	153,380	128,345	101,005	70,430	
20	161,346	135,011	112,046	90,443	74,088	20	188,194	157,477	123,931	86,416	
22	195,229	163,363	135,576	109,436	89,646						
24	232,339	194,416	161,346	130,238	106,686	24	268,496	224,672	176,813	123,289	
28	316,239	264,621	219,610	177,269	145,212						
30	363,029	303,775	252,104	203,497	166,697	30		345,628	272,003	189,664	
32		345,628	286,838	231,535	189,664						
34		390,182	323,813	261,381	214,113]					
36		437,435	363,029	293,036	240,044	36		410,898	389,647	271,696	
42			494,123	398,855	326,726	42			526,010	366,780	
48				520,953	426,745						
54					540,099						

Table 8. Safe Pull Strength for DriscoPlex® 4000/4100

Horizontal Directional Drilling Resources

In developing plans for a directional drilling project, the designer must determine what DR to use. In addition to working-pressure considerations, DR selection depends on how much force will be required to pull the pipe back into the bore and on how much external force will be applied to the pipe during and afterward from the drilling slurry, soil and groundwater. Several resources are available to help the designer select an appropriate DR. Some of these resources offer additional and important information for planning a crossing. Resources include the following: ASTM F1962, a standard guide for the design

```
Bulletin PP 501 | July 2012
```


of a directional drilled crossing with polyethylene pipe; the PPI *Handbook of Polyethylene Pipe*, Chapter 12; ASCE MOP 108, *Pipeline Design for Installation by Horizontal Directional Drilling*; and the Plastics Pipe Institute's Technical Report 46, *Guidelines for Use of Mini-Horizontal Directional Drilling for Placement of Polyethylene Pipe*. In addition, the PPI **BoreAid** program is useful for making a preliminary evaluation of the DR requirements and the anticipated pullback force. A link to PPI BoreAid can be found on the Performance Pipe website on the Engineering Information page.

Burial in Open-Cut Trenching

The PPI Handbook of Polyethylene Pipe, Chapter 6, gives design guidance for open-cut trench installations of polyethylene pipes. HDPE pipe has been placed in landfills with cover depths well in excess of 100 ft. However, most municipal applications are significantly shallower. For the convenience of the designer, AWWA M-55, *PE Pipe—Design and Installation*, offers a safe design window. Pipe within the window meets the design deflection limits of M-55 and provide at least a 2:1 Safety Factor against buckling. For deeper depths or heavier loading, calculations are required.

AWWA M-55 Design Window									
DriscoPlex® 4000/4100 Pipe DR7.3 through DR21									
Minimum Cover Depth with no surface load 2 feet									
Minimum Cover Depth with H20 truck load	3 feet								
Maximum Cover Depth	25 feet								
Requirements									
Minimum E' of native soil of 1000 psi. Maximum I	backfill weight of 120 pcf. No water above ground surface.								
Granular embedment soil around pipe with a minimum density of 85% Standard Proctor. Pipe installed per									
ASTM D2774 and PP-901.									

Table 9. AWWA M-55 Minimum and Maximum Depths without doing calculations

Like all piping materials, HDPE piping must be properly installed. DriscoPlex[®] 4000/4100 pipe should be installed in accordance with ASTM D 2774 *Standard Practice for Underground Installation of Thermoplastic Pressure Piping* and Performance Pipe's PP-901, *Field Handbook*. HDPE is a flexible piping material that works together with its soil embedment to sustain the earth and live loads above it. Suitable embedment is required to provide support around the pipe, and embedment materials must be placed so that the pipe is properly surrounded. Under roadways, compacted coarse sands and gravels are preferred, but other materials may be used under the direction of the design engineer. For more information on installation of 12" and smaller diameter DriscoPlex® pipe see the Plastics Pipe Institute's *Polyethylene Piping Systems Field Manual for Municipal Water Applications*. For installation by plowing and planting see the special underground installation techniques section of PP-901.

Ground Movement and Seismic Resistance

A large number of water main breaks occur every year due to soil settlement, freeze/thaw cycles, and shrinking or swelling of expansive soils, not to mention the occasional widespread damage that accompanies earthquakes. Polyethylene's flexibility and its fusion joints make it considerably less susceptible to damage from ground movement. California gas utilities recognize polyethylene's excellent record in enduring seismic events without damage.

Poisson Effect

When polyethylene pipe connects to a gasket jointed pipeline, the polyethylene pipe must be anchored or the gasket joints upstream (or downstream) from the transition must be restrained to prevent pullout of the gasket joints. See PP813, *Poisson Effect*.

Bulletin PP 501 | July 2012

Page 12 of 18

©2012 Chevron Phillips Chemical Company LP

Above Grade and Aerial Installation

Performance Pipe black polyethylene pipe contains carbon black allowing indefinite above grade storage and use. For details on above grade applications see PP814, *Thermal Effects* and PP815, *Above Grade Pipe Supports*.

Vacuum Resistance (External Pressure)

Many pipelines operate under full or partial vacuum or experience negative internal pressures when subject to pressure surges. External pressure exceeding the internal pressure (external differential pressure) creates the same effect. Pipelines may be subject to external pressure during installation, submergence, grouting of sliplined pipe, or directional drilling. All pipes have a limit to the amount of external differential pressure (or vacuum) they can withstand. Exceeding that limit will cause the pipe to collapse. Table 10 gives the allowable external differential pressure based on Equation 3-39 in Chapter 6 of the *Handbook of Polyethylene Pipe* with a safety factor of two against collapse and with 3% ovality in the pipe. Higher resistance to collapse can be achieved by embedding the pipe in soil, flowable fill, grout, or concrete. For additional temperatures, see PP-901, *Field Handbook*.

DriscoPlex® 4000/4100 External Pressure Resistance PE4710													
Service Temperature	Pipe DR	External Differential Pressure or Vacuum Resistance 3% ovality with 2:1 safety factor ¹ (psi)											
		50 yr	10 yr	1 yr	1000 hr	100 hr	10 hr	0.5 hr	Short- Term				
Modulus Value (psi)		29000	34000	40000	46000	55000	65000	82000	130000				
	9	54.0	63.3	74.5	85.6	102.4	121.0	152.6	242.0				
	11	27.6	32.4	38.1	43.8	52.4	61.9	78.1	123.9				
73∘F	13.5	14.1	16.6	19.5	22.4	26.8	31.7	40.0	63.4				
751	14.3	11.7	13.8	16.2	18.6	22.3	26.3	33.2	52.7				
	17	6.7	7.9	9.3	10.7	12.8	15.1	19.1	30.2				
	21	3.5	4.1	4.8	5.5	6.6	7.7	9.8	15.5				
	9	31.3	36.7	43.2	49.7	59.4	70.2	88.5	140.3				
	11	16.0	18.8	22.1	25.4	30.4	35.9	45.3	71.9				
120ºF	13.5	8.2	9.6	11.3	13.0	15.6	18.4	23.2	36.8				
1201	14.3	6.8	8.0	9.4	10.8	12.9	15.3	19.3	30.5				
	17	3.9	4.6	5.4	6.2	7.4	8.8	11.1	17.5				
	21	2.0	2.3	2.8	3.2	3.8	4.5	5.7	9.0				

Table 10. DriscoPlex® 4000/4100 Collapse Resistance (Vacuum Resistance)

¹Gray shading indicates value equals or exceeds full vacuum of 14.7 psi.

Fittings

Performance Pipe manufactures HDPE molded *<u>Fittings</u>* including tees and elbows in sizes through 8" diameter. Flange adapters for flange connections are available through 24" diameter. MJ Adapters for both DriscoPlex® 4000 and 4100 pipe are available through 12" diameter. Larger fittings are available through third party fabricators.

```
Bulletin PP 501 | July 2012
```

Page 13 of 18

Transition to Non-Polyethylene Pipes

Polyethylene pipe can be conveniently connected to metallic valves, pumps and even pipe. Normally the connection is made using a polyethylene Van Stone style Flange Adapter with a metallic backup ring which mates to a metallic flange or using a polyethylene Mechanical Joint (MJ) Adapter which mates to a DI mechanical joint bell. The MJ Adapter works with both IPS and DIPS polyethylene pipe. Acceptable methods also include metallic transition couplings that slide on, seal, and grip the polyethylene pipe or metallic transition couplings that slide on and seal but require additional external restraint rings. These types of couplings may require the use of an insert stiffener in

the polyethylene pipe. DriscoPlex® 4000 pipe may be inserted directly into an MJ Bell. This requires placing an insert stiffener inside the end of the DriscoPlex® pipe and restraining the connection with an external ring or clamp on the DriscoPlex® pipe. When selecting mechanical couplings or components for use with DriscoPlex® pipe, make sure the mechanical coupling manufacturer recommends the particular part for HDPE pipe. For additional information on HDPE to non-HDPE pipe transitions, see the Plastics Pipe Institute's TN-36, *General Guidelines for Connecting Potable Water HDPE Pressure Pipes to DI and PVC Piping Systems* and *Polyethylene Piping Systems Field Manual for Municipal Water Applications*.

Tapping

A variety of heat fusion and mechanical fittings make hot or cold tapping a straightforward process. Heat fusion jointed products include saddle fusion tapping tees, electrofusion tapping tees, and branchsaddles. A number of manufacturers produce metallic full body tapping saddles and sleeves for polyethylene pipe. Performance Pipe recommends that the manufacturer be contacted to make sure their saddles work with polyethylene pipes. Service saddles are available as well. These may come with double or extra wide straps, with spring washers, or with both.

Repair

Polyethylene pipe has an excellent field record. However, circumstances may arise where repair is necessary. The most likely form of damage is impact or an underground strike which is usually localized. A variety of repair clamps (both mechanical and electrofusion) and tapping saddles are available. If a section of pipe has to be removed, a new pup piece can be inserted using mechanical couplings, polyethylene flange adapters, or electrofusion couplings.

Leak Testing

Polyethylene pipe may be hydrostatically tested to determine system integrity for leaks. When testing is required, observe all safety measures. See Performance Pipe PP 802, *Leak Testing of Polyethylene Pipe*. Typically, HDPE pipe is leak tested to 1.5 times its Pressure Rating (PR). See Tables 5 and 6.

Water Quality

Water utilities aim to maintain a high standard of water quality and to protect public drinking water from any internal and external contaminates. All piping systems have some potential for contamination from external agents through permeation of gaskets, jointed connections, or permeation through the pipe wall. Literature suggests that permeation of organic chemicals and hydrocarbons through polyethylene pipe is possible, while actual cases of soil contaminated hydrocarbon permeation are extremely rare.

Hydrocarbons do not degrade polyethylene but can diffuse through the wall of the pipe in areas of gross contamination. The exterior contact may affect sidewall fusions and or butt fusions; thus, after polyethylene pipes have been exposed to grossly contaminated soils, mechanical connections may be preferred.

There are several ways to address gross hydrocarbon contamination of soil surrounding the pipe including removal and replacement of the contaminated soil with good clean soil of Class I or Class II materials, sleeving the pipe, and rerouting the pipe around the contaminated area.

Safety

Polyethylene piping has been safely used in thousands of applications. However, there are general precautions that should be observed when using any product. In this respect, polyethylene piping is no different. Performance Pipe's recommends the following reading for a more detailed list of cautions and safety features.

- 1. The Plastic Pipe Institute Handbook of Polyethylene Pipe, Chapter 2. Inspections, Tests and Safety Features.
- 2. <u>The Performance Pipe Field Handbook</u>.
- 3. <u>Pipe Loading/Unloading-Truck Driver Safety Video</u>

Technical Information

A large body of technical information related to the design and installation of polyethylene pipe is available at the Plastics Pipe Institute's website, <u>www.plasticpipe.org</u> and on Performance Pipe's website, <u>www.performancepipe.com</u>. Additional information on polyethylene pipe including case history information is available at the PE Alliance site, <u>www.pepipe.org</u>.

Bulletin PP 501 | July 2012

Page 15 of 18

©2012 Chevron Phillips Chemical Company LP

Performance Pipe, a division of Chevron Phillips Chemical Company LP | 5085 W. Park Blvd | Suite 500 | Plano, TX 75093 | Phone: 800-527-0662 | Fax: 972-599-7348

APPENDIX A. PRESSURE CLASS SELECTION PER AWWA C906

Selecting the right Pressure Class for High Density Polyethylene pipe in accordance with AWWA C906 is easy. Just two steps! AWWA C906 takes into account the continuous pumping and transient (surge) pressures that occur in municipal water pipes.

Step 1. Compare the pipeline working pressure with the pipe's Pressure Class.

AWWA C906 defines working pressure as "the maximum anticipated, sustained **operating pressure applied to the pipe exclusive of transient pressures**". The maximum working pressure for a pipe must be less than or equal to the pipe's Pressure Class. Table A-1 gives Pressure Class for standard Dimension Ratio's (DR) HDPE pipe made from PE3608 material.

Table A-1: Maximum Allowable Pressures for HDPE Pipe (PE3608) at 80°F¹ (Per AWWA C906)

		Pressure Class/ Maximum Working Pressure (psi)	Maximum Total Pressure ² Allowed During Recurring Surge (psi)	Maximum Total Pressure ² Allowed During Occasional Surge (psi)	Maximum Test Pressure Allowed per AWWA Manual M55 (psi)
	7.3	254	380	510	380
	9	200	300	400	300
DR	11	160	240	320	240
Pipe	13.5	128	185	250	185
	17	100	150	200	150
	21	80	120	160	120

¹Pressures above 80°F require derating. See Table 4.

²Total pressure equals the combined pumping (working) pressure plus surge pressure. Recurring surges are frequently occurring surges inherent to the design and operation of the system. Occasional surges are caused by emergency operations such as fire flows.

Step 2. Compare the peak pipeline pressure during surge with the pipe's allowable Maximum Total Pressure.

Peak pressure during a surge is equal to the sum of the pumping pressure and the transient surge pressure. Transient surge pressure depends on the instantaneous change in flow velocity. Maximum transient pressure due to an instantaneous change in flow velocity is given in Table A-2. Peak pressure may be obtained by adding the surge pressure at the design velocity from Table A-2 to the pumping pressure. Peak pressure is compared with the Maximum Total Pressure Allowed During Surge in Table A-1. The Maximum Total Pressure Allowed equals 1.5 times the pipe's Pressure Class for recurring surge and 2.0 times the pipe's Pressure Class for occasional surge.

Bulletin PP 501 | July 2012

Page 16 of 18

©2012 Chevron Phillips Chemical Company LP

Performance Pipe, a division of Chevron Phillips Chemical Company LP | 5085 W. Park Blvd | Suite 500 | Plano, TX 75093 | Phone: 800-527-0662 | Fax: 972-599-7348

Note: The surge pressure occurring in HDPE pipe is significantly lower than surge pressures occurring in cast or ductile iron pipe and is lower than that in PVC pipe of the same DR. For example, a 4 fps instantaneous velocity change in HDPE DR17 pipe results in a 45.0 psi surge whereas for DI pipe the surge is 200 psi and for PVC DR18 pipe the surge is 69.6 psi. When HDPE pipe is connected to DI pipe the surge pressure is dampened by the HDPE pipe.

		Surge Pressure, psi												
		1 fps	2 fps	3 fps	4 fps	5 fps	6 fps	7 fps	8 fps					
	7.3	18.4	36.8	55.2	73.6	92.0	110.4	128.8	147.2					
	9	16.2	32.4	48.5	64.7	80.9	97.1	113.2	129.4					
e DR	11	14.4	28.7	43.1	57.5	71.9	86.2	100.6	115.0					
Pipe	13.5	12.8	25.6	38.4	51.2	63.9	76.7	89.5	102.3					
	17	11.3	22.5	33.8	45.0	56.3	67.5	78.8	90.0					
	21	10.0	20.1	30.1	40.1	50.2	60.2	70.2	80.3					

Table A-2. Surge Pressure at 80°F for Sudden Velocity Change, psi (Per AWWA M-55)

Working Pressure and Surge Pressure Example:

An engineer is designing a water system that operates at 85 psi and has some runs in it where the flow velocity is 4 fps. In addition, his/her state requires a 150 psi test for the pipeline. What DR pipe does the engineer use?

Step 1. Compare the pumping pressure, 85 psi, with the available Pressure Classes in Table A-1. DR17 has a PC of 100 psi>85 psi. The test pressure of DR17 is also 150 psi, which meets the specified test pressure.

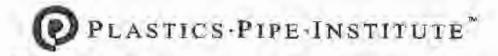
Step 2. The anticipated peak pressure in the pipeline is found by adding the pumping pressure of 85 psi to the surge pressure of 45.0 psi (given in Table A-2 for a 4 fps velocity). The sum equals 130.2 psi and is less than the Maximum Total Pressure Allowed for Recurring Surge for DR17 pipe of 150 psi. DR17 pipe is O.K. A similar comparison can be made for peak pressure during fire flow where velocity may reach 8 fps. In this case add 90.0 psi (from Table A-2) to 85 psi to obtain a peak pressure during occasional surge of 175 psi. Compare with the Maximum Total Pressure Allowed for Occasional Surge for DR17 pipe is O.K.

When Performance Matters Rely on Performance Pipe

CONTACT INFORMATION:

Performance Pipe a Division of Chevron Phillips Chemical Company LP 5085 West Park Blvd, Suite 500, Plano, TX 75093 Phone: 800-527-0662 Fax: 972-599-7329

Visit Performance Pipe on the web for the latest literature updates. www.performancepipe.com



NOTE: By using any Technical Information contained herein, Recipient agrees that said Technical Information is given by Performance Pipe, a division of Chevron Phillips Chemical Company LP for convenience only, without any warranty or guarantee of any kind, and is accepted and used at your sole risk. Recipients are encouraged to verify independently any such information to their reasonable satisfaction. As used in this paragraph, "Technical Information" includes any technical advice, recommendations, testing, or analysis, including, without limitation, information as it may relate to the selection of a product for a specific use and application.

TR-19/2007 **Chemical Resistance of Thermoplastics Piping Materials**

108 Decker Courr, Suite 325, Javing, TX 75062 12:469-499-1044 12:469-499-1063 www.plasnepipe.org

CHEMICAL RESISTANCE OF THERMOPLASTICS PIPING MATERIALS

Foreword

This report was developed and published with the technical help and financial support of the members of the PPI (Plastics Pipe Institute, Inc.). The members have shown their interest in quality products by assisting independent standardsmaking and user organizations in the development of standards, and also by developing reports on an industry-wide basis to help engineers, code officials, specifying groups, and users.

