

APPENDIX A:

Approval Documentation

APPENDIX A1:

Amended Environmental Compliance Approval [No. A032203], dated December 19, 2020

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER A032203

Issue Date: December 19, 2020

Waste Management of Canada Corporation

117 Wentworth Court Brampton, Ontario

L6T 5L4

Site Location: Twin Creeks Environmental Centre

5768 Nauvoo Rd Watford

Warwick Township, County of Lambton

N0M 2S0

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

the use and operation of a 101.8 hectare waste disposal site (landfill) within a total site area of 301 hectares.

For the purpose of this environmental compliance approval, the following definitions apply:

"Agricultural Waste" for the purposes of this ECA, is defined as municipal yard waste, wood chips, food waste and minimal amounts of solid manure which would only be accepted or used for the purpose of seeding or operating an active aerobic compost pile and does not include liquid manure;

"AQMP" means an Air Quality Monitoring Program;

"Construction Phase" is defined as the period of time from the start of construction of Phase 1 of the expanded landfill to the date of first receipt of waste in Phase 1;

"Contaminating Lifespan" refers to the period of time, after closure until the site finally produces contaminants at concentrations below levels which have unacceptable health or environmental effects;

"Crown" means Her Majesty the Queen in the Right of Ontario;

"Director" means any Ministry employee appointed in writing by the Minister pursuant to section 5 of the EPA as a Director for the purposes of Part V of the EPA;

- "District Manager" refers to the District Manager in the Ministry of the Environment, Conservation and Parks Sarnia District Office;
- "District Office" refers to the Ministry of the Environment, Conservation and Parks Sarnia District Office;
- **"EA"** refers to the document titled "Warwick Landfill Expansion Environmental Assessment", dated September 2005, which includes Discussion Papers 1 though 9 included in the Appendices A to F of the Environmental Assessment. EA also includes responses from the Owner dated:
 - 1. March 10, 2006 "Waste Unit's Final Comments Dated March 8, 2006"
 - 2. February 14, 2006 "Leachate Recirculation"
 - 3. February 14, 2006 "Response to February 1, 2006 Correspondence"
 - 4. January 13, 2006 "Waste Management Response to Comments received from Warwick Landfill Expansion EA" including attachments entitled:
 - i. Response to the Township of Warwick;
 - ii. Response to Thomson Rogers;
 - iii. Table of responses to various agencies, public and First Nations Submissions;
 - iv. Landfill Gas Assessment, Warwick Landfill Baseline Conditions Report prepared by RWDI dated January 12, 2006
 - v. Memo dated March 10, 2006
 - vi. June 12, 2006 "Response to May 1, 2006 Ministry Review";
- "EAA" refers to the Ontario Environmental Assessment Act, R.S.O. 1990, c.E.18, as amended;
- "Environmental Compliance Approval" or "ECA" or "Approval" means this entire provisional Environmental Compliance Approval document, issued in accordance with Section 20.2 of the EPA, and includes any schedules to it, the application and the supporting documentation listed in schedule "A";
- **"Environmental Inspector"** refers to the individual employed by the Ministry of the Environment, Conservation and Parks to inspect the Site;
- "EPA" means Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;
- **"EPB"** refers to the Environmental Permissions Branch of the Ministry of the Environment, Conservation and Parks;
- "Hydraulic Trap" indicates a situation where hydraulic gradients from the surrounding soil are inward toward the landfill waste and associated leachate collection system;
- "Mini-Transfer Area" means the mini-transfer public convenience drop-off area as described and identified in the June 2009 Development & Operations Report that is identified in Item 59 of Schedule "A" and whose location is identified as "Expansion Mini-Transfer" in figure MT2 that is contained in the 2009 Development & Operations Report;
- "MECP" or "Ministry" refers to the Ontario Ministry of the Environment, Conservation and Parks;

- "Operation Phase" is defined as the period of time from the date that Phase 1 of the expanded landfill area first receives waste until the landfill site reaches final capacity;
- "Operator" has the same meaning as "operator" as defined in s.25 of the EPA;
- "Owner" means Waste Management of Canada Corporation and its successors and assigns;
- "O. Reg. 101/94" means Ontario Regulation 101/94 as amended;
- "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O.40, as amended;
- "PA" means the Pesticides Act, R.S.O. 1990, c.P.11, as amended;
- "Preparation Report" refers to a report documenting that the subsequent stage of the landfill has been constructed in accordance with the approved design plans and specifications;
- "Poplar System" is the irrigation area located on top of the cap of the Existing Site (old landfill) that is used for the phytoremediation of leachate that is generated at the Site per Items 63 through 65 of Schedule "A" and Figure 2 of Item 16 on Schedule "A";
- "Poplar Plantation" is the irrigation area located on native soil to the south of the Site that is used for the phytoremediation of irrigation liquid that satisfies the Effluent Limit criteria per the OWRA Section Approval for the Site, Item 39 of Schedule "A", and Appendix N11 of Item 30 on Schedule "A";
- "Provincial Officer" means any person designated in writing by the Minister as a provincial officer pursuant to section 5 of the OWRA or section 5 of the EPA or section 17 of PA;
- "PWQO" refers to the Provincial Water Quality Objectives;
- "Recyclable Waste" means waste that are glass, plastic, aluminium or steel cans, gypsum wallboard, newspapers, cardboard and/or other materials for which there is a secured market;
- "Regional Director" refers to the Director of the Ministry of the Environment's Southwestern Regional Office;
- "Regulation 232" or "Reg. 232" or "O. Reg. 232/98" means Ontario Regulation 232/98 (Landfilling Sites) made under the EPA, as amended;
- "Regulation 347" or "Reg. 347" or "O. Reg. 347" means Regulation 347, R.R.O. 1990, made under the EPA, as amended;
- "Site" refers to the Twin Creeks Landfill Site and lands owned by the Owner described as:
 - Firstly, Part of Lots 19 and 20, Concession 3, S.E.R., and Part of Lot 20, 21 and 22, Concession 4, S.E.R. and Part of the Road Allowance between Lots 21 and 22, Concession 4, S.E.R., shown as Parts 1,

2 and 3 on Plan 25R-9125 and Part 2 on Plan 25R-1903, Save and Except Part 1 on Plan 25R-6184, Township of Warwick, County of Lambton; and

Secondly, Part of Lot 20, Concession 3 S.E.R., shown as Part 1 on Plan 25R-6184, Township of Warwick, County of Lambton;

"Traditional agricultural crop production" means standard crop production, nursery and horticultural crops, agro-forestry, conservation uses but not greenhouses or any accessory agricultural buildings and structures;

"Undertaking" refers to the proposed undertaking as described in the Warwick Landfill Expansion Environmental Assessment;

"WIFN" refers to Walpole Island First Nation; and

"WPLC" refers to the Warwick Public Liaison Committee.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1.0 GENERAL

Compliance

- 1.1 This Approval revokes all previous Approvals and Notices of Amendment issued under Part V of the Environmental Protection Act for this Site. The approval given herein, including the terms and conditions set out, replaces all previously issued Approvals and related terms and conditions under Part V of the Act for this Site.
- 1.2 The Owner and Operator shall ensure compliance with all the conditions of this Approval and shall ensure that any person authorized to carry out work on or operate any aspect of the Site is notified of this Approval and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 1.3 Any person authorized to carry out work on or operate any aspect of the Site shall comply with the conditions of this Approval.

In Accordance

- 1.4 Except as otherwise provided by this Approval, the Site shall be designed, developed, built, operated and maintained in accordance with the documentation listed in the attached Schedule "A".
- 1.5 (a) Construction and installation of aspects described in Schedule "A" must be completed within 5

years of the later of:

- 1. the date this Approval is issued; or
- 2. if there is a hearing or other litigation in respect of the issuance of this Approval, the date that this hearing or litigation is disposed of, including all appeals.
- (b) Notwithstanding Condition 1(5)(a), ongoing constructed aspects that are pertinent to the Major Works identified in Conditions 4.1 to 4.7 including the landfill liner, landfill capping, landfill gas management infrastructure, leachate collection and recirculation infrastructure shall be constructed in accordance with the documentation in the attached Schedule "A" that pertain to the final design of the Site.
- (c) This Approval ceases to apply in respect of the aspects of the Site that have not been constructed or installed before the later of the dates identified in Conditions 1(5)(a).

Interpretation

- 1.6 Where there is a conflict between a provision of any document listed in Schedule "A" in this Approval, and the conditions of this Approval, the conditions in this Approval shall take precedence.
- 1.7 Where there is a conflict between the application and a provision in any document listed in Schedule "A", the application shall take precedence, unless it is clear that the purpose of the document was to amend the application and the Ministry approved the amendment.
- 1.8 Where there is a conflict between any two documents listed in Schedule "A", the document bearing the most recent date shall take precedence.
- 1.9 The conditions of this Approval are severable. If any condition of this Approval, or the application of any condition of this Approval to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Approval shall not be affected thereby.

Other Legal Obligations

- 1.10 The issuance of, and compliance with, this Approval does not:
 - (a) relieve any person of any obligation to comply with any provision of any applicable statute, regulation or other legal requirement; and
 - (b) limit in any way the authority of the Ministry to require certain steps be taken or to require the Owner and Operator to furnish any further information related to compliance with this Approval.
 - (c) The Owner shall ensure that:
 - (i) all equipment discharging to atmosphere are approved under Section 9 of the ECA where applicable; and
 - (ii) all effluent is discharged in accordance with the OWRA where applicable.

Adverse Effect

1.11 The Owner and Operator shall take steps to minimize and ameliorate any adverse effect on the natural

environment or impairment of water quality resulting from the present, past and historical operations at the Site. Such steps may include accelerated or additional monitoring as may be necessary to determine the nature and extent of the effect or impairment.

- 1.12 Despite an Owner, Operator, or any other person fulfilling any obligations imposed by this Approval, the person remains responsible for any contravention of any other condition of this Approval or any applicable statute, regulation, or other legal requirement resulting from any act or omission that caused the adverse effect to the natural environment or impairment of water quality.
- 1.13 At no time shall the Owner or Operator allow the discharge of a contaminant that causes or is likely to cause an adverse effect be permitted.

Change of Ownership

- 1.14 The Owner shall notify the Director, in writing, and forward a copy of the notification to the District Manager, within 30 days of the occurrence of any changes in the following information:
 - (a) the ownership of the Site;
 - (b) the Operator of the Site;
 - (c) the address of the Owner or Operator; and
 - (d) the partners, where the Owner or Operator is or at any time becomes a partnership and a copy of the most recent declaration filed under the Business Names Act, R. S. O. 1990, c. B.17, shall be included in the notification.
- 1.15 No portion of this Site shall be transferred or encumbered prior to or after closing of the Site unless the Director is notified in advance and sufficient financial assurance is deposited with the Ministry to ensure that these conditions will be carried out.
- 1.16 In the event of any change in ownership of the Site, other than change to a successor municipality, the Owner shall notify the successor of and provide the successor with a copy of this Approval, and the Owner shall provide a copy of the notification to the District Manager and the Director.

Registration on Title Requirement

- 1.17 Prior to dealing with the property in any way, the Owner shall provide a copy of this Approval and any amendments, to any person who acquires an interest in the property as a result of the dealing.
- 1.18 (a) If not already completed, within ninety (90) calendar days from the date of issuance of this Approval, the Owner shall submit to the Director a completed Certificate of Requirement which shall include:
 - (i) a plan of survey prepared, signed and sealed by an Ontario Land Surveyor, which shows the area of the Site where waste has been and is to be deposited at the Site;
 - (ii) proof of ownership of the Site;
 - (iii) a letter signed by a member of the Law Society of Upper Canada or other qualified legal practitioner acceptable to the Director, verifying the legal description provided in the Certificate of Requirement;
 - (iv) the legal abstract of the property; and

- (v) any supporting documents including a registerable description of the Site.
- (b) If not already completed, within fifteen (15) calendar days of receiving a Certificate of Requirement authorized by the Director, the Owner shall:
 - (i) register the Certificate of Requirement in the appropriate Land Registry Office on the title to the property; and
 - (ii) submit to the Director and the District Manager, written verification that the Certificate of Requirement has been registered on title.

Registration on Title Requirement - Contaminant Attenuation Zone (CAZ)

- 1.19 If not already completed, or if required at any time, within thirty (30) calendar days from the date of establishing a contaminant attenuation zone (CAZ) (overburden and/or bedrock aquifers) in either fee simple or by way of a groundwater easement, the Owner shall submit to the Director a completed Certificate of Requirement which shall include:
 - (a) If rights are obtained in fee simple, the Owner shall provide:
 - (i) documentation evidencing ownership of the CAZ obtained in compliance with Regulation 232, as amended;
 - (ii) a completed Certificate of Requirement and supporting documents containing a registerable description of the CAZ; and
 - (iii) a letter signed by a member of the Law Society of Upper Canada; or other qualified legal practitioner acceptable to the Director, verifying the legal description of the CAZ.
 - (b) within fifteen (15) calendar days of receiving a Certificate of Requirement signed or authorized by the Director,the Owner shall:
 - (i) register the Certificate of Requirement in the appropriate Land Registry Office on the title to the property; and
 - (ii) submit to the Director and the District Manager, a written verification that the Certificate of Requirement has been registered on title.
 - (c) If rights are obtained by way of a groundwater easement, the Applicant shall:
 - (i) provide a copy of the agreement for the easement;
 - (ii) provide a plan of survey signed and sealed by an Ontario Land Surveyor for the CAZ; and
 - (iii) submit proof of registration on title of the groundwater easement to the Director and District Manager;
 - (d) The Owner shall not amend, or remove, or consent to the removal of the easement or CAZ from title without the prior written consent of the Director.

Certificate of Withdrawal of Requirement

- 1.20 If the Applicant wants to withdraw the Certificate of Requirement, the Applicant shall:
 - (a) submit to the Director, a request for a Certificate of Withdrawal of Requirement; and its supporting documents, outlining the reasons for the Withdrawal of the Requirement.
 - (b) submit to the Director:
 - (i) a plan of survey of the area where waste was deposited signed and sealed by an Ontario Land Surveyor and for the Site or CAZ;

- (ii) the legal abstract of the Site or CAZ or area where waste was deposited;
- (iii) completed Certificate of Withdrawal of Requirement containing a registerable description of the Site or CAZ or area where waste was deposited; and
- (iv) a letter signed by a member of the Law Society of Upper Canada or other qualified legal practitioner acceptable to the Director verifying the legal description of the Certificate of Withdrawal of Requirement.
- (c) within fifteen (15) calendar days of receiving a Certificate of Withdrawal of Requirement authorized by the Director, the Applicant shall:
 - (i) register the Certificate of Withdrawal of Requirement in the appropriate Land Registry Office on the title to the Site or CAZ or area where waste was deposited; and
 - (ii) submit to the Director and District Manager a copy of the registered document together with a copy of the PIN Abstract confirming the registration.

Inspections by the Ministry

- 1.21 No person shall hinder or obstruct a Provincial Officer from carrying out any and all inspections authorized by the OWRA, the EPA, the PA, the SDWA or the NMA, of any place to which this Approval relates, and without limiting the foregoing:
 - (a) to enter upon the premises where the approved works are located, or the location where the records required by the conditions of this Approval are kept;
 - (b) to have access to, inspect, and copy any records required to be kept by the conditions of this Approval;
 - (c) to inspect the Site, related equipment and appurtenances;
 - (d) to inspect the practices, procedures, or operations required by the conditions of this Approval; and
 - (e) to sample and monitor for the purposes of assessing compliance with the terms and conditions of this Approval or the EPA, the OWRA, the PA, the SDWA or the NMA.

Information and Record Retention

- 1.22 (a) Except as authorized in writing by the Director, all records required by this Approval shall be retained at the Site for a minimum of two (2) years from their date of creation.
 - (b) The Owner shall retain all documentation listed in Schedule "A" for as long as this Approval is valid.
 - (c) All information and logs required in Condition 9.1 shall be kept at the Site until they are included in the Annual Report.
 - (d) The Owner shall retain employee training records as long as the employee is working at the Site.
 - (e) The Owner shall make all of the above documents available for inspection upon request of Ministry staff.
- 1.23 The receipt of any information by the Ministry or the failure of the Ministry to prosecute any person or to require any person to take any action under this Approval or under any statute, regulation or other legal requirement, in relation to the information, shall not be construed as:
 - (a) an approval, waiver, or justification by the Ministry of any act or omission of any person that contravenes any term or condition of this Approval or any statute, regulation or other legal requirement; and
 - (b) acceptance by the Ministry of the information's completeness or accuracy.

- 1.24 The Owner shall ensure that a copy of this Approval, in its entirety and including all its Notices of Amendment, and documentation listed in Item #1 of Schedule "A", are retained at the Site or the Owner's office at all times.
- 1.25 Any information related to this Approval and contained in Ministry files may be made available to the public in accordance with the provisions of the Freedom of Information and Protection of Privacy Act, RSO 1990, CF-31.

2.0 FINANCIAL ASSURANCE

- 2.1 a. The Financial Assurance shall be submitted as required to the Director, Financial Assurance as defined in Section 131 of the Environmental Protection Act. The Financial Assurance shall be in a form acceptable to the Director and shall provide sufficient funds for the analysis, closure, ongoing and long-term monitoring and reporting, post-closure maintenance and care of the Site.
 - 1. On the following dates, the Owner shall ensure the maximum amount of financial assurance has been submitted to the Director in a form acceptable to the Director as follows:

Payment Date	Amount
By March 31, 2021	\$32,459,985.00
By March 31, 2022	\$35,256,829.00
By March 31, 2023	\$37,164,501.00
By March 31, 2024	\$39,434,722.00

- b. Commencing on March 31, 2024 and on a four year basis thereafter, the Owner shall provide to the Director a re-evaluation of the amount of the Financial Assurance to facilitate the actions required under Condition 2.1.a. The re-evaluation shall include an assessment based on any new information relating to the environmental conditions of the Site and shall include the costs of additional monitoring and/or implementation of alternative measures required by the Director upon review of the annual reports. The Financial Assurance must be submitted to the Director within thirty (30) days of written acceptance of the re-evaluation by the Director;
- c. Commencing on March 31, 2021, the Owner shall prepare and maintain at the Site an updated re-evaluation of the amount of Financial Assurance required to implement the actions required under Condition 2.1.a for each of the intervening years in which a re-evaluation is not required to be submitted to the Director under Condition 2.1.b. The re-evaluation shall be made available to the Ministry, upon request; and
- d. The amount of Financial Assurance is subject to review at any time by the Director and may be amended at his/her discretion. If any Financial Assurance is scheduled to expire or notice is received, indicating Financial Assurance will not be renewed, and satisfactory methods have not been made to replace the Financial Assurance at least sixty (60) days before the Financial Assurance terminates, the Owner shall forthwith replace the Financial Assurance with cash.

3.0 WARWICK PUBLIC LIAISON COMMITTEE and FIRST NATIONS

WPLC

- 3.1 The Owner shall continue and maintain the WPLC. The WPLC shall serve as a focal point for dissemination, review and exchange of information and monitoring results relevant to the operation of the undertaking. In addition, the purpose of the WPLC will be to provide community review of the development, operation (current and proposed) and ongoing monitoring, closure and post-closure care related to the landfill Site.
- 3.2 The general mandate of the WPLC shall include:
 - a. Review operations and provide regular input to the Owner with respect to all matters pertaining to landfill Site operation, including issues pertaining to ongoing operations, monitoring, the need for contingency plans or remedial measures, response to community complaints, the need for changes to the ECA, post-closure monitoring and maintenance, and development of the proposed end use for the landfill Site;
 - b. Review operational and monitoring reports;
 - c. Consider and make recommendations to the Owner regarding outside consulting advice in respect of the landfill Site;
 - d. Facilitate ongoing dialogue between the Owner, the Environmental Inspector and the community, including residents and businesses in the immediate vicinity of the landfill Site;
 - e. Provide reports regularly to the community on the activities of the WPLC, the landfill operations and landfill related issues and seek public input on these activities and issues;
 - f. Monitor the Owner's complaint response program and make recommendations to the Owner with respect to this program; and
 - g. Provide recommendations to the Owner with respect to unresolved complaints.
- 3.3 The WPLC shall not exercise any supervisory, regulatory, approval, legal or other decision making role with respect to the operations (current and proposed) at the Site.
- 3.4 The Owner shall provide for the administrative costs of operating the WPLC, including the cost of meeting places and clerical services.
- The WPLC shall operate under a Terms of Reference of the committee. Suggestions to revise the WPLC Terms of Reference may be made at any meeting that a quorum is present. No changes to the Terms of Reference can be made until the committee members mutually agree to changes. Any changes shall be provided to the Ministry for information purposes.
- The Community members shall be appointed by the WPLC. The community member positions are intended to be available to individuals that are not members of groups already represented on the WPLC and have an interest in the operation of the landfill. The WPLC shall encourage individuals who reside in close proximity to the landfill to participate. A community member is defined as a taxpayer and/or resident of Warwick Township.
- 3.7 The function of the Ministry member will be to provide advice, information and input to other

- members as required.
- 3.8 The WPLC shall determine the appropriate meeting frequency and review it on an annual basis.
- 3.9 Minutes and agendas of meetings shall be printed and distributed as per the mailing list on a timely basis.
- 3.10 The WPLC shall have reasonable access to the Site and its landfill related facilities for the purpose of carrying out its objective and mandate and the Owner's consultants' reports relating to Site operations shall be provided to the WPLC.
- 3.11 The Owner shall provide the WPLC with access to the Owner's consultants as required and consultants reports in accordance with protocols agreed to between the Owner and the WPLC.
- 3.12 Unless disclosure would be contrary to the Freedom of Information and Protection of Privacy Act, the WPLC, the Township of Warwick and Walpole Island First Nation are to be provided all formal submissions and correspondence related to the site operations by the Owner at the same time as these items are submitted to the Ministry, the Township of Warwick Council or any other body.
- 3.13 The Owner shall allow access to the landfill site during normal operating hours, to enable any individual member of the WPLC and member of the public recommended by local representatives on the WPLC, to observe operations. An individual member of the WPLC must contact the operator to arrange for a Site pass, be accompanied by an operators representative at all times and follow all safety procedures.
- 3.14 All recommendations made to the Owner with respect to ongoing landfill operations, monitoring and the implementation of contingency measures shall be discussed at joint meetings between representatives of the Owner and the WPLC. The purpose of these meetings will be to arrive at an agreement between the Owner and WPLC with respect to implementation of the recommendations.
- 3.15 The Owner will disclose all monitoring results to the WPLC and deliver to the WPLC all documents and information (except as may be privileged) relevant to the operation of the landfill.

First Nation and Township of Warwick Consultation

- 3.16 During the process of submission of an application to amend any approvals for the Site, the Owner shall
 - a. discuss with WIFN and the Township of Warwick (Township) the proposed application prior to submission of the WIFN application to the Director;
 - b. provide the same documents to WIFN and Township that are provided to the Director in respect of the amendments; and
 - c. provide the Director, either prior to or at the same time of application submission, with a statement how WIFN and Township comments were considered by the Owner.

4.0 CONSTRUCTION, INSTALLATION and PLANNING

Major Works

- 4.1 For the purposes of this ECA the following are Major Works:
 - a. gas management system;
 - b. leachate collection system; and
 - c. liner
- 4.2 a. A final detailed design shall be prepared for each Major Work to be constructed at the Site consistent with the conceptual design of the Site as presented in the Supporting Documentation, specifically Items 66, 67, and 68 of Schedule "A".
 - b. Geonet may substitute a component of the 0.3 metres of granular in the secondary drainage layer in accordance with Items 54 to 57 inclusive on Schedule "A". The Owner shall ensure that the Quality Assurance/Quality Control procedure detailed in Item 57 of Schedule "A" is followed during installation of the geonet material.
- 4.3 The final detailed design of each Major Work shall include the following:
 - a. design drawings and specifications;
 - b. a detailed quality assurance / quality control (QA/QC) program for construction of the major work, including necessary precautions to avoid disturbance to the underlying soils; and
 - c. details on the monitoring, maintenance, repair and replacement of the engineered components of the major work, if any.
- 4.4 Any design optimization or modification that is inconsistent with the conceptual design shall be clearly identified, along with an explanation of the reasons for the change.
- 4.5 The final detailed design of each Major Work shall be submitted to the Director and copied to the District Manager.
- Each major work shall be constructed in accordance with the approved final detailed design and the QA/QC procedures shall be implemented as proposed by the Owner. Any significant variances from the conceptual design for the Site as detailed in Items 66, 67 and 68 of Schedule "A" shall be subject to approval by the Director.
- 4.7 As-built drawings for all Major Works shall be retained on Site and made available to Ministry staff for inspection.

Subsequent Stages

4.8 At least six (6) months prior to the anticipated completion of landfilling in each stage of the Site, a final detailed design for the subsequent stage shall be submitted to the Director. Any significant variances from the conceptual design for the Site as detailed in Items 66, 67 and 68 of Schedule "A"

shall be subject to approval by the Director.

- 4.9 No person shall deposit any waste at the subsequent stage until a written Preparation Report in accordance with O. Reg. 232/98, Section 19 has been submitted to the Director and District Manager documenting that:
 - a. all construction;
 - b. OA/OC activities;
 - c. Site conditions; and,
 - d. all details of the construction of the Site;

are in accordance with the approved design plans and specifications.

4.10 Approval to proceed with landfilling or construction of each subsequent stage shall be dependent on groundwater, air quality and surface water monitoring results acceptable to the Director. If monitoring results are not acceptable to the Director then remedial action must be taken and completed before landfilling may proceed in the subsequent stage.

Geotechnical Engineer

4.11 A qualified professional geotechnical engineer shall inspect the excavation and construction underlying the Site and provide a report addressing whether the construction proceeded in accordance with approved detailed design plans, specifications and QA/QC procedures. The report shall be included in the Preparation Reports for each stage of the landfill.

Environmental Inspector

- 4.12 In accordance with conditions 18 and 19 of the EA approval dated January 15, 2007 known as Item 1 on Schedule "A", the Owner shall provide funding to the Ministry for the provision of an Environmental Inspector to inspect the Site, at any reasonable time on such terms and conditions, as deemed appropriate by the District Manager of the District Office and outlined in a written agreement with the Owner. Within the agreement, the Owner shall commit to providing, as a minimum, the following:
 - a. Adequate office facilities, communication equipment, and means of transportation for the Environmental Inspector; and,
 - b. Reimbursement to the MECP semi-annually for the costs and associated expenses of the Environmental Inspector.
- 4.13 The Owner shall provide funding for an Environmental Inspector on Site based on the following:
 - a. Construction Phase/Operations Phase-Full-time, on-Site inspector with the inspector being on Site a full day each day for five (5) days per calendar week for the first two years of the operation phase.
- 4.14 a. Every two (2) years commencing on **February 1, 2012**, the Owner shall prepare and submit a

report to the District Manager detailing the status and need for a Environmental Inspector based on discussions with the Township of Warwick, WIFN and the WPLC regarding the inspection frequency for the Environmental Inspector. The inspection frequency of the Environmental Inspector shall remain as per the requirements outlined in Condition 4.13 during the operation phase until a decision is made by the District Manager on the appropriate inspection frequency.

b. Notwithstanding Conditions 4.12 to 4.14 (1) and 15.3, inclusive, the Environmental Inspector's duties may, in consultation with the Owner, be increased, reduced, suspended or terminated on such terms and conditions as deemed appropriate by the District Manager and, for greater certainty, the District Manager may require an Environmental Inspector to be on-Site for up to seven days per week in cases of apparent significant non-compliance with the conditions of the EA approval or any approval issued for the Site under the EPA until such non-compliance is resolved.

5.0 OTHER WORKS

Berm Construction

5.1 All berm slopes associated with this approval shall be no greater than 3:1.

Diversion Area

5.2 The diversion area will be located to the east of the treated leachate storage lagoons.

Cell 12

- 5.3 a. Cell 12 will be used as a monofil of contaminated soils until redeveloped and incorporated into the Expansion Site in accordance with Items 66 through 68 of Schedule "A".
 - b. The management of the Cell 12 monofill shall be in accordance with the procedures and practices consistent with other previous monofill operations at the Site.

Landscape

The Owner shall ensure the landscape plan is carried out in accordance with Item 72 and 80 of Schedule "A", as amended from time to time.

6.0 GENERAL OPERATIONS

Proper Operation

The Site shall be properly operated and maintained at all times. All waste shall be managed and disposed of in accordance with the EPA, Regulation 347, Regulation 232, and the requirements of this ECA. At no time shall the discharge of a contaminant that causes or is likely to cause an adverse effect be permitted.

- The Owner shall ensure that the MECP's Guideline B-7, Reasonable Use Concept, is applied at the Site boundaries.
- a. Landfilling operations shall be conducted in accordance with Items 66 through 71 of Schedule "A" attached to this ECA.
 - b. The Owner shall ensure the operations and procedures manual for the the Site includes discussions on the following items.:
 - a. Health and safety;
 - b. Operation and maintenance of the Site;
 - c. Waste disposal area and development;
 - d. Nuisance management;
 - e. Leachate management;
 - f. Landfill gas management;
 - g. Surface water/Storm water management;
 - h. Inspections and monitoring;
 - i. Contingency plans and emergency procedures;
 - j. Complaints; and,
 - k. Reporting and record keeping.
 - c. The operations and procedures manual shall be:
 - a. retained at the Site;
 - b. reviewed on an annual basis and updated by the Owner as required; and
 - c. be available for inspection by Ministry staff.

Waste Type

- 6.4 Only the following types of waste shall be accepted at the Site:
 - a. municipal, industrial, commercial and institutional solid non-hazardous waste generated within the Province of Ontario, including non-hazardous contaminated soil.

Capacity

The Owner shall only accept and deposit waste at the Site as long as there is available capacity as defined by the final contours for the Site approved by this ECA. The approval permits disposal of waste at the Site to fill an air space of **26,508,000 cubic metres** (including waste, daily and interim cover material). This capacity includes the capacity of the existing and expansion landfill areas.

Yearly Waste Limit

6.6 a. The Owner can receive up to a maximum of **1,400,000 tonnes per year** of waste including contaminated soil for disposal at the Site.

- b. The amount of tire shred that may be received to process is **7,160 tonnes/year**.
- c. Up to a maximum of **100 tonnes per day** of solid non-hazardous waste, white goods and metals, recyclable waste, wood waste, and leaf and yard waste that are deposited by the public using small vehicles at the Mini-Transfer Area of the Site may be transferred from the Site by a waste hauler or waste haulers that has an ECA to another waste disposal site.

Service Area

6.7 Only waste that is generated in the Province of Ontario shall be accepted at the Site.

Landfilling of Sludge

A thickness of at least 2 metres of compacted waste and cover material shall be maintained between any landfilled sludge (solid non-hazardous as per Reg. 347) and the granular leachate collection layer.

Asbestos Waste

- Any waste that is considered asbestos waste shall be handled in accordance with Section 17 of O. Reg. 347 as amended from time to time.
- 6.10 A suitable sized excavation for the asbestos waste shall be made by the Owner in a location away from the active landfilling face.
- All asbestos waste shall be inspected to ensure that the asbestos waste is properly bagged or contained and free from puncture, tears or leaks.
- 6.12 The asbestos waste shall be placed in the excavation to avoid damage to the containers and to prevent dust and spillage.
- 6.13 Upon completion of the unloading and deposition of the asbestos in the excavation, at least 125 centimetres of cover or waste material shall be placed over the asbestos.
- 6.14 All asbestos waste shall be deposited to a level no higher that 1.25 metres below the general elevation of the disposal area to ensure that daily cover material removal in the future does not encounter the asbestos waste.

Waste Limits

No waste, including daily cover, intermediate cover or final cover layer, shall be landfilled outside the limits of the base and final cover contours presented in Items 66 through 71 of Schedule "A" (the Development and Operations Plan) attached to this ECA.

Site Use

6.16 The area inside the fencing indicated in Appendix N18 of Item 30 of Schedule "A" shall be used for waste disposal purposes only. The remainder of the Site outside the fenced area shall be used for traditional agricultural crop production only.

Waste Inspection

6.17 All loads of waste must be properly inspected by trained Site personnel prior to disposal at the Site and waste vehicles must be diverted to appropriate areas for waste disposal.

Waste Deposit

6.18 The Owner shall deposit waste in a manner that minimizes exposure area at the landfill working face and waste shall be compacted before cover is applied.

Burning Waste Prohibited

6.19 Burning of waste at the Site is prohibited.

Signage

- 6.20 A sign shall be maintained at the main entrance/exit to the Site on which is legibly displayed the following information:
 - a. the name of the Site and Owner;
 - b. the number of the ECA;
 - c. the name of the Operator;
 - d. the normal hours of operation;
 - e. the allowable and prohibited waste types;
 - f. a warning against unauthorized access;
 - g. the telephone number to which complaints may be directed;
 - h. a twenty-four (24) hour emergency telephone number (if different from above); and
 - i. a warning against dumping outside the Site.
- 6.21 The Owner shall install and maintain signs to direct vehicles to working face and recycling areas.
- 6.22 The Owner shall maintain signs at recycling depot informing users what materials are acceptable and directing users to appropriate storage area.

Hours of Operation

- 6.23 Waste shall only be accepted at the Site during the following time periods:
 - a. 7 AM to 7 PM Monday to Saturday.
- 6.24 On-site equipment used for daily Site preparation and closing activities shall only be used during

- a. 6 AM to 8 PM Monday to Saturday.
- 6.25 With prior written approval of the District Manager, the time periods may be extended to accommodate seasonal or unusual quantities of waste or such factors as determined to be reasonable to the District Manager.
- 6.26 The Owner may provide limited hours of operation provided that the hours are posted at the landfill gate and that suitable notice is provided to the public of any change in operating hours.
- 6.27 Upon reasonable notice to the District Manager, contingency actions may take place outside normal hours of operation. Emergency response may occur at any time as required.

Site Security

During non-operating hours, the Site entrance and exit gates shall be locked and the Site shall be secured against access by unauthorized persons

Fencing

6.29 The entire area as shown in Figure 12 in Item 66 of Schedule "A" shall be fenced by the Owner with a 6 foot high wire woven highway-type paige fence.

Site Access

Access to and exit from the Site for the transportation of waste shall under normal circumstances be permitted from County Road 79.

Access Roads

- 6.31 a. On-Site roads shall be provided and maintained in a manner that vehicles hauling waste to and on the Site may travel readily and safely on any operating day. During winter months, when the Site is in operation, roads must be maintained to ensure safe access to the landfill working face.
 - b. Access roads must be clear of mud, ice and debris which may create hazardous conditions.

Vermin, Dust, Litter, Odour, Noise, Traffic

6.32 The Site shall be operated and maintained such that vermin, vectors, dust, litter, odour, noise and traffic do not create a nuisance.

Scavenging

6.33 The Owner shall ensure that there is no scavenging as defined in O. Reg. 347 at the Site.

Dust

- 6.34 The Owner shall control fugitive dust emissions from on Site sources including but not limited to on-Site roads, stockpiled cover material and, closed landfill area prior to seeding especially during times of dry weather conditions. If necessary, major sources of dust shall be treated with water and/or dust suppression materials to minimize the overall dust emissions from the Site.
- Dust shall be managed as per the Best Management Practices Plan (Dust) prepared by RWDI listed as Item 83 in Schedule "A".

Litter Control

- 6.36 The Owner shall take all practical steps to prevent escape of litter from the Site. All loose, windblown litter shall be collected and disposed of at the landfill working face.
- 6.37 Litter pickup will occur at least weekly on the Owner's property during all weather conditions.
- 6.38 The Owner will respond to litter complaints within one (1) day of the complaint being received.
- 6.39 Litter shall be managed in accordance with the Best Management Practices plan prepared by RWDI listed as Item 25 on Schedule "A".

Odour

Odour shall be managed in accordance with the Best Management Practices Plan (Odour) prepared by RWDI listed as Item 84 in Schedule "A".

Noise

- The Owner shall comply with noise criteria in MECP Guideline entitled "Noise Guidelines for Landfill Sites" dated October 1998 as amended from time to time and the Site shall comply with the limits set in Publication NPC205. Bird bangers may be used at the Site for gull control provided that they produce reference impulsive sound not exceeding 125 dBAI at 5 metres from the bird banger.
- Noise monitoring at the Site shall be undertaken by the Owner as per the document entitled "Environmental Noise Monitoring Program for the Warwick Landfill", dated June 15, 2007 prepared by Aercoustics Engineering Limited listed as Item 73 on Schedule "A".

Alteration of Best Management Plans for Odour, Dust and Litter

The Owner shall use the Best Management Plans (BMP's) for dust, odour and litter at the Sitein accordance with the applicable Conditions approved by this ECA. The Owner may submit changes in writing to the Director for approval to amend the BMP(s). At the same time any changes to the BMP's are submitted to the Director, the Owner shall provide the proposed changes to the BMP's to the Township of Warwick, WPLC and WIFN.

Surface Water

- 6.44 The Owner shall take all appropriate measures to minimize surface water from coming in contact with waste. Temporary berms and ditches shall be constructed around active waste disposal areas to prevent extraneous surface water from coming in contact with the active working face.
- 6.45 The Owner shall not discharge surface water to receiving water bodies without an approval under the EPA.
- 6.46 If surface water ponding occurs in any surface water ditches having a drainage slope less than 0.5%, the Owner shall regrade the ditches.

Application of Cover Material

- 6.47 Cover material shall be applied as follows:
 - a. Daily Cover At the end of each working day, the entire working face shall be covered with a minimum thickness of 150 mm of soil cover or an approved alternative cover material;
 - b. Intermediate Cover In areas where landfilling has been temporarily discontinued for six (6) months or more, a minimum thickness of 300 mm of soil cover or an approved alternative cover material shall be placed;
 - c. Final Cover In areas where landfilling has been completed to final contours, a minimum 1.85 metre thick layer of final cover soil shall be placed. Fill areas shall be progressively completed and rehabilitated as landfill development reaches final contours; and
 - d. Topsoil In areas where landfilling has been completed to final contours and where final cover has been placed, a minimum 0.15 metres thick layer of topsoil shall be placed.

Cover Materials Allowed

- 6.48 The following materials, in the corresponding thickness, may be used as an alternative to soil as a daily and intermediate cover:
 - a. Contaminated soil that satisfies the Schedule IV Toxicity Characteristic Leaching Procedure (TCLP) criteria as outlined in O. Reg. 347 as amended from time to time;
 - b. Wood chips (daily);
 - c. Automobile Shredder Residue (ASR) (daily); or
 - d. Tarps (daily)
- 6.49 The use of any other alternative materials as daily or intermediate cover material is subject to approval by the Director.
- 6.50 Use of alternative daily or intermediate cover materials shall be discontinued within two (2) working days of receipt of written notification from the District Manager, stating that the use of the alternative daily or intermediate cover materials at the Site has proven to be environmentally unsuitable.

Automobile Shredder Residue as Daily Cover

- 6.51 a. Automobile Shredder Residue (ASR) may be used as a daily cover at the Site on an on-going basis from the issuance of this Approval.
 - b. The Owner shall cease the use of ASR if written notification is received from the District Manager indicating that there are environmental concerns due to the use of ASR as daily cover based on the testing of the ASR required by Condition 6.52.
 - c. The Owner may re-commence the use of ASR upon the Owner submitting an action plan that is acceptable to the District Manager that can address the environmental concerns which were raised due to the use of ASR as daily cover.
- Automobile Shredder Residue samples of the daily cover material are to be taken on semi-annual basis (Spring and Fall) and submitted for analysis of O. Reg. 347 Schedule IV Inorganics, VOC's, and PAH's. Automobile Shredder Residue is to conform with the specifications of a non-hazardous waste under O. Reg. 347 as amended from time to time. Semi-Annually testing results are to be submitted to the District Manager upon receipt. The frequency of O. Reg. 347 testing of the daily cover material can be reduced subject to approval of the District Manager.

Contaminated Soil as Daily or Intermediate Cover

- 6.53 Contaminated soil equal to or below 10% of the TCLP value and/or 0.4 mg/L benzene may be landfilled in Cells 8, 10 and/or 12.
- 6.54 If confirmatory testing of the contaminated soil to be landfilled in Cells 8, 10 and/or 12 indicates an exceedance of 10% of the TCLP value and/or 0.4 mg/L of benzene, but satisfies the TCLP criteria as in O.Reg. 347, the soil may be used as daily and/or intermediate cover, and or landfilled as waste.
- 6.55 If the contaminated soil received at the Site does not meet the TCLP value, the contaminated soil shall be classified as a hazardous waste and shall be disposed of at a site that is approved to receive and dispose of hazardous waste.
- 6.56 Contaminated soil that satisfies the TCLP criteria may be used as daily and/or intermediate cover in the Expansion Site of the landfill. Contaminated soils may not be used on outside slopes which drain into the surface water system.
- 6.57 Contaminated soil used for daily and/or intermediate cover shall be sampled on a quarterly basis and submitted for analysis of O.Reg. 347 Schedule IV Inorganics, VOCs, PAHs and PCBs. Quarterly testing results shall be included in the annual report. The frequency of O. Reg. 347 testing of the cover material may be reduced subject to agreement of the District Manager.
- 6.58 Contaminated soil for use as daily cover and/or intermediate cover shall be stockpiled in areas of the

- Site that have a leachate collection system installed below.
- 6.59 Surface water run off from the contaminated soils stockpile which exceeds the Provincial Water Quality Objectives shall not be discharged through the surface water management system.
- 6.60 The Owner must ensure that measures are in place for the on Site treatment and disposal of any contaminated run off from the contaminated soils stockpile.
- 6.61 Prior to receipt at the Site, each source of contaminated soils which are to be used as daily or intermediate cover shall be tested to determine if the soils meet the criteria in this ECA and a copy of the test results shall be kept in the daily records for the Site as required.

7.0 SITE OPERATIONS

Landfill Reclamation

7.1 The Owner shall restrict stockpiling of contaminated soil from Cells 8, 10 and 12 to sections of the landfill footprint that have a liner and leachate collection system.

Waste Processing and Composting

- 7.2 Waste Processing and composting is allowed at the location outlined in Item 49 on Schedule "A" subject to the following conditions:
 - a. Prior to the commencement of any waste processing or composting operations at the Site, the Owner shall ensure that air (Section 9 EPA) and noise approvals are obtained;
 - b. Prior to the start of composting operations at the Site, the Owner shall submit to the District Manager a contingency plan for any odour problems that may occur;
 - c. The total combined amount of waste that may be received at the Site for processing and composting shall not exceed **36,000 tonnes per year** and the maximum daily amount to be received at the Site shall not exceed **700 tonnes per day**;
 - d. The amount of waste that may be received at the Site for composting shall not exceed **7,500** tonnes per year;
 - e. Material acceptable for processing and composting at the site shall include leaf, yard, agricultural waste, concrete, asphalt, wood and tires;
 - f. The bins for diversion shall be emptied on an as needed basis to prevent odours and operational problems. The Ministry may at any time instruct that a bin be emptied;
 - g. The Owner shall ensure that waste processing and composting is undertaken in a safe manner, and that all waste is properly handled, processed and contained so as not to pose any threat to the general public and site personnel;
 - h. All noise generating processing activities in the waste diversion area including concrete/asphalt/crushing, wood chipping and tire shredding shall only occur between 07:00 to 19:00; and
 - i. Any runoff that comes into contact with waste in the waste processing/composting area shall be managed in such a fashion to ensure compliance with Condition 8.5 of this ECA.

- 7.3 The Owner shall ensure that composting at the Site is undertaken in accordance with O.Reg 101/94 as amended from time to time and the Ministry document entitled "Interim Guidelines for the Production and Use of Aerobic Compost in Ontario" dated November 2004 as amended from time to time and the following requirements:
 - a. Only leaf and yard waste, Agricultural Waste as defined in Item 3 in Schedule "A" and wood (not including painted or treated wood or laminated wood) may be accepted at the compost area.
 - b. Leaf and yard waste is defined as waste consisting of natural Christmas trees and other plant materials but not tree limbs or other woody materials in excess of seven (7) centimetres in diameter.
 - c. The composting site shall only receive material for composting from May 1st to November 1st each year.
 - d. Leaf and yard waste, Agricultural Waste and wood may not be stored for more than four (4) days before it is composted.
 - e. During composting, the Owner shall provide the composting mass with adequate ventilation to ensure that aerobic conditions are maintained.
 - f. Cured compost must be analyzed for the parameters listed in Table 1 of O.Reg. 101/94 and shall not be removed from the Site unless it has been sampled and analyzed.
 - g. Cured compost is defined as meeting the specifications in Sections 7.2 to 7.5 inclusive of the Interim Guidelines for the Production and Use of Aerobic Compost in Ontario" dated November 2004 as amended from time to time and can be used on an unrestricted basis.
 - h. Compost is designated a waste if the compost contains a substance listed in Table 1 of O. Reg. 101/94 that has a concentration greater than the concentration listed in Column 2.
 - i. Controlled compost is defined as compost that is designated a waste under the previous condition but has concentrations less than the concentrations listed in Column 3 of Table 1 in O. Reg. 101/94.
 - j. Controlled compost may not be removed from the site except for direct shipment to the intended user.
 - k. Material from the composting process that fails to meet the "Interim Guidelines for the Production and Use of Aerobic Compost in Ontario" dated November 2004 shall be deemed to be a waste under O. Reg. 347 and shall be disposed of accordingly.
 - 1. The person to whom controlled compost is shipped shall be given a copy of the chemical analysis of the compost and a notice that states that the compost is controlled compost and that sets out the terms and conditions of the compost's exemption from Part V of the EPA. A copy of this notice shall be kept on file at the Site.
 - m. The District Manager may at any time and at his absolute discretion instruct that any or all of the waste materials from the composting or processing operations or the processed waste from the composting or processing operations to be either landfilled or directed to be utilized for specific uses and in specific locations.
- 7.4 Record keeping for the composting operation shall be kept as follows:
 - a. Records about each composting mass shall be kept including temperatures of the mass, when the temperatures were measured, when the mass was turned, information about the

- curing process and details about significant problems that occurred during composting or curing. This information shall be kept at the Site for at least three years after the mass was cured;
- b. Records shall be kept of the analyses of compost. Any laboratory records shall be kept as part of the record. A record of an analysis shall be kept for at least three years after the analysis is performed; and
- c. A record shall be kept of the name, address and telephone number of each person to whom controlled compost is shipped. The record shall be kept for at least ten (10) years after the shipment.

Tire Shred

- 7.5 The management and placement of tire shreds at the Site shall be in accordance with the Fire Protection and Prevention Act as follows:
 - a. No individual tire shred pile shall be more than 3 metres in height and 100 square metres in area. Six (6) metres of space shall be provided between all piles. Fifteen (15) metres is to be provided from property lines and thirty (30) metres shall be provided from tree lines;
 - b. A buffer of 4.5 metres is to be provided for grass or weeds from the edge of the tire pile to the edge of the pad.
 - c. A firebreak of 22 metres shall be provided between the two areas of 16 piles each.
- 7.6 If the total stockpiled tire shreds exceeds **300 cubic metres**, the storage period shall not exceed 90 (ninety) days.
- 7.7 The total amount of tire shreds stored on Site shall be recorded in a log book and made available to the Ministry for inspection.

Backup Power

7.8 The Owner shall maintain adequate backup power at the Site in order to ensure scale facility and landfill gas blower on site continue to operate and are not damaged due to an extended power outage. A power supply connection at each leachate collection pumping station shall be maintained by the Owner that will permit a portable generator to be connected during a power outage.

Landfill Gas

7.9 All buildings are to be free of any landfill gas accumulation. The Owner shall provide adequate ventilation systems to relieve landfill gas accumulations in buildings if necessary.

Landfill Gas Management

7.10 The Owner shall, manage landfill gas in accordance with Items 66 through 68, Items 75 through 77, and Item 81 of Schedule "A" and based on the landfill gas management system constructed under the

authority of the EPA Approval issued which may be amended or replaced from time to time.

Cleaning of Leachate Collection System

- 7.11 The leachate collection system piping for each stage of the landfill shall be inspected annually for the first five years after waste placement and then as often as future inspections indicate to be necessary. Additionally, leachate collection pipes must be cleaned whenever an inspection indicates that cleaning is necessary.
- 7.12 In areas where leachate collection pipe slopes are less than 0.5%, the leachate collection pipes shall be inspected semi-annually for the first three (3) years after waste placement and then as often as future inspections indicate to be necessary. Additionally, leachate collection pipes must be cleaned whenever an inspection indicates that cleaning is necessary. After the three (3) year period, inspection and cleaning of the leachate collection pipes shall be in accordance with the previous condition.

Leachate Collection System

- 7.13 All leachate collection pipes for Cell 12 shall be sloped at a minimum of 0.5%.
- 7.14 The Owner shall install 250 mm diameter perforated leachate collection pipes with perforations located at the 10:30, 4:30, 1:30 and 7:30 positions.
- 7.15 The stone for the leachate collection system shall have the following specifications:
 - a. D85 shall be greater than 37 mm where D85 is described as the stone diameter such that, when measured by weight, 85% of the stones in the layer have a smaller diameter;
 - b. D10 shall be greater than 19 mm where D10 is the stone diameter such that, when measured by weight, 10% of the stones in the layer have a smaller diameter;
 - c. D60/D10 shall be less than 2; and,
 - d. One per cent (1%) of the stones may pass a #200 sieve.
- 7.16 A minimum of 50 mm of stone shall be placed below the leachate collection pipes and a minimum of 250 mm of stone shall be placed above any leachate collection pipes.
- 7.17 The Owner shall ensure that the leachate collection system is constructed under the supervision of a qualified consultant.

Hydraulic Trap

7.18 The Owner shall ensure that a hydraulic trap is developed and maintained beneath the Expansion Area and shall ensure that a maximum leachate head of 300 mm on the landfill liner is not exceeded.

8.0 LEACHATE MANAGEMENT

Leachate Recirculation

- 8.1 Prior to implementing the leachate recirculation program, a report on the moisture content of the incoming waste and the actual field capacity of the waste in situ shall be submitted to the Director.
- 8.2 The Director may at any time, terminate leachate recirculation at the Site if, in the Ministry's opinion, adverse effects on the environment are observed.
- 8.3 Before starting leachate recirculation, the Owner shall provide to the Director a monitoring program to ascertain the effectiveness of the leachate recirculation process.
- 8.4 Leachate recirculation shall not occur in any above grade locations until final cover has been installed on exterior side slopes.

Leachate Management Plan

8.5 The Owner's leachate management plan shall not include any direct discharge of leachate or treated leachate from the Site, even as a contingency option, to surface waters, including Bear Creek. The Owner shall not discharge leachate or treated leachate to surface waters, including Bear Creek from the Site.

Leachate Treatment Plant

- 8.6 (1) (a) Within a minimum of three (3) years prior to closure of the landfill Site, the Owner shall ensure that a leachate treatment system is installed and operational at the Site.
 - (b) Leachate from the Site not sent to the operational drip irrigation area(s) approved under Condition 8.7 shall be disposed of off-Site at a location approved by the District Manager until the leachate treatment system required by Condition 8.6 (1)(a) is approved and operational.
 - (c) Any waste from the leachate treatment system that is to be disposed of in the landfill must be classified as a solid non-hazardous waste.
 - (d) The Owner shall implement all items within the document entitled Leachate Management Framework, listed as Item 86 in Schedule "A". These items include new and existing leachate monitor locations (wells, mini piezometers, and sump), leachate monitoring, leachate level reporting, Leachate Management Plan by March 31, 2020 and updated every 3 years, and the Leachate Treatment Facility Study to be completed at least 7 years prior to closure of the landfill.
 - (2) As part of the financial assurance calculation in Section 2.0, the Owner shall provide to the Director for approval, a detailed financial assurance plan including the cost of leachate transportation and disposal for the landfill site during the period preceding the initiation of the leachate treatment system. In addition, the Owner shall provide to the Director for approval a financial assurance plan detailing the capital cost of the on-Site leachate treatment system.

Phytoremediation of Leachate - Existing and Proposed Poplar Plantations

- 8.7 On-Site phytoremediation may occur at the Poplar System and Poplar Plantation in accordance with the following conditions:
 - a. The Owner shall ensure that there is a 100 metre grassed buffer at all times from the Poplar Plantation to the Kersey drain.
 - b. Irrigation of leachate onto the either the Poplar Plantation or the Poplar System shall not occur in the following instances:
 - i. Between the dates of October 16 to April 30
 - ii. On frozen or snow covered ground conditions;
 - iii. Under conditions that will cause ponded water or runoff;
 - iv. Conditions where surface water ponding within the area is occurring;
 - v. Where no poplar trees are currently planted;
 - vi. In areas within a drip irrigation area where trees have been harvested more than a frequency greater than every other tree;
 - vii. In areas within a drip irrigation area that has been fully harvested clear of trees and the trees have not started to coppice.
 - c. If weather forecasts indicate a rainfall storm greater than 12.5 mm/hour will occur, the Owner shall within 1 hour before the storm, shut off all irrigation of the poplar forest.
 - d. Irrigation zones shall be individually assessed by the Owner for suitability of irrigation after rainfall events greater than 12.5 mm.
 - e. Records shall be kept for the Poplar System and Poplar Plantation areas as follows:
 - i. quantities and dates of application of pesticides and herbicides;
 - ii. inspection notes regarding tree growth rates and health;
 - iii. inspection notes regarding condition and growth of underlying vegetative landfill cover (ie grass);
 - iv. observed pooling and/or runoff of irrigated liquid;
 - v. observations of any odours; and,
 - vi. weather conditions records as may be obtained from the nearest
 Environment Canada Weather Office which may include daily high and
 low temperatures, wind velocity and direction, and precipitation quantities.
 - f. Irrigation onto either the Poplar System or the Poplar Plantation shall be as follows:
 - i. Detailed records shall be kept of the quantities of irrigation liquid that are applied, including the dates of application onto either drip irrigation area;
 - ii. Operations in a given drip irrigation area must immediately stop if contamination problems in surface water or groundwater, which are attributable to the operation of the noted drip irrigation area, are found to be occurring. Recommencement of operations may proceed only upon further written notification of the District Manager;
 - iii. Operations of a given drip irrigation area must be discontinued immediately if

operation of the noted drip irrigation area causes surface runoff from the footprint area or if operations cause surface ponding within the drip irrigation area; operations cannot be restarted during that application day and can only be restarted after surface ponding has evaporated or infiltrated or conditions causing the runoff or ponding have been rectified;

- iv. If there are any stoppages of operations under the requirements of items ii) or iii) above, then the District Manager shall be notified immediately; and,
- v. If odours attributable to one of the drip irrigation areas become a problem at the site, then the District Manager shall be so informed in writing and the operation of the noted drip irrigation area shall be stopped pending further instructions from the District Manager;
- g. (1) Monitoring of the drip irrigation Poplar System and the Poplar Plantation shall be in accordance with Items 63 through 65 of Schedule "A".
 - (2) Monitoring frequencies and analyses for the following items shall be as follows:
 - i. Daily inspections for ponded water or saturated soil during irrigation;
 - ii. Monthly testing of irrigation liquid quality during the irrigation season;
 - iii. Soil samples should be taken annually from grade to a depth of 0.6 m minimum and 0.9 m maximum;
 - iv. Annual soil analyses shall be conducted annually per Section 3.1 of Item 63 of Schedule "A", in addition to pH, electrical conductivity, cation exchange capacity, and sodium absorption ratio
 - v. Leaf Tissue analyses once per year in the fall; and
 - vi. Crop inspection once per year in the fall.
- h. Reporting on the drip irrigation areas shall be part of the annual monitoring report for the Site and shall include but not be limited to the following:
 - i. results and an analysis of the results of the monitoring programs for the drip irrigation areas:
 - ii. assessment of the results of the vegetation as related to the stated objectives for the Poplar System and Poplar Plantation facilities construction and operations;
 - iii. assessment of the need to change the monitoring program for the drip irrigation areas and a recommendation of the required changes;
 - iv. tabulation and assessment of the volumes of leachate produced by the landfill, and those volumes which may be applied to the existing drip irrigation areas;
 - v. a report on operational problems identified during the operation of the drip irrigation areas and a discussion of each problem and details of what was done to rectify each problem;
 - vi. a Site plan which shows the location of the areas planted with both trees and grass cover and the vegetation used on those areas;
 - vii. an assessment of the monitoring results pertaining to the use of trees as vegetation on the final cover

- i. The Director retains the right to request that the Owner conduct additional studies, suspend operations or require the Owner to provide additional methods to handle leachate at the Site in addition to or as a replacement to the drip irrigation areas.
- j. If the Director requests removal of the drip irrigation areas, the Owner shall:
 - i. remove the irrigation equipment and the trees from the noted drip irrigation area. For the Poplar System, removal of trees shall include removal of tree stumps and most roots, excavate the trench to the maximum depth of root depth penetration on each tree row, and then replace, remould and recompact the excavated material:
 - ii. the landfill cover shall be restored to the same condition as it was in prior to commencement of the Poplar System and a blend of suitable grasses shall be seeded as necessary; and,
 - iii. within 6 months of completion of the noted drip irrigation area closure activities, submit to the Director a report outlining the work that has been completed.
- k. Electrical conductivity of the shallow soil (maximum depth of 0.15 m) beneath the drip irrigation areas shall be monitored on a weekly basis during irrigation.
- 1. If salt levels are building up in the soil or additional irrigation with leachate is found to be detrimental to the health of the poplars, the leachate application rate shall be reduced or terminated.

Wood Waste and Leaf Litter

m. Any wood waste or leaf litter that is produced in the Poplar System or Poplar Plantation shall managed in accordance with Item 63 of Schedule "A".

Other Items

- n. (1) Drip irrigation rates for the Poplar Plantation shall be no greater that the rate specified in the EPA approval for the Site.
 - (2) Drip irrigation rates for the Poplar System shall be no greater than the rates noted in Item 63 of Schedule "A".
- o. No drip irrigation shall occur within fifty (50) metres of any surface watercourse or drain.
- p. (1) Leachate to be used for drip irrigation on the Poplar Plantation shall not exceed the treated leachate effluent criteria specified in the EPAapproval for applicable industrial sewage works for the Site.
 - (2) Leachate to be used for drip irrigation on the Poplar System shall not exceed the

treated leachate effluent criteria specified in the Item 63 through 65 in Schedule "A".

- q. The use of the Poplar Plantation to manage irrigation leachate will not be permitted without first providing the District Manger with at least two (2) months written notice of the anticipated irrigation liquid application date. The use of surface water to encourage tree growth will be permitted and will not be considered as irrigation liquid.
- r. Monitoring and the associated reporting for the Poplar Plantation will commence at least two (2) months prior to irrigation liquid application and continue until two (2) years after cessation of irrigation liquid application to the Poplar Plantation.

Leachate Storage Tanks

- s. The leachate storage tanks shall be inspected by a licenced plumber on an annual basis
- t. The leachate storage tanks shall be cleaned and sediment removed at least once every two (2) years.

9.0 INSPECTIONS AND RECORDS

Inspections

- 9.1 The Owner shall inspect the Site monthly for the following items but not limited to these items:
 - a. Erosion rills;
 - b. General settlement areas or depressions;
 - c. Shear and tension cracks;
 - d. Condition of surface water drainage works;
 - e. Erosion and sedimentation in surface water drainage system;
 - f. Presence of any ponded water;
 - h. Adequacy of cover material;
 - i. Evidence of vegetative stress, distressed poplars or side slope plantings;
 - i. Condition of groundwater monitoring wells and gas wells;
 - k. Presence of insects, vermin, rodents and scavenging animals;
 - 1. Condition of fence surrounding the Site; and
 - m. General Site appearance.
- 9.2 The Owner shall inspect the Site weekly for presence of leachate seeps.

Daily Inspections and Log Book

9.3 An inspection of the entire Site and all equipment on the Site shall be conducted each day the Site is in operation to ensure that the site is being operated in compliance with this ECA. Any deficiencies discovered as a result of the inspection shall be remedied immediately, including temporarily ceasing operations at the Site if needed.

- 9.4 A record of the inspections shall be kept in a daily log book or a dedicated electronic file that includes:
 - i. the name and signature of person that conducted the inspection;
 - ii. the date and time of the inspection;
 - iii. the list of any deficiencies discovered;
 - iv. the recommendations for remedial action; and
 - v. the date, time and description of actions taken.
- 9.5 A record shall be kept in a daily log book of all refusal of waste shipments, the reason(s) for refusal, and the origin of the waste, if known.

Monthly Records

- 9.6 Monthly Site inspection records in the form of a written log or a dedicated electronic file shall include but not be limited to the following:
 - a. the type, geographic source, date and time of arrival, hauler, and quantity (tonnes) of all waste received at the Site;
 - b. the area of the Site in which waste disposal operations are taking place;
 - c. a calculation of the total quantity (tonnes) of waste received at the Site during each operating day and each operating week;
 - d. Results of any test done to determine the acceptability of waste at the Site;
 - e. A reference for each load of solid non-hazardous industrial waste received, to the client and type of solid non-hazardous industrial waste;
 - f. the amount of any leachate removed, or treated and discharged from the Site;
 - g. a record of litter collection activities and the application of any dust suppressants;
 - h. a record of the daily inspections;
 - i. a description of any out-of-service period of any control, treatment, disposal or monitoring facilities, the reasons for the loss of service, and action taken to restore and maintain service:
 - j. type and amount of daily, intermediate and final cover used;
 - k. maintenance and repairs performed on equipment employed at the Site;
 - 1. complaints received and actions taken to resolve them;
 - m. emergency situations and actions taken to resolve them; and
 - n. any other information required by the District Manager.
- 9.7 The Owner shall maintain on record at the Site for each client disposing of solid non-hazardous waste at the Site, a description of each type of solid non-hazardous waste received from the client and documentation to demonstrate that the Owner has taken reasonable care to ensure that waste classified as either hazardous or liquid industrial waste under O. Reg. 347 as amended from time to time, is not disposed of at the Site.