The purpose of this technical report is to provide information on the transport of various chemicals using thermoplastic piping materials.

This report has been prepared by PPI as a service of the industry. The Information in this report is offered in good faith and believed to be accurate at the time of its preparation, but is offered without any warranty, expressed or implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Consult the manufacturer for more detailed information about the particular weathering package used for its piping products. Any reference to or testing of a particular proprietary product should not be construed as an endorsement by PPI, which do not endorse the proprietary products or processes of any manufacturer. The information in this report is offered for consideration by industry members in fulfilling their own compliance responsibilities. PPI assumes no responsibility for compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and suggestions from users of the report. Please send suggestions of improvements to the address below. Information on other publications can be obtained by contacting PPI directly or visiting the web site.

> The Plastics Pipe Institute 469-499-1044 www.plasticpipe.org

September 2007

This report has been developed as an informative guide on resistance of thermoplastic piping materials to chemical attack. It is divided into two main sections: (1) a discussion of chemical resistance and general considerations for end use applications and (2) a listing of chemical resistance data (table) for several thermoplastic piping materials applicable to <u>non-pressure</u> applications. Determination of suitability for specific applications under stress (pressurized service) is beyond the scope of this report.

SECTION I: CHEMICAL RESISTANCE IN GENERAL

Thermoplastic materials generally are resistant to attack from many chemicals which makes them suitable for use in many process applications. The suitability for use in a particular process piping application is a function of:

- I. Material
 - A. The specific plastic material: ABS, CPVC, PP, PVC, PE, PB, PVDF, PEX¹, PA11, PK
 - B. The specific plastic material physical properties as identified by its cell classification according to the appropriate ASTM material specification.
- II. Product and Joint System
 - A. Piping product dimensions, construction, and composition (layers, fillers, etc.).
 - B Joining system. Heat fusion and solvent cementing do not introduce different materials into the system. Mechanical joints can introduce gaskets such as elastomers, or other thermoplastic or non-thermoplastic materials used as mechanical fitting components.
 - C. Other components and appurtenances in the piping system.
- III. Use Conditions Internal and External
 - A. Chemical or mixtures of chemicals, and their concentrations.
 - Operating temperature maximum, minimum, and cyclical variations.
 - C. Operating pressure or applied stress maximum, minimum and cyclical variations.
 - D. Life-cycle information such as material cost, installation cost, desired service life, maintenance, repair and replacement costs, etc.

¹ Once cross-linked, PEX is no longer considered a thermoplastic material, however, it is included in this report as convenience for the reader.

Types of Chemical Attack on Plastics

In general, chemicals that affect plastics do so in one of two ways. One effect is chemical solvation or permeation; the other is direct chemical attack.

Chemical Solvation or Permeation

In the case of solvation or permeation, physical properties may be affected, but the polymer molecule structure itself is not chemically changed, degraded or destroyed. In solvation or permeation, gas, vapor or liquid molecules pass through the polymer, typically without damaging the plastic material itself. If the solvating chemical can be removed completely, the plastic is generally restored to its original condition. However, removal of the chemical is not always possible, and, in such cases, these chemical solvation effects may be permanent.

Sometimes the polymer itself may not be soluble, but it may contain a soluble compounding ingredient that may be extracted from the polymer compound. This is rare because such extractable ingredients are either not used in pipe compounds, or they are chemically bonded to the molecular polymer matrix and in such small amounts that they cannot be leached out to any significant extent.

Permeation may do little if any harm to the material, but it may have applicationrelated effects. The permeating chemical may transfer into a fluid on the other side of the pipe. In general, thermoplastic pipes should not be used where a permeating chemical in the environment surrounding the pipe could compromise the purity of a fluid, such as potable water inside the pipe (See also PPI *Statement N* on Pipe Permeation). In gas or vapor transmission service, there may be a very slight loss of contents through the pipe wall. Lastly, a permeating chemical entrained in the material may be released when heat fusion or solvent cement joining is performed. Thus, heat fusion or solvent cement joining may be unreliable if performed on permeated pipes.

Direct Chemical Attack

Direct chemical attack occurs when exposure to a chemical causes a chemical alteration of the polymer molecules by chain scission, crosslinking, oxidation or substitution reactions. Direct chemical attack may cause profound, irreversible changes that cannot be restored by removal of the chemical. Examples of this type of attack are 50% chromic acid at 140 °F on PVC, aqua regia on PVC at 73 °F, 95% sulfuric acid at 73 °F on PE and wet chlorine gas on PVC and PE. Direct chemical attack frequently causes a severe reduction of mechanical physical properties such as tensile strength, ductility, and impact resistance, and susceptibility to cracking from applied stress (stress cracking). Chemical resistance may vary greatly from one plastic material to another (i.e., PVC, ABS, PE, etc.), and also among different cell classifications of the same plastic type (e.g. PVC 1120 to PVC 2110, PE 3608 to PE 4710, etc.). There may also be slight variations among commercial products having the same cell classification.

The chemical resistance of plastic piping is basically a function of the chemical resistance of the thermoplastic material, in addition to additives and other ingredients in the final compound. In general, the less inert compounding ingredients used the better the chemical resistance. Thermoplastic pipes with significant filler percentages may be susceptible to chemical attack where an unfilled material may be affected to a lesser degree or not at all.

Other Considerations

Chemical Families

While the effect of each individual chemical is specific, some chemicals can be grouped into general categories based on similarities in chemical characteristics (acids, bases, alcohols, etc.). For example, water-based (aqueous) solutions of neutral inorganic salts generally have the same effect on thermoplastic piping materials as water alone: thus, sodium chloride, potassium alum, calcium chloride, copper sulfate, potassium sulfate and zinc chloride solutions have the same effect as water. However, at elevated temperatures and/or high concentrations, some exidizing salt solutions may attack some plastic materials.

Further, with organic chemicals in a specific series such as alcohols, ketones, or acids, etc., as the molecular weight of the organic chemical series increases, the chemical resistance of a particular plastic material to members of the specific organic chemical series frequently also increases. Thus, while one type of polyvinyl chloride at 73 °F is not suitable for use with ethyl acetate, it is suitable for the higher molecular weight butyl acetate.

Accelerating factors (concentration, temperature, stress)

Generally, the resistance of a particular plastic to a specific chemical decreases with an increase in concentration. For example, at 73°F polyethylene pipe can be used to carry 70% sulfuric acid but is not satisfactory for 95% sulfuric acid.

Also, the resistance of a particular plastic to a specific chemical generally decreases as temperature increases, generally decreases with increasing applied stress, and generally decreases where temperature or applied stress are varied or cycled. These effects can be greater overall in combination.

Combinations of Chemicals

In some cases, combinations of chemicals may have a synergistic effect on a thermoplastic material where the individual chemicals do not. It cannot be assumed that an individual chemical's lack of effect would apply for combinations that include several chemicals. When the possible combined effect of several chemicals is unknown, the material should be tested in the complete chemical mixture(s) in question.

Multi-Layered (Composite) Piping

Some piping products utilize a multi-layered (composite) construction, in which the pipe wall is constructed of layers of different materials. The layers may consist of both thermoplastic and non-thermoplastic – for example, PE/AL/PE and PEX/AL/PEX pipes, which contain a mid-wall aluminum layer. An all-thermoplastic composite pipe may contain PVC, ABS, and PVC layers. Layered composite material pipes may have chemical resistance that differs from the chemical resistance of the individual materials.

Rate of Chemical Attack

Chemicals that attack plastics do so at a certain rate, some slowly and some more quickly. But usually, any chemical attack is increased when temperature or stress are increased, or when temperature or stress are varied. The particular rate must be taken into consideration in the life-cycle evaluation for a particular application. It has been observed in some chemical plants that while a particular application may have a relatively short service life, the overall life-cycle cost may be economically feasible and justifiable. Each combination of material cost, installation cost and service life must be evaluated and judged on its own merits.

In some cases involving a slow rate of chemical attack, particularly when the application will be pressurized, simple immersion data. like that represented in the following resistance tables, may not adequately characterize performance throughout the intended design life. Longer-term testing to replicate service conditions is advisable to fully measure the effects of these chemicals.

SECTION 2: CHEMICAL RESISTANCE DATA FOR THERMOPLASTIC PIPING IN <u>NON-PRESSURE</u> APPLICATIONS AND DATA TABLE

When thermoplastic pipes come into contact with chemical agents, it is important to know how the pipe may be affected. For gravity flow or non-pressure applications, where the pipe is not subject to continuous internal pressure or thermal stress, chemical immersion test data may provide suitable information. The pipe manufacturer may have additional data from similar tests, or information on previous installations under similar field conditions.

The following table provides resistance data, with the following cautions:

- Data Sources. The following chemical resistance information has been obtained from numerous sources. The data are based primarily on plastic material test specimens that have been immersed in the chemical, and to a lesser degree, on field-experience. In most cases, detailed information on the test conditions (such as exposure time), and on test results (such as change in weight, change in volume, and change in strength) was not available. Therefore, this information is best used only for comparison of different thermoplastic materials.
- Combinations of Chemicals. Chemicals that individually do not have an effect may affect the pipe if combined with certain other chemicals. The listings that follow do not address chemical combinations.
- III. Composite Piping Layered composite piping may have chemical resistance that differs from that of the individual materials in the layers. The listings that follow are not applicable to layered composite piping products.
- IV. Applicability to fiberglass, filled materials. The listings that follow are not applicable to composite piping products such as reinforced epoxy resin (fiberglass) pipes, or to thermoplastic pipes containing significant percentages of filler materials.
- V. Concentrations. Where no concentrations are given, the relatively pure material is indicated, except in the case of solids where saturated aqueous solutions are indicated.

NOTE: Even though indicated as acceptable with certain temperature limitations, the use of PVC piping with liquid hydrocarbons such as gasoline and jet fuels should be limited to short-term exposure such as secondary containment systems. This piping is not recommended for long-term exposure to liquid hydrocarbons.

Resistance Codes

The following code is used in the data table:

Code	Meaning	Typical Result
140	Plastic type is generally resistant to temperature (°F) indicated by code.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
R to 73	Plastic type is generally resistant to temperature (°F) indicated by code and may have limited resistance at higher temperatures.	Swelling < 3% or weight loss < 0.5% and elongation at break not significantly changed.
C lo 73	Plastic type has limited resistance to temperature (°F) indicated by code and may be suitable for some conditions.	Swelling 3-8% or weight loss 0.5-5% and/or elongation at break decreased by < 50%.
N	Plastic type is not resistant.	Swelling > 8% or weight loss > 5% and/or elongation at break decreased by > 50%.
-	Data not available.	

Plastic Matarials Identification

	ABS	acrylonitrile-butadiene-styrene
-	CPVC	chlorinated polyvinyl chloride
	PP	polypropylene
-	PVC	polyvinyl chloride
¥	PE	polyethylene
1	PB	polybutylene
F	PVDF	poly vinylidene fluoride
1	PEX	crosslinked polyethylene
1	PA11	polyamide 11
t	PK	polyketone

CHEMICALS THAT DO NOT NORMALLY AFFECT THE PROPERTIES OF AN UNSTRESSED THERMOPLASTIC MAY CAUSE COMPLETELY DIFFERENT BEHAVIOR (SUCH AS STRESS CRACKING) WHEN UNDER THERMAL OR MECHANICAL STRESS (SUCH AS CONSTANT INTERNAL PRESSURE OR FREQUENT THERMAL OR MECHANICAL STRESS CYCLES). UNSTRESSED IMMERSION TEST CHEMICAL RESISTANCE INFORMATION IS APPLICABLE ONLY WHEN THE THERMOPLASTIC PIPE WILL NOT BE SUBJECT TO MECHANICAL OR THERMAL STRESS THAT IS CONSTANT OR CYCLES FREQUENTLY.

WHEN THE PIPE WILL BE SUBJECT TO A CONTINUOUS APPLIED MECHANICAL OR THERMAL STRESS OR TO COMBINATIONS OF CHEMICALS, TESTING THAT DUPLICATES THE EXPECTED FIELD CONDITIONS AS CLOSELY AS POSSIBLE SHOULD BE PERFORMED ON REPRESENTATIVE SAMPLES OF THE PIPE PRODUCT TO PROPERLY EVALUATE PLASTIC PIPE FOR USE IN THIS APPLICATION.

Chemical	Maximum Operating T				-	*	-		000773	22.54	
(Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Acetaldehyde CH ₃ CHO	-	+	N	140	N	C to 73	C to 73		C to 140	C to 176	R to 73
	Aq. Of 40%	\approx	N	-	C to 73	R to 73		N	R to 73	-	
Acetamide CH ₃ CONH ₂	5%	120	-	140		140	-	-	140	-	~~
Acetic Acid CH ₃ COOH	vapor	120	160	180	140	140	140		140	H	
	5%	-	÷		-	-	-		-	~	R to 178
	10%	-	÷	-	-	-		R to 248	140	R to 176	
	25%	N	180	180	140	140	140	***	140		-
	40%	-		-		-	-	R to 140	R to 176	-	
	50%	4		-	-	-		R to 140	R to 176	r6 C to 68	
	60%	N	N	180	73	73	73	R to 104	73		
	80%			-		-	-	R to 104	~	-	
	85%	N	N	120	73	73	73		73	-	
	glacial	N	N	120	73	73	73	R to 104	R to 68	-	
Acetic Anhydride (CH ₃ CO) ₂ O	(44)	N	Ň	73	N	73	140	N	73	C to 68	- سبب
Acetone CH ₃ COCH ₃	5%	N	N	73	N	C to 73	140	R to 212	C to 73	C to 140	i -
	10%	ىب	-	÷		- 10		R to 122	-	-	
	100%	-	-		***		-	-		æ	R to 73 C to 12
Acetophenone C ₆ H ₅ COCH ₃		N	-	120	-	73	-	R to 68	73	141	-
Acetyl Chioride CH ₃ COCI	ā t	N	N	-	N	-		N	-	-	=
Acetylene HC≡CH	gas 100%	73	N	73	N	73	C to 73	-	73	140	
AcetyInitrile		ie.	N		N	19 11 8	9461	-		ш.	-
Acrylic Acid H ₂ C=CHCOOH	97%	-	N		N	140		-	140		-

May not be fully applicable to pressurized applications

. 1.1

May not be fully applicable to pressurized applications

May not be fully applicable to pressurized applications

Chemical (Formula)	Concentration	ABS	CPVC	PP	PVC	PE	PB	PVDF	PEX	PA 11	PK
Xylene (Xylol) C ₆ H ₄ (CH ₃) ₂	1	N	N	N	N	N	N	C to 140	N	C to 194	-
Zinc Acetate Zn(CH ₃ COO) ₂ o2H ₂ O	-		180	3					+	-	
Zinc Carbonate ZnCO3	-	-	180	140	-	140		R to 212	140		
Zinc Chloride ZnCl ₂	0	120	180	180	140	140		-	140	-	
	50%		-	-		-	-		-	C to 73	Training
	Sat'd	-			-	-	-	R to 212			-
Zinc Nitrate Zn(NO ₃) ₂ 06H ₂ Ó	-	160	180	180	140	140	140	1	140		-
	Saťd	-		-	***	-	-	R to 212	-	-	
Zinc Oxide ZnO	я.	540	-	-		-	-	R to 212	÷	-	
Zinc Stearate (CH ₃ (CH ₂) ₁₆ COO) ₂ Zn	e e			-		-		R to 122			
Zinc Sulfate ZnSO407H2O	8	160	180	212	140	140	140	-	140	-	-
	Sat'd		-		-	~		R to 212	-		

Plastics at Maximum Operating Temperature (F)

May not be fully applicable to pressurized applications

Flange Gaskets

(Durlon)

EnSol, Inc.

SPECIFICATION SHEET September 2006 DURLON[®] 8300

Carbon Fiber with NBR Rubber Binder COMPRESSED SHEET GASKET MATERIAL ASTM F104: F712120-A9B3E22K5L311M5

APPLICATION:

DURLON[®] 8300 is premium grade compressed sheet gasket material that is excellent in steam and hydrocarbon services in the refining, petrochemical and power generation industries. Other applications include oil, water, mild alkalis, mild acids, and solvents.

COMPOSITION:

DURLON[®] 8300 contains high-strength carbon fibers bonded with nitrile (NBR) synthetic rubber. A release agent on both sides provides good anti-stick properties.

ANTI-STICK PROPERTIES:

Much effort has gone into improving the anti-stick release agents of all compressed DURLON[®] products. All DURLON[®] compressed gasket materials have passed the MIL-G-24696B Navy Adhesion Test (366°F/48 hrs).

TYPICAL PROPERTIES:

Color:	Black, branded
Fiber:	Carbon
Binder:	Nitrile (NBR)
Fluid Services:	Saturated Steam, Oils, Dilute Acids & Alkalis, Hydrocarbons, Solvents
Density:	1.6 g/cm ³ (100 lbs./ft ³)
Tensile Strength, ASTM F152:	1,800 psi (12.4 MPa)
Compressibility, ASTM F36:	8 to 16%
Recovery ASTM F36:	50%
Temperature Range: Continuous, max:	-100 to 800°F (-73 to 427°C) 600°F (315°C)
Pressure, max:	1500 psig (103 bar)
Fluid Resistance - ASTM F146 IRM 903 oil, 5 h/300°F (149°C) Thickness Increase: Weight Increase: ASTM Fuel B 5 h/70°F (21°C) Thickness Increase: Weight Increase:	0 to 10% 10% 0 to 10% 12%
Sealability ASTM F37 (Fuel A): ASTM F37 (Nitrogen):	0.03 mL/hr 0.4 mL/hr
Volume Resistivity, ASTM D257:	5 x 10 ⁹ ohm-cm
Dielectric Breakdown, ASTM D149:	0.04 kV/mm (1 V/mil)
DIN 3535 Gas Permeability:	0.05 cc/min
Creep Relaxation ASTM F38:	18%
Flexibility, ASTM F147:	10x

Note: ASTM properties based on 1/16" sheet thickness except ASTM F38, which is based on 1/32" sheet thickness. This is a general guide only and should not be the sole means of accepting or rejecting this material. The data listed here falls within the normal range of product properties but should not be used to establish specification limits nor used alone as the basis of design.

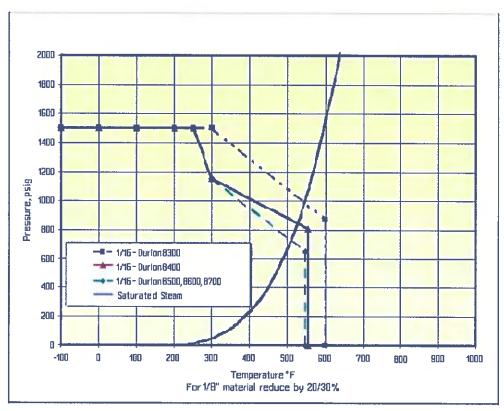
*For applications above Class 300, consult your representative.

M&Y AND PROPOSED ASTM GASKET CONSTANTS:

THICKNESS	1/16"	1/8"
<i>M</i> Y psi (MPa)	3.7 3515 (24.24)	3.0 4014 (27.68)
Gasket Constants <i>Gb</i> psi (MPa) <i>a</i> <i>Gs</i> psi (MPa)	512 (3.5) 0.355 13 (0.09)	1716 (11.8) 0.209 70 (0.48)

AVAILABLE SHEET SIZES:

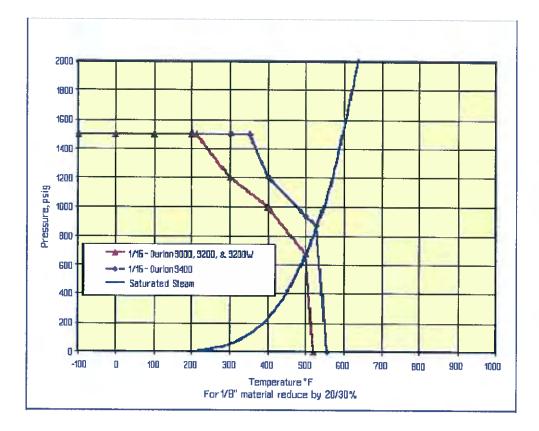
Nominal Thickness	Sheet inches	Sizes mm	Order Code	Sheets Per Roll	Approx. Weight/Sheet Ibs (kg)
1/64" 0.4mm	60 x 63	1524 x 1600	DC05-060-063	20	4 (1.81)
	60 x 126	1254 x 3200	DC05-060-126	10	7 (3.18)
1/32" 0.8mm	60 x 63	1524 x 1600	DC08-060-063	20	7 (3.18)
	60 x 126	1254 x 3200	DC08-060-126	10	14 (6.35)
1.0mm	60 x 63	1524 x 1600	DC10-060-063	20	11 (5.00)
	60 x 126	1254 x 3200	DC10-060-126	10	22 (9.98)
	120 x 126	3048 x 3200	DC10-120-126	2	44 (19.96)
1/16" 1.5mm	60 x 63	1524 x 1600	DC15-060-063	10	14 (6.35)
	60 x 126	1254 x 3200	DC15-120-126	5	28 (12.70)
	120 x 126	3048 x 3200	DC15-120-126	2	55 (24.95)
2.0mm	60 x 63	1524 x 1600	DC20-060-063	10	22 (9.98)
	60 x 126	1254 x 3200	DC20-060-126	5	44 (19.96)
	120 x 126	3048 x 3200	DC20-120-126	2	88 (39.92)
3/32" 2.5mm	60 x 63	1524 x 1600	DC25-060-063	8	25 (11.34)
	60 x 126	1254 x 3200	DC25-060-126	4	49 (22.23)
1/8" 3.0mm	60 x 63	1524 x 1600	DC30-060-063	8	27 (12.25)
	60 x 126	1254 x 3200	DC30-120-126	4	54 (24.50)
	120 x 126	3048 x 3200	DC30-120-126	1	108 (49.00)


Note: Please inquire about availability of 4.0mm and 5.0mm thicknesses and other sizes not listed.

Warning: Durlon gasket materials should never be recommended when both the temperature and the pressure are at the maximums listed. Properties and applications shown are typical. No application should be undertaken by anyone without independent study and evaluation for suitability. Never use more than one gasket in one flange joint, and never reuse a gasket. Improper use or gasket selection could cause property damage and/or serious personal injury. The data reported is a compilation of field testing, field service reports and/or in-house testing. While the utmost care has gone into publishing the information contained herein, we assume no responsibility for errors. The information and specifications contained in this website are subject to change without notice. This revision cancels and obsoletes all previous editions.

GASKET RESOURCES INC.

CONTACT INFORMATION:	Phone:	Fax:	E-mail
USA	(866) 707-7300	(610) 363-5881	tech@durlon.com
INTERNATIONAL	(613) 966-1442	(613) 966-1572	intl@durlon.com
®Registered trademark Gasket Resource	rces Inc.	2002-2006, Gasket Resources Inc	., All Rights Reserved


Gasket Resources Inc DURLON® Pressure - Temperature Chart

Durlon[®] Compressed Sheet Gasketing

To the left of the saturated steam curve (blue line) is hot water; while to the right of this curve is superheated steam.

Durlon[®] Filled PTFE Sheet Gasketing

©2002-2013, Gasket Resources Inc., All Rights Reserved

Home Products Industries

Literature

Technical

Fabrication

Contact Us

Hydroxide, Vinyl Chloride, Ethylene Dichloride, Sulfuric Acid and Oxygen making it the clear Chlor-Alkali Industry choice

Print Page

CHEMICAL RESISTANCE CHART - A

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

Related Links >

CHEMICAL RESISTANCE CHART - A CHEMICAL RESISTANCE CHART - B CHEMICAL RESISTANCE CHART - C CHEMICAL RESISTANCE CHART - D-F

CHEMICAL RESISTANCE CHART - G-L

CHEMICAL RESISTANCE CHART -M-O

CHEMICAL RESISTANCE CHART - P CHEMICAL RESISTANCE CHART - R CHEMICAL RESISTANCE CHART - S CHEMICAL RESISTANCE CHART - T-Z

find it fast >

Chemical Resistance Product Literature Gasket Fundamentals

		CO	MPRES:	SED			PTF	E	FLEXIBLE GRAPHITE			
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Acetaldehyde	NS	С	С	с	С	A	A	A	A	A	A	A
Acelic Acid, Glacial	С	с	с	С	с	A	A	A	A	А	A	A
Acetic Acid, 37%	A	А	A	A	А	A	А	A	A	A	A	А
Acetic Anhydride	A	с	с	С	С	A	A	A	A	А	A	A
Acelone	С	с	с	с	с	А	A	A	A	A	A	А
Acetonitrite	NS	NS	NS	NS	с	A	A	А	A	NS	NS	NS
Acetylene	A	A	A	с	A	A	A	A	A	A	A	А
Acrolein	с	с	С	NS	с	A	A	A	A	NS	NS	NS
Acrylic Acid	NS	NS	NS	NS	NS	A	A	A	A	A	NS	NS
Acrylonitrile	NS	NS	NS	NS	NS	A	A	A	A	A	A	А
Air	A	A	A	А	A	A	A	A	A	A	A	А
Alum	A	A	A	A	A	A	A	A	A	A	A	A

http://www.durlon.com/technical-info/chemical-resistance/chemical-resistance-chart-a.html 5/14/2013

Gasket Resources - CHEMICAL RESISTANCE CHART - A

Aluminum Acetate	А	А	А	А	А	А	А	A	А	С	С	С
Aluminum Hydroxide	A	А	А	A	А	A	А	A	А	А	NS	NŞ
Aluminum Nitrate	с	с	с	с	с	A	A	NS	A	с	с	С
Aluminum Sulfate	А	A	A	A	А	A	А	A	A	А	NS	NS
Amines	С	С	с	A	С	A	А	A	A	A	A	A
Ammonia, Gas<150°F	A	A	A	A	A	A	А	A	A	А	С	с
Ammonia, Liquid, Anhydrous	A	A	A	с	A	A	A	A	A	A	A	A
Ammonium Bisulfite	A	A	A	С	A	A	А	А	A	NS	NS	NS
Ammonium Chloride	A	A	A	A	A	А	А	A	A	A	A	A
Ammonium Hydroxide	A	A	A	A	A	A	А	A	A	А	A	A
Ammonium Nitrate	с	С	с	с	С	A	А	NS	А	A	A	A
Amyl Chloride	NS	NS	NS	NS	NS	A	A	А	A	А	A	A
Aniline, Aniline Oil	NS	NS	NS	NS	NS	A	A	А	A	А	A	A
Aqua Regia	NS	NS	NS	NS	NS	A	А	NS	A	NS	NS	NS
Arsenic Acid	A	A	A	A	A	A	А	A	A	A	A	A
Asphali	A	A	А	NS	NS	A	A	A	A	A	A	A
Aviation Fuels	A	А	А	NS	с	A	A		-			-

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI™ Technical Services at 1-713-856-9445 for specific recommendations

Sales:

140 Sheree Blvd P.O. Box 565 Exton, PA 19341-0565

phone. (866) 707.7300 phone. (610) 363.5800 fax. (610) 363.5881 email. sales@durton.com Technical:

Houston, Texas

phone. (713) 856.9445 email. tech@durlon.com

©2002-2013, Gasket Resources Inc., All Rights Reserved (Terms)

Home Products Industries

Literature

Technical Fabrication

PTFE

Contact Us

joint failure analysis

Print Page

CHEMICAL RESISTANCE CHART - B

COMPRESSED

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

FLEXIBLE GRAPHITE

Related Links >

CHEMICAL RESISTANCE CHART - A CHEMICAL RESISTANCE CHART - B CHEMICAL RESISTANCE CHART - C CHEMICAL RESISTANCE CHART - D-F

CHEMICAL RESISTANCE CHART - G-L

CHEMICAL RESISTANCE CHART -M-O

CHEMICAL RESISTANCE CHART - P CHEMICAL RESISTANCE CHART - R CHEMICAL RESISTANCE CHART - S CHEMICAL RESISTANCE CHART - T-Z

FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG FGL316	FGT316
Baking Soda	A	A	A	А	А	A	А	A	A	A	A	A
Barium Chloride	A	A	A	A	A	A	A	A	A	A	A	A
Beer	А	A	А	A	A	A	A	А	A	A	A	А
Benzaldehyde	NS	NS	NS	NS	NS	A	A	A	A	A	A	A
Benzene (Benzol)	NS	NS	NS	NS	NS	А	A	A	A	A	A	А
Benzoic Acid	NS	NS	NS	NS	NS	А	A	A	A	A	A	A
Benzoyl Chloride	NS	NS	NS	NS	NS	A	A	А	A	с	NS	NS
Benzyl Alcohol	NS	NS	NS	NS	с	A	A	A	A	A	с	с
Benzyl Chloride	NS	NS	NS	NS	NS	A	A	A	A	A	А	A
Biodiesel, 8100 (methyl esters from oils and fats; RME, FAME)	NS	NS	NS	NS	NS	A	A	A	A	A	А	А
Biodiesel Blend, B5 (5% biodiesel / 95% petrodiesel)	A	A	A	С	с	A	A	A	А	A	A	А
		_			-			_				

find it fast >

Chemical Resistance Product Literature Gasket Fundamentals

Gasket Resources - CHEMICAL RESISTANCE CHART - B

Biodiesel Blend, B20 (20% biodiesel / 80% petrodiesel)	С	С	С	NS	NS	A	A	A	A	A	А	A
Black Sulfate Liquor<350°F	NS	A	A	С	с	A	А	A	A	с	с	с
Black Sulfate Liquor >350°F	NS	С	NS	NS	NS	A	A	A	A	NS	NS	NS
Bleach Solutions	с	A	С	с	с	A	A	А	A	с	NS	NS
Boiler Feed Water	A	А	A	A	A	A	A	A	A	A	A	A
Borax	A	A	A	A	А	A	A	A	A	A	A	A
Boric Acid	A	А	A	A	А	A	A	A	A	A	A	A
Brine	A	A	А	А	A	A	А	A	А	A	С	С
Butadiene	NS	NS	NS	NS	NS	A	A	A	A	A	A	A
Butane	А	A	A	NS	с	A	A	А	A	A	А	A
2-Butanone	NS	NS	NS	NS	NS	A	A	А	A	A	A	A
Butyl Acetate	NS	С	NS	NS	NS	A	A	A	A	A	A	A
Butyl Alcohol	A	A	A	A	А	A	A	A	A	A	A	A
n-Butyl Amine	с	С	с	NS	NS	A	А	А	A	A	A	A
tert-Butyl Amine	с	С	С	NS	NS	A	А	A	A	A	A	A
Butyl Methacrylate	NS	NS	NS	NS	NS	A	А	A	A	с	NS	NS
Butylene (butene)	A	A	A	NS	с	A	А	А	A	A	A	A
Butyric Acid				-								

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

Sales:

140 Sheree Blvd P.O. Box 565 Exton, PA 19341-0565

phone. (866) 707.7300 phone (610) 363.5800 fax. (610) 363.5881 email sales@durlon.com Technical:

Houston Texas

phone. (713) 856.9445 email. tech@durlon.com

Gasket Resources Inc CHEMICAL RESISTANCE CHART - C

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

		со	MPRES	SED			PTI	Ē		FLEX	(IBLE GRA	PHITE
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Calcium Bisulfite	А	А	А	NS	С	A	А	А	А	A	A	A
Calcium Carbonate	Α	А	А	А	A	A	А	А	А	А	А	A
Calcium Chloride	А	A	А	А	А	А	A	A	A	A	А	A
Calcium Hydroxide	A	A	А	А	A	А	А	А	А	A	А	A
Calcium Hypochlorite	С	A	с	С	с	А	A	А	А	A	A	А
Calcium Nitrate	С	С	С	С	С	A	А	NS	A	A	A	А
Caprolactam	NS	NS	NS	NS	NS	А	А	А	А	NS	NS	NS
Carbon Dioxide, dry	А	A	A	с	С	A	A	A	А	A	А	A
Carbon Dioxide, wet	А	A	A	С	С	А	A	A	А	A	A	А
Carbon Disulfide	NS	С	NS	NS	NS	A	A	A	А	A	A	A
Carbon Monoxide	А	А	А	NS	NS	А	А	А	A	A	A	A
Carbon Tetrachloride	NS	с	с	NS	NS	A	A	А	А	A	A	A
Caustic Soda (NaOH)	NS	А	с	С	NS	A	A	A	A	С	с	с
Chlorine, gas (dry) *	С	NS	NS	NS	NS	A	A	A	A	A	с	с
Chlorine, liquid (dry) *	NS	NS	NS	NS	NS	A	A	A	A	A	С	с
Chlorine (wet) *	NS	С	NS	NS	NS	A	A	A	A	A	NS	NS
Chlorine Dioxide	NS	NS	NS	NS	NS	А	A	NS	A	с	NS	NS
Chlorobenzene	NS	NS	NS	NS	NS	A	А	A	A	A	A	А

Chloroethane	NS	NS	NS	NS	NS	A	А	А	A	А	А	А
Chloroethylene	NS	NS	NS	NS	NS	A	A	A	A	А	С	С
Chloroform	С	A	с	NS	NS	A	A	A	А	A	A	A
Chromic Acid	NS	NS	NS	NS	NS	A	А	NS	A	A	A	A
Citric Acid	А	А	A	А	А	А	А	А	A	A	A	A
Coal Gas	NS	NS	NS	NS	С	A	А	A	А	A	A	A
Copper Sulfate	А	A	А	A	А	A	A	A	А	А	А	A
Corn Oil	А	С	С	NS	С	А	A	A	A	A	A	A
Cotton Seed Oil	А	А	А	NS	с	A	A	A	А	A	A	А
Creosote (Coal Tar)	А	А	А	NS	NS	A	A	A	A	A	A	А
Cresol	С	А	с	NS	NS	A	A	А	А	А	A	А
Crude Oil	А	A	А	NS	С	А	А	А	A	A	A	А
Cumene	NS	NS	NS	NS	С	A	A	A	A	NS	NS	NS
Cyclohexane	А	A	С	NS	с	A	A	A	A	A	А	А
Cyclohexanone	NS	NS	NS	NS	NS	A	A	A	A	A	А	A

* Durlon® 9000/9000N is listed as an acceptable gasket material for dry chlorine service in Pamphlet 95 of The Chlorine Institute. Gaskets must be cleaned for chlorine service before installation.