Record Retention

9.8 Except as authorized in writing by the Director, all records required by this ECA shall be retained at

- the Site for a minimum of two (2) years from their date of creation.
- 9.9 The Owner shall retain all documentation listed in Schedule "A" for as long as this ECA is valid.
- 9.10 All monthly Site inspection records are to be kept at the Site until they are included in the Annual Report.
- 9.11 The Owner shall retain employee training records as long as the employee is working at the Site.
- 9.12 The Owner shall make all of the above documents available for inspection upon request of Ministry staff.
- 9.13 The Owner shall retain, either on-Site or in another location and notify the District Manager of this location, copies of the annual reports referred to in the preceding condition and any associated documentation of compliance monitoring activities and shall continue to do so for a period of at least two (2) years after the closure of the Site.

10.0 TRAINING

Employees and Training

- 10.1 A training plan for all employees that operate any aspect of the Site shall be developed and implemented by the Operator . Only trained employees shall operate any aspect of the Site or carry out any activity required under this ECA . Employees must provide proof of training to the Ministry upon request. For the purpose of this ECA "trained" means knowledgeable either through instruction or practice in:
 - a. the relevant waste management legislation including EPA, O. Reg. 347 and O. Reg. 232/98, regulations and guidelines;
 - b. major environmental and occupational health and safety concerns pertaining to the waste to be handled:
 - c. the proper handling of wastes;
 - d. the management procedures including the use and operation of equipment for the processes and wastes to be handled;
 - e. the emergency response procedures;
 - f. the specific written procedures for the control of nuisance conditions;
 - g. the terms, conditions and operating requirements of this ECA and
 - h. proper inspection, receiving and recording procedures and the activities to be undertaken during and after a load rejection.

11.0 COMPLAINTS PROCEDURES

If at any time, the Owner receives complaints regarding the operation of the Site, the Owner shall respond to these complaints according to the following procedure:

- a. The Owner shall record and number each complaint, either electronically or in a log book, and shall include the following information: the nature of the complaint, the name, address and the telephone number of the complainant if the complainant will provide this information, the time and date of the complaint, specific details of operations that were occurring, any changers from normal operations, types of waste loads (including source) and other on Site activities;
- b. The Owner, upon notification of the complaint, shall initiate appropriate steps to determine all possible causes of the complaint, proceed to take the necessary actions to eliminate the cause of the complaint and forward a formal reply to the complainant; and
- c. The Owner shall complete and retain on-Site a report written within one (1) week of the complaint date, listing the actions taken to resolve the complaint and any recommendations for remedial measures, and managerial or operational changes to reasonably avoid the recurrence of similar incidents.
- The Owner shall designate a person to receive any complaints and to respond with a written notice of action as soon as possible. The Owner shall post the Site complaints procedure at the Site entrance. All complaints and the Owner's actions taken to remedy the complaints must be summarized in the Annual Report.
- All complaints received by the Owner are to be reported within twenty-four (24) hours of receipt to the District Manager, the Township of Warwick, the Environmental Inspector and WIFN. Complaints shall be reported to the WPLC at the next WPLC meeting.

12.0 EMERGENCY SITUATIONS

- In the event of a fire or discharge of a contaminant to the environment, Site staff shall contact the MECP Spills Action Centre (1-800-268-6060) and the District Office of the MECP forthwith.
- 12.2 The Owner shall submit to the District Manager a written report within three (3) days of the spill or incident, outlining the nature of the incident, remedial measures taken and measures taken to prevent future occurrences at the Site.
- 12.3 The Owner shall ensure that adequate fire fighting and contingency spill clean up equipment is available in accordance with Item 66 of Schedule "A" and that emergency response personnel are familiar with its use and location.

13.0 MONITORING

Groundwater Monitors

13.1 The Owner shall ensure all groundwater monitoring wells are properly capped, locked and protected from damage.

- In areas where landfilling is to proceed around monitoring wells, the wells must be decommissioned in accordance with O. Reg. 903 as amended from time to time and then replaced when waste placement and capping is completed.
- Any groundwater monitoring wells included in the monitoring program shall be assessed, repaired, replaced or decommissioned as required.
- 13.4 The Owner shall repair or replace any monitoring well which is destroyed or in any way made inoperable for sampling such that no more than one sampling event is missed.
- All monitoring wells that are no longer required as part of the groundwater monitoring program shall be decommissioned in accordance with good standard practice that will prevent contamination through the abandoned well and in accordance with O. Reg. 903. A report on the decommissioning shall be provided in the annual monitoring report for the period during which the well was decommissioned.

Monitoring Program

- Monitoring programs shall be carried out for groundwater, surface water, landfill gas in accordance with the Environmental Monitoring Plan, as amended from time to time listed as Item 39 and Appendix H of Item 68 of Schedule "A".
- The Owner shall ensure that Biochemical Oxygen Demand, Total Suspended Solids, Total coliform, Fecal coliform and E. Coli are added to the parameter list to be sampled for surface water station SS19.
- 13.8 Air Quality, Dust, Hydrocarbon, and Volatile Organic Carbon monitoring shall be undertaken in accordance with Item 85 in Schedule "A".
- 13.9 Air quality monitoring shall be in accordance with the canister method (USEPA TO-14/15).
- 13.10 Noise monitoring shall be undertaken by the Owner at the Site in accordance with Item 28 on Schedule "A" including any noise monitoring in response to noise complaints.
- 13.11 No alterations to the groundwater, air quality, noise or surface water monitoring programs shall be implemented prior to receiving written approval from the District Manager. The Owner shall give all requests to the Township of Warwick, the WPLC and WIFN at the same time or prior to the time that such request is made to the District Manager.

14.0 CONTINGENCY PLANS AND TRIGGER MECHANISMS

Hydraulic Containment

14.1 If the leachate level elevation in any of the pumping stations wells listed below rise above their respective trigger level, the Owner shall take additional groundwater levels within four (4) weeks as detailed in Figure 2 of Item 39 and Appendix H of Item 68 of Schedule "A".

Monitoring location Trigger Leachate Elevation (mASL)

PS1 232.7 PS3 232.6 PS5 232.8 PS7 233.4

The assessment process for leachate levels is detailed in Figure 2 of Appendix H of Item 68 on Schedule "A".

Groundwater Quality

- 14.2 The trigger concentration for groundwater quality shall be 80% of the Guideline B-7 values for parameters that have an Ontario Drinking Water Quality Standards value.
- 14.3 Groundwater chemical concentrations must be assessed with the trigger concentrations within six (6) weeks of sample collection.
- 14.4 The assessment process for groundwater quality is detailed in Figure 3 of Item 39 and Appendix H of of Item 68 of Schedule "A".

Surface Water Quality

- 14.5 The trigger mechanisms for surface water quality shall be one of the following:
 - a. Where off Site surface water quality satisfies the Ministry's PWQO, the respective PWQO shall be used as a trigger concentration; or
 - b. Where the background surface water quality naturally exceeds the PWQO, the background concentration should be considered in evaluating and updating the trigger concentration.
- 14.6 Surface water quality results will be assessed in accordance with the requirements established under the Industrial Sewage Works component of the EPAapproval for the Site.
- 14.7 The assessment process for surface water quality is detailed in Figure 4 of Appendix H of Item 68 in Schedule "A".

Landfill Gas

- 14.8 If landfill gas concentrations exceed 10% LEL, the Owner shall undertake additional monitoring, assess the source and pathway of methane to determine if the elevated concentrations are landfill related.
- 14.9 If the elevated concentrations are landfill related, the Owner shall undertake contingency measures.

General Contingency Measures

- 14.10 In the event a result of a monitoring test exceeds the trigger mechanisms detailed above, the Owner shall:
 - a. notify the District Manager, the WPLC, WIFN and the Township of Warwick of any trigger level exceedances within twenty four (24) hours of receipt of the results;
 - b. conduct an investigation into the cause of the adverse result and submit a report to the District Manager that includes an assessment of whether contingency measures need to be carried out;
 - c. if contingency measures are needed, submit detailed plans, specifications and descriptions for the design, operation and maintenance of the contingency measures, and a schedule as to when these measures will be implemented, to the Director and notify District Manager; and
 - d. implement the required contingency measures upon approval by the Director.

15.0 REPORTING

Semi Annual Volume Determination

- 15.1 The Owner shall undertake semi-annual air space surveys of the bottom and top waste contours to determine the estimated air space used for waste disposal in the prior six months. The air space survey shall include daily cover material and shall take into account settlement. The first air space survey shall be undertaken by no later than February 2012 with an air space survey being completed semi-annually after the completion of the first air space survey, until landfill Site closure.
- Wastes which the Owner has been ordered to dispose of at the Site by any ministry, department or agency of the federal or Provincial Crown shall be excluded from the air space survey calculations.
- 15.3 Each air space survey shall be conducted by an Ontario Land Surveyor or other qualified consultant and such air space survey shall be provided to the District Manager. The Owner shall keep a copy of each air space survey on-Site and make them available to MECP personnel upon request.

Quarterly Monitoring Reports

- The Owner shall submit quarterly monitoring reports to the Township of Warwick, WIFN, District Manager and the WPLC within sixty (60) days of the end of the calendar quarterly reporting period starting **September 30, 2012**.
- 15.5 Each report will include the following:
 - a. a summary of monitoring activities and results;
 - b. a summary of any exceedences and related operator responses;
 - c. any complaints received and operator response;
 - d. a summary of mitigation activities for noise, dust, litter, air quality or other taken during the quarter in accordance with the Best Management Practices;
 - e. any proposed improvements to monitoring or operating procedures; and

f. any implemented improvements to monitoring or operating procedures that have been identified to address or reduce impacts.

Annual Report

- A written report on the development, operation and monitoring of the Site, shall be completed annually (the "Annual Report"). The Annual Report shall be submitted to the Regional Director, the District Manager, the Township of Warwick, WIFN, and the WPLC, by **March 31st** of each year, and shall cover the 12 month period preceding December 31st.
- 15.7 The Annual Report shall include the following:
 - a. the results and an interpretive analysis of the results of all leachate, groundwater, surface water and landfill gas monitoring, including an assessment of the need to amend the monitoring programs;
 - b. an assessment of the operation and performance of all engineered facilities, the need to amend the design or operation of the Site, and the adequacy of and need to implement the contingency plans;
 - c. an assessment of the effectiveness of the Poplar Plantation and the Poplar System for leachate;
 - d. an assessment of the effectiveness of the on Site leachate treatment facility;
 - e. Site plans showing the existing contours of the Site;
 - f. areas of landfilling operation during the reporting period;
 - g. areas of intended operation during the next reporting period;
 - h. areas of excavation during the reporting period;
 - i. the progress of final cover, vegetative cover, and any intermediate cover application;
 - j. previously existing site facilities;
 - k. facilities installed during the reporting period;
 - 1. Site preparations and facilities planned for installation during the next reporting period;
 - m. calculations of the volume of waste, daily and intermediate cover, and final cover deposited or placed at the Site during the reporting period and a calculation of the total volume of Site capacity used during the reporting period;
 - n. a calculation of the remaining capacity of the Site, an estimate of the remaining Site life and a comparison of actual capacity used to approved Site capacity;
 - o. a summary of the quantity of any leachate or pre-treated leachate removed from the Site or leachate treated and discharged from the Site;
 - p. a summary of the weekly, maximum daily and total annual quantity (tonnes) of waste received at the Site;
 - q. a summary of any complaints received and the responses made;
 - r. a discussion of any operational problems encountered at the Site and corrective action taken:
 - s. an update summary of the amount of financial assurance which has been provided to the Director:
 - t. a report on the status of all monitoring wells and a statement as to compliance with Ontario Regulation 903;
 - u. any other information with respect to the site which the District Manager or Regional

- Director may require from time to time;
- v. a statement of compliance with all conditions of this ECA and other relevant Ministry requirements, guidelines and regulations;
- w. summary of inspections undertaken at the Site;
- x. a summary of recycling, processing and composting efforts undertaken including the amount of recyclable received, amount of processed material and composted material each year;
- y. any changes in operations, equipment or procedures employed at the Site; and
- z. recommendations regarding any proposed changes in operations of the Site.

16.0 SITE CLOSURE

Closure Plan

- At least two (2) years prior to closure or when 90% of the site capacity is reached, whichever comes first, the Owner shall submit to the Director for approval, with copies to the District Manager, the Township of Warwick, WIFN and the WPLC, a detailed Site closure plan pertaining to the termination of landfilling operations at this Site, post-closure inspection, maintenance and monitoring, and end use. The plan shall include the following:
 - a. a plan showing Site appearance after closure;
 - b. a description of the proposed end use of the Site;
 - c. a description of the procedures for closure of the Site, including:
 - i.) advance notification of the public of the landfill closure;
 - ii) posting of a sign at the Site entrance indicating the landfill is closed and identifying any alternative waste disposal arrangements;
 - iii) completion, inspection and maintenance of the final cover and landscaping;
 - iv) site security;
 - v) removal of unnecessary landfill-related structures, buildings and facilities; and
 - vi) final construction of any control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
 - d. a schedule indicating the time-period for implementing sub-conditions i) to vi) above.
 - e. descriptions of the procedures for post-closure care of the Site, including:
 - i.) operation, inspection and maintenance of the control, treatment, disposal and monitoring facilities for leachate, groundwater, surface water and landfill gas;
 - ii) record keeping and reporting; and
 - iii) complaint contact and response procedures;
 - f. an assessment of the adequacy of and need to implement the contingency plans for leachate and methane gas;
 - g. an updated estimate of the contaminating life span of the Site, based on the results of the monitoring programs to date; and

- h. an update of the cost estimates for financial assurance and the amount which has been provided to the Director to date.
- 16.2 The Site shall be closed in accordance with the closure plan as approved by the Director.

End Use

16.3 The Owner shall consult with affected stakeholders on the proposed end uses as committed to in Item 35 of Schedule "A" prior to the submission of its closure report under the EPA. The proposed end use activities should be consistent with the types of activities consulted upon during the EA.

Closure of the Site

- 16.4 Upon closure of the Site, the following features will be inspected, recorded on a quarterly basis and maintained as required on a seasonal basis:
 - a. evidence of settlement;
 - b. possible leachate seeps and springs;
 - c. cover soil integrity;
 - d. vegetative cover;
 - e. surface water drainage works;
 - f. erosion and sediment in surface water drainage system; and
 - g. groundwater monitoring wells.
- A vegetative cover consisting of vegetation that is suited to local conditions and that is capable with minimal care of providing vigorous, plentiful cover no later than its 3rd growing season shall be established over all completed areas to control erosion and maximize evaportranspiration. The Owner shall complete planting as soon as possible after reaching final contours.
- 16.6 If weather conditions do not allow timely placement of final and vegetative cover, silt curtains shall be employed to minimize silt loadings to surface water bodies.

SCHEDULE "A"

- 1. Document entitled "Environmental Assessment Act Section 9 Notice of Approval to Proceed with the Undertaking", Re: An Environmental Assessment for Warwick Landfill Expansion, Waste Management of Canada Corporation, EA File Number: EA-02-08-02-03, dated January 15, 2007.
- 2. Application for a Provisional Certificate of Approval for the Warwick Landfill, dated March 27, 2006.
- 3. Document entitled "Development and Operations Plans Warwick Landfill Expansion Volume 1 of 2" dated March 2006 prepared by Henderson, Paddon and Associates Limited.
- 4. Document entitled "Development and Operations Plans Warwick Landfill Expansion Volume 2 of 2" dated March 2006 prepared by Henderson, Paddon and Associates Limited.
- 5. Document entitled "Assessment of Geotechnical Design Requirements New Landfill Facility Warwick, Ontario" prepared by Alston Associates Inc., dated July 31, 2006.
- 6. Document entitled "2006 Poplar System Monitoring Report Warwick Landfill Site Township of Warwick Ontario" prepared by Jagger Hims Limited, dated January 2007.
- 7. Document entitled "Warwick Landfill Expansion Contaminating Lifespan Review" prepared by Jagger Hims Limited, dated March 2006.
- 8. Drawing No. 105716-111 entitled "Proposed Final Contours and Stormwater Management Plan" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 9. Drawing No. 105716-112 entitled "Landfill Bottom Contours (Top of Primary Gravel)" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 10. Drawing No. 105716-113 entitled "Landfill Perimeter Sections" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 11. Drawing No. 105716-114 entitled "Landfill Perimeter Sections" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 12. Drawing No. 105716-115 entitled "Leachate Collection Sump Details" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 13. Drawing No. 105716-116 entitled "Proposed Primary Leachate Collection System" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 14. Drawing No. 105716-117 entitled "Proposed Secondary Leachate Collection System" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 15. Drawing No. 105716-118 entitled "Landfill Sections" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.

- 16. Drawing No. 105716-119 entitled "Landfill Perimeter Sections" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 17. Drawing No. 105716-120 entitled "Landfill Perimeter Sections" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 18. Drawing No. 105716-125 entitled "Details and Sections" prepared by Henderson Paddon and Associates Limited, dated February 24, 2006.
- 19. Letter dated April 16, 2007 from Frank Ford, Henderson Paddon and Associated Limited to Wilf Ruland, Citizens Environmental Consulting.
- 20. Letter dated May 2, 2007 from Frank Ford, Henderson Paddon and Associated Limited to Wilf Ruland, Citizens Environmental Consulting.
- 21. Letter dated June 1, 2007 from Greg Washuta, P. Eng., M. Eng., Senior Waste Engineer, Ministry of the Environment to Reid Cleland, Waste Management of Canada Corporation.
- 22. Drawing No. 106716-127A entitled "Plough Furrow Surface Water Distribution Warwick Landfill" prepared by Henderson Paddon and Associates Limited, dated March 21, 2007.
- 23. Drawing No. 106716-F215 entitled "Proposed Mini-Transfer Area" prepared by Henderson Paddon and Associates Limited, dated March 29, 2007.
- 24. Report entitled "Best Management Practices Plan (Dust) Warwick Landfill Watford, Ontario " prepared by RWDI Air Inc., dated December 11, 2007.
- 25. Report entitled "Best Management Practices Plan (Litter) Warwick Landfill Watford, Ontario " prepared by RWDI Air Inc., dated December 11, 2007.
- 26. Report entitled "Best Management Practices Plan (Odour) Warwick Landfill Watford, Ontario " prepared by RWDI Air Inc., dated December 11, 2007.
- 27. Document entitled "Appendix F Air Quality Monitoring Plan and Letter", prepared by RWDI, dated November 29, 2007.
- 28. Document entitled "Environmental Noise Monitoring Program for the Warwick Landfill", prepared by Aercoustics Engineering Limited, dated November 21, 2007.
- 29. Document entitled "Proposed Expansion of WM Warwick Landfill Predicted Noise Impact", prepared by Aercoustics Engineering Limited, dated June 15, 2007.
- 30. Document entitled "Application for Approval of ECA of Approval A032203 Warwick Township County of Lambton MOE. Reference No. 0539-6N7TRY Part 1 of 2", dated July 13, 2007, prepared by Henderson Paddon and Associates Limited.

- 31. Document entitled "Application for Approval of ECA of Approval A032203 Warwick Township County of Lambton MOE. Reference No. 0539-6N7TRY Part 2 of 2- Financial Assurances", dated August 22, 2007, prepared by Henderson Paddon and Associates Limited.
- 32. Letter dated July 27, 2007 from Dan Toner, Assistant Director, Laboratory Services Branch to Tesfaye Gebrezghi, Supervisor- Waste Unit, MOE.
- Table 6.1 entitled "Phasing-Analysis for Leachate Quantities WM- Warwick Landfill Expansion" prepared by Henderson Paddon and Associates Ltd., dated August 17, 2007.
- 34. Letter dated August 20, 2007 from John DeYoe, RWDI to Frank Ford, Henderson Paddon and Associates Limited.
- 35. Discussion Paper 9 entitled "Impact Management Plan" and all Appendices dated October 2005 prepared by Waste Management of Canada Corporation.
- 36. Letter Report and attachments dated May 10, 2001 from Frank C. Ford of Henderson, Paddon Environmental to Mark Turner, Environmental Assessment and Approvals Branch.
- 37. Development and Operations Report Canadian Waste Services Inc. Warwick Landfill, Warwick Township Revised, dated October 1997, prepared by Henderson Paddon Environmental Inc.
- 38. Consolidated Report Leachate Management Plan Canadian Waste Services Inc. Warwick Landfill Warwick Township dated July 2001 prepared by Henderson Paddon Environmental Inc.
- 39. Environmental Monitoring Plan Warwick Landfill Township of Warwick, Ontario dated December 2007, prepared by Jagger Hims Limited.
- 40. Letter dated October 11, 2007 from Brad Bergeron, RWDI to Greg Washuta, Senior Waste Engineer, Ministry of the Environment.
- 41. Report entitled "Stormwater Management Plan Poplar Irrigation Area Warwick Landfill Expansion Watford, Ontario" dated December 2007, prepared by Henderson Paddon Environmental Inc.
- 42. Letter dated November 21, 2007 from Kevin Smith, Aercoustics Engineering Limited to Wayne Jenken, Waste Management of Canada Corporation.
- 43. E-mail and attachments dated February 12, 2008 from Brad Bergeron, RWDI Air Inc. to Greg Washuta, Senior Waste Engineer, EAAB, MOE.
- 44. E-mail and attachments dated January 29, 2008 from Brad Bergeron RWDI Air Inc. to Greg Washuta, Senior Waste Engineer, EAAB, MOE.
- 45. Letter dated March 3, 2008 from Wayne Jenken, Landfill Engineer, WMCC to Ian Parrott, Manager, ECA of Approval Review Section, EAAB, MOE.

- 46. Letter dated June 13, 2008 from Frank Ford, Senior Environmental Engineer, Henderson Paddon and Associates Limited to Greg Washuta, P. Eng., Senior Waste Engineer, Waste Unit, EAAB, MOE.
- 47. Application for a Provisional Certificate of Approval for a Waste Disposal Site for the Twin Creeks Landfill Site, signed and dated December 11, 2008.
- 48. Letter dated December 11, 2008 from Reid Cleland, District Landfill Manager, WMCC to Doris Dumais, Approvals Director, EAAB, MOE.
- 49. Report entitled "Cell 12 Project and Changes Affecting The Warwick Landfill Expansion" and attached appendices, created by Henderson Paddon & Associates Limited, dated August 2008.
- 50. Application for a Provisional Certificate of Approval for a Waste Disposal Site for the Twin Creeks Landfill Site, dated August 11, 2008.
- 51. Letter dated December 18, 2008 from Greg Washuta, Senior Waste Engineer, Waste Unit, EAAB, MOE to Reid Cleland, District Landfill Manager, WMCC.
- 52. Letter dated December 18, 2008 from Wayne Jenken, Landfill Engineer, WMCC to Greg Washuta, Senior Waste Engineer, Waste Unit, EAAB, MOE.
- 53. Letter dated December 18, 2008 from Jason Balsdon and Brent Langille, Jagger Hims Limited to Wayne Jenken, Landfill Engineer, WMCC.
- 54. Application for a Provisional Certificate of Approval for a Waste Disposal Site for Waste Management of Canada Corporation's Twin Creeks Landfill Site, signed and dated January 16, 2009.
- 55. Report and Appendix A entitled "Waste Management of Canada Corporation Twin Creeks Landfill Use of Geonet for Secondary Drainage Layer" prepared by Henderson Paddon and Associates, dated January 2009.
- Letter dated March 18, 2009 from Greg Washuta Senior Waste Engineer, Waste Unit, EAAB, MOE to Reid Cleland, Landfill Manager, WMCC.
- 57. Letter report and appendices A, B and C dated April 9, 2009 from Jeff Armstrong, Genivar Consultants LP to Greg Washuta, Senior Waste Engineer, Waste Unit, EAAB, MOE.
- 58. Application for a Waste Disposal Site Certificate of Approval dated April 28, 2009 and signed by Reid Cleland, District Manager, Waste Management of Canada Corporation.
- 59. Report produced by Genivar Consultants LP entitled "Development & Operations Report for a Waste Transfer Station Application" dated June 2009.
- 60. November 24, 2009 e-mail from Jeff Armstrong of Genivar Consultants LP to Jim Chisholm, Senior Review Engineer with the Ministry of Environment indicating that the application is for an existing mini

transfer area but flexibility is being applied for to direct the waste collected at this area to alternate waste disposal sites.

- 61. November 24, 2009 e-mail from Jim Chisholm, Senior Review Engineer with the Ministry of Environment to Jeff Armstrong, Genivar Consultants LP, requesting information about how the Mini-Transfer Area already located at the landfill is covered by the existing Certificate of Approval and the December 21, 2009 e-mail response from Jeff Armstrong to Jim Chisholm to his November 24, 2009 e-mail, outlining that the Mini-Transfer Area is covered by the 1997 Design and Operation Report that is identified in Item 37 and attached page 7-4 of the report in which Section 7.8 dealt with the Mini-Transfer Area.
- 62. January 24, 2011, 12:11PM, e-mail from Wayne Jenken, Area Landfill Engineer, Waste Management of Canada Corporation to Jim Chisholm, Senior Review Engineer with the Ministry of Environment indicating that the original Mini Transfer Area moved to the new location on November 2009 and that the old location for the Mini Transfer Area has been removed. The e-mail also made suggested changes to a draft of the Notice.
- 63. Document entitled "Twin Creeks Landfill Expansion of Poplar Cap Irrigation System for Existing Waste Disposal Area January 2010" prepared for Waste Management of Canada Corporation by Genivar Consultants LP dated January 2010.
- 64. Letter dated November 2, 2010 addressed to Mr. Reid Cleland, Waste Management of Canada Corporation from Mr. Greg Washuta, Ministry of the Environment providing comments and requesting additional information on MOE Reference File No. 1486-829MCN.
- 65. Document entitled "Twin Creeks Landfill, Watford, ON 091-13089-00 (91730R) Application for Approval for Expansion of Poplar Plantation (South Fill Area) Response to MOE Comments Letter dated November 2, 2010" prepared for Waste Management of Canada Corporation by Genivar Consultants LP dated December 2, 2010.
- 66. Report entitled "Development and Operations Plan Warwick Landfill Expansion Volume 1 of 3" prepared for WMCC by Henderson Paddon & Associates dated March 2008.
- 67. Report entitled "Development and Operations Plan Warwick Landfill Expansion Volume 2 of 3" prepared for WMCC by Henderson Paddon & Associates dated March 2008.
- 68. Report entitled "Development and Operations Plan Warwick Landfill Expansion Monitoring Plans Volume 3 of 3" prepared for WMCC by Henderson Paddon & Associates dated March 2008.
- 69. Letter dated May 6, 2009 addressed to Mr. Reid Cleland, WMCC from Mr. Greg Washuta, Ministry of the Environment providing ministry review comments on the Development and Operations Plan
- 70. Letter dated August 19, 2009 addressed to Mr. Reid Cleland, WMCC from Mr. Greg Washuta, Ministry of the Environment providing comments from the Township of Warwick, Walpole Island First Nation and the Warwick Public Liaison Committee on the Development and Operations Plan

- 71. Letter dated November 12, 2009 addressed to Mr. Greg Washuta, Ministry of the Environment from Mr. Wayne Jenken, WMCC.
- 72. Drawing set entitled "Twin Creeks Landfill Landscaping and Signage Detail Construction Drawings" prepared by Schollen & Company Inc. and dated July 4, 2008. The drawing set consists of the following:
 - i. Cover page entitled "Twin Creeks Landfill Landscaping and Signage Detail Construction Drawings" prepared by Schollen & Company Inc. and dated July 4, 2008;
 - ii. Drawing No. L-1 entitled "Landscape Plan Screening Berm";
 - iii. Drawing No. L-1A entitled "Lanscape Detail at Intersections Screening Berm"
 - iv. Drawing No. L-2 entitled "Landscape Plan Screening Berm";
 - v. Drawing No. L-3 entitled "Landscape Plan Screening Berm & Area F";
 - vi. Drawing No. L-4 entitled "Landscape Plan Screening Berm";
 - vii. Drawing No. L-5 entitled "Landscape Plan Screening Berm and Area G (North)";
 - vii. Drawing No. L-6 entitled "Landscape Plan Screen Planting Area G (South)";
 - viii. Drawing No. L-7 entitled "Landscape Plan Screen Planting and Creek Area A and Area B";
 - ix. Drawing No. L-8 entitled "Landscape Plan Screen Planting Areas C, D and E";
 - x. Drawing No. L-9 entitled "Landscape Plan Restoration Planting Area H";
 - xi. Drawing No. LD-1 entitled "Landscape Detail Plan";
 - xii. Drawing No. LD-2 entitled "Landscape Notes and Master Plant List"; and
 - xiii. Drawing No. LD-3 entitled "Signage Details";
- 73. Application for a Certificate of Approval for a Waste Disposal Site dated April 6, 2011 submitted by Waste Management of Canada Corporation for Provisional Certificate of Approval No. A032203 requesting approval for use of an alternative daily cover material and amended Best Management Practices for Odour.. The supporting documentation for the application included the following:
 - i. Cover letter dated April 7, 2011 addressed to Mr. Tes Gebrezghi, Ministry of the Environment from Mr. Reid Cleland, Waste Management of Canada Corporation;
 - ii. Report entitled "Best Management Practices Plan (Odour) Warwick Landfill" prepared for Waste Management of Canada Corporation by RWDI Air Inc. (Project No. 1100800) dated April 7, 2011;
 - iii. Letter dated March 24, 2011 addressed to Mr. Wayne Jenken, Waste Management of Canada Corporation from Mr. Peter Pickfield, Garrod Pickfield; and
 - iv. Email dated March 22, 2011 at 3:32 p.m. sent to Mr. Peter Pickfield, Garrod Pickfield from Mr. Wayne Jenken.
- 74. Letter dated October 4, 2011 addressed to Mr. Tesfaye Gebrezghi, Ministry of the Environment from Mr. Reid Cleland, Waste Management of Canada requesting an amendment to Condition 167 (a). The supporting documentation attached to the letter included the following:
 - a. Application for a Certificate of Approval for a Waste Disposal Site dated October 4, 2011;
 - b. Provisional Certificate of Approval A032203 Notice No. 7 dated June 1, 2011;
 - c. Letter from Wayne Jenken, WMCC to Don Bruder, Township of Warwick dated February

- 23, 2011;
- d. Letter from Wayne Jenken, WMCC to Don Bruder, Township of Warwick dated May 26, 2011;
- e. Letter from Peter Pickfield, Garrod Pickfield LLP to Reid Cleland, WMCC dated September 14, 2011;
- f. Letter from Wayne Jenken, WMCC to Dean Jacobs, Walpole Island First Nations dated July 14, 2011;
- g. Email from Kent Hunter, Neegan Burnside to Wayne Jenken dated September 19, 2011 at 3:54 p.m.;
- g. Email from Wayne Jenken, WMCC to Kent Hunter, Neegan Burnside dated September 20, 2011 at 1:52 p.m.;
- h. Email from Kent Hunter, Neegan Burnside to Wayne Jenken dated September 27, 2011 at 10:23 a.m.;
- i. WPLC meeting minutes dated September 15, 2011; and
- j. WPLC meeting minutes dated April 7, 2011.
- 75. Letter dated May 22, 2012 addressed to Ms. Agatha Garcia Wright, Director, Ministry of the Environment from Mr. Wayne Jenken, Waste Management of Canada Corporation requesting amendment to Condition No. 7.10 (Landfill Gas Management). The letter included the following supporting documentation:
 - i. Letter report entitled "Early Vertical Gas Well Collection System" dated May 2012 and addressed to Mr. Reid Cleland, Waste Management of Canada Corporation from Mr. Frank Ford, GENIVAR Inc.;
 - ii. Drawings No. 102 and G111 Landfill Gas Collection System;
 - iii. Landfill Gas Headers, Gas Building with Blowers and Landfill Gas Flaring System Design Drawings and Design and Operations Plan for Modifications;
 - iv. Description of Phase 1 of the Gas Collection System;
 - v. Revised Section 4.7 of the Design and Operations Plan;
 - vi. Application to Amend Environmental Compliance Approval No. A032203 and supporting documents;
 - vii. Consultation Summary and Records with Stakeholders; and
 - viii. Design Drawings for Amended Landfill Gas Management System.
- 76. Letter dated July 26, 2012 addressed to Mr. Reid Cleland, Waste Management of Canada Corporation from Mr. Dale Gable, Ministry of the Environment requesting additional information on the location of the proposed gas extraction wells.
- 77. Letter dated August 9, 2012 addressed to Mr. Dale Gable, Ministry of the Environment from Mr. Frank Ford, GENIVAR Inc. providing details on the location of the gas wells.
- 78. Letter Report dated May 9, 2012 addressed to Ms. Agatha Garcia Wright, Director, Ministry of the Environment form Mr. Wayne Jenken, Waste Management of Canada requesting Conditions 6.48 to 6.61 be amended. The letter report included the following Sections:
 - i. Environmental Compliance Approval application signed by Reid Cleland, WMCC and

- dated May 9, 2012;
- ii. Proof of legal name and zoning;
- iii. Record of consultation with Township of Warwick;
- iv. Record of consultation with Walpole First Island First Nation; and
- v. Record of consultation with WPLC.
- 79. Letter report dated September 26, 2012 addressed to Ms. Agatha Garcia-Wright. Director, Environmental Approvals Branch, Ministry of the Environment from Mr. Philip Janisse and Mr. Brent Langille, RWDI Inc. requesting the time frame for the use of ASR be extended and the sampling frequency for the ASR be reduced.
- 80. Letter dated October 15, 2012 and supporting drawings addresses to Ms. Agatha Garcia-Wright. Director, Environmental Approvals Branch, Ministry of the Environment from Mr. Wayne Jenken, Waste Management of Canada Corporation detailing the proposed changes to the landscape plan for the Site. The supporting drawings include the following drawing prepared by Schollen and Company Inc (Contract No. 27007) dated June 2012:
 - Cover page entitled "Twin Creeks Landfill Expansion Landscape and Details Drawings" dated June 29, 2012
 - ii. Drawing No. L-1 entitled "Landscape Plan Screening Berm";
 - iii. Drawing L-1A entitled "Landscape Detail at Intersections Screening Berms";
 - iv. Drawing L-2 entitled "Landscape Plan Screening Berm";
 - v. Drawing L-3 entitled "Landscape Plan Screening Berm and Area F";
 - vi. Drawing L-4 entitled "Landscape Plan Screening Berm";
 - vii. Drawing L-5 entitled "Landscape Plan Screening Berm and Area G";
 - viii. Drawing L-6 entitled "Landscape Plan Area G Planting Area";
 - ix. Drawing L-7 entitled "Landscape Plan Area A and Area B Screen Planting and Creek";
 - x. Drawing L-8 entitled "Landscape Plan Area C, D and E Screen Planting";
 - xi. Drawing L-9 entitled "Landscape Plan Area H Restoration Planting";
 - xii. Drawing LD-1 entitled "Landscape Detail Plan";
 - xiii. Drawing LD-2 entitled "Landscape Notes and Master Plant List";
 - xiv. Drawing LD-3 entitled "Signage Details";
 - xv. Drawing LD-4 entitled "Details"; and
 - xvi. Drawing LD-5 entitled "Details".
- 81. Letter dated November 13, 2013 addressed to Agatha Garcia-Wright, Director, Ministry of the Environment from Wayne Jenken, Waste Management of Canada Corporation requesting amendment to Condition 8.6 (a). The following supporting documentation was attached to the memorandum.
 - Amended Environmental Compliance Approval Number A032203 issued December 13, 2011
 - ii. Amended Environmental Compliance Approval Number A032203 Notice No. 1 issued February 29, 2012
 - iii. Application to Amend Environmental Compliance Approval No. A032203 with Signature of Reid Cleland in Section 1.4
 - iv. Record of Consultations with Stakeholders

- 82. Application package dated May 4, 2016 and received on May 16, 2016 including all subsequently submitted supporting documentation and drawings, including the amendment to the D&O plan and associated drawings.
- 83. Report titled "Twin Creeks Landfill Site: Best Management Practices Plan (Dust) Version 7" prepared by RWDI Air Inc., dated May 19, 2017.
- 84. Report titled "Twin Creeks Landfill Site: Best Management Practices Plan (Odour) Version 8" prepared by RWDI Air Inc., dated May 19, 2017.
- 85. Report titled "Twin Creeks Landfill Site: Ambient Air Quality Monitoring Plan (Revision #3)" prepared by RWDI Air Inc., dated May 18, 2017.
- 86. "WM Twin Creeks Landfill Site, Leachate Management Framework" prepared by HDR, dated November 29, 2017.
- 87. Application for a an amendment to ECA No. A032203 to provide detailed design for the construction of Cell 4 in response to Condition 4.8. Signed by Reid Cleland and dated October 16, 2018. The supporting documentation for the application included the drawing set titled "Waste Management of Canada Corporation, Twin Creeks Landfill Expansion, Warwick Township, Landfill Base Preparation Cell 4." Prepared by WSP Group, October, 2018. The drawing set consists of the following:
 - i. Drawing No. 106716P-400 "Title Sheet";
 - ii. Drawing No. 106716P-401 "March 2018 Existing Conditions Plan;
 - iii. Drawing No. 106716P-402 "Cell 4 Bottom of Excavation West";
 - iv. Drawing No. 106716P-403 "Cell 4 Bottom of Excavation East";
 - v. Drawing No. 106716P-404 "Cell 4 Top of Primary Clay Liner West";
 - vi. Drawing No. 106716P-405 "Cell 4 Top of Primary Clay Liner East";
 - vii. Drawing No. 106716P-406 "Cell 4 Temporary Clay Seal West";
 - vii. Drawing No. 106716P-407 "Cell 4 Temporary Clay Seal East";
 - viii. Drawing No. 106716P-408 "Cell 4 Section and Details";
 - ix. Drawing No. 106716P-409 "Cell 4 Section and Details";
 - x. Drawing No. 106716P-410 "Cell 4 Section and Details";
 - xi. Drawing No. 106716P-411 "Cell 4 Pumping Station PS5/PS6 Plans and Sections";
 - xii. Drawing No. 106716P-412 "Cell 4 Pumping Station PS5/PS6 Plans and Sections";
 - xiii. Drawing No. 106716P-413 "Cell 4 Sections and Details"; and
 - xiv Drawing No. 106716P-414 "Cell 4 Sections and Details".

The reasons for the imposition of these terms and conditions are as follows:

Conditions 1.1, 1.2, 1.3, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.14, 1.15, 1.23, and 1.24 are to clarify the legal rights and responsibilities of the Owner and Operator under this Approval.

Conditions 1.4 and 1.5 are to ensure that the Site is designed, operated, monitored and maintained in accordance

with the application and supporting documentation submitted by the Owner, and not in a manner which the Director has not been asked to consider.

Condition 1.12 is to ensure that the Site is operated under the corporate name which appears on the application form submitted for this approval and to ensure that the Director is informed of any changes.

Condition 1.14 is to restrict potential transfer or encumbrance of the Site without the approval of the Director and to ensure that any transfer of encumbrance can be made only on the basis that it will not endanger compliance with this Approval.

Conditions 1.15 and 1.16 are to ensure that the successor is aware of its legal responsibilities.

Conditions 1.17, 1.18, 1.19, and 1.20 clarify that the Part II.1 Director is an individual with authority pursuant to Section 197 of the Environmental Protection Act to require registration on title and provide any person with an interest in property before dealing with the property in any way to give a copy of the Approval to any person who will acquire an interest in the property as a result of the dealing.

Condition 1.21 is to ensure that appropriate Ministry staff has ready access to the Site for inspection of facilities, equipment, practices and operations required by the conditions in this Approval. This Condition is supplementary to the powers of entry afforded a Provincial Officer pursuant to the Act, the OWRA, the PA, the NMA and the SDWA.

Condition 1.25 clarifies what information may be subject to the Freedom of Information Act.

Condition 2.1 is to require Financial Assurance for this company to ensure that sufficient funds are available to the Ministry to clean up the Site in the event that the Owner is unable or unwilling to do so.

Conditions 3.1 to 3.15 inclusive are necessary in order to establish a forum for the exchange of information and public dialogue on activities to be carried out at the landfill site. Open communication with the public and local authorities is important in helping to maintain high standards for site operation and environmental protection.

Condition 3.16 has been included in order to ensure that consultation with First Nations is undertaken during the submission of any application to amend any approval required by the Ministry.

Conditions 4.1 to 4.6 inclusive, 4.8, and 4.9 is to ensure that the Site is designed, constructed and operated in an environmentally acceptable manner, based on the conceptual design and operations for the Site.

Condition 4.7 is to ensure the availability of as-built drawings for inspection and information purposes.

Condition 4.10 has been specifically included to allow for optimization of design for subsequent stages based on operating experience and monitoring results and to ensure that any necessary remedial action is undertaken before landfilling may proceed in the next stage.

Condition 4.11 has been included to ensure that the site has been constructed in accordance with the approved design plans, specifications and QA/QC procedures and to ensure that there is not an adverse impact on the environment.

Condition 4.12 is to ensure that there is a person, reporting directly to the Ministry, with associated costs reimbursed by the Owner, who is responsible for inspecting the Site, based on the requirements in this ECA of Approval to ensure that the Site is operated in an environmentally acceptable manner.

Conditions 4.13, 4.14, 15.1, 15.2 and 15.3 is to specify the amount of days the environmental inspector is required to be on site based on the conditions in this approval and in accordance with the previously approved EA for the site.

Condition 5.1 is to ensure safe side slopes of the berm.

The reason for Condition 5.2 is to approve the diversion area based on the information submitted. This is ensure the protection of the environment and the public.

Condition 5.3 is to approve the use of Cell 12 for contaminated soil.

Condition 5.4 is to ensure the Owner carries out the landscape plan based on the submitted information.

Conditions 6.1 and 6.18 are included in order to ensure that waste disposal at the site is undertaken in accordance with applicable Ministry of the Environment regulations and guidelines. Compliance with these regulations and guidelines will ensure that the site does not cause and adverse effect on the environment.

Conditions 6.4 and 6.7 is to specify the approved areas from which waste may be accepted at the Site and the types and amounts of waste that may be accepted for disposal at the Site, based on the Owner's application and supporting documentation.

Condition 6.5 is to specify restrictions on the extent of landfilling at this Site based on the Owner's application and supporting documentation. These limits define the approved volumetric capacity of the site. Approval to landfill beyond these limits would require an application with supporting documentation submitted to the Director.

Condition 6.6 specifies the maximum amount of waste that may be received at the site based on the previously approved Environmental Assessment for the site.

Condition 6.8 has been inserted to minimize the potential for clogging of the drainage layer and to minimize temperature effects on the leachate collection system. Failure to maintain the specified minimum thickness of waste and cover material may result in a decrease in the service life of the drainage layer.

Conditions 6.9 to 6.14 inclusive have been included in order to ensure asbestos waste is handled and disposed of in accordance with O. Reg. 347 as amended from time to time. Proper handling and disposal of asbestos waste ensures that the asbestos waste does not cause an adverse impact on the environment and also does not affect human health.

Condition 6.16 is needed to make certain that uses at the site are for waste disposal purposes only and not any other uses which may cause an adverse impact on the environment and human health.

Condition 6.17 is necessary in order to ensure that all waste loads are inspected and waste that is disposed of at the site is in accordance with the terms and conditions in this ECA of Approval.

Condition 6.19 is to ensure that open burning of municipal waste is not permitted because of concerns with air emissions, smoke and other nuisance affects, and the potential fire hazard.

Conditions 6.20 through 6.22 inclusive are to ensure that users of the Site are fully aware of important information and restrictions related to Site operations under this ECA of Approval.

Conditions 6.23 to 6.27 inclusive are to specify the normal hours of operation for the landfill Site and a mechanism for amendment of the hours of operation.

Conditions 6.28 to 6.30 inclusive are to specify site access to/from the Site and to ensure the controlled access and integrity of the Site by preventing unauthorized access when the Site is closed and no site attendant is on duty.

Condition 6.31 is needed in order to make certain that the waste received at the site is in accordance with the ECA and O. Reg. 347.

Condition 6.32 has been included is to ensure that access roads are clear and do not pose a safety hazard to the general public.

Condition 6.33 is for the protection of public health and safety and minimization of the potential for damage to environmental control, monitoring and other works at the landfill Site. Scavenging is the uncontrolled removal of material from waste at a landfill site.

Conditions 6.34 to 6.40 inclusive are to ensure that the Site is operated, inspected and maintained in an environmentally acceptable manner and does not result in a hazard or nuisance to the natural environment or any person.

Condition 6.41 is to ensure that noise from or related to the operation of the landfill is kept to within Ministry limits and does not result in a hazard or nuisance to any person.

Condition 6.42 is included to ensure that noise monitoring is undertaken in accordance with the noise monitoring program prepared and to ensure that an independent acoustic audit is completed in accordance with the Ministry's requirements.

Condition 6.43 is to clarify when the Best Management Plans can be amended and the mechanism for amending the Best Management Plans.

Condition 6.44 is to ensure that appropriate measures are taken in order to prevent surface water from contacting waste so as not to cause an adverse effect on the environment.

Conditions 6.45 and 7.18 is to specify other approvals required for works and activities related to the operation of this Site as a landfill.

Condition 6.46 has been included is in order to prevent ponding in on site ditches and any adverse impact on the environment and human health.

Condition 6.47 is to ensure that landfilling operations are conducted in an environmentally acceptable manner. Daily and intermediate cover is used to control potential nuisance effects, to facilitate vehicle access on the site, and to ensure an acceptable site appearance is maintained. The proper closure of a landfill site requires the application of a final cover which is aesthetically pleasing, controls infiltration, and is suitable for the end use planned for the site.

Condition 6.48 to 6.61 inclusive is to specify the approval requirements for use of alternative cover material at the Site.

Condition 7.1 is necessary so that runoff from contaminated soils does not create and adverse impact on the environment.

Conditions 7.2 and 7.3 are included in order to ensure that the composting and processing operations at the site are conducted in a fashion in accordance with Ministry's regulations, guidelines and so as not to pose a threat to human health or the environment.

Conditions 7.4, 9.3, 9.4, 9.5, 9.6 and 9.7 are to provide for the proper assessment of effectiveness and efficiency of site design and operation, their effect or relationship to any nuisance or environmental impacts, and the occurrence of any public complaints or concerns. Record keeping is necessary to determine compliance with this ECA of Approval, the EPA and its regulations.

Conditions 7.5 and 7.6 inclusive have been included are to ensure tire shred storage in accordance with the Fire Protection and Prevention Act and to protect the natural environment.

Condition 7.7 is to ensure that backup power is available so that all facilities remain operational during a power disruption thus preventing any adverse impacts on the environment.

Condition 7.8 has been inserted in order to ensure that concentrations of landfill gas do not pose a hazard to human health or the environment.

Condition 7.9 is to ensure that landfill gas is built and managed in accordance with the Ministry's requirement and regulation.

Condition 7.10 is needed in order to ensure that an adequate landfill gas management system is installed at the site in order to protect human health and the environment.

Conditions 7.11 and 7.12 are to minimize the potential for clogging of leachate collection pipes and to ensure effective operation of the leachate collection system components for as long as they are required. Failure to clean out these components on a regular basis may result in a decrease in their service lives. Regular cleaning of the leachate collection pipes is especially important during stages of landfilling when the level of both organic and inorganic constituents in the leachate is high and, consequently, the potential for clogging due to encrustation is greatest. As the landfill reaches the more stable methane producing stage, pipe cleaning may be required less frequently.

Condition 7.13 has been added to ensure adequate flow of leachate in the leachate collection pipes.

Conditions 7.14 to 7.17 are to ensure that the leachate collection system is designed and built in accordance with Regulations and the ministry's requirements.

Condition 7.18 is included is in order to prevent off site migration of leachate which may cause an adverse effect on the environment.

Conditions 8.1 to 8.4 inclusive are needed to ensure leachate recirculation is undertaken in accordance with the ministry's requirements and leachate recirculation does not pose an adverse impact on the environment.

Condition 8.5 is in accordance with EA condition 22 and protects the natural environment from any impacts due to discharge of raw or treated leachate to adjacent creeks.

Condition 8.6 is to ensure that a fully functional leachate treatment system is in place on site prior to waste placement.

Condition 8.7 clarifies the responsibilities of the owner, the requirements of the ministry, the authority of the Ministry and protects the natural environment and human health.

Conditions 9.1 and 9.2 are needed to ensure regular inspections of the site are conducted in order to protect the natural environment.

Conditions 9.8 to 9.12 inclusive is to ensure that accurate waste records are maintained to ensure compliance with the conditions in this ECA of Approval (such as fill rate, site capacity, record keeping, annual reporting, and financial assurance requirements), the EPA and its regulations.

Conditions 9.13, 15.4, 15.5 and 15.6 are to ensure that regular review of site development, operations and monitoring data is documented and any possible improvements to site design, operations or monitoring programs are identified. An annual report is an important tool used in reviewing site activities and for determining the effectiveness of site design.

Condition 10.1 is to ensure that the Site is supervised and operated by properly trained staff in a manner which does not result in a hazard or nuisance to the natural environment or any person.

Conditions 11.1, 11.2 amd 11.3 is to establish a forum for the exchange of information and public dialogue on activities carried out at the landfill Site. Open communication with the public and local authorities is important in helping to maintain high standards for site operation and environmental protection.

Conditions 12.1 and 12.2 are to ensure that the Ministry is informed of any spills or fires at the Site and to provide public health and safety and environmental protection.

Condition 12.3 is contained in the ECA to guarantee that appropriate measures are taken by the County to prevent future occurrences of spills or fires at the site and to protect public health and safety and the environment.

Conditions 13.1 to 13.5 inclusive are to ensure protection of the natural environment and the integrity of the groundwater monitoring network.

Conditions 13.6 through 13.11 inclusive are to demonstrate that the landfill site is performing as designed and the impacts on the natural environment are acceptable. Regular monitoring allows for the analysis of trends over time and ensures that there is an early warning of potential problems so that any necessary remedial/contingency action can be taken.

Conditions 14.1 through 14.10 inclusive are to ensure that the Owner follows a plan with an organized set of procedures for identifying and responding to unexpected but possible problems at the Site. A remedial action / contingency plan is necessary to ensure protection of the natural environment. A leachate contingency plan is a specific requirement of Reg. 232.

Conditions 16.1 and 16.2 are to ensure that final closure of the Site is completed in an aesthetically pleasing manner and to ensure the long-term protection of the natural environment.

Condition 16.3 ensures proper public consultation about the end use of the Site is undertaken and that the end use activities are consistent with those identified during the EA process.

Conditions 16.4 to 16.6 ensure that certain activities are undertaken upon closure of the site in order to ensure that the closed site does not affect the natural environment.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). A032203 issued on December 13, 2011

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment, Conservation and Parks 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 19th day of December, 2020

Mohsen Keyvani, P.Eng.

State

Director

appointed for the purposes of Part II.1 of the Environmental Protection Act

CF/

c: District Manager, MECP Sarnia Brent J. Langille, RWDI

APPENDIX A2:

Amended Certificate of Approval [Industrial Sewage Works] No. 3506-7M5PU3, dated July 9, 2009

AMENDED CERTIFICATE OF APPROVAL INDUSTRIAL SEWAGE WORKS

NUMBER 3506-7M5PU3 Issue Date: July 9, 2009

Waste Management of Canada Corporation (WM)

5045 South Service Rd, Suite 300 Burlington, Ontario L6L 5Y7

Site Location: Twin Creeks Landfill Site

8039 Zion Line

Warwick Township, County of Lambton, Ontario N0M 2S0

• Firstly, Part of Lot 19 & 20, Concession 3, S.E.R., and Part of Lots 20, 21 & 22, Concession 4, S.E.R., and Part of the Road Allowance between Lots 21 and 22, Concession 4, S.E.R., shown as Parts 1,2, and 3 on Plan 25R-9125 and Part 2 on Plan 25R-1903, Save and Except

Part 1 on Plan 25R-6184.

• Secondly, Part of Lot 20, Concession 3 S.E.R, shown as Part 1 on Plan 25R-6184.

You have applied in accordance with Section 53 of the Ontario Water Resources Act for approval of:

Establishment of a leachate collection, treatment, and disposal facility and a stormwater management facility to service the Twin Creeks Landfill Site located in the Township of Warwick, County of Lambton, consisting of the following:

STORMWATER MANAGEMENT FACILITY

Establishment of a stormwater management facility to service a 146.5 ha drainage area of the Twin Creeks Landfill Site Expansion within the 300 ha area of the Twin Creeks Landfill Site consisting of the following:

Stormwater Management Pond - SWM Pond #1:

a stormwater management facility (**SWM Pond #1**) to service a total drainage area of 33.7 ha consisting of the eastern part of the existing landfill site and future excess soil stockpile area, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:100 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

• one (1) approximately 1,300 m long perimeter trapezoidal ditch along the toe of the eastern side of the closed landfill having a 0.6 m wide bottom and 2H:1V side slopes, discharging collected stormwater to an extended detention wet pond described below;

- one (1) ditch along the south and west side of the leachate storage lagoon collecting runoff from the excess soil stockpile area, discharging collected stormwater to a forebay described below;
- one (1) forebay with approximate dimensions of 19 m long X 16 m wide bottom, and 4H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 294.0 m long bottom, 23.5 m wide bottom and 4H:1V side slopes, equipped with a permanent vertical baffle with a minimum elevation of 238.7 m ASL, providing a total storage capacity of 21,429 m³ consisting of a permanent pool storage volume of 3,651 m³ with an average depth of 0.5 m, and an extended storage volume of 17,778 m³ with an extended storage depth of 1.91 m, equipped with an outlet structure described below;
- an outlet structure consisting of two (2) 1500 mm diameter concrete manholes discharging through two (2) 750 mm diameter outlet pipes, each pipe equipped with a 1200 mm X 1200 mm concrete valve chamber and a sluice gate valve, to a perimeter ditch flowing towards a roadside ditch along County Road 79;
- one (1) 8.0 m wide emergency overflow structure with weir elevation of 239.55 m ASL discharging to a perimeter ditch flowing towards County Road 79 roadside ditch; and
- including all controls and appurtenances.

Stormwater Management Pond - SWM Pond #2:

a stormwater management facility (**SWM Pond #2**) to service a total drainage area of 67.9 ha consisting of southwestern part of the expanded landfill site, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:100 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

- two (2) approximately 400 m and 1500 m long perimeter ditches along the southern part of the landfill having a minimum depth of 1.0 m, and 3H:1V & 4H:1V side slopes discharging collected stormwater through two (2) culverts, 3000 mm X 1200 mm concrete box and 1390 X 970 mm CSPA, to a forebay described below;
- one (1) forebay with approximate dimensions of 47 m long X 30 m wide bottom and 4H:1V and 3H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 391.0 m long X 44.0 m wide bottom and 4H:1V and 3H:1V side slopes, providing a total storage capacity of 48,954 m³ consisting of a permanent pool storage volume of 10,856 m³ with a average depth of 0.60 m, and an extended storage volume of 38,098 m³ with an extended storage depth of 1.75 m, equipped with an outlet structure described below;
- an outlet structure consisting of one (1)1800 mm diameter and one (1) 2400 mm diameter concrete

manholes discharging through a 1050 mm and a 1200 mm diameter outlet pipes, each pipe equipped with a 2000 mm X 2000 mm concrete valve chamber and a sluice gate valve, to a roadside ditch along County Road 79;

- one (1) 18 m wide emergency overflow structure with weir elevation of 234.05 m ASL discharging to a roadside ditch along County Road 79; and
- including all controls and appurtenances.

Stormwater Management Pond - SWM Pond #3:

a stormwater management facility (**SWM Pond #3**) to service a total drainage area of 30.5 ha consisting of northwestern part of the expanded landfill site, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:00 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

- one (1) approximately 650 m long perimeter ditch along the northern part of the expanded landfill and one (1) approximately 500 m long perimeter ditch along the western part of the expanded landfill, each having a minimum of 1.0 m depth and 3H:1V & 4H:1V side slopes, discharging collected stormwater through a 3000 mm X 1200 mm concrete box culvert to a forebay described below;
- one (1) forebay with approximate dimensions of 33 m long X 25 m wide bottom and 4H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 255.0 m long, 36.0 m wide bottom and 3H:1V and 4H:1V side slopes, providing a total storage capacity of 24,996 m³ consisting of a permanent pool storage volume of 4,843 m³ with an average depth of 0.50 m, and an extended storage volume of 20,053 m³ with an extended storage depth of 1.67 m, equipped with an outlet structure described below;
- an outlet structure consisting of three (3)1200 mm diameter concrete manholes discharging through two (2) 600 mm diameter and one (1) 450 mm diameter outlet pipes, each pipe equipped with 1200 mm X 1200 mm box concrete valve chamber and a sluice gate valve, to a roadside ditch along County Road 79:
- one (1) 9 m wide emergency overflow structure with a weir elevation of 238.00 m ASL discharging to a roadside ditch along County Road 79; and
- including all controls and appurtenances.

Stormwater Management Pond - SWM Pond #4:

a stormwater management facility (**SWM Pond #4**) to service a total drainage area of 14.4 ha consisting of the north eastern part of the expanded landfill site and norther part of the existing landfill site, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:100 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

- four (4) perimeter ditches collecting runoff from the northern side of the expanded landfill and from the northwestern portion of the existing landfill, having a minimum of 1.0 m depth and 3H:1V & 4H:1V side slopes, discharging collected stormwater through two (2) inlet structures to a forebay described below;
- one (1) forebay with approximate dimensions of 16 m long X 16 m wide bottom and 4H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 165.0 m long bottom, 20.0 m wide bottom and 3H:1V and 4H:1V side slopes, providing a total storage capacity of 8,328 m³ consisting of a permanent pool storage volume of 1,812 m³ with an average depth of 0.50 m, and an extended storage volume of 6,516 m³ with an extended storage depth of 1.32 m, equipped with an outlet structure described below;
- an outlet structure consisting of one (1)1800 mm diameter concrete manhole discharging through one (1)1050 mm diameter outlet pipe equipped with 2000 mm X 2000 mm concrete valve chamber and a sluice gate valve to a perimeter ditch along Zion Line to a roadside ditch along Zion Line;
- one (1) 8 m wide emergency overflow structure with a weir elevation of 242.00 m ASL discharging to a road side ditch along Zion Line; and
- including all controls and appurtenances.

all in accordance with the Application for Approval of Industrial Sewage Works dated July 21, 2006 submitted by Waste Management of Canada Corporation, design specifications and drawings prepared by Henderson Paddon and Associates Limited, Owen Sound, Ontario and the following documents:

- 1. "Development and Operations Plans Warwick Landfill Expansion Volumes 1 and 2" dated March 2006, prepared by Henderson Paddon and Associates Limited, Owen Sound, Ontario.
- 2. Letter from Mr. J. Pullen, Waste Management of Canada Corporation, dated August 1, 2006 written in response to an additional information request letter from Stefanos Habtom, P.Eng., MOE dated July 17, 2006.
- 3. Letter and attachments from Mr. J. Pullen, Waste Management of Canada Corporation, dated December 14, 2006 written in response to an additional information request letter from Stefanos Habtom, P.Eng., MOE dated November 7, 2006.

LEACHATE TREATMENT AND DISPOSAL FACILITY

Establishment of a leachate collection, treatment, and disposal facility with a *Rated Capacity* of 300 m³/day to service Phases 1 to 4 and **with a plan to upgrade the facility** to a *Rated Capacity* 400 m³/day to service Phases 5 to 9 and during closure and post closure period of the Twin Creeks Landfill Site expansion, consisting of the following:

Raw Leachate Pumping Stations

• four (4) 7.3 L/sec capacity primary raw leachate pumps and four (4) 3.5 L/sec secondary leachate pumps together with their associated forcemains discharging to the equalization tank described below.

Equalization Tank

- one (1) 2,300 m³ capacity steel and glass lined tank enclosed with a clay berm containment area, receiving raw leachate from the landfill leachate collection system, equipped with three (3) 9.6 L/sec capacity variable frequency drive (VFD) recirculation pumps during Phases 1 to 4 and a total of three (3) 9.6 L/sec capacity VFD raw leachate pumps (two duty, one standby) during Phases 5 to 9, all pumping leachate to the leachate treatment system described below; and
- two (2) 27.7 L/sec capacity VFD raw leachate pumps (one duty, one standby) to be used in combination to fill the Sequencing Batch Reactor (SBR) reactors at a faster rate.

Chemical Feed System

- one (1) 1.0 m³ capacity phosphoric acid solution storage tank equipped with two (2) 32.0 L/hr capacity metering pumps (one duty for each SBR reactor with with interconnecting piping for redundancy) dosing phosphoric acid into the SBR reactors as required;
- one (1) 1.0 m³ capacity flocculant storage tank equipped with two (2) 363 L/hr capacity metering pumps (one duty for each SBR reactor with with interconnecting piping for redundancy) dosing flocculant upstream of the SBR reactors as required;
- one (1) 1.0 m³ capacity anti-foam agent storage tank equipped with two (2) 32.0 L/hr capacity metering pumps (one duty for each SBR reactor with with interconnecting piping for redundancy) dosing anti-foam agent upstream of the SBR reactors as required;
- one (1) 10.0 m³ capacity methanol storage tank equipped with a spill containment structure and two (2) 144 L/hr capacity metering pumps (one duty for each SBR reactor with with interconnecting piping for redundancy) dosing methanol upstream of the SBR reactors as required; and
- one (1) 88 m³ capacity in-ground high strength carbon waste storage tank equipped with two (2) 288 L/hr capacity metering pumps (one duty for each SBR reactor with with interconnecting piping for redundancy) dosing high strength carbon waste upstream of the SBR reactors as required.

Sequencing Batch Reactor (SBR)

- a sequencing batch reactor consisting of two (2) reactors each with approximate dimensions of 6.4 m long x 16.2 m wide x 5.5 m SWD providing active reactor volume of 572 m³, each tank equipped with a jet aeration header and one 227 L/sec capacity dry pit jet pumps and a decanter system capable of decanting 69.4 L/sec; and
- three (3) 50 hp positive displacement air blowers each with VFD control and with a capacity of 462 L/sec at 65.5 kPa supplying the air required for SBR aeration.

Effluent and Sludge Pumps

- two (2) effluent transfer pumps (one duty for each SBR reactor with with interconnecting piping for redundancy) each with 69.4 L/sec capacity transferring effluent from the SBR units to an effluent holding tank described below; and
- two (2) activated sludge wasting pumps (one duty for each reactor) each with 22 L/sec capacity transferring activated wasted sludge to aerated sludge tanks described below.

Effluent and Sludge Holding Tanks

- one (1) 400 m³ storage capacity effluent holding tank with approximate dimensions of 9.75 m long x 8.5 m wide x 5.5 m SWD equipped with coarse bubble diffusers, discharging to a reverse osmosis membrane filtration system described below;
- two (2) aerated sludge tanks operating in either parallel or series mode, each with approximate dimensions of 11.8 m long x 3 m wide x 5.5 m SWD providing a storage capacity of 200 m³ equipped with coarse bubble diffusers, two (2) supernatant pumps returning supernatant to the SBR units described above, and two (2) sludge pumps discharging settled sludge to a sludge dewatering press described below; and
- three (3) 141 L/sec at 65.5 kPa capacity 20 hp positive displacement air blowers with VFD control providing air required for the effluent tank and sludge holding tanks.

Reverse Osmosis Membrane Filtration System

- one (1) 15.0 m³ capacity treated effluent storage tank equipped with one (1) 8.3 L/sec pump discharging to a cartridge sand filtration unit described below;
- one (1) 7,000 L capacity sulphuric acid storage tank for pH adjustment of effluent at the effluent storage tank described above;
- two (2) dual redundant 3.47 L/sec capacity cartridge sand filtration unit discharging to a reverse osmosis membrane filtration system described below;
- one (1) three-staged reverse osmosis membrane filtration system with an overall treatment capacity of 3.47 L/sec consisting of three (3) filtration units, equipped with a 32 piece ST-RO membrane modules, a 20 piece ST-RO membranes modules, a 15 piece ST-NF membrane modules and the following pumps:
 - 1. four (4) high pressure plunger pumps with capacity of 1.8 L/s each (1st and 2nd stage RO);
 - 2. five (5) multistage centrifugal booster pumps with under water motor with capacity of 2.8 L/s each (1st and 2nd stage RO);
 - 3. one (1) multi stage vertical centrifugal pump (cleaning pump) with the capacity of 3.47 L/s;
 - 4. one (1) high pressure plunger pump with the capacity of 1.06 L/s (3rd stage NF);
 - 5. three (3) multistage centrifugal booster pumps with under water motor with the capacity of 2.8 L/s each (3rd stage NF); and

6. one (1) multi stage vertical centrifugal pump (cleaning pump) with the capacity of 1,06 L/s.

all discharging final permeate to a treated effluent storage pond described below and final concentrate to a concentrate storage tank described below;

Standby Power

- two (2) independent electric power sources from Hydro One to the landfill site;
- contingency plans, including off-site disposal of leachate, shall be in place to address issues associated with the leachate treatment system arising out of extended power outages from the dual source Hydro One power line;

Treated Effluent Storage Ponds

- one (1) 2,200 m³ capacity clay lined pond (**Inlet cell**) equipped with a floating aerator and one (1) pumping station manhole with one (1) 30 m³/hr capacity submersible pump;
- one (1) 53,900 m³ capacity clay lined pond (Cell 1) equipped with one (1) interconnecting manhole with a gate valve; and
- one (1) 28,400 m³ capacity clay lined pond (**Cell 2**) providing storage for treated effluent from the membrane filtration system, equipped with one (1) interconnecting manhole with a gate valve, a pumping station (**Pumping Station 11**) equipped with one (1) 56.9 L/sec 40 hp VFD submersible pump to be used for truck loading purposes, one (1) 7.3 L/sec capacity 5 hp submersible effluent return pump, and two (2) 45.7 L/sec capacity 50 hp VFD submersible irrigation pumps (one duty, one standby) discharging to a poplar tree land irrigation area described below;

Concentrate Evaporator and Dryer

- one (1) 102 m³ concentrate storage tank with approximate dimensions of 4.4 m long x 4.8 m wide and 5.5 m SWD equipped with one (1) 9.5 L/sec capacity pumps for off-site disposal, also used for off-site disposal slurry, and one (1) 0.63 L/sec capacity pumps for transferring concentrate to an evaporator treatment system described below;
- one (1) 0.63 L/sec capacity mechanical vapor compression evaporator equipped with electric heating element and heat exchangers to remove moisture from concentrate and produce a slurry discharging to a slurry holding tank described below;
- one (1) 102.0 m³ capacity slurry holding tank with approximate dimensions of 4.4 m long x 4.8 m wide and 5.5 m SWD equipped with one (1) 1.57 L/sec capacity slurry pump discharging to a slurry dryer described below; and
- one (1) 0.035 L/sec capacity slurry dryer with approximate dimensions of 4.7 m long x 2.1 m wide x 1.5 m high discharging to a salt cake disposal bin (water vapour will be evaporated through the slurry dryer exhaust).

Treated Effluent On-Site Disposal

Upon substantial completion of the Works, treated leachate effluent will be disposed as follows:

- one (1) 21.7 ha poplar tree irrigation land established to handle (during Phases 1 to 4) an average of 909 m³/day of treated leachate effluent during suitable irrigation days between the period extending from May 1st to October 15th, consisting of six (6) 3.62 ha treated effluent drip-irrigation zones using approximately 250 m long drip-irrigation tubing installed in each zone;
- one (1) 6.62 ha poplar tree irrigation land established to handle (during Phases 5 to 9) an additional 278 m³/day (bringing the total to 1,187 m³/day) of treated leachate effluent during suitable irrigation days between the period extending from May 1st to October 15th, consisting of two (2) 3.31 ha treated effluent drip-irrigation zones using approximately 250 m long drip-irrigation tubing installed in each zone:
- a stormwater management system to control the quality of stormwater runoff from the poplar tree irrigation land to Kersey Drain (Brown Creek), consisting of one (1) west furrow approximately 710 m long and 200 mm deep and one (1) east furrow approximately 510 m long and 200 mm deep, running parallel to each other with a grassed area in between, each equipped with a 200 mm high berm for distributing stormwater runoff across the entire length of the furrow, discharging by sheet flow to Kersey Drain; and
- including all controls and associated appurtenances.

Raw/Diluted Leachate Effluent Disposal

- one (1) existing 3.33 ha poplar tree irrigation system identified as the South Fill Area (SFA) Poplar System, of approximately 150 m length for each poplar row. Leachate is applied through pressure drip-irrigation tubing at a rate not to exceed 476 mm/m², or 149,000 L/day, during the growing season. The system is subject to conditions as specified in the *EPA* Section 27 approval for the site.
- a system of maintenance holes, collector system and leachate sump accross the existing site to transfer leachate to the leachate holding tanks via two methods: 1) down-hole leachate pumps transfer leachate through portable piping units directly to the leachate holding tanks; and 2) the use of a tanker truck, which transfers the leachate via gravity drainage into the leachate holding tanks.

all in accordance with the Application for Approval of Industrial Sewage Works submitted by Waste Management of Canada Corporation, conceptual design specification and drawings prepared by Conestoga-Rovers & Associates, Waterloo, Ontario and the following documents:

- 1. "Technical Design Brief On-Site Leachate Treatment Facility Warwick Landfill Site Expansion Waste Management of Canada Corporation, Watford, Ontario" dated August 2007, prepared by Conestoga-Rovers & Associates, Waterloo, Ontario.
- 2. "Development and Operations Plans Warwick Landfill Expansion Volumes 1 and 2", prepared by Henderson Paddon and Associates Limited, Owen Sound, Ontario.
- 3. Additional information provided by Conestoga-Rovers dated September 20, 2007 in response to items #1 and #2 of MOE letter dated September 18, 2007 regarding proposed leachate treatment facility.
- 4. Additional information provided by Henderson Paddon & Associates Limited dated September 19,

- 2007 in response to item #3 of MOE letter dated September 18, 2007 regarding the proposed effluent storage ponds.
- 5. Additional information provided by Jagger Hims Limited dated September 25, 2007 in response to items #4, #5, and #6 of MOE letter dated September 18, 2007 regarding the operation and monitoring of the proposed popular tree irrigation area.
- 6. "Stormwater Management Plan, Poplar Irrigation Area, Warwick Landfill Expansion, Watford Ontario" dated December 2007, prepared by Henderson Paddon & Associates Limited, Owen Sound, Ontario.
- 7. "Environmental Monitoring Plan, Warwick Landfill Expansion, Township of Warwick, Ontario" dated December 2007, prepared by Jagger Hims Limited, Newmarket, Ontario.
- 8. "Stormwater Management Plan Poplar Irrigation Area, Warwick Landfill Expansion, Watford Ontario" dated December 2007, prepared by Henderson Paddon & Associates Limited, Owen Sound, Ontario.
- 9. "Application for Approval of Industrial Sewage Works submitted by Waste Management of Canada Corporation for site name change from Warwick Landfill Site to Twin Creeks Landfill Site" dated July 10, 2008.
- 10. Application for Approval of Industrial Sewage Works submitted by Waste Management of Canada Corporation for update of leachate STP components" dated October 27, 2008, and supporting documents.
- 11. Appendix Q of the Development & Operations Report Warwick Landfill Expansion, Volume 1 of 3, prepared by Henderson Paddon & Associates Ltd., dated March 2008.
- 12. Letter from Jagger Hims Limited of Windsor, ON to Reid Cleland of Waste Management of Canada Corporation, dated December 12, 2008, in response to comments provided by Edgardo Tovilla of the MOE on letter dated December 11, 2008.
- 13. Letters from Wayne Jenken of Waste Management of Canada Corporation to Edgardo Tovilla of the MOE, dated December 15, 2008, with comments to draft CofA.
- 14. Documents titled "Groundwater Contingency and Remedial Action Plan" and "Surface Water, Contingency Remedial Action Plan, Warwick Landfill Site", prepared by Jagger Hims Limited, dated April 2008 and contained in Appendix N.26 and 27 respectively, in the Operations and Maintenance Manual, Warwick Landfill Expansion, WM, May 2008.
- 15. Letter from Peter C. Pickfield of Garrod Pickfield LLP Lawyers on behalf of the Township of Warwick to Edgardo Tovilla of the MOE, dated June 26, 2009, in response to request for comments on the WM application for approval.

For the purpose of this Certificate of Approval and the terms and conditions specified below, the following definitions apply:

"Act" means the Ontario Water Resources Act, R.S.O. 1990, Chapter 0.40, as amended;

"Average Daily Flow" means the cumulative total sewage flow to the sewage works during a calendar year divided by the number of days during which sewage was flowing to the sewage works that year;

"BOD5" (also known as TBOD₅) means five day biochemical oxygen demand measured in an unfiltered sample and includes carbonaceous and nitrogenous oxygen demand;

- "CBOD5" means five day carbonaceous (nitrification inhibited) biochemical oxygen demand measured in an unfiltered sample;
- "Certificate" means this entire certificate of approval document, issued in accordance with Section 53 of the Act, and includes any schedules;
- "Daily Concentration" means the concentration of a contaminant in the effluent discharged over any single day, as measured by a composite or grab sample, whichever is required;
- "Director" means any Ministry employee appointed by the Minister pursuant to section 5 of the Act;
- "EPA" means any Environmental Protection Act, R.S.O. 1990, c.E.19, as amended from time to time;
- "District Manager" means the District Manager of the Sarnia District Office of the Ministry;
- "Ministry" means the Ontario Ministry of the Environment;
- "Monthly Average Concentration" means the arithmetic mean of all Daily Concentrations of a contaminant in the effluent sampled or measured, or both, during a calendar month;
- "Owner" means Waste Management of Canada Corporation and includes its successors and assignees;
- "Proposed Works" means the sewage works described in the Owner 's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate;
- "Rated Capacity" means the Average Daily Flow for which the Works are approved to handle;
- "Substantial Completion" has the same meaning as "substantial performance" in the Construction Lien Act;
- "Township" refers to the Township of Warwick;
- "Works" means the sewage works described in the Owner's application, this Certificate and in the supporting documentation referred to herein, to the extent approved by this Certificate and includes both Previous Works and Proposed Works;
- "WIFN" refers to Walpole Island First Nation; and
- "WPLC" refers to the Warwick Public Liaison Committee.

You are hereby notified that this approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

PART I - GENERAL

1. GENERAL PROVISIONS

- (1) The *Owner* shall ensure that any person authorized to carry out work on or operate any aspect of the *Works* is notified of this *Certificate* and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- (2) Except as otherwise provided by these Conditions, the *Owner* shall design, build, install, operate and maintain the *Works* in accordance with the description given in this *Certificate*, the application for approval of the works and the submitted supporting documents and plans and specifications as listed in this *Certificate*.
- (3) Where there is a conflict between a provision of any submitted document referred to in this *Certificate* and the Conditions of this *Certificate*, the Conditions in this *Certificate* shall take precedence, and where there is a conflict between the listed submitted documents, the document bearing the most recent date shall prevail.
- (4) Where there is a conflict between the listed submitted documents, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- (5) The requirements of this *Certificate* are severable. If any requirement of this *Certificate*, or the application of any requirement of this *Certificate* to any circumstance, is held invalid or unenforceable, the application of such requirement to other circumstances and the remainder of this certificate shall not be affected thereby.

2. CHANGE OF OWNER

- (1) The *Owner* shall notify the *District Manager* and the *Director*, in writing, of any of the following changes within 30 days of the change occurring:
 - (a) change of Owner;
 - (b) change of address of the *Owner*;
 - (c) change of partners where the *Owner* is or at any time becomes a partnership, and a copy of the most recent declaration filed under the <u>Business Names Act</u>, R.S.O. 1990, c.B17 shall be included in the notification to the *District Manager*;
 - (d) change of name of the corporation where the *Owner* is or at any time becomes a corporation, and a copy of the most current information filed under the <u>Corporations</u>

<u>Information Act</u>, R.S.O. 1990, c. C39 shall be included in the notification to the *District Manager*;

(2) In the event of any change in ownership of the *Works*, other than a change to a successor municipality, the *Owner* shall notify in writing the succeeding owner of the existence of this *Certificate*, and a copy of such notice shall be forwarded to the *District Manager* and the *Director*.

PART II - STORMWATER MANAGEMENT FACILITY

3. UPON THE SUBSTANTIAL COMPLETION OF THE WORKS

- (1) Upon the *Substantial Completion* of the *Proposed Works*, the Owner shall prepare a statement, certified by a Professional Engineer, that the works are constructed in accordance with this *Certificate*, and upon request, shall make the written statement available for inspection by Ministry personnel.
- (2) Within one (1) year of the *Substantial Completion* of the *Proposed Works*, a set of as-built drawings showing the works "as constructed" shall be prepared. These drawings shall be kept up to date through revisions undertaken from time to time and a copy shall be retained at the *Works* for the operational life of the *Works*.

4. <u>OPERATIONS MANUAL</u>

- (1) The *Owner* shall prepare an operations manual prior to the commencement of operation of the *Works*, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the works;
 - (b) inspection programs, including frequency of inspection, for the works and the methods or tests employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the works;
 - (d) contingency plans and procedures for dealing with potential spill, bypasses and any other abnormal situations and for notifying the *District Manager*; and
 - (e) complaint procedures for receiving and responding to public complaints.
- (2) The *Owner* shall maintain the operations manual up to date through revisions undertaken from time to time and retain a copy at the location of the sewage works. Upon request, the *Owner* shall make the manual available for inspection and copying by *Ministry* personnel.
- (3) The Owner shall notify and provide the Township, WPLC and WIFN with a copy of the

proposed operations manual required under Condition 4(1).

5. <u>MONITORING AND RECORDING</u>

The *Owner* shall carry out the following monitoring program:

- (1) All samples and measurements taken for the purposes of this *Certificate* shall be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.
- (2) The *Owner* shall collect grab samples of stormwater from the pond outlets at SWM Pond #1 (SP1), SWM Pond #2 (SP2), SWM Pond #3 (SP3), and SWM Pond #4 (SP4) and Poplar Irrigation Area sampling locations SS17A, SS17B, SS18A and SS18B at least at a quarterly frequency* NOTE and analyse for the parameters listed in Table 1 below:

Table 1 - Stormwater Monitoring Sampling Locations: SWM Pond Outlets - SP1, SP2, SP3, SP4. Irrigation Area - SS17A, SS17B, SS18A and SS18B.			
Parameter Parameter	Parameter	Parameter	Field -Parameter
Alkalinity	Magnesium	Toluene	Conductivity
Total Ammonia Nitrogen	Potassium	Ethylbenzene	Dissolved Oxygen
Un-ionized Ammonia	Sodium	Xylene	pH (Field)
Chloride	Arsenic	Vinyl Chloride	Temperature
Conductivity (Lab)	Barium	1,2,4-Trichlorobenzene	Turbidity
Nitrate Nitrogen	Boron	1,2-Dichlorobenzene	
Nitrite Nitrogen	Cadmium	1,3-Dichlorobenzene	
TKN	Chromium (Total)	1,4-Dichlorobenzene	
pH (Lab)	Copper	Hexachlorobenzene	
Total Phosphorus	Iron	Diethylphthalate	
Total Suspended Solids	Lead	Dimethylphthalate	
Total Dissolved Solids	Mercury	Di-n-butyl phthalate	
Sulphate	Nickel	Phenol	
BOD5	Zinc	Benzo(a)pyrene	
Chemical Oxygen Demand	Benzene	2,4,6-Trichlorophenol	
Phenols	1,4-Dichlorobenzene	2,4-Trichlorophenol	
Calcium	Dichloromethane	Pentachlorophenol	

- * **Note:** Samples shall be collected within twenty four hours after a rainfall event (more than 10 mm rainfall in 24 hour period) resulting in a stormwater discharge from each SWM Pond or Poplar Tree Irrigation Area at a minimum interval of one (1) month between consecutive sampling events.
- (3) The methods and protocols for sampling, analysis, and recording shall conform, in order of precedence, to the methods and protocols specified in the following:

- (a) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (August 1994), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and
- (b) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition) as amended from time to time by more recently published editions.
- (4) The measurement frequencies specified in Condition 5 (2) in respect to any parameter are minimum requirements which may, after 24 months of monitoring in accordance with this Condition, be modified by the *District Manager* in writing from time to time.
- (5) The *Owner* shall provide to the *Township*, *WPLC*, and *WIFN* a copy of all requests to be submitted to the *District Manager* for any changes to the monitoring program specified in Condition 5 (2) at the same time or prior to the time such request is made to the *District Manager*.
- (6) The *Owner* shall provide to the *District Manager* as part of the next quartely report after issuance of this Certificate a detailed calendar for the proposed completion schedule of the stormwater management works. Updated calendars will be submitted to the *District Manager* on quartely basis as construction progresses until the completion of the stormwater management works. This process will provide a reasonable construction schedule that accounts for construction delays due to weather and other unforseen delays.

6. OPERATION AND MAINTENANCE.

- (1) The *Owner* shall apply the "Stormwater Contingency and Remedial Action Plan" as included in Appendix N.27 of the Operations and Maintenance Manual, Warwick Landfill Expansion, WM, May 2008.
- (2) Within one (1) year of the commencement of operation of the *Works* (**SWM Ponds and Poplar Tree Irrigation Area**), the *Owner* shall prepare an annual report establishing revised trigger levels for allowing stormwater discharges from the *Works* (**SWM Pond and Poplar Tree Irrigation Area**). The revised trigger levels shall be established for the trigger parameters outlined in Table 2 under Condition 6 (4) based on 75 percentile of the annual surface water monitoring results from surface water sampling location **SS10** upstream of the landfill.
- (3) The *Owner* shall operate the *Works* (**SWM Ponds**) with the outlet sluice gate valve in a **Normally Open Position** during normal operation period.
- (4) The *Owner* shall compare monitoring results obtained under Condition 5 (2) for the trigger parameters listed in Table 2 with their respective trigger levels listed in Table 2 to identify any potential leachate impact to stormwater.

Table 2		
Trigger Parameter	Trigger Level	
	(mg/L)	
Ammonia (unionized)	0.020*	
Boron	0.20*	
Chloride	210*	
Chromium (Total)	0.0089*	
Nickel	0.025*	
Phenols	0.001*	
Zinc	0.020*	

- Note: * The above shown trigger levels are based on PWQO and will be used until adequate monitoring data is collected from Sampling Location SS10 to calculate the corresponding 75 percentile of background surface water concentration levels. Annually, a trigger level for a parameter listed above will be replaced by the corresponding 75 percentile of background surface water concentration where background surface water concentrations collected upstream of the landfill (Sampling Location SS10) exceed the PWQO or the trigger value set for chloride.
- (5) In the event that a monitoring result for any parameter that is listed in Table 2 for any of the **SWM Ponds** exceeds its trigger level, the *Owner* shall conduct sampling of the contents of the affected **SWM Pond** within one (1) week to confirm the exceedence of the trigger level for that parameter and identify potential source of contamination. Upon confirmation of the exceedence of any trigger level for any parameter that is listed in Table 2, the *Owner* shall close the outlet sluice gate valve of the affected *Works* (**SWM Pond**) and implement an approved "Stormwater Contingency and Remedial Action Plan".
- (6) The *Owner* shall dispose of the contents of an affected *Work* (**SWM Pond**) which failed to meet the quality requirements outlined in Condition 6 (5) in accordance with an approved "Stormwater Contingency and Remedial Action Plan".
- (7) In the event that a monitoring result for any parameter that is listed in Table 2 for the **Poplar Tree Irrigation Area** exceeds its trigger level, the *Owner* shall conduct sampling of the stormwater runoff from the affected part of **Poplar Tree Irrigation Area** as soon as possible to confirm the exceedence of the trigger level for that parameter and identify potential source of contamination. Upon confirmation of the exceedence of any trigger level for any parameter that is listed in Table 2, the *Owner* shall implement an approved "Stormwater Contingency and Remedial Action Plan".
- (8) The *Owner* shall inspect the *Works* (**SWM Ponds**) at least once a year and, if necessary, clean and maintain the Works to prevent the excessive build-up of sediments and/or vegetation.

- (9) The *Owner* shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the site or *Owner* 's operational head quarter for inspection by the *Ministry*. The logbook shall include the following:
 - (a) the name of the Works (SWM Pond #1, SWM Pond #2, SWM Pond #3, and SWM Pond #4);
 - (b) the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed; and
 - (c) the occurrence date of each spill within the catchment area of a given SWM Pond, including follow-up actions / remedial measures undertaken.
- (10) The *Owner* shall notify and provide the *Township, WPLC* and *WIFN* with a copy of the proposed "Stormwater Contingency and Remedial Action Plan" required under Condition 6 (1).

7. <u>RECORD KEEPING</u>

The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance and monitoring activities required by this *Certificate*.

PART III - LEACHATE TREATMENT FACILITY

8. EFFLUENT LIMITS

(1) The *Owner* shall design and construct the *Proposed Works* and operate and maintain the *Works* such that the concentrations of the materials named below as effluent parameters are not exceeded in the effluent discharged from the **Treated Effluent Storage Pond** (Cell 2) to the popular plant irrigation area.

Table 3 - Effluent Limits Sampling Location: Discharge Point from Treated Effluent Storage Pond		
Effluent Parameter	Average Monthly Concentration (milligrams per litre unless otherwise indicated)	
Column 1	Column 2	
Total Ammonia Nitrogen	68.7	
Total Phosphorus	0.72	
Phenols	0.2	
Chlorides	247	
Copper	0.014	
Iron	27.0	
pH of the effluent maintained between 6.0 to 9.5, inclusive, at all times		

(2) For the purposes of determining compliance with and enforcing subsection (1):

- (a) The Average Monthly Concentration of a parameter named in Column 1 of subsection (1) shall not exceed the corresponding maximum concentration set out in Column 2 of subsection (1);
- (b) The pH of the effluent shall be maintained within the limits outlined in subsection (1), at all times.
- (3) The effluent limit set out in subsection (2) shall apply upon the commencement of operation of the proposed poplar forest irrigation area.

9. OPERATION AND MAINTENANCE

- (1) The *Owner* shall exercise due diligence in ensuring that, at all times, the *Works* and the related equipment and appurtenances used to achieve compliance with this *Certificate* are properly operated and maintained. Proper operation and maintenance shall include effective performance, adequate funding, adequate operator staffing and training, including training in all procedures and other requirements of this *Certificate* and the *Act* and regulations, adequate laboratory facilities, process controls and alarms and the use of process chemicals and other substances in the *Works*.
- (2) The *Owner* shall prepare an operations manual prior to the commencement of operation of the *Proposed Work*, that includes, but not necessarily limited to, the following information:
 - (a) operating procedures for routine operation of the *Works*;
 - (b) inspection programs, including frequency of inspection, for the *Works* and the methods or tests employed to detect when maintenance is necessary;
 - (c) repair and maintenance programs, including the frequency of repair and maintenance for the *Works*;
 - (d) procedures for the inspection and calibration of monitoring equipment;
 - (e) a spill prevention control and countermeasures plan, consisting of contingency plans and procedures for dealing with equipment breakdowns, potential spills and any other abnormal situations, including notification of the *District Manager*; and
 - (f) procedures for receiving, responding and recording public complaints, including recording any follow-up actions taken.
- (3) The *Owner* shall maintain the operations manual current and retain a copy at the location of the *Works* for the operational life of the *Works*. Upon request, the *Owner* shall make the manual available to *Ministry* staff.

(4) The *Owner* shall notify and provide the *Township*, *WPLC* and *WIFN* with a copy of the proposed operations manual required under Condition 9(2).

10. MONITORING AND RECORDING

The *Owner* shall, upon commencement of operation of the *Works*, carry out the following monitoring program:

- (1) All samples and measurements taken for the purposes of this *Certificate* are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.
- (2) For the purposes of this condition, the following definitions apply:
 - (a) Daily means once each day;
 - (b) Weekly means once each week;
 - (c) Monthly means once every month;
 - (d) Semi-annually means once every six months.
- (3) Samples shall be collected at the following sampling points, at the frequency specified, by means of the specified sample type and analysed for each parameter listed and all results recorded:

Table 4 - Leachate Monitoring Sampling Location: Equalization Tank					
Parameters	Parameters Sample Type Frequency				
BOD5	Grab	Quarterly			
Dissolved Organic Carbon (DOC)	Grab	Quarterly			
Total Phosphorus	Grab	Quarterly			
Total Kjeldahl Nitrogen	Grab	Quarterly			
BTEX	Grab	Quarterly			
рН	Grab	Quarterly			
VOCs Note 1	Grab	Semi-Annually			
Semi-VOCs Note 2	Grab	Semi-Annually			
Metals Note 3	Grab	Semi-Annually			
General Chemistry Note 4	Grab	Semi-Annually			

Table 5 - Leachate Treatment Plant Effluent Monitoring Sampling Location: Discharge to Treated Effluent Storage Pond			
Parameters Sample Type Frequency			
CBOD5	Grab	Weekly	
Dissolved Organic Carbon (DOC)	Grab	Weekly	
Total Ammonia Nitrogen	Grab	Weekly	
Chloride	Grab	Weekly	
BTEX	Grab	Weekly	
рН	Grab	Weekly	
VOCs ^{Note 1}	Grab	Monthly	
Semi-VOCs Note 2	Grab	Monthly	
Metals Note 3	Grab	Monthly	
General Chemistry Note 4	Grab	Monthly	
PCB	Grab	Semi-Annually	
Organochlorides	Grab	Semi-Annually	

Table 6 - Treated Effluent Storage Pond Effluent Monitoring Sampling Location: Discharge to Poplar Plant Irrigation Area					
Parameters	Parameters Sample Type Frequency				
CBOD5	Grab	Weekly			
Dissolved Organic Carbon (DOC)	Grab	Weekly			
Total Ammonia Nitrogen	Grab	Weekly			
Chloride	Grab	Weekly			
BTEX	Grab	Weekly			
pН	Grab	Weekly			
VOCs ^{Note 1}	Grab	Monthly			
Semi-VOCs Note 2	Grab	Monthly			
Metals Note 3	Grab	Monthly			
General Chemistry Note 4	Grab	Monthly			

Note 1: VOCs: Benzene, 1,4-Dichlorobenzene, Dichloromethane, Toluene,

Ethylbenzene, Xylenes, and Vinyl Chloride.

Note 2: Semi-VOCs: 1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene,

1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Hexachlorobenzene,

Diethylphthalate, Dimethylphthalate, Di-n-butyl phthalate,

Phenol, Benzo(a)pyrene, 2,4,6- Trichlorophenol,

2,4-Dichlorophenol, Pentachlorophenol.

Note 3: Metals: Arsenic, Barium, Boron, Cadmium, Chromium, Copper, Iron,

Lead, Manganese, Mercury, Nickel, Zinc.

Note 4: G. Chemistry: Alkalinity, Calcium, Chloride, Conductivity, COD, Nitrate,

Nitrite, Magnesium, pH, Potassium, Sodium, Sulphate, Total

Dissolved Solids, TKN, Temperature, Turbidity, Total

Phosphorus, TSS, Phenols, Dissolved Oxygen.

(4) The methods and protocols for sampling, analysis and recording shall conform, in order of precedence, to the methods and protocols specified in the following:

- (a) the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only), as amended from time to time by more recently published editions;
- (b) the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions; and
- (c) the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition), as amended from time to time by more recently published editions;
- (5) The measurement frequencies specified in Condition 10 (3) in respect to any parameter are minimum requirements which may, after 24 months of monitoring in accordance with this Condition, be modified by the *District Manager* in writing from time to time.
- (6) The *Owner* shall provide to the *Township*, *WPLC*, and *WIFN* a copy of all requests to be submitted to the *District Manager* for any changes to the monitoring program specified in Condition 10 (3) at the same time or prior to the time such request is made to the *District Manager*.
- (7) The *Owner* shall install and maintain (a) continuous flow measuring device(s), to measure the flowrate of the effluent from the *Works* with an accuracy to within plus or minus 15 per cent (+/- 15%) of the actual flowrate for the entire design range of the flow measuring device, and record the flowrate at a daily frequency.
- (8) The *Owner* shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this *Certificate*.
- (9) The *Owner* shall visually inspect the existing and proposed drip-irrigation pipeline systems at least once per week during operation period to look for leaking and/or failed (broken) lines that would otherwise produce runoff. The inspection should be supported by a log book documenting routine inspection and notes on repair as required.

11. GROUNDWATER MONITORING - POPLAR TREE LAND IRRIGATION AREA

- (1) The Owner shall establish at least four (4) groundwater monitoring wells designated as OW16, OW40, OW60 and OW79 (for Effluent Storage Ponds), OW61 and OW62 (for Poplar Forest Irrigation Area).
- (2) The Owner shall collect grab samples during May and November from the sampling locations outlined in subsection (1) at the frequency indicated in Table 7 and analyze for the parameters listed in Table 7 below.

Table 7 - Groundwater Monitoring				
Sampling Location: OW40, OW60 and OW79 - at Annual Frequency				
Sampling Location: OW16 ,	Sampling Location: OW16, OW61, and OW62 - at Semi-Annual Frequency			
Parameters	Parameters	Field Parameters		
Alkalinity	Boron	рН		
Conductivity	Cadmium	Conductivity		
Chloride	Lead	Turbidity		
pН	Iron			
Dissolved Organic Carbon	Barium			
Total Dissolved Solids	Benzene			
Total Ammonia	1,4-Dichlorobenzene			
Total Kjeldahl Nitrogen	Dichloromethane			
Sulphate	Ethylbenzene			
Nitrate	Vinyl Chloride			
Calcium	Toluene			
Potassium	Xylenes			
Sodium				
Magnesium				

- (3) Notwithstanding subsection (2), the *Owner* shall collect at least one groundwater sample from each of the locations in subsection (1) prior to the initial land application event and have these samples analysed for the same parameters as outlined in subsection (2).
- (4) The methods and protocols for sampling, analysis and recording shall conform to that outlined in Condition 10(4).
- (5) The measurement frequencies specified in Condition 11 (2) in respect to any parameter are minimum requirements which may, after 24 months of monitoring in accordance with this Condition, be modified by the *District Manager* in writing from time to time.
- (6) The *Owner* shall provide to the *Township*, *WPLC*, and *WIFN* a copy of all requests to be submitted to the *District Manager* for any changes to the monitoring program specified in Condition 11 (2) at the same time or prior to the time such request is made to the *District*

Manager.

12. OPERATION - POPLAR TREE LAND IRRIGATION

- (1) The *Owner* shall apply the "Groundwater Contingency and Remedial Action Plan" for any potential groundwater impact caused by Effluent Storage Ponds and the Poplar Forest Irrigation Area, as included in Appendix N.26 of the Operations and Maintenance Manual, Warwick Landfill Expansion, WM, May 2008.
- (2) The *Owner* shall compare monitoring results obtained under Condition 11 (2) for the trigger parameters listed in Table 8 with their respective trigger levels listed in Table 8 to identify any potential leachate impact to groundwater.

Table 8			
Trigger Parameter	Trigger Level		
	(mg/L)		
	Active Aquitard	Interstadial Silt and	Interface Aquifer
	Sand		
Chloride	106	116	134
Nitrate	2.3	2.3	2.3
Boron	1.1	2.1	2.6
Cadmium	0.001	0.001	0.001
Lead	0.002	0.002	0.002
Benzene	0.001	0.001	0.001
1,4-Dichlorobenzene	0.001	0.001	0.001
Dichloromethane	0.01	0.01	0.01
Vinyl Chloride	0.0004	0.0004	0.0004

- (3) In the event that a monitoring result for any parameter that is listed in Table 8 exceeds its trigger level, the *Owner* shall re-sample within one (1) month to confirm the exceedence of the trigger level for that parameter. Upon confirmation of the exceedence of any trigger level for any parameter that is listed in Table 8, the *Owner* shall conduct a second round re-sampling within six (6) months to re-confirm the exceedence of the trigger level for the parameter of concern.
- (4) In the event that the presence of the parameter(s) of concern is (are) not confirmed after the second round of sampling conducted under Condition 12 (3), then, normal groundwater monitoring shall be resumed.
- (5) In the event that the presence of the parameter(s) of concern is confirmed after the second round of sampling conduced under Condition 12 (3), then, it shall constitute as a confirmation of leachate impact to groundwater and the *Owner* shall immediately implement the "Groundwater Contingency and Remedial Action Plan" approved under Condition 12 (1).

- (6) The *Owner* shall notify the *District Manager* orally, as soon as possible, and in writing within seven days of the confirmation of leachate impact to groundwater including an assessment of the relative severity and extent of leachate impact and proposed remedial actions.
- (7) The Owner shall record and report a summary of all trigger exceedence incidents and all remedial action measures taken under Condition 12 (5) in the Annual Report prepared under Condition 14.
- (8) The *Owner* shall dispose of **only** treated leachate effluent that meets the effluent limits requirements outlined under Condition 8 (1) for treatment and disposal by drip-irrigation on the approved poplar tree land area during the period between May 1st and October 15th.
- (9) The Owner shall not allow under any circumstance (including as emergency contingency plan) any direct discharge of leachate or treated leachate effluent from the *Works* to any receiving surface water including Bear Creek;
- (10) The *Owner* shall record the total volume of treated leachate effluent drip-irrigated on the poplar tree land irrigation area on a daily basis.
- (11) The *Owner* shall ensure that treated leachate effluent is disposed of via drip-irrigation in the designated six (6) poplar tree drip-irrigation zones initially, and ultimately on eight (8) poplar tree drip-irrigation zones on a planned rotation basis.
- (12) The *Owner* shall visually inspect drip-irrigation operations at least twice each day during operation period to ensure that no surface ponding or surface run-off is taking place.
- (13) The *Owner* shall retain records of inspections and drip-irrigation operation data collected under subsections (10), (11) and (12) and make them available for inspection *Ministry* staff upon request.
- (14) No drip irrigation is to take place:
 - a) on frozen or snow covered ground conditions;
 - b) with the occurrence of surface ponding in any area subjected to drip irrigation;
 - c) within 100 m of any surface watercourse or drain; and
 - d) at an average daily application rate greater than 4.8 mm;
- (15) The *Owner* shall notify and provide the *Township*, *WPLC* and *WIFN* with a copy of the proposed "Groundwater Contingency and Remedial Action Plan" required under Condition 12(1).

PART IV - GENERAL

13. <u>REPORTING</u>

- (1) One week prior to the start up of the operation of the *Proposed Work*, the *Owner* shall notify the *District Manager* (in writing) of the pending start up date.
- (2) In addition to the obligations under Part X of the Environmental Protection Act, the Owner shall, within 10 working days of the occurrence of any reportable spill as defined in Ontario Regulation 675/98, bypass or loss of any product, by-product, intermediate product, oil, solvent, waste material or any other polluting substance into the environment, submit a full written report of the occurrence to the District Manager describing the cause and discovery of the spill or loss, clean-up and recovery measures taken, preventative measures to be taken and schedule of implementation.
- (3) The *Owner* shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to *Ministry* staff.
- (4) The *Owner* shall prepare and submit to the *District Manager* a performance report on an annual basis before March 31st. The first such report shall cover the first annual period following the commencement of operation of the *Works* and subsequent reports shall be submitted to cover successive annual periods following thereafter. The reports shall contain, but shall not be limited to, the following information:
 - (a) a summary and interpretation of all monitoring data and a comparison to the effluent objectives outlined in Condition 8, including an overview of the success and adequacy of the *Works*;
 - (b) a summary and interpretation of all monitoring data and a comparison to the trigger levels outlined in Condition 6, including an overview of the success and adequacy of the *Works*;
 - (c) a description of any operating problems encountered and corrective actions taken;
 - (d) a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the *Works*;
 - (e) a summary of any effluent quality assurance or control measures undertaken in the reporting period;
 - (f) a summary of the calibration and maintenance carried out on all effluent monitoring equipment;
 - (g) a tabulation of the amount of dry salt cake generated in the reporting period, an

- outline of anticipated amount of dry salt cake to be generated in the next reporting period and a summary of the locations to where the cake was disposed;
- (h) a summary of any complaints received during the reporting period and any steps taken to address the complaints; and
- (i) any other information the *District Manager* requires from time to time.
- (5) The *Owner* shall provide one (1) copy of all reports and plans required by Condition 13 (4) of this *Certificate* to the *Township*, *WPLC* and *WIFN* in a timely manner.
- (6) During the process of submission of an application to amend this Certificate, the *Owner* shall
 - (a) discuss with WIFN and the WPLC the proposed application prior to submission of the application to the Director;
 - (b) provide the same documents to *WIFN* that is provided to the *Director* in respect of the amendment; and
 - (c) provide the *Director* with a statement how WIFN's comments were considered by the *Owner* before it submitted the application to the *Ministry* .

14. <u>REVOCATION</u>

This Certificate of Approval revokes and replaces Certificate of Approval No. 3-0218-98-006 issued on May 8, 1998, upon commencement of operation of the Works approved by this Certificate.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the *Certificate* and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that the *Ministry* records are kept accurate and current with respect to the approved works and to ensure that subsequent owners of the *Works* are made aware of the *Certificate* and continue to operate the *Works* in compliance with it.
- 3. Condition 3 is included to ensure that the *Works* are constructed in accordance with the approval and that record drawings of the *Works* "as constructed" are maintained for future references.
- 4. Conditions 4, 6, 9 and 12 are included to require that the *Works* be properly operated,

maintained, funded, staffed and equipped such that the environment is protected and injury to any person or deterioration, loss and damage to property is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the owner and made available to the *Ministry*. Such a manual is an integral part of the operation of the *Works*. Its compilation and use should assist the *Owner* in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for *Ministry* staff when reviewing the *Owner'* s operation of the work.

- 5. Conditions 5, 10 and 11 are included to require the owner to demonstrate on a continual basis that the quality and quantity of the effluent from the approved *Works* is consistent with the effluent limits specified in the certificate and that the approved *Works* does not cause any impairment to the receiving watercourse and/or the groundwater.
- 6. Condition 7 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the *Works* .
- 7. Condition 8 is imposed to ensure that the effluent irrigated from the *Works* to the poplar irrigation area meets the *Ministry* 's effluent quality requirements thus minimizing environmental impact on groundwater and receiving surface water.
- 8. Condition 13 is included to provide a performance record for future references to ensure that the *Ministry* is made aware of problems as they arise and to provide a compliance record for all the terms and conditions outlined in this *Certificate* so that the *Ministry* can work with the *Owner* in resolving any problems in a timely manner.
- 9. Condition 14 is included to ensure that Certificate of Approval No. 3-0218-98-006, which was issued for the site to operate as a municipal sewage works stormwater management works is revoked and replaced by this Certificate issued appropriately to operate as an industrial sewage works.

This Certificate of Approval revokes and replaces Certificate(s) of Approval No. 2209-7HURTP issued on August 28, 2008.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, as amended, you may by written notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 101 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, Chapter 0.40, provides that the Notice requiring the hearing shall state:

- 1. The portions of the approval or each term or condition in the approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to <u>each</u> portion appealed.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The Certificate of Approval number;
- 6. The date of the Certificate of Approval;
- 7. The name of the Director;
- 8. The municipality within which the works are located;

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto, Ontario
M5G 1E5

AND

The Director Section 53, *Ontario Water Resources Act* Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

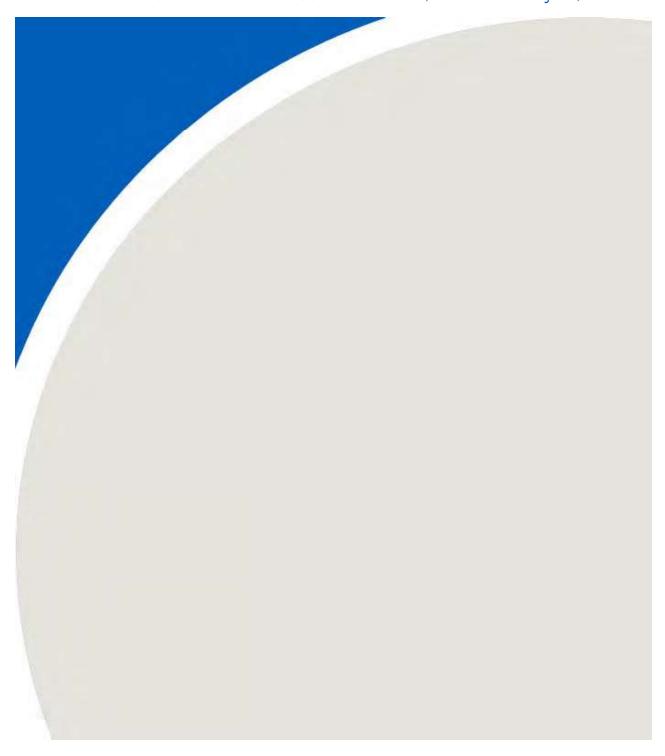
* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 314-4600, Fax: (416) 314-4506 or www.ert.gov.on.ca

The above noted sewage works are approved under Section 53 of the Ontario Water Resources Act.

DATED AT TORONTO this 9th day of July, 2009

Mansoor Mahmood, P.Eng.

Director


Section 53, Ontario Water Resources Act

ET/

c: District Manager, MOE Sarnia District Office Andrew Lugowski, Conestoga-Rovers & Associates Limited

APPENDIX A3: Amendment to ECA No. 3506-7M5PU3 – Notice No. 1, dated February 20, 2013

AMENDMENT TO ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 3506-7M5PU3

Notice No. 1 Issue Date: February 20, 2013

Waste Management of Canada Corporation (WM) 8039 Zion Line R.R. #4 Watford, Ontario NOM 2S0

Site Location: Twin Creeks Landfill Site

8039 Zion Line

Warwick Township, County of Lambton, Ontario N0M 2S0

• Firstly, Part of Lot 19 & 20, Concession 3, S.E.R., and Part of Lots 20, 21 & 22, Concession 4, S.E.R., and Part of the Road Allowance between Lots 21 and 22, Concession 4, S.E.R., shown as Parts 1,2, and 3 on Plan 25R-9125 and Part 2 on Plan 25R-1903, Save and Except Part 1 on Plan 25R-6184.

• Secondly, Part of Lot 20, Concession 3 S.E.R, shown as Part 1 on Plan 25R-6184.

You are hereby notified that I have amended Approval No. 3506-7M5PU3 issued on July 9, 2009 for a leachate collection, treatment, and disposal facility and a stormwater management facility to service the Twin Creeks Landfill Site located in the Township of Warwick, County of Lambton, as follows:

Part I - Additional Sewage Works

The said *Approval* is hereby amended to include the approval of the following additional sewage *Works*:

Stormwater Management Pond - SWM Pond #2:

Modifications to the outlet from the existing SWM Pond #2 to resolve leakage problems at the sluice gate valve. The following items represent the existing Pond 2 structures updated with the proposed works.

- one (1) extended detention wet pond with approximate dimensions of 413 m long X 44.0 m wide bottom and 4H:1V and 3H:1V side slopes, providing a total storage capacity of 51,725 m³ consisting of a permanent pool storage volume of 11,427 m³ with a average depth of 0.60 m, and an extended storage volume of 40,298 m³ with an extended storage depth of 1.75 m, equipped with an outlet structure described below;
- a new outlet structure to replace the existing one consisting of one (1)1800 mm diameter and one (1) 2400 mm diameter concrete manholes discharging through a 1050 mm and a 1200 mm diameter outlet pipes, each pipe equipped with a 2000 mm X 2000 mm concrete valve chamber, to a roadside ditch

along County Road 79.

All other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances essential for the proper operation of the aforementioned sewage *Works* .

Part II - Definitions

The following definitions on the said Approval are modified to include the following additional conditions:

"*Poplar System*" is the irrigation area of 9.3 hectares located on top of the cap of the Existing Site (old landfill) that is used for the phytoremediation of leachate that is generated at the *Site*.

"Poplar Plantation" is the irrigation area located on native soil to the south of the Site that is used for the phytoremediation of irrigation liquid that satisfies the Effluent Limit criteria.

With the above definitions any reference in the Approval to "Poplar Tree Irrigation Area" is now changed to *Poplar Plantation*.

Part III - Documentation

The said *Approval* is hereby amended to include the following additional supporting documents:

- 1. Application for Approval of Sewage Works dated December 6, 2011 submitted by Waste Management of Canada Corporation, design specifications and drawings prepared by GENIVAR of Owen Sound, ON.
- 2. Development & Operations Report Warwick Landfill Expansion, Volumes 1, 2 and 3, prepared by Henderson Paddon & Associates Limited, dated March 2008.
- 3. Letter from Brent J. Langille of RWDI Air Inc. to Edgar Tovilla of the MOE, dated July 17, 2012.
- 4. Amendment to the application for sewage works Approval No. 3506-7M5PU3, dated August 28, 2011, Revision 2, dated November 19, 2012.

The reason(s) for this amendment to the Approval is (are) as follows:

The purpose of this amendment is to approve sewage works designed to repair and modify the existing SWM Pond #2 and realignment of some of its existing berms and drainage ditches. These modifications include the pond enlargement and rebuild the outlet at a new location, having the ultimate location of pond discharge to remain unchanged draining off-site along County Road 79 (Nauvoo Road)

This Notice shall constitute part of the approval issued under Approval No. 3506-7M5PU3 dated July 9, 2009.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon

me, the Environmental Review Tribunal and in accordance with Section 47 of the Environmental Bill of Rights, 1993, S.O. 1993, c. 28 (Environmental Bill of Rights), the Environmental Commissioner, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- 1. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 3. The name of the appellant;
- 4. The address of the appellant;
- 5. The environmental compliance approval number;
- 6. The date of the environmental compliance approval;
- 7. The name of the Director, and:
- 8. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

AND

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

The Environmental Commissioner 1075 Bay Street, Suite 605 Toronto, Ontario M5S 2B1

<u>AND</u>

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment 2 St. Clair Avenue West, Floor 12A Toronto, Ontario M4V 1L5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 314-4506 or www.ert.gov.on.ca

This instrument is subject to Section 38 of the Environmental Bill of Rights, 1993, that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek leave to appeal within 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry at www.ebr.gov.on.ca, you can determine when the leave to appeal period ends.

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 20th day of February, 2013

Mauro of alwood

Mansoor Mahmood, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

ET/

c: District Manager, MOE Sarnia District Office Peter Brodzikowski, P.Eng., GENIVAR Inc.

APPENDIX A4:

Amended ECA [Industrial Sewage Works] No. 3506-7M5PU3, dated August 21, 2019

Ministry of the Environment, Conservation and Parks Ministère de l'Environnement, de la Protection de la nature et des Parcs

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 2403-BE6LZ4 Issue Date: August 21, 2019

Waste Management of Canada Corporation

117 Wentworth Court Brampton, Ontario

L6T 5L4

Site Location: Twin Creeks Environmental Centre

5768 Nauvoo Road, Watford

Township of Warwick, County of Lambton

You have applied under section 20.2 of Part II.1 of the <u>Environmental Protection Act</u>, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

Usage and operation of a leachate collection, treatment, and disposal facility and a stormwater management facility to service the Twin Creeks Landfill Site located in the Township of Warwick, County of Lambton, consisting of the following:

Proposed Works (previously approved by ECA number 3506-7M5PU3)

LEACHATE TREATMENT AND DISPOSAL FACILITY

use and operation of a leachate collection, treatment, and disposal facility with a *Rated Capacity* of 400 m³/day to service Phases 1 to 9 and during closure and post closure period of the Twin Creeks Landfill Site expansion, consisting of the following:

Raw Leachate Pumping Stations

• two (2) primary leachate pumps (one for each PS5 and PS7) and each rated at 7.3 L/sec, together with their associated forcemains discharging to the equalization tank described below.

Secondary Drainage Layer Pumping Stations

• two (2) secondary drainage layer pumps (one for each PS6 and PS8) each rated at 3.5 L/sec, together with their associated forcemains discharging to the equalization tank described below.

Equalization Tank

- Three (3) additional variable frequency drive (VFD) recirculation pumps each rated at approximately 9.6 L/sec proposed to be pumping leachate to the leachate treatment system;
- two (2) VFD raw leachate pumps (one duty, one standby) each rated at 27.7 L/sec, to be used in combination to fill the Sequencing Batch Reactor (SBR) reactors at a faster rate.

Chemical Feed System

- one (1) 1.0 m³ capacity phosphoric acid solution storage tank equipped with two (2) metering pumps (one duty for each SBR reactor with interconnecting piping for redundancy) each rated at 32.0 L/hr, dosing phosphoric acid into the SBR reactors as required;
- one (1) 1.0 m³ capacity flocculant storage tank equipped with two (2) metering pumps (one duty for each SBR reactor with interconnecting piping for redundancy) each rated at 363 L/hr, dosing flocculant upstream of the SBR reactors as required;
- one (1) 1.0 m³ capacity anti-foam agent storage tank equipped with two (2) metering pumps (one duty for each SBR reactor with interconnecting piping for redundancy) each rated at 32.0 L/hr, dosing anti-foam agent upstream of the SBR reactors as required;
- one (1) 10.0 m³ capacity methanol storage tank equipped with a spill containment structure and two (2) metering pumps (one duty for each SBR reactor with interconnecting piping for redundancy) each rated at 144 L/hr, dosing methanol upstream of the SBR reactors as required; and
- one (1) 88 m³ capacity in-ground high strength carbon waste storage tank equipped with two (2) metering pumps (one duty for each SBR reactor with interconnecting piping for redundancy) each rated at 288 L/hr, dosing high strength carbon waste upstream of the SBR reactors as required.

Sequencing Batch Reactor (SBR)

- a sequencing batch reactor system consisting of two (2) reactors each with approximate dimensions of 6.4 m long x 16.2 m wide x 5.5 m SWD providing active reactor volume of 572 m³, each tank equipped with a jet aeration header and one (1) dry pit jet pump rated at 227 L/sec and a decanter system capable of decanting 69.4 L/sec; and
- three (3) 50 hp positive displacement air blowers each with VFD control and rated at of 462 L/sec at 65.5 kPa supplying the air required for SBR aeration.

Effluent and Sludge Pumps

- two (2) effluent transfer pumps (one duty for each SBR reactor with interconnecting piping for redundancy) each rated at 69.4 L/sec, transferring effluent from the SBR units to an effluent holding tank, as described below; and
- two (2) activated sludge wasting pumps (one duty for each reactor) each rated at 22 L/sec, transferring activated wasted sludge to aerated sludge tanks, as described below.

Effluent and Sludge Holding Tanks

- one (1) 400 m³ storage capacity effluent holding tank with approximate dimensions of 9.75 m long x 8.5 m wide x 5.5 m SWD equipped with coarse bubble diffusers, discharging to a reverse osmosis membrane filtration system, as described below;
- two (2) aerated sludge tanks operating in either parallel or series mode, each with approximate dimensions of 11.8 m long x 3 m wide x 5.5 m SWD providing a storage capacity of 200 m³ equipped with coarse bubble diffusers, two (2) supernatant pumps returning supernatant to the SBR units described above, and two (2) sludge pumps discharging settled sludge to a sludge dewatering press, as described below; and
- three (3) positive displacement air blowers each rated at 141 L/sec and at 65.5 kPa with VFD control providing air required for the effluent tank and sludge holding tanks.

Reverse Osmosis Membrane Filtration System

- one (1) treated effluent storage tank with a capacity of 15.0 m³, equipped with one (1) pump rated at 8.3 L/sec discharging to a cartridge sand filtration unit, as described below;
- one (1) sulphuric acid storage tank with a capacity of 7,000 L for pH adjustment of effluent at the effluent storage tank, as described above;
- two (2) dual redundant 3.47 L/sec capacity cartridge sand filtration unit discharging to a reverse osmosis membrane filtration system described below;
- one (1) three-staged reverse osmosis membrane filtration system with an overall treatment capacity of 3.47 L/sec consisting of three (3) filtration units, equipped with a 32-piece ST-RO membrane modules, a 20-piece ST-RO membranes modules, a 15 piece ST-NF membrane modules and the following pumps:
 - a. four (4) high pressure plunger pumps each rated at 1.8 L/s (1st and 2nd stage RO);
 - b. five (5) multistage centrifugal booster pumps with under water motor each rated at.8 L/s (1st and 2nd stage RO);
 - c. one (1) multi stage vertical centrifugal pump (cleaning pump) rated at 3.47 L/s;
 - d. one (1) high pressure plunger pump with a capacity of 1.06 L/s (3rd stage NF);
 - e. three (3) multistage centrifugal booster pumps with under water motor rated at 2.8 L/s each (3rd

stage NF); and

f. one (1) multi stage vertical centrifugal pump (cleaning pump) rated at 1,06 L/s.

all discharging final permeate to a treated effluent storage pond described below and final concentrate to a concentrate storage tank described below;

Treated Effluent Storage Ponds

- one (1) clay lined pond (Inlet cell) with a capacity of 2,200 m³, equipped with a floating aerator and one (1) pumping station manhole with a submersible pump rated at 30 m³/hr;
- one (1) clay lined pond (Cell 1) with a capacity of 53,900 m³ equipped with one (1) interconnecting manhole with a gate valve; and
- one (1) clay lined pond (Cell 2) with a capacity of 28,400 m³, providing storage for treated effluent from the membrane filtration system, equipped with one (1) interconnecting manhole with a gate valve, a pumping station (Pumping Station 11) equipped with one (1) VFD submersible pump rated at 56.9 L/sec to be used for truck loading purposes, one (1) submersible effluent return pump rated at 7.3 L/sec, and two (2) VFD submersible irrigation pumps each rated at 45.7 L/sec (one duty, one standby) discharging to a poplar tree land irrigation area described below;

Concentrate Evaporator and Dryer

- one (1) concentrate storage tank with approximate dimensions of 4.4 m long x 4.8 m wide and 5.5 m SWD (total capacity of 102 m³), equipped with a submersible pump for off-site disposal rated at 9.5 L/sec, also used for off-site disposal slurry, and a pump for transferring concentrate to an evaporator treatment system, as described below, rated at 0.63 L/sec;
- one (1) mechanical vapor compression evaporator rated at 0.63 L/sec, equipped with electric heating element and heat exchangers to remove moisture from concentrate and produce a slurry discharging to a slurry holding tank described below;
- one (1) slurry holding tank with approximate dimensions of 4.4 m long x 4.8 m wide and 5.5 m SWD (total capacity of 102.0 m³) equipped with one (1) slurry pump rated at 1.57 L/sec, discharging to a slurry dryer described below; and
- one (1) slurry dryer rated at 0.035 L/sec with approximate dimensions of 4.7 m long x 2.1 m wide x 1.5 m high discharging to a salt cake disposal bin (water vapour will be evaporated through the slurry dryer exhaust).

Treated Effluent On-Site Disposal

Upgrades to the disposal system of the treated leachate effluent, as follows:

• two (2) 3.31 ha treated effluent drip-irrigation zones using approximately 250 m long drip-irrigation tubing installed in each zone;

Previous Works:

STORMWATER MANAGEMENT FACILITY

a stormwater management facility to service a 146.5 ha drainage area of the Twin Creeks Landfill Site Expansion within the 300 ha area of the Twin Creeks Landfill Site consisting of the following:

Stormwater Management Pond - SWM Pond #1

a stormwater management facility (**SWM Pond #1**) to service a total drainage area of 33.7 ha consisting of the eastern part of the existing landfill site and future excess soil stockpile area, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:100 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

- one (1) approximately 1,300 m long perimeter trapezoidal ditch along the toe of the eastern side of the closed landfill having a 0.6 m wide bottom and 2H:1V side slopes, discharging collected stormwater to an extended detention wet pond described below;
- one (1) ditch along the south and west side of the leachate storage lagoon collecting runoff from the excess soil stockpile area, discharging collected stormwater to a forebay described below;
- one (1) forebay with approximate dimensions of 19 m long x 16 m wide bottom, and 4H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 294.0 m long bottom, 23.5 m wide bottom and 4H:1V side slopes, equipped with a permanent vertical baffle with a minimum elevation of 238.7 m ASL, providing a total storage capacity of 21,429 m³ consisting of a permanent pool storage volume of 3,651 m³ with an average depth of 0.5 m, and an extended storage volume of 17,778 m³ with an extended storage depth of 1.91 m, equipped with an outlet structure described below;
- an outlet structure consisting of two (2) 1500 mm diameter concrete manholes discharging through two (2) 750 mm diameter outlet pipes, each pipe equipped with a 1200 mm x 1200 mm concrete valve chamber and a sluice gate valve, to a perimeter ditch flowing towards a roadside ditch along County Road 79; and

• one (1) 8.0 m wide emergency overflow structure with weir elevation of 239.55 m ASL discharging to a perimeter ditch flowing towards County Road 79 roadside ditch.

Stormwater Management Pond - SWM Pond #2

a stormwater management facility (**SWM Pond #2**) to service a total drainage area of 67.9 ha consisting of southwestern part of the expanded landfill site, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:100 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

- two (2) approximately 400 m and 1500 m long perimeter ditches along the southern part of the landfill having a minimum depth of 1.0 m, and 3H:1V & 4H:1V side slopes discharging collected stormwater through two (2) culverts, 3000 mm X 1200 mm concrete box and 1390 x 970 mm CSPA, to a forebay described below;
- one (1) forebay with approximate dimensions of 47 m long x 30 m wide bottom and 4H:1V and 3H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 413.0 m long x 44.0 m wide bottom and 4H:1V and 3H:1V side slopes, providing a total storage capacity of 51,725 m³ consisting of a permanent pool storage volume of 11,427 m³ with a average depth of 0.60 m, and an extended storage volume of 38,098 m³ with an extended storage depth of 1.75 m, equipped with an outlet structure described below;
- an outlet structure consisting of one (1)1800 mm diameter and one (1) 2400 mm diameter concrete manholes discharging through a 1,050 mm and a 1,200 mm diameter outlet pipes, each pipe equipped with a 2000 mm x 2000 mm concrete valve chamber and a sluice gate valve, to a roadside ditch along County Road 79; and
- one (1) 18 m wide emergency overflow structure with weir elevation of 234.05 m ASL discharging to a roadside ditch along County Road 79.