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

Gasket Resources Inc CHEMICAL RESISTANCE CHART - D-F

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

					_			_				
		CO	MPRES	SED			PTF	E		FLEX	IBLE GRA	PHITE
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Detergent Solutions	А	Α	А	A	Α	А	А	A	A	A	A	А
Diacetone Alcohol	NS	NS	NS	NS	NS	A	A	А	А	А	A	A
Diazomethane	NS	NS	NS	NS	NS	А	А	A	А	NS	NS	NS
Dibenzyl Ether	NS	с	С	NS	NS	A	A	A	A	A	NS	NS
Dibutylamine	С	с	С	NS	с	A	A	A	A	С	С	С
1,4-Dichlorobenzene	NS	NS	NS	NS	NS	A	A	A	A	A	A	A
3,3-Dichlorobenzidene	NS	NS	NS	NS	NS	A	A	A	A	NS	NS	NS
Dichlorobenzidene	NS	NS	NS	NS	NS	А	A	A	A	NS	NS	NS
1,1-Dichloroethylene	NS	NS	NS	NS	NS	А	А	A	A	A	A	A
Dichloroethyl Ether	NS	NS	NS	NS	NS	A	A	A	A	с	NS	NS
Dichloromethane	NS	NS	NS	NS	NS	A	A	А	A	A	NS	NS
Diesel Fuel	А	А	А	с	с	А	A	A	A	A	A	A
Diethyl Carbonate	NS	NS	NS	NS	NS	А	A	А	A	A	NS	NS
Dimethyl Acetamide	NS	с	NS	NS	NS	A	A	A	A	с	С	С
Dimethylformamide (DMF)	NS	с	NS	NS	NS	A	A	A	A	NS	NS	NS
Díoxane	NS	NS	NS	NS	NS	A	A	A	A	А	с	с
Dowtherm A, E	NS	с	с	NS	NS	А	A	A	А	A	A	A
Epichlorohydrin	NS	NS	NS	NS	NS	A	А	A	А	A	с	с

Ethane	A	A	A	С	с	A	A	A	А	A	A	A
Ethyl Acetate	С	С	С	С	NS	A	A	А	А	А	Α	A
Ethyl Alcohol (Ethanol)	A	А	A	A	А	A	А	А	А	А	A	A
Ethanol Fuel Blends, E15-E85	Α	A	A	NS	С	A	A	A	A	A	A	A
Ethanol + Denaturants												
Saturated Hydrocarbons (gasoline boiling range)	A	A	A	NS	С	А	A	A	А	A	A	А
Raffinate (fuel)	A	A	A	NS	С	A	A	А	А	A	A	A
Benzene	С	С	С	NS	С	A	А	А	А	A	A	A
Naphtha	A	А	A	NS	с	Α	A	А	А	А	А	A
Toluene	С	С	С	NS	С	А	A	А	A	A	A	A
Ethylbenzene	NS	NS	NS	NS	NS	A	A	А	А	A	A	A
Ethylchloride	NS	NS	NS	NS	NS	Α	А	А	А	A	A	A
Ethylene	A	А	А	NS	С	A	А	A	А	A	A	A
Ethylene Dichloride (EDC)	NS	NS	NS	NS	NS	А	А	А	A	A	А	A
Ethylene Glycol	А	А	А	A	A	A	A	А	А	A	A	A
Ethyl Ether	С	С	С	NS	С	A	А	А	A	A	A	А
Ethylene Oxide	NS	NS	NS	NS	NS	А	A	Α	A	A	A	A
Fatty Acids	A	A	А	NS	С	A	Α	Α	А	A	A	A
Ferric Chloride	A	A	A	А	A	А	Α	A	A	A	NS	NS
Ferrous Chloride	A	A	А	A	A	А	A	А	А	А	NS	NS
Fluorine (Gas, Liquid)	NS	с	NS	NS								
Formaldehyde	A	С	А	С	с	A						

Formic Acid	NS	NS	NS	С	А	Α	A	Α	A	Α	Α	А
Freon (See Refrigerants)	-	-	-	-	-	-	-	-	-	-	-	-
Fuel Oil	A	A	А	NS	с	А	А	A	A	A	А	А

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

©2002-2013, Gasket Resources Inc., All Rights Reserved

Gasket Resources Inc CHEMICAL RESISTANCE CHART - G-L

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

		со	MPRES	SED			PT	Ē		FLEX	IBLE GRA	PHITE
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Gas – Natural	А	А	А	NS	A	А	A	A	A	A	A	А
Gasoline	A	A	A	NS	NS	А	А	А	А	A	A	A
Glucose	А	А	A	A	А	A	A	A	A	A	A	A
Glycerin (Glycerol)	А	A	А	А	A	А	A	A	А	A	A	A
Green Sulfate Liquor	с	С	С	NS	С	A	A	A	A	с	С	С
Glycol	A	A	А	А	А	A	A	A	A	A	С	с
Heptane	А	A	А	NS	С	A	A	А	A	A	A	A
Hexane	A	A	А	NS	с	A	A	А	A	A	A	A
Hydraulic Oil (mineral)	A	A	А	с	С	А	A	А	A	A	A	A
Hydraulic Oil (phosp. ester)	С	с	С	NS	NS	A	A	A	А	A	A	A
Hydrazine	С	С	с	с	с	A	A	A	A	A	A	A
Hydrochloric Acid, 30%	NS	С	NS	NS	NS	A	A	А	А	A	NS	NS
Hydrochloric Acid, Conc	NS	С	NS	NS	NS	А	А	A	A	А	NS	NS
Hydrofluoric Acid<150°F	NS	NS	NS	NS	NS	NS	A	A	А	A	NS	NS
Hydrofluoric Acid>150°F	NS	NS	NS	NS	NS	NS	NS	A	A	A	NS	NS
Hydrogen	A	А	A	A	A	A	A	A	A	A	A	A
Hydrogen Chloride, (dry)	A	NS	NS	NS	NS	A	A	A	A	A	NS	NS
Hydrogen Fluoride (HF)	NS	NS	NS	NS	NS	NS	NS	A	A	A	NS	NS

Hydrogen Peroxide, 10%	с	с	С	С	С	А	A	А	А	с	с	с
Hydrogen Sulfide (dry)	А	А	С	с	A	A	A	A	А	A	A	A
Hydrogen Sulfide, (wet)	С	С	с	NS	С	A	А	A	А	А	А	A
Hydroquinone	NS	NS	NS	С	NS	A	А	A	А	A	A	A
lodine	Α	A	А	A	NS	А	А	А	A	NS	NS	NS
Isobutane	Α	А	А	NS	с	A	А	A	A	A	С	С
Isooctane	Α	A	А	NS	с	А	A	А	А	A	A	A
Isopropyl Alcohol	А	А	A	A	A	A	A	A	А	А	A	А
Jet Fuel	А	А	А	NS	С	А	A	A	A	A	А	A
Kerosene	А	А	A	NS	С	А	A	A	A	A	A	A
Lacquer Solvents	NS	NS	NS	NS	NS	А	A	А	А	A	A	A
Lactic Acid	A	А	А	А	A	А	A	А	А	A	А	A
Linseed Oil	А	А	А	NS	С	A	А	A	А	A	A	A
Lubricating Oil	А	А	А	NS	С	А	A	A	A	A	A	A

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

©2002-2013, Gasket Resources Inc., All Rights Reserved

Gasket Resources Inc CHEMICAL RESISTANCE CHART - M-O

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

		co	MPRES	SED			PT	=E		FLEX	IBLE GRA	PHITE
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Magnesium Chloride	А	А	Α	А	Α	А	A	A	A	А	NS	NS
Magnesium Hydroxide	A	A	А	А	А	A	A	А	А	Α	Α	A
Magnesium Sulfate	А	А	А	А	А	A	A	A	A	A	A	A
Maleic Acid	A	A	A	С	NS	А	А	A	A	A	A	A
Maleic Anhydride	NS	NS	NS	NS	NS	А	A	A	A	NS	NS	NS
Mercuric Chloride	A	А	A	А	с	A	А	A	А	NS	NS	NS
Mercury	A	A	А	A	А	A	А	A	A	С	С	С
Methane	А	А	А	NS	с	A	A	А	А	A	A	A
Methylacrylic Acid	С	С	с	с	с	A	A	A	A	С	NS	NS
Methyl Alcohol	А	A	A	А	A	A	A	A	А	A	A	А
Methylene Chloride	NS	NS	NS	NS	NS	А	A	A	A	A	NS	NS
Methyl Ethyl Ketone, MEK	С	С	С	NS	С	A	A	А	А	A	A	A
Methyl Isobutyl Ketone	NS	NS	NS	NS	NS	A	A	A	А	A	A	А
Methyl Isocyanate	NS	NS	NS	NS	NS	A	A	А	А	NS	NS	NS
Methyl Methacrylate	NS	NS	NS	NS	NS	A	A	A	A	NS	NS	NS
Milk	A	A	A	A	А	А	A	A	A	A	A	A
Mineral Oil	А	A	А	NS	С	A	A	A	A	А	A	A

Gasket Resources - Print Friendly

Muriatic Acid	NS	С	NS	NS	NS	A	Α	Α	А	A	NS	NS
Naphtha	A	Α	Α	С	NS	A	A	A	А	А	А	А
Naphthalene	NS	NS	NS	NS	NS	A	А	А	А	А	A	A
Natural Gas	А	А	А	NS	А	A	А	A	A	A	А	А
Nickel Sulfate	A	А	А	А	А	А	А	А	A	А	А	А
Nitric Acid, < 20%	NS	NS	NS	NS	NS	A	A	NS	A	А	A	A
Nitric Acid, 50%	NS	NS	NS	NS	NS	A	A	NS	Α	NS	NS	NS
Nitrogen	A	A	А	А	А	A	A	A	A	A	A	A
Nitrogen Dioxide	NS	NS	NS	NS	NS	A	A	NS	А	NS	NS	NS
Nitrogen Tetroxide	NS	NS	NS	NS	NS	A	A	NS	А	NS	NS	NS
Octane	A	А	А	NS	С	A	A	A	A	А	A	A
Oil, Crude	A	А	А	NS	С	A	A	А	A	A	A	A
Oil, Mineral	A	А	А	NS	С	A	A	А	А	А	A	A
Oleic Acid	С	С	С	NS	с	A	A	A	A	A	A	A
Oleum, fuming H2SO4	NS	NS	NS	NS	NS	A	NS	NS	A	NS	NS	NS
Oxalic Acid	A	А	С	NS	с	A	А	A	A	A	A	A
Oxygen, gas	NS	NS	NS	NS	NS	A	A	A	A	А	NS	A
Oxygen, liquid*	NS	NS	NS	NS	NS	A	А	А	A	A	NS	А
Ozone	NS	NS	NS	NS	NS	A	A	с	A	NS	NS	NS

*Must be cleaned for oxygen before installation.

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Gasket Resources Inc CHEMICAL RESISTANCE CHART - P

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

		со	MPRES	SED			PTI	Ē		FLEX	IBLE GRA	PHITE
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Paraffin	А	Α	Α	С	С	A	A	А	А	A	А	A
Pentane	A	A	A	NS	с	A	A	A	A	A	С	С
Perchloroethylene	NS	NS	NS	NS	NS	A	A	A	А	A	A	A
Petroleum	A	A	A	NS	с	A	A	A	А	A	A	А
Phenol	NS	NS	NS	NS	NS	A	A	A	А	A	A	А
Phosphoric Acid, <40%	С	С	С	NS	с	A	A	A	A	A	С	С
Phthalic Acid	NS	NS	NS	NS	A	А	А	А	A	A	A	A
Phthalic Anhydride	NS	NS	NS	NS	A	A	A	А	A	A	А	A
Polyacrylonitrile	A	A	А	А	A	А	A	A	A	A	A	A
Potash	A	А	A	А	A	A	A	A	А	A	A	A
Potassium Chloride	А	А	A	А	А	A	A	A	A	A	A	A
Potassium Dichromate	А	А	A	С	С	А	A	A	A	A	A	A
Potassium Hydroxide	С	А	С	С	С	A	A	А	А	С	С	с
Potassium Nitrate	С	С	С	С	с	А	A	с	А	A	A	A
Potassium Sulfate	A	A	A	A	А	A	A	A	A	A	A	A
Propane	A	A	А	NS	с	A	А	A	A	A	A	A
Propylene	NS	NS	NS	NS	NS	A	A	A	A	A	A	А
Pydrauls, Skydrois	С	С	С	NS	NS	A	А	A	A	С	с	с

Pyridine	NS	NS	NS	NS	NS	А	А	А	А	А	А	А

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

©2002-2013, Gasket Resources Inc., All Rights Reserved

Gasket Resources Inc CHEMICAL RESISTANCE CHART - R

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

FLUID		со	MPRES			PTI	ΞE	FLEXIBLE GRAPHITE				
	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316
Red Sulfite Liquor	NS	NS	NS	NS	NS	А	A	A	A	С	С	с
Red Sulfite Liquor>380°F	NS	NS	NS	NS	NS	с	С	С	с	NS	NS	NS
Refrigerant R-11 **	A	A	А	NS	NS	А	A	A	A	A	A	A
Refrigerant R-12 **	А	A	A	С	A	A	A	A	А	A	С	с
Refrigerant R-22 **	С	С	С	С	A	А	А	A	А	A	A	A
Refrigerant R-113 **	A	А	A	с	А	A	A	А	А	С	С	С
Refrigerant HCFC 123 **	NS	С	с	NS	С	А	А	A	A	-	-	-
Refrigerant HCFC 124 *	NS	С	С	NS	A	A	A	A	A	-	-	-
Refrigerant HFC 125 *	с	С	с	NS	А	A	A	А	A	-		-
Refrigerant HFC 134a *	A	А	A	С	А	A	A	A	A	-	_	-
Refrigerant HCFC 141b	А	А	А	NS	А	А	А	А	A	-	-	÷
Refrigerant HFC 236fa	А	А	A	NS	A	А	A	А	A	-	-	-
Refrigerant Blend HP 62*	А	A	А	NS	А	А	А	A	A	-	-	-
Refrigerant Blend HP 80	С	С	С	NS	A	A	A	A	A	-	-	
Refrigerant Blend HP 81	с	С	с	NS	А	A	А	A	A	-	•	-
Refrigerant Blend 404a*	A	A	A	NS	А	A	A	A	А	-	-	-

* With Polyol Ester Oil ** With Mineral Oil

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid

FLUID				PT	FE	FLEXIBLE GRAPHITE						
	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT31
Sea Water	А	А	А	А	А	Α	А	А	A	A	NS	NS
Silver Nitrate	С	Α	С	С	С	A	A	А	Α	A	A	А
Soap Solutions	А	А	А	А	А	A	A	С	Α	A	A	A
Soda Ash	А	A	А	A	A	A	A	A	А	A	A	А
Sodium Bicarbonate	A	A	А	А	A	А	А	A	A	A	A	A
Sodium Bisulfite	A	A	A	А	A	А	А	А	A	A	A	A
Sodium Carbonate	A	A	А	А	А	А	A	A	A	A	A	A
Sodium Chloride	A	А	А	А	A	A	A	А	A	A	A	А
Sodium Hydroxide	С	А	с	с	NS	A	A	A	A	С	С	с
Sodium Hypochlorite	NS	NS	NS	С	с	A	A	С	A	С	NS	NS
Sodium Nitrate	А	A	А	С	С	А	A	А	A	С	С	С
Sodium Silicate	A	A	A	А	А	A	A	A	A	A	С	С
Sodium Sulfate	А	А	А	А	А	А	А	A	A	A	A	А
Sour Crude Oil	A	A	А	NS	С	А	A	A	A	A	А	A
Soybean Oil	А	A	A	NS	с	A	А	A	А	A	A	A
Steam, Saturated to 150 psig	A	A	А	С	С	A	A	A	A	A	A	A
Steam, Superheated	NS	NS	NS	NS	NS	NS	NS	NS	NS	A	A	A

Stearic Acid	A	A	A	С	А	А	Α	А	Α	A	Α	Α
Stoddard Solvent	A	А	A	NS	С	A	A	A	A	A	A	А
Styrene	NS	NS	NS	NS	NS	А	A	A	A	A	A	А
Sulfite Liquors	С	А	С	с	С	A	A	A	A	A	С	С
Sulfur (molten)	с	С	С	NS	С	A	A	А	A	А	А	А
Sulfur Dioxide	NS	С	NS	NS	NS	A	A	A	A	A	A	A
Sulfuric Acid, 20%	С	NS	NS	NS	NS	А	А	А	A	A	NS	NS
Sulfuric Acid, Conc	NS	NS	NS	NS	NS	A	С	A	A	NS	NS	NS
Sulfuric Acid,Conc>200°F	NS	NS	NS	NS	NS	A	NS	NS	A	NS	NS	NS
FumingSulfuric Acid, Oleum	NS	NS	NS	NS	NS	A	NS	NS	A	NS	NS	NS

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

©2002-2013, Gasket Resources Inc., All Rights Reserved

Gasket Resources Inc CHEMICAL RESISTANCE CHART - T-Z

A -Acceptable C - Caution, depends on operating conditions NS - Not Suitable

	COMPRESSED						PTF	ΞE		FLEXIBLE GRAPHITE			
FLUID	8300	8400	79XX 8500	8600	8700	9000	9200W	9400	9600	FGS95	CFG, FGL316	FGT316	
Tar	A	А	A	С	С	Α	A	А	A	A	A	A	
Tetrachloroethane	С	С	С	NS	NS	А	А	А	А	A	A	А	
Tetrahydrofuran (THF)	NS	NS	NS	NS	NS	A	A	A	A	A	A	A	
Toluene	NS	NS	NS	NS	С	A	A	A	A	A	А	A	
Transformer Oil	А	A	А	NS	с	A	A	A	A	A	A	А	
Transmission Fluid	A	A	A	NS	с	А	A	А	A	A	A	А	
1,1,2-Trichloroethane	NS	NS	NS	NS	NS	A	A	A	A	A	A	А	
Trichloroethylene	С	с	С	NS	NS	A	A	А	А	A	A	А	
Triethanolamine	С	С	с	С	A	A	A	A	A	С	с	С	
Turpentine	А	A	A	NS	с	A	A	А	А	A	А	А	
Urea	А	A	А	A	А	A	A	А	A	А	А	А	
Varsol	A	А	A	NS	NS	A	A	А	A	A	A	A	
Vegetable Oil	А	A	А	NS	с	А	A	А	A	А	A	A	
Vinegar	А	A	A	С	A	A	A	A	A	A	A	A	
Vinyl Acetate	С	С	с	NS	с	A	А	A	A	A	A	A	
Vinyl Chloride	NS	NS	NS	NS	NS	A	A	A	A	A	A	A	
Water	A	A	А	A	A	A	A	A	A	A	A	A	
Whiskey and Wines	A	A	A	А	A	A	A	A	A	A	A	А	

		_			_							
White Sulfate Liquor	A	A	А	А	A	A	А	A	А	A	A	А
White Spirit	A	А	A	с	С	A	Α	А	A	А	A	A
Xylene	NS	NS	NS	NS	NS	A	A	A	А	А	А	А
Zinc Chloride	А	А	A	А	А	А	A	A	A	A	A	A
Zinc Nitrate	С	С	с	С	с	А	A	С	A	А	С	с
Zinc Sulfate	А	A	А	А	A	А	А	A	A	A	A	A

The properties or applications shown are typical. Your specific application should not be undertaken without independent study and evaluation for suitability. For specific application recommendations or for unusual conditions of fluid concentrations, internal pressures or, temperatures, please contact GRI. This evaluation is based on field testing, customer experience, or in-house testing. While the utmost care has been used in compiling this information, no guarantee can be given as to the actual performance experienced by the end user.

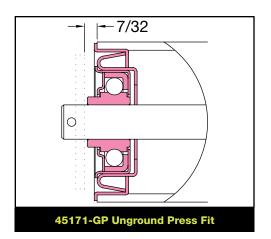
Durlon® 79XX represents Durlon® 7900, 7925, and 7950; see the Durlon® Technical Handbook pages 3-4 or product page for additional information.

This Chemical Resistance Chart supersedes and obsoletes all previously issued charts.

Call GRI Technical Services at 1-713-856-9445 for specific recommendations

©2002-2013, Gasket Resources Inc., All Rights Reserved

Roller Cut Sheet


(OMC)

EnSol, Inc.