Stormwater Management Pond - SWM Pond #3

a stormwater management facility (**SWM Pond #3**) to service a total drainage area of 30.5 ha consisting of northwestern part of the expanded landfill site, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:00 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

one (1) approximately 650 m long perimeter ditch along the northern part of the expanded landfill and one (1) approximately 500 m long perimeter ditch along the western part of the expanded landfill, each having a minimum of 1.0 m depth and 3H:1V & 4H:1V side slopes, discharging collected stormwater through a 3000 mm x 1200 mm concrete box culvert to a forebay described below;

- one (1) forebay with approximate dimensions of 33 m long x 25 m wide bottom and 4H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 255.0 m long, 36.0 m wide bottom and 3H:1V and 4H:1V side slopes, providing a total storage capacity of 24,996 m³ consisting of a permanent pool storage volume of 4,843 m³ with an average depth of 0.50 m, and an extended storage volume of 20,053 m³ with an extended storage depth of 1.67 m, equipped with an outlet structure described below;
- an outlet structure consisting of three (3)1200 mm diameter concrete manholes discharging through two (2) 600 mm diameter and one (1) 450 mm diameter outlet pipes, each pipe equipped with 1200 mm x 1200 mm box concrete valve chamber and a sluice gate valve, to a roadside ditch along County Road 79; and
- one (1) 9 m wide emergency overflow structure with a weir elevation of 238.00 m ASL discharging to a roadside ditch along County Road 79.

Stormwater Management Pond - SWM Pond #4

a stormwater management facility (**SWM Pond #4**) to service a total drainage area of 14.4 ha consisting of the north eastern part of the expanded landfill site and norther part of the existing landfill site, designed to provide quantity and quality control by attenuating peak stormwater flows from storm events up to 1:100 year return frequency including regional storm (Hazel) at or below pre-development levels, consisting of the following:

- four (4) perimeter ditches collecting runoff from the northern side of the expanded landfill and from the northwestern portion of the existing landfill, having a minimum of 1.0 m depth and 3H:1V & 4H:1V side slopes, discharging collected stormwater through two (2) inlet structures to a forebay described below;
- one (1) forebay with approximate dimensions of 16 m long x 16 m wide bottom and 4H:1V side slopes, discharging to an extended detention wet pond described below;
- one (1) extended detention wet pond with approximate dimensions of 165.0 m long bottom, 20.0 m wide bottom and 3H:1V and 4H:1V side slopes, providing a total storage capacity of 8,328 m³ consisting of a permanent pool storage volume of 1,812 m³ with an average depth of 0.50 m, and an extended storage volume of 6,516 m³ with an extended storage depth of 1.32 m, equipped with an outlet structure described below;
- an outlet structure consisting of one (1)1800 mm diameter concrete manhole discharging through one (1)1050 mm diameter outlet pipe equipped with 2000 mm X 2000 mm concrete valve chamber and a sluice gate valve to a perimeter ditch along Zion Line to a roadside ditch along Zion Line;
- one (1) 8 m wide emergency overflow structure with a weir elevation of 242.00 m ASL discharging to a road side ditch along Zion Line; and

all other controls, electrical equipment, instrumentation, piping, valves and appurtenances essential for the proper operation of the aforementioned sewage Works;

all in accordance with the following submitted supporting documents listed in Schedule A.

LEACHATE TREATMENT AND DISPOSAL FACILITY

use and operation of a leachate collection, treatment, and disposal facility with a *Rated Capacity* of 400 m³/day to service Phases 1 to 9 and during closure and post closure period of the Twin Creeks Landfill Site expansion, consisting of the following:

Raw Leachate Pumping Stations

• two (2) primary raw leachate pumps (one for each PS1 and PS3) each rated at 7.3 L/sec, together with their associated forcemains discharging to the equalization tank described below.

Secondary Drainage Layer Pumping Stations

• two (2) secondary drainage layer pumps (one for each PS2 and PS4) each rated at 3.5 L/sec, together with their associated forcemains discharging to the equalization tank described below.

Equalization Tank

• one (1) 2,300 m³ capacity steel and glass lined tank enclosed with a clay berm containment area, receiving raw leachate from the landfill leachate collection system, equipped with three (3) variable frequency drive (VFD) recirculation pumps (two duty and one standby) each rated at 9.6 L/sec, all pumping leachate to the leachate treatment system, as described below; and

Treated Effluent On-Site Disposal (Poplar Plantation)

Upon substantial completion of the Works, treated leachate effluent will be disposed as follows:

- one (1) 28.32 ha poplar tree irrigation land established to handle an average of 1,187 m³/day of treated leachate effluent during suitable irrigation days between the period extending from May 1st to October 15th, consisting of six (6) 3.62 ha treated effluent drip-irrigation zones using approximately 250 m long drip-irrigation tubing installed in each zone;
- a stormwater management system to control the quality of stormwater runoff from the poplar tree irrigation land to Kersey Drain (Brown Creek), consisting of one (1) west furrow approximately 710 m long x 200 mm deep and one (1) east furrow approximately 510 m long x 200 mm deep, running parallel to each other with a grassed area in between, each equipped with a 200 mm high berm for distributing stormwater runoff across the entire length of the furrow, discharging by sheet flow to Kersey Drain; and

Raw/Diluted Leachate Effluent Disposal (Poplar System)

- one (1) existing 9.3 ha poplar tree irrigation system identified as the Poplar System, of approximately 150 m length for each poplar row. Leachate is applied through pressure drip-irrigation tubing at a rate not to exceed 476 mm/m², or 44,000 L/day, during the growing season. The system is subject to conditions as specified in the *EPA* Section 27 approval for the site. Revised to a 9.3 ha area with a rate of 476 mm/m² or 44,000 m³/year.
 - a system of maintenance holes, collector system and leachate sump across the existing site to transfer leachate to the leachate holding tanks via two methods: 1) down-hole leachate pumps transfer leachate through piping units directly to the leachate holding tanks and the Equalization Tank; and 2) the use of a tanker truck, which transfers the leachate via gravity drainage into the leachate holding tanks or maintenance holes of the leachate conveyance system.

all other controls, electrical equipment, instrumentation, piping, pumps, valves and appurtenances essential for the proper operation of the aforementioned sewage Works;

all in accordance with the following submitted supporting documents listed in Schedule A.

For the purpose of this environmental compliance approval, the following definitions apply:

- 1. "Approval" means this entire document and any schedules attached to it, and the application;
- 2. "District Manager" means the District Manager of the Sarnia District Office of the Ministry;
- 3. "Director" means a person appointed by the Minister pursuant to section 5 of the EPA for the purposes of Part II.1 of the EPA;
- 4. "EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended;
- 5. "Ministry" means the ministry of the government of Ontario responsible for the EPA and OWRA and includes all officials, employees or other persons acting on its behalf;
- 6. "Owner" means Waste Management of Canada Corporation and its successors and assignees;
- 7. "OWRA" means the *Ontario Water Resources Act*, R.S.O. 1990, c. O.40, as amended;
- 8. "Poplar System" is the irrigation area of 9.3 hectares located on top of the cap of the Existing Site (old landfill) that is used for the phytoremediation of leachate that is generated at the Site.

- 9. "Poplar Plantation" is the irrigation area located on native soil to the south of the Site that is used for the phytoremediation of irrigation liquid that satisfies the Effluent Limit criteria.
- 10. "Previous Works" means those portions of the sewage works previously constructed and approved under an Approval;
- 11. "Proposed Works" means the sewage works described in the Owner's application, this Approval, to the extent approved by this Approval;
- 12. "Township" means the Township of Warwick;
- 13. "Works" means the sewage works described in the Owner's application, and this Approval, and includes both Proposed Works and Previous Works;
- 14. "WIFN" refers to Walpole Island First Nation; and
- 15. "WPLC" refers to the Warwick Public Liaison Committee.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

PART I-GENERAL

1. GENERAL CONDITION

- 1. The Owner shall ensure that any person authorized to carry out work on or operate any aspect of the Works is notified of this Approval and the conditions herein and shall take all reasonable measures to ensure any such person complies with the same.
- 2. Except as otherwise provided by these conditions, the Owner shall design, build, install, operate and maintain the Works in accordance with the description given in this Approval, and the application for approval of the Works.
- 3. Where there is a conflict between a provision of any document in the schedule referred to in this Approval and the conditions of this Approval, the Conditions in this Approval shall take precedence, and where there is a conflict between the documents in the schedule, the document bearing the most recent date shall prevail.
- 4. Where there is a conflict between the documents listed in the Schedule A, and the application, the application shall take precedence unless it is clear that the purpose of the document was to amend the application.
- 5. The Conditions of this Approval are severable. If any Condition of this Approval, or the application

of any requirement of this Approval to any circumstance, is held invalid or unenforceable, the application of such condition to other circumstances and the remainder of this Approval shall not be affected thereby.

2. CHANGE OF OWNER

- 1. The Owner shall notify the District Manager and the Director, in writing, of any of the following changes within thirty (30) days of the change occurring:
 - a. change of Owner or operating authority, or both;
 - b. change of address of Owner or operating authority or address of new Owner or operating authority;
 - c. change of partners where the Owner or operating authority is or at any time becomes a partnership, and a copy of the most recent declaration filed under the *Partnerships Registration Act*;
 - d. change of name of the corporation where the Owner or operator is or at any time becomes a corporation, and a copy of the most current "Initial Notice or Notice of Change" (Form 1, 2 or 3 of O. Reg. 189, R.R.O. 1980, as amended from time to time), filed under the *Corporations Information Act*, shall be included in the notification to the District Manager;
- 2. In the event of any change in ownership of the Works, the Owner shall notify in writing the succeeding owner of the existence of this Approval, and a copy of such notice shall be forwarded to the District Manager.
- 3. The Owner shall ensure that all communications made pursuant to this condition will refer to this Approval's number.

PART II - STORMWATER MANAGEMENT FACILITY

3. OPERATIONS MANUAL

1. The Owner shall maintain the operations manual up to date through revisions undertaken from time to time and retain a copy at the location of the sewage works. Upon request, the Owner shall make the manual available for inspection and copying by Ministry personnel.

4. EFFLUENT MONITORING AND RECORDING

1. The Owner shall carry out a monitoring program and all samples and measurements taken for the purposes of this Approval are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.

- 2. Samples shall be collected and analyzed at the sampling point(s), at the sampling frequencies and using the sample type specified for each parameter listed in the effluent monitoring table included in **Schedule B**:
- 3. The methods and protocols for sampling, analysis, toxicity testing, and recording shall conform, in order of precedence, to the methods and protocols specified in the following:
 - a. the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions;
 - b. the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition) as amended from time to time by more recently published editions; and
 - c. in respect of any parameters not mentioned in (a) (b), the written approval of the District Manager, which approval shall be obtained prior to sampling.
- 4. The temperature and pH of the effluent from the Works shall be determined in the field at the time of sampling for total ammonia. The concentration of un-ionized ammonia shall be calculated using the total ammonia concentration, pH and temperature using the methodology stipulated in "Ontario's Provincial Water Quality Objectives" dated July 1994, as amended, for ammonia (un-ionized).
- 5. The measurement frequencies specified in Condition 4 (2) in respect to any parameter are minimum requirements which ma, after 24 months of monitoring in accordance with this Condition, be modified by the District Manager in writing from time to time.
- 6. The Owner shall provide to the Township, WPLC, WIFN a copy of all requests to be submitted to the District Manager for any changes to the monitoring program specified in Condition 4 (5) at the same time or prior to the time such request is made to the District Manager.

5. OPERATION AND MAINTENANCE

- 1. The Owner shall apply the "Stormwater Contingency and Remedial Action Plan as included in Appendix N.27 of the Operations and Maintenance manual, Warwick Landfill Expansion, WM, May 2008.
- 2. The Owner shall operate the Works (**SWM Ponds**) with the outlet sluice gate valve in a **Normally Open Position** during normal operation period.
- 3. The Owner shall compare monitoring results obtained under Condition 4 (2) for the trigger parameters listed in Table 2 in **Schedule B** with respective trigger levels listed in Table 2 in **Schedule B** to identify any potential leachate impact to stormwater.

- 4. In the event that a monitoring result for any parameter that is listed in Table 2 of **Schedule B** for any of **SWM Ponds** exceeds its trigger level, the Owner shall conduct sampling of the contents of the affected **SWM Pond** within one (1) week to confirm the exceedance of the trigger level for that parameter and identify potential source of contamination. Upon confirmation of the exceedance of the exceedance of any trigger level for any parameter that is listed in Table 2 of **Schedule B**, the Owner shall close the outlet sluice gate valve of the affected Works (**SWM Pond**) and implement an approved "Stormwater Contingency and Remedial Action Plan".
- 5. The Owner shall dispose of the contents of an affected Work (**SWM Pond**) which failed to meet the quality requirements outlined in Condition 5 (5) in accordance with an approved "Stormwater Contingency and Remedial Action Plan".
- 6. In the event that a monitoring result for any parameter that is listed in Table 2 for the **Poplar Plantation** exceeds its trigger level, the Owner shall conduct sampling of the stormwater runoff from the affected part of the **Poplar Plantation** as soon as possible to confirm the exceedence of the trigger level for that parameter and identify potential source of contamination. Upon confirmation of the exceedence of any trigger level for any parameter that is listed in Table 2, the Owner shall implement an approved "Stormwater Contingency and Remedial Action Plan".
- 7. The Owner shall inspect the Works (**SWM Ponds**) at least once a year and, if necessary, clean and maintain the Works to prevent the excessive build-up of sediments and/or vegetation.
- 8. The Owner shall maintain a logbook to record the results of these inspections and any cleaning and maintenance operations undertaken, and shall keep the logbook at the site or Owner's operational head quarter for inspection by the Ministry. The logbook shall include the following:
 - a. the name of the Works (SWM Pond #1, SWM Pond #2, SWM Pond #3, and SWM Pond #4);
 - b. the date and results of each inspection, maintenance and cleaning, including an estimate of the quantity of any materials removed; and
 - c. the occurrence date of each spill within the catchment area of a given SWM Pond, including follow-up action/remedial measures undertaken.

6. RECORD KEEPING

1. The Owner shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the operation and maintenance and monitoring activities required by this Approval.

PART III - LEACHATE TREATMENT FACILITY

7. EFFLUENT LIMITS

- 1. The Owner shall design, construct and operate the Works such that the concentrations of the materials listed as effluent parameters in the effluent limits table in **Schedule B** are not exceeded in the effluent from the **Treated Effluent Storage Pond** (Cell 2).
- 2. For the purposes of determining compliance with and enforcing subsection (1):
 - a. The Average Monthly Concentration of a parameter named in Column 1 of Table 3 in **Schedule B** shall not exceed the corresponding maximum concentration set out in Column 2 of Table 3 in **Schedule B**;
 - b. non-compliance with respect to pH is deemed to have occurred when any single measurement is outside of the indicated range.

8. OPERATION AND MAINTENANCE

- 1. The Owner shall exercise due diligence in ensuring that, at all times, the Works and the related equipment and appurtenances used to achieve compliance with this Approval are properly operated and maintained. Proper operation and maintenance shall include effective performance, adequate funding, adequate operator staffing and training, including training procedures and other requirements of this Approval and OWRA and regulations, adequate laboratory facilities, process controls and alarms and the use of process chemicals and other substances in the Works.
- 2. The Owner shall main the operations manual current and retain a copy at the location of the Works for the operational life of the Works. Upon request, the Owner shall make the manual available to Ministry staff.

9. EFFLUENT MONITORING AND RECORDING

The Owner shall carry out a monitoring program:

- 1. all samples and measurements taken for the purposes of this Approval are to be taken at a time and in a location characteristic of the quality and quantity of the effluent stream over the time period being monitored.
- 2. For the purpose of this condition, the following definitions apply:
 - a. Daily means once each day;
 - b. Weekly means once each week;
 - c. Monthly means once every month; and

- d. Semi-annually means once every six months.
- 3. Samples shall be collected and analyzed at the sampling point(s), at the sampling frequencies and using the sample type specified for each parameter listed in the effluent monitoring table included in **Schedule B**:
- 4. The methods and protocols for sampling, analysis, toxicity testing, and recording shall conform, in order of precedence, to the methods and protocols specified in the following:
 - a. the Ministry's Procedure F-10-1, "Procedures for Sampling and Analysis Requirements for Municipal and Private Sewage Treatment Works (Liquid Waste Streams Only)", as amended from time to time by more recently published editions;
 - b. the Ministry's publication "Protocol for the Sampling and Analysis of Industrial/Municipal Wastewater" (January 1999), ISBN 0-7778-1880-9, as amended from time to time by more recently published editions;
 - c. the publication "Standard Methods for the Examination of Water and Wastewater" (21st edition) as amended from time to time by more recently published editions; and
 - d. in respect of any parameters not mentioned in (a) (c), the written approval of the District Manager, which approval shall be obtained prior to sampling.
- 5. The measurement frequencies specified in **Schedule B** in respect to any parameter are minimum requirements which may, after 24 months of monitoring in accordance with this Condition, be modified by the District Manager in writing from time to time.
- 6. The Owner shall provide to the Township, WPLC and WIFN a copy of all requests to be submitted to the District Manager for any changes to the monitoring program specified in **Schedule B** at the same time or prior to the time such request is made to the District Manager.
- 7. A continuous flow measuring device(s) shall be installed and maintained to measure the flowrate of the effluent from the sewage works, with an accuracy to within plus or minus fifteen (15) per cent of the actual flowrate for the entire design range of the flow measuring device and the Owner shall measure, record and calculate the flowrate for each effluent stream on each day of sampling.
- 8. The Owner shall retain for a minimum of five (5) years from the date of their creation, all records and information related to or resulting from the monitoring activities required by this Approval.
- 9. The Owner shall visually inspect the drip-irrigation pipeline systems at least once per week during operation period to look for leaking and/or failed (broken) lines that would otherwise produce run-off. The inspection should be supported by a log book documenting routine inspection and notes on repair as required.

10. GROUNDWATER MONITORING - POPLAR PLANTATION LAND IRRIGATION AREA

- 1. The Owner shall collect grab samples during May and November from the sampling location outlined in Table 7 of **Schedule B** and analyze for the parameters listed in Table 7 of **Schedule B**.
- 2. The methods and protocols for sampling, analysis and recording shall conform to that outlined in Condition 9 (4).
- 3. The measurement frequencies specified in Condition 10 (2) in respect to any parameter are minimum frequencies which may, after 24 months of monitoring in accordance with this Condition, be modified by the District Manager, in writing from time to time.
- 4. The Owner shall provide to the Township, WPLC, and WIFN a copy of all requests to be submitted to the District Manager for any changes to the monitoring program specified in Condition 10 (2) at the same time or prior to the time such request is made to the District Manager.

11. OPERATION - POPLAR PLANTATION LAND IRRIGATION

- 1. The Owner shall apply the "Groundwater Contingency and Remedial Action Plan" for any potential groundwater impact caused by Effluent Storage Ponds and the Poplar Forest Irrigation Area, as included in Appendix N.26 of the Operation and Maintenance Manual, Warwick Landfill Expansion, WM, May 2008.
- 2. The Owner shall compare monitoring results obtained under condition 10 (2) for the trigger parameter listed in Table 8 of **Schedule B** with their respective trigger levels listed in Table 8 of **Schedule B** to identify any potential leachate impact to groundwater.
- 3. In the event that a monitoring result for any parameter that is listed in Table 8 of **Schedule B** exceeds its trigger level, the Owner shall re-sample within one (1) month to confirm the exceedence of the trigger level for that parameter. Upon confirmation of the exceedence of any trigger level for any parameter that is listed in Table 8 of **Schedule B**, the Owner shall conduct a second round re-sampling within six (6) months to re-confirm the exceedence of the trigger level for the parameter of concern.
- 4. In the event that the presence of the parameter(s) of concern is (are) not confirmed after the second round of sampling conducted under Condition 11 (3), then, normal groundwater monitoring shall be resumed.
- 5. In the event that the presence of the parameter(s) of concern is confirmed after the second round of sampling conduced under Condition 11 (3), then, it shall constitute as a confirmation of leachate impact to groundwater and the *Owner* shall immediately implement the "Groundwater Contingency and Remedial Action Plan" approved under Condition 11 (1).

- 6. The Owner shall notify the District Manager orally, as soon as possible, and in writing within seven days of the confirmation of leachate impact to groundwater including an assessment of the relative severity and extent of leachate impact and proposed remedial actions.
- 7. The Owner shall record and report a summary of all trigger exceedence incidents and all remedial action measures taken under Condition 11 (5) in the Annual Report prepared under Condition 13.
- 8. The Owner shall dispose of **only** treated leachate effluent that meets the effluent limits requirements outlined under Condition 7 (1) for treatment and disposal by drip-irrigation on the approved poplar tree land area during the period between May 1st and October 15th of each calendar year.
- 9. The Owner shall not allow under any circumstance (including as emergency contingency plan) any direct discharge of leachate or treated leachate effluent from the Works to any receiving surface water including Bear Creek;
- 10. The Owner shall record the total volume of treated leachate effluent drip-irrigated on the poplar tree land irrigation area on a daily basis.
- 11. The Owner shall ensure that treated leachate effluent is disposed of via drip-irrigation in the designated six (6) poplar tree drip-irrigation zones initially, and ultimately on eight (8) poplar tree drip-irrigation zones on a planned rotation basis.
- 12. The Owner shall visually inspect drip-irrigation operations at least twice each day during operation period to ensure that no surface ponding or surface run-off is taking place.
- 13. The *Owner* shall retain records of inspections and drip-irrigation operation data collected under subsections (10), (11) and (12) and make them available for inspection Ministry staff upon request.
- 14. No drip irrigation is to take place:
 - a. on frozen or snow covered ground conditions;
 - b. with the occurrence of surface ponding in any area subjected to drip irrigation;
 - c. within 100 m of any surface watercourse or drain; and
 - d. at an average daily application rate greater than 4.8 mm;
- 15. The Owner shall notify and provide the Township, WPLC and WIFN with a copy of the proposed "Groundwater Contingency and Remedial Action Plan" required under Condition 11 (1).

PART IV - GENERAL

12. REPORTING

- 1. In addition to the obligations under Part X of the EPA, the Owner shall, within ten (10) working days of the occurrence of any reportable spill as defined in Ontario Regulation 675/98, bypass or loss of any product, by-product, intermediate product, oil, solvent, waste material or any other polluting substance into the environment, submit a full written report of the occurrence to the District Manager describing the cause and discovery of the spill or loss, clean-up and recovery measures taken, preventative measures to be taken and schedule of implementation.
- 2. The Owner shall, upon request, make all manuals, plans, records, data, procedures and supporting documentation available to Ministry staff.
- 3. The Owner shall prepare and submit a performance report to the District Manager on an annual basis within before March 31 of each calendar year. The reports shall contain, but shall not be limited to, the following information:
 - a. a summary and interpretation of all monitoring data and a comparison to the effluent objectives outlined in Condition 7, including an overview of the success and adequacy of the Works;
 - b. a summary and interpretation of all monitoring data and a comparison to the trigger limits outlined in Condition 5, including an overview of the success and adequacy of the Works;
 - c. a description of any operating problems encountered and corrective actions taken;
 - d. a summary of all maintenance carried out on any major structure, equipment, apparatus, mechanism or thing forming part of the sewage works;
 - e. a summary of any effluent quality assurance or control measures undertaken in the reporting period;
 - f. a summary of the calibration and maintenance carried out on all effluent monitoring equipment;
 - g. a tabulation of dry salt cake generated in the reporting period, an outline of anticipated amount of dry salt cake to be generated in the next reporting period and a summary of the locations to where the cake was disposed;
 - h. a summary of any complaints received during the reporting period and any steps taken to address the complaints; and
 - i. any other information the District Manager requires from time to time.

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is imposed to ensure that the works are built and operated in the manner in which they were described for review and upon which approval was granted. This condition is also included to emphasize the precedence of Conditions in the Approval and the practice that the Approval is based on the most current document, if several conflicting documents are submitted for review.
- 2. Condition 2 is included to ensure that the Ministry records are kept accurate and current with respect to the approved works and to ensure that subsequent owners of the Works are made aware of the Approval and continue to operate the Works in compliance with it.
- 3. Conditions 3, 5, 8 and 11 are included to require that the Works be properly operated, maintained, funded, staffed and equipped such that the environment is protected and injury to any person or deterioration, loss and damage to property is prevented. As well, the inclusion of a comprehensive operations manual governing all significant areas of operation, maintenance and repair is prepared, implemented and kept up-to-date by the owner and made available to the Ministry. Such a manual is an integral part of the operation of the Works. Its compilation and use should assist the *Owner* in staff training, in proper plant operation and in identifying and planning for contingencies during possible abnormal conditions. The manual will also act as a benchmark for *Ministry* staff when reviewing the Owner's operation of the work.
- 4. Conditions 4, 9 and 10 are included to require the owner to demonstrate on a continual basis that the quality and quantity of the effluent from the approved Works is consistent with the effluent limits specified in the certificate and that the approved Works does not cause any impairment to the receiving watercourse and/or the groundwater.
- 5. Condition 6 is included to require that all records are retained for a sufficient time period to adequately evaluate the long-term operation and maintenance of the Works.
- 6. Condition 7 is imposed to ensure that the effluent irrigated from the Works to the poplar irrigation area meets the Ministry's effluent quality requirements thus minimizing environmental impact on groundwater and receiving surface water.
- 7. Condition 12 is included to provide a performance record for future references to ensure that the *Ministry* is made aware of problems as they arise and to provide a compliance record for all the terms and conditions outlined in this Approval so that the Ministry can work with the Owner in resolving any problems in a timely manner.

Schedule A

1.	Application for Environmental Compliance Approval submitted by Reid Cleland, Director of
	Operations- Eastern Canada Landfills of Waste Management of Canada Corporation received or
	March 5, 2019 and all supporting documentation and information submitted during the review
	process.

Schedule B

Table 1 - Stormwater Monitoring
Sampling Locations: SWM Pond Outlets - SP1, SP2, SP3, SP4.
Irrigation Area - SS17A, SS17B, SS18A and SS18B.

Parameter	Parameter	Parameter	Field -Parameter	
Alkalinity	Magnesium	Toluene	Conductivity	
Total Ammonia Nitrogen	Potassium	Ethylbenzene	Dissolved Oxygen	
Un-ionized Ammonia	Sodium	Xylene	pH (Field)	
Chloride	Arsenic	Vinyl Chloride	Temperature	
Conductivity (Lab)	Barium	1,2,4-Trichlorobenzene	Turbidity	
Nitrate Nitrogen	Boron	1,2-Dichlorobenzene		
Nitrite Nitrogen	Cadmium	1,3-Dichlorobenzene		
TKN	Chromium (Total)	1,4-Dichlorobenzene		
pH (Lab)	Copper	Hexachlorobenzene		
Total Phosphorus	Iron	Diethylphthalate		
Total Suspended Solids	Lead	Dimethylphthalate		
Total Dissolved Solids	Mercury	Di-n-butyl phthalate		
Sulphate	Nickel	Phenol		
BOD5	Zinc	Benzo(a)pyrene		
Chemical Oxygen Demand	Benzene	2,4,6-Trichlorophenol		
Phenols	1,4-Dichlorobenzene	2,4-Trichlorophenol		
Calcium	Dichloromethane	Pentachlorophenol		

Note: Samples shall be collected within twenty four hours after a rainfall event (more than 10 mm rainfall in 24 hour period) resulting in a stormwater discharge from each SWM Pond or Poplar Plantation Irrigation Area at a minimum interval of one (1) month between consecutive sampling events.

Table 2					
Trigger Parameter	Trigger Level [SS10 & SS16 - 90 th percentile]				
	(mg/L)				
Ammonia (unionized)	0.020				
Boron	0.20				
Boron (SP1 only)	0.39				
Chloride	210				
Chromium (Total)	0.024				
Nickel	0.027				
Phenols	0.001				
Zinc	0.06				

Note: Annually, a trigger level for a parameter listed above will be replaced by the corresponding 90th percentile of background surface water concentration where background surface water concentrations collected upstream of the landfill (Sampling Locations SS10 and SS16).

Table 3 - Effluent Limits Sampling Location: Discharge Point from Treated Effluent Storage Pond					
Effluent Parameter	Average Monthly Concentration (milligrams per litre unless otherwise indicated)				
Column 1	Column 2				
Total Ammonia Nitrogen	68.7				
Total Phosphorus	0.72				
Phenols	0.2				
Chlorides	247				
Copper	0.014				
Iron	27.0				
pH of the effluent maintained between 6.0 to 9.5, inclusive, at all times					

Table 4 - Leachate Monitoring Sampling Location: Equalization Tank							
Parameters Sample Type Frequency							
BOD5	Grab	Quarterly					
Dissolved Organic Carbon (DOC)	Grab	Quarterly					
Total Phosphorus	Grab	Quarterly					
Total Kjeldahl Nitrogen	Grab	Quarterly					
BTEX	Grab	Quarterly					
pН	Grab	Quarterly					
VOCs Note 1	Grab	Semi-Annually					
Semi-VOCs Note 2	Grab	Semi-Annually					
Metals Note 3	Grab	Semi-Annually					
General Chemistry Note 4	Grab	Semi-Annually					

Table 5 - Leachate Treatment Plant Effluent Monitoring Sampling Location: Discharge to Treated Effluent Storage Pond								
Parameters Sample Type Frequency								
CBOD5	Grab	Weekly						
Dissolved Organic Carbon (DOC)	Grab	Weekly						
Total Ammonia Nitrogen	Grab	Weekly						
Chloride	Grab	Weekly						
BTEX	Grab	Weekly						
pH	Grab	Weekly						
VOCs ^{Note 1}	Grab	Monthly						
Semi-VOCs Note 2	Grab	Monthly						
Metals Note 3	Grab	Monthly						
General Chemistry Note 4	Grab	Monthly						
PCB	Grab	Semi-Annually						
Organochlorides	Grab	Semi-Annually						

Table 6 - Treated Effluent Storage Pond Effluent Monitoring Sampling Location: Discharge to Poplar Plant Irrigation Area								
Parameters Sample Type Frequency								
CBOD5	Grab	Weekly						
Dissolved Organic Carbon (DOC)	Grab	Weekly						
Total Ammonia Nitrogen	Grab	Weekly						
Chloride	Grab	Weekly						
BTEX	Grab	Weekly						
pН	Grab	Weekly						
VOCs ^{Note 1}	Grab	Monthly						
Semi-VOCs Note 2	Grab	Monthly						
Metals Note 3	Grab	Monthly						
General Chemistry Note 4	Grab	Monthly						

Note 1: VOCs: Benzene, 1,4-Dichlorobenzene, Dichloromethane, Toluene,

Ethylbenzene, Xylenes, and Vinyl Chloride.

Note 2: Semi-VOCs: 1,2,4-Trichlorobenzene, 1,2-Dichlorobenzene,

1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Hexachlorobenzene,

Diethylphthalate, Dimethylphthalate, Di-n-butyl phthalate,

Phenol, Benzo(a)pyrene, 2,4,6- Trichlorophenol,

2,4-Dichlorophenol, Pentachlorophenol.

Note 3: Metals: Arsenic, Barium, Boron, Cadmium, Chromium, Copper, Iron,

Lead, Manganese, Mercury, Nickel, Zinc.

Note 4: G. Chemistry: Alkalinity, Calcium, Chloride, Conductivity, COD, Nitrate,

Nitrite, Magnesium, pH, Potassium, Sodium, Sulphate, Total

Dissolved Solids, TKN, Temperature, Turbidity, Total

Phosphorus, TSS, Phenols, Dissolved Oxygen.

Table 7 - Groundwater Monitoring Sampling Location: **OW40, OW60 and OW79 - at Annual Frequency**Sampling Location: **OW16, OW61, and OW62 - at Semi-Annual Frequency**

Parameters	Parameters	Field Parameters
Alkalinity	Boron	рН
Conductivity	Cadmium	Conductivity
Chloride	Lead	Turbidity
pН	Iron	
Dissolved Organic Carbon	Barium	
Total Dissolved Solids	Benzene	
Total Ammonia	1,4-Dichlorobenzene	
Total Kjeldahl Nitrogen	Dichloromethane	
Sulphate	Ethylbenzene	
Nitrate	Vinyl Chloride	
Calcium	Toluene	
Potassium	Xylenes	
Sodium		
Magnesium		

Table 8 - Trigger Limits for Poplar Plantation Land Irrigation								
Trigger Parameter	Trigger Level							
		(mg/L)						
	Active Aquitard	ctive Aquitard Interstadial Silt and Interface Aqui						
		Sand						
Chloride	106	106 116 134						
Nitrate	2.3	2.3	2.3					
Boron	1.1	2.1	2.6					
Cadmium	0.001	0.001	0.001					
Lead	0.002	0.002	0.002					
Benzene	0.001	0.001	0.001					
1,4-Dichlorobenzene	0.001	0.001	0.001					
Dichloromethane	0.01	0.01	0.01					
Vinyl Chloride	0.0004	0.0004 0.0004 0.						

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 3506-7M5PU3 issued on July 9, 2009

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me and the Environmental Review Tribunal within 15 days after receipt of this Notice, require a hearing by the Tribunal. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

AND

The Director appointed for the purposes of Part II.1 of the Environmental Protection Act
Ministry of the Environment, Conservation and
Parks
135 St. Clair Avenue West, 1st Floor
Toronto, Ontario
M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 21st day of August, 2019

Youssouf Kalogo, P.Eng.

Director

appointed for the purposes of Part II.1 of the *Environmental Protection Act*

SO/

c: District Manager, MECP Sarnia District Office Larry Fedec, HDR Corporation

APPENDIX A5: Amended ECA [Air] No. 9488-AMPH4Y, dated July 6, 2017

Content Copy Of Original

Ministry of the Environment and Climate Change Ministère de l'Environnement et de l'Action en matière de changement climatique

AMENDED ENVIRONMENTAL COMPLIANCE APPROVAL

NUMBER 9488-AMPH4Y Issue Date: July 6, 2017

Waste Management of Canada Corporation 117 Wentworth Court Brampton, Ontario L6T 5L4

Site Location: Twin Creeks Landfill Site

8039 Zion Line

Warwick Township, County of Lambton

N0M 2S0

You have applied under section 20.2 of Part II.1 of the Environmental Protection Act, R.S.O. 1990, c. E. 19 (Environmental Protection Act) for approval of:

Three (3) enclosed flare systems, each having a maximum inlet capacity of 2.08 cubic metres per second of landfill gas, exhausting into the air at a maximum volumetric flow rate of 61.3 cubic metres per second through individual stacks, each having an exit diameter of 3.7 metres, extending 15.2 metres above grade; used to:

incinerate the landfill gas from a landfill gas collection system;

control the off-gases from the enclosed building housing the leachate treatment facility; and

maintain a negative pressure on the leachate collection system on an as-needed basis;

one (1) enclosed flare system having a maximum inlet capacity of 0.94 cubic metres per second of landfill gas, exhausting into the air at a maximum volumetric flow rate of 25.8 cubic metres per second through a stack having an exit diameter of 3.2 metres, extending 12.2 metres above grade; used to:

incinerate the landfill gas from a landfill gas collection system;

control the off-gases from the enclosed building housing the leachate treatment facility; and

maintain a negative pressure on the leachate collection system on an as-needed basis;

One (1) diesel fuel fired emergency generator rated at 1,000 kilowatts that will be used to provide back-up power for the landfill gas plant; exhausting into the air at a maximum volumetric flow rate of 3.56 cubic metres per second; having an exit diameter of 0.25 metre, extending 3.6 metres above grade;

One (1) diesel fuel fired generator rated at 50 kilowatts that will be used to provide regular power to the leachate pumping system; exhausting into the air at a maximum volumetric flow rate of 0.24 cubic metres per second; having an exit diameter of 0.10 metre, extending 3.6 metres above grade;

One (1) diesel fuel fired emergency generator rated at 250 kilowatts that will be used to provide

back-up power for the office buildings; exhausting into the air at a maximum volumetric flow rate of 0.97 cubic metres per second; having an exit diameter of 0.15 metre, extending 3.6 metres above grade;

Two (2) passive exhaust louvres serving two (2) sequencing batch reactors (SBR) and two (2) aeration tanks; exhausting into the air individually at a maximum volumetric flow rate of 1.96 cubic metres per second; each having an exit dimension of 1.22 x 1.22 metres, extending 2.13 metres above grade;

One (1) process exhaust fan serving the reverse osmosis system area; exhausting into the air at a maximum volumetric flow rate of 1.71 cubic metres per second; having an exit dimension of 0.45 x 0.45 metres, extending 4.0 metres above grade;

One (1) exhaust fan serving slurry dryer; exhausting into the air at a maximum volumetric flow rate of 0.24 cubic metres per second; having an exit diameter of 0.3 metre, extending 5.0 metres above grade;

all in accordance with the Application for an Approval, dated February 15, 2017 and signed by Reid Cleland of the *Company* and all information and documentation associated with the application including ESDM Report prepared by RWDI AIR Inc. dated February 15, 2017 and signed by Brad Bergeron; and email updates provided by Brad Bergeron of RWDI AIR Inc. on May 10, 18, 24 and 26, 2017.

For the purpose of this environmental compliance approval, the following definitions apply:

- 1. "Acoustic Audit" means an investigative procedure consisting of measurements of all noise emissions due to the operation of the Facility, assessed in comparison to the performance limits for the Facility regarding noise emissions, completed in accordance with the procedures set in Publication NPC-103 and reported in accordance with Publication NPC-233.
- 2. "Acoustic Audit Report" means a report presenting the results of an Acoustic Audit, prepared in accordance with Publication NPC-233.
- 3. "Acoustical Consultant" means a person currently active in the field of environmental acoustics and noise/vibration control, who is familiar with Ministry noise guidelines and procedures and has a combination of formal university education, training and experience necessary to assess noise emissions from a Facility.
- 4. "CEM System" means the continuous monitoring and recording system, one for each of the flare system, used to optimize the operation of the flare systems, as described in this *Approval*, including Schedule "A", to the extent approved by this *Approval*.
- 5. "Approval" means this Environmental Compliance Approval, including the application and supporting documentation listed above.
- 6. "Company" means Waste Management of Canada Corporation that is responsible for the construction or operation of the Facility and includes any successors and assigns.
- 7. "Director" means a person appointed for the purpose of section 20.3 of the EPA by the Minister pursuant to section 5 of the EPA.
- 8. "District Manager" means the District Manager of the appropriate local district office of the Ministry, where the Facility is geographically located.
- 9. "EPA" means the Environmental Protection Act, R.S.O. 1990, c.E.19, as amended.
- 10. "Equipment" means the equipment described in the Company's application, this Approval and in

the supporting documentation submitted with the application, to the extent approved by this *Approval*.

- 11. "Facility" means the entire operation located on the property where the Equipment is located.
- 12. "Independent Acoustical Consultant" means an Acoustical Consultant not representing the Company, and not involved in the noise impact assessment or the design/implementation of noise control measures for the Facility/Equipment. The Independent Acoustical Consultant shall not be retained by the consultant involved in the noise impact assessment or the design/implementation of noise control measures for the Facility/Equipment.
- 13. "Manager" means the Manager, Technology Standards Section, Standards Development Branch of the Ministry, or any other person who represents and carries out the duties of the Manager, as those duties relate to the conditions of this *Approval*.
- 14. "Manual" means a document or a set of documents that provide written instructions to staff of the Company.
- 15. "Pre-Test Information" means the information outlined in Section 1. of the Source Testing Code.
- 16. "Publication NPC-103" means Publication NPC-103 of the Model Municipal Noise Control By-Law, Final Report, August, 1978, as amended.
- 17. "Publication NPC-205" means the Ministry Publication NPC-205, "Sound Level Limits for Stationary Sources in Class 1 & 2 Areas (Urban)", October, 1995, as amended.
- 18. "Publication NPC-233" means Publication NPC-233, Information to be Submitted for Approval of Stationary Sources of Sound, October 1995, as amended.
- 19. "Sensitive Receptor" means any location where routine or normal activities occurring at reasonably expected times would experience adverse effect(s) from odour discharges from the Facility, including one or a combination of:
 - 1. private residences or public facilities where people sleep (e.g. single and multi-unit dwellings, nursing homes, hospitals, trailer parks, camping grounds, etc.),
 - 2. institutional facilities (e.g.: schools, places of worship, community centres, day care centres, recreational centres, etc.),
 - 3. outdoor public recreational areas (e.g.: trailer parks, play grounds, picnic areas, etc.), and
 - 4. other outdoor public areas where there are continuous human activities (e.g.: commercial plazas and office buildings).
- 20. "Schedules" means the following schedules attached to the *Approval* and forming part of the *Approval* namely:
 - Schedule A Continuous Monitoring and Recording System for Temperature
 - Schedule B Source Testing Requirement
 - Schedule C Procedures for Calculation of 10-minute Average Concentration of Odour.
- 21. "Site" means the Twin Creeks Landfill Site and lands owned by the Company described as:

8039 Zion Line, R.R. #4, Watford

Lots 19 and 20, Concession 3 and Lots 20 and 21, Concession 4, SER, Reference Plan 25R-9125

Township of Warwick, County Of Lambton, Ontario N0M 2S0.

22. "Source Testing" means sampling and testing to measure emissions resulting from operating the *Equipment* under process conditions which yield the worst case emissions within the approved operating range of the *Facility* and satisfies paragraph 1 of subsection 11(1) of O. Reg. 419/05.

23. "Source Testing Code" means the Ontario Source Testing Code, dated June 2010, prepared by the Ministry, as amended.

You are hereby notified that this environmental compliance approval is issued to you subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. NOTIFICATION

1. The *Company* shall notify the *District Manager* in writing at least one (1) month prior to the expected date of installation of the second, third and fourth enclosed flare system in the *Facility*.

2. PERFORMANCE

- 1. The *Company* shall, at all times, ensure that the noise emissions from the *Facility* comply with the limits set in Ministry *Publication NPC-205*.
- 2. The *Company* shall restrict the testing of the two (2) emergency diesel generators (1,000 kilowatts and 250 kilowatts) to a maximum of 30 minutes per hour each during the daytime period between 07:00 and 19:00 hours.
- 3. The *Company* shall operate all four enclosed flare systems in such a manner that a minimum temperature, as recorded by the *CEM System*, shall be 875 degrees Celsius at a point representing a minimum retention time of 0.7 second, at all times when the landfill gas incineration is in progress.

3. OPERATION AND MAINTENANCE

- 1. The *Company* shall ensure that the *Equipment*, including the *CEM System*, is properly operated and maintained at all times. The *Company* shall:
- 2. prepare, not later than three (3) months after the date of this *Approval*, a *Manual* outlining the operating procedures and a maintenance program for the *Equipment*. These operating procedures and the maintenance program in the *Manual* shall be updated as necessary. The *Manual* shall include, as a minimum, the following:
- 3. routine operating and maintenance procedures in accordance with good engineering practices and as recommended by the *Equipment* and the *CEM System* suppliers;
- 4. the calibration procedures of the CEM System;
- 5. emergency procedures and procedures to prevent upset conditions;
- 6. the operator training which is to be provided by qualified and experienced individuals, for example, staff associated with the *Equipment* and the *CEM System* suppliers or personnel with equivalent qualification;
- 7. the procedures for optimizing the operation of the *Equipment* to minimize emissions from the *Equipment*;
- 8. the periodic, at a minimum weekly, inspection of the *Equipment* which is to be conducted by individuals trained with the *Equipment*; and timetables for work to be carried out;
- 9. procedures for any record keeping activities relating to operation and maintenance of the *Equipment*, including but not limited to the quantity and quality of the landfill gas collected and fed to the *Equipment* for incineration;
- 10. procedures to record process upsets/upset conditions and the remedial actions taken to respond to the upsets;

- 11. all appropriate measures to minimize noise, dust and odorous emissions from all potential sources;
- 12. the procedures for recording and responding to complaints regarding the operation of the *Equipment*;
- 13. implement the procedures of the Manual.

4. ACOUSTIC AUDIT

- 1. The *Company* shall carry out *Acoustic Audit* measurements on the actual noise emissions due to the operation of the *Facility*. The:
 - a. shall carry out *Acoustic Audit* measurements in accordance with the procedures in *Publication NPC-103*;
 - b. shall submit an *Acoustic Audit* Report on the results of the *Acoustic Audit*, prepared by an *Independent Acoustical Consultant*, in accordance with the requirements of *Publication NPC-233*, to the *District Manager* and the *Director* not later than three (3) months after the commencement of operation of each of the proposed three (3) flare systems in the *Facility*.

2. The Director:

- a. may not accept the results of the *Acoustic Audit* if the requirements of *Publication NPC-* 233 were not followed;
- b. may require the *Company* to repeat the *Acoustic Audit* if the results of the *Acoustic Audit* are found unacceptable to the *Director*.

5. RECORD RETENTION

- 1. The *Company* shall retain, for a minimum of two (2) years from the date of their creation, all records and information related to or resulting from the recording activities required by this *Approval*, and make these records available for review by staff of the Ministry upon request. The *Company* shall retain:
- 2. all records on the maintenance, repair and inspection of the *Equipment* and the *CEM System*;
- 3. all records produced by the CEM System;
- 4. all records on the quality and quantity of landfill gas collected and fed to the Equipment;
- 5. all records on the ambient air monitoring;
- 6. all records generated in the *Acoustic Audit* measurements;
- 7. all records of process upsets/upset conditions and remedial actions taken to respond to the upsets:
- 8. all records of any environmental complaints; including:
- 9. a description, time and date of each incident to which the complaint relates,
- 10. wind direction at the time of the incident to which the complaint relates, and
- 11. a description of the measures taken to address the cause of the incident to which the complaint relates and to prevent a similar occurrence in the future.

6. NOTIFICATION OF COMPLAINTS

- 1. The *Company* shall notify the *District Manager*, in writing, of each environmental complaint within two (2) business days of the complaint. The notification shall include:
- 2. this Approval number;
- 3. a description of the nature of the complaint;
- 4. the time and date of the incident to which the complaint relates:
- 5. a description of the measures taken to address the cause of the incident to which the complaint relates and to prevent a similar occurrence in the future.

7. CONSULTATION

- 1. During the process of submission of an application to amend any *Approval* for the *Site*, the *Company* shall:
- 2. discuss with Walpole Island First Nation (WIFN), Township of Warwick and Warwick Public

- Liaison Committee (WPLC) the proposed application prior to submission of the application to the *Director*;
- 3. provide the same documents to WIFN, Township of Warwick and WPLC that are provided to the *Director* in respect of the amendment; and
- 4. provide the *Director* with a statement indicating how WIFN, Township of Warwick and WPLC's comments were considered by the *Company* before it submitted the application to the Ministry.

8. **SOURCE TESTING**

- 1. The *Company* shall monitor the emissions from the operation of the *Facility* as follows:
 - a. The *Company* shall perform Source Testing for the sources and contaminants outlined in Schedule B.
 - b. The *Company* shall submit, within the three (3) months following the date of this *Approval*, to the Manager a test protocol, including the *Pre-Test Information* for the Source Testing required by the *Source Testing Code*.
 - c. The Company shall finalize the test protocol in consultation with the Manager.
 - d. The *Company* shall not commence the Source Testing until the Manager has accepted the test protocol.
 - e. The *Company* shall notify the *District Manager* and the Manager in writing of the location, date and time of any impending Source Testing required by this *Approval*, at least fifteen (15) business days prior to the Source Testing or as approved by the Manager.
 - f. The *Company* shall complete the Source Testing within three (3) months after the commencement of the leachate treatment facility. The source testing will be repeated within 90 days of the start of each new phase as outlined in Table 6.1 of the Design and Operations Plan for the *Site*.

9. REPORT ON SOURCE TESTING

- 1. The *Company* shall submit a report on the Source Testing to the *District Manager* and the *Manager*, as stated in the test protocol, but no later than two (2) months after completing the *Source Testing*. The report shall be in the format described in the *Source Testing Code*, and shall also include:
 - a. an executive summary including the results from the Source Testing;
 - b. records of all operating conditions including any upset conditions during the *Source Testing*; and
 - c. the results of dispersion calculations using the maximum emission rate for odour for the *Equipment*, indicating the maximum concentration of the odour, 10 minute-average, calculated in accordance with the procedures outlined in Schedule C, at the nearby Sensitive Receptors and the yearly frequency of exceedance of 1 odour unit at the Sensitive Receptors.

10. REFUSAL OF SOURCE TESTING

- 1. The *Director* may not accept the results of the *Source Testing* if:
 - a. the Source Testing Code or the requirements of the Manager were not followed; or
 - b. the Company did not notify the District Manager and the Manager of the Source Testing; or
 - c. the Company failed to provide a complete report on the Source Testing.
- 2. If the *Director* does not accept the results of the *Source Testing*, the *Director* may require retesting.

SCHEDULE "A"

PARAMETER: Temperature

LOCATION:

The sample point for the continuous temperature monitoring and recording system shall be shall be

installed in the combustion chamber of each flare where the minimum retention time of the combustion gases at a minimum temperature of 875 degrees Celsius for at least 0.7 second is achieved.

PERFORMANCE:

The Continuous Temperature Monitor shall meet the following minimum performance specifications for the following parameters.

PARAMETER SPECIFICATION

- 1. Type: shielded "K" type thermocouple or equivalent
- 2. Accuracy: + 1.5 percent of the minimum gas temperature
- 3. Response Time (95%): 60 sec. (max)
- 4. Operating Range (Full Scale): 1.5 times approval limit
- 5. Standard Tolerance: ±2.2 °C or ±0.75%
- 6. Resolution: 0.1 °C
- 7. Calibration: Per manufacturer's recommendations

RECORDER:

The recorder must be capable of registering continuously the measurement of the monitor without a significant loss of accuracy and with a time resolution of 5 minutes or better.

RELIABILITY:

The monitor shall be operated and maintained so that accurate data is obtained during a minimum of 90 percent of the time for each calendar quarter during the first full year of operation, and 95 percent, thereafter when the enclosed flare systems are in operation.

SCHEDULE "B"

Source Testing Requirement

Source ID	Description	Test Parameters
L3	Exhaust serving sequencing a batch reactor (SBR) and an aeration tank	Odour, hydrogen sulfide, total Mercaptans and a complete scan for volatile organic compounds
L4	Exhaust serving sequencing a batch reactor (SBR) and an aeration tank	Odour, hydrogen sulfide, total Mercaptans and a complete scan for volatile organic compounds
EF-2	Exhaust serving reverse osmosis system area	Odour, hydrogen sulfide, total Mercaptans and a complete scan for volatile organic compounds
SD-1	Exhaust serving slurry dryer	Odour, hydrogen sulfide, total Mercaptans and a complete scan for volatile organic compounds

SCHEDULE "C"

Procedures for the Calculation of 10-minute Average Concentration of Odour

- 1. The one-hour average concentration of odour at the Point of Impingement and at the most impacted *Sensitive Receptor* can be calculated using the Procedure described as follows:
 - 1. Calculate one-hour average concentration of odour at the Point of Impingement and at the most impacted *Sensitive Receptor*, employing the AERMOD atmospheric dispersion model employing at least five (5) years of hourly local meteorological data and provide results as individual one- hour odour concentrations:

- 2. Convert each of the one-hour average concentrations predicted over the five (5) years of hourly local meteorological data to a 10-minute average concentration using the One-hour Average to 10-Minute Average Conversion described below;
- 3. Present the 10-Minute Average concentrations predicted to occur over a five (5) year period at the Point of Impingement and at the most impacted *Sensitive Receptor* in a histogram. The maximum 10-minute average concentration of odour at the *Sensitive Receptor* will be considered to be the maximum odour concentration at the most impacted *Sensitive Receptor* that occurs and is represented in the histogram; and
- 2. For AERMOD, use the following formula to convert one-hour average Point of Impingement concentration to 10-minute average Point of Impingement concentration:

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition No. 1 is included to assist the Ministry with the inspection of the *Facility* so that the environmental impact and subsequent compliance with the *EPA*, the regulations and this *Approval* can be verified.
- 2. Condition Nos. 2.1 and 2.3 are included to provide the minimum performance requirements considered necessary to prevent an adverse effect resulting from the operation of the *Facility*.
- 3. Condition No. 2.2 is included to ensure that the operation of the two (2) emergency diesel generators, excluding emergency situations, is not extended beyond the specified hours to prevent an adverse effect resulting from the operation of the Equipment.
- 4. Condition No. 3 is included to emphasize that the *Equipment* including the *CEM System* must be maintained and operated according to a procedure that will result in compliance with the *EPA*, the regulations and this *Approval*.
- 5. Condition No. 4 is included to require the Company to gather accurate information and submit an Acoustic Audit Report in accordance with procedures set in the Ministry's noise guidelines, so that the environmental impact and subsequent compliance with this Approval can be verified.
- 6. Condition No. 5 is included to require the *Company* to keep records and to provide information to staff of the Ministry so that compliance with the *EPA*, the regulations and this *Approval* can be verified.
- 7. Condition No. 6 is included to require the *Company* to notify staff of the Ministry so as to assist the Ministry with the review of the *Facility's* compliance.
- 8. Condition No. 7 is included in order to ensure that consultation with Walpole Island First Nation (WIFN), Township of Warwick and Warwick Public Liaison Committee (WPLC) is undertaken during the submission of any application to amend any *Approval* required by the Ministry.
- 9. Condition Nos. 8 to 10 are included to require the *Company* to gather accurate information so that the environmental impact and subsequent compliance with the *EPA*, the regulations and this *Approval* can be verified.

Upon issuance of the environmental compliance approval, I hereby revoke Approval No(s). 4365-7VXJ5G issued on November 10, 2009.

In accordance with Section 139 of the Environmental Protection Act, you may by written Notice served upon me, the Environmental Review Tribunal and in accordance with Section 47 of the Environmental Bill of Rights, 1993, S.O. 1993, c. 28 (Environmental Bill of Rights), the Environmental Commissioner,

within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 142 of the Environmental Protection Act provides that the Notice requiring the hearing shall state:

- a. The portions of the environmental compliance approval or each term or condition in the environmental compliance approval in respect of which the hearing is required, and;
- b. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

Pursuant to subsection 139(3) of the Environmental Protection Act, a hearing may not be required with respect to any terms and conditions in this environmental compliance approval, if the terms and conditions are substantially the same as those contained in an approval that is amended or revoked by this environmental compliance approval.

The Notice should also include:

- 1. The name of the appellant;
- 2. The address of the appellant;
- 3. The environmental compliance approval number;
- 4. The date of the environmental compliance approval;
- 5. The name of the Director, and;
- 6. The municipality or municipalities within which the project is to be engaged in.

And the Notice should be signed and dated by the appellant.

This Notice must be served upon:

The Secretary*
Environmental Review
Tribunal
655 Bay Street, Suite 1500
Toronto, Ontario
M5G 1E5

The Environmental Commissioner 1075 Bay Street, Suite 605 Toronto, Ontario M5S 2B1 The Director appointed for the purposes of Part II.1 of the Environmental Protection Act Ministry of the Environment and AND Climate Change 135 St. Clair Avenue West, 1st Floor Toronto, Ontario M4V 1P5

* Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal at: Tel: (416) 212-6349, Fax: (416) 326-5370 or www.ert.gov.on.ca

This instrument is subject to Section 38 of the Environmental Bill of Rights, 1993, that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek leave to appeal within 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry at www.ebr.gov.on.ca, you can determine when the leave to appeal period ends.

The above noted activity is approved under s.20.3 of Part II.1 of the Environmental Protection Act.

DATED AT TORONTO this 6th day of July, 2017

Rudolf Wan, P.Eng.

Director appointed for the purposes of Part II.1 of the *Environmental Protection Act*

BS/

c: District Manager, MOECC Sarnia Brad Bergeron, RWDI AIR Inc.

APPENDIX A6:

Amended Permit to Take Water [Surface Water] No. 4430-8PLMKV, dated January 17, 2012

AMENDED PERMIT TO TAKE WATER

Surface Water NUMBER 4430-8PLMKV

Pursuant to Section 34 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990 this Permit To Take Water is hereby issued to:

Waste Management of Canada Corporation

8039 Zion Line

Watford, Ontario, NOM 2S0

Canada

For the water Twin

Twin Creeks Landfill-

taking from:

Stormwater Sedimentation Ponds (Ponds 1,2,3,4),

Secondary Drainage Layer (SDL),

Pumping Stations (PS2, PS4, PS6, PS8)

Located at:

8039 Zion Line

Warwick, County of Lambton

For the purposes of this Permit, and the terms and conditions specified below, the following definitions apply:

DEFINITIONS

- (a) "Director" means any person appointed in writing as a Director pursuant to section 5 of the OWRA for the purposes of section 34, OWRA.
- (b) "Provincial Officer" means any person designated in writing by the Minister as a Provincial Officer pursuant to section 5 of the OWRA.
- (c) "Ministry" means Ontario Ministry of the Environment.
- (d) "District Office" means the Sarnia District Office.
- (e) "Permit" means this Permit to Take Water No. 4430-8PLMKV including its Schedules, if any, issued in accordance with Section 34 of the OWRA.
- (f) "Permit Holder" means Waste Management of Canada Corporation.
- (g) "OWRA" means the Ontario Water Resources Act, R.S.O. 1990, c. O. 40, as amended.

You are hereby notified that this Permit is issued subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. Compliance with Permit

- 1.1 Except where modified by this Permit, the water taking shall be in accordance with the application for this Permit To Take Water, dated October 25, 2011 and signed by Reid Cleland, and all Schedules included in this Permit.
- 1.2 The Permit Holder shall ensure that any person authorized by the Permit Holder to take water under this Permit is provided with a copy of this Permit and shall take all reasonable measures to ensure that any such person complies with the conditions of this Permit.
- 1.3 Any person authorized by the Permit Holder to take water under this Permit shall comply with the conditions of this Permit.
- 1.4 This Permit is not transferable to another person.
- 1.5 This Permit provides the Permit Holder with permission to take water in accordance with the conditions of this Permit, up to the date of the expiry of this Permit. This Permit does not constitute a legal right, vested or otherwise, to a water allocation, and the issuance of this Permit does not guarantee that, upon its expiry, it will be renewed.
- 1.6 The Permit Holder shall keep this Permit available at all times at or near the site of the taking, and shall produce this Permit immediately for inspection by a Provincial Officer upon his or her request.
- 1.7 The Permit Holder shall report any changes of address to the Director within thirty days of any such change. The Permit Holder shall report any change of ownership of the property for which this Permit is issued within thirty days of any such change. A change in ownership in the property shall cause this Permit to be cancelled.

2. General Conditions and Interpretation

2.1 Inspections

The Permit Holder must forthwith, upon presentation of credentials, permit a Provincial Officer to carry out any and all inspections authorized by the OWRA, the *Environmental Protection Act*, R.S.O. 1990, the *Pesticides Act*, R.S.O. 1990, or the *Safe Drinking Water Act*, S. O. 2002.

2.2 Other Approvals

The issuance of, and compliance with this Permit, does not:

(a) relieve the Permit Holder or any other person from any obligation to comply with any other

applicable legal requirements, including the provisions of the $Ontario\ Water\ Resources\ Act$, and the $Environmental\ Protection\ Act$, and any regulations made thereunder; or

(b) limit in any way any authority of the Ministry, a Director, or a Provincial Officer, including the authority to require certain steps be taken or to require the Permit Holder to furnish any further information related to this Permit.

2.3 Information

The receipt of any information by the Ministry, the failure of the Ministry to take any action or require any person to take any action in relation to the information, or the failure of a Provincial Officer to prosecute any person in relation to the information, shall not be construed as:

- (a) an approval, waiver or justification by the Ministry of any act or omission of any person that contravenes this Permit or other legal requirement; or
- (b) acceptance by the Ministry of the information's completeness or accuracy.

2.4 Rights of Action

The issuance of, and compliance with this Permit shall not be construed as precluding or limiting any legal claims or rights of action that any person, including the Crown in right of Ontario or any agency thereof, has or may have against the Permit Holder, its officers, employees, agents, and contractors.

2.5 Severability

The requirements of this Permit are severable. If any requirements of this Permit, or the application of any requirements of this Permit to any circumstance, is held invalid or unenforceable, the application of such requirements to other circumstances and the remainder of this Permit shall not be affected thereby.

2.6 Conflicts

Where there is a conflict between a provision of any submitted document referred to in this Permit, including its Schedules, and the conditions of this Permit, the conditions in this Permit shall take precedence.

3. Water Takings Authorized by This Permit

3.1 Expiry

This Permit expires on April 15, 2020. No water shall be taken under authority of this Permit after the expiry date.

3.2 Amounts of Taking Permitted

The Permit Holder shall only take water from the source, during the periods and at the rates and amounts of taking specified in Table A. Water takings are authorized only for the purposes specified in Table A.

Table A

	Source Name / Description:	Source: Type:	Taking Specific Purpose:	Taking Major Category:	Max. Taken per Minute (litres):	Max. Num. of Hrs Taken per Day:	Max. Taken per Day (litres):	Max. Num. of Days Taken per Year:	Zone/ Easting/ Northing:
1	Pond 1	Pond Online	Other - Industrial	Industrial	2,400	10	82,700	105	17 429230 4757320
2	Pond 2	Pond Online	Other - Industrial	Industrial	2,400	10	246,700	105	17 428370 4757850
4	Pond 3	Pond Online	Other - Industrial	Industrial	2,400	10	110,100	105	17 428380 4758670
	Pond 4	Pond Online	Other - Industrial	Industrial	2,400	10	41,200	105	17 429390 4758620
5	SDL	Well Dug	Other - Dewatering	Dewatering	4,921	24	7,085,520	215	17 428500 4758400
6	PS2	Well	Other - Dewatering	Dewatering	1,325	24	1,907,640	365	17 428500
7	PS4	Well	Other - Dewatering	Dewatering	1,325	24	1,907,640	365	4758400 17 428500
8	PS6	Well Dug	Other - Dewatering	Dewatering	1,325	24	1,907,640	365	4758400 17 428500
9	PS8	Well Dug	Other - Dewatering	Dewatering	1,325	24	1,907,640	365	4758400 17 428500 4758400
4000	and the second second					Total Taking:	15,196,780		

4. Monitoring

The Permit Holder shall, on each day water is taken under the authorization of this Permit, record the date, the volume of water taken on that date and the rate at which it was taken. The daily volume of water taken shall be measured by a flow meter or calculated in accordance with the method described in the application for this Permit or as otherwise accepted by the Director. A separate record shall be maintained for each source. The Permit Holder shall keep all records required by this condition current and available at or near the site of the taking and shall produce the records immediately for inspection by a Provincial Officer upon his or her request. The Permit Holder, unless otherwise required by the Director, shall submit, on or before March 31st in every year, the daily water taking data collected and recorded for the previous year to the ministry's Water Taking Reporting System.

5. Impacts of the Water Taking

5.1 Notification

The Permit Holder shall immediately notify the local District Office of any complaint arising from the taking of water authorized under this Permit and shall report any action which has been taken or is proposed with regard to such complaint. The Permit Holder shall immediately notify the local District Office if the taking of water is observed to have any significant impact on the surrounding waters. After hours, calls shall be directed to the Ministry's Spills Action Centre at 1-800-268-6060.

5.2 For Surface-Water Takings

The taking of water (including the taking of water into storage and the subsequent or simultaneous withdrawal from storage) shall be carried out in such a manner that streamflow is not stopped and is not reduced to a rate that will cause interference with downstream uses of water or with the natural functions of the stream.

The Permit Holder must ensure that if water is discharged directly to a watercourse, the discharge water shall be controlled in such a way as to avoid erosion and sedimentation in the receiving watercourse.

6. Director May Amend Permit

The Director may amend this Permit by letter requiring the Permit Holder to suspend or reduce the taking to an amount or threshold specified by the Director in the letter. The suspension or reduction in taking shall be effective immediately and may be revoked at any time upon notification by the Director. This condition does not affect your right to appeal the suspension or reduction in taking to the Environmental Review Tribunal under the *Ontario Water Resources Act*, Section 100 (4).

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is included to ensure that the conditions in this Permit are complied with and can be enforced.
- 2. Condition 2 is included to clarify the legal interpretation of aspects of this Permit.
- 3. Conditions 3 through 6 are included to protect the quality of the natural environment so as to safeguard the ecosystem and human health and foster efficient use and conservation of waters. These conditions allow for the beneficial use of waters while ensuring the fair sharing, conservation and sustainable use of the waters of Ontario. The conditions also specify the water takings that are authorized by this Permit and the scope of this Permit.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, you may by written notice served upon me, the Environmental Review Tribunal and the Environmental Commissioner, Environmental Bill of Rights, R.S.O. 1993, Chapter 28, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Environmental Commissioner will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario Water Resources Act</u>, as amended provides that the Notice requiring a hearing shall state:

1. The portions of the Permit or each term or condition in the Permit in respect of which the hearing

is required, and;

2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

3. The name of the appellant;

4. The address of the appellant;

5. The Permit to Take Water number;

6. The date of the Permit to Take Water;

7. The name of the Director;

8. The municipality within which the works are located;

This notice must be served upon:

The Secretary
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto ON
M5G 1E5
Fax: (416) 314-4506

The Environmental Commissioner 1075 Bay Street 6th Floor, Suite 605 Toronto, Ontario M5S 2W5 The Director, Section 34
Ministry of the Environment
733 Exeter Rd
London ON N6E 1L3
Fax: (519)873-5020

AND

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal:

by telephone at (416) 314-4600

by fax at (416) 314-4506

by e-mail at www.ert.gov.on.ca

This instrument is subject to Section 38 of the Environmental Bill of Rights that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek to appeal for 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry, you can determine when the leave to appeal period ends.

This Permit cancels and replaces Permit Number 7433-849HTE, issued on 2010/04/16.

Dated at London this 17th day of January, 2012.

Dan Dobrin

Director, Section 34

Ontario Water Resources Act , R.S.O. 1990

Schedule A

This Schedule "A" forms part of Permit To Take Water 4430-8PLMKV, dated January 17, 2012.

Ministry of the Environment

Southwestern Region Technical Support Section Water Resources 733 Exeter Rd London ON N6E 1L3 Fax: (519)873-5020 Tel: 519-873-5000 Ministère de l'Environnement

Direction régionale du Sud-Ouest Bureau du Directeur Adjoint 733 Exeter Rd London ON N6E 1L3 Télécopieur: (519)873-5020 Tél:519-873-5000

January 17, 2012

Reid Cleland Waste Management of Canada Corporation 8039 Zion Line Watford, ON NOM 2S0

Dear Mr. Cleland,

RE: Permit to Take Water 4430-8PLMKV
Amendment to Permit to Take Water No. 7433-849HTE
Twin Creeks Landfill Site
Warwick, County of Lambton
Reference Number 3142-8N8JE9

Please find attached a Permit to Take Water which authorizes the withdrawal of water in accordance with the application for this Permit to Take Water, dated October 25, 2011 and signed by Reid Cleland.

This Permit to Take Water expires on April 15, 2020. Authorized rates and volumes of water taking are given in Table A.

Take notice that in issuing this Permit, terms and conditions pertaining to the taking of water and to the results of the taking have been imposed. The terms and conditions have been designed to allow for the development of water resources, while providing reasonable protection to existing water uses and users.

Please ensure that prior to discharging any secondary drainage layer (SDL) water taken under the authority of this Permit to stormwater ditches, you refer to Section 4.5 of your Development and Operations Plan, dated March, 2008, which requires that samples of the SDL liquid be analyzed for the primary and secondary leachate indicator parameters (PLIL-SW and SLIL-SW), as defined in the Environmental Monitoring Plan.

Ontario Regulation 387/04 (Water Taking) requires all water takers to report daily water taking amounts to the Water Taking Reporting System (WTRS) electronic database: http://www.ene.gov.on.ca/envision/water/pttw.htm. Daily water taking must be reported on a calendar year basis. If no water is taken, then a "no taking" report must be entered. Please consult the Regulation and Section 4 of this Permit for monitoring requirements.

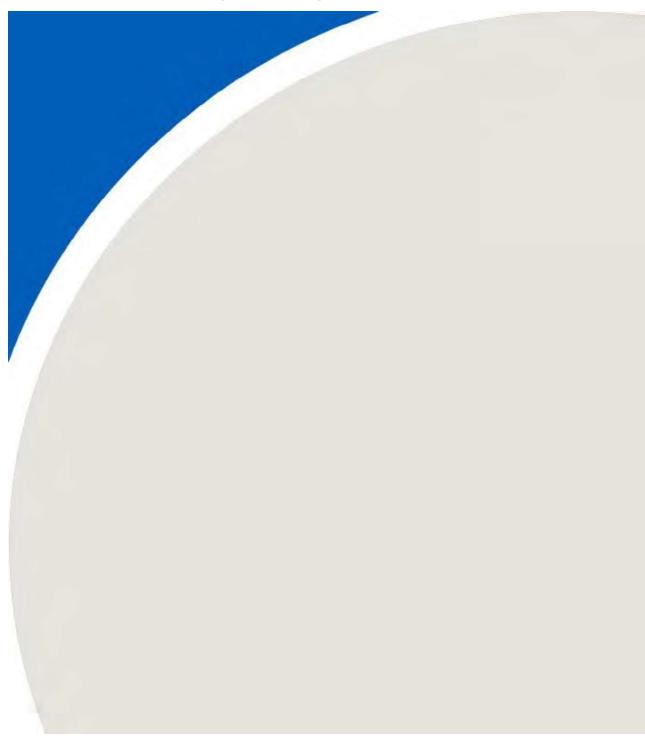
If you have questions about reporting requirements, please call the WTRS Help Desk at 416-235-6322 (toll free: 1-877-344-2011) or by email, <u>WTRSHelpdesk@ontario.ca</u>. It is preferred that you submit your

data directly and electronically to the WTRS. Where this is impracticable, please use the Water Taking Submission Form (included as Appendix C of the *Technical Bulletin: Permit To Take Water (PTTW) - Monitoring and Reporting of Water Takings*), which can be downloaded from the above web site, and fax your completed forms to 416-235-6549 or mail them to: Water User Reporting Section, 125 Resources Rd. Toronto, ON M9P 3V6.

Yours truly,

Dan Dobrin

Supervisor, Water Resources


Southwestern Region

File Storage Number: SILAWAZI.220

APPENDIX A7:

Amended Permit to Take Water [Surface Water] No. 4682-BLJRYJ, dated November 8, 2021

PERMIT TO TAKE WATER

Ground Water NUMBER 4682-BLJRYJ

Pursuant to Section 34.1 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990 this Permit To Take Water is hereby issued to:

Waste Management of Canada Corporation 5768 Nauvoo Rd Warwick, Ontario, N0M 2S0 Canada

For the water PS2, PS4, PS6, PS8, SDL, Pond 1, Pond 2, Pond 3, Pond 4. taking from:

Located at: Lot 19 and 20, Concession 3, Geographic Township of Warwick

Warwick, County of Lambton

For the purposes of this Permit, and the terms and conditions specified below, the following definitions apply:

DEFINITIONS

- (a) "Director" means any person appointed in writing as a Director pursuant to section 5 of the OWRA for the purposes of section 34.1, OWRA.
- (b) "Provincial Officer" means any person designated in writing by the Minister as a Provincial Officer pursuant to section 5 of the OWRA.
- (c) "Ministry" means Ontario Ministry of the Environment, Conservation and Parks.
- (d) "District Office" means the Sarnia District Office.
- (e) "Permit" means this Permit to Take Water No. 4682-BLJRYJ including its Schedules, if any, issued in accordance with Section 34.1 of the OWRA.
- (f) "Permit Holder" means Waste Management of Canada Corporation.
- (g) "OWRA" means the *Ontario Water Resources Act*, R.S.O. 1990, c. O. 40, as amended.

You are hereby notified that this Permit is issued subject to the terms and conditions outlined below:

TERMS AND CONDITIONS

1. Compliance with Permit

- 1.1 Except where modified by this Permit, the water taking shall be in accordance with the application for this Permit To Take Water, dated December 19, 2019 and signed by Phil Janisse, and all Schedules included in this Permit.
- 1.2 The Permit Holder shall ensure that any person authorized by the Permit Holder to take water under this Permit is provided with a copy of this Permit and shall take all reasonable measures to ensure that any such person complies with the conditions of this Permit.
- 1.3 Any person authorized by the Permit Holder to take water under this Permit shall comply with the conditions of this Permit.
- 1.4 This Permit is not transferable to another person.
- 1.5 This Permit provides the Permit Holder with permission to take water in accordance with the conditions of this Permit, up to the date of the expiry of this Permit. This Permit does not constitute a legal right, vested or otherwise, to a water allocation, and the issuance of this Permit does not guarantee that, upon its expiry, it will be renewed.
- 1.6 The Permit Holder shall keep this Permit available at all times at or near the site of the taking, and shall produce this Permit immediately for inspection by a Provincial Officer upon his or her request.
- 1.7 The Permit Holder shall report any changes of address to the Director within thirty days of any such change. The Permit Holder shall report any change of ownership of the property for which this Permit is issued within thirty days of any such change. A change in ownership in the property shall cause this Permit to be cancelled.

2. General Conditions and Interpretation

2.1 Inspections

The Permit Holder must forthwith, upon presentation of credentials, permit a Provincial Officer to carry out any and all inspections authorized by the OWRA, the *Environmental Protection Act*, R.S.O. 1990, the *Pesticides Act*, R.S.O. 1990, or the *Safe Drinking Water Act*, S.O. 2002.

2.2 Other Approvals

The issuance of, and compliance with this Permit, does not:

(a) relieve the Permit Holder or any other person from any obligation to comply with any other applicable legal requirements, including the provisions of the *Ontario Water Resources Act*, and

the Environmental Protection Act, and any regulations made thereunder; or

(b) limit in any way any authority of the Ministry, a Director, or a Provincial Officer, including the authority to require certain steps be taken or to require the Permit Holder to furnish any further information related to this Permit.

2.3 Information

The receipt of any information by the Ministry, the failure of the Ministry to take any action or require any person to take any action in relation to the information, or the failure of a Provincial Officer to prosecute any person in relation to the information, shall not be construed as:

- (a) an approval, waiver or justification by the Ministry of any act or omission of any person that contravenes this Permit or other legal requirement; or
- (b) acceptance by the Ministry of the information's completeness or accuracy.

2.4 Rights of Action

The issuance of, and compliance with this Permit shall not be construed as precluding or limiting any legal claims or rights of action that any person, including the Crown in right of Ontario or any agency thereof, has or may have against the Permit Holder, its officers, employees, agents, and contractors.

2.5 Severability

The requirements of this Permit are severable. If any requirements of this Permit, or the application of any requirements of this Permit to any circumstance, is held invalid or unenforceable, the application of such requirements to other circumstances and the remainder of this Permit shall not be affected thereby.

2.6 Conflicts

Where there is a conflict between a provision of any submitted document referred to in this Permit, including its Schedules, and the conditions of this Permit, the conditions in this Permit shall take precedence.

3. Water Takings Authorized by This Permit

3.1 Expiry

This Permit expires on **October 31, 2031**. No water shall be taken under authority of this Permit after the expiry date.

3.2 Amounts of Taking Permitted

The Permit Holder shall only take water from the source, during the periods and at the rates and amounts of taking specified in Table A. Water takings are authorized only for the purposes specified in Table A.

Table A

	Source Name / Description:	Source: Type:	Taking Specific Purpose:	Taking Major Category:	Max. Taken per Minute (litres):	Max. Num. of Hrs Taken per Day:	(litres):	Days Taken per Year:	Zone/ Easting/ Northing:
1	PS2	Well Dug	Construction	Dewatering Construction	1,325	24	1,907,640	365	17 428500 4757900
2	PS4	Well Dug	Construction	Dewatering Construction	1,325	24	1,907,640	365	17 428505 4758130
3	PS6	Well Dug	Construction	Dewatering Construction	1,325	24	1,907,640	365	17 428505 4758490
4	PS8	Well Dug	Construction	Dewatering Construction	1,325	24	1,907,640	365	17 428500 4758800
5	SDL	Well Dug	Construction	Dewatering Construction	4,921	24	7,085,520	365	17 428500 4758900
6	pond 01	Pond Online	Other - Industrial	Industrial	4,921	24	7,085,520	365	17 429230 4757320
7	pond 02	Pond Online	Other - Industrial	Industrial	4,921	24	7,085,520	365	17 428370 4757850
8	pond 03	Pond Online	Other - Industrial	Industrial	4,921	24	7,085,520	365	17 428380 4758670
9	pond 04	Pond Online	Other - Industrial	Industrial	4,921	24	7,085,520	365	17 429390 4758620
						Total Taking:	42,068,160		

4. Monitoring

- 4.1 Under section 9 of O. Reg. 387/04, and as authorized by subsection 34(6) of the Ontario Water Resources Act, the Permit Holder shall, on each day water is taken under the authorization of this Permit, record the date, the volume of water taken on that date and the rate at which it was taken. The daily volume of water taken shall be measured by a flow meter or calculated in accordance with the method described in the application for this Permit, or as otherwise accepted by the Director. A separate record shall be maintained for each source. The Permit Holder shall keep all records required by this condition current and available at or near the site of the taking and shall produce the records immediately for inspection by a Provincial Officer upon his or her request. The Permit Holder, unless otherwise required by the Director, shall submit, on or before March 31st in every year, the records required by this condition to the ministry's Water Taking Reporting System.
- 4.2 Within 180 days of the issuance of this Permit, the Permit Holder shall submit to the

District Manager, a Plan (the "Plan") to investigate the potential impacts of the Water Taking. The Plan shall include two components:

- a. An Ecological Study which includes an inventory of the ecosystem in the immediate vicinity of the Gilliand-Geerts Drain between Nauvoo Road and Underpass Road, and an assessment of potential impacts of the water taking on that ecosystem; and
- b. A survey of downstream riparian property owners along the Gilliand-Geerts Drain between Nauvoo Road and Underpass Road to determine the extent of any surface water uses by those property owners and assess any impacts of the water taking on those uses.

The Plan shall include timelines for completing the outlined work. Upon acceptance of the Plan by the District Manager, the Permit Holder shall complete the action items outlined with the Plan within the prescribed timelines.

5. Impacts of the Water Taking

5.1 Notification

The Permit Holder shall immediately notify the local District Office of any complaint arising from the taking of water authorized under this Permit and shall report any action which has been taken or is proposed with regard to such complaint. The Permit Holder shall immediately notify the local District Office if the taking of water is observed to have any significant impact on the surrounding waters. After hours, calls shall be directed to the Ministry's Spills Action Centre at 1-800-268-6060.

5.2 For Groundwater Takings

If the taking of water is observed to cause any negative impact to other water supplies obtained from any adequate sources that were in use prior to initial issuance of a Permit for this water taking, the Permit Holder shall take such action necessary to make available to those affected, a supply of water equivalent in quantity and quality to their normal takings, or shall compensate such persons for their reasonable costs of so doing, or shall reduce the rate and amount of taking to prevent or alleviate the observed negative impact. Pending permanent restoration of the affected supplies, the Permit Holder shall provide, to those affected, temporary water supplies adequate to meet their normal requirements, or shall compensate such persons for their reasonable costs of doing so.

If permanent interference is caused by the water taking, the Permit Holder shall restore the water supplies of those permanently affected.

6. Director May Amend Permit

The Director may amend this Permit by letter requiring the Permit Holder to suspend or reduce the taking to an amount or threshold specified by the Director in the letter. The suspension or reduction in taking shall be effective immediately and may be revoked at any time upon notification by the Director. This condition does not affect your right to appeal the suspension or reduction in taking to the Environmental Review Tribunal under the *Ontario Water*

Resources Act, Section 100 (4).

The reasons for the imposition of these terms and conditions are as follows:

- 1. Condition 1 is included to ensure that the conditions in this Permit are complied with and can be enforced.
- 2. Condition 2 is included to clarify the legal interpretation of aspects of this Permit.
- 3. Conditions 3 through 6 are included to protect the quality of the natural environment so as to safeguard the ecosystem and human health and foster efficient use and conservation of waters. These conditions allow for the beneficial use of waters while ensuring the fair sharing, conservation and sustainable use of the waters of Ontario. The conditions also specify the water takings that are authorized by this Permit and the scope of this Permit.

In accordance with Section 100 of the <u>Ontario Water Resources Act</u>, R.S.O. 1990, you may by written notice served upon me, the Environmental Review Tribunal and the Minister of the Environment, Conservation and Parks, within 15 days after receipt of this Notice, require a hearing by the Tribunal. The Minister of the Environment, Conservation and Parks will place notice of your appeal on the Environmental Registry. Section 101 of the <u>Ontario Water Resources Act</u>, as amended provides that the Notice requiring a hearing shall state:

- 1. The portions of the Permit or each term or condition in the Permit in respect of which the hearing is required, and;
- 2. The grounds on which you intend to rely at the hearing in relation to each portion appealed.

In addition to these legal requirements, the Notice should also include:

AND

- a. The name of the appellant;
- b. The address of the appellant;
- c. The Permit to Take Water number:
- d. The date of the Permit to Take Water;
- e. The name of the Director:
- f. The municipality within which the works are located;

This notice must be served upon:

The Secretary
Environmental Review Tribunal
655 Bay Street, 15th Floor
Toronto ON
M5G 1E5
Fax: (416) 326-5370
Email:
ERTTribunalsecretary@ontario.ca

The Minister of the Environment, Conservation and Parks 777 Bay Street, 5th Floor Toronto, Ontario M7J 2J3 The Director, Section 34.1, Ministry of the Environment, Conservation and Parks 733 Exeter Rd London ON N6E 1L3 Fax: (519) 873-5020

AND

Further information on the Environmental Review Tribunal's requirements for an appeal can be obtained directly from the Tribunal:

by Telephone at by Fax at by e-mail at (416) 212-6349 (416) 326-5370 www.ert.gov.on.ca Toll Free 1(866) 448-2248 Toll Free 1(844) 213-3474

This instrument is subject to Section 38 of the **Environmental Bill of Rights** that allows residents of Ontario to seek leave to appeal the decision on this instrument. Residents of Ontario may seek to appeal for 15 days from the date this decision is placed on the Environmental Registry. By accessing the Environmental Registry, you can determine when the leave to appeal period ends.

This Permit cancels and replaces Permit Number 4430-8PLMKV, issued on 2012/01/17.

Dated at London this 8th day of November, 2021.

Jason Lehouillier Director, Section 34.1 Ontario Water Resources Act , R.S.O. 1990

Schedule A

This Schedule "A" forms part of Permit To Take Water 4682-BLJRYJ, dated November 8, 2021.

APPENDIX B:

Monitoring Program

- Beatty, Franz & Associates Limited, 1995. 1994-1995 Monitoring Report, Warwick Landfill. Prepared for Laidlaw Waste Systems (Warwick) Ltd.
- Beatty, Franz & Associates Limited, 1996. 1995-1996 Monitoring Report, Warwick Landfill. Prepared for Canadian Waste Services Inc.
- Beatty, Franz & Associates Limited, 1997. 1996-1997 Monitoring Report, Warwick Landfill. Prepared for Canadian Waste Services Inc.
- Beatty, Franz & Associates Limited, 1997. Hydrogeologic Review Report, Warwick Landfill. Prepared for Canadian Waste Services Inc.
- Beatty, Franz & Associates Limited, 1998. 1997-1998 Monitoring Report, Warwick Landfill. Prepared for Canadian Waste Services Inc.
- Beatty, Franz & Associates Limited, 1999. 1998-1999 Monitoring Report, Warwick Landfill. Prepared for Canadian Waste Services Inc.
- Beatty, Franz & Associates Limited, 2000. 1999-2000 Annual Report Warwick Landfill. Prepared for Canadian Waste Services.
- Dames & Moore Canada, 1992. 1991 1992 Monitoring Report, Warwick Landfill. Prepared for Laidlaw Waste Systems (Warwick) Ltd.
- Dames & Moore Canada, 1993. 1992 1993 Monitoring Report, Warwick Landfill. Prepared for Laidlaw Waste Systems (Warwick) Ltd.
- Dames & Moore Canada, 1994. 1993 1994 Monitoring Report, Warwick Landfill. Prepared for Laidlaw Waste Systems (Warwick) Ltd.
- Dames & Moore Canada, 1994. 1994 Hydrogeologic Study, Warwick Landfill. Prepared for Laidlaw Waste Systems (Warwick) Ltd.
- GENIVAR Consultants Limited Partnership, 2010. 2010 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Consultants Limited Partnership, 2010. 2010 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.

- GENIVAR Consultants Limited Partnership, 2010. 2010 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Consultants Limited Partnership, 2010. 2010 Fourth Quarter and Annual Monitoring Report, Volumes 1 to 6, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Consultants Inc, 2011. 2011 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2011. 2011 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2011. 2011 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2011. 2011 Fourth Quarter and Annual Monitoring Report, Volumes 1 to 6, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Consultants Inc, 2012. 2012 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2012. 2012 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2012. 2012 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2012. 2012 Fourth Quarter Annual Monitoring Report, Volumes 1 to 6, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Consultants Inc, 2013. 2013 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- GENIVAR Inc, 2013. 2013 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Henderson, Paddon Environmental Inc., 1992. Geologic Mapping and Cut-Off Wall, Cell 5 Warwick Landfill Site.

 Prepared for Laidlaw Waste Systems (Warwick) Ltd.

- Henderson, Paddon Environmental Inc., 1993. Addendum No. 1 Geologic Mapping and Cut-Off Wall, Cell #5 Warwick Landfill Site. Prepared for Laidlaw Waste Systems (Warwick) Ltd.
- Henderson, Paddon Environmental Inc., 1995. Geologic Mapping and Cut-Off Wall, Cell 6
 Warwick Landfill Site. Prepared for Laidlaw Waste Systems Ltd.
- Henderson, Paddon Environmental Inc., 1997. Development & Operations Report, Canadian Waste Services Inc., Warwick Landfill, Warwick Township. Prepared for Canadian Waste Services Inc.
- Henderson, Paddon Environmental Inc., 2000. Leachate Management Plan, Warwick Landfill, Warwick Township.

 Prepared for Canadian Waste Services Inc.
- Jagger Hims Limited, 2000. Warwick Landfill Surface Water Characterization and Containment Pond Discharge Criteria. Prepared for Canadian Waste Services Inc.
- Jagger Hims Limited, 2001. 2000/2001 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Canadian Waste Services Inc.
- Jagger Hims Limited, 2002. 2001/2002 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Canadian Waste Services Inc.
- Jagger Hims Limited, 2003. 2002/2003 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Canadian Waste Services Inc.
- Jagger Hims Limited, 2004. 2003/2004 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2005. 2004/2005 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2006. 2005/2006 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2007. 2006/2007 Monitoring Report Warwick Landfill, Township of Warwick, Ontario.

 Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2008. 2007 Monitoring Report Addendum (Period from September 1 to December 31), Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.

- Jagger Hims Limited, 2008. 2008 Quarterly Monitoring Report (Period from January 1 to March 31) Warwick Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2008. 2008 Quarterly Monitoring Report (Period from April 1 to June 30) Warwick Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2008. 2008 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks/Warwick Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2008. 2008 Fourth Quarter and Annual Monitoring Report, Volumes 1 to 3, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2009. 2009 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, 2009. 2009 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, a Division of GENIVAR Consultants Limited Partnership, 2009. 2009 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Jagger Hims Limited, a Division of GENIVAR Consultants Limited Partnership, 2009. 2009 Fourth Quarter and Annual Monitoring Report, Volumes 1 to 6, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Morrison Beatty Limited, 1985. Hydrogeological Study, Warwick Landfill Proposed Expansion.

 Prepared for Laidlaw Waste Systems Ltd.
- Morrison Beatty Limited, 1988. Hydrogeologic Study Warwick Landfill Proposed Expansion Response to MOE Comments. Prepared for Laidlaw Waste Systems Ltd.
- Morrison Beatty Limited, 1989. Final Report on a Hydrogeological Study, Warwick Landfill, Proposed Expansion.

 Prepared for Laidlaw Waste Systems Ltd.
- Morrison Beatty Limited, 1990. 1989 Annual Hydrogeologic Monitoring Report Warwick Landfill. Prepared for Laidlaw Waste Systems Ltd.

- RWDI AIR Inc, 2013. 2013 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2014. 2013 Fourth Quarter and Annual Monitoring Report, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2014. 2014 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2014. 2014 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2014. 2014 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2015. 2014 Fourth Quarter and Annual Monitoring Report, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2015. 2015 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2015. 2015 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2015. 2015 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2016. 2015 Fourth Quarter and Annual Monitoring Report, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2016. 2016 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2016. 2016 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2016. 2016 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.

- RWDI AIR Inc, 2017. 2016 Fourth Quarter and Annual Monitoring Report, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2017. 2017 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2017. 2017 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2017. 2017 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2018. 2017 Fourth Quarter and Annual Monitoring Report, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2018. 2018 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2018. 2018 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2018. 2018 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2019. 2018 Fourth Quarter and Annual Monitoring Report, Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2019. 2019 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2019. 2019 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation
- RWDI AIR Inc, 2019. 2019 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Landfill, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2020. 2019 Fourth Quarter and Annual Monitoring Report, Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.

- RWDI AIR Inc, 2020. 2020 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2020. 2020 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation
- RWDI AlR Inc, 2020. 2020 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2021. 2020 Fourth Quarter and Annual Monitoring Report, Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2021. 2021 Quarterly Monitoring Report (Period from January 1 to March 31) Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- RWDI AIR Inc, 2021. 2021 Quarterly Monitoring Report (Period from April 1 to June 30) Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation
- RWDI AIR Inc, 2021. 2021 Quarterly Monitoring Report (Period from July 1 to September 30) Twin Creeks Environmental Centre, Township of Warwick, Ontario. Prepared for Waste Management of Canada Corporation.
- Water and Earth Science Associates Ltd., 1991. Geologic Site Stratigraphy and Geotechnical Site Characterization, Cell #4 Cut-Off Wall Warwick Landfill Site. Prepared for Laidlaw Waste Systems (Warwick) Limited.

Table B-2
2021 Monitoring Program
Twin Creeks Environmental Centre - 2021 Annual Monitoring Report

Monitoring Locations	Parameters	Frequency
Leachate		
PS1, PS3, PS5, PS7*, MH3S, MH4, MH5, MH6, MH7, MH8, MH9, MH10, MH11, MH12, MH16, MH17, MH18, OW22A-10, OW51A-15, OW53-10, Sump, LW1, LW2, LW3, LW4, LW5, LW6	Leachate Levels	May and November
PS1, PS3, PS5, PS7*	Leachate Levels	Daily
PS1, PS3, PS5, PS7*, South Fill Area (MH18), West Central Fill Area (Sump), Central Fill Area (Composite of MH3, MH4, MH5, MH6, MH7, MH9, MH11)	PLIL-GW, SLIL-GW, PLIL-SW, SLIL-SW, LS	May
Equalization Tank	BOD ₅ , DOC, phosphorus (total), TKN, BTEX, pH	Quarterly
Treated Leachate Effluent	PLIL-SW, SLIL-SW, LS	May and November
Treated Leachate Endem	Discharge Rates, COD, pH,	
	turbidity	Daily
Treatment Plant Effluent	Chloride, CBOD ₅ , BOD ₅ , DOC, BTEX, ammonia, pH	Weekly
	PLIL-GW, SLIL-GW, PLIL-SW, SLIL-SW, LS	Monthly
	PCB, organochlorines	May and November
Treated Leachate Temporary Storage Cells : Cells 1 and 2	Discharge Rates	Daily
Cell 1 Inlet, Cells 1 and 2	Chloride, CBOD ₅ , BOD ₅ , DOC, BTEX, ammonia, pH	Weekly
Cells 1 and 2	DO, pH, alkalinity, DOC	Weekly
Cells 1 and 2	PLIL-GW, SLIL-GW, PLIL-SW, SLIL-SW, LS	Monthly
Cell 1	Biomonitoring	May and November
Secondary Drainage Layer		
PS2, PS4, PS6, PS8*	Groundwater Levels	Monthly
Active Aquitard	1	I
OW16-6, OW17-4, OW40D-4, OW54A-4, OW56-4, OW57-4, OW58-6, OW59-6, OW60-4, OW61-4, OW62-5 , OW67-4, OW68-5, OW70B-5, OW71A-5 [†] , OW72-6, OW73-6, OW75-3, OW76-5, OW77-4, OW78-4 , OW79-5, OW80-3, OW81-5, OW82(new), OW83(new), OW84(new), OW85-5, P1, P2, P3	Groundwater Levels	May and November
OW16-6, OW17-4, OW54A-4, OW56-4, OW57-4, OW58-6, OW59-6, OW61-4, OW62-5 , OW67-4, OW68-5, OW69-5, OW70B 5, OW71A-5*, OW72-6, OW73-6, OW75-3, OW76-5, OW77-4, OW78-4	PLIL-GW, SLIL-GW	May and November
OW40D-4, OW60-4, OW79-5, OW80-3, OW81-5, OW82(new), OW83(new), OW84(new), OW85-5	PLIL-GW, SLIL-GW	May
OW16-6, OW61-4, OW62-5, OW75-3, OW78-4	Volatiles	May and November
OW17-4, OW40D-4, OW54A-4, OW56-4, OW57-4, OW58-6, OW59-6, OW60-4, OW67-4, OW68-5, OW69-5, OW70B-5, OW71A-5*, OW72-6, OW73-6, OW76-5, OW77-4 , OW79-5, OW80-3, OW81-5, OW82(new), OW83(new), OW85-5	Volatiles	May
Interstadial Silt and Sand		

Monitoring Locations	Parameters	Frequency
OW16-7, OW40A-7, OW46-7, OW47-6, OW54-10, OW57-15, OW58-17, OW60-8, OW61-6, OW62-7 , OW67-11, OW72-10, OW73-9, OW75-7, OW78-6 , OW79-7, OW80-6, OW81-7, OW82(new), OW83(new), OW84(new), OW85-8	Groundwater Levels	May and November
OW46-7, OW47-6, OW54-10, OW57-15, OW58-17, OW67-11, OW72-10, OW73-9	PLIL-GW, SLIL-GW	May and November
OW16-7, OW61-6, OW62-7, OW75-7, OW78-6	PLIL-GW, SLIL-GW, volatiles	May and November
OW40A-7 OW60-8, OW79-7, OW80-6, OW81-7, OW82(new), OW83(new), OW84(new), OW85-8	PLIL-GW, SLIL-GW	May
OW40A-7, OW46-7, OW47-6, OW54-10, OW57-15, OW58-17, OW60-8, OW67-11, OW72-10, OW73-9, OW79-7, OW80-6, OW81-7, OW82(new), OW83(new), OW84(new), OW85-8	Volatiles	May
Interface Aquifer		
OW17-30, OW19-29, OW39A-26, OW40A-28, OW49-29, OW60-25, OW61-26, OW62-30 , OW79-26, OW80-27, OW81-27, OW82(new), OW83(new), OW84(new)	Groundwater Levels	May and November
OW19-29, OW39A-26, OW49-29, OW79-26, OW80-27, OW81-27, OW82(new), OW83(new), OW84(new), Cemetery Well	PLIL-GW, SLIL-GW	May
OW19-29, OW39A-26, OW49-29, OW79-26, OW80-27, OW81-27, OW82(new), OW83(new), OW84(new), Cemetery Well	Volatiles	Biennial - May 2022
Background Station		
	Flow Rates	Quarterly after 10 mm precipitation events.
SS10, SS16	PLIL-SW, SLIL-SW, nitrite	Greater than 1 month intervals between sampling.
	LS-SW	Spring Precipitation Event
	Biomonitoring	Spring Precipitation Event
Sedimentation Ponds (Discharg	re Points) Flow Rates	<u> </u>
	PLIL-SW, SLIL-SW, nitrite	Quarterly after 10 mm precipitation events. Greater than 1 month intervals between sampling.
SP1, SP2, SP3, SP4	LS-SW, volatiles, semi-volatiles	Quarterly after 10 mm precipitation events. Greater than 1 month intervals between sampling.
	Biomonitoring	Spring Precipitation Event
Western Site Boundary Complia	rce Point Flow Rates	
	PLIL-SW, SLIL-SW, nitrite	Quarterly after 10 mm precipitation events. Greater than 1 month intervals between sampling.
SS1	LS-SW, volatiles, semi-volatiles	Quarterly after 10 mm precipitation events. Greater than 1 month intervals between sampling.
	Biomonitoring	Spring Precipitation Event
Poplar Tree Plantation Land Appli		
	Flow Rates PLIL-SW, SLIL-SW, nitrite	Quarterly after 10 mm precipitation events. Greater than 1 month intervals between sampling.

Monitoring Locations	Parameters	Frequency
SS17A, SS17B, SS18A, SS18B	LS-SW, volatiles, semi-volatiles	Quarterly after 10 mm precipitation events. Greater than 1 month intervals between sampling.
	Biomonitoring	Spring Precipitation Event
Compost Facility (if construct	ted)	
	PLIL-SW, SLIL-SW, nitrite, BOD ₅ ,	
SS19	TSS, Total Coliform, Fecal	Prior to water use
	Coliform, E. Coli	
Landfill Gas Monitoring		
Landfill Cap	Inspections	Monthly (April to November)
GP1A, GP2, GP3, GP4, GP5, GP6, GP7, GP8, GP9(new), GP10(new)	Methane Gas	January, February, March, April, July, November, December

Notes:

- 1) PLIL-GW indicates: chloride, nitrate, boron.
- 2) SLIL-GW indicates: alkalinity, sulphate, calcium, magnesium, potassium, sodium, barium, cadmium, iron, lead, DOC, TDS, ammonia (total), TKN, pH, conductivity. Field parameters of pH, conductivity, temperature, turbidity.
- 3) PLIL-SW indicates: chloride, ammonia (total and unionized), phenols, boron, nickel, chromium (total), zinc.
- 4) SLIL-SW indicates: alkalinity, sulphate, calcium, magnesium, potassium, sodium, total phosphorus, iron, nitrate, TKN, TDS, pH, conductivity. Field parameters of temperature, pH, conductivity, turbidity, DO.
- 5) LS indicates: arsenic, barium, cadmium, copper, lead, manganese, mercury, nitrite, TSS, volatiles, semi-volatiles, BOD₅, COD.
- 6) LS-SW indicates: arsenic, barium, cadmium, copper, lead, mercury, nitrite, TSS, BOD₅, COD.
- 7) Volatiles should include the following at a minimum: benzene, 1,4-dichlorobenzene, dichloromethane, toluene, ethylbenzene, xylenes, and vinyl chloride.
- 8) Semi-volatiles should include the following at a minimum: 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, hexachlorobenzene, diethylphthalate, dimethylphthalate, di-n-butyl phthalate, phenol, benzo(a)pyrene, 2,4,6-trichlorophenol, 2,4-dichlorophenol, pentachlorophenol.
- 9) Organochlorines include herbicide and pesticide scan.
- 10) Biomonitoring indicates toxicity testing for Rainbow Trout and Daphnia Magna.
- 11) Biennial indicates every second year.
- 12) QA/QC includes one (1) blind duplicate for each 15 samples or once per event, whichever is greater.
- 13) Surface water samples shall be collected in a downstream to upstream sequence.
- 14) OW84(new) denotes monitoring wells to be installed per EMP dated December 20, 2007.
- 15) Spring denotes: April, May, and June.
- 16) indicates that OW71A-5 is not required as part of the monitoring program, however, obtained data is interpolated for the monitoring well OW67-4, which used to show dry conditions.
- 17) Since the Poplar Plantation is not required to be utilized until a few months prior to the initiation of the treatment plant as operational, monitoring per the EMP and ECA, as well as the Waste and Sewage ECA's that is completed to evaluate the vigour of the Poplar Plantation, is not required. It is recognized that once the Poplar Plantation is initialized, then the required monitoring to evaluate the Poplar Plantation would be reinitiated.
- 18) Monitoring stations that are currently idle until 2 months prior to the leachate treatment plant being operational, include the following: 1) Surface water stations **SS17A, SS18B**; and 2) Groundwater monitoring locations **OW61, OW62, OW75, OW76, OW77, OW78, AND OW85.**
- 19) * PS7, and PS8 not yet constructed.

Table B-3
MECP Approved Changes to Site EMP
Twin Creeks Environmental Centre - 2021 Annual Monitoring Program

Monitoring Station	Date	MECP Approved Change
		Groundwater
OW80-3	5-Aug-10	Chloride removed as part of Trigger Assessment per MOE letter, dated August 5, 2010, ref # 02970051.34. Chloride still monitored for comparative purposes.
OW80-6	5-Aug-10	Chloride removed as part of Trigger Assessment per MOE letter, dated August 5, 2010, ref # 02970051.34. Chloride still monitored for comparative purposes.
OW61, OW62, OW75, OW76, OW77, OW78, OW85	01-Jun-11 (Waste ECA) 20-Feb-13 (Sewage ECA)	Groundwater monitoring at these locations temporarily idle and will resume 2 months prior to irrigation application and 2 years after cessation of irrigation liquid application. Waste ECA Condition 8.7 (r) and Notice No. 1 of the Sewage ECA.
OW79-7	12-Dec-11	Chloride removed as part of Trigger Assessment per MOE letter, dated December 12, 2011. Chloride still monitored for comparative purposes. Groundwater monitoring well OW58-17 will replace OW58-14 with the following
OW58-17	24-Mar-14	conditions: 1) OW58-14 will continue to be sampled during routine monitoring events along with OW58-17, 2) OW58-14 is not subject re-verification process, however, replacement well OW58-17 is subject to verification requirements, and 3) Following four (4) consecutive acceptable groundwater quality monitoring events for OW58-17, monitoring well OW58-14 may be decommissioned and OW58-17 be utilized as the replacement monitoring well. These conditions are presented in the MECP letter dated March 24, 2014.
OW58-14	10-Aug-16	Monitoring well OW58-14 was decommissioned on October 3, 2016 per MECP written approval.
OW60-4	2-Oct-20	Lead removed as part of Trigger Assessment per MOE letter, dated October 2, 2020. Lead still monitored for comparative purposes.
		Surface Water
SS17A, SS17B, SS18A, SS18B	01-Jun-11 (Waste ECA) 20-Feb-13 (Sewage ECA)	Surfacewater monitoring at these locations temporarily idle and will resme 2 months prior to irrigation application and 2 years after cessation of irrigation liquid application. Waste ECA Condition 8.7 (r) and Notice No. 1 of the Sewage ECA.
SP1	18-May-12	Boron Trigger Concentration changed from 0.20 mg/L to 0.39 mg/L per MOE letter, dated May 18, 2012.
Offsite discharge points	18-May-12	Exceedance of a trigger concentration shall initiate verification testing, identification of any potential source of contamination, an alternate source evaluation, and an evaluation of remedial options. Verification sampling should include the collection of a grab sample of stormwater at the outlet to analyse for toxicity to rainbow trout and daphnia magna.
Offsite discharge points and internal monitoring point SP1	27-Feb-14	Annual surface water trigger concentrations are updated after each calendar year using the 90th percentile of results for both background monitoring stations SS10 and SS16. Acceptable Biological monitoring results, regardless of any chemical parameter results noted for the verification monitoring event deems the surface water as acceptable for continued discharge.
		Methane Gas
		None
TSP monitoring	26-Oct-11	Air Total Suspended Particulate (TSP) monitoring revised per MOE letter, dated October 26, 2011. TSP samplers to be run on a 12-day schedule from October 1st to May 31st of each year and continue on the previously approved 6-day cycle from June 1st to September 30th of each year.
		Noise
		None

Table B-4 2021 Compliance Point Trigger Concentration Exceedances Twin Creeks Environmental Centre - Annual Monitoring Program

Task	Monitoring Locations & Dates	Exceedance	Comments
		Compliance Monitoring Program	
Q1 Surface Water Monitoring/Sampling	March 26, 2021 - SS1 - (routine monitoring for March 25, 2021 precipitation event).	March 26, 2021 - Boron, Nickel, Chromium (total), and Zinc	The overall surface water quality at compliance monitoring station SS1 was acceptable with the exception for the parameters boron, nickel, chromium (total), and zinc. As part of the verification sampling process for station SS1, verification surface water monitoring was required to be completed.
womtoring/sumpring	March 26, 2021 - SP2 - (routine monitoring for March 25, 2021 precipitation event).	March 26, 2021 - Boron	The overall surface water quality at compliance monitoring station SP2 was acceptable with the exception for the parameter boron. As part of the verification sampling process for station SP2, verification surface water monitoring was required to be completed.
Q2 Surface Water Monitoring/Sampling	June 26, 2021 - SP2 - (routine monitoring for June 25, 2021 precipitation event).	June 26, 2021 - Boron	The overall surface water quality at compliance monitoring station SP2 was acceptable with the exception for the parameter boron. As part of the verification sampling process for station SP2, verification surface water monitoring was required to be completed.
00.5	May 20, 2021 - OW81-7 - (routine spring semi-annual groundwater monitoring event).	May 20, 2021 - Chloride	The overall groundwater water quality at groundwater monitoring location OW81-7 was acceptable with the exception of the parameter chloride. As part of the verification sampling process for station OW81-7, verification groundwater monitoring was required to be completed.
Q2 Ground Water Monitoring/Sampling	June 9, 2021 - OW81-7 - (verification event after the spring semi-annual groundwater monitoring event).	June 9, 2021 - Chloride	The overall groundwater water quality at groundwater monitoring location OW81-7 was acceptable with the exception of the parameter chloride. As part of the verification sampling process for station OW81-7, a second verification groundwater monitoring event was required to be completed.
Q3 Surface Water Monitoring/Sampling	July 9, 2021 - SS1 - (routine monitoring for Juy 6, 2021 precipitation event).	July 9, 2021 - Boron	The overall surface water quality at compliance monitoring station SS1 was acceptable with the exception for the parameter boron. As part of the verification sampling process for station SS1, verification surface water monitoring was required to be completed.
Q4 Surface Water Monitoring/Sampling	October 4, 2021 - SS1, SP2, SP3 - (routine monitoring for October 3, 2021 precipitation event).	October 4, 2021 - Boron	The overall surface water quality at compliance monitoring stations SS1, SP2, and SP3 was acceptable with the exception for the parameter boron. As part of the verification sampling process for stations SS1, SP2, and SP3, verification surface water monitoring was required to be completed.
Q4 Ground Water Monitoring/Sampling	November 2, 2021 - OW81-7 (verification event during the fall semi-annual groundwater monitoring event).	November 2, 2021 - Chloride	The overall groundwater water quality at groundwater monitoring station OW81-7 was acceptable with the exception of the parameter chloride. As part of the verification sampling process for station OW81-7, a request will be submitted to the MECP to remove chloride as a PLIL parameter at monitoring location OW81-7

Q1: Chain of Custodies

				0				(000	, 000 020	-								. age	
		INVOICE	INFORMATIC	REPORT IN	FOR	MAT	ION (if di	ffers from	invoice):	:	F	ROJEC		MAXXAM JOB NUI	MBER:				
Com	pany Name:	Waste Manag	gement of Car	nada Corpora	tion	Company Name:	RW	DI AI	R Inc.				Quotation #						
Cont	act Name:	Lisa Mertick				Contact Name:	Has	san F	akih			F	P.O. #:	10123					
Addr	ess:	5768 Nauvoo	Rd, Watford,	ON		Address:	451	0 Rho	odes Drive	e, Unit 530)	F	Project #:	21017	31-1000			CHAIN OF CUSTO	DY # :
		N0M 2S0					Win	dsor,	ON, N8V	/ 5K5		F	Project Name	TCLF-	LCHCM-	IAN			
Phor	ne: 519-849-5	5810	Fax: 519-84	9-5811		Phone: 519-823					-823-1316	L	ocation:	Twin C	reeks			TCLF-LCHCM-	JAN.
Ema	ii: <u>Imertick</u>	@wm.com				Email: BJL@F	RWE	OI.co	m, PEJ	@RWD	l.com	5	Sampled By:	MSA					
-		R	REGULATORY	/ CRITERIA			П		ΔΝΔΙ Υςι	S REQUE	STED (P	laasa	be specific	.).		TURNAROUNI	D TIME	(TAT) REQUIRED:	
	e: For regulate	ed drinking wat			e Drinking W	ater Chain of				O NEGOL	.5125(1	lease	De opcom	, <u>, , .</u>	PLE	ASE PROVIDE		NCE NOTICE FOR I	
Jus	lody i omi						î		EQUALIZATION						Regu	lar (Standard			
	MISA	Reg. 153	Sewer Use		x Ot	her	V/N)		ZAT							x 5 to 7 Wor			
_		Table 1	Sanitar	V	site s	pecific) ¿	Z	ALI						Rush	TAT: Rush C			
Γ	PWQO	Table 2	Storm	,		specify	ıter	?(Y/N)	Ŋ								(call Lal		
_		Table 3	Region:				×									1 day	2	days 3 days	
	Reg. 558	_			_		cing	ere	CLS 2LY						[DATE Required:		25-Jan-21	
			Criteria on C	C of A ? n	ri	Ē	T = = = = = = = = = = = = = = = = = = =							TIME Required:		12:00 PM			
SΔI	MPLES MUS	ST BE KEPT	COOL (< 10	0°C) FROM	I TIME OF	SAMPLING	Ω	ield	.202 JAR						Please	note that TAT for certs	ain tests s	such as BOD and Dioxins/F	Furans
		RY TO MAX		0 0 / 1 11011		5, <u>-</u> 5	late	s F	/LF OC							lays - contact your Pr			arario
		mple Identificat		Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulat	Metals Field Filtered	ON-WLF-2021 TCLS TANK QUARTERLY						# of Cont.	COMM	MENTS	/ TAT COMMENTS	
1	EQU	JALIZATION TA	ANK	12-Jan-21	AM	LCH	N	Ν	X						7				
2																			
3																Filtered DOC f	field filte	ered	
4														\top		See lab adden			
5																			
6					1														
7																			
8																			
9					1														
10					1														
11					1														
12														+ +					
	RELINQUISHED BY: (Signature/Print) RECEIVED BY: (Signature/Print)						ature	/Prin	t)		Date:	T	Tin	ne:		Labo	oratory	Use Only	
	MSA 13-Jan-21 - AM														Tem	perature (°C) on			
												7	Receipt	Condit	tion of Sample on Rece	∌ıpt			
															-1				-

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

STANDARD CHAIN-OF-CUSTODY

Eurofins Workorder #:

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

CLIENT INFO	RMATION								INVOI	CE INFO	RMAT	ION (S	AME A	S CLIEN	T INFO	RMA	TION: \	YES 🗌	NO	V)		
Company:	RWDI AIR INC								Compan	y:	Was	te M	anag	ement	of C	ana	da					
Contact:	Brent Langille								Contact:		Lisa	Mer	tick									
Address:	4510 Rhodes Dr	. #530, Windsor, ON, N8	W 5	K5					Address	:	5768	3 Naı	oovu	Rd, W	/atfor	d, C	ON NO	OM 2	S0			
Telephone:	519-823-1311 x	2618 _{Fax:}							Telepho	ne:	519-	849-	5810				Fax:					
·	#1: Brent.Langille@	@rwdi.com							Email:		#1: Im	ertick	(@wr	n.com	1							
	#2: Jeffery.Cleland	@rwdi.com, Matthew.Anta	ya@	rwdi.c	om				Email:		#2:											
Project:	2101781-1000								PO #:								Quote #					
	N/GUIDELINE REQUIRE)								AROUN	ID TIM	E					Quote III					
Sanitary S	Sewer, City:			ODWSOG	î					1 Day* (10	00%)		2 Day** (50%)	3	-5 Days	(25%)	V	5-7 Days	s (Standard	i)	
Storm Se	wer, City:			PWQO					Please co	ntact the la	aboratory	in advan	ice to dete	ermine rush	h availabi	lity. Sur	charges m	nay apply	to rush s	service.		
				O. Reg 34	17/558				*If the re	sults are re	ported th	e day aft	er the rus	h due date	, the follo	wing su	urcharges	will apply	y: before	12:00 - 10	0%, after 12:00 - 50	%.
Excess So	oil, Table:, Type:			Other: _	• •1				**If the r					sh due dat	e, the foll	lowing :	surcharges				0%, after 12:00 - 2!	%.
			nple Det						Sample	e Analys	sis Requ	uired					Field	l Param	neters		N#	
upon submission		er samples. The COC must be complete \$25 surcharge if required information is	sample Matrix	Resample? Y = Yes N = No	of Containers	Metals and Inorganics	Metals (ex. Hg, B, CrVI)	×	u	PHC F1-F4	TCLP PAH	TCLP PCB	TCLP M/I	TCLP VO								
Sample ID		Date/Time Collected	San	Res 7 =	ō #	Me	Ā	ВТЕХ	VOC	Ŧ												
CONT SC	DIL	16-Mar-2021/PM	SOIL	N	4						✓	✓	✓	✓								
														0.00								
	PRINT					DATE/TIME TEMP (°C) COMMENTS: 16-Mar-2021/PM																
Sampled By:										16-M	1ar-20)21/F	PM									
Relinquished By:	MSA																					
Received By:			CUSTODY SEAL: YES NO																			

Λ	/ax	6740 Cam												CHAIN C	F CUSTODY RECO	RD				
	./	Phone: 90	5-817-5700	Fax: 905-8	317-5777 Toll F	ree:	(800) 563-626	6										Page 1 of	1
		INVOICE INFORMATION	ON:		REPORT IN	FOR	MAT	ION (if di	ffers	from	invo	ice):		F	PRO.	ECT I	NFORM	IATION:	MAXXAM JOB NUM	IBER:
	npany Name:	Waste Management of Ca	nada Corpora	tion	Company Name:									otation #	10	10070	2			
	tact Name:	Lisa Mertick			Contact Name:			ngille		. 500			P.O			12373			0114111 05 0110701	- · · ·
Add	ress:	5768 Nauvoo Rd, Watford	, ON		Address:			odes Drive						ect #:	_	01781			CHAIN OF CUSTO	JY # :
		NOM 2S0						ON, N8V						ect Name			eks SW	/	— II	
	ne: 519-849-5		19-5811		Phone: 519-823-					519-8				ation:		/in Cr€			TCLF-SWCM-N	//AR
Ema	ail: <u>Imertick</u>	<u>@wm.com</u>			Email: BJL@F	<u> </u>)I.cc	m, JCL	<u>@</u> R	<u>WDI</u>	<u>.con</u>	<u>1</u>	San	npled By:	JC	L/AU\	/			
		REGULATOR	Y CRITERIA					ANALYSI	S RE	QUE	STED	(Ple	ase be	specifi	:):			TURNAROUNI	TIME (TAT) REQUIRED:	
	te: For regulate stody Form	ed drinking water samples -	please use the	e Drinking W	ater Chain of												PLE		ADVANCE NOTICE FOR F PROJECTS	RUSH
						(N /		QN No									Regul	l <u>ar (</u> Standard	TAT:	
	MISA	Reg. 153 Sewer Use	•	Ot	her	(Y)	_	SW (POND										x 5 to 7 Wor	king Days	
		Table 1 Sanita	•			r ?	N /	SW									Rush	TAT: Rush C	confirmation #	
	x PWQO	Table 2 Storm			specify	Water		_											(call Lab for #)	
		Table 3 Region:					¿ pe	S.C. ERI										1 day	2 days 3 days	
	Reg. 558			_	kin	Filtered	T T									D	ATE Required:	6-Apr-21		
			Criteria on C	C of A ? n	Drinking		:-202 QUA									٦	ΓΙΜΕ Required:	12:00 PM		
		ST BE KEPT COOL(< 1 RY TO MAXXAM	0 °C) FRO	I TIME OF	SAMPLING	Regulated I	Metals Field	ZL-ON-WLF-2021 TCLS - OUTLETS) QUARTERLY											in tests such as BOD and Dioxins/Foject Manager for details.	urans
		mple Identification	Date	Time	Matrix	egul	etal	-0 UTL									# of	COMM	ENTS / TAT COMMENTS	
1		SP1	Sampled 26-Mar-21	Sampled AM	(GW, SW, Soil, etc.)	N R		X					+		+	+	Cont.	SPDUP collect		
2		SP2	26-Mar-21	PM	SW	N		X					+		+	+	14	_		
3		SP3	26-Mar-21	PM	SW	N		X					+		-	-	14			
4		SP4	26-Mar-21	AM	SW	N	N	X					+		-	-	14			
		SPDUP		AM	SW			X							+		14			
5		37007	26-Mar-21	Alvi	SVV	N	N	^					+		+	+				
6													-		+					
7													-		+					
8													-		+	+				
9													-		+	+				
10													+		+	+				
11 12											_	_	+		+	+		 	Hg field filtered @ 45um	
12	DEL INIA:	HOLLED DV (C) ('5')	-0		N/ED D)((0)								\bot						dum for lab group coding	
	KELINQU	JISHED BY: (Signature/Pri		RECE	IVED BY: (Signa	ture	/Prin	τ)			ate:		+	Tin	1e:		-		ratory Use Only	
		JCL - 26-Mar-21 - PN										+				Temperature (°C) on Receipt Condition of Sample on Receipt			ipt	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

M	ax	kam Analytics Inc													CHAIN (OF C	USTODY RE	CORD				
	./	Analytics Inc	Phone: 905	5-817-5700	Fax: 905-8	817-5777 Toll F	ree:	(800) 563-626	66											Page 1	of <u>1</u>
		INVOICE	INFORMATIC	N:		REPORT IN	FOR	MAT	ION (if di	ffers	from	invoi	ce):		PR	OJE	CT IN	NFORM	ATION:		MAXXAM JOB	NUMBER:
Compan Contact Address		Lisa Mertick	gement of Car o Rd, Watford,		ration	Company Name: Contact Name: Address:	Brei	nt Lar		e, Uni	it 530			Quotation a P.O. #: Project #:		1012 2101		3			CHAIN OF CU	ISTODY#:
1	519-849-5 Imertick	N0M 2S0 810 @wm.com	Fax: <u>519-84</u>	9-5811		Phone: 519-823- Email: BJL@F	-1311	1 x 26		Fax:	519-8			Project Nation: Location: Sampled B		Twin	Cre		1		TCLF-SW0	CM-MAR
		F	REGULATORY	CRITERIA	\				ANALYSI	S RE	QUES	STED	(Plea	se be spec	ific)):			TURNAROUN	D TIM	E (TAT) REQUI	RED:
Custod	For regulate by Form MISA PWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	her specify C of A? n	Drinking Water ? (Y / N)	Filtered ? (Y / N)	ZJ-ON-WLF-2021 TCLS - SW (COMPLIANCE POINT) QUARTERLY									Regul Rush		PROJ) TA1 rking I Confirr (call L	Days				
	DELIVE	ST BE KEPT RY TO MAX mple Identifica	XAM	Date	Time	SAMPLING Matrix	Regulated D	Metals Field Filtered	J-ON-WLF-									Please no are > 5 da # of	ote that TAT for certa ays - contact your P	ain tests roject M	s such as BOD and Di anager for details.	
1		SS1		Sampled 26-Mar-2		(GW, SW, Soil, etc.)	N	N N	X									Cont.	SSDUP1 colle	cted		
2		SSDUP1		26-Mar-2		SW	N		Х									14				
3																						
4																						
5																						
6																						
7																						
8																						
9																						
10																						
11																			All samples fo	r Hg fi	ield filtered @ 45	5um
12																					or lab group cod	ding
RELINQUISHED BY: (Signature/Print) RECE JCL - 26-Mar-21 - PM						IVED BY: (Signa	ature	/Prin	t)			Date:			Γime): 		Temp	Laborerature (°C) on Receipt		y Use Only dition of Sample or	n Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

M	ax	Xam													CHAIN C	OF CL	JSTODY	RECOF	RD				
	(,)	Analytics inc	Phone: 905	5-817-5700	Fax: 905-8	817-5777 Toll F	ree:	(800) 563-626	66											Page _	1 of	1
		INVOICE	INFORMATIC	N:		REPORT IN	FOR	MAT	ION (if di	iffers	from	invo	ice):		ı	PRO	JECT	INFORI	MATION:		MAXXAM	JOB NUM	BER:
	ny Name: t Name: s:	Lisa Mertick 5768 Nauvoo	gement of Car o Rd, Watford,		ration	Company Name: Contact Name: Address:	Brei 451	nt Lar 0 Rho	ngille odes Driv					P.O	otation # D. #: oject #:	2		33 1-1000 eeks SV	M		CHAIN O	CUSTO	Y#:
Phone:	519-849-	N0M 2S0 5810	Fax: 519-84	9-5811		Phone: 519-823-	_		ON, N8V 318		519-8	323-1	316		oject Name cation:		win Ci win Ci		V	-11	TOLES	SWCM-N	IΛD
		@wm.com				Email: BJL@F				_					mpled By:		CL/AU				TOLI -C	OVV CIVI-IV	
		F	REGULATORY	CRITERIA	4				ANALYS	IS RE	QUE	STEC) (Ple	ase b	e specifi	c):			TURNAROUNI	D TIME	E (TAT) RE	QUIRED:	
Custo	For regulated y Form MISA PWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	ther specify C of A? n	Drinking Water ? (Y / N)	Filtered ? (Y / N)	-2021 TCLS - SW (POPLAR)									Regu Rush	Ilar (Standard x 5 to 7 Wor TAT: Rush C	PROJE TAT: rking D Confirm (call La	ECTS : Days nation # ab for #)	3 days	USH			
	L DELIVE	ST BE KEPT RY TO MAX mple Identifica	XAM	Date	Time	SAMPLING Matrix	Regulated D	Metals Field	ZP-ON-WLF-2021 QUARTERLY									are > 5 # of	note that TAT for certa days - contact your Pr	roject Ma		ils.	urans
1		SS14A		Sample 26-Mar-2		(GW, SW, Soil, etc.)	N	N	X		Н				++		+	Cont.					
2		SS14B		26-Mar-2		SW	N	N	X		H			+			+	8					
3		SS15A		26-Mar-2	21 AM	SW	N	N	Х		Н						\top	8	PSSWDUP co	llected			
4		PSSWDUP		26-Mar-2	21 AM	SW	N	N	Х									8	-				
5																							
6																							
7																							
8																							
9																							
10																							
11											Щ						\perp						
12																			See lab adden			coding	
	RELINQ	EIVED BY: (Signa	ature	Prin	t)			Date:		+	Tir	ne:		Tem	Labo perature (°C) on Receipt		Use Only	ole on Recei	pt				