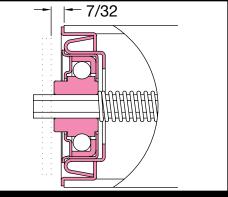
Omni<u>Metalcraft_{corp.}</u>

3 1/2 in. O.D. x 7 Ga. Rollers										
Roller Par	rt Number	Tube		Drive	Bearing Part					
Spring Retained	Pin Retained	Material	Axle	Options	Number					
45262	45263	Mild Steel	7/16 Hex	Gravity	45173-GP					
28540	28541	Mild Steel	5/8 Hex	Gravity	45207-GP					
13948	13947	Mild Steel	11/16 Hex	Gravity	31439					
44882	44883	Mild Steel	11/16 Hex	Gravity	44881-GP					
Upon Request	40810	Mild Steel	11/16 Hex	Gravity	45208-GP					
Upon Request	45260	Mild Steel	3/4 Dia.	Gravity	45171-GP					

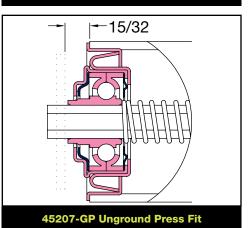
Roller Capa	city Char	t (lbs.)*									
	Bearing Part Number										
Between Frame (BF) Inches	45173-GP	45207-GP	31439 45208-GP	44881-GP	45171-GP						
6	504	847	847	1997	847						
12	499	844	844	1994	844						
18	394	841	841	1991	841						
24	282	838	838	1906	838						
30	212	719	835	1491	834						
36	163	578	831	1208	831						
42	125	474	714	998	828						
48	93	393	599	832	825						
54	66	326	504	695	804						
60	41	268	424	576	684						
66	N/A	217	354	470	580						
72	N/A	170	291	373	485						
78	N/A	126	232	282	399						
84	N/A	84	177	196	318						
90	N/A	44	125	111	241						
96	N/A	N/A	74	N/A	167						
102	N/A	N/A	N/A	N/A	95						
108	N/A	N/A	N/A	N/A	N/A						
114	N/A	N/A	N/A	N/A	N/A						
120	N/A	N/A	N/A	N/A	N/A						
126	N/A	N/A	N/A	N/A	N/A						
132	N/A	N/A	N/A	N/A	N/A						
138	N/A	N/A	N/A	N/A	N/A						
144	N/A	N/A	N/A	N/A	N/A						

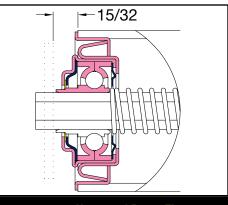
regreasable (RG) Optional

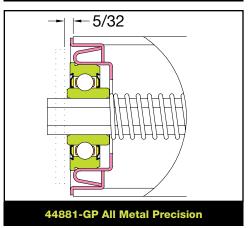
Precision


*Larger Between Frames and higher capacities may be achieved with a center support puck. *Roller Between Frame lengths available between values shown in the table. *Roller Between Frames can be shorter than values shown utilizing pin retention.

Unground


Standard Part Numbering System Example: 27369 - 17


Roller Part BF Number Unground Semi-Precision Stainless Steel



45173-GP Unground Press Fit

31439 Unground Press Fit

*The dimension above include 1/16" clearance between the extension on the bearing and the side frame at each end.

Ball Retainer (Cage)

Keeper Bar Page 43

Rupture Disk

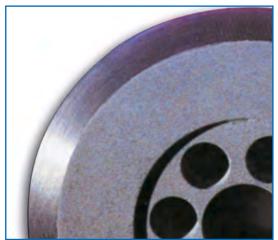
(BS & B)

EnSol, Inc.

CATALOG 77-8500 SECTION C

SAF-T-GRAF

Saf-T-Graf graphite disks are impermeable to process gases and fluids


SAF-T-GRAF® FEATURES

- Offers superior sealing characteristics to process gases and fluids
- Corrosion resistant (except free fluorine)
- Burst pressures from 0.02 bar (0.25 psig) to 69 bar (1000 psig)
- Higher operating temperature than other impregnated graphite disks up to 205°C (400°F)
- Full bore opening
- Sizes from 15 to 600 mm (0.5" to 24" and larger)
- Extended service life for operating pressures up to 80% of the disk marked pressure in a static environment -Lower operating ratios can be expected in a cyclic environment
- Suitable for gas service and liquid service
- Supplied with gaskets attached for immediate installation.
- Resists full vacuum (vacuum support required below 1.52 bar (22 psig) burst pressure)
- Optional PTFE coating to reduce product build-up
- Graphite impregnation is environmentally safe
- Patent pending
- ASME code, UD stamp above 15 psig (1.03barg) available

SAF-T-GRAF[®] System

Armor

Armor is recommended for all graphite disks for added safety, easier installation and elimination of breakage during installation. Armor reduces the possibility of a premature

burst due to uneven or excessive torqueing of the flange studs.

Armor is standard on disks with burst pressures in excess of 150 psig or to fit ANSI Class 300/600 flanges. Carbon steel armor is standard with 304/316 Stainless Steel as an option.

Saf-T-Graf monobloc impregnated graphite disks. Vacuum supports are designed utilizing the latest computer software to maximize venting capacities while maintaining structural strength. Armor ring around disk's circumference shown left.

Disks for Immediate Shipment

In order to provide the best possible service, BS&B stocks monobloc disks in the following sizes: 25, 40, 50, 80, 100, 150 and 200 mm (1", 1.5", 2", 3", 4", 6", 8"). Stocked Burst Pressures: 10-15-20-25-30-40-50-75-100-125-150 psig All disks must be for 150 ANSI flange ratings.

Flange Ratings

Saf-T-Graf disks can be supplied to fit flange ratings ANSI, DIN, JIS, BS, AFNOR etc. Please specify flange rating when ordering

Gaskets

BS&B Safety Systems, L.L.C. stocks gaskets in the materials below:

- Garlock[®] or Klinger[®]-Sil (standard)
- Optional Materials:
- GRAFOIL[®]
- Neoprene
- PTFE solid

Please specify your gasket material when ordering.

Sensors

A GASTM (Graphite Alert Sensor) is available to provide warning of a burst graphite disk

Installations

The Saf-T-Graf disk is designed to permit direct installation between ANSI, DIN, JIS, BS, AFNOR pipe flanges and to locate between the flange bolts.

Operating Ratio

Up to 80% operating pressure to burst pressure ratio in a static environment. Lower operating ratios can be expected in a cyclic environment.

Klinger[®]-Sil is a registered trade mark of Klinger (Holdings) Ltd. Garlock[®] is a registered trade mark of Coltec Industries GRAFOIL[®] is a registered trade mark of UCAR Carbon Company, Inc.

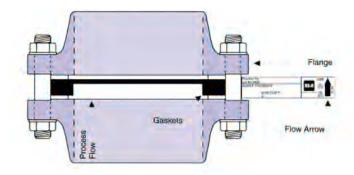
Monobloc

Model MBV (with bar) and MB.

MB™ Specifications

Nor	ninal	В	urst Ra	atings		Inte	rnal	Disk		
S	ize	Bar	g	PS	IG	Dian	neter	Thic	kness	
mm	in	Min	Max	Min	Max	mm	in	mm	in	
15	0.5	1.73	10.3	25	150	15.9	0.625	16	0.625	
20	0.75	1.73	10.3	25	150	21	0.825	16	0.625	
25	1	0.69	10.3	10	150	27.2	1.07	22	0.875	
40	1.5	0.49	10.3	7	150	41.1	1.62	22	0.875	
50	2	0.14	10.3	2	150	52.6	2.07	22	0.875	
80	3	0.069	10.3	1	150	78.0	3.07	22	0.875	
100	4	0.069	10.3	1	150	103.4	4.07	22	0.875	
150	6	0.069	10.3	1	150	154.2	6.07	22	0.875	
200	8	0.035	10.3	0.5	150	205.0	8.07	29	1.125	
250	10	0.0173	8.6	0.25	125	255.8	10.07	38	1.50	
300	12	0.0173	8.6	0.25	125	306.6	12.07	51	2.00	
350	14	0.0173	6.89	0.25	100	336.5	13.25	57	2.25	
400	16	0.0173	6.89	0.25	100	387.4	15.25	64	2.50	
450	18	0.0173	6.89	0.25	100	438.2	17.25	70	2.75	
500	20	0.0173	3.4	0.25	50	489.0	19.25	76	3.00	
600	24	0.0173	3.4	0.25	50	590.6	23.25	76	3.00	

For other disk thickness, contact BS&B Safety Systems, L.L.C. or BS&B Safety Systems LTD.


Model MB™

Monobloc disks fit most applications where a graphite disk is needed.

When using a monobloc disk in application:

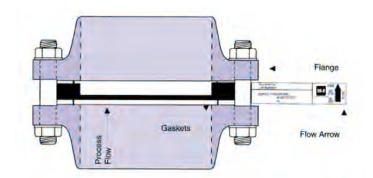
- Vacuum supports are needed for disks rated below 1.52 bar (22 psig) and where a vacuum condition exists. Model MBVTM.
- Vacuum supports are not needed for sizes 15 and 20 mm (0.5", .75").
- Temperature ranges -730 C to 205°C (-100°F to 400°F).
- Armoring is recommended for all graphite disks for added safety, easier installation and elimination of breakage during installation
- Armor reduces the possibility of a premature burst due to uneven or excessive torqueing of the flange studs

MB

MB monobloc disks are available in size from 15mm to 600 mm (0.5" to 24") with a temperature range to 205° C (400°F).

(For Venting Capacities Chart please refer to page 5.)

Inverted Monobloc


Model IMB[™]

Inverted monobloc disks are available to fit ANSI Class 150, Class 300 and Class 600 flanges.

When using an inverted monobloc disk in application:

- If a vacuum support is required, Model MBV[™] disks must be specified.
- Temperature ranges -73°C to 200°C (-100°F to +400°F.)
- Armoring is recommended for all graphite disks for adde safety, easier installation and elimination of breakage during installation.
- Armor reduces the possibility of a premature burst due to uneven or excessive torqueing of the flange studs.

IMB

Inverted monobloc disks are supplied for ANSI Class 150, Class 300 and Class 600 flanges and in higher burst pressures than Model MB disks.

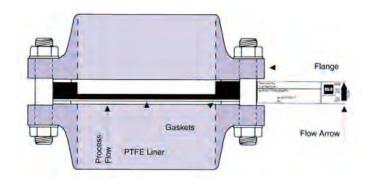
(For Venting Capacities Chart please refer to page 5.)

IMB Specifications

Nor	minal			Ratings	i	Inte	rnal	D	sk
S	ize	Ba	rg	PS	IG	Dian	neter	Thic	ness
mm	in	Min	Max	Min	Max	mm	in	mm	in
15	0.5	1.73	17.2	25	250	15.9	0.625	16	0.625
20	0.75	1.73	17.2	25	250	21.0	0.825	16	0.625
25	1	0.69	17.2	10	250	27.2	1.07	22	0.875
40	1.5	0.49	17.2	7	250	41.1	1.62	22	0.875
50	2	0.21	17.2	3	250	52.6	2.07	22	0.875
80	3	0.14	17.2	2	250	78.0	3.07	22	0.875
100	4	0.104	17.2	1.5	250	103.4	4.07	22	0.875
150	6	0.069	11.7	1	170	154.2	6.07	22	0.875
200	8	0.035	11.7	0.5	170	205.0	8.07	29	1.125
250	10	0.0173	10.3	0.25	150	255.8	10.07	38	1.50
300	12	0.0173	10.3	0.25	150	306.6	12.07	51	2.00
350	14	0.0173	10.3	0.25	150	336.5	13.25	57	2.25
400	16	0.0173	10.3	0.25	150	387.4	15.25	64	2.50
450	18	0.0173	10.3	0.025	150	438.2	17.25	70	2.75
500	20	0.0173	10.3	0.25	150	489.0	19.25	76	3.00
600	24	0.0173	10.3	0.25	150	590.6	23.25	76	3.00
15	0.5	1.73	68.9	25	1000	15.9	0.625	16	0.625
20	0.75	1.73	68.9	25	1000	21.0	0.825	16	0.625
25	1	0.69	68.9	10	1000	27.2	1.07	25	1.00
40	1.5	0.49	68.9	7	1000	41.1	1.62	25	1.00
50	2	0.21	34.4	3	500	52.6	2.07	25	1.00
80	3	0.14	34.4	2	500	78.0	3.07	32	1.25
100	4	0.10	34.4	1.5	500	103.4	4.07	32	1.25
150	6	0.069	31	1	450	154.2	6.07	44	1.75
200	8	0.035	31	0.5	450	205.0	8.07	57	2.25

For other disk thickness, contact BS&B Safety Systems, L.L.C. or BS&B Safety Systems LTD.

Inverted Monobloc with Liner


Model IMBL™

Inverted monobloc with liner extends corrosion resistance and resists product build-up with the use of a PTFE liner.

When using an inverted monobloc disk with liner in application:

- If a vacuum support is required, Model MBVTM disks must be specified; with PTFE coating if required.
- Temperature ranges -73° C to 205° C (-100°F to 400°F).
- Armoring is recommended for all graphite disks for added safety, easier installation and elimination of breakage during installation
- Armor reduces the possibility of a premature burst due to uneven or excessive torqueing of the flange studs
- Corrosion resistant (except free fluorine)

IMBL

Inverted monobloc disks with liner extends corrosion resistance to practically all corrosives except free fluorine.

(For Venting Capacities Chart please refer to page 5.)

IMBL Specifications

No	minal	В	urst R	ating	5	Inte	ernal Disk		
S	ize	Ba	rg	PS	SIG	Dian	neter	Thic	kness
mm	in	Min	Max	Min	Max	mm	in	mm	in
15	0.5	1.73	17.2	25	250	15.9	0.625	16	0.625
20	0.75	1.73	17.2	25	250	21.0	0.825	16	0.625
25	1	0.69	17.2	10	250	27.2	1.07	22	0.875
40	1.5	0.49	17.2	7	250	41.1	1.62	22	0.875
50	2	0.21	17.2	3	250	52.6	2.07	22	0.875
80	3	0.14	17.2	2	250	78.0	3.07	22	0.875
100	4	0.104	17.2	1.5	250	103.4	4.07	22	0.875
150	6	0.069	11.7	1	170	154.2	6.07	22	0.875
200	8	0.035	11.7	0.5	170	205.0	8.07	29	1.125
250	10	0.0173	10.3	0.25	150	255.8	10.07	38	1.50
300	12	0.0173	10.3	0.25	150	306.6	12.07	51	2.00
350	14	0.0173	10.3	0.25	150	336.5	13.25	57	2.25
400	16	0.0173	10.3	0.25	150	387.4	15.25	64	2.50
450	18	0.0173	10.3	0.25	150	438.2	17.25	70	2.75
500	20	0.0173	10.3	0.25	150	489.0	19.25	76	3.00
600	24	0.0173	10.3	0.25	150	590.6	23.23	76	3.00
15	0.5	1.73	68.9	25	1000	15.9	0.625	16	0.625
20	0.75	1.73	68.9	25	1000	21.0	0.825	16	0.625
25	1	0.69	68.9	10	1000	27.0	1.07	25	1.00
40	1.5	0.49	68.9	7	1000	41.1	1.62	25	1.00
50	2	0.21	34.4	3	500	52.6	2.07	25	1.00
80	3	0.14	34.4	2	500	78.0	3.07	32	1.25
100	4	0.104	34.54	1.5	500	103.4	4.07	32	1.25
150	6	0.069	31	1	450	154.2	6.07	44	1.75
200	8	0.035	31	0.5	450	205.0	8.07	57	2.25

For other disk thickness, contact BS&B Safety Systems, L.L.C. or BS&B Safety Systems LTD.

Venting Capacities

Venting capacities are expressed below in standard cubic feet per minute of air x 1000 at standard

conditions. Adjustments must be made when utilizing vacuum supports.

Vacuum Example: An 8" Monobloc disk @ 10 psig utilizing a bar type of vacuum support, reduces the original capacity by a factor of <u>.80</u>. Example: <u>19.5</u> x <u>.80</u> = <u>15.6</u> x 1000 SCFM air Venting capacities are based upon ASME VIII UG 131, using a

0.62 coefficient of discharge*, ratio of specific heats of 1.4 and a "Z" (compressibility) of 1.0 which simulates an entry into a vent system from a process vessel. Below 15 psig the flow becomes subcritical and appropriate corrections have been made to the venting capacities (calculated according to API guidelines).

Alternately the low K_R values for graphite disks can be used for the determination of vent system campacity. This may permit the use of a smaller size of graphite disk.