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

N	lax	Xam Analytics Inc	6740 Camp	obello Roa	d Mississaug	ja, ON L5N 2L8												CHAIN (OF CL	JSTODY F	RECORD
	./	Analytics Inc	Phone: 905	-817-5700	Fax: 905-8	317-5777 Toll F	ree:	(800) 563-626	6										Page 1	of <u>1</u>
		INVOICE	INFORMATIO	N:		REPORT IN	FOR	MAT	ION (if di	ffers fron	ı invo	oice):			PRO	JECT	INFO	RMATION:		MAXXAM J	OB NUMBER:
	oany Name: act Name: ess:	Waste Manag Lisa Mertick 5768 Nauvoo			ration	Company Name: Contact Name: Address:	Brei 451	nt Lar 0 Rho	ngille odes Driv	e, Unit 53)		P.0	otation # O. #: oject #:	2		31-100		4	CHAIN OF	CUSTODY # :
	e: 519-849-8	N0M 2S0 5810 C@wm.com	Fax: <u>519-84</u>	9-5811		Phone: 519-823- Email: BJL@F	-1311	1 x 26		Fax: 519			Lo	oject Name cation: ampled By:	T	win C win C CL/Al		SVV		TCLF-SV	VCM-MAR
		RI	EGULATORY	CRITERIA					ANALYSI	S REQUE	STE	D (Ple	ase b	e specifi	c):			TURNAROUN	D TIME	(TAT) REQ	UIRED:
Cust	E. For regulation of the regul	Reg. 153 Table 1 Table 2 Table 3	ot Criteria on (her	Drinking Water ? (Y / N)	I Filtered ? (Y / N)	LF-2021 TCLS - SW (BKGRND) QUARTERLY								Reg	Jular (Standard x 5 to 7 Wo sh TAT: Rush C 1 day DATE Required: TIME Required:	PROJE I) TAT: orking D Confirm (call La	ECTS : Days nation #	3 days		
	IL DELIVE	ST BE KEPT RY TO MAXX	AM	Date	Time	Matrix	Regulated D	Metals Field Filtered	ZH-ON-WLF-2021 STATION) QUARI								are >		roject Mar		
1		SS10		Sampled 26-Mar-2		(GW, SW, Soil, etc.)	N N	N	Χ				+		+	+	Coi				
2		SS16		26-Mar-2		SW	N		Х								6				
3																					
4																					
5																					
6																					
7																					
8																					
9																					
10																					
11																					
12																		See lab adden			coding
	RELINQ	UISHED BY: (S JCL - 26-M	RECE	IVED BY: (Signa	ature	/Prin	t)		Date			Tir	ne:		Te	Labo mperature (°C) on Receipt	Ī	Use Only	on Receipt		

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

N	1ax	kam Analytics Inc	6740 Camp	obello Road	Mississaug	ja, ON L5N 2L8														CHAIN C	F CUSTODY R	ECORD
	./	Analytics inc	Phone: 905	-817-5700	Fax: 905-8	817-5777 Toll F	ree:	(800) 563-626	66											Page 1	of <u>1</u>
		INVOICE II	NFORMATIO	N:		REPORT IN	FOR	MAT	ION (if di	ffers	from	invo	ice):			PRC	JEC	T IN	FORM	ATION:	MAXXAM JO	B NUMBER:
	pany Name: act Name: ess:	Waste Manage Lisa Mertick 5768 Nauvoo F			tion	Company Name: Contact Name: Address:	Brei	nt Lar		e, Un	it 530			P.0	otation # O. #: oject #:	_	1012; 2101;		1000		CHAIN OF C	USTODY#:
	ne: 519-849-5 il: Imertick i	N0M 2S0 810	Fax: 519-849			Phone: 519-823-	Win -1311	dsor, 1 x 26	ON, N8V 318	V 5K5 Fax:	5 519-	823-1		Lo	oject Nam cation: impled By:]	Γwin Γwin JCL		ks SW ks			/CM-APR
LIIIai	II. IIIICITICK	(C) WITI.COIT				Elliali. Doctor	VVL	J1.00	JIII, JCL	.(0)11	اط۷۷	.001		Sa	прієч ву.		JOL					
			GULATORY					- 1	ANALYSI	S RE	QUE	STEC	(Ple	ase b	e specif	ic):				TURNAROUND	TIME (TAT) REQU	JIRED:
Cus [MISA WARPWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	Ot Ot	her specify	Drinking Water ? (Y / N)	Filtered?(Y/N)	ZJ-ON-WLF-2021 TCLS - SW (COMPLIANCE POINT) QUARTERLY									ı	Rush :	ar (Standard) x 5 to 7 Wor TAT: Rush C	onfirmation # (call Lab for #) 2 days 20-Apr-21	3 days		
SAI	TIL DELIVE	ST BE KEPT (RY TO MAXX	AM	O°C) FROI	Time	SAMPLING Matrix	Regulated D	Metals Field	ON-WLF- OMPLIAN											ays - contact your Pro	in tests such as BOD and oject Manager for details.	
	Sar	mple Identificatio	on	Sampled	Sampled	(GW, SW, Soil, etc.)		1											Cont.	COMM	ENTS / TAT COMM	IENTS
1		SS1		9-Apr-21	AM	SW	N	N	Х								_		14			
2																						
3																						
4																						
5																						
6																						
7																						
8																						
9											Î											
10																						
11																				All samples for	Hg field filtered @	45um
12					1						\Box			\top			十	T			dum for lab group o	
	RELINQU	JISHED BY: (Si	gnature/Prin	nt)	RECE	I IVED BY: (Signa	ture	/Prin	t)			Date:		士	Ti	me:					ratory Use Only	
		JCL - 9-Apr	-21 - AM																	erature (°C) on	Condition of Sample	on Receipt
										<u> </u>										Receipt		

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

N	1ax	Zam Analytics Inc	6740 Camp	obello Road	Mississaug	ja, ON L5N 2L8														CHAIN C	F CUSTODY RECO	RD
	./	Analytics inc	Phone: 905	-817-5700	Fax: 905-8	817-5777 Toll I	ree:	(800) 563-626	66											Page 1 of	1
		INVOICE	INFORMATIO	N:		REPORT IN	FOR	MAT	ION (if di	iffers	from	invo	ice):			PR	OJE	CT IN	IFORM	ATION:	MAXXAM JOB NUM	IBER:
	oany Name: act Name: ess:	Lisa Mertick	gement of Can Rd, Watford,		ition	Company Name: Contact Name: Address:	Brei	nt Lar		e, Un	it 530			P	Quotation # P.O. #: Project #:		1012 2101		1000		CHAIN OF CUSTO	DY # :
	e: 519-849-5 l: <u>Imertick</u>	N0M 2S0 810 @wm.com	Fax: 519-849	9-5811		Phone: 519-823- Email: BJL@F	-1311	1 x 26	-	Fax:	519-			L	roject Nam ocation: sampled By	-	Twin Twin JCL		eks SW eks		TCLF-SWCM-/	APR
		R	REGULATORY	CRITERIA					ANALYS	IS RE	QUE	STE) (Ple	ease	be specif	fic):				TURNAROUNI	TIME (TAT) REQUIRED:	
Cust	misa PWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	e Drinking W	her	Drinking Water ? (Y / N)	Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY										Regul Rush	ar (Standard) x 5 to 7 Wor TAT: Rush C	king Days onfirmation # (call Lab for #) 2 days 3 days 20-Apr-21	RUSH		
SAN	IL DELIVE	ST BE KEPT RY TO MAX) mple Identificat	XAM	Date	Time	SAMPLING Matrix	Regulated D	Metals Field	L-ON-WLF.										are > 5 da # of	ays - contact your Pr	in tests such as BOD and Dioxins/foject Manager for details. ENTS / TAT COMMENTS	Furans
1		SP2		Sampled 9-Apr-21	Sampled	(GW, SW, Soil, etc.)	N N	1	N 0										Cont.			
2				07.pi 21	7	0,,								+			\dashv					
3					1									+								
4														+								
5														\dashv								
6					1									\dashv								
7																						
8																						
9																						
10																						
11														\dashv						All samples for	Hg field filtered @ 45um	
12																					dum for lab group coding	
	RELINQU	JISHED BY: (S	Signature/Prin	nt)	RECE	IVED BY: (Signa	ture	/Prin	t)			Date:			Ti	ime:	<u>'</u>				ratory Use Only	
		JCL - 9-Ap	or-21 - AM											+					Temp	erature (°C) on Receipt	Condition of Sample on Rece	eipt
																				'		

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

704 Mara Street, Suite 122, Point Edward, Ontario, N7V 1X4 Tel. (519) 339-8787, Fax (519) 336-6965

RECORD	#:	- (14	0	6	

CHAIN OF CUSTODY

Client Informatio Company Name: Address: Phone: Fax: Email: Report To:		x 2618 Crudin	ON Com		Sam Affilia Sam Com	pler In pled By ation: ple Sto ments: ple Typ	y: orage:	Soil 🗆	Sedim:		es // / / / / / / / / / / / / / / / / / /	☐ Che	emic	al l	<i>P S</i>	Other	
Sample Name	Pollutech # (for company use only)	Colle Date (mm/dd/yy)	ected	Sample Method (Grab/ Composite)	Trout LC50	Trout Single Concentration	Daphnia LC50	Daphnia Single Concentration	Fathead 7 day	Ceriodaphnia 3 Brood	- -		Hyalella azteca	Chironomus dilitus	Pseudokirchneriella	Lemna minor	
551		9-A08-21	AM	Grab		×		X			0)			0	0	+	
SPZ	i i	9- Apr-21	AM	Grah		X		X									
								-									
							1	P									
		301						-	Tel						J		
Custody Relinquished Date/Time: Received by (sign): Date/Time: Affiliation:		-21/	PM		Date/ Rece	ody Rel /Time: vived by /Time: ation:			sign):								

Q2: Chain of Custodies

STANDARD CHAIN-OF-CUSTODY

Eurofins Workorder #: ______

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

CLIENT INFO	PRMATION								INVOI	CE INFO	RMAT	ION (S	AME A	S CLIEN	NT INF	ORMA	TION: Y	/ES 🗌	NO [Z)		
Company:	RWDI AIR INC				Compan	y:	Was	te M	anage	emen	t of (Cana	da									
Contact:	Brent Langille								Contact:		Lisa	Mer	tick									
Address:	4510 Rhodes Dr	r. #530, Windsor, ON, N8	W 5	K5					Address	I	5768	8 Naı	oovu	Rd, V	Vatfo	ord, C	ON NO	OM 2	S0			
Telephone:	519-823-1311 x	2618 _{Fax:}							Telepho	ne:	519-	-849-	5810				Fax:					
Email:	#1: Brent.Langille(@rwdi.com		•					Email:		#1: lm	ertick	@wr	n.cor	n			-				
Email:	#2: Jeffery.Cleland	@rwdi.com, Anthony.Vand	derhe	yden(@rwc	di.con	n		Email:		#2:											
Project:	2101781-1000								PO #:								Quote #:					
	N/GUIDELINE REQUIRE	 D								AROUN	ID TIM	E					Quote ii.					
Sanitary	Sewer, City:			ODWSOG	ì					1 Day* (10	00%)		2 Day** (50%)		3-5 Days	(25%)	~	5-7 Days	(Standard)	
Storm S	ewer, City:			PWQO					Please co	ntact the l	aboratory	y in advar	ce to dete	ermine rus	sh availal	bility. Su	rcharges m	ay apply	to rush se	ervice.		
	53, Table:, Type:			*If the re	sults are re	ported th	ne day aft	er the rus	h due dat	e, the fol	lowing s	urcharges v	will apply	: before 1	2:00 - 100	0%, after 12:00 - 50%.						
Excess S	oil, Table:, Type:			**If the r		•	•		sh due da	ate, the fo	ollowing	surcharges		-		0%, after 12:00 - 25%.						
		ı		Sample	e Analy	sis Requ	uired	-				Field	Parame	eters								
t <mark>hat this COC is</mark> upon submissio	not to be used for drinking wat	r agreed upon with the Laboratory. Note ser samples. The COC must be complete a \$25 surcharge if required information is	mple Matrix	Resample? Y = Yes N = No	of Containers	Metals and Inorganics	Metals (ex. Hg, B, CrVI)	×	U	PHC F1-F4	TCLP PAH	TCLP PCB	TCLP M/I	TCLP VOC								
Sample ID		Date/Time Collected	Sai		#	ğ	Σ	ВТЕХ	ν	<u> </u>		<u> </u>										
ASR		6-Apr-2021/AM	ASR	N	1						~	~	~	~								
																соммі	ENTS:					
	JCL PRINT		SIGN							DATE/TII		04 /D#	1	TEMP	P (°C)							
Sampled By:	IOI										11-ZUZ	21/PN	VI									
Relinquished By	JCL												1 -	<u> </u>								
Received By:																CUSTO	OY SEAL: Y	res	NO L			

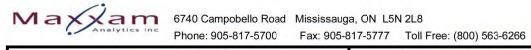
AFSTDCOC.4

STANDARD CHAIN-OF-CUSTODY

Eurofins Workorder #:

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

CLIENT INFO	DRMATION								INVO	CE INFO	RMAT	ION (S	AME A	S CLIEN	IT INF	ORMA	TION: Y	/ES 🗌	NO [v)		
Company:	RWDI AIR INC								Compan	y:	Was	te M	anage	emen	t of (Cana	da					
Contact:	Brent Langille								Contact:		Lisa	Mer	tick									
Address:	4510 Rhodes Dr	. #530, Windsor, ON, N8	W 5	K5					Address	I	5768	3 Naı	oovu	Rd, V	Vatfo	ord, C	ON NO	OM 2	S0			
Telephone:	519-823-1311 x	2618 _{Fax:}							Telepho	ne:	519-	849-	5810				Fax:					
Email:	#1: Brent.Langille@	@rwdi.com							Email:		#1: lm	ertick	(@wr	n.cor	n			-				
Email:	#2: Jeffery.Clelar	nd@rwdi.com, Steve.V	Vhite	e@rv	/di.c	om			Email:		#2:											
Project:	2101781-1000								PO #:								Quote #:					
	N/GUIDELINE REQUIREI	 D								AROUN	ID TIM	E					Quote #					
Sanitary	Sewer, City:			ODWSOG	i					1 Day* (10	00%)		2 Day** (50%)		3-5 Days	(25%)	~	5-7 Days	(Standard)	
Storm S	ewer, City:			PWQO					Please co	ntact the l	aboratory	in advan	ice to dete	ermine rus	sh availal	bility. Su	charges m	ay apply	to rush se	ervice.		
	.53, Table:, Type:				*If the re	sults are re	ported th	ne day aft	er the rus	h due dat	e, the fol	lowing s	urcharges	will apply	y: before 1	12:00 - 10	0%, after 12:00 - 50%.					
Excess S				**If the r		•	-		sh due da	ite, the fo	ollowing	surcharges		•		0%, after 12:00 - 25%.						
	Excess Soil, Table:, Type: Other: Sample Details Field Filtered>										e Analy:	sis Requ	uired	-				Field	Paramo	eters	RN#	
that this COC is upon submissio missing (require	not to be used for drinking wat	r agreed upon with the Laboratory. Note er samples. The COC must be complete a \$25 surcharge if required information is	mple Matrix	Resample? Y = Yes N = No	of Containers	Metals and Inorganics	Metals (ex. Hg, B, CrVI)	ВТЕХ	ပ္	PHC F1-F4	TCLP PAH	TCLP PCB	TCLP M/I	TCLP VOC								
Sample ID		Date/Time Collected	Sa	ag "	#	ž	ž	ВТ	ŏ V	_ ₹		_		_								
CONT S	OIL	5-May-2021/AM	SOIL	N	4						~	~	~	~								
																соммі	NTS:					
	JCL PRINT		SIGN							5-Ma		721/	V V V	TEMP	P (°C)							
ICI										J-IVI	ay=∠(JZ 1/1	-\IVI									
Relinquished By										Y SEAL: Y		1 「										
Received By:																CUSTO	OY SEAL: Y	ES	J NO L			


Page 1 of 1

		INVOICE	INFORMATIO	N:		REPORT IN	FOR	MAT	ION (if di	iffers fron	n invoice):	P	ROJECT I	NFORM	MATION:		MAXXAM JOB NUMBER:
Comp	any Name:	Waste Manag	gement of Can	ada Corporation	on	Company Name:	RW	DI AI	R Inc.			Quotation #	Table 1				
Conta	ct Name:	Lisa Mertick				Cortact Name:	Bre	nt La	ngille			P.O. #:	1012373	3			
Addres	ss:	5768 Nauvoo	Rd, Watford,	ON	- 3	Address:	451	0 Rh	odes Driv	e, Unit 53)	Project #:	2101781	-1000			CHAIN OF CUSTODY #:
		N0M 2S0					Wir	dsor,	ON, N8\	N 5K5		Project Name:	TCEC-G	WCM-N	ИΑΥ		
Phone	: 519-849-	5810	Fax: 519-849	9-5811		Phone: 519-823	1000	111111111111111111111111111111111111111			-823-1316	Location:	Twin Cre	eks			TCEC-GWCM-MAY
Email:	Imertick	@wm.com				Email: Brent.L	ang	ille@	RWDI	.com		Sampled By:	SGW				CALLED TO THE STATE OF THE STAT
		R	EGULATORY	CRITERIA					ANALYS	IS REQUE	STED (Plea	ase be specific):		TURNAROUNI	D TIME	(TAT) REQUIRED:
	For regulat ody Form	ed drinking wat	er samples - p	lease use the	Drinking W	Vater Chain of	(PROJE	
-	MISA	Reg. 153	Sewer Use		x Ot	her	Z		GW (ACTIVE	I.VE				Regu	x 5 to 7 Wor		
<u> </u>	IWIIOA	<u> </u>	-				7)?	Z	₹CT	\C1							
	PWQO	Table 1 Table 2	Sanitary Storm	/	ODW	specify	e	YIN	<i>></i>	3 4			1 1 1	Rusn	TAT: Rush C	call Lat	The state of the s
_	_I WQO	Table 3	Region			specify	Water	15 (1	AN G					1 day		days 3 days
	Reg. 558						ing	erec	TCLS	STS BE					DATE Required:		
-				Report C	Criteria on C	C of A? n	Drinking	E	1	1 F F					TIME Required:	1	
CAM	DI EC MII	ST BE KEPT	COOL / < 40	°C \ FDOM	TIME OF	CAMPLING		eld	202	202							2
		RY TO MAXX			TIME OF	SAMPLING	Regulated	Metals Field Filtered	WLF-: ITAR	ON-WLF-2021 TCLS - GW (ACTIVE AQUITARD) TRIP BLANK			146		lays - contact your Pr		uch as BOD and Dioxins/Furans nager for details.
	Sa	mple Identificat	ion	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regu	Meta	ON-WLF-2021 ⁷ AQUITARD)	ON-V				# of Cont.	COMM	IENTS /	/ TAT COMMENTS
1		OW70B-5		18-May-21	AM	GW	N	Y	Х					9	FIELD BLANK	collect	ed
2		FIELD BLANK		18-May-21	AM	W	N	N	Х					9			
3		TRIP BLANK		18-May-21	РМ	W	N	N		Х				2			
4																	
5																	
6																	
7																	
8																	
9															See lab adden	dum foi	r analysis
10															000 100 000011		. analysis
11																	
12																	
	RELINQ	UISHED BY: (S	ignature/Prin	it)	RECE	IVED BY: (Signa	ature	/Prin	t)		Date:	Tim	e:		Labo	oratory	Use Only
		SGW 19-M	1ay-21 - AM							1				Temp	perature (°C) on	Condit	tion of Sample on Receipt
		71-1													Receipt		

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Page 1 of 1

		INVOICE	INFORMATIC	N:		REPORT IN	FOR	MAT	ION (if di	ffers from	invoice):	F	ROJECT	INFORM	ATION:	MAX	XAM JOB NUMBER:
Compar Contact	ny Name: Name:	Waste Mana Lisa Mertick	gement of Car	nada Corporatio	on	Company Name: Cortact Name:	-		R Inc.			Quotation # P.O. #:	1012373	33			
Address	s:	5768 Nauvoo	o Rd, Watford,	ON		Address:	451	0 Rho	odes Drive	e, Unit 530)	Project #:	2101781	1-1000		СНА	IN OF CUSTODY #:
		N0M 2S0					Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-G	SWCM-N	MAY		
Phone:	519-849-5	5810	Fax: 519-84	9-5811		Phone: 519-823-	-131	1 x:26	18	Fax: 519	-823-1316	Location:	Twin Cre	eeks		TC	EC-GWCM-MAY
Email:	<u>Imertick</u>	@wm.com				Email: Brent.L	ang	ille@	RWDI	.com		Sampled By:	SGW				
		F	REGULATORY	CRITERIA					ANALYSI	S REQUE	STED (Pl	ease be specific	;):		TURNAROUN	D TIME (TA	T) REQUIRED:
	or regulat ly Form	ed drinking wa	ter samples - բ	please use the	Drinking W	/ater Chain of	(N)									PROJECTS	NOTICE FOR RUSH
	MISA	Reg. 153	Sewer Use		x Ot	her	1	_	<u> </u>						x 5 to 7 Wo		
	PWQO	Table 1 Table 2 Table 3	Sanitar Storm Region	у	ODW	specify	Water ?	17 (Y/N)	- GW T & SAND)					Rush	TAT: Rush 0	Confirmation (call Lab for a	
	Reg. 558			Report C	Criteria on (C of A ? n	Drinking	Metals Field Filtered	ON-WLF-2021 TCLS - (INTERSTADIAL SILT						DATE Required:		
		ST BE KEPT			TIME OF	SAMPLING	Regulated I	Ils Fiel	VLF-20 ERSTA				14		ote that TAT for certa days - contact your Pr		s BOD and Dioxins/Furans or details.
	Sa	mple Identifica	ition	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regu	Meta	ON-V (INTE			-		# of Cont.	COMM	IENTS / TA	COMMENTS
1		OW46-7		18-May-21	PM	GW	N	Y	X					9			
2		OW47-6		18-May-21	PM	GW	N	Y	Х					9			
3		OW54-10		18-May-21	РМ	GW	N	Y	Х	7 -				9	GWDUP1 take	en	-
4		OW57-15		18-May-21	PM	GW	N	Υ	Х	-				9			
5		OW58-17		18-May-21	PM	GW	N	Υ	Х					9			
6		OW67-11		18-May-21	РМ	GW	N	Υ	Х				- 17	9			
7		OW72-10		18-May-21	РМ	GW	N	Υ	Х					9	7-2		
8		OW73-9		18-May-21	PM	GW	N	Υ	Х					9			-
9		GWDUP1		18-May-21	РМ	GW	N	Υ	Х					9			
10																	
11															See lab adden	dum for ana	alysis.
12												College					
	RELINQ	UISHED BY: (RECE	IVED BY: (Signa	ature	/Prin	t)		Date:	Tim	ne:		Labo	oratory Use	Only
		SGW 19-N	May-21 - AM	1										Temp	perature (°C) on Receipt		Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	INVOICE INFORMATION	ON:	REPORT	NFOF	RMAT	ION (if di	ffers from	invoice):	P	ROJECT IN	NFORMATION:	MAXXAM JOB NUMBER:
Company Name: Contact Name: Address: Phone: 519-849- Email: Imertic		ON	Company Name Cortact Name: Address: Phone: 519-82 Email: Brent	Bre 451 Wir 3-131	nt Lai 0 Rho ndsor, 1 x:26	ngille odes Drive ON, N8V 618	Fax: 519-	823-1316	Quotation # P.O. #: Project #: Project Name: Location: Sampled By:	10123733 2101781- TCEC-GV Twin Cree SGW	1000 VCM-MAY	CHAIN OF CUSTODY #: TCEC-GWCM-MAY
	REGULATOR'	/ CRITERIA		T		ANAI YSI	S REQUE	STED (Ple	ase be specific).	TURNAROUM	ID TIME (TAT) REQUIRED:
Note: For regula Custody Form MISA PWQO Reg. 558	Reg. 153 Sewer Use Table 1 Sanital Table 2 Storm Table 3 Region	у	Trinking Water Chain of X Other ODWS specify riteria on C of A?	l l l l l l l l l l l l l l l l l l l	Filtered?(Y/N)	1 TCLS - GW (INTERFACE o VOCs					Regular (Standard x 5 to 7 Work Rush TAT: Rush DATE Required TIME Required	Confirmation # (call Lab for #) 2 days 3 days
UNTIL DELIVE	IST BE KEPT COOL (< 1 ERY TO MAXXAM ample Identification	0 °C) FROM Date Sampled	Time Matrix Sampled (GW, SW, Soil, etc.	Regulated D	Metals Field Filtered	ON-WLF-2021 TCLS AQUIFER) No VOCs					Please note that TAT for cer are > 5 days - contact your I	rtain tests such as BOD and Dioxins/Furans
1 2	OW49-29	18-May-21	PM GW	N	Υ	Х					6	
3												
5											See lab adde	ndum for analysis.
7											1 2 2 2	
8												
9 10												
11												
	UISHED BY: (Signature/Pri	nt)	RECEIVED BY: (Sig	nature	Prin	t)		Date:	Tim	e:	Lak	poratory Use Only
	SGW 19-May-21 - AN	1									Temperature (°C) on Receipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Page 1 of 1

		INVOICE	INFORMATIO	N:		REPORT IN	FOR	MAT	ION (if di	ffers fron	n invoice):	P	ROJECT	INFORM	IATION:	MAXX	AM JOB NUMBER:
Compar	ny Name:	Waste Mana	gement of Can	nada Corporati	on	Company Name:	RW	DI AI	R Inc.			Quotation #	127.2				
Contact	Name:	Lisa Mertick				Cortact Name:	Brei	nt La	ngille			P.O. #:	101237	33			
Address	s:	5768 Nauvoc	Rd, Watford,	ON	- 3	Address:	451	0 Rh	odes Drive	e, Unit 53	0	Project #:	210178	1-1000		CHAIN	N OF CUSTODY #:
		N0M 2S0					Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-L	CHCM-I	MAY		
Phone:	519-849-	5810	Fax: 519-849	9-5811		Phone: 519-823	-1311	1 x:26	618	Fax: 519	-823-1316	Location:	Twin Cr	eeks	1 -	TCE	C-LCHCM-MAY
Email:	Imertick	(@wm.com				Email: Brent.L	ang	ille@	<u> RWDI</u>	.com		Sampled By:	AUV				
			REGULATORY	CRITERIA				- 3	ANALYSI	S REQU	STED (PI	ease be specific	:):		TURNAROUN	D TIME (TAT)	REQUIRED:
	For regulat dy Form	ted drinking wat	ter samples - p	lease use the			(N								lar (Standard	PROJECTS) TAT:	OTICE FOR RUSH
]MISA]PWQO	Reg. 153 Table 1 Table 2	Sewer Use Sanitary Storm	у	site s	specific specify	Water?(Y/N	(N/A) &	LEACHATE					Rush	X 5 to 7 Wo		
Ē	Reg. 558	Table 3	Region_	Report 0	Criteria on C	C of A ? n	Drinking Wa	Filtered	-STO						1 day DATE Required:	-	
		ST BE KEPT				SAMPLING	Regulated D	Metals Field	ON-WLF-2021 T ANNUAL				1.0		ote that TAT for certal lays - contact your Pi		BOD and Dioxins/Furans details.
	Sa	mple Identifica	tion	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regu	Meta	ANN ANN					# of Cont.	COMM	MENTS / TAT	COMMENTS
1		MH18		18-May-21	AM	LCH	N	N	Х					15		LDUP colle	cted
2		LDUP		18-May-21	AM	LCH	N	N	Х					15			
3		SUMP		18-May-21	AM	LCH	N	N	Х	(Fig.				15			
4		CFA-COMP	·[]	18-May-21	РМ	LCH	N	N	Х					15			
5		PS1		18-May-21	PM	LCH	N	N	Х					15			
6																	
7															Mercury & Filte	ered DOC fiel	d filtered
8															See lab adden	ndum for analy	ysis.
9															11 1		
10															<u> </u>		
11																	
12																	
	RELINQ	UISHED BY: (Signature/Prir	nt)	RECE	IVED BY: (Signa	ature	/Prin	it)		Date:	Tim	e:		Labo	oratory Use O	nly
		SGW 19-N	//ay-21 - AM	1								17		Temp	perature (°C) on Receipt		Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

1 of

Fax: 905-817-5777 Toll Free: (800) 563-6266

		INVOICE	INFORMATIO	ON:		REPORT IN	FOR	MAT	ION (if di	ffers fror	n invoice):	P	ROJEC1	INFOR	MATION:	MAXXAM JOB NUMBER	:
Comp	any Name:	Waste Mana	agement of Car	nada Corporati	ion	Company Name:	RW	DI AI	R Inc.			Quotation #	200				_
Conta	ct Name:	Lisa Mertick				Contact Name:	_	-	ngille			P.O. #:	10123				_
Addre	ss:	5768 Nauvo	o Rd, Watford,	ON		Address:	451	0 Rh	odes Driv	e, Unit 53	0	Project #:		31-1000		CHAIN OF CUSTODY # :	:
		N0M 2S0		300-5100					ON, N8V			Project Name:	-	GWCM-I	MAY	- 100 CO - CO	
	519-849-	0.0000000000000000000000000000000000000	Fax: 519-84	9-5811		Phone: 519-823-	1000000	11000000			-823-1316	Location:	Twin C	reeks		TCEC-GWCM-MAY	
Email:	<u>imertick</u>	(@wm.com				Email: Brent.L	ang	ille(d	<u> </u>	<u>.com</u>		Sampled By:	SGW				_
			REGULATORY	Service and servic				3	ANALYSI	S REQUI	ESTED (Ple	ease be specific):			D TIME (TAT) REQUIRED:	_
	: For regulat ody Form	ted drinking wa	nter samples - μ	olease use the	Drinking W	ater Chain of								PLE		ADVANCE NOTICE FOR RUSH PROJECTS	ı
_	1000	3.8.34	3		_		Z		Ų					Regu	lar (Standard		
L	MISA	Reg. 153	Sewer Use		x Ot	her	2	=	E						x 5 to 7 Wo	rking Days	
_	- Comment	Table 1	Sanitar	у	ODW		r ?	N/A)	GW (ACTIVE					Rush	TAT: Rush C		
L	PWQO	Table 2	Storm			specify	Water	50	S							(call Lab for #)	
г	Reg. 558	Table 3	Region		_			red	S						1 day DATE Required:	2 days 3 days	
L				Report (Criteria on (C of A? n	Drinking	Filtered	TCLS								
									021						TIME Required:		
		ST BE KEPT ERY TO MAX	COOL (< 1	0 °C) FROM	I TIME OF	SAMPLING	lated	Is Fie	VLF-2 TARI							ain tests such as BOD and Dioxins/Furans oject Manager for details.	
	Sa	mple Identifica	ation	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Metals Field	ON-WLF-2021 ⁻ AQUITARD)					# of Cont.	COMM	IENTS / TAT COMMENTS	
1		OW16-6		19-May-21	PM	GW	N	Y	X					9	GWDUP2 colle	ected	
2		OW54A-4		19-May-21	PM	GW	N	Y	Х					9			Ī
3		OW56-4		19-May-21	PM	GW	N	Y	Х					9			Ī
4		OW57-4		19-May-21	PM	GW	N	Υ	Х					9	GWDUP3 colle	ected	Ī
5		OW58-6		19-May-21	PM	GW	N	Υ	Х					9			
6		OW59-6		19-May-21	PM	GW	N	Y	Х					9			
7		OW60-4		19-May-21	PM	GW	N	Y	Х	-				9			Ī
8		OW71A-5		19-May-21	PM	GW	N	Y	Х					9	1		
9		GWDUP2		19-May-21	PM	GW	N	Y	Х					9	7.2		Ī
10		GWDUP3		19-May-21	PM	GW	N	Υ	Х					9	122		Ī
11									1153	7							į
12										1					See lab adden	dum for analysis.	
	RELINQ	•	Signature/Pri		RECE	IVED BY: (Signa	ture	/Prin	t)		Date:	Tim	e:		Labo	oratory Use Only	_
		SGW 20-1	May-21 - AM	1										Tem	perature (°C) on Receipt	Condition of Sample on Receipt	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	Phone: 90	5-817-5700 Fax:	905-817-5777 Toll	Free:	(800) 563-626	66							Page <u>1</u> of <u>1</u>
	INVOICE INFORMATI	ON:	REPORT I	NFOR	MAT	ION (if di	ffers from	invoice):		ROJEC	TINFO	ORMATION:		MAXXAM JOB NUMBER:
Company Name: Contact Name: Address:	Waste Management of Ca Lisa Mertick 5768 Nauvoo Rd, Watford		Company Name: Contact Name: Address:	Bre	nt La	ngille	e, Unit 530)	Quotation # P.O. #: Project #:	-	781-10			CHAIN OF CUSTODY#:
Phone: 519-849 Email: Imertic		49-5811	Phone: 519-823 Email: Brent.	-131	1 x:26		Fax: 519-	823-1316	Project Name Location: Sampled By:		Creeks	:M-MAY		TCEC-GWCM-MAY
	REGULATOR	Y CRITERIA				ANALYSI	S REQUE	STED (PI	ease be specific	:):		TURNAR	OUND TIM	IE (TAT) REQUIRED:
Custody Form MISA PWQO Reg. 558	Reg. 153 Sewer Use Table 1 Sanita Table 2 Storm Table 3 Region ST BE KEPT COOL (< 2	e Carry C	Other DDWS specify	d Drinking Water ? (Y / N)	Metals Field Filtered ? (Y / N)	ON-WLF-2021 TCLS - GW (INTERSTADIAL SILT & SAND)					Re	egular (Stand x 5 to 7 ush TAT: R 1 day DATE Requ	PRO. dard) TA 7 Working tush Confir (call I / uired:	Days
UNTIL DELIV	ERY TO MAXXAM ample Identification	Date Tir		Regulated	Metals Fi	ON-WLF- (INTERS					are	> 5 days - contact	your Project M	
1	OW60-8	and the second second second second	M GW	N	Υ	Х					3113	9		
3	OW16-7	19-May-21 P	M GW	N	Υ	Х						9		
4														
5														
7				Н										
8											7 T			
9														
10														
11										See lab a	addendum	for analysis.		
12														
RELING	RECEIVED BY: (Sign	ature	/Prin	it)		Date:	Tin	ne:	14		Laborator	y Use Only		
	SGW 20-May-21 - Al	M										remperature (°C) Receipt) on Con	dition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

5	INVOICE INI	FORMATION:		REPORT IN	FOR	MAT	ON (if di	ffers from	n invoice):	Р	ROJECTI	NFORM	ATION:	MAXXAM	JOB NUMBER:
Company N Contact Na		ment of Canada Corporati		ompany Name: ortact Name:	-		R Inc. ngille			Quotation # P.O. #:	1012373	3			
Address:	5768 Nauvoo Ro	d, Watford, ON	Ad	ddress:	4510	0 Rho	des Driv	e, Unit 530	0	Project #:	2101781	-1000		CHAIN OF	CUSTODY #:
	N0M 2S0				Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-L	CHCM-I	MAY		
Phone: 51	9-849-5810 F	ax: 519-849-5811	Ph	hone: 519-823-	1311	x:29	84	Fax: 519	-823-1316	Location:	Twin Cre	eks		TCEC-L	CHCM-MAY
Email: <u>In</u>	nertick@wm.com		En	mail: Brent.L	ang	ille@	RWDI	.com		Sampled By:	AUV				
	REG	GULATORY CRITERIA	and the second				ANALYSI	IS REQUE	STED (Ple	ase be specific):		TURNAROUN	D TIME (TAT) RE	QUIRED:
Note: For Custody F		samples - please use the	Drinking Wate	er Chain of	(N		NOI	NOI					ASE PROVIDE	ADVANCE NOTION PROJECTS TATE	CE FOR RUSH
М	SA Reg. 153	Sewer Use	x Other	r	1 (Y/N	_	ZAT	ZAT					x 5 to 7 Wo		
	VQO Table 1 Table 2 Table 3 Pg. 558	Sanitary Storm Region	site spe	ecific specify	Water	red ? (Y / N)	.LS - EQUALIZATION UAL	.LS - EQUALIZATION LY					TAT: Rush ((call Lab for #) 2 days	3 days
	.g. 500	Report 0	Criteria on C o	of A ? n	Drinking	Filte	1 TC	1TC					TIME Required:		
	ES MUST BE KEPT CO	OOL(<10 °C)FROM M	TIME OF S	AMPLING	Regulated D	Metals Field Filtered	ON-WLF-2021 TCLS - TANK SEMI-ANNUAL	ON-WLF-2021 TCLS TANK QUARTERLY			14	Please r	ote that TAT for cert	ain tests such as BOD a	
	Sample Identification	Date	Time Sampled (G	Matrix GW, SW, Soil, etc.)	Regu	Metal	ON-W TANK	ON-W TANK				# of Cont.	COMN	MENTS / TAT COM	MMENTS
1	EQUALIZATION TAN	K 19-May-21	AM	LCH	N	N	Х					14			
2	EQUALIZATION TAN	K 19-May-21	AM	LCH	N	N		Х				7			
3	5-1 2						5						Filtered DOC	field filtered	
4													See lab adder	ndum for analysis.	
5															
6															
7															
8													1.2		
9		T T T T T T													
10															
11			 												
12											+++				
	ELINQUISHED BY: (Sign	nature/Print)	RECEIVI	ED BY: (Signa	ture	/Prin	t)		Date:	Tim	e:		Lab	oratory Use Only	
	SGW 20-May	y-21 - AM										Tem	perature (°C) on Receipt	Condition of Samp	ole on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	INVOICE INFORMAT	ION:	REPORT IN	FOR	MAT	ION (if di	ffers from	invoice):	P	ROJECT	INFORMATION:	MAXXAM JOB NUMBER:
Company Name:	Waste Management of C	Company Name:	RW	DI AI	R Inc.			Quotation #	2000			
Contact Name:	Lisa Mertick		Contact Name:	Brei	nt La	ngille			P.O. #:	101237	33	
Address:	5768 Nauvoo Rd, Watfor	d, ON	Address:	451	0 Rh	odes Drive	e, Unit 530)	Project #:	210178	1-1000	CHAIN OF CUSTODY #:
	N0M 2S0			Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-L	_CHCM-MAY	
Phone: 519-849	-5810 Fax: 519-8	849-5811	Phone: 519-823	-1311	1 x:26	18	Fax: 519-	823-1316	Location:	Twin Cr	reeks	TCEC-LCHCM-MAY
Email: Imertic	k@wm.com		Email: Brent.L	ang	ille@	<u> PRWDI</u>	.com		Sampled By:	AUV		
	REGULATO	RY CRITERIA			3	ANALYSI	S REQUE	STED (Ple	ase be specific):	TURNARO	UND TIME (TAT) REQUIRED:
Note: For regula Custody Form	ated drinking water samples	- please use the Dri	inking Water Chain of	-							PLEASE PROVI	DE ADVANCE NOTICE FOR RUSH PROJECTS
MISA	Reg. 153 Sewer Us	se	x Other	N/Y		世						Working Days
☐ □PWQ0	Table 1 Sanit		site specific	er ? ((Y/N)	LEACHATE					Rush TAT: Rus	
	Table 3 Region	11		Water	C-	1					1 day	2 days 3 days
Reg. 558	3	Donort Crit	eria on C of A? n	Drinking	Itere	TCLS						red:
		100000000000000000000000000000000000000			Id Fi	021					TIME Requir	red:
	JST BE KEPT COOL(< ERY TO MAXXAM		ME OF SAMPLING	Regulated	Metals Field Filtered	ON-WLF-2021 1 ANNUAL				14		r certain tests such as BOD and Dioxins/Furans our Project Manager for details.
S	ample Identification	Sampled S	Time Matrix ampled (GW, SW, Soil, etc.)	Regu	Meta						# of Cont. CO	OMMENTS / TAT COMMENTS
1	PS3	19-May-21	AM LCH	N	N	Х					15	
2	PS5	19-May-21	AM LCH	N	N	Х					15	
3											Mercury &	Filtered DOC field filtered
4											See lab ad	dendum for analysis.
5										HE		
6												
7												
8												
9												
10												
11												
12												
	QUISHED BY: (Signature/P	rint)	RECEIVED BY: (Signa	ature	/Prin	t)		Date:	Tim	e:	1	Laboratory Use Only
	SGW 20-May-21 - A	M									Temperature (°C) o Receipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	INVOICE INFORMATI	ION:		REPORT IN	FOR	MAT	ION (if di	ffers from	invoice):	P	ROJECT I	NFORMATI	ON:	MAXXAM JOB NUMBER:
Company Name:	Waste Management of Ca	anada Corporatio	n	Company Name:	RW	DI AI	R Inc.			Quotation #				
Contact Name:	Lisa Mertick			Contact Name:	Brei	nt La	ngille			P.O. #:	1012373	3		
Address:	5768 Nauvoo Rd, Watford	d, ON		Address:	451	0 Rh	odes Drive	e, Unit 530)	Project #:	2101781	-1000		CHAIN OF CUSTODY #:
	N0M 2S0		1		Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-G	WCM-MAY		
Phone: 519-849		349-5811		Phone: 519-823-	1000000	1000000			-823-1316	Location:	Twin Cre	eks		TCEC-GWCM-MAY
Email: Imertic	ck@wm.com			Email: Brent.L	ang	ille@	DRWDI.	.com		Sampled By:	SGW			
	REGULATOR						ANALYSI	S REQUE	STED (Ple	ase be specific):	TUI	RNAROUND	TIME (TAT) REQUIRED:
Custody Form	Reg. 153 Sewer Us	e	x Otl	her	(N/A)	Y/N)	GW (ACTIVE					Regular (Standard) 5 to 7 World	
PWQO	Table 2 Storm Table 3 Region	1	_	specify	Drinking Water	Filtered ? (rcls -		, ,			DATE		(call Lab for #) 2 days 3 days
	UST BE KEPT COOL(< ' 'ERY TO MAXXAM	10 °C) FROM	TIME OF	SAMPLING	Regulated	Metals Field	ON-WLF-2021 ⁻ AQUITARD)				100	and the second s		n tests such as BOD and Dioxins/Furans oject Manager for details.
S	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regu	Meta	ON-V AQUI					# of Cont.	COMME	ENTS / TAT COMMENTS
1	OW17-4	20-May-21	РМ	GW	N	Y	Х					9		
2	OW40D-4	20-May-21	РМ	GW	N	Y	Х					9		
3	OW67-4	20-May-21	РМ	GW	N	Υ	Х	1 -				9		
4	OW68-5	20-May-21	РМ	GW	N	Υ	Х					9		
5	OW69-5	20-May-21	РМ	GW	N	Υ	Х					9		
6	OW70B-5	20-May-21	РМ	GW	N	Υ	Х					9		
7	OW73-6	21-May-21	AM	GW	N	Υ	Х					9		
8	OW79-5	21-May-21	АМ	GW	N	Υ	Х					9		
9	OW80-3	20-May-21	РМ	GW	N	Υ	Х					9		
10	OW81-5	20-May-21	РМ	GW	N	Υ	Х					9		
11	OW72-6	20-May-21	РМ	GW	N	Υ	Х					9		
12													e lab addend	dum for analysis.
	QUISHED BY: (Signature/Pr	rint)	RECE	IVED BY: (Signa	ture	/Prin	t)		Date:	Tim	e:			ratory Use Only
	SGW 21-May-21 - A	M											ure (°C) on ceipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	INVOICE INFORMAT	TION:	REPORT IN	FOR	MAT	ION (if di	ffers fron	n invoice):	P	ROJECT II	NFORMATION:	MAXXAM JOB NUMBER:
Company Nam	e: Waste Management of C	anada Corporation	Company Name:	RW	DI AI	R Inc.	Y		Quotation #	Tarte -		
Contact Name:	Lisa Mertick		Contact Name:	Brei	nt La	ngille			P.O. #:	1012373	3	
Address:	5768 Nauvoo Rd, Watfor	d, ON	Address:	451	0 Rh	odes Driv	e, Unit 53	0	Project #:	2101781	-1000	CHAIN OF CUSTODY #:
	N0M 2S0			Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-G	WCM-MAY	
Phone: 519-8		849-5811	Phone: 519-823	1000000				-823-1316	Location:	Twin Cre	eks	TCEC-GWCM-MAY
Email: <u>Imer</u>	tick@wm.com		Email: Brent.L	ang	ille@	<u> RWDI</u>	.com		Sampled By:	SGW		
	REGULATO	RY CRITERIA			-	ANALYSI	S REQUE	STED (Plea	se be specific):		OUND TIME (TAT) REQUIRED:
Note: For reg Custody For	ulated drinking water samples n	- please use the Drin	king Water Chain of			CE	핑					IDE ADVANCE NOTICE FOR RUSH PROJECTS
_				Z		GW (INTERFACE	RFA] []			Regular (Stand	
MISA	Reg. 153 Sewer Us		x Other	>	=	믵		M			x 5 to 7	Working Days
_	Table 1 Sanit		ODWS	ir ?	N/Y			\frac{1}{2}			Rush TAT: Ru	
PWQ		specify	Water	5 (S	5	3W ET/				(call Lab for #)	
Прос	Table 3 Region				red	တ္ ဗ	တ	S-C			1 day	2 days 3 days
Reg.	000	Report Criter	ria on C of A ? n	Drinking	Filtered	TCLS	걸	5 7				
		19000000000			Id F	No 22	021	10 A			TIME Requ	ired:
	MUST BE KEPT COOL(< IVERY TO MAXXAM	10 °C) FROM TIM	IE OF SAMPLING	Regulated	Is Field	VLF-2 FER)	ON-WLF-2021 TCLS - GW (INTERFACE AQUIFER)	ON-WLF-202 TCLS - GW (INTERSTADIAL CEMETARY WELL)			A CONTRACTOR OF THE PARTY OF TH	r certain tests such as BOD and Dioxins/Furans our Project Manager for details.
	Sample Identification		Fime Matrix mpled (GW, SW, Soil, etc.)	Regu	Metals	ON-WLF-2021 ⁻ AQUIFER) No \	ON-V AQUI	ON-V (INTE			# of Cont.	DMMENTS / TAT COMMENTS
1	OW19-29	20-May-21	PM GW	N	Y	Х					6	
2	OW39A-26	21-May-21	AM GW	N	Y	Х					6	- 3
3	OW79-26	21-May-21	AM GW	N	Y	Х		1 = 1			6	
4	OW80-27	20-May-21	PM GW	N	Y	Х					6	
5	OW81-27	20-May-21	PM GW	N	Y		Х				9	F*3
6	CEMETERY WELL	21-May-21	AM GW	N	Y			Х			6	
7											See lab a	ddendum for analysis.
8							-					
9												
10												
11												
12												
	NQUISHED BY: (Signature/P	rint)	RECEIVED BY: (Signa	ature	/Prin	t)		Date:	Tim	e:		Laboratory Use Only
	SGW 21-May-21 - A	M									Temperature (°C)	on Condition of Sample on Receipt
į.									13	Receipt	Condition of Sample on Receipt	
							î		1			OK OSIE

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

1	INVOICE INFORMA	TION:	REPORT IN	FOR	MAT	ION (if dif	ffers from	invoice):	Р	ROJECT I	NFORM	ATION:	MAXXAM JOB NUMBER
Company Na	ame: Waste Management of 0	Canada Corporation	Company Name:	RW	DI AI	R Inc.			Quotation #	127-			
Contact Nan	ne: Lisa Mertick		Contact Name:	Bren	nt Lai	ngille			P.O. #:	1012373	3		
Address:	5768 Nauvoo Rd, Watfo	rd, ON	Address:	451	0 Rho	odes Drive	e, Unit 530)	Project #:	2101781	-1000		CHAIN OF CUSTODY # :
	N0M 2S0			Win	dsor,	ON, N8W	V 5K5		Project Name:	TCEC-G	WCM-N	ИАҮ	
		-849-5811	Phone: 519-823-	1000000				823-1316	Location:	Twin Cre	eks		TCEC-GWCM-MAY
Email: Im	ertick@wm.com		Email: Brent.L	ang	ille@	RWDI.	.com		Sampled By:	SGW			
	REGULATO	RY CRITERIA				ANALYSI	S REQUE	STED (Plea	se be specific):		TURNAROUNI	D TIME (TAT) REQUIRED:
Custody Fe	SA Reg. 153 Sewer U	lse [itary m	x Other ODWS specify	Drinking Water ? (Y / N)	Itered ? (Y / N)	rcls - GW L SILT & SAND)					Regu Rush		confirmation # (call Lab for #) 2 days 3 days
SAMPLE	S MUST BE KEPT COOL (<		ia on C of A ? n		Metals Field Filtered	ON-WLF-2021 TC (INTERSTADIAL 9						TIME Required:	ain tests such as BOD and Dioxins/Furans
	ELIVERY TO MAXXAM		IL OI OAIIII EIIIO	late	SF	/LF :RS				110			oject Manager for details.
	Sample Identification		ime Matrix mpled (GW, SW, Soil, etc.)	Regulated	Metal	ON-W					# of Cont.	COMM	IENTS / TAT COMMENTS
1	OW40A-7	20-May-21	PM GW	N	Y	Х					9	GV	V DUP 4 COLLECTED
2	OW79-7	21-May-21	AM GW	N	Υ	Х					9		
3	OW80-6	20-May-21	PM GW	N	Υ	Х					9		
4	OW81-7	20-May-21	PM GW	N	Υ	Х					9	1	
5	GWDUP4	20-May-21	PM GW	N	Υ	Х					9		
6													
7													
8		+ +											
9									-				
10													TO STATE OF
												See lab adden	dum for analysis.
12													
RELINQUISHED BY: (Signature/Print) RECEIVED BY: (Signature/Print)						t)		Date:	Tim	e:		Labo	oratory Use Only
	SGW 21-May-21 - /									Temp	perature (°C) on Receipt	Condition of Sample on Receipt	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

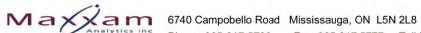
May		mpobello Road I					V. D.									CHAIN	OF CUSTODY RECO	RD
•			Fax: 905-8	817-5777 Toll										- O - U		47.01	Page <u>1</u> of	1
	INVOICE INFORMATION			REPORT IN	turning.			tters 1	from I	nvoice	e):		ROJ	ECTI	NFORIV	IATION:	MAXXAM JOB NU	MBEK:
Company Name Contact Name:	 Waste Management of C Lisa Mertick 	Sanada Corporatio	on	Company Name: Contact Name:	-		naille					Quotation # P.O. #:	10	12373	3			
Address:	5768 Nauvoo Rd, Watfo	rd. ON		Address:		2000000	odes Drive	e. Uni	t 530			Project #:	-		-1000		CHAIN OF CUSTO	DY # :
	NOM 2S0			,	-		ON, N8V					Project Name:	-		eks SV	/		
Phone: 519-8		849-5811		Phone: 519-823	-				519-8	23-131	16	Location:		in Cre			TCEC-SWCM	- ILIN
	tick@wm.com			Email: BJL@I								Sampled By:	sc		2000		TI TOLO OVI ONI	0014
	REGULATO	RY CRITERIA			Г		ANALYSI	S RE	QUES	TED (Pleas	se be specific	;):	0.5		TURNAROUNI	TIME (TAT) REQUIRED):
Custody Forn	3.4.34				(N)		ONO									ar (Standard		RUSH
MISA X PWQ	Table 3 Region_	tary m Report C		specify	Drinking Water ? (Y/	Metals Field Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY			-					D	1 day ATE Required:		S -
	MUST BE KEPT COOL(< IVERY TO MAXXAM	10 °C) FROM	TIME OF	SAMPLING	lated	s Fie	N-WL ETS								11.100.000.000.000		ain tests such as BOD and Dioxins roject Manager for details.	Furans
	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Meta	ZL-O ZL-O								# of Cont.	COMM	ENTS / TAT COMMENTS	3
1	SP3	3-Jun-21	PM	sw	N	N	Х							113	14			
2	SP4	3-Jun-21	PM	SW	N	N	Х								14	SPDUP COLL	ECTED	- 1
3	SPDUP	3-Jun-21	PM	SW	N	N	Х	7					91		14			-
4																		
5																		
6																		-
7		16							1-4	- (1 - 4				
8													1.			7 7		
9																		
10																		- 1
11								7.1					1	1-3		All samples for	r Hg field filtered @ 45um	
12												2 4 2					dum for lab group coding	
	NQUISHED BY: (Signature/F	Print)	RECE	IVED BY: (Signa	ture	/Prin	t)		D	ate:		Tim	ie:				oratory Use Only	
	SGW PM														Temp	perature (°C) on Receipt	Condition of Sample on Rec	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

May	A lust in-			a, ON L5N 2L8 317-5777 Toll	Free:	(800) 563-626	6								Page 1 of 1
	INVOICE INFORMAT	TION:		REPORT IN	IFOR	MAT	ION (if di	ffers f	om inv	/oice):		PROJE	CT II	NFORM	ATION:	MAXXAM JOB NUMBER
Company Name: Contact Name: Address:	Waste Management of C Lisa Mertick 5768 Nauvoo Rd, Watfor N0M 2S0		on	Company Name: Contact Name: Address:	Bre 451	nt Lai 0 Rho	R Inc. ngille odes Drive ON, N8V		530		Quotation # P.O. #: Project #: Project Name	210	23733 1781- n Cre			CHAIN OF CUSTODY#
Phone: 519-84 Email: Imerti	9-5810 Fax: 519- ck@wm.com	849-5811		Phone: 519-823 Email: BJL@					19-823 /Dl.co		Location: Sampled By:		n Cree W	eks		TCEC-SWCM-JUN
Note: For regu Custody Form MISA X PWQC	Reg. 153 Sewer Use Table 1 Sani Table 2 Store Table 3 Region	se tary n	Ot		Drinking Water ? (Y / N)	Metals Field Filtered ? (Y / N)	- SW QUARTERLY	SREG	UESTI	ED (PI	ease be specifi	c):		Regul Rush	ar (Standard x 5 to 7 Wo TAT: Rush 0	rking Days Confirmation # (call Lab for #) 2 days 3 days
UNTIL DELI	IUST BE KEPT COOL(< /ERY TO MAXXAM Sample Identification	10000		SAMPLING Matrix	Regulated Dr	Metals Field	ZJ-ON-WLF-2021 TCLS (COMPLIANCE POINT)		+1,1-1					Please no are > 5 da # of Cont.	ote that TAT for certa ays - contact your Pr	ain tests such as BOD and Dioxins/Furans roject Manager for details. MENTS / TAT COMMENTS
2	SS1 SSDUP1	3-Jun-21 3-Jun-21	AM AM	sw sw	N		X		-					14	SSDUP1 colle	cted
3	NAME OF THE PROPERTY OF THE PR				7.0											
5 6																
8								H				# 0	= 9			
9																
10													H			
11 12												1 1	2			r Hg field filtered @ 45um
	IQUISHED BY: (Signature/P SGW PM	rint)	RECE	 IVED BY: (Sign	ature	Prin	t)		Dat	e:	Tir	ne:		Temp		ndum for lab group coding oratory Use Only Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Ma	//	mpobello Road M					V. (2-)									CHAIN	OF CUSTODY RECORD	
	Phone: 9 INVOICE INFORMAT		Fax: 905-8	317-5777 Toll F					from	nyoid	2011	l p	DO IE	CTI	NFORM <i>A</i>	ATION:	Page _ 1 of _ 1 MAXXAM JOB NUMBER	
Company Na Contact Nan Address:	waste Management of C	anada Corporation	n	Company Name: Contact Name: Address:	RW Brei 451	DI AI nt Lai 0 Rho		e, Uni	it 530	IIVOIC	.е).	Quotation # P.O. #: Project #: Project Name:	101:	2373: 1781:		ATION.	CHAIN OF CUSTODY#	
	0-849-5810 Fax: 519-6 ertick@wm.com	849-5811		Phone: 519-823- Email: BJL@F	1311	1 x 26	18	Fax:	519-8		16	Location: Sampled By:		n Cre			TCEC-SWCM-JUN	72.5
	REGULATO	RY CRITERIA					ANALYSI	S RE	QUES	TED	(Plea	se be specific):	, , i			D TIME (TAT) REQUIRED: ADVANCE NOTICE FOR RUSH	Ξ
Custody Fe	Reg. 153 Sewer Us Table 1 Sanit Table 2 Storr Table 3 Region	ary n	Ot	specify	Drinking Water ? (Y/N)	Filtered ? (Y / N)	-2021 TCLS - SW (POPLAR) Y								Rush 1	TAT: Rush C 1 day TE Required:	rking Days	
	S MUST BE KEPT COOL (< ELIVERY TO MAXXAM Sample Identification	Date	Time	SAMPLING Matrix (GW, SW, Soil, etc.)	Regulated [Metals Field Filtered	ZP-ON-WLF-2021 QUARTERLY								A CONTRACTOR DIVINION	ys - contact your Pr	ain tests such as BOD and Dioxins/Furans roject Manager for details.	
1	SS14B	3-Jun-21	AM	SW	N	N	Х			160						PSSWDUP co	llected	
2	PSSWDUP	3-Jun-21	AM	SW	N	N	Х								8			_
4											+							
5											-							-
6											Ħ							_
7										: 10				1				_
8									1									
9																		
10																		
11																		
12															,		dum for lab group coding	
RE	ELINQUISHED BY: (Signature/P SGW PM	rint)	RECE	IVED BY: (Signa	iture	/Prin	t)		D	ate:		Tim	e:			Labo erature (°C) on Receipt	Condition of Sample on Receipt	2


^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

RECORD #: 0407

CHAIN OF CUSTODY

Client Information Company Name: Address: Phone: Fax: Email: Report To:			Sam Affilia Sam Com	pler In pled By ation: ple Sto ments: ple Typ ple Typ	y: orage:	Soil Soil	WOI poil r so Sedim : □ Ef	liner S/lin mple ent diffluent	Sur	Somple dien Che	es emic	cal		 Other			
Sample Name	Pollutech # (for company use only)	Sample Method (Grab/ Composite)	Trout LC50	Trout Single Concentration	Daphnia LC50	Daphnia Single Concentration	Fathead 7 day	Ceriodaphnia sistema S	Trout Single Concentration pH Stabilization		Hyalella azteca	Chironomus dilitus	Pseudokirchneriella	Lemna minor			
55 l 5 p 3 5 p 4		06/03/21 06/03/21 06/03/21		Grab Grab		X X		XXX									
Custody Relinquish Date/Time: Received by (sign): Date/Time: Affiliation:	06/04/2		Date/ Rece	ody Rel Time: ived by Time: tion:		ed by (s	sign):										

	Phone: 908	5-817-5700	Fax: 905-8	317-5777 Toll	Free:	(800) 563-626	66						Page 1 of	1
	INVOICE INFORMATION	ON:		REPORT IN	IFOR	MAT	ION (if di	ffers fron	n invoice):	F	ROJECT	INFORM	MATION:	MAXXAM JOB NUME	3ER:
Company Name:	Waste Management of Car	nada Corporati	on	Company Name:	RW	DI AI	R Inc.			Quotation #	10000				
Contact Name:	Lisa Mertick			Cortact Name:	Bre	nt Lai	ngille			P.O. #:	101237	733			
Address:	5768 Nauvoo Rd, Watford,	ON		Address:	451	0 Rho	odes Drive	e, Unit 53	0	Project #:	210178	31-1000		CHAIN OF CUSTOD	Y#:
	N0M 2S0				Win	dsor,	ON, N8V	V 5K5		Project Name	TCEC-	GWCM-	IUN	100	
Phone: 519-849-		9-5811		Phone: 519-823	1000000				-823-1316	Location:	Twin C	reeks	1	TCEC-GWCM-J	UN
Email: <u>Imerticl</u>	<u>k@wm.com</u>			Email: Brent.L	ang	ille@	DRWDI.	.com		Sampled By:	SGW				
	REGULATOR	Y CRITERIA					ANALYSI	S REQUE	STED (PI	ease be specific	;):		TURNAROUND	TIME (TAT) REQUIRED:	
	ted drinking water samples - _l	please use the	Drinking W	ater Chain of								PLE		ADVANCE NOTICE FOR RU	JSH
Custody Form					5		1-1		. Y			Regu	lar (Standard)	PROJECTS TAT:	
MISA	Reg. 153 Sewer Use		x Ot	her	X / N		_						x 5 to 7 Wor		
_	Table 1 Sanital	rv.	ODW		16	Z	S S					Ruch	TAT: Rush C		
PWQO	Table 2 Storm		OBV	specify		>	× S S A					Rusii		(call Lab for #)	-
	Table 3 Region			-,,	Water	C F	_ ⊢						1 day	2 days 3 days	
Reg. 558					ing	ere	SIC					I			
_		Report C	Criteria on C	of A? n	İ	Fif	1 F						TIME Required:		
CAMPLES MI	IST BE KEPT COOL (< 1	0 °C) EDOM	TIME OF	CAMPLING	ē	pla	202 AD								
	ERY TO MAXXAM	U C) FROM	TIME OF	SAMPLING	late	S Fi	LF.: RST				1			in tests such as BOD and Dioxins/Fu oject Manager for details.	rans
	ample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Metals Field Filtered ? (Y/N)	ON-WLF-2021 TCLS - GW (INTERSTADIAL SILT & SAND)					# of Cont.	COMM	ENTS / TAT COMMENTS	
1	OW81-7	9-Jun-21	AM	GW	N	Υ	Х					9			-
2															- 1
3												1			
4													1		
5															
6															
7															
8							-								
9	1														
10															- 1
11													See lab adden	dum for analysis.	
12															
RELING	UISHED BY: (Signature/Pri	nt)	RECE	IVED BY: (Signa	ature	/Prin	t)	•	Date:	Tin	ie:	4	Labo	ratory Use Only	
	SGW 9-Jun-21 - PM							1				Tem	perature (°C) on	Condition of Sample on Receip	ot
													Receipt	Condition of Gample on Receip	7

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

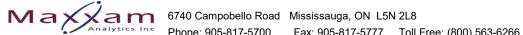
	INVOICE INFORMA	05-817-5700		817-5777 Toll					from i	nvoice	Λ.	Г р	BO IEC	TINEO	RMATION:		1 of 1 JOB NUMBER:
Company Name:	Waste Management of C		on	REPORT IN Company Name:				ners	rom i	nvoice	e):	Quotation #	ROJEC	I INFO	RIMATION:	WAXXAW	JOB NUMBER:
Contact Name:	Lisa Mertick			Contact Name:	-		ngille					P.O. #:	10123	733			
Address:	5768 Nauvoo Rd, Watfor	d, ON		Address:	451	0 Rho	odes Driv	e, Uni	t 530			Project #:	21017	81-100	0	CHAIN O	F CUSTODY #:
	N0M 2S0				Wir	dsor,	ON, N8V	V 5K5				Project Name:	Twin	Creeks	sw		
Phone: 519-849)-5810 Fax: 519-	849-5811	9	Phone: 519-823						23-131	6	Location:	Twin	Creeks		TCEC-	SWCM-JUN
Email: Imertic	ck@wm.com			Email: BJL@	RWI	OI.co	om, JCL	.@R\	WDI.	com		Sampled By:	AUV				
	REGULATO	RY CRITERIA					ANALYSI	S RE	QUES	TED (Pleas	e be specific):		TURNAROU	ND TIME (TAT) RE	QUIRED:
Custody Form MISA X PWQO Reg. 556	Reg. 153 Sewer U Table 1 Sani Table 2 Storn Table 3 Region 8 UST BE KEPT COOL (<	se tary n Report 0	Ot Criteria on C	specify C of A ? n	Regulated Drinking Water ? (Y / N)	Metals Field Filtered?(Y/N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY							Rus	gular (Standar x 5 to 7 W sh TAT: Rush 1 day DATE Require TIME Require se note that TAT for co	/orking Days a Confirmation #	3 days
S	ample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regi	Meta	ZL-C OUT		J-1,					# Co	CON	IMENTS / TAT CO	MMENTS
1	SP2	26-Jun-21	AM	SW	N	N	Х							14	4		
2										1007							
3										:607							_
4							-								12.2		
5																	
6										-	1						
7																	
8											1						
9											1			7			
10										107					1 = =		
11										- 6				111	All samples	for Hg field filtered	@ 45um
12																endum for lab grou	
	QUISHED BY: (Signature/F		DECE	IVED BY: (Sign	-	/Dain	41	-	_	ate:	_	Tim		_		boratory Use Only	_

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

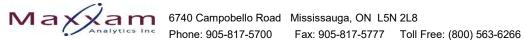
Chain of Custody

Client Information	DI. In T				r Information	A	L L	11 1.1			
Company Name:	RWDI	2 11	- Winds	Sampled		E	Anthony ZWOII	vendor	reyden		
Address:	4510 Rhodes Dr 18 519-823-1311	, solte	550, or	Affilation					*		
Phone:	1 519-825-1511				Storage:	X	ail/Lix	15		1.	
Fax:	1-0	0.1.1.	-11	Commer	nts:		- pails/1	ind per	sample	exatio	_
	econdicon defe	y. activator	war.com	Sample	Type: Soil	Sedim	ent 🗶 Wate	er U Chem	nical Uther	•	
Report to:	Brent Langille			Sample	Type Descrip	otion: 🗆 E	iffluent XS	Surface Wa	iter Other:		
	Sample Identification		× 1000				Analysis R	equested			
			- Constitution	(
		Collec	cted	ot Concentration	mic Concidation						
		Date		L 3	5 3						
	2. 11	(mm/dd/yy)		33							
	Pollutech #		Time	Trough Ste	of ph				1 1		
Sample Name	(company use only)			Single	Capl						
382	, , , , , , , , , , , , , , , , , , , ,	06/26/21	AM	X	X				*****		
216		1001									
											<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>

Relinguished by:	.1	1		Relingu	ished by:						
Date/Time:				Date/Ti	me:						
Received by (sign):				Receive	d by (sign):						
Date/Time:				Date/Tir							
Affiliation:				Affiliatio	n:	_					
							4000				
Notes: 6 cals 5amp	le										
-					100000						
- and the second second											


Max	i none. c		Fax: 905-8	317-5777 Toll												Page 1 of	1
	INVOICE INFORMAT			REPORT IN				ffers f	rom ir	voice)	:	P	ROJE	CT INF	ORMATION:	MAXXAM JOB NUM	BER:
Company Name:	Waste Management of C	anada Corporation	on	Company Name:	Approximation of the last of t							Quotation #	-				
Contact Name:	Lisa Mertick			Contact Name:	-	nt La						P.O. #:	1012				
Address:	5768 Nauvoo Rd, Watfor	d, ON		Address:	-		odes Driv		530			Project #:		781-1	81.3VC	CHAIN OF CUSTOD	Y#:
	NOM 2S0				-		ON, N8V					Project Name:	_		ks SW		
Phone: 519-849		349-5811		Phone: 519-823						3-1316		Location:		Creek	(S	TCLF-SWCM-J	UL
Email: <u>Imertic</u>	k@wm.com			Email: BJL@	RWI	DI.CC	om, JCL	<u>(@)</u> R\	VDI.C	<u>om</u>		Sampled By:	EVH				
	REGULATO	RY CRITERIA					ANALYSI	S REC	QUEST	ED (P	lease	e be specific):		TURNAROU	ID TIME (TAT) REQUIRED:	
Custody Form MISA X PWQO Reg. 558	Reg. 153 Sewer Us Table 1 Sanit Table 2 Storr Table 3 Region JST BE KEPT COOL (ERY TO MAXXAM	se ary n Report C	Ot	her specify	Regulated Drinking Water ? (Y / N)	Metals Field Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY							R	Regular (Standar x 5 to 7 W Rush TAT: Rush 1 day DATE Required TIME Required	Confirmation # (call Lab for #) 2 days 3 days 19-Jul-21	
	ample Identification	Date	Time	Matrix	egul	etals	6-1 1-1		Ш						# of COM	MENTS / TAT COMMENTS	
1	SP2	Sampled 9-Jul-21	Sampled AM	(GW, SW, Soil, etc.)	N		Χ						+	- (Cont.		
1	01 2	9-341-21	AW	SW	- 14	-	Α			+			\vdash				-
2								-					\vdash				-
3													\vdash				
4											, I t			123			
5																	
6														H			
7											4.			144			
8																	
9																	
10																	= 7
11															All samples f	or Hg field filtered @ 45um	
12												1.8 -	1				
	QUISHED BY: (Signature/P	rint)	RECE	I IVED BY: (Sign	ature	/Prin	t)		Da	te:		Tim	e:				
	QUISHED BY: (Signature/P JCL - 9-Jul-21 - PM	rint)	RECE	 IVED BY: (Sign	ature	e/Prin	t)		Da	te:		Tim	e:			oratory Use Only Condition of Sample on Rec	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS


Chain of Custody

Client Information Company Name Address Phone Fax Email Report to	RWDI 4570 Rhodes 519-823-1311 Brent-Langillearnali Brent Langille ample Identificat	com Jesty, del	30, wholso, unline	Samp Samp Affilati Sampl	on e Storaç	matio je	Soil	PROCESS PARTITION AND AND AND AND AND AND AND AND AND AN	Hoop // her. Sedimo Effluer	it S	Surfac	re Wate	mple /	Cal Other	portal de constitución de cons
zen er ommeren ern om en		Collec	cted	namen and the construction of the construction	Lother management and an article and an article and article article and article article and article article and article article and article article article article and article ar	Avenue terreturi ne une ent	ocité beroadraministres recuteire	degramma in the contract of the state of the	na gazartu. Sentre ketara eranta (sekko especiale)	CONTROL NUMBER OF THE	CONTRACTOR OF THE PROPERTY OF THE PARTY OF T	HANKOIDELATEUN KON BILISADOROBIONACIO	ouganista (grandita et distrib	togottemostitemosseczenicanie	AND AND THE PARTY AND
Sample Name	Pollutech # (company use only)	Date (mm/dd/yy)	Time		single concentished		Daphnia shile concentration	To the state of th	on.	The state of the s					
592	and a second control of the second control o	07/09/21	AM	L	M	Ľ	X	LJ	["]				La L	[]	[]
неродите с неговери, и постине до <mark>ж</mark> е продорженую с по неговено удостворались	т не при	entermonent scale entratario entratario de esta entratario en el 1000 de esta entratario en el 1000 de esta en	iga - Johann Parasi kulik kuja (J. 1996) e Majasanan jeca	Constant Constant		[]			(E-1	L'	Para Taranta	EI	CI	L.
			and the second s					П		E1	(2)		Ш	1.1	L
an entre of the en		i i de se en	rentocologico no a most stancemento a		C. J.	E-T	CI				Call	[]	Land Control of Contro	[1]	
tti (mit ittimuut) tele-e, mite ameritimeeenegaeekerisee	The character of the ch	All the contract of the contra	omno antico-moncoli culto i e i e a socializza e i especializza	Contraction of the Contraction o	[]								E.J.	[]	
one control to the control period of the con	e en la company de la company	all descriptions and accompany and the strategy of the strateg	onegati kon pama tina - on o conscipio ello mono es			E.J	D	. []				L1	LI	£J	D
The second of the second secon	entre accumungation de como a cinculpar en union tos control control parameter accumunante accumung	No west-consequences and constitution of the c	eromanti Aldona e e borro in opiska standa kalanda												
Relinquished by Date/Time Received by (sign). Date/Time Affiliation: Notes. Graf. Sam	Jeff cleiand 9-Jul-21/	AM		Date/	ed by (s Fime:	10						and the control of th			

	Phone. 90)3-617-3700 F	гах. 905-с	017-0777 10111	ree.	(000)) 503-020	0								Page I o	<u> </u>
	INVOICE INFORMATI	ON:		REPORT IN	FOR	MATI	ON (if di	fers from	invoice):	:	PR	OJECT I	NFORM	ATION:		MAXXAM JOB N	IUMBER:
Compa	ny Name: Waste Management of Ca	anada Corporatior	n	Company Name:							Quotation #						
Contac	t Name: Lisa Mertick			Contact Name:	Brer	nt Lar	ngille			F	P.O. #:	1012373	3				
Addres	s: 5768 Nauvoo Rd, Watford	I, ON		Address:	4510) Rhc	des Drive	e, Unit 530)	F	Project #:	2101781	-1000			CHAIN OF CUS	TODY #:
	N0M 2S0				Win	dsor,	ON, N8V	/ 5K5		F	Project Name:	TCEC-LC	CHCM-N	MAY			
	519-849-5810 Fax: 519-8	49-5811		Phone: 519-823-					823-1316	L	Location:	Twin Cre	eks			TCEC-LCHC	M-MAY
Email:	Imertick@wm.com			Email: Brent.L	.ang	ille@	<u>)RWDI.</u>	<u>com</u>			Sampled By:	AUV					
	REGULATOR	Y CRITERIA					ANALYSI	S REQUE	STED (P	lease	be specific)			TURNAROUNE) TIME	(TAT) REQUIRI	ED:
	For regulated drinking water samples - dy Form	please use the D	Drinking W	ater Chain of										SE PROVIDE		NCE NOTICE FO	
	MISA Reg. 153 Sewer Us Table 1 Sanita PWQO Table 2 Storm Table 3 Region: Reg. 558	ary I	_	pecific specify	inking Water ? (Y / N)	Field Filtered?(Y/N)	ON-WLF-2021 TCLS - LEACHATE (PS HOLDING) MONTHLY						Rush	ar (Standard) x 5 to 7 Wor TAT: Rush C	TAT: rking Da confirmation (call Lat	ays ation#	ays
SAM	PLES MUST BE KEPT COOL (<	10 °C) FROM 1	TIME OF	SAMPLING	ed Dr	-ield	:-202									such as BOD and Diox	ins/Furans
	L DELIVERY TO MAXXAM				ulat	IIS	MLF DIN							ays - contact your Pro	oject Mar	nager for details.	
	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regul	Metals	ON-\ HOL						# of Cont.	СОММ	ENTS /	/ TAT COMMEN	TS
1	PS Holding Tank	19-May-21	PM	LCH	N	N	Х						9				
2														See lab adden	dum fo	or analysis.	
3																	
4																	
5																	
6																	
7																	
8																	
9																	
10																	
11																	
12																	
	RELINQUISHED BY: (Signature/Pr	int)	RECE	IVED BY: (Signa	ture	/Prin	t)		Date:		Time			Labo	oratory	Use Only	
	SGW 20-May-21 - A	M											Temp	erature (°C) on	Condit	tion of Sample on F	Peceint
														Receipt	Condi		
													1				CIE

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

			1 110110. 000	7 0 11 01 00				(000	, 000 020	•								1 ago _ 1	
		INVOICE	INFORMATIC	N:		REPORT IN	IFOR	MAT	ION (if di	ffers fron	n invoice):	:	P	ROJECT I	NFORM	ATION:		MAXXAM JOB NUM	BER:
Com	pany Name:	Waste Manag	gement of Car	nada Corporati	on	Company Name:	RW	DI AI	R Inc.				Quotation #						
Cont	act Name:	Lisa Mertick				Contact Name:	Brei	nt Lar	ngille			F	P.O. #:	1012373	3		!!		
Addr	ess:	5768 Nauvoo	Rd, Watford,	ON		Address:	451	0 Rho	odes Drive	e, Unit 530)	F	Project #:	2101781	-1000		[[CHAIN OF CUSTOD	Υ#:
		N0M 2S0					Win	dsor,	ON, N8V	/ 5K5		F	Project Name:	TCEC-LO	CHCM-J	UN			
Phon	ne: 519-849-5	810	Fax: 519-84	9-5811		Phone: 519-823					-823-1316	L	_ocation:	Twin Cre	eks			TCEC-LCHCM-J	JUN
Emai	ii: <u>Imertick</u>	@wm.com				Email: Brent.L	ang	ille@	RWDI.	.com			Sampled By:	SGW					
		R	EGULATORY	CRITERIA			П		ΔΝΔΙ Υςι	S REQUE	STED (P	معدما	be specific	1.		TURNAROUNI	о тімі	E (TAT) REQUIRED:	
	e: For regulat tody Form	ed drinking wat			Drinking W	/ater Chain of	_								PLEA	SE PROVIDE	ADVA PROJ	NCE NOTICE FOR RI	JSH
	MISA	Reg. 153	Sewer Use		x Otl		?(Y/N)	(N	LEACHATE (PS							ar (Standard) x 5 to 7 Wor	rking [Days	
	PWQO	Table 1 Table 2 Table 3	Sanitar Storm Region:	У	site s	specific specify	Nater?	?(Y/N)	- LEACH						Rush	TAT: Rush C	(call L	nation # ab for #) 2 days 3 days	_
	Reg. 558	Table 3	region	Report (Criteria on (C of A ? n	rinking \	Metals Field Filtered	ON-WLF-2021 TCLS - HOLDING) MONTHLY							ATE Required:	_	Z days 5 days	
		ST BE KEPT RY TO MAXX		0°C)FROM	TIME OF	SAMPLING	lated D	ls Field	VLF-202 DING) N							ote that TAT for certa ays - contact your Pr		such as BOD and Dioxins/Fu anager for details.	ırans
	Sa	mple Identificat	ion	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulat	Meta	NOUI						# of Cont.	COMM	IENTS	7 TAT COMMENTS	
1	F	S Holding Tanl	k	23-Jun-21	PM	LCH	N	N	X						9				
2																See lab adden	dum f	or analysis.	
3																		,	
4														++-					
5							Т												
6																			
7																			
8																			
9																			
10																			
11																			
12														1					
	RELINQ	JISHED BY: (S	Signature/Prir	nt)	RECE	IVED BY: (Signa	ature	/Prin	t)		Date:		Tim	e:		Labo	oratory	/ Use Only	
		SGW 24-J	un-21 - AM												Temp	erature (°C) on Receipt	Conc	lition of Sample on Receip	ot
															ł	500/pt		MOK MSIE	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Q3: Chain of Custodies

	Annivates tos	mpobello Road M 905-817-5700 I		317-5777 Toll I	ree:	(800) 563-626	66									Page 1 of	1_
	INVOICE INFORMA	TION:		REPORT IN	FOR	MAT	ION (if di	iffers	from i	nvoice):	P	ROJEC	TINFO	RMATION	۷:	MAXXAM JOB N	UMBER:
Company Name: Contact Name: Address:	Waste Management of C Lisa Mertick 5768 Nauvoo Rd, Watfo		n	Company Name: Contact Name: Address:	Brei	nt Lai	R Inc. ngille odes Driv	e Uni	t 530			Quotation # P.O. #: Project #:	10123	3733 781-100	0		CHAIN OF CUST	ODY#:
Phone: 519-849	NOM 2S0 9-5810 Fax: 519-	849-5811		Phone: 519-823-	Win	dsor, 1 x 26	ON, N8V 318	N 5K5 Fax:	519-82	23-131	6	Project Name: Location:	Twin	Creeks Creeks			TCLF-SWCN	
Email: Imertic	ck@wm.com			Email: BJL@F	RWI	OI.co	om, JCL	_@R\	NDI.	com		Sampled By:	EVH					20.0
	REGULATO	RY CRITERIA					ANALYSI	IS RE	QUES	TED (I	Pleas	e be specific):		TURN	AROUN	D TIME (TAT) REQUIRE	D:
Custody Form MISA X PWQO Reg. 55	Reg. 153 Sewer U Table 1 San Table 2 Stor Table 3 Region	itary m	Ot	specify	Drinking Water ? (Y / N)	d Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY								sh TAT:	tandard to 7 Wo Rush C	rking Days Confirmation # (call Lab for #) 2 days 3 day 19-Jul-21	ys
UNTIL DELIV	UST BE KEPT COOL(< ZERY TO MAXXAM Sample Identification	Date	TIME OF Time Sampled	SAMPLING Matrix (GW, SW, Soil, etc.)	Regulated I	Metals Field	ZL-ON-WLF DUTLETS)					10-1			of	ntact your Pr	ain tests such as BOD and Dioxir roject Manager for details. IENTS / TAT COMMENT	
1	SP1	9-Jul-21	AM	SW SW	N		X									JP collec	ted	
2	SP3	9-Jul-21	РМ	sw	N		Х							1	5			
3	SP4	9-Jul-21	РМ	SW	N	N	Χ							1	5			
4	SPDUP	9-Jul-21	AM	SW	N	N	Х			Ţ.				1	5			
5		+ +							+	+				-				
7		+ +							+	4	+			-				_
		-				-			-	+	+			-				_
8									-	+-	-			-				
9								-	+	+			+	-				
10								-	-				\vdash	-	ULST.	The Car	70. Tana 1 (2). Tana 1	
12								+-	-			10.0	-				r Hg field filtered @ 45un	
	QUISHED BY: (Signature/F	Print)	RECE	IVED BY: (Signa	ture	/Prin	t)	\vdash	D:	ate:		Tim	P.	-	See la		ndum for lab group coding oratory Use Only	}
	JCL - 9-Jul-21 - PM			2 , o ig in			7							Т	emperature Receip	(°C) on	Condition of Sample on Re	eceipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Max	Phone: 9	05-817-5700 I	Fax: 905-8	317-5777 Toll I	Free:	(800) 563-626	66								Page <u>1</u> of <u>1</u>
	INVOICE INFORMAT	ION:		REPORT IN	FOR	MAT	ION (if di	ffers f	rom ir	voice)):	P	ROJEC	TINFORM	MATION:	MAXXAM JOB NUMBER:
Company Name: Contact Name:	Waste Management of C	anada Corporation	n	Company Name: Contact Name:	-		R Inc. ngille					Quotation # P.O. #:	10123	733		
Address:	5768 Nauvoo Rd, Watfor	d, ON		Address:	451	0 Rho	odes Drive	e, Unit	530			Project #:	21017	81-1000		CHAIN OF CUSTODY #:
	N0M 2S0		1		Win	dsor,	ON, N8V	V 5K5				Project Name:	Twin C	Creeks SV	٧	
Phone: 519-849-	-5810 Fax: 519-8	849-5811		Phone: 519-823	-131	1 x 26	18	Fax:	519-82	3-1316	3	Location:	Twin C	Creeks		TCLF-SWCM-JUL
Email: Imertic	k@wm.com			Email: BJL@F	RWI	OI.co	m, JCL	@RV	NDI.c	<u>om</u>		Sampled By:	EVH			
	REGULATO	RY CRITERIA	1 4 1-				ANALYSI	S REC	QUEST	TED (P	leas	e be specific):		TURNAROUN	D TIME (TAT) REQUIRED:
Custody Form MISA X PWQO Reg. 558		tary n Report Cr		specify	Drinking Water ? (Y / N)	Metals Field Filtered? (Y/N)	ZJ-ON-WLF-2021 TCLS - SW (COMPLIANCE POINT) QUARTERLY							Rush	TAT: Rush (1 day DATE Required:	crking Days Confirmation # (call Lab for #) 2 days 3 days 19-Jul-21
UNTIL DELIVE	JST BE KEPT COOL (< ERY TO MAXXAM ample Identification	Date	Time	SAMPLING Matrix	Regulated	etals Fiel	-ON-WLF OMPLIAN								days - contact your P	ain tests such as BOD and Dioxins/Furans roject Manager for details. MENTS / TAT COMMENTS
4			Sampled	(GW, SW, Soil, etc.)									-	Cont.	SSDUP1 colle	
1	SS1	9-Jul-21	AM	SW	N		X	-						15	GODOI I COME	ocied
2	SSDUP1	9-Jul-21	AM	SW	N	N	Х							15		
3																
4																
5																
6															(2)	
7									1							
8																
9																
10																
11															All samples fo	r Hg field filtered @ 45um
12																ndum for lab group coding
	QUISHED BY: (Signature/P	rint)	RECE	IVED BY: (Signa	ature	/Prin	t)		Da	te:		Tim	e:			oratory Use Only
	JCL - 9-Jul-21 - PM													Tem	perature (°C) on Receipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

			05-817-5700		817-5777 Toll		1000	,	-									Page <u>1</u> of <u>1</u>
		INVOICE INFORMAT	ΓΙΟΝ:		REPORT IN	FOR	MAT	ION (if di	ffers t	from i	nvoice	e):	Р	ROJEC	T INFO	RMATION:		MAXXAM JOB NUMBER:
	pany Name:	Waste Management of C	Canada Corporati	on	Company Name:	-							Quotation #					
	tact Name:	Lisa Mertick			Contact Name:	_	-	ngille				_	P.O. #:	10123				
Addr	ress:	5768 Nauvoo Rd, Watfor	rd, ON		Address:	-		odes Driv					Project #:		81-100			CHAIN OF CUSTODY #:
	540.040	N0M 2S0	0.40 5044		540,000	_		ON, N8V			00.404		Project Name:	_	Creeks	SW		
	ne: 519-849-		849-5811		Phone: 519-823 Email: BJL@I	1000000					23-131	6	Location:		Creeks			TCLF-SWCM-JUL
Ema	ii: <u>imeruck</u>	(@wm.com			Email: BJL(W)	KVVI	JI.CC	om, JCL	(WK)	וטא.	COITI		Sampled By:	EVH			- i	
		REGULATO	RY CRITERIA					ANALYSI	SRE	QUES	TED (Pleas	se be specific):		TURNARC	OUND TIM	ME (TAT) REQUIRED:
Cus [[SAI	MISA X PWQO Reg. 558 MPLES MU TIL DELIVE	Reg. 153 Sewer U Table 1 Sani Table 2 Store Table 3 Region ST BE KEPT COOL (< ERY TO MAXXAM Imple Identification SS14B SS15A	se tary m Report 0	Ot	her specify C of A ? n SAMPLING Matrix (GW, SW, Soil, etc.) SW SW	Z Z Regulated Drinking Water?(Y/N)	N	X X ZP-ON-WLF-2021 TCLS - SW (POPLAR)							Plea are:	gular (Stand x 5 to 7 sh TAT: Ru 1 day DATE Requi TIME Requi se note that TAT for 5 days - contact y of nt. Ru 2 DATE REQUI TIME REQUI CONTACT CONT	PROdard) TA ' Working ush Confii (call ired: ired: or certain tes your Project I	Days rmation # Lab for #) 2 days
3		PSSWDUP	9-Jul-21	PM	SW	N	N	Х		111	4					3		
4																		
5																		
6																		
7					-						:661							
8										116						7.2		
9																		
10																		_
11										1	- 6	1			11			
12																See lab ad	ddendum	for lab group coding
		UISHED BY: (Signature/P			IVED BY: (Sign				_		ate:	-34	Tim				Laborato	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

			905-817-5700		817-5777 Toll		1000	,	•									of1
1		INVOICE INFORMA	ATION:		REPORT IN	IFOR	MAT	ION (if di	ffers fron	n invo	ice):	P	ROJE	CT II	NFORM	ATION:	MAXXAM JO	OB NUMBER:
	any Name:	Waste Management of	Canada Corporati	on	Company Name:	Special Control						Quotation #	101	2070				
	ct Name:	Lisa Mertick			Contact Name:	-		ngille				P.O. #:	_	2373				
Addres	SS:	5768 Nauvoo Rd, Watfo	ord, ON		Address:	-	-	odes Drive		0		Project #:	_		-1000		CHAIN OF C	CUSTODY #:
	E40.040	N0M 2S0	040 5044			-		ON, N8V		000	0.40	Project Name:	_		eks SW			
	: 519-849-		-849-5811		Phone: 519-823 Email: BJL@				Fax: 519			Location:		Cre	eks		TCLF-SV	VCM-JUL
Email:	intertick	(@wm.com			Email: DJL(W)	TVVI	J1.00	JIII, JCL	WKWL	I.COI	1	Sampled By:	EVH	1				
		REGULATO	DRY CRITERIA					ANALYSI	S REQUE	STE	(Plea	ase be specific):	1.1		TURNAROUN	TIME (TAT) REQ	UIRED:
SAM UNTI	MISA PWQO Reg. 558 PLES MU	Reg. 153 Sewer L Table 1 Sar Table 2 Sto Table 3 Region ST BE KEPT COOL (ERY TO MAXXAM Imple Identification SS10	Jse nitary rm Report (Ot	specify C of A ? n SAMPLING Matrix	Z Regulated Drinking Water ? (Y / N)		XH-ON-WLF-2021 TCLS - SW (BKGRND STATION) QUARTERLY							Regul Rush D T	ar (Standard x) 5 to 7 Wo TAT: Rush 0 1 day ATE Required: TME Required: tote that TAT for certal	cking Days Confirmation # (call Lab for #) 2 days 19-Jul-21	3 days
3																		
4													-					
5																		
6										H								
7																		
8																		
9											11.1							
10																		
11											1							
12										Ιď						See lab adden	dum for lab group o	oding
	DEL INIO	UISHED BY: (Signature/	Daim4)	DECE	IVED BY: (Sign	4	/Dain	41		Date:		Tim		_			oratory Use Only	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

		905-817-5700	T GAL OCC	817-5777 Toll					· · · · · ·				DO 15	T IN	IFODM	ATION:	Page 1 of MAXXAM JOB NU	MDED
CN	Waste Management of 0		00	REPORT IN Company Name:				πers	rrom i	nvoice	:):	Quotation #	ROJE	או וכ	NFORM	ATION:	MAXXAM JOB NU	MBEK:
Company Name Contact Name:	Lisa Mertick	Janada Corporati	OII	Company Name:	Approximation of the last of t		ngille					P.O. #:	1012	3733	3			
Address:	5768 Nauvoo Rd, Watfo	rd. ON		Address:	-	-	odes Driv	e. Uni	t 530			Project #:	-	_	1000		CHAIN OF CUSTO	DY # :
	NOM 2SO				-	-	ON, N8V					Project Name:			eks SW			
Phone: 519-84		849-5811		Phone: 519-823	-			1000000	2000	23-131	6	Location:	Twin				TCEC-SWCM	1-Jul
Email: Imert	ck@wm.com			Email: BJL@	RWI	DI.co	om, JCL	@R\	WDI.	com		Sampled By:	SGW	1				, oui
	REGULATO	RY CRITERIA					ANALYSI	S RE	QUES	TED (Pleas	se be specific):	- 1		TURNAROUN	D TIME (TAT) REQUIRED):
Custody Form MISA X PWQQ Reg. 5	Table 3 Region	se tary m Report (Ot	specify	Regulated Drinking Water ? (Y / N)	Metals Field Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY								Regula Rush	ar (Standard x) 5 to 7 Wo TAT: Rush 0 1 day ATE Required: IME Required: te that TAT for cert.	rking Days Confirmation # (call Lab for #) 2 days 3 days 6-Aug-21	
	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regu	Meta	ZL-0 OUTI				Ш				# of Cont.	COMM	MENTS / TAT COMMENTS	3
1	SP2	30-Jul-21	AM	SW	N	N	Х			1607					14			
2										1077								- 7
3									1.4	- 613								
4						4 1					1		1					
5										+	+		+					
6											t							
7											t							
8											+			=				
9									-	-	+			-				
10										-	+		+	-				
11								H			+			-	-			
_											+			18, 1			r Hg field filtered @ 45um	
12				 IVED BY: (Sign					200	ate:		the profit of		100		see lab adder	ndum for lab group coding	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	Maxxam 6740 0	ampobello Road M	ississauga, ON L5N 2	L8 .	34	•	CHAIN OF	CUSTODY RECORD	
	INVOICE INFORM	905-817-5700 F	ax: 905-817-5777 T					Page 1 of 1	1 - 4
	Company Name: Waste Management of	Canada Comoration	REPORT	INFORMATION	(if differs from invoice):	PROJ	ECT INFORMATION:	MAXXAM JOB NUMBER:	
	Lisa Mertick		Company Nam Contact Name:	e: RWDI AIR In		Quotation #		MANAGEM COS NOMBER.	
	Address: 5768 Nauvoo Rd, Watt	ord, ON	Address:	- Torre Carrigine	Drive, Unit 530	The second print the second second	123733		
	N0M 2S0		(E) (E)	Windsor, ON,		The second second	01781-1000	CHAIN OF CUSTODY #:	*
-	Phone: 519-849-5810 Fax: 519 Email: mertick@wm.com	-849-5811	Phone: 519-8	23-1311 x 2618	Fav: 519-822-1216		rin Creeks SW		
. "	intertick@wm.com		Email: BJL(RWDI-com,	ICL@RWDI.com	Sampled By: SG	manufaction in the common light and comm	TCEC-SWCM-Jul	
	REGULATO	DRY CRITERIA				100000000000000000000000000000000000000			
	Note: For regulated drinking water sample Custody Form	s - please use the Dr	inking Water Chain of	ANA	YSIS REQUESTED (Ple	ase be specific):	TURNAROUND T	IME (TAT) REQUIRED:	100
	Substitution	100	No.				PLEASE PROVIDE AD	VANCE NOTICE FOR RUSH OJECTS	
	MISA" Reg. 153 Sewer I	lse	Other	SW (POND			Regular (Standard) T	AT:	
	Table 1 Sar	itary		2 Z S		1 1	x 5 to 7 Working		-
	x PWQO Table 2 Sto	m	specify	# 2			Rush TAT: Rush Con		1
	Reg. 558 Region			ng Wa	4			Il Lab for #)	
•		Second Silv		king tere			DATE Required:	2 days 3 days	
- 2	SAMPLES MUST SE		eria on G of A ? n	Drinkin d Filten	5		TIME Required:	0-Aug-21	
	SAMPLES MUST BE KEPT COOL (<	10 °C) FROM TII	ME OF SAMPLING	Field NLF	6			T- 7-13-1	
	Sample Identification	Date	Time Matrix	als l			are > 5 days - contact your Project	sts such as BOD and Dioxins/Fbrans Manager for details	
× 2		Sampled Sa	impled (GW, SW, Soil, etc	Regulated D Metals Field ZL-ON-WLF-			# of COMMEN	TS / TAT COMMENTS	
	1 SS1	30-Jul-21	AM SW	N N X			Cont. COMMEN	THE COMMENTS	
	3								
	3								3 v.
	4								
	5							AND THE RESIDENCE OF THE PERSON OF THE PERSO	
e-	6						04-Aug-2		
-	7						Patricia Legett	e	
	8				++++			ALLE III	
	9						C1L8072		
	10				+		ASR FNV-	1133	195
	11								
	12						All samples for Ho	field filtered @ 45um	,
	RELINQUISHED BY: (Signature/Pr	int)	RECEIVED BY: (Signa				See lab addendum	for lab group coding	
			NECEIVED B1: (Sign:	ature/Print)	Date:	Time:	Laboratói	y Use Only	
		6down	MANDEG K	0110	30-741-21	2:00 pm	Temperature (°C) on Con	dition of Sample on Receipt	
			INTOLUNG K	HUN	2021/08/04	09:29	1 9/20/20	diduli of Sample on Receipt	

Chain of Custody

Client Information Company Name: Address: Phone: Fax: Email: Report to:	RWDI 4510 Rhodes Dr. 519-823-1311 x 2 Brent. Langille Browdi. co Brent Langille	m Schenj. Cle		Sampled E Affilation: Sample St Comments Sample Ty	orage:	Sediment X W : □ Effluent 1	/Iner per /ater □ Chen x Surface Wa	somple local nical □ Other ater □ Other:	শূত্ৰ	
	Sample Identification					Analysis	Requested			
		Collec	cted	concertules	Centralism					
Sample Name	Pollutech # (company use only)	Date (mm/dd/yy)	Time	Trout single conce	Dophnia Single Conces					
<u>S</u> S1		07/30/21	AM	×	X					
	4									
Delinguished by:	Eus Alles			Polinguish	and by:					
Relinquished by: Date/Time: Received by (sign): Date/Time: Affiliation:	ime: # 07/30/21 / f/M Date/Time: ed by (sign): Received by (sign): ime: Date/Time:									
Notes: Grab Sang	le									

•	VIA	Analytics Inc	Phone: 905		-	ja, ON L5N 2L8 817-5777 Toll I	Free:	(800) 563-626	6								Pag	ge <u>1</u> of <u>1</u>
		INVOICE I	NFORMATIO	N:		REPORT IN	IFOR	MAT	ION (if di	ffers fron	invoice):	:	Р	ROJE	CT II	NFORM	IATION:	MAX	XAM JOB NUMBER:
oi do	mpany Name: ntact Name: dress: one: 519-849-5 nail: Imertick			ON	tion	Company Name: Contact Name: Address: Phone: 519-823- Email: Brent.L	Brer 451 Win -1311	nt Lar 0 Rho dsor, I x:29	ON, N8V	Fax: 519) -823-1316	P P L	uotation # O. #: roject #: roject Name: ocation: ampled By:	210 TCE	C-LC	-1000 CHCM- <i>F</i>	AUG		NIN OF CUSTODY # :
		RI	EGULATORY	CRITERIA			П		ANAI YSI	S REQUE	STED (P	lease l	e specific)·			TURNAROUNI	D TIME (TA	T) REQUIRED:
u	misa PWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	Sewer Use Sanitar Storm Region	у	x Ot	her specific specify	rinking Water ? (Y / N)	Filtered ? (Y / N)	:1 TCLS - EQUALIZATION :TERLY							Regul Rush		PROJECTS) TAT: rking Days Confirmation (call Lab for 2 day 20	n# #)
	NTIL DELIVE Sa	ST BE KEPT (RY TO MAXX mple Identification	AM on	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)		Metals Field	ON-WLF-2021 TCLS TANK QUARTERLY								ays - contact your Pr	roject Manager	s BOD and Dioxins/Furans for details.
 	EQU	JALIZATION TA	NK	11-Aug-21	AM	LCH	N	N	X							7			
<u>2</u>																			
<u> </u>													-				Filtered DOC f		
<u>.</u>																	See lab adden	dum for an	alysis.
, 3													+						
7																			
3																			
)																			
0																			
1																			
2																			
	RELINQ	UISHED BY: (S		nt)	RECE	IVED BY: (Signa	ature	/Prin	t)		Date:		Tim	e:			Labo	oratory Use I	Only
		JCL 12-Aug	g-21 - AM													Temp	erature (°C) on	Condition	of Sample on Receipt

OK

Receipt

Condition of Sample on Receipt

SIF

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

STANDARD CHAIN-OF-CUSTODY

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

CLIENT INFO	RMATION								INVOI	CE INFO	RMAT	ION (S	AME A	S CLIEN	IT INF	ORMA	TION: Y	/ES 🗌	NO [v)		
Company:	RWDI AIR INC								Compan	y:	Was	te M	anage	emen	t of (Cana	da					
Contact:	Brent Langille								Contact:		Lisa	Mer	tick									
Address:	4510 Rhodes Dr	. #530, Windsor, ON, N8	W 5	K5					Address	:	5768	8 Naı	oovu	Rd, V	Vatfo	ord, C	ON NO	OM 2	S0			
Telephone:	519-823-1311 x	2618 _{Fax:}							Telepho	ne:	519-	-849-	5810				Fax:					
Email:	#1: Brent.Langille@	@rwdi.com		•					Email:		#1: lm	ertick	(@wr	n.cor	n							
Email:	#2: Jeffery.Cleland	@rwdi.com, Khalid.Hussei	n@r\	wdi.cc	m				Email:		#2:											
Project:	2101781-1000								PO #:								Quote #:					
	N/GUIDELINE REQUIREI	 D								AROUN	ID TIM	E					Quote ii.					
Sanitary	Sewer, City:			ODWSOG	i					1 Day* (10	00%)		2 Day** (50%)		3-5 Days	(25%)	~	5-7 Days	(Standard)	
Storm Se	ewer, City:			PWQO					Please co	ntact the l	aboratory	y in advar	ice to dete	rmine ru	sh availal	bility. Su	rcharges m	ay apply	to rush se	ervice.		
			<u>~</u>	O. Reg 34	17/558				*If the re	sults are re	ported th	ne day aft	er the rus	h due dat	e, the fol	lowing s	urcharges v	will apply	y: before 1	12:00 - 10	0%, after 12:00 - 50%.	
Excess Se	oil, Table:, Type:		Ш	Other:					**If the r		•	•		sh due da	ite, the fo	ollowing	surcharges		•		0%, after 12:00 - 25%.	
				nple Det			ı	l	ı	Sample	e Analy	sis Reqi	uired					Field	Paramo	eters		
that this COC is a upon submission missing (require	not to be used for drinking wat	r agreed upon with the Laboratory. Note er samples. The COC must be complete a \$25 surcharge if required information is	mple Matrix	Resample? Y = Yes N = No	of Containers	Metals and Inorganics	Metals (ex. Hg, B, CrVI)	ВТЕХ	, Q	PHC F1-F4	TCLP PAH	TCLP PCB	TCLP M/I	TCLP VOC								
Sample ID		Date/Time Collected	Sal	a "	#	ž	ž	B	ν	<u> </u>			_									
CONT SC	DIL	12-Aug-21/AM	SOIL	N	4						~	~	~	~								
																соммі	ENTS:					
	PRINT		SIGN							DATE/TII		4/484		TEMF) (°C)	CONTIN						
Sampled By:	JCL									12-A	ug-2	I/AIV										
Relinquished By	JCL																		1 -			
Received By:																CUSTO	OY SEAL: Y	ES	NO L			

401 Magnetic Drive, Unit #1, North York, ON, M3J 3H9 - Telephone: 416-661-5287 • 380 Vansickle Road, Unit #630, St. Catharines, ON, L2S 0B5 - Telephone: 905-680-8887 • 608 Norris Court, Kingston, ON, K7P 2R9 - Telephone: 613-634-9307 Page ____ of ____

^	Лах	kam Analytics Inc	6740 Camp Phone: 905		_	a, ON L5N 2L8 317-5777 Toll F	ree:	(800)) 563-626	66									CHAIN C	OF C	CUST Pag		RECC 1 of)RD
		INVOICE	INFORMATIO			REPORT IN			,		from	invo	ice):	T		PRC	JECT	NFORM	ATION:					JMBER:
Con Add Pho	npany Name: ntact Name: lress: one: 519-849-5	Lisa Mertick 5768 Nauvoo N0M 2S0 5810	gement of Can o Rd, Watford, Fax: 519-84	ON	on	Company Name: Contact Name: Address: Phone: 519-823-	RWI Brer 4510 Wind	DI AII nt Lar 0 Rho dsor, I x 26	R Inc. ngille odes Drive ON, N8V	e, Uni V 5K5 Fax:	it 530 5	323-1	316	P P P	uotation .O. #: roject #: roject Na	1 2 nme: 1	win Cre	-1000 eeks SW			CHA	AIN OF		ODY#:
Ξma	ail: <u>Imertick</u>	(@wm.com				Email: BJL@F	RWL)l.cc	m, JCL	<u>@R</u>	<u>WDI</u>	.con	<u>n</u>	s	ampled l	Ву: Е	VH							
		F	REGULATORY	CRITERIA				1	ANALYSI	S RE	QUE	STEC) (Ple	ease l	be spe	cific):			TURNAROUNI	O TIN	ΛΕ (TA	T) REC	QUIREC):
Cus	MISA PWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	Sewer Use Sanitar Storm Region:	у	Ot		Orinking Water ? (Y/N)	J Filtered ? (Y / N)	21 TCLS - SW POPLAR ENT									Regul Rush	ar (Standard) x 5 to 7 Wor TAT: Rush C	PRO TA rking Confir (call	JECTS T: Days mation Lab for 2 day 20-	n#	3 days	_
	ITIL DELIVE	ST BE KEPT RY TO MAX mple Identifica	XAM	Date	Time	Matrix	Regulated [Metals Field	ON-WLF-2021 TO STORM EVENT									are > 5 da # of	ote that TAT for certa ays - contact your Pr	oject N	/lanager	for details		
1		SS14B		Sampled 8-Sep-21	Sampled AM	(GW, SW, Soil, etc.)	z	N	χ									Cont.						
2	Г	PS-STORMDU	P	8-Sep-21	AM	SW	N	N	X							\vdash		7	PS-STORMDL	JP cc	ollected	<u> </u>		
2	'	O-OTOTANDO		0-00p-21	Aivi	OW	-	IN																
4																								
5														\dashv										
6														+	\top	\vdash	\dashv							
7																								
8																								
9																								
10																								
11														1										
12														\top					See lab adden	dum	for lab	group	coding	
	RELINQ	UISHED BY: (-	nt)	RECE	IVED BY: (Signa	ture	/Prin	t)		Ī	Date:			•	Time:	•				ry Use			
		EVH - 9-S	ep-21 - AM													Temp	erature (°C) on Receipt	Cor		•	le on Red	•		

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

N	Лах	Xam Analytics Inc			-	ga, ON L5N 2L8														CHAIN C)F C	USTODY REC	ORD
			Phone: 905		Fax: 905-8	817-5777 Toll I		•	•													Page 1 of	1
			INFORMATIO			REPORT IN			· ·	ffers	from	invo	ice):	_		PR	OJEC	CT IN	IFORM.	ATION:	_	MAXXAM JOB NU	UMBER:
	mpany Name:	Waste Manag	gement of Can	ada Corporat	ion	Company Name:	_								Quotation #	_	1010	.=					
	ntact Name:	Lisa Mertick	D 1 14/ /6 1			Contact Name:		nt Lar			=				P.O. #:	_	1012						
Add	dress:	5768 Nauvoo	Rd, Watford,	ON		Address:	_		odes Drive	•					Project #:	-			1000		_	CHAIN OF CUST	ODY#:
		N0M 2S0							ON, N8V						Project Nam	-			eks SW		_		
	one: 519-849-5		Fax: <u>519-849</u>	9-5811		Phone: 519-823-				_	519-				Location:	-	Twin		eks		_	TCEC-SWCM	/I-SEP
Em	ail: <u>Imertick</u>	(@wm.com				Email: BJL@F	<u> </u>	JI.CC	om, JCL	<u>@</u> R	וטא	.cor	<u>n</u>		Sampled By:	_	EVH						
			EGULATORY					ı	ANALYSI	S RE	QUE	STE) (Pl	ease	be specif	ic):			,	TURNAROUNE	TIM	E (TAT) REQUIRE	D:
	te: For regulate stody Form	ed drinking wate	er samples - p	lease use the	Drinking W	/ater Chain of													PLEA			ANCE NOTICE FOR JECTS	RRUSH
Cu.	stody r omi						î		₽										Regul	ar (Standard)			
	MISA	Reg. 153	Sewer Use		Ot	her	\ \		SW (POND											x 5 to 7 Wor	-		
	_	Table 1	Sanitary	,			ے (N/	>											── TAT: Rush C			
	x PWQO	Table 2	Storm	y		specify	Water	Σ)											· · · · · · · · · · · · · · · · · · ·			_ab for #)	
		Table 3	Region:			, ,	Ma	2 2	SLS RL											1 day		2 days 3 day	/s
	Reg. 558	_	_				ing	erec	7 2										D/	ATE Required:		5-Oct-21	
	_			Report	Criteria on (C of A ? n	Drinking	Filt	202 UAF										т	IME Required:		12:00 PM	_
C 1	MDI ES MUI	ST BE KEPT	COOL / +40	°C \ EDON	TIME OF	CAMPLING		ple	LF.3														
		RY TO MAXX) C)FRUN	I IIWIE OF	SAMPLING	Regulated	Metals Field Filtered	ZL-ON-WLF-2021 TCLS - OUTLETS) QUARTERLY											ite that TAT for certa lys - contact your Pro		s such as BOD and Dioxin lanager for details.	is/Furans
UN				Date	Time	Matrix	ang	tals	ΔĘ										# of	COMM	CNITC	C / TAT COMMENT	
	Sa	mple Identificati	ion	Sampled	Sampled	(GW, SW, Soil, etc.)	Re	Me	7 0										Cont.	COMIN	ENIS	S / TAT COMMENT	5
1		SS14A		23-Sep-21	PM	SW	N	N	Х										8				
2																							
3																							
4																							
5																							
6																							
7																							
8																							
9																							
10																							
11																				All samples for	· Hg fi	ield filtered @ 45um	n
12																						for lab group coding]
, ,						IVED BY: (Signa	ature	/Prin	t)			Date:			Ti	me:				Labo	orator	y Use Only	
	EVH/RV	VDI/24-Sep-																erature (°C) on	Con	dition of Sample on Re	eceipt		
																				Receipt	2011	·	·

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

N	1aX	Xam	6740 Camp Phone: 905		-	ja, ON L5N 2L8 817-5777 Toll F	ree:	(800)) 563-626	36										CHAIN C	OF CU	STODY R Page 1	eCORD of 1
		INVOICE	INFORMATIC	N:		REPORT IN	FOR	MAT	ON (if di	ffers	from	invo	ice):	T		PR	OJE	CT IN	IFORM	ATION:	N		B NUMBER:
Conta Addre	NOM 2S0 ne: 519-849-5810 Fax: 519-849-5811 neil: Mertick@wm.com REGULATORY CRITERIA te: For regulated drinking water samples - please use the Drinki					Company Name: Contact Name: Address: Phone: 519-823- Email: BJL@F	Brei 451 Win 1311	nt Lar 0 Rho dsor, 1 x 26	ngille odes Driv ON, N8V 318	V 5K5 Fax:	5 519-8	323-1		F F	Quotation # P.O. #: Project #: Project Nan cocation: Sampled By	ne:		781- Cree Cree	1000 eks SW	1		CHAIN OF C	USTODY # :
			PEGIII ATORY	CDITEDIA					ANAI VSI	S DE	OUE	STER) / DI	2250	be speci	fic \				TURNAROUNI	TIME	(TAT) PEOU	IIDED:
Cust	E: For regulate tody Form MISA X PWQO Reg. 558	Reg. 153 Table 1 Table 2 Table 3	Sewer Use Sanitar Storm Region:	у	e Drinking W	her	Drinking Water ? (Y / N)	Filtered ? (Y / N)	21 TCLS - SW POPLAR ENT										Regul Rush	ASE PROVIDE ar (Standard x 5 to 7 Wor TAT: Rush C 1 day ATE Required: TIME Required:	PROJE) TAT: rking Da Confirma (call Lab	ays ation #	FOR RUSH
	IL DELIVE	ST BE KEPT RY TO MAXX mple Identificat	XAM	Date Sampled	Time	Matrix (GW, SW, Soil, etc.)	Regulated [Metals Field	ON-WLF-2021 TC STORM EVENT											ote that TAT for certa ays - contact your Pr COMM	oject Man		
1		SS14A		23-Sep-21		SW	N		Х										7				
2		SS14B		23-Sep-21	PM	SW	N	N	Х										7				
3		SS15A		23-Sep-21	AM	SW	N	N	Х										7	PS-STORMDU	JP colle	cted	
4 5	F	PS-STORMDUI	Р	23-Sep-21	AM	SW	N	N	Х				4						7				
6																							
7																							
8																							
9																							
10																							
11																							
12																	See lab adden		<u> </u>	oding			
	RELINQUISHED BY: (Signature/Print) REC				RECE	EIVED BY: (Signa	iture	/Prin	τ)			Date:			T	ime			Temp	Labo erature (°C) on Receipt		Use Only	on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Q4: Chain of Custodies

STANDARD CHAIN-OF-CUSTODY

Eurofins Workorder #:

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

CLIENT INFO	RMATION								INVOI	CE INFO	RMAT	ION (S	AME A	S CLIEN	T INFO	RMA	TION: Y	'ES 🗌	NO	/)	
Company:	RWDI AIR INC								Compan	y:	Was	te M	anage	ement	of C	ana	da				
Contact:	Brent Langille								Contact:		Lisa	Mer	tick								
Address:	4510 Rhodes Dr	. #530, Windsor, ON, N8	W 5	K5					Address:		5768	3 Naı	oovu	Rd, W	/atfor	d, C	N NO)M 2	S0		
Telephone:	519-823-1311 x	2618 _{Fax:}							Telephoi	ne:	519-	849-	5810				Fax:				
	#1: Brent.Langille@	@rwdi.com							Email:		#1: Im	ertick	(@wr	n.com	1		•				
		@rwdi.com, Khalid.Husse	n@r\	wdi.cc	m				Email:		#2:										
Project:	2101781-1000								PO #:								Quote #:				
	I/GUIDELINE REQUIRED)								AROUN	D TIM	E									
Sanitary S	ewer, City:			ODWSOG	ì					1 Day* (10	00%)		2 Day** (50%)	3	-5 Days	(25%)	v	5-7 Days	(Standard)
Storm Se	ver, City:			PWQO					Please co	ntact the la	aboratory	in advan	ce to dete	ermine rush	n availabil	ity. Sur	charges m	ay apply	to rush s	ervice.	
O. Reg 15	3, Table:, Type:		<u>~</u>	O. Reg 34	17/558				*If the re	sults are re	ported th	e day aft	er the rus	h due date	, the follo	wing su	ırcharges v	will apply	: before	12:00 - 100	0%, after 12:00 - 50%.
Excess So	il, Table:, Type:		Ш	Other:					**If the r					sh due dat	e, the foll	owing	surcharges	- ''	<u> </u>		9%, after 12:00 - 25%.
				nple Det						Sample	e Analys	sis Requ	uired					Field	Param	eters	RN#
that this COC is n upon submission	ot to be used for drinking wate	agreed upon with the Laboratory. Note er samples. The COC must be complete \$25 surcharge if required information is	Sample Matrix	Resample? Y = Yes N = No	of Containers	Metals and Inorganics	Metals (ex. Hg, B, CrVI)	×	u	PHC F1-F4	TCLP PAH	TCLP PCB	TCLP M/I	TCLP VOC							
Sample ID		Date/Time Collected	San	Res Y =	# #	Met	Met	втех	VOC	Ŧ	—	<u> </u>	—	<u> </u>							
ASR		1-Oct-21/AM	ASR	N	1						✓	✓ 	✓	✓							
	PRINT		SIGN							DATE/TIN	ΛE			TEMP	(°C)	ОММЕ	NTS:				
Sampled By:	ed By: JCL										t-21/	AM									
Relinquished By:	JCL																				
Received Bv:															c	USTOD	Y SEAL: Y	ES	NO [

STANDARD CHAIN-OF-CUSTODY

Eurofins Workorder #:

146 Colonnade Road, Unit #8, Ottawa, ON, K2E 7Y1 - Phone: 613-727-5692, Fax: 613-727-5222

CLIENT INFO	RMATION								INVOI	E INFO	RMAT	ION (S	AME AS	CLIEN	TINF	ORMA	TION: Y	/ES 🗌	NO	V)	
Company:	RWDI AIR INC								Company	/ :	Was	te Ma	anage	ement	t of C	Cana	da				
Contact:	Brent Langille								Contact:		Lisa	Mert	ick								
Address:	4510 Rhodes Dr	r. #530, Windsor, ON, N8	W 5	K5					Address:		5768	3 Nau	oovı	Rd, V	Vatfo	rd, C	N NO	OM 2	S0		
Telephone:	519-823-1311 x	2618 _{Fax:}							Telephor	ne:	519-	849-	5810				Fax:				
Email:	#1: Brent.Langille	@rwdi.com							Email:		#1: Im	ertick	@wn	n.com	า						
Email:		@rwdi.com, Khalid.Husse	n@r\	wdi.co	om				Email:		#2:										
Project:	2101781-1000								PO #:								Quote #:				
	N/GUIDELINE REQUIRE	 D								AROUN	ID TIM	E					quote #				
$\overline{}$	Sewer, City:		П	ODWSO	3				$\overline{}$	1 Day* (10		$\overline{}$	2 Day** (.	50%)	П	3-5 Days	(25%)	<u></u>	5-7 Days	(Standard)
Storm S	ewer, City:		Ħ	PWQO					Please co	ntact the la	aboratory	in advan	ce to dete	rmine rusl	h availal	oility. Sur	charges m	ay apply	to rush s	ervice.	
\blacksquare				O. Reg 34	47/558				*If the res	sults are re	ported th	e day aft	er the rus	n due date	e, the fol	lowing su	ırcharges	will apply	y: before	12:00 - 10	0%, after 12:00 - 50%.
—			Ħ	Other: _					**If the re	esults are r	reported t	he day at	fter the ru	sh due dat	te, the fo	llowing	surcharges	will app	ly: before	12:00 - 5	0%, after 12:00 - 25%.
<u></u>			Sar	nple De	tails					Sample	e Analys	sis Requ	ired					Field	l Param	eters	
cannot be froze that this COC is upon submission	n, unless otherwise indicated o not to be used for drinking wat	insport should be less than 10°C. Sample(s) in agreed upon with the Laboratory. Note iter samples. The COC must be complete a \$25 surcharge if required information is	Matrix	Resample? Y = Yes N = No	of Containers	Metals and Inorganics	ils (ex. Hg, B, CrVI)	,		PHC F1-F4	TCLP PAH	TCLP PCB	TCLP M/I	TCLP VOC							RN# (Lab Use Only)
Sample ID		Date/Time Collected	Sample	Resa Y = Y	to #	Meta	Metals	ВТЕХ	VOC	PHC	<u> </u>	<u> </u>	Ě	Ĕ							
CONT SO	OIL	1-Oct-21/AM	SOIL	N	4						~	/	/	/							
	PRINT		SIGN							DATE/TIN	ME			TEMP	(°C)	СОММЕ	NTS:		<u> </u>		
Sampled By:	JCL									4-Oc		AM									
Relinguished By	JCL																				

401 Magnetic Drive, Unit #1, North York, ON, M3J 3H9 - Telephone: 416-661-5287 • 380 Vansickle Road, Unit #630, St. Catharines, ON, L2S 0B5 - Telephone: 905-680-8887 • 608 Norris Court, Kingston, ON, K7P 2R9 - Telephone: 613-634-9307 Page ____ of ____

Max	Phone: 9	mpobello Road 05-817-5700		317-5777 Toll	Free:	(800) 563-626	6									Page	1 of 1
1	INVOICE INFORMAT	ΓΙΟΝ:		REPORT IN	FOR	MAT	ION (if di	ffers f	rom in	voice)	:	Р	ROJE	CT IN	IFORM	IATION:	MAXXA	M JOB NUMBER:
Company Name: Contact Name:	Waste Management of C Lisa Mertick		on	Company Name: Contact Name:	Brei	nt Lai	ngille					Quotation # P.O. #:	1012	_				
Address:	5768 Nauvoo Rd, Watfor	rd, ON		Address:	451	0 Rho	odes Drive	e, Unit	530			Project #:	2101				CHAIN	OF CUSTODY #:
	NOM 2S0				_		ON, N8V					Project Name:	_		eks SW		12.7	
Phone: 519-849-		849-5811	- 5	Phone: 519-823	100000	The second		_	519-82			Location:	Twin	_	eks		TCEC	-SWCM-OCT
Email: Imertick	<u>aawm.com</u>			Email: BJL@I	KVVL	JI.CC	om, JCL	(@RV	VDI.C	<u>om</u>		Sampled By:	SGV	V				
	REGULATO	RY CRITERIA					ANALYSI	S REC	QUEST	ED (P	lease	e be specific):	1		TURNAROUN	D TIME (TAT) R	REQUIRED:
Custody Form MISA X PWQO Reg. 558	Reg. 153 Sewer Usual Table 1 Sani Table 2 Store Table 3 Region	se tary n Report C	Ot	her specify	d Drinking Water ? (Y / N)	eld Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY								Regul Rush	ar (Standard x) 5 to 7 Wo TAT: Rush o 1 day ATE Required:	PROJECTS I) TAT: Orking Days Confirmation # (call Lab for #) 2 days 14-Oct	
	ST BE KEPT COOL (< RY TO MAXXAM				Regulated	Metals Field	N-WL LETS										tain tests such as BOI Project Manager for de	D and Dioxins/Furans etails.
Sa	mple Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Reg	Meta	ZL-C OUT		H.						# of Cont.	COM	MENTS / TAT CO	OMMENTS
1	SP1	4-Oct-21	PM	SW	N	N	Х	LA.							14			
2	SP2	4-Oct-21	PM	SW	N	N	X								14	SPDUP COLL	LECTED	
3	SP3	4-Oct-21	PM	sw	N	N	Х			107			4)		14			-
4	SP4	4-Oct-21	PM	SW	N	N	Х		+4						14	1		
5	SPDUP	4-Oct-21	PM	sw	N	N	Х								14			
6																		
7																		
8								H	#	+								
9									+	-			+					
									-	-								
10		+							+	+			+				· Na · San A · Elli I · F	
11									-	-							or Hg field filtered	
12 PEL INO	HIGHED BV. (Ciamateria II	\\	DECE	IVED DV. (6:	4	/Dui	4\					The state of the s					ndum for lab gro	
KELINQ	UISHED BY: (Signature/P SGW PM	KECE	IVED BY: (Signa	ature	/Prin	y		Da	le:		Tim	e:		Temp	Lab erature (°C) on Receipt	oratory Use Onl	y mple on Receipt	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