Burst																
Rating	1/2 15	3/4 <mark>20</mark>	1 25	1 40	2 <mark>50</mark>	3 <mark>80</mark>	4 100	6 <mark>150</mark>	8 200	10 <mark>250</mark>	12 <mark>300</mark>	14 <mark>350</mark>	16 <mark>400</mark>	18 <mark>450</mark>	20 <mark>500</mark>	24 <mark>600</mark>
psig				1/2												
1/4	-	-	-	-	-	-	-	-	-	3.71	5.34	7.26	9.49	12.0	14.8	21.3
1/2	-	-	-	-	-	-	-	-	3.35	5.24	7.54	10.3	13.4	16.9	20.9	30.2
1	-	-	-	-	-	0.666	1.18	2.66	4.73	7.40	10.7	14.5	18.9	24.0	29.6	42.6
1 1/2	-	-	-	-	-	0.814	1.45	3.26	5.79	9.05	13.0	17.7	23.2	29.3	36.2	52.1
2	-	-	-	-	0.417	0.939	1.67	3.76	6.68	10.4	15.0	20.4	26.7	33.8	41.7	60.1
3	-	-	-	-	0.510	1.15	2.04	4.59	8.15	12.7	18.3	24.9	32.6	41.3	50.9	73.4
4	-	-	-	-	0.587	1.32	2.35	5.28	9.39	14.7	21.1	28.8	37.6	47.5	58.7	84.5
5	-	-	-	-	0.655	1.47	2.62	5.89	10.5	16.4	23.6	32.0	41.9	53.0	65.5	94.3
6	-	-	-	-	0.715	1.61	2.86	6.44	11.4	17.9	25.7	35.0	45.8	57.9	71.5	103
7	-	-	-	0.433	0.771	1.73	3.08	6.93	12.3	19.3	27.7	37.8	49.3	62.4	77.0	111
8	-	-	-	0.462	0.822	1.85	3.29	7.39	13.1	20.5	29.6	40.3	52.6	66.6	82.2	118
9	-	-	-	0.489	0.869	1.96	3.48	7.82	13.9	21.7	31.3	42.6	55.6	70.4	86.9	125
10	-	-	0.229	0.514	0.914	2.06	3.66	8.23	14.6	22.9	32.9	44.8	58.5	74.0	91.4	132
15	-	-	0.279	0.627	1.11	2.51	4.46	10.0	17.8	27.8	40.1	54.6	71.3	90.2	111	160
20	-	-	0.328	0.737	1.31	2.95	5.24	11.8	21.0	32.8	47.2	64.2	83.9	106	131	189
25	0.0942	0.212	0.377	0.848	1.51	3.39	6.03	13.6	24.1	37.7	54.2	73.8	96.4	122	151	217
30	0.106	0.240	0.426	0.958	1.70	3.83	6.81	15.3	27.2	42.6	61.3	83.5	109	138	170	245
40	0.131	0.295	0.524	1.18	2.40	4.72	8.38	18.9	33.5	52.4	75.4	103	134	170	210	302
50	0.156	0.350	0.622	1.40	2.49	5.60	9.95	22.4	39.8	62.2	89.6	122	159	202	249	358
75	0.217	0.488	0.868	1.95	3.47	7.81	13.9	31.2	55.5	86.8	125	170	222	281	347	500
100	0.278	0.626	1.11	2.50	4.45	10.0	17.8	40.1	71.2	111	160	218	285	361	445	641
125	0.340	0.764	1.36	3.06	5.43	12.2	21.7	48.9	86.9	136	196	266	348	440	543	783
150	0.410	0.902	1.60	3.61	6.42	14.4	25.7	57.7	103	160	231	314	411	520	642	924
175	0.462	1.04	1.85	4.16	7.40	16.6	29.6	66.6	118	-	-	-	-	-	-	-
200	0.524	1.18	2.09	4.71	8.38	18.9	33.5	75.4	134	-	-	-	-	-	-	-
225	0.585	1.32	2.34	5.27	9.36	21.1	37.4	84.3	150	-	-	-	-	-	-	-
250	0.647	1.45	2.59	5.82	10.3	23.3	41.4	93.1	165	-	-	-	-	-	-	-
275	0.708	1.59	2.83	6.37	11.3	25.5	45.3	102	181	-	-	-	-	-	-	-
300	0.769	1.73	3.08	6.92	12.3	27.7	49.2	111	197	-	-	-	-	-	-	-
350	0.892	2.01	3.57	8.03	14.3	32.1	57.1	128	228	-	-	-	-	-	-	-
400	1.01	2.28	4.06	9.13	16.2	36.5	64.9	146	260	-	-	-	-	-	-	-
450	1.14	2.56	4.55	10.2	18.2	40.9	72.8	164	291	-	-	-	-	-	-	-
500	1.26	2.84	5.04	11.3	20.2	45.4	80.6	-	-	-	-	-	-	-	-	-
1000	2.49	5.60	9.95	22.4	-	-	-	-	-	-	-	-	-	-	-	-

Disk Diameter (in/mm)

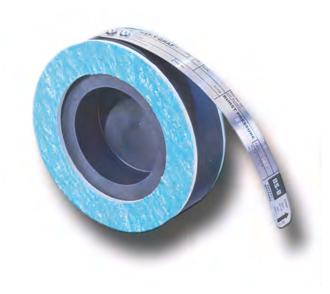
Vacuum Support Factors Dial Type: to 9 psig (0.62 bar)

Bar Type: 10psig (0.69 bar) - 22psig (1.52bar)

	SIZE	1/2	3/4	1	1 1/2	2	3	4	6	8	10	12	14	16	18	20	24
	Dial Type	-	-	-	.56	.57	.60	.62	.58	.60	.60	.60	.60	.60	.60	.60	.60
Θ	Bar Type	-	-	.70	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80

To be used for direct discharge to the atmosphere, disk installation eight diameters from vessel nozzle entry, length of discharge pipe 5 pipe diameters, nominal diameter of inlet and discharge piping the NPS designation of the device.

Ordering Specifications


Disk Types	Model
Monobloc	$MB^{\scriptscriptstyle TM}$
Monobloc with vacuum support	$\mathrm{MBV}^{\mathrm{TM}}$
Armored Monobloc	$AMB^{\rm TM}$
Armored Monobloc with vacuum support	$\mathrm{AMBV}^{\mathrm{TM}}$
Inverted Monobloc	$IMB^{\rm TM}$
Armored Inverted Monobloc	$\mathrm{AIMB^{\text{tm}}}$
Inverted Monobloc with liner	$IMBL^{\rm TM}$
Armored Inverted Monobloc with liner	$\mathrm{AIMBL}^{\mathrm{tm}}$
Armored Monobloc with High Temperature Assembly	AMB-
HTA^{TM}	

Armored Inverted Monobloc with High Temperature Assembly AIMB-HTATM

1/2 to 24 inches, (15mm to 600) larger sizes available upon request.

Burst Pressures

- 0.017 bar (0.25 psig) to 69 bar (1000 psig)
- Burst pressures vary depending on disk style and size. Please consult MB, IMB, and IMBL specification charts.
 For burst pressures outside the standard range consult BS&B Safety Systems, L.L.C. or BS&B Safety Systems LTD.

Vacuum Support

Vacuum support is required on pressures less than 1.52 bar (22 psig) and where a vacuum condition exists, available on Model MBV or AMBV. Vacuum supports are not required on 15mm and 20mm (0.5" and .75") monobloc disks.

Corrosion Resistance

The Saf-T-Graf[®] line offers excellent corrosion resistance (except free fluorine). The IMBL has a PTFE liner fitted to the process side of the disk for extra protection against corrosion and prevention of product build-up.

Gaskets

- Rupture disks are supplied with gaskets, in materials, Klinger[®]-Sil (standard), Garlock[®], GRAFOIL[®].
- Optional materials include: PTFE, Neoprene.

Flange Rating

Graphite monobloc disks are available to fit all standard international flanges ANSI, DIN, BS, AFNOR, JIS etc.

Armor

- Carbon steel or 304/316 Stainless Steel (option)
- Armor is recommended for added safety, easier installation and elimination of breakage during installation. Armor reduces the possibility of a premature burst due to uneven or excessive torqueing of the flange studs.
- Armor is highly recommended in sizes and with burst pressures in excess of the following:

SIZE	BURST PRESSURE	
0.5" (15mm) -3" (80mm)	10.341 barg	150 psig
4" (100mm)	6.894 barg	100 psig
6" (150mm) - 10" (250mm)	5.17 barg	75 psig
12" (300mm) - 24" (600mm)	3.447 barg	50 psig

• Armoring minimizes the possiblity of lateral bursts inherent in standard monobloc graphite disks.

Temperature

-100°F (-73°C) to 400°F (205°C). Higher temperatures to 800°F (427°C) are accommodated using a High Temperature Assembly used with armored disks (The High Temperature Assemblies are not to be used with model AMBV disk (disks with vacuum support).

Consult BS&B Safety Systems, L.L.C. or BS&B Safety Systems LTD.

- If a disk is ordered with a burst temperature within 40°F (4.5°C) to 100°F (38°C), it will be burst tested and rated at 72° F (22°C).
- If the requested burst temperature is outside of 40°F (4.5°C) to 100°F (38°C) burst tests will be carried out at the actual burst temperature (at no additional charge) and not estimated using a correction coefficient.

(ASME or other international standards certification at additional cost).

Burst Tolerance

2.1 bar (30.5 psig).

The burst tolerance is the maximum variation from the marked burst pressure.

MARKED BURST PRESSURE	TOLERANCE
*less than 0.07 bar (1 psig)	-0/+0.052 bar
	(0.75 psig)
0.07 bar (1 psig) - 1.03 bar	+/-0.052 bar
(15 psig)	(0.75 psig)
above 1.03 bar (15 psig)	+/-5%
Example, if a Saf-T-Graf MB type disk is	ordered with a 2 bar (29
psig) burst pressure, it will burst between	1.9 bar (27.5 psig) and

* For reduced tolerances contact BS & Safety Systems, L.L.C. or BS & Safety Systems LTD.

BS&B SAFETY SYSTEMS, L.L.C. 7455 East 46th Street, Tulsa, OK 74145, USA Tel: 1-918-622-5950. Fax: 1-918-665-3904 Toll Free: 1-800-BSB-DISK E-mail: mktg@tul.bsbsystems.com www.bsbsystems.com

BS&B SAFETY SYSTEMS LTD. Bay G-1, Raheen Business Park, Limerick, Ireland Tel: +353 61 227022. Fax: +353 61 227987 E-mail: sales@bsb.ie www.bsb.ie

BS&B SAFETY SYSTEMS (UK) LTD. Adamson House, Towers Business Park, Wilmslow Road, Manchester M20 2YY, England Tel: +44 161-955 4202. Fax :+44 161-955 4282 E-mail: sales@bsb-systems.co.uk

Products, specifications and all data in this literature are subject to change without notice. Questions regarding product selection and specifications for specific applications should be directed to BS & Bafety Systems, inc. or BS & Bafety Systems Ltd.

All sales are subject to BS&B Safety Systems, L.L.C. or BS&B Safety Systems Ltd. standard terms and conditions of sale. Nothing herein should be construed as a warranty of merchantability or fitness for a particular purpose.

Teflon is a DuPont trademark.

© 2000 BS&B Safety Systems, L.L.C. Printed in the USA, 9.2000

Appendix D

Carbon Effluent Analytical Laboratory Test Results

EnSol, Inc.

19 March 2013

Mark Zappy Aqueous Treatment 1550 Balmer Road Model City, NY 14107 RE: X00481 Work Order(s): 1302092 Work Order(s): 1303001 Work Order(s): 1303020 1550 Balmer Road Model City, NY 14107 716-286-1550 Phone 716-286-0326 Fax

CERTIFICATES

NYSDOH LAB ID No.: 11383 U.S. EPA LAB CODE: NY01252

CWM Chemical Services, LLC.

Client: Aqueous Treatment

Work Order(s): 1302092

ANALYTICAL REPORT FOR SAMPLES

LabSample ID	Client Sample ID	Matrix	Date Sampled	Date Received
1302092-01	TK 58 QUALIFIER	Aqueous	02/21/13 05:00	02/21/13 09:00
1302092-02	TK 58 QUALIFIER, GRAB	Aqueous	02/21/13 09:00	02/21/13 09:00
1303001-01	TK 125 QUALIFIER	Aqueous	02/28/13 15:00	03/01/13 06:30
1303001-02	TK 125 QUALIFIER, GRAB	Aqueous	02/28/13 18:00	03/01/13 06:30
1303020-01	TK 58 MONTHLY QUALIFIER	Aqueous	03/05/13 07:00	03/05/13 09:00
1303020-02	TK 58 MONTHLY QUALIFIER, GRAE	Aqueous	03/05/13 09:00	03/05/13 09:00

All Quality Control associated with these samples met EPA or laboratory specifications unless noted.

The enclosed analytical results are representative of the sample as received by the laboratory. CWM Chemical Services Laboratory makes no representations or certifications as to the methods of sample collection, sample identification, or transportation handling procedures used prior to our receipt of samples. This report is intended for the sole use and benefit of Waste Management and it's companies. No representation concerning significance of the reported data is made to any person or entity. To the best of my knowledge, the information contained in this report is accurate and complete. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

According to Sample Collection Requirements for Non-Potable Water located in the ELAP Certification Manual, pH analysis is required within 15 minutes of sample collection. Analysis is generally not completed within 15 minutes, but as soon as possible after laboratory receipt.

Approved By:

Mound lyon

Title:

QA/QC Coordinator

Reported: 03/19/13 07:08

CWM Chemical	Services, LLC.						Reported: 03/	19/13 07:08
Client:	Aqueous Treatment		Project:	X00481			Sampled:	02/21/13 05:00
Work Order:	1302092		Project #:	CWM			Received:	02/21/13 09:00
Lab Sample ID:	1302092-01	Cl	ient Sample ID:	TK 58 QUAI	LIFIER		Aqueous	
Analyte		Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
COD Screen								
Chemical Oxygen	Demand	430		100	mg/L	03/05/13	CJN	SM 5220D
Cyanide, Total								
Cyanide (Total)		0.0902		0.0125	mg/L	03/04/13	LD	EPA 9014
рН by 4500-Н В								
pH		7.97			pH Units	02/21/13	CJN	SM 4500 H+B
Volatiles - Aqueo	ous							
Chloromethane		ND		10.0	ug/L	02/21/13	LD	EPA 8260C
Vinyl chloride		ND		10.0	"	"	LD	
Bromomethane		ND		10.0	"	"	LD	"
Chloroethane		ND		10.0		"	LD	
Trichlorofluorometh	hane	ND		10.0	"	"	LD	
Diethyl ether		ND		10.0	"		LD	
1,1,2-Trichloro-1,2,	2-trifluoroethane	ND		10.0		"	LD	
Acetone	2-umuoroethane	ND		10.0		"	LD	
1,1-Dichloroethene		ND		10.0		"	LD	
·		ND		10.0	"	"	LD	
Methylene chloride					"	"	LD	
Carbon disulfide	4	ND		10.0			LD	
trans-1,2-Dichloroe		ND		10.0				
1,1-Dichloroethane		ND		10.0		"	LD	"
Vinyl acetate		ND		10.0	"	"	LD	"
2-Butanone		ND		10.0	"	"	LD	"
Ethyl acetate		ND		10.0	"	"	LD	"
Chloroform		ND		10.0	"	"	LD	
1,1,1-Trichloroethan	ne	ND		10.0	"	"	LD	"
Carbon tetrachloride	e	ND		10.0	"	"	LD	"
1,2-Dichloroethane		ND		10.0	"	"	LD	
Benzene		ND		10.0	"	"	LD	
Trichloroethene		ND		10.0	"	"	LD	"
1,2-Dichloropropan	e	ND		10.0	"	"	LD	"
Bromodichlorometh	nane	ND		10.0	"	"	LD	
2-Chloroethylvinyl	ether	ND		10.0	"	"	LD	"
4-Methyl-2-pentanc	one	ND		10.0	"	"	LD	"
cis-1,3-Dichloropro	pene	ND		10.0	"	"	LD	
Toluene	-	ND		10.0	"	"	LD	
trans-1,3-Dichlorop	ropene	ND		10.0	"	"	LD	
1,1,2-Trichloroetha	-	ND		10.0	"	"	LD	
2-Hexanone		ND		10.0	"	"	LD	
Tetrachloroethene		ND		10.0		"	LD	
Dibromochlorometh	nane	ND		10.0		"	LD	
Chlorobenzene		ND		10.0		"	LD	
Ethylbenzene		ND		10.0		"	LD	
Xylenes, total		ND		30.0	"	"	LD	
Styrene		ND		10.0	"		LD	
Bromoform		ND		10.0		"	LD	
1,1,2,2-Tetrachloroe	athana	ND		10.0		"	LD	
1, 1, 2, 2 - 1 cuachioroe	unalle	ND		10.0				

CWM Chemical Services, LLC.						Reported: 03/	19/13 07:08
Client: Aqueous Treatment		Projec	t: X00481			Sampled:	02/21/13 05:00
Work Order: 1302092		Project	#: CWM			Received:	02/21/13 09:00
Lab Sample ID: 1302092-01	Cl	ient Sample II	D: TK 58 QUAL	IFIER		Aqueous	
			Reporting				
Analyte	Result	Notes	Limit	Units	Analyzed	Analyst	Method
1,4-Dichlorobenzene	ND		10.0	ug/L	02/21/13	LD	EPA 8260C
1,2-Dichlorobenzene	ND		10.0	"	"	LD	"
Surrogate: 1,2-Dichloroethane-d4	114 %		85-118		"	LD	"
Surrogate: Toluene-d8	105 %		85-115		"	LD	"
Surrogate: 4-Bromofluorobenzene	96.5 %		85-115		"	LD	"
Metals Total 200.7							
Silver	ND		0.0100	ug/mL	02/21/13	AAC	EPA 200.7 Rev 4.4
Arsenic	0.0852		0.0500	"	"	AAC	"
Barium	0.179		0.0500	"	"	AAC	"
Beryllium	ND		0.0200	"	"	AAC	
Cadmium	ND		0.0100	"	"	AAC	"
Cobalt	0.00615	J	0.0500	"	"	AAC	"
Chromium	0.0121	J	0.0500	"	"	AAC	"
Copper	ND		0.0500	"	"	AAC	"
ron	0.477		0.0500	"	"	AAC	"
Manganese	0.246		0.0500	"	"	AAC	"
Molybdenum	0.168		0.0500	"	"	AAC	"
Vickel	0.0893		0.0500	"	"	AAC	"
Lead	ND		0.0500	"	"	AAC	"
Antimony	ND		0.0500	"	"	AAC	"
Selenium	0.0114	J	0.0500	"	"	AAC	"
ìin	ND		0.0200	"	"	AAC	"
`itanium	ND		0.0200	"	"	AAC	"
Thallium	ND		0.0500	"	"	AAC	"
Vanadium	0.00723	J	0.0500	"	"	AAC	"
Zinc	0.0201	J	0.0500	"	"	AAC	"

CWM Chemical	l Services, LLC.						Reported:	03/19/13 07:08
Client:	Aqueous Treatment		Projec	et: X00481			Sample	ed: 02/21/13 05:00
Work Order:	1302092		Project	#: CWM			Receiv	ved: 02/21/13 09:00
Lab Sample ID:	1302092-01	Cli	ent Sample II	D: TK 58 QUAL	FIER		Aqueo	us
Analyte		Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
Mercury - Total	245.1							
Mercury		ND	REC	0.300	ug/L	03/18/13	AJL	245.1 Rev. 3.0

Client: A	queous Treatment		Project: X00481			Sampled:	02/21/13 09:00
	302092		Project #: CWM			-	02/21/13 09:00
	302092-02		ample ID: TK 58 QUAL	IFIED GDAR		Aqueous	02/21/15 09:00
Lao Sample ID.	562692-62	Cheffe 5	ample ID. TR 56 QUAL	II ILK, OKAD		Aqueous	
Analyte		Result No	Reporting Limit	Units	Analyzed	Analyst	Method
Cyanide, Total					J	<u> </u>	
Cyanide, Total Cyanide (Total)		0.122	0.0125	mg/L	03/04/13	LD	EPA 9014
Volatiles - Aqueous	s				00/01/10		
Chloromethane		ND	10.0	ug/L	02/21/13	LD	EPA 8260C
Vinyl chloride		ND	10.0	"	02/21/15	LD	LI A 8200C
Bromomethane		ND	10.0		"	LD	
Chloroethane		ND	10.0		"	LD	
Trichlorofluorometha		ND	10.0		"	LD	
	ne				"	LD	
Diethyl ether	4	ND	10.0			LD	
1,1,2-Trichloro-1,2,2-	umuoroetnane	ND	10.0			LD	
Acetone		ND	10.0			LD	
1,1-Dichloroethene		ND	10.0			LD	
Methylene chloride		ND	10.0			LD	
Carbon disulfide		ND	10.0		"	LD	"
trans-1,2-Dichloroethe	ene	ND	10.0		"		"
1,1-Dichloroethane		ND	10.0	"	"	LD	"
Vinyl acetate		ND	10.0	"	"	LD	"
2-Butanone		ND	10.0	"	"	LD	"
Ethyl acetate		ND	10.0	"	"	LD	"
Chloroform		ND	10.0	"	"	LD	"
1,1,1-Trichloroethane		ND	10.0		"	LD	"
Carbon tetrachloride		ND	10.0		"	LD	"
1,2-Dichloroethane		ND	10.0		"	LD	"
Benzene		ND	10.0	"	"	LD	"
Trichloroethene		ND	10.0	"	"	LD	"
1,2-Dichloropropane		ND	10.0	"	"	LD	"
Bromodichloromethar	ne	ND	10.0		"	LD	"
2-Chloroethylvinyl eth	her	ND	10.0		"	LD	"
4-Methyl-2-pentanone	2	ND	10.0	"	"	LD	"
cis-1,3-Dichloroprope	ene	ND	10.0	"	"	LD	"
Toluene		ND	10.0	"	"	LD	"
trans-1,3-Dichloropro	pene	ND	10.0	"	"	LD	"
1,1,2-Trichloroethane	-	ND	10.0	"	"	LD	"
2-Hexanone		ND	10.0	"	"	LD	"
Tetrachloroethene		ND	10.0	"	"	LD	"
Dibromochlorometha	ne	ND	10.0	"	"	LD	"
Chlorobenzene		ND	10.0	"	"	LD	"
Ethylbenzene		ND	10.0	"	"	LD	"
Xylenes, total		ND	30.0	"	"	LD	"
Styrene		ND	10.0	"	"	LD	
Bromoform		ND	10.0		"	LD	"
1,1,2,2-Tetrachloroeth	ane	ND	10.0		"	LD	"
,3-Dichlorobenzene	14110	ND	10.0	"	"	LD	"
		ND ND	10.0	"		LD	
1,4-Dichlorobenzene						LD	
1,2-Dichlorobenzene		ND	10.0				
Surrogate: 1,2-Dichloroe	ethane-d4	112 %	85-118		"	LD	"
Surrogate: Toluene-d8		103 %	85-115		"	LD	"
Surrogate: 4-Bromofluor	obenzene	94.7 %	85-115		"	LD	"

CWM Chemical Services, L	LC.					Reported: 03/	19/13 07:08
Client: Aqueous Tre	atment	Project	: X00481			Sampled:	02/28/13 15:00
Work Order: 1303001		Project #	: CWM			Received:	03/01/13 06:30
Lab Sample ID: 1303001-0	l Cl	ient Sample ID	: TK 125 QUA	LIFIER		Aqueous	
Analyte	Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
COD Screen							
Chemical Oxygen Demand	337		100	mg/L	03/13/13	CJN	SM 5220D
Cyanide, Total				-			
Cyanide (Total)	0.0767		0.0125	mg/L	03/04/13	LD	EPA 9014
оН by 4500-Н В				C			
он он	8.66			pH Units	03/01/13	CJN	SM 4500 H+B
Volatiles - Aqueous				r			
Chloromethane	ND		10.0	ug/L	02/04/12	LD	EPA 8260C
/inyl chloride	ND		10.0	ug/L	03/04/13	LD	EPA 8260C
Bromomethane	ND		10.0			LD	"
Chloroethane	ND		10.0		"	LD	
Trichlorofluoromethane	ND		10.0		"	LD	
Diethyl ether	ND		10.0		"	LD	"
,1,2-Trichloro-1,2,2-trifluoroeth			10.0		"	LD	
,1,2-111chioro-1,2,2-unituoroeu	ND ND		10.0		"	LD	
					"	LD	
,1-Dichloroethene	ND		10.0			LD	
Aethylene chloride	ND		10.0			LD	"
Carbon disulfide	ND		10.0			LD	"
ans-1,2-Dichloroethene	ND		10.0			LD	
,1-Dichloroethane	ND		10.0		"		
inyl acetate	ND		10.0	"	"	LD	
-Butanone	ND		10.0	"	"	LD	
thyl acetate	ND		10.0	"	"	LD	"
Chloroform	ND		10.0	"	"	LD	"
,1,1-Trichloroethane	ND		10.0	"	"	LD	"
Carbon tetrachloride	ND		10.0	"	"	LD	"
,2-Dichloroethane	ND		10.0	"	"	LD	"
Benzene	ND		10.0	"	"	LD	"
richloroethene	ND		10.0	"	"	LD	
,2-Dichloropropane	ND		10.0	"	"	LD	
Bromodichloromethane	ND		10.0	"	"	LD	
-Chloroethylvinyl ether	ND		10.0	"	"	LD	
-Methyl-2-pentanone	ND		10.0	"	"	LD	"
is-1,3-Dichloropropene	ND		10.0	"	"	LD	"
oluene	ND		10.0	"	"	LD	"
ans-1,3-Dichloropropene	ND		10.0	"	"	LD	"
,1,2-Trichloroethane	ND		10.0	"	"	LD	"
-Hexanone	ND		10.0	"	"	LD	"
etrachloroethene	ND		10.0	"	"	LD	"
bibromochloromethane	ND		10.0	"	"	LD	"
Chlorobenzene	ND		10.0	"	"	LD	"
thylbenzene	ND		10.0		"	LD	"
Cylenes, total	ND		30.0	"	"	LD	"
Styrene	ND		10.0	"	"	LD	"
Bromoform	ND		10.0	"	"	LD	"
,1,2,2-Tetrachloroethane	ND		10.0		"	LD	
,3-Dichlorobenzene	ND		10.0	"	"	LD	"

CWM Chemical Services, LLC.						Reported: 03/1	
Client: Aqueous Treatment		Project:	X00481			Sampled:	02/28/13 15:00
Work Order: 1303001		Project #:	CWM			Received:	03/01/13 06:30
Lab Sample ID: 1303001-01	Cl	ient Sample ID:	TK 125 QUA	LIFIER		Aqueous	
			Reporting				
Analyte	Result	Notes	Limit	Units	Analyzed	Analyst	Method
1,4-Dichlorobenzene	ND		10.0	ug/L	03/04/13	LD	EPA 8260C
,2-Dichlorobenzene	ND		10.0	"	"	LD	"
Surrogate: 1,2-Dichloroethane-d4	108 %		85-120		"	LD	"
Surrogate: Toluene-d8	105 %		85-115		"	LD	"
Surrogate: 4-Bromofluorobenzene	99.9 %		85-115		"	LD	"
Metals Total 200.7							
Silver	ND		0.0100	ug/mL	03/01/13	AAC	EPA 200.7 Rev 4.4
Arsenic	0.111		0.0500	"	"	AAC	"
Barium	0.236		0.0500	"	"	AAC	"
Beryllium	ND		0.0200	"	"	AAC	"
Cadmium	ND		0.0100	"	"	AAC	"
Cobalt	0.00537	J	0.0500	"	"	AAC	"
Chromium	0.00768	J	0.0500	"	"	AAC	"
Copper	ND		0.0500	"	"	AAC	"
ron	0.121		0.0500	"	"	AAC	"
Manganese	0.218		0.0500	"	"	AAC	"
Molybdenum	0.225		0.0500	"	"	AAC	"
Nickel	0.0625		0.0500	"	"	AAC	"
Lead	ND		0.0500	"	"	AAC	"
Antimony	0.0117	J	0.0500	"	"	AAC	"
Selenium	0.0237	J	0.0500	"	"	AAC	"
ìn	ND		0.0200	"	"	AAC	"
`itanium	ND		0.0200	"	"	AAC	"
Thallium	ND		0.0500	"	"	AAC	"
Vanadium	0.0324	J	0.0500	"	"	AAC	"
Zinc	0.0178	J	0.0500	"	"	AAC	"

CWM Chemical	l Services, LLC.						Reported:	03/19/13 07:08
Client:	Aqueous Treatment		Projec	t: X00481			Sample	ed: 02/28/13 15:00
Work Order:	1303001		Project	#: CWM			Receiv	ed: 03/01/13 06:30
Lab Sample ID:	1303001-01	Cli	ent Sample II	D: TK 125 QUAI	LIFIER		Aqueo	us
Analyte		Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
Mercury - Total	245.1							
Mercury		ND		0.300	ug/L	03/18/13	AJL	245.1 Rev. 3.0

	Services, LLC.					-	9/13 07:08
Client:	Aqueous Treatment		oject: X00481			Sampled:	02/28/13 18:00
Work Order:	1303001	Proj	ect #: CWM			Received:	03/01/13 06:30
Lab Sample ID:	1303001-02	Client Samp	e ID: TK 125 QUA	LIFIER, GRAB		Aqueous	
			D				
Analyte		Result Notes	Reporting Limit	Units	Analyzed	Analyst	Method
Cyanide, Total							
Cyanide (Total)		0.0988	0.0125	mg/L	03/04/13	LD	EPA 9014
Volatiles - Aqueo	us						
Chloromethane		ND	10.0	ug/L	03/04/13	LD	EPA 8260C
Vinyl chloride		ND	10.0	"	"	LD	"
Bromomethane		ND	10.0	"	"	LD	
Chloroethane		ND	10.0	"	"	LD	
Frichlorofluorometh	nane	ND	10.0	"	"	LD	
Diethyl ether		ND	10.0	"	"	LD	
1,1,2-Trichloro-1,2,	2-trifluoroethane	ND	10.0	"	"	LD	
Acetone		ND	10.0	"	"	LD	
1,1-Dichloroethene		ND	10.0	"	"	LD	
Methylene chloride		ND	10.0	"	"	LD	
Carbon disulfide		ND	10.0	"	"	LD	
rans-1,2-Dichloroet	thene	ND	10.0	"	"	LD	
1,1-Dichloroethane		ND	10.0	"	"	LD	
Vinyl acetate		ND	10.0	"	"	LD	
-Butanone		ND	10.0		"	LD	
Ethyl acetate		ND	10.0		"	LD	
Chloroform		ND	10.0		"	LD	
			10.0	"	"	LD	
1,1,1-Trichloroethar		ND		"		LD	
Carbon tetrachloride	3	ND	10.0	"		LD	
,2-Dichloroethane		ND	10.0				
Benzene		ND	10.0			LD	"
Frichloroethene		ND	10.0		"	LD	"
1,2-Dichloropropan		ND	10.0	"	"	LD	"
Bromodichlorometh		ND	10.0	"	"	LD	
2-Chloroethylvinyl		ND	10.0	"	"	LD	
4-Methyl-2-pentano		ND	10.0	"	"	LD	
cis-1,3-Dichloropro	pene	ND	10.0	"	"	LD	"
Foluene		ND	10.0	"	"	LD	
rans-1,3-Dichlorop	ropene	ND	10.0	"	"	LD	
1,1,2-Trichloroethar	ne	ND	10.0	"	"	LD	
2-Hexanone		ND	10.0	"	"	LD	
Fetrachloroethene		ND	10.0	"	"	LD	
Dibromochlorometh	ane	ND	10.0	"	"	LD	
Chlorobenzene		ND	10.0	"	"	LD	"
Ethylbenzene		ND	10.0	"	"	LD	"
Kylenes, total		ND	30.0	"	"	LD	"
Styrene		ND	10.0	"	"	LD	"
Bromoform		ND	10.0	"	"	LD	"
,1,2,2-Tetrachloroe	ethane	ND	10.0	"	"	LD	"
,3-Dichlorobenzen		ND	10.0	"	"	LD	"
,4-Dichlorobenzen		ND	10.0	"	"	LD	
,2-Dichlorobenzen		ND	10.0	"	"	LD	"
					"		"
Surrogate: 1,2-Dichlor		109 %	85-120			LD	
Surrogate: Toluene-d8		106 %	85-115		"	LD	"
Surrogate: 4-Bromoflu	orobenzene	99.1 %	85-115		"	LD	"

CWM Chemical Services, LLC.						Reported: 03/	19/13 07:08
Client: Aqueous Treatment		Project:	X00481			Sampled:	03/05/13 07:00
Work Order: 1303020		Project #:	CWM			Received:	03/05/13 09:00
Lab Sample ID: 1303020-01	Clie	ent Sample ID:	TK 58 MON	THLY QUALIFI	ER	Aqueous	
Analyte	Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
COD Screen							
Chemical Oxygen Demand	383		100	mg/L	03/13/13	CJN	SM 5220D
Cyanide, Total							
Cyanide (Total)	0.0728		0.0125	mg/L	03/12/13	LD	EPA 9014
pH by 4500-H B				0			
рн ву 4300-н в рН	8.01			pH Units	03/05/13	CJN	SM 4500 H+B
-	8.01			pri Units	03/05/13	CJN	SM 4300 ⊓⊤D
Sulfide by Test Kit						CDI	
Sulfide	ND		0.100	mg/L	03/05/13	CJN	MC-229
Volatiles - Aqueous							
Chloromethane	ND		10.0	ug/L	03/05/13	LD	EPA 8260C
Vinyl chloride	ND		10.0	"	"	LD	
Bromomethane	ND		10.0	"	"	LD	
Chloroethane	ND		10.0	"	"	LD	"
Trichlorofluoromethane	ND		10.0	"	"	LD	"
Diethyl ether	ND		10.0	"	"	LD	"
,1,2-Trichloro-1,2,2-trifluoroethane	ND		10.0	"	"	LD	"
Acetone	ND		10.0	"	"	LD	"
,1-Dichloroethene	ND		10.0	"	"	LD	"
Methylene chloride	ND		10.0	"	"	LD LD	"
Carbon disulfide	ND		10.0	"	"	LD	
rans-1,2-Dichloroethene	ND		10.0	"		LD	
,1-Dichloroethane	ND ND		10.0 10.0	"		LD	"
/inyl acetate 2-Butanone	ND		10.0	"		LD	
Ethyl acetate	ND		10.0	"		LD	
Chloroform	ND		10.0	"	"	LD	"
,1,1-Trichloroethane	ND		10.0	"	"	LD	"
Carbon tetrachloride	ND		10.0	"	"	LD	
,2-Dichloroethane	ND		10.0	"	"	LD	
Senzene	ND		10.0	"	"	LD	
Frichloroethene	ND		10.0	"	"	LD	"
1,2-Dichloropropane	ND		10.0	"	"	LD	"
Bromodichloromethane	ND		10.0	"	"	LD	"
-Chloroethylvinyl ether	ND		10.0	"		LD	"
-Methyl-2-pentanone	ND		10.0	"	"	LD	"
is-1,3-Dichloropropene	ND		10.0	"	"	LD	"
Toluene	ND		10.0	"	"	LD	"
rans-1,3-Dichloropropene	ND		10.0	"	"	LD	"
,1,2-Trichloroethane	ND		10.0	"	"	LD	"
2-Hexanone	ND		10.0	"	"	LD	"
Tetrachloroethene	ND		10.0	"	"	LD	"
Dibromochloromethane	ND		10.0	"	"	LD	"
Chlorobenzene	ND		10.0	"	"	LD	"
Ethylbenzene	ND		10.0	"	"	LD	"
Xylenes, total	ND		30.0	"	"	LD	"
Styrene	ND		10.0	"	"	LD	"
Bromoform	ND		10.0	"	"	LD	"

CWM Chemical Services, LLC.						Reported: 03/	
Client: Aqueous Treatment		-	X00481			Sampled:	03/05/13 07:00
Work Order: 1303020		Project #:				Received:	03/05/13 09:00
Lab Sample ID: 1303020-01	Cl	ient Sample ID:	TK 58 MONT	HLY QUALIFI	ER	Aqueous	
Analyte	Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
1,1,2,2-Tetrachloroethane	ND		10.0	ug/L	03/05/13	LD	EPA 8260C
1,3-Dichlorobenzene	ND		10.0	"	"	LD	
1,4-Dichlorobenzene	ND		10.0		"	LD	"
1,2-Dichlorobenzene	ND		10.0		"	LD	"
Surrogate: 1,2-Dichloroethane-d4	106 %		85-120		"	LD	"
Surrogate: Toluene-d8	102 %		85-115		"	LD	"
Surrogate: 4-Bromofluorobenzene	101 %		85-115		"	LD	"
Metals Total 200.7							
Silver	ND		0.0100	ug/mL	03/05/13	AAC	EPA 200.7 Re 4.4
Arsenic	0.175		0.0500	"	"	AAC	"
Barium	0.111		0.0500	"	"	AAC	"
Beryllium	ND		0.0200	"	"	AAC	"
Cadmium	ND		0.0100		"	AAC	"
Cobalt	0.00913	J	0.0500	"	"	AAC	"
Chromium	0.00639	J	0.0500	"	"	AAC	"
Copper	ND		0.0500	"	"	AAC	"
Iron	0.255		0.0500	"	"	AAC	"
Manganese	0.205		0.0500	"	"	AAC	"
Molybdenum	0.0798		0.0500		"	AAC	"
Nickel	0.0774		0.0500	"	"	AAC	"
Lead	ND		0.0500	"	"	AAC	"
Antimony	ND		0.0500	"	"	AAC	"
Selenium	ND		0.0500	"	"	AAC	"
Гin	ND		0.0200	"	"	AAC	"
Titanium	ND		0.0200	"	"	AAC	"
Thallium	ND		0.0500	"	"	AAC	"
Vanadium	0.00932	J	0.0500	"	"	AAC	"
Zinc	0.102		0.0500	"	"	AAC	"