()	A mark transfer of the same	npobello Road N 05-817-5700		317-5777 Toll	ree:	(800) 563-626	66								Page <u>1</u> of <u>1</u>
	INVOICE INFORMAT	ION:		REPORT IN	FOR	MAT	ION (if di	ffers f	rom ir	voice)):	P	ROJEC	T INFO	RMATION:	MAXXAM JOB NUMBER:
Company Name: Contact Name:	Waste Management of C		n	Company Name: Cortact Name:	Brei	nt Lai	ngille					Quotation # P.O. #:	10123			
Address:	5768 Nauvoo Rd, Watford	d, ON		Address:	-		odes Driv				_	Project #:		781-1000		CHAIN OF CUSTODY #:
Phone: 519-849-	N0M 2S0 -5810 Fax: 519-8	2/0 5811		Phone: 519-823	-		ON, N8V			3-1316		Project Name: Location:		Creeks S Creeks	SVV	TOTO SWOM OCT
Email: Imertic		343-3011		Email: BJL@	1000000	N. C. W. L. CHILD		_	-		,	Sampled By:	SGW			TCEC-SWCM-OCT
	REGULATOR	RY CRITERIA					ANALYSI	S RE	QUES	TED (F	Pleas	e be specific):		TURNAROUN	D TIME (TAT) REQUIRED:
Custody Form MISA X PWQO Reg. 558		ary n Report Ci		specify	Drinking Water ? (Y/N)	Metals Field Filtered ? (Y / N)	ZJ-ON-WLF-2021 TCLS - SW (COMPLIANCE POINT) QUARTERLY								sh TAT: Rush of the DATE Required:	Confirmation # 2 days 3 days 14-Oct-21
UNTIL DELIVE	JST BE KEPT COOL (< ERY TO MAXXAM ample Identification	Date	Time	Matrix	Regulated	letals Fiel	J-ON-WLF					and the second		are >	5 days - contact your P	ain tests such as BOD and Dioxins/Furans roject Manager for details.
1	SS1	Sampled 4-Oct-21	Sampled	(GW, SW, Soil, etc.)	N		X							Cor 14		ected
2	SSDUP1	4-Oct-21	AM	SW	N		Х							14		
3									1							
4															7.7	
5		1														
6																
7									1						7/2	
8																
9																
10																
11									1						All samples fo	or Hg field filtered @ 45um
12												12.	11			ndum for lab group coding
	QUISHED BY: (Signature/P	rint)	RECE	I IVED BY: (Signa	ature	/Prin	t)		Da	te:		Tim	e:	34		oratory Use Only
	SGW AM													Те	mperature (°C) on Receipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Max	A contraction to a			a, ON L5N 2L8 317-5777 Toll I	ree:	(800) 563-626	66									Page	DDY RECORD _1 of _1
	INVOICE INFORMATI	ON:		REPORT IN	FOR	MAT	ION (if di	ffers	from	invoid	:e):	Р	ROJE	CT IN	IFORM	IATION:		AM JOB NUMBER:
Company Name: Contact Name: Address:	Waste Management of Ca Lisa Mertick 5768 Nauvoo Rd, Watford		on	Company Name: Contact Name: Address:	Brei 451	nt Lai 0 Rho	ngille odes Driv					Quotation # P.O. #: Project #:	1012	781-	1000		CHAII	N OF CUSTODY#:
Phone: 519-849 Email: Imertic		49-5811		Phone: 519-823 Email: BJL@F	-131	1 x 26		Fax:	519-8		16	Project Name: Location: Sampled By:	Twin SGW	Cree	eks SW eks		TCE	C-SWCM-OCT
	REGULATOR	Y CRITERIA					ANALYSI	S RE	QUES	TED	(Pleas	se be specific):			TURNAROUN	D TIME (TAT) REQUIRED:
Custody Form MISA X PWQO Reg. 558	Reg. 153 Sewer Usa Table 1 Sanita Table 2 Storm Table 3 Region	ary I	Ot	specify	Drinking Water ? (Y / N)	Filtered?(Y/N)	-2021 TCLS - SW (POPLAR) Y								Rush	x 5 to 7 Wo TAT: Rush 0 1 day ATE Required:	rking Days Confirmation (call Lab for #) 2 days 14-0	3 days
UNTIL DELIV	MPLES MUST BE KEPT COOL (< 10 °C) FROM TIME TIL DELIVERY TO MAXXAM Sample Identification Date Tim		TIME OF Time Sampled	Matrix	Regulated [Metals Field	ZP-ON-WLF-2021 QUARTERLY		ļ, l							ays - contact your Pi	roject Manager for	BOD and Dioxins/Furans r details.
1	SS15A	4-Oct-21	PM	SW	N	N	Х				F				8	PSSWDUP co	llected	
2	PSSWDUP	4-Oct-21	PM	SW	N	N	Х								8			
3								71		- 6			-					
4									1					10.0		1		
5																		
6																		
7													1	1				
8																		
9														141				
10																		
11									1	- 6								
12											Ħ					See lab adden	dum for lab o	aroup codina
RELINQUISHED BY: (Signature/Print) RECEIVED I					ature	/Prin	t)			ate:		Tim	e:	3			oratory Use C	
	SGW AM						##							Temp	erature (°C) on Receipt	Condition of	Sample on Receipt	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	/;	
\sim	axxam	
	Analytics Inc	

Lisa Mertick

NOM 2S0

Company Name:

Phone: 519-849-5810

Email: Imertick@wm.com

Contact Name:

Address:

INVOICE INFORMATION:

5768 Nauvoo Rd, Watford, ON

Waste Management of Canada Corporation

Fax: 519-849-5811

6740 Campobello Road Mississauga, ON L5N 2L8

Phone: 905-817-5700 Fax: 905-817-57

a, oit Loit LLo					
17-5777 Toll	Free: (800) 563-6	6266			Page <u>1</u> of <u>1</u>
REPORT IN	NFORMATION (if	differs from invoice):	PI	ROJECT INFORMATION:	MAXXAM JOB NUMBER:
Company Name:	RWDI AIR Inc.		Quotation #		
Contact Name:	Brent Langille	and the second second	P.O. #:	10123733	
Address:	4510 Rhodes D	rive, Unit 530	Project #:	2101781-1000	CHAIN OF CUSTODY #:
	Windsor, ON, N	18W 5K5	Project Name:	Twin Creeks SW	
Phone: 519-823	3-1311 x 2618	Fax: 519-823-1316	Location:	Twin Creeks	TCEC-SWCM-OCT

Sampled By:

SGW

	part of the same o																			
	REGULATORY	CRITERIA		a lumente i -			ANALYS	IS RE	QUES	TED (Pleas	e be spe	cific)			TURNAROUN	D TIME (TAT) REQ	UIRED:	
	te: For regulated drinking water samples - բ stody Form	please use the	Drinking W	ater Chain of	(N		(POPLAR)									ASE PROVIDE	PROJEC		E FOR RU	ISH
	MISA Reg. 153 Sewer Use		Ot	her	٧/١	_	(POF									x 5 to 7 Wo		/S		
	Table 1 Sanitar Table 2 Storm Table 3 Region Reg. 558		Criteria on C	specify	Drinking Water? (d Filtered ? (Y/N	021 TCLS - SW								1	TAT: Rush (1 day DATE Required:	(call Lab	for #) lays 26-Oct-21	3 days	-
	AMPLES MUST BE KEPT COOL (< 1) NTIL DELIVERY TO MAXXAM	0°C)FROM	TIME OF	SAMPLING		s Field	I-WLF									note that TAT for cert days - contact your P				ans
	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Metals	ZP-ON-WLF-2 QUARTERLY						1.4		# of Cont.	COMN	MENTS /	ГАТ СОМІ	MENTS	
1	SS14A	15-Oct-21	PM	sw	N	N	Х	1							8					
2	SS14B	15-Oct-21	PM	SW	N	N	Х	M							8					
3								1 11							T)					
4																				
5											1			H						
6																				
7																				
8																				
9											4									
10																				
11																				
12												9.5				See lab adder	ndum for	ab group	coding	
	RELINQUISHED BY: (Signature/Pri		RECE	IVED BY: (Signa	ture	/Prin	t)		D	ate:			Time	4		Lab	oratory U	se Only		
	SGW - 15-Oct-21- PM	1													Tem	perature (°C) on Receipt	Conditio	n of Sample	on Receipt	t

BJL@RWDI.com, JCL@RWDI.com

CHAIN OF CUSTODY RECORD

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Мах		mpobello Road N				(000	\ 500 000	0								CHAIN	OF CUSTODY RECORD	
•	INVOICE INFORMAT		Fax: 905-8	817-5777 Toll					rom ir	voice	۸٠	Р	RO I	FCT I	NEORN	IATION:	Page <u>1</u> of <u>1</u> MAXXAM JOB NUMBE	R.
Company Name: Contact Name: Address: Phone: 519-849 Email: Imertic	Waste Management of C Lisa Mertick 5768 Nauvoo Rd, Watfor N0M 2S0	anada Corporatio	on	Company Name: Cortact Name: Address: Phone: 519-823 Email: BJL@	RW Brei 451 Win -1311	DI AI nt Lar 0 Rho dsor, 1 x 26	R Inc. ngille odes Drive ON, N8V	e, Unit V 5K5 Fax:	: 530 519-82	23-131		Quotation # P.O. #: Project #: Project Name: Location: Sampled By:	10 21 Tw	12373 01781 ⁄in Cre ⁄in Cre	3 -1000 eeks SW		CHAIN OF CUSTODY #	# :
	REGULATO	RY CRITERIA			П		ANALYSI	S REC	QUES	ΓED (Pleas	e be specific	:):			TURNAROUNI	D TIME (TAT) REQUIRED:	=
Custody Form MISA X PWQO Reg. 55	Table 3 Region	se tary n	Ot		Drinking Water ? (Y / N)	Filtered ? (Y / N)	.2021 TCLS - SW CE POINT) QUARTERLY								Regu Rush	Ar (Standard x 5 to 7 Woo TAT: Rush C 1 day ATE Required:	rking Days	
UNTIL DELIV	PLES MUST BE KEPT COOL (< 10 °C) FROM L DELIVERY TO MAXXAM Sample Identification Date Sampled		Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Metals Field Filtered	ZJ-ON-WLF-2021 TCLS (COMPLIANCE POINT)								are > 5 d # of Cont.	ays - contact your Pr	ain tests such as BOD and Dioxins/Furans oject Manager for details.	3
1	SS1	15-Oct-21	AM	SW	N	N	Х	<u>.</u>	4	44	-		-		14			
2									-		-		+					_
4									+	+	+		+	H				-
5									+	+	+		+					Ħ
6									+	*	t				ì			7
7																		7
8									11							-		
9																, —		
10] [
11										1						All samples for	r Hg field filtered @ 45um	
12																	dum for lab group coding	
RELINQUISHED BY: (Signature/Print) SGW - 15-Oct-21- PM			RECE	EIVED BY: (Signa	ature	/Prin	t)		Da	ite:		Tim	ie:		Temp	Labo perature (°C) on Receipt	Condition of Sample on Receipt	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Max	1 110110. 0		Fax: 905-8	817-5777 Toll I												Page 1 of	
	INVOICE INFORMAT	TION:		REPORT IN				ffers	from i	nvoice):	P	ROJEC	TINFOR	MATION:	MAXXAM JOB N	UMBER:
Company Name:	Waste Management of C	Canada Corporation	on	Company Name:	-							Quotation #					
Contact Name:	Lisa Mertick			Contact Name:	-	-	ngille					P.O. #:	10123				
Address:	5768 Nauvoo Rd, Watfor	rd, ON	- 1	Address:	-		odes Driv					Project #:		81-1000		CHAIN OF CUST	ODY#:
	NOM 2S0				_		ON, N8V		2000			Project Name:		Creeks SV	V	100000000000000000000000000000000000000	
Phone: 519-849-		849-5811		Phone: 519-823						23-131	6	Location:	Twin C	Creeks		TCEC-SWCM	1-OCT
Email: <u>Imerticl</u>	K(@Wm.com			Email: BJL@F	<u> </u>	JI.CC	om, JCL	(@)R\	וטא.	<u>com</u>		Sampled By:	SGW				
	REGULATO	RY CRITERIA					ANALYS	IS RE	QUES'	TED (I	Pleas	e be specific):		TURNAROUN	D TIME (TAT) REQUIRE	D:
Custody Form MISA X PWQO Reg. 558	Reg. 153 Sewer U Table 1 Sani Table 2 Store Table 3 Region ST BE KEPT COOL (ERY TO MAXXAM	se tary m Report C	Ot	her specify	Regulated Drinking Water ? (Y / N)	Metals Field Filtered ? (Y / N)	ZL-ON-WLF-2021 TCLS - SW (POND OUTLETS) QUARTERLY							Regu Rush	Ilar (Standard x 5 to 7 Wo TAT: Rush 0 1 day DATE Required: TIME Required:	rking Days Confirmation # (call Lab for #) 2 days 3 day 26-Oct-21	ys
	ample Identification	Date	Time	Matrix	Inga	etals	N-12							# of		MENTS / TAT COMMENT	S
		Sampled	Sampled								-			Cont.	33		
1	SP2	15-Oct-21	PM	SW	N	N	Х										
2	SP3	15-Oct-21	PM	SW	N	N	Х		1.					14			
3																	
4)+()						7		
5																	
6																	
7																	
8											1						
9																	
10										+							
11								+			1				All camples fo	r Hg field filtered @ 45un	n
12												10.0	1			ndum for lab group coding	
	QUISHED BY: (Signature/F	Print)	RECF	I IVED BY: (Sign:	ature	/Prin	t)		D:	ate:	1	Tim	e:				9
RELING	QUISHED BY: (Signature/F SGW - 15-Oct-21- F		RECE	IVED BY: (Signa	ature	Prin	t)		Da	ate:		Tim	e:	Tem	Lab perature (°C) on Receipt	Condition of Sample on Re	eceipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

tes:

704 Mara Street, Suite 122, Point Edward, Ontario, N7V 1X4 Tel. (519) 339-8787, Fax (519) 336-6965

Chain of Custody Sampler Information Steve white Client Information RWDI Sampled By: Company Name: RWDI 4510 Rholles Dr. Suite 530 winder, ON Affilation: Address: Pail/liners 519-823-1311 x 2618 Sample Storage: 2 pails per location Phone: Comments: Fax: Brent, longille @ rwdi, com/Jeff, cleland@rwi. Sample Type: | Soil | Sediment & Water | Chemical | Other: Email: Sample Type Description: ☐ Effluent X Surface Water ☐ Other: Brent Langille Report to: **Analysis Requested** Sample Identification Collected Date (mm/dd/yy) Single Single Time Pollutech # (company use only) Sample Name X X 10/15/21 AM 551 X 10/15/21 X 5P2 AM x 10/15/2 AM 5P3 X Relinquished by: 59W 5 Relinquished by: Date/Time: 10/15/21 /pm Date/Time: Received by (sign): eceived by (sign): Date/Time: ate/Time: Affiliation: ffiliation: Grab sample

/;	
Maxxai	m
Analytic	s Inc

6740 Campobello Road Mississauga, ON L5N 2L8

Phone: 905-817-5700 Fax: 905-817-5777 Toll Free: (800) 563-6266

CHAIN OF CUSTODY REC	CORD
----------------------	------

	INVOICE INFORM	MATION:	REPORT II	NFUR	IVIAI	ION (IT al	ners 11	om in	voice):	X	PR	OJECTI	NFORIV	IATION:	MAXXAM JOB NUMBER:
Company Nan	ne: Waste Management of	of Canada Corporation	Company Name:	RW	DI AI	R Inc.				Quotation	#				
Contact Name	: Lisa Mertick		Contact Name:	Brei	nt La	ngille				P.O. #:		1012373	3		
Address:	5768 Nauvoo Rd, Wa	tford, ON	Address:	451	0 Rho	odes Drive	e, Unit	530		Project #:		2101781	-1000		CHAIN OF CUSTODY #:
	N0M 2S0			Win	dsor,	ON, N8V	V 5K5			Project Na	ame:	Twin Cre	eks SV	1	
Phone: 519-	849-5810 Fax: 51	19-849-5811	Phone: 519-823	3-131	1 x 26	18	Fax: 5	19-82	3-1316	Location:		Twin Cre	eks		TCEC-SWCM-OCT
Email: Ime	rtick@wm.com		Email: BJL@	RWI	OI.co	m, JCL	@RV	VDI.c	<u>om</u>	Sampled	Ву:	EVH			
	REGULA	TORY CRITERIA		┰		ANALYSI	S REC	UEST	ED (PI	lease be spe	cific)	:	100	TURNAROUNI	D TIME (TAT) REQUIRED:
Note: For reg Custody For	gulated drinking water sampl m	les - please use the Dri	inking Water Chain of			AR)									ADVANCE NOTICE FOR RUSH PROJECTS
MISA X PWO	Table 1 Si Table 2 Si Table 3 Regio	anitary torm	Other	g Water ? (Y / N	(N/A) ¿ pa	TCLS - SW (POPLAR)							Rush		rking Days Confirmation # (call Lab for #) 2 days 3 days
Reg.	558	Report Crite	eria on C of A ? n	Drinking	Metals Field Filtered	ZP-ON-WLF-2021 1 QUARTERLY								ATE Required: IME Required:	
	MUST BE KEPT COOL IVERY TO MAXXAM			Regulated I	IIs Field	N-WLF							are > 5 d		ain tests such as BOD and Dioxins/Furans roject Manager for details.
	Sample Identification		Time Matrix ampled (GW, SW, Soil, etc.	Reg	Meta	ZP-C QUA							# of Cont.	COMM	IENTS / TAT COMMENTS
1	SS14A	26-Oct-21	AM SW	N	N	X	4-1						8		
2	SS14B	26-Oct-21	AM SW	N	N	Х							8		_ A/
3						7									- 3
4								- 1	1 1 - 1						
5															= =
6															
7							H								
8															
9							-								
10															
11							Ti								
12		-4												See lab adden	dum for lab group coding
REL	INQUISHED BY: (Signatur	e/Print)	RECEIVED BY: (Sign	ature	/Prin	t)		Da	te:		Time			Labo	oratory Use Only
EVH / 27-Oct-21 / AM												Temp	perature (°C) on Receipt	Condition of Sample on Receipt	
															OK SIF

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

	Phone: 90	5-817-5700 Fa	ax: 905-817-	-5777 Toll F	ree:	(800) 563-626	66						Page 1 of	1
	INVOICE INFORMATI	ON:		REPORT IN	FOR	MAT	ION (if di	ffers fron	n invoice):	PI	ROJECT	INFORM	IATION:	MAXXAM JOB NU	MBER:
Company Name: Contact Name: Address: Phone: 519-84	Waste Management of Ca Lisa Mertick 5768 Nauvoo Rd, Watford NOM 2S0 9-5810 Fax: 519-8	I, ON	Cor Add		Brei 451 Win	nt Lai 0 Rho dsor,	ngille odes Driv ON, N8V		0-823-1316	Quotation # P.O. #: Project #: Project Name:	1012373 210178 TCEC-C	1-1000 SWCM-N	IOV	CHAIN OF CUSTO	
The second second	9-5810 Fax: 519-8 ck@wm.com	49-5611		ail: Brent.L	1000000				-623-1316	Location: Sampled By:	EVH	eeks		TCEC-GWCM	-NOV
	REGULATOR	Y CRITERIA			F		ANALYSI	IS REQUE	STED (Ple	ase be specific):	T	TURNAROUN	D TIME (TAT) REQUIRED):
Custody Form MISA PWQO Reg. 58	Table 3 Region_	e ary I Report Crite	X Other ODWS sp eria on C of	pecify	Drinking Water ? (Y / N)	d Filtered ? (Y / N)	ON-WLF-2021 TCLS - GW (ACTIVE AQUITARD)	ON-WLF-2021 TCLS - GW (ACTIVE AQUITARD) TRIP BLANK				Regu Rush		rking Days Confirmation # (call Lab for #) 2 days 3 days 15-Nov-21	_
UNTIL DELI	IUST BE KEPT COOL (< VERY TO MAXXAM		ME OF SA	MPLING Matrix	Regulated	Metals Field	I-WLF-20	I-WLF-20			1		ays - contact your Pr	ain tests such as BOD and Dioxins roject Manager for details.	
	Sample Identification			W, SW, Soil, etc.)	Re	Me	ON AQ	N A				Cont.		IENTS / TAT COMMENTS	}
1	OW16-6	2-Nov-21	PM	GW	N	Y	Х					10	GWDUP 2 Co	llected	
2	OW54A-4	2-Nov-21	PM	GW	N	Y	Х					7	= ===		
3	OW67-4	2-Nov-21	AM	GW	N	Y	Χ					7			
4	OW68-5	2-Nov-21	PM	GW	N	Υ	Х					7	, <u> </u>		
5	OW70B-5	2-Nov-21	AM	GW	N	Y	Х					7			
6	OW72-6	2-Nov-21	PM	GW	N	Y	Х					7			
7	OW71A-5	2-Nov-21	AM	GW	N	Υ	Х					7			
8	GWDUP 2	2-Nov-21	PM	GW	N	Υ	Χ					10	1		
9	FIELD BLANK	2-Nov-21	РМ	W	N	N	Х					10			
10	TRIP BLANK	2-Nov-21	AM	W	N	N		Х				3			
11															
12									CE				See lab adden	dum for analysis.	
RELIN	IQUISHED BY: (Signature/Pr	int)	RECEIVE	D BY: (Signa	ture	/Prin	t)		Date:	Time	e:	4		oratory Use Only	
	EVH 3-Nov-21 - AM											Temp	perature (°C) on Receipt	Condition of Sample on Rec	

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Page _ 1 of _ 1

INVOICE INFORMATION: Company Name: Waste Management of Canada Corporation				REPORT IN	FOR	MAT	ION (if di	ffers fron	n invoice)):	Р	ROJEC	T IN	FORM	IATION:	Ň	MAXXAM JOB NUMBER		
Compan	y Name:	Waste Mana	gement of Can	ada Corporati	on	Company Name:	RW	DI AI	R Inc.			Qı	uotation#						
Contact	Name:	Lisa Mertick				Cortact Name:	Brei	nt Lai	ngille			P.	O. #:	1012	3733				
Address	:	5768 Nauvo	o Rd, Watford,	ON		Address:	451	0 Rho	odes Drive	e, Unit 53	0	Pr	oject #:	2101	781-1	1000		(CHAIN OF CUSTODY # :
		N0M 2S0					Win	dsor,	ON, N8V	V 5K5		Pr	oject Name:	TCEC	C-GW	/CM-N	IOV		
Phone:	519-849-	5810	Fax: 519-849	9-5811		Phone: 519-823-	1311	1 x:26	618	Fax: 519	-823-1316	S Lo	cation:	Twin	Cree	ks		-	TCEC-GWCM-NOV
Email:	Imertick	@wm.com				Email: Brent.L	ang	ille@	<u> RWDI</u>	.com		Sa	impled By:	EVH					
		·	REGULATORY	CRITERIA					ANALYSI	S REQUE	STED (P	Please b	e specific):	7.5		TURNAROUN	ID TIME	(TAT) REQUIRED:
	or regulat ly Form	ed drinking wa	ter samples - p	lease use the	Drinking W	/ater Chain of)											PROJE	
	MISA	Reg. 153	Sewer Use		x Ot	hor	N								ľ	Regu	x 5 to 7 Wo		
	IVIIOA	Table 1	Sanitar		ODW		5 (7	N	Q							Duch	TAT: Rush		
	PWQO	Table 2	Storm	у	001	specify	Water	? (Y/N)	GW & SAND)						ľ	(u3ii	TAT: Rushi	(call Lab	
		Table 3	Region				g W		S- C						- 1		1 day		days 3 days
ليارا	Reg. 558			Papart (Critorio on (C of A ? n	ıkin	Ilter	TCL S						- 1		ATE Required	11	15-Nov-21
							Drinki	Id F	021 4DI/						Į.		TIME Required	:	12:00 PM
		ST BE KEPT RY TO MAX	COOL (< 10	O°C)FROM	TIME OF	SAMPLING	Regulated	Metals Field Filtered	ON-WLF-2021 TCLS - (INTERSTADIAL SILT								ote that TAT for cert ays - contact your F		uch as BOD and Dioxins/Furans ager for details.
	Sa	mple Identifica	ation	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regu	Meta	ON-V (INTE				J			# of Cont.	COM	MENTS /	TAT COMMENTS
1		OW16-7		2-Nov-21	PM	GW	N	Y	Х							10	GWDUP	1 + FIE	LD BLANK Collected
2		OW54-10		2-Nov-21	PM	GW	N	Y	Х							7			
3		OW67-11		2-Nov-21	AM	GW	N	Y	Х	7 -	7 = 1					7			
4		OW72-10		2-Nov-21	PM	GW	N	Y	Х							7			
5		OW81-7		2-Nov-21	AM	GW	N	Y	Х							10			
6		GWDUP 1		2-Nov-21	PM	GW	N	Y	Х							10			
7																			
8																			
9																			
10																			
11										æ							See lab adder	ndum for	analysis.
12																			
	RELINQ		Signature/Prin	nt)	RECE	IVED BY: (Signa	ture	/Prin	t)		Date:		Tim	e:			Lab	oratory l	Jse Only
		EVH 3-No	v-21 - AM													Temp	erature (°C) on Receipt		ion of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Page 1 of

	INVOICE INFORMAT	TION:		REPORT IN	FOR	MAT	ION (if di	ffers fron	invoice):	P	ROJECT	INFORMATION:	MAXXAM JOB NUMBER:
Company Name:	Waste Management of C	anada Corporatio	on	Company Name:	RW	DI AI	R Inc.			Quotation #	12711		
Contact Name:	Lisa Mertick			Cortact Name:	Brei	nt La	ngille			P.O. #:	101237	33	
Address:	5768 Nauvoo Rd, Watfor	d, ON		Address:	451	0 Rh	odes Drive	e, Unit 53)	Project #:	210178	1-1000	CHAIN OF CUSTODY #:
	N0M 2S0				Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-0	GWCM-NOV	
Phone: 519-849		849-5811		Phone: 519-823-	10000	-			-823-1316	Location:	Twin Cr	reeks	TCEC-GWCM-NOV
Email: Imertic	ck@wm.com			Email: Brent.L	ang	ille@	<u>DRWDI</u>	.com		Sampled By:	EVH		
	REGULATO	RY CRITERIA					ANALYSI	S REQUE	STED (PI	ease be specific):		UND TIME (TAT) REQUIRED:
Note: For regula Custody Form	ated drinking water samples	- please use the l	Drinking W	ater Chain of				1 - 1 - 1				PLEASE PROVID	DE ADVANCE NOTICE FOR RUSH PROJECTS
				Qerilli II	Z		ш					Regular (Standa	
MISA	Reg. 153 Sewer U	se	x Ot	her	7	_	Ę					x 5 to 7 \	Working Days
	Table 1 Sani	tary	ODW	IS	r ? (N/A	(A)					Rush TAT: Rus	h Confirmation #
PWQO	Table 2 Storr	n		specify	Water	7 (7	GW (ACTIVE						(call Lab for #)
	Table 3 Region				ng W		Ś					1 day	2 days 3 days
Reg. 55	8	D10			ıkin	Filtered	TCLS					DATE Require	
		кероп С	riteria on C	C of A? n	Drinki)					TIME Require	ed:12:00 PM
	UST BE KEPT COOL(< ERY TO MAXXAM	10 °C) FROM	TIME OF	SAMPLING	ated	Fiel	LF-20 ARD					A CONTRACTOR OF THE PROPERTY O	certain tests such as BOD and Dioxins/Furans ur Project Manager for details.
	Sample Identification	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Metals Field	ON-WLF-2021 ' AQUITARD)					# of COI	MMENTS / TAT COMMENTS
1	OW17-4	3-Nov-21	PM	GW	N	Y	Х					7	
2	OW56-4	3-Nov-21	PM	GW	N	Y	Х				E	7	
3	OW57-4	3-Nov-21	PM	GW	N	Y	Х					7	
4	OW58-6	3-Nov-21	AM	GW	N	Y	Х					7	
5	OW59-6	3-Nov-21	AM	GW	N	Y	Х					7	==1
6	OW69-5	3-Nov-21	PM	GW	N	Y	Χ					7	
7	OW73-6	3-Nov-21	AM	GW	N	Y	Х					7	
8													
9													
10													
11									7 = 1		-		
12												See lab add	dendum for analysis.
RELIN	QUISHED BY: (Signature/P		RECE	IVED BY: (Signa	ature	/Prin	t)		Date:	Tim	e:		aboratory Use Only
	EVH 4-Nov-21 - AM											Temperature (°C) o Receipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Page _ 1 of _ 1

INVOICE INFORMATION: REPO			REPORT IN	ORT INFORMATION (if differs from invoice):				e): PROJECT INFORMATION:				MAXXAM JOB NUMBER:		
Company Name:	Waste Management of C	Canada Corporation	n C	ompany Name:	RW	DI AI	R Inc.			Quotation #	200			
Contact Name:	Lisa Mertick		С	ontact Name:	Bren	nt Lai	ngille			P.O. #:	101237	33		
Address:	5768 Nauvoo Rd, Watfo	rd, ON	A	ddress:	451	0 Rho	odes Drive	e, Unit 530		Project #:	210178	1-1000		CHAIN OF CUSTODY #:
	N0M 2S0				Windsor, ON, N8W 5K5					Project Name:	me: TCEC-GWCM-NOV			+
Phone: 519-849	9-5810 Fax: 519-	849-5811	P	hone: 519-823-	3-1311 x:2618 Fax: 519-823-1316					Location:	Twin Creeks			TCEC-GWCM-NOV
Email: Imertic	ck@wm.com		E	mail: Brent.L	ang	ille@	RWDI.	.com		Sampled By:	EVH			
	REGULATO	RY CRITERIA					ANALYSI	S REQUE	STED (Ple	ase be specific):		TURNAROUND	TIME (TAT) REQUIRED:
Note: For regul Custody Form MISA PWQO Reg. 55	Reg. 153 Sewer U Table 1 San Table 2 Stor Table 3 Region	se	x Othe ODWS	er	ting Water ? (Y / N)	ered?(Y/N)	CLS - GW SILT & SAND)					Regu Rush	lar (Standard) x 5 to 7 Wor TAT: Rush C	king Days
UNTIL DELIV	UST BE KEPT COOL (< /ERY TO MAXXAM	: 10 °C) FROM T	Time	SAMPLING Matrix	Regulated Drinking	Metals Field Filtered	ON-WLF-2021 TCLS - (INTERSTADIAL SILT					Please n are > 5 o	days - contact your Pro	in tests such as BOD and Dioxins/Furans oject Manager for details. ENTS / TAT COMMENTS
1	OW46-7	Sampled S 3-Nov-21	Sampled (GW, SW, Soil, etc.)	N	Υ	о с Х					Cont.		GWDUP 3 Collected
2	OW47-6	3-Nov-21	PM	GW	N	Y	X	,				7		
3	OW57-15	3-Nov-21	PM	GW	N	Y	X					7		
	OW58-17	3-Nov-21	PM	1.000	200							7		
4	4707.000			GW	N	Υ	Х					7		
5	OW73-9	3-Nov-21	AM	GW	N	Υ	Х					7		
6	GWDUP 3	3-Nov-21	PM	GW	N	Y	Х					7		
7														
8														
9														
10		1 1										1		
		+		-			-			_			37.27.73.7	
11													See lab adden	dum for analysis.
12													1	
RELIN	QUISHED BY: (Signature/F		RECEIV	ED BY: (Signa	ture	/Prin	t)		Date:	Tim	e:	4	Labo	oratory Use Only
	EVH 4-Nov-21 - AN											Temp	perature (°C) on Receipt	Condition of Sample on Receipt

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

Page _ 1 of _ 1

6740 Campobello Road Mississauga, ON L5N 2L8
Phone: 905-817-5700 Fax: 905-817-5777 Toll I

Fax: 905-817-5777 Toll Free: (800) 563-6266

INVOICE INFORMATION:				REPORT IN	IFOR	MAT	ION (if di	ffers from	invoice):	: PROJECT INFORMATION:				MAXX	(AM JOB NUMBER:		
Compar	ny Name:	Waste Manag	gement of Can	ada Corporation	on	Company Name:	RW	DI AI	R Inc.			Quotation #	12722				
Contact	Name:	Lisa Mertick				Contact Name:	Brei	nt Lar	ngille			P.O. #:	1012373	33			
Address	:	5768 Nauvoo	Rd, Watford,	ON		Address:	451	0 Rho	odes Driv	e, Unit 530)	Project #:	210178	1-1000		CHA	N OF CUSTODY #:
		N0M 2S0					Win	dsor,	ON, N8V	V 5K5		Project Name:	TCEC-L	CHCM-I	VOV		
Phone:	519-849-5	5810	Fax: 519-849	9-5811		Phone: 519-823	-1311	1 x:29	84	Fax: 519-	823-1316	Location:	Twin Cr	eeks		TCE	C-LCHCM-NOV
Email:	Imertick	@wm.com				Email: Brent.L	ent.Langille@RWDI.com					Sampled By:	EVH				
		R	REGULATORY	CRITERIA					ANALYS	IS REQUE	STED (Plea	se be specific):		TURNAROUNI	TIME (TAT) REQUIRED:
	. The April 1975	ed drinking wat	er samples - p	lease use the	Drinking W	ater Chain of								PLE			IOTICE FOR RUSH
Custoa	ly Form						=		EQUALIZATION	EQUALIZATION				Regu	lar (Standard	PROJECTS) TAT:	
	MISA	Reg. 153	Sewer Use		x Ot	her	N/Y	-	ZAT	ZAT				. togu	x 5 to 7 Wor		
_		Table 1	Sanitary	,		specific	5 ((Y/N)	4LIZ	ALI.				Duch	TAT: Rush C		#
	PWQO	Table 2	Storm		3110 3	specify		(QU/	OG (Kusii		(call Lab for #	
		Table 3	Region			5,55,	Water	C-	1	1. 1					1 day	2 days	
	Reg. 558						ing	erec	SLS LY	SLS					ATE Required:		lov-21
-				Report C	Criteria on C	C of A? n	ink	Filt	FE	FN					TIME Required:		00 AM
0.4145		OT DE 1/EDT	0001 / 14	117474			0	ple	202 AR	202 MI-4							
		ST BE KEPT RY TO MAXX) C) FROM	TIME OF	SAMPLING	lated	s Fie	/LF-;	/LF-2			14		ote that TAT for certa lays - contact your Pr		BOD and Dioxins/Furans or details.
	Sa	mple Identificat	tion	Date Sampled	Time Sampled	Matrix (GW, SW, Soil, etc.)	Regulated	Metals Field Filtered	ON-WLF-2021 TCLS TANK QUARTERLY	ON-WLF-2021 TCLS TANK SEMI-ANNUAI				# of Cont.	COMM	ENTS / TAT	COMMENTS
1	EQU	JALIZATION TA	ANK	4-Nov-21	PM	LCH	N	N	Х					7			
2	EQU	JALIZATION TA	ANK	4-Nov-21	PM	LCH	N	N		x				15			
3									5						Filtered DOC f	ield filtered	
4															See lab adden	dum for ana	ysis.
5																	
6															<u></u>		
7																	
8										-							
9																	
10																	
11																	
12												- 1					
	RELINQ	UISHED BY: (S		t)	RECE	IVED BY: (Signa	ature	/Prin	t)		Date:	Tim	e:		Labo	oratory Use (Only
		EVH 5-Nov	v-21 - AM									1 = 1		Temp	perature (°C) on	Condition of	Sample on Receipt
												2.4			Receipt		

^{*} MANDATORY SECTIONS IN GREY MUST BE FILLED OUT. AN INCOMPLETE CHAIN OF CUSTODY MAY RESULT IN ANALYTICAL TAT DELAYS

APPENDIX C:

Climatic Data

Table C-1 1961-1990 Water Budget (Thornthwaite Method) **Twin Creeks Environmental Centre - Annual Monitoring Program**

Month	Mean Temperature	ı	Е	Daylight Factor	E ADJ.	Mean Precipitation	Surplus	Deficit
(1961 - 1990)	(°C)		(mm)	ractor	(mm)	(mm)	(mm)	(mm)
January	-6.2	0.0	0.0	0.8	0.0	57.9	57.9	0.0
February	-5.3	0.0	0.0	0.8	0.0	45.4	45.4	0.0
March	0.5	0.0	1.7	1.0	1.7	37.3	35.6	0.0
April	7.1	1.7	31.4	1.1	35.1	71.4	36.3	0.0
Мау	13.1	4.3	61.8	1.3	78.5	48.2	0.0	30.3
June	18.3	7.1	89.6	1.3	114.6	70.6	0.0	44.0
July	21.0	8.7	104.3	1.3	135.6	90.4	0.0	45.2
August	20.0	8.1	98.8	1.2	118.6	57.9	0.0	60.7
September	16.0	5.8	77.2	1.0	80.3	59.7	0.0	20.6
October	9.7	2.7	44.3	1.0	42.1	69.0	26.9	0.0
November	3.8	0.7	15.7	0.8	12.7	53.3	40.6	0.0
December	-2.7	0.0	0.0	0.8	0.0	50.8	50.8	0.0
Total	7.9	39.1			619.3	711.9	293.5	200.8

619.3 92.6 mm

NOTES: 1) I = Heat Index

E = Evapotranspiration

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Data from the Strathroy climatological station located at latitude 42°57'N, longitude 81°39'W.

Table C-2 1971-2000 Water Budget (Thornthwaite Method) **Twin Creeks Environmental Centre - Annual Monitoring Program**

Month	Mean Temperature	ı	E	Daylight Factor	E ADJ.	Mean Precipitation	Surplus	Deficit
(1981 - 2010)	(°C)		(mm)	ractor	(mm)	(mm)	(mm)	(mm)
January	-5.6	0.0	0.0	0.8	0.0	78.5	78.5	0.0
February	-4.8	0.0	0.0	0.8	0.0	58.8	58.8	0.0
March	0.7	0.1	2.4	1.0	2.4	74.2	71.7	0.0
April	7.1	1.7	31.3	1.1	35.1	82.9	47.8	0.0
Мау	13.9	4.7	66.3	1.3	84.2	71.1	0.0	13.1
June	18.7	7.3	91.9	1.3	117.6	79.9	0.0	37.6
July	21.2	8.8	105.3	1.3	136.8	72.4	0.0	64.4
August	20.1	8.2	99.5	1.2	119.4	78.9	0.0	40.5
September	16.1	5.8	77.7	1.0	80.8	89.3	8.5	0.0
October	9.7	2.7	44.4	1.0	42.2	69.5	27.3	0.0
November	3.8	0.7	15.9	0.8	12.9	90.1	77.3	0.0
December	-2.3	0.0	0.0	0.8	0.0	89.9	89.9	0.0
Total	8.2	40.1			631.4	935.5	459.8	155.6

619.3 316.3 mm

NOTES: 1) I = Heat Index

E = Evapotranspiration

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Data from the Strathroy climatological station located at latitude 42°57'N, longitude 81°39'W.

Table C-3
1981-2010 Water Budget (Thornthwaite Method)
Twin Creeks Environmental Centre - Annual Monitoring Program

Month	Mean Temperature	ı	E	Daylight Factor	E ADJ.	Mean Precipitation	Surplus	Deficit
(1981 - 2010)	(°C)		(mm)	ractor	(mm)	(mm)	(mm)	(mm)
January	-4.9	0.0	0.0	0.8	0.0	74.3	74.3	0.0
February	-4.2	0.0	0.0	0.8	0.0	65.4	65.4	0.0
March	0.8	0.1	2.9	1.0	3.0	65.2	62.3	0.0
April	7.8	1.9	34.7	1.1	38.9	81.7	42.8	0.0
Мау	14.0	4.7	66.5	1.3	84.5	79.2	0.0	5.3
June	19.0	7.5	93.5	1.3	119.7	78.2	0.0	41.5
July	21.4	9.0	106.5	1.3	138.5	75.6	0.0	62.9
August	20.5	8.4	101.5	1.2	121.7	73.1	0.0	48.6
September	16.6	6.1	80.3	1.0	83.5	94.1	10.6	0.0
October	10.0	2.8	45.7	1.0	43.5	83.0	39.5	0.0
November	4.2	0.8	17.5	0.8	14.2	98.5	84.4	0.0
December	-2.2	0.0	0.0	0.8	0.0	90.9	90.9	0.0
Total	8.6	41.4			647.4	959.2	470.1	158.3

619.3 Surplus 339.9 mm

NOTES: 1) I = Heat Index

E = Evapotranspiration

2) (°C) - Represents calculated mean of daily temperatures for the month.

3) Data from the Strathroy climatological station located at latitude 42°57'N, longitude 81°39'W.

Table C-4
2018 Water Budget (Thornthwaite Method)
Twin Creeks Environmental Centre - Annual Monitoring Program

Month	Mean Temperature	ı	E	Daylight Factor	E ADJ.	Total Precipitation	Surplus	Deficit
	(°C)		(mm)	ractoi	(mm)	(mm)	(mm)	(mm)
January	-6.4	0.0	0.0	0.8	0.0	108.6	108.6	0.0
February	-2.6	0.0	0.0	0.8	0.0	94.2	94.2	0.0
March	-1.7	0.0	0.0	1.0	0.0	63.6	63.6	0.0
April	3.3	0.5	12.0	1.1	13.5	100.6	87.1	0.0
May	16.7	6.2	79.0	1.3	100.3	71.6	0.0	28.7
June	19.3	7.7	93.4	1.3	119.6	115.2	0.0	4.4
July	21.5	9.0	105.9	1.3	137.7	59.4	0.0	78.3
August	21.8	9.2	107.6	1.2	129.1	159.0	29.9	0.0
September	18.1	7.0	86.7	1.0	90.2	101.4	11.2	0.0
October	9.8	2.8	42.5	1.0	40.4	102.2	61.8	0.0
November	1.0	0.1	3.0	0.8	2.4	108.6	106.2	0.0
December	0.0	0.0	0.0	0.8	0.0	85.2	85.2	0.0
Total	8.4	42.5			633.1	1169.6	647.8	111.3
						622 1		

633.1 olus 536.5 mm

NOTES: 1) I = Heat Index

- 2) (°C) Represents calculated mean of daily temperatures for the month.
- 3) Data from the Strathroy Mullifarry climatological station. Data collection initiated in 1998.
- 4) NA denotes data not available.
- 5) Italics denotes presented values based on incomplete data.

Table C-5 **2019 Water Budget (Thornthwaite Method) Twin Creeks Environmental Centre - Annual Monitoring Program**

Month	Mean Temperature	1	E	Daylight Factor	E ADJ.	Total Precipitation	Surplus	Deficit
	(°C)		(mm)	ractor	(mm)	(mm)	(mm)	(mm)
January	-6.5	0.0	0.0	0.8	0.0	71.8	71.8	0.0
February	-4.4	0.0	0.0	0.8	0.0	82.0	82.0	0.0
March	-1.0	0.0	0.0	1.0	0.0	71.0	71.0	0.0
April	6.9	1.6	29.2	1.1	32.7	116.0	83.3	0.0
May	12.4	3.9	56.9	1.3	72.3	110.6	38.3	0.0
June	18.3	7.1	88.6	1.3	113.4	70.6	0.0	42.8
July	23.0	10.0	114.9	1.3	149.4	69.2	0.0	80.2
August	20.1	8.2	98.6	1.2	118.3	151.6	33.3	0.0
September	17.8	6.8	85.9	1.0	89.3	45.4	0.0	43.9
October	11.1	3.3	50.2	1.0	47.7	133.6	85.9	0.0
November	1.1	0.1	3.6	0.8	2.9	52.4	49.5	0.0
December	0.0	0.0	0.0	0.8	0.0	33.4	33.4	0.0
Total	8.2	41.1			625.9	1007.6	548.5	166.9

625.9 381.7 mm

NOTES: 1) I = Heat Index

- 2) (°C) Represents calculated mean of daily temperatures for the month.
- 3) Data from the Strathroy Mullifarry climatological station. Data collection initiated in 1998.
- 4) NA denotes data not available.
- 5) Italics denotes presented values based on incomplete data.

Table C-6
2020 Water Budget (Thornthwaite Method)
Twin Creeks Environmental Centre - Annual Monitoring Program

Month	Mean Temperature	1	Е	Daylight Factor	E ADJ.	Total Precipitation	Surplus	Deficit
	(°C)		(mm)	ractoi	(mm)	(mm)	(mm)	(mm)
January	-1.1	0.0	0.0	0.8	0.0	128.4	128.4	0.0
February	-2.9	0.0	0.0	0.8	0.0	44.4	44.4	0.0
March	3.6	0.6	14.1	1.0	14.5	63.2	48.7	0.0
April	5.9	1.3	24.3	1.1	27.2	60.6	33.4	0.0
May	12.6	4.1	58.1	1.3	73.8	63.0	0.0	10.8
June	20.2	8.2	99.0	1.3	126.7	49.0	0.0	77.7
July	22.9	10.0	114.5	1.3	148.9	82.0	0.0	66.9
August	20.2	8.2	99.0	1.2	118.8	161.2	42.4	0.0
September	15.9	5.7	75.4	1.0	78.4	74.6	0.0	3.8
October	9.7	2.7	43.3	1.0	41.1	67.8	26.7	0.0
November	6.7	1.5	28.1	0.8	22.8	82.0	59.2	0.0
December	-0.3	0.0	0.0	0.8	0.0	90.4	90.4	0.0
Total	9.5	42.4			652.2	966.6	473.6	159.2
						652.2		

652.2 314.4 mm

NOTES: 1) I = Heat Index

- 2) (°C) Represents calculated mean of daily temperatures for the month.
- 3) Data from the Strathroy Mullifarry climatological station. Data collection initiated in 1998.
- 4) NA denotes data not available.
- 5) Italics denotes presented values based on incomplete data.

Table C-7
2021 Water Budget (Thornthwaite Method)
Twin Creeks Environmental Centre - Annual Monitoring Program

Month	Mean Temperature	ı	E	Daylight Factor	E ADJ.	Total Precipitation	Surplus	Deficit
	(°C)		(mm)	ractor	(mm)	(mm)	(mm)	(mm)
January	-2.7	0.0	0.0	0.8	0.0	35.8	35.8	0.0
February	-6.9	0.0	0.0	0.8	0.0	63.2	63.2	0.0
March	4.2	0.8	16.8	1.0	17.2	36.2	19.0	0.0
April	8.2	2.1	35.6	1.1	39.9	40.4	0.5	0.0
Мау	12.6	4.0	57.9	1.3	73.6	41.6	0.0	32.0
June	20.8	8.6	102.6	1.3	131.4	125.6	0.0	5.8
July	20.9	8.7	103.2	1.3	134.2	100.2	0.0	34.0
August	22.2	9.5	110.2	1.2	132.3	134.6	2.3	0.0
September	17.2	6.5	82.5	1.0	85.9	191.8	105.9	0.0
October	13.9	4.7	64.9	1.0	61.7	126.4	64.7	0.0
November	3.2	0.5	12.2	0.8	9.9	71.4	61.5	0.0
December	1.6	0.2	5.4	0.8	4.2	61.2	57.0	0.0
Total	9.6	45.6			690.2	1028.4	409.9	71.7

690.2 Water Surplus 338.2

mm

NOTES: 1) I = Heat Index

- 2) (°C) Represents calculated mean of daily temperatures for the month.
- 3) Data from the Strathroy Mullifarry climatological station. Data collection initiated in 1998.
- 4) NA denotes data not available.
- 5) Italics denotes presented values based on incomplete data.

Table C-8
Precipitation Event Monitoring - RWDI Envision Rain Gauge Report
Twin Creeks Environmental Centre

Year:						20	021					
Month:	January	February	March	April	May	June	July	August	September	October	November	December
Day						Amount	Recorded	-	-			
1	3.4						0.2					
2	3.2				1.2	13.4				6.2		
3	3.2				4.6					25.4		
4		1.0			0.4				7.2			
5	0.4			3.0	0.2							14.8
6					1.2		7.2	0.2	0.4			
7	1.0				2.8		8.0		27.4	0.8		
8				9.6		12.6	21.8					0.8
9		2.0						0.4		0.2	1.0	
10				3.8			2.8			9.8		20.0
11				3.4			6.0	6.0		0.8	13.6	
12				2.2		3.8	0.6	5.8	11.8			
13						7.8	16.8	0.4	3.8			
14		0.8						0.2	7.0	15.6	17.2	
15	2.0	0.4		3.4						18.2	3.2	0.8
16	0.2		1.2	0.4			4.0	1.4				
17	0.4		0.2			1.6	1.0	1.0			4.8	
18	1.0					6.8						2.6
19	0.2	1.2		0.4		0.4						
20				1.2		20.0	3.8		3.2	0.2	0.8	1.6
21	0.2	0.6		3.2			1.0		24.8	10.0	3.2	
22		0.6			19.2		0.2		106.0			
23		3.0							1.4	1.0		
24			0.4				7.2	1.0		2.6	7.6	7.6
25	0.2		28.0		1.6	19.2	2.8		3.2	15.4	7.4	0.4
26	2.2	3.6		0.2	4.0					5.2		
27	0.6	0.2	9.6		5.8		7.0	13.8		0.2		0.6
28		0.4	3.2		9.8	2.8		0.8		0.4	3.6	
29	0.2			6.0		16.6	17.4			16.0	7.6	2.4
30	0.2		0.6			14.0				0.4	3.4	
31												
Subtotals	18.6	13.8	43.2	36.8	50.8	119.0	107.8	31.0	196.2	128.4	73.4	51.6
										Total	87	0.6

Notes:

- 1) Units are in millimetres (mm) of liquid and/or liquid equivalent (i.e. snow melt)
- 2) Italics denotes that the climatic data from the local Strathroy-Mullifarry Climatological Station was used as the onsite rain gauge was not operational due to power failure.

Table C-9
Historical Precipitation Data Summary
Twin Creeks Environmental Centre

Year	Climatological Station Precipitation Total	On-site Precipitation Total (mm/a)
rear	(mm/a)	on-sice recipitation rotal (minut
30-Year Normal (1961-1990)	711.9	-
30-Year Normal (1971-2000)	935.5	-
30-Year Normal (1981-2010)	959.2	
1995	868.7	
1996, 1997	Complete annual data not available	-
1998	788.8	-
1999	805.1	-
2000	1,140.6	-
2001	867.2	-
2002	682.6	472.0
2003	982.8	726.7
2004	954.8	729.2
2005	898.3	577.0
2006	1,245.8	853.3
2007	804.4	699.8
2008	1,241.8	852.2
2009	1,001.8	729.1
2010	927.1	676.7
2011	1255.0	812.3
2012	860.2	592.7
2013	1,194.4	911.4
2014	895.6	829.5
2015	828.0	724.0
2016	1,012.8	816.5
2017	979.2	843.3
2018	1,169.6	951.3
2019	1007.6	808.6
2020	966.6	725.4
2021	1028.4	870.6

Notes

¹⁾ Dash (-) denotes climatologial station not operational

²⁾ On-site precipiitation data collected from the automated RWDI Envision climatological station since 2019 instead of manual rain gauge readings, as in years prior.

APPENDIX D:

Environmental Monitoring Plan Borehole Logs

BOREHOLE LOG EXPLANATION FORM

This explanatory section provides the background to assist in the use of the borehole logs. Each of the headings used on the borehole log, is briefly explained.

DEPTH

This column gives the depth of interpreted geologic contacts in metres below ground surface.

STRATIGRAPHIC DESCRIPTION

This column gives a description of the soil based on a tactile examination of the samples and/or laboratory test results. Each stratum is described according to the following classification and terminology.

Soil Clas	ssification*	<u>Terminology</u>	<u>Proportion</u>
Clay	<0.002 mm		
Silt	0.002 to 0.06 mm	"trace" (e.g. trace sand)	<10%
Sand	0.06 to 2 mm	"some" (e.g. some sand)	10% - 20%
Gravel	2 to 60 mm	adjective (e.g. sandy)	20% - 35%
Cobbles	60 to 200 mm	"and" (e.g. and sand)	35% - 50%
Boulders	>200 mm	noun (e.g. sand)	>50%

^{*} Extension of MIT Classification system unless otherwise noted.

The use of the geologic term "till" implies that both disseminated coarser grained (sand, gravel, cobbles or boulders) particles and finer grained (silt and clay) particles may occur within the described matrix.

The compactness of cohesionless soils and the consistency of cohesive soils are defined by the following:

COHESIONLESS SOIL

COHESIVE SOIL

Compactness	Standard Penetration Resistance "N", Blows / 0.3 m	Consistency	Standard Penetration Resistance "N", Blows / 0.3 m
Very Loose	0 to 4	Very Soft	0 to 2
Loose	4 to 10	Soft	2 to 4
Compact	10 to 30	Firm	4 to 8
Dense	30 to 50	Stiff	8 to 15
Very Dense	Over 50	Very Stiff	15 to 30
-		Hard	Over 30

The moisture conditions of cohesionless and cohesive soils are defined as follows.

COHESIONLESS SOILS

COHESIVE SOILS

Dry	DTPL	-	Drier Than Plastic Limit
Moist	APL	-	About Plastic Limit
Wet	WTPL	-	Wetter Than Plastic Limit
Saturated	MWTPL	-	Much Wetter Than Plastic Limit

STRATIGRAPHY

Symbols may be used to pictorially identify the interpreted stratigraphy of the soil and rock strata.

MONITOR DETAILS

This column shows the position and designation of standpipe and/or piezometer ground water monitors installed in the borehole. Also the water level may be shown for the date indicated.

•	Standpipe	Geotextile Material / Liner	주급 (FG)) (사	Granular Backfill
•	Piezometer	Borehole Seal (Bentonite Grout)		Granular (Filter) Pack
	Screened Interval	Cement Seal		Native Soil Backfill / Cave / Slough
	Borehole Seal (Peltonite, Bentonite or Hole Plug)			

Where monitors are placed in separate boreholes, these are shown individually in the "Monitor Details" column. Otherwise, monitors are in the same borehole. For further data regarding seals, screens, etc., the reader is referred to the summary of monitor details table.

SAMPLE

These columns describe the sample type and number, the "N" value, the water content, the percentage recovery, and Rock Quality Designation (RQD), of each sample obtained from the borehole where applicable. The information is recorded at the approximate depth at which the sample was obtained. The legend for sample type is explained below.

```
SS =
                                      GS =
        Split Spoon
                                              Grab Sample
ST =
       Thin Walled Shelby Tube
                                      CS =
                                              Channel Sample
                                      WS =
AS =
        Auger Flight Sample
                                              Wash Sample
                                      RC =
CC =
       Continuous Core
                                             Rock Core
             = Length of Core Recovered Per Run x 100
% Recovery
                       Total Length of Run
```

Where rock drilling was carried out, the term RQD (Rock Quality Designation) is used. The RQD is an indirect measure of the number of fractures and soundness of the rock mass. It is obtained from the rock cores by summing the length of core recovered, counting only those pieces of sound core that are 100 mm or more in length. The RQD value is expressed as a percentage and is the ratio of the summed core lengths to the total length of core run. The classification based on the RQD value is given below.

RQD Classification	<u>RQD (%)</u>
Very poor quality	< 25
Poor quality	25 - 50
Fair quality	50 - 75
Good quality	75 - 90
Excellent quality	90 - 100

TEST DATA

The central section of the log provides graphs which are used to plot selected field and laboratory test results at the depth at which they were carried out. The plotting scales are shown at the head of the column.

Dynamic Penetration Resistance - The number of blows required to advance a 51 mm diameter, 60° steel cone fitted to the end of 45 mm OD drill rods, 0.3 m into the subsoil. The cone is driven with a 63.5 kg hammer over a fall of 750 mm

Standard Penetration Resistance - Standard Penetration Test (SPT) "N" Value - The number of blows required to advance a 51 mm diameter standard split-spoon sampler 300 mm into the subsoil, driven by means of a 63.5 kg hammer falling freely a distance of 750 mm. In cases where the split spoon does not penetrate 300 mm, the number of blows over the distance of actual penetration in millimetres is shown as $\frac{xBlows}{}$

mm

Water Content - The ratio of the mass of water to the mass of oven-dry solids in the soil expressed as a percentage.

- W_P Plastic Limit of a fine-grained soil expressed as a percentage as determined from the Atterberg Limit Test.
- W_L Liquid Limit of a fine-grained soil expressed as a percentage as determined from the Atterberg Limit

 Test

REMARKS

The last column describes pertinent drilling details, field observations and/or provides an indication of other field or laboratory tests that were performed.

morrison beatty limited

OW16-5 OW16-7

CLIENT LAIDLAW WA	STE	CVTI	EMC							
•				 -	10T 20	FILE	NO4	8-00	41	
					OCATION LOT 20,				WNS	HIP
GEOLOGIST/ENGINEE	₹	WEL		D	ATE COMPLETED	FEB.	- MARCH 1	984		
DESCRIPTION	· 1 · 3		DEP m	TH ft.	WELL DETAIL	GAMMA	RAY LOG	- 	Pe	netrat Test
SEE LAST WELL LOG FOR STRATIGRAPHIC DETAIL (fold out sheet)					- 16-7]	/ 200 cour		1	ows/1
TILL (SOUTHERN) brown, silt with some clay, weathered, damp, root network TILL (SOUTHERN) grey, clay with some silt, massive, moist cohesive CLAY silty, grey, (moist), occasional fine sand laminae (saturated) SAND med-coarse, dark grey to black, saturated TILL (RANNOCH) olive grey, silt with trace clay, pebbles, occasional cobbles, moist			3 4 5 6 7 8 9	5 10 20 25 30 35	E D			20	2:	5 50 7
	上		13							

NOTES ALL WELLS ARE IN SEPARATE HOLES DEEPEST BOREHOLE CONTINUOUSLY SAMPLED

WELL TYPE, SEE CONSTRUCTION DETAILS (end of Appendix)

morrison beatty limited

OW16-5 OW16-7

CLIENT LAIDLAW WASTE S' PROJECT LANDFILL STUD'	<u>′ </u>			
GEOLOGIST/ENGINEERW	<u> </u>	ATE COMPLETED	FEB MARCH 1984	
DESCRIPTION	DEPTH m ft.	WELL DETAIL	GAMMA RAY LOG	Penetration Test
SEE LAST WELL LOG FOR STRATIGRAPHIC DETAIL (fold out sheet)		16-7 16-5	Seconds / 200 counts	Blows / f
TILL (SOUTHERN) brown, silt with some clay, weathered, damp, root network				
TILL (SOUTHERN) grey, clay with some silt, massive, moist cohesive CLAY silty, grey, (moist), occasional fine sand laminae (saturated)	3 10 4 4 15	EOH C		
SAND med-coarse, dark grey to black, saturated	7			
TILL (RANNOCH) olive grey, silt with trace clay, pebbles, occasional cobbles, moist	9 30	(D)		
	35			
NOTES ALL WELLS ARE IN SEP DEEPEST BOREHOLE CON WELL TYPE SEE CONSTRI				

BOREHOLE NO. OW16-6

PAGE 1 OF 1

PROJECT NAME:	WARWICK WELL REHABILITATION	PROJECT NO.: 02-970051.13	
CLIENT: WASTE	MANAGEMENT OF CANADA CORPORATION	DATE: SEPTEMBER 7, 2005	
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	SUPERVISOR: AAP	
GROUND ELEVATION:	240.70 m ASL	REVIEWER: JTB	

		ST				SAMPL	E		CONE PENETRATION		/ATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR	10	20 30 	REMARKS
	CLAYEY SILT TO SILTY CLAY:		HIXIII	1			 		STRENGTH	VVP	T	BOREHOLE INCLINED AT 45
	MOTTLED BROWN, CLAYEY SILT TO SILTY CLAY, DISSEMINATED FINE SAND, TRACE MEDIUM GRAYEL TO 5.0 m, FRACTURED,]			STRATIGRAPHIC DESCRIPTIO BASED ON AUGER CUTTING
	MEDIUM GRAVEL TO 5.0 m, FRACTURED, DTPL BECOMING APL AT 4.1 m. STIFF								1			AND CONTINUOUS CORE.
2	DTPL BECOMING APL AT 4.1 m, STIFF BECOMING SOFT AT 4.5 m, MASSIVE, ROOTLETS UP TO 5.0 m, NO ODOUR.			}					-			
=				_					1			
]			
]			
				}					4			
<u>-</u>				}					1			
	- 5.0 m BROWN-GREY WITH LIGHT GREY]			
	FRACTURES, APL, SOFT, MASSIVE.		 	СС			80		1			
				_					4			
6.0	BOREHOLE TERMINATED AT 6.0 m IN		4 4 4						1			
	CLAYEY SILT TO SILTY CLAY.]			
									4			
3									1			
<u>, </u>									1			
]			
									-			
0									1			
]			
									4			
									1			
2]			
									1			
]			
4									4			
									1			
]			
									1			
6							\vdash		1			
									1			
]			
_												
8									1			
]			
_									1			
_								<u> </u>	1			İ

morrison beatty limited

OW17-4 OW17-5 OW17-12

CLIENT LAIDLAW WAS	STE	SYT	EMS							FILE	NO.	400)-84	1		
PROJECT LANDFILL	ST	UDY		6	OCATIO	N _	L0	T 20,	CON	3 S	ER, W	IARWI(<u> </u>	OWN	 <u> SH</u> I	įΡ
GEOLOGIST/ENGINEER	_	WEC		D.	ATE C	OMPI	ETE	D	FEB.	<u>- MA</u>	RCH	1984				
DESCRIPTION			DEP m	TH ft.	WEL	L DE	TAIL		GAI	ММА	RAY	LOG			retra Test	
SEE LAST WELL LOG FOR STRATIGRAPHIC DETAIL (fold out sheet)					SI - 7I —	17-5		- 17-4	Seco		200	counts	s 20		ws/ 550	
TILL (SOUTHERN) brown, silt with some clay, weathered, damp, root network TILL (SOUTHERN) grey, clay with some silt, massive, moist cohesive CLAY silty, grey, (moist), occasional fine sand laminae (saturated) SAND med-coarse, dark grey to black, saturated TILL (RANNOCH) olive grey, silt with trace clay, pebbles, occasional cobbles, moist	,	A A A A A A A A A A A A A A A A A A A	3 3 4 5 6 7 8 9	10 15 20 25 30	BI TONNON TONNO TONNON TONNO TONNON TONNON TONNON TONNON TONNON TONNON TONNON TONNON TONNON T	EO(B)	<u>'</u> ' ((A) (A) (A) (A) (A) (A) (A) (A) (A) (A)								

NOTES: ALL WELLS ARE IN SEPARATE HOLES

DEEPEST BOREHOLE CONTINUOUSLY SAMPLED
WELL TYPE, SEE CONSTRUCTION DETAILS (end of Appendix)

morrison beatty limited

OW17-30

CLIENT LAIDLAW W			FILE NO400-84	1
PROJECTLANDFIL GEOLOGIST/ENGINEER			CON 3 SER, WARWICK TO FEBMARCH 1984	MN2HIL
DESCRIPTION	 DEPTH m ft	WELL DETAIL	GAMMA RAY LOG	Penetration Test
SEE LAST WELL LOG FOR STRATIGRAPHIC DETAIL (fold out sheet)		-17-30	Seconds / 200 counts