CWM Chemical	l Services, LLC.						Reported:	03/19/13 07:08
Client:	Aqueous Treatment		Projec	et: X00481			Sampl	ed: 03/05/13 07:00
Work Order:	1303020		Project	#: CWM			Receiv	ved: 03/05/13 09:00
Lab Sample ID:	1303020-01	Cli	ent Sample II	D: TK 58 MONT	HLY QUALIFIE	R	Aqueo	ous
Analyte		Result	Notes	Reporting Limit	Units	Analyzed	Analys	Method
Mercury - Total	245.1							
Mercury		ND		0.300	ug/L	03/18/13	AJL	245.1 Rev. 3.0

CWM Chemical	Services, LLC.						Reported: 03/1	9/13 07:08	
Client:	Aqueous Treatment		Project:	X00481			Sampled:	03/05/13 09:00	
Work Order:	1303020		Project #:	CWM			Received: 03/05/13 09:0		
Lab Sample ID:	1303020-02	Cl	ient Sample ID:	TK 58 MONT	THLY QUALIFI	ER, GRAB	Aqueous		
				Reporting					
Analyte		Result	Notes	Limit	Units	Analyzed	Analyst	Method	
Cyanide, Total									
Cyanide (Total)		0.0814		0.0125	mg/L	03/12/13	LD	EPA 9014	
Sulfide by Test k	Kit								
Sulfide		ND		0.100	mg/L	03/05/13	CJN	MC-229	
Volatiles - Aqueo	Dus								
Chloromethane		ND		10.0	ug/L	03/05/13	LD	EPA 8260C	
Vinyl chloride		ND		10.0	"	"	LD	"	
Bromomethane		ND		10.0	"	"	LD	"	
Chloroethane		ND		10.0	"	"	LD	"	
Trichlorofluoromet	hane	ND		10.0	"	"	LD	"	
Diethyl ether		ND		10.0	"	"	LD		
1,1,2-Trichloro-1,2,	,2-trifluoroethane	ND		10.0	"	"	LD		
Acetone		ND		10.0	"	"	LD		
1,1-Dichloroethene		ND		10.0	"	"	LD		
Methylene chloride	:	ND		10.0	"	"	LD		
Carbon disulfide		ND		10.0	"	"	LD		
rans-1,2-Dichloroe	thene	ND		10.0	"	"	LD	"	
1,1-Dichloroethane		ND		10.0	"	"	LD		
Vinyl acetate		ND		10.0	"	"	LD		
2-Butanone		ND		10.0	"	"	LD		
Ethyl acetate		ND		10.0	"	"	LD		
Chloroform		ND		10.0	"	"	LD		
1,1,1-Trichloroetha	ne	ND		10.0	"	"	LD	"	
Carbon tetrachlorid		ND		10.0	"	"	LD		
1,2-Dichloroethane		ND		10.0	"	"	LD		
Benzene		ND		10.0	"	"	LD		
Trichloroethene		ND		10.0	"	"	LD		
1,2-Dichloropropan	ie.	ND		10.0	"	"	LD		
Bromodichlorometh		ND		10.0	"	"	LD		
2-Chloroethylvinyl		ND		10.0	"	"	LD		
4-Methyl-2-pentance		ND		10.0	"	"	LD	"	
					"	"	LD	"	
cis-1,3-Dichloropro	opene	ND		10.0	"		LD	"	
Toluene		ND		10.0	"		LD		
trans-1,3-Dichlorop		ND		10.0	"		LD		
1,1,2-Trichloroetha	ne	ND		10.0	"		LD	"	
2-Hexanone		ND		10.0		"		"	
Fetrachloroethene		ND		10.0	"	"	LD LD	"	
Dibromochlorometl	nane	ND		10.0	"	"		"	
Chlorobenzene		ND		10.0		"	LD	"	
Ethylbenzene		ND		10.0	"	"	LD	"	
Xylenes, total		ND		30.0	"	"	LD	"	
Styrene		ND		10.0	"	"	LD	"	
Bromoform		ND		10.0	"	"	LD	"	
1,1,2,2-Tetrachloro		ND		10.0	"	"	LD	"	
1,3-Dichlorobenzen		ND		10.0	"	"	LD	"	
1,4-Dichlorobenzen		ND		10.0	"	"	LD	"	
1,2-Dichlorobenzen	ne	ND		10.0	"	"	LD	"	
Surrogate: 1,2-Dichlo	roethane-d4	110 %		85-120		"	LD	"	

CWM Chemical	Services, LLC.						Reported:	03/19/13 07:08
Client:	Aqueous Treatment		Projec	t: X00481			Sample	ed: 03/05/13 09:00
Work Order:	1303020		Project #	t: CWM			Receiv	red: 03/05/13 09:00
Lab Sample ID:	1303020-02	Cli	ent Sample II	: TK 58 MONT	HLY QUALIF	IER, GRAB	Aqueo	us
Analyte		Result	Notes	Reporting Limit	Units	Analyzed	Analyst	Method
Surrogate: Toluene-d	8	105 %		85-115		03/05/13	LD	EPA 8260C
Surrogate: 4-Bromofl	uorobenzene	97.6 %		85-115		"	LD	"

Notes and Definitions

- REC Recovery of MS/MSD was outside quality control limits. Matrix interference is suspected.
- J Indicates an estimated value. The data indicates the presence of an analyte above the MDL but below the reporting limit.
- ND Analyte NOT DETECTED at or above the reporting limit
- dry Sample results reported on a dry weight basis

Experience is the solution 314 North Pearl Street • Albany, New York 12207 (800) 848-4983 • (518) 434-4546 • Fax (518) 434-0891

March 19, 2013

Jonathan Rizzo CWM Chemical Services, Inc. 1550 Balmer Road Model City, NY 14107

> TEL: (716) 754-0233 FAX: (716) 286-0337

Work Order No: 130306017 PO#: L957-2045-329

RE: Tank Effluent Monthly Tank Qualifier

Dear Jonathan Rizzo:

Adirondack Environmental Services, Inc received 1 sample on 3/6/2013 for the analyses presented in the following report.

Please see case narrative for specifics on analysis.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Christopher Hess QA Manager ELAP#: 10709

CASE NARRATIVE

CLIENT:	CWM Chemical Services, Inc.	Date: 19-Mar-13
Project:	Tank Effluent	
Lab Order:	130306017	

Sample containers were supplied by Adirondack Environmental Services.

Qualifiers:	ND - Not Detected at reporting limit	S - LCS Spike recovery outside acceptable limits
	J - Analyte detected below quantitation limit	R - Duplication outside acceptable limits
	B - Analyte detected in Blank	T - Tentatively Identified Compound-Estimated
	X - Exceeds maximum contamination limit	E -Above quantitation range-Estimated
	H - Hold time exceeded	M - Matrix Spike outside acceptable limits
		C - Details are above in Case Narrative

Note : All Results are reported as wet weight unless noted

CLIENT:CWM Chemical Services, Inc.Work Order:130306017Reference:Tank Effluent / Monthly Tank QualifierPO#:L957-2045-329

Date: 19-Mar-13

Client Sample ID:130302001 Tk 58 Monthly QualCollection Date:3/5/2013Lab Sample ID:130306017-001Matrix:WASTEWATER

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
						Analyst: KF
(Prep: SW3535 - 3	/6/2013)					
Aroclor 1016	< 0.065	0.065		µg/L	1	3/6/2013 4:54:12 PM
Aroclor 1221	< 0.065	0.065		µg/L	1	3/6/2013 4:54:12 PM
Aroclor 1232	< 0.065	0.065		µg/L	1	3/6/2013 4:54:12 PM
Aroclor 1242	0.052	0.065	J	µg/L	1	3/6/2013 4:54:12 PM
Aroclor 1248	< 0.065	0.065		µg/L	1	3/6/2013 4:54:12 PM
Aroclor 1254	0.221	0.065		μg/L	1	3/6/2013 4:54:12 PM
Aroclor 1260	0.070	0.065		μg/L	1	3/6/2013 4:54:12 PM
Surr: Decachlorobiphenyl	51.0	48.1-152		%REC	1	3/6/2013 4:54:12 PM
SEMI-VOLATILE ORGANICS E6	25			i		Analyst: MT
(Prep: SW3510/E625 - 3	/8/2013)					
Azobenzene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Benzothiazole	< 10	10		µg/L	1	3/13/2013 5:40:00 PM
Hexamethylbenzene	< 10	10		µg/L	1	3/13/2013 5:40:00 PM
n-decane	< 10	10		µg/L	1	3/13/2013 5:40:00 PM
n-Octadecane	< 10	10		µg/L	1	3/13/2013 5:40:00 PM
Phenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Bis(2-chloroethyl)ether	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
2-Chlorophenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
1,3-Dichlorobenzene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
1,4-Dichlorobenzene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
1,2-Dichlorobenzene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
2-Methylphenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Bis(2-chloroisopropyl)ether	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
4-Methylphenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
N-Nitrosodi-n-propylamine	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Hexachloroethane	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Nitrobenzene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Isophorone	< 5.0	5.0		μg/L	1	3/13/2013 5:40:00 PM
2-Nitrophenol	< 5.0	5.0		μg/L	1	3/13/2013 5:40:00 PM
2,4-Dimethylphenol	< 5.0	5.0		μg/L	1	3/13/2013 5:40:00 PM
Bis(2-chloroethoxy)methane	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
2,4-Dichlorophenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
1,2,4-Trichlorobenzene	< 5.0	5.0		μg/L	1	3/13/2013 5:40:00 PM
Naphthalene	< 5.0	5.0		μg/L	1	3/13/2013 5:40:00 PM
Hexachlorobutadiene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
4-Chloro-3-methylphenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
2-Methylnaphthalene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
Hexachlorocyclopentadiene	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM
2,4,6-Trichlorophenol	< 5.0	5.0		µg/L	1	3/13/2013 5:40:00 PM

CLIENT:CWM Chemical Services, Inc.Work Order:130306017Reference:Tank Effluent / Monthly Tank QualifierPO#:L957-2045-329

Date: 19-Mar-13

Client Sample ID:130302001 Tk 58 Monthly QualCollection Date:3/5/2013Lab Sample ID:130306017-001Matrix:WASTEWATER

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
SEMI-VOLATILE ORGANICS E625					Analyst: MT
(Prep: SW3510/E625 - 3/8/2	2013)				
2,4,5-Trichlorophenol	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
2-Chloronaphthalene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Dimethyl phthalate	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Acenaphthylene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
2,6-Dinitrotoluene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Acenaphthene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
2,4-Dinitrophenol	< 25	25	μg/L	1	3/13/2013 5:40:00 PM
4-Nitrophenol	< 25	25	μg/L	1	3/13/2013 5:40:00 PM
Dibenzofuran	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
2,4-Dinitrotoluene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Diethyl phthalate	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
4-Chlorophenyl phenyl ether	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Fluorene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
4,6-Dinitro-2-methylphenol	< 25	25	µg/L	1	3/13/2013 5:40:00 PM
N-Nitrosodiphenylamine	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
4-Bromophenyl phenyl ether	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Hexachlorobenzene	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Pentachlorophenol	< 20	20	µg/L	1	3/13/2013 5:40:00 PM
Phenanthrene	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Anthracene	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Carbazole	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Di-n-butyl phthalate	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Fluoranthene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Pyrene	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Butyl benzyl phthalate	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
3,3'-Dichlorobenzidine	< 10	10	µg/L	1	3/13/2013 5:40:00 PM
Benzidine	< 25	25	µg/L	1	3/13/2013 5:40:00 PM
Benz(a)anthracene	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Chrysene	< 5.0	5.0	µg/L	1	3/13/2013 5:40:00 PM
Bis(2-ethylhexyl)phthalate	110	10	μg/L	2	3/14/2013 12:26:00 PM
Di-n-octyl phthalate	< 5.0	5.0	µg/L	-	3/13/2013 5:40:00 PM
Benzo(b)fluoranthene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Benzo(k)fluoranthene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Benzo(a)pyrene	< 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Indeno(1,2,3-cd)pyrene	< 5.0 < 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Dibenz(a,h)anthracene	< 5.0 < 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Benzo(g,h,i)perylene	< 5.0 < 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
N-Nitrosodimethylamine	< 5.0 < 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Pyridine	< 5.0 < 5.0	5.0	μg/L	1	3/13/2013 5:40:00 PM
Surr: 2,4,6-Tribromophenol	< 5.0 40.5	5.0 17-120	%REC	2	3/14/2013 12:26:00 PM

CLIENT:CWM Chemical Services, Inc.Work Order:130306017Reference:Tank Effluent / Monthly Tank QualifierPO#:L957-2045-329

Date: 19-Mar-13

Client Sample ID: 130302001 Tk 58 Monthly Qual Collection Date: 3/5/2013 Lab Sample ID: 130306017-001 Matrix: WASTEWATER

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
SEMI-VOLATILE ORGANICS E625						Analyst: MT
(Prep: SW3510/E625 - 3/8/201	3)					
Surr: 2,4,6-Tribromophenol	48.2	17-120		%REC	1	3/13/2013 5:40:00 PM
Surr: 2-Fluorobiphenyl	53.2	34.9-134		%REC	2	3/14/2013 12:26:00 PM
Surr: 2-Fluorobiphenyl	58.5	34.9-134		%REC	1	3/13/2013 5:40:00 PM
Surr: 2-Fluorophenol	18.6	13.5-105	J	%REC	2	3/14/2013 12:26:00 PM
Surr: 2-Fluorophenol	19.8	13.5-105		%REC	1	3/13/2013 5:40:00 PM
Surr: 4-Terphenyl-d14	60.8	41-132		%REC	2	3/14/2013 12:26:00 PM
Surr: 4-Terphenyl-d14	71.9	41-132		%REC	1	3/13/2013 5:40:00 PM
Surr: Nitrobenzene-d5	50.1	36.9-116		%REC	2	3/14/2013 12:26:00 PM
Surr: Nitrobenzene-d5	52.4	36.9-116		%REC	1	3/13/2013 5:40:00 PM
Surr: Phenol-d5	22.6	5.2-93		%REC	1	3/13/2013 5:40:00 PM
Surr: Phenol-d5	19.6	5.2-93	J	%REC	2	3/14/2013 12:26:00 PM

Adirondack Environmental Services Inc.	314 North Pe Albany, New 518-434-454		x	_	AES Work	Order #		JSTODY RECORD
Experience is the solution	A full	service analytica	I research labo	oratory of	fering se	olution	s to en	vironmental concerns
Client Name: WUSte Mang	School A	ldress: 1550 B4/n	ncr Boa	d, 1	Mod	1e)	Cit	5 NJE014107
Send Report To:	Pi	oject Name (Locatio	on)		Samp	olers: (N	ames)	A PARATA
Johatha Bj- Client Phone No:	220 -	Angen Mor	the JUNI	(Ruoi)	145-	(shn)	S NOCOSTIO
Client Phone No:	Client Email:	PO	Number:		Samp	ollers: (S	gnature	Npp
				Time	Sample		Number	na
AES Sample Number San	Client nple Identification & L	ocation	Date Sampled	A≕a.m. P=p.m.	Matrix	Comp Grab	of Cont's	Analysis Required
		hanthly Quy	13-5-13	706 A				
62 4	5	L	1	700 (A)	64	2		E625 E608
3/6/1				A P				
				A P	-			
				A	-			
				P A				
				P	-			
				A P	-			
				A				
		-		P A				
				P	1			
				A P	-			
				A				
	1			P A				
				Р				
				A P	-			
				A	_			
				P				
Shipment Arrived Via: FedEx UPS Client AES Turnaround Time Request: 1 Day 3 Day 1 Day 5 Day	Other:		ort To / Special In:	structions/H	iemarks.			
Relinquished by: (Signature)		Receive	ed by: (Signature)					Date/Time
Relinquished by: (Signature)		Receive	ed by: (Signature)					Date/Time
Relinquished by: (Signature)	l AES	CKIM	ed for Laboratory I WHX	iy: WUZHHI				Date/Time 3-(0-13/ 10:4/am
TEMPERATURE Ambient or C Notes:	Pres Pr N (Notes:	PROPERLY PRESERVED				RECEIVED WITHIN HOLDING TIMES		
WHITE - La	b Copy	YELL)W - Sampier Cop	y			PINK - G	enerator Copy
	Ad	irondack En	vironmento	al Serv	ices,	Inc.		

Experience is the solution 314 North Pearl Street • Albany, New York 12207 • (518) 434-4546 • Fax (518) 434-0891

TERMS, CONDITIONS & LIMITATIONS

All service rendered by the **Adirondack Environmental Services**, **Inc**. are undertaken and all rates are based upon the following terms:

- (a) Neither Adirondack Environmental Services, Inc., nor any of its employees, agents or sub-contractors shall be liable for any loss or damage arising out of Adirondack Environmental Services, Inc.'s performance or nonperformance, whether by way of negligence or breach of contract, or otherwise, in any amount greater than twice the amount billed to the customer for the work leading to the claim of the customer. Said remedy shall be the sole and exclusive remedy against Adirondack Environmental Services, Inc. arising out of its work.
- (b) All claims made must be in writing within forty-five (45) days after delivery of the **Adirondack Environmental Services, Inc.** report regarding said work or such claim shall be deemed or irrevocably waived.
- (c) Adirondack Environmental Services, Inc. reports are submitted in writing and are for our customers only. Our customers are considered to be only those entities being billed for our services. Acquisition of an Adirondack Environmental Services, Inc. report by other than our customer does not constitute a representation of Adirondack Environmental Services, Inc. as to the accuracy of the contents thereof.
- (d) In no event shall Adirondack Environmental Services, Inc., its employees, agents or sub-contractors be responsible for consequential or special damages of any kind or in any amount.
- (e) No deviation from the terms set forth herein shall bind **Adirondack Environmental Services, Inc.** unless in writing and signed by a Director of **Adirondack Environmental Services, Inc.**
- (f) Results pertain only to items analyzed. Information supplied by client is assumed to be correct. This information may be used on reports and in calculations and **Adirondack Environmental Services, Inc.** is not responsible for the accuracy of this information.
- (g) Payments by Credit Card/Purchase Cards are subject to a 3% additional charge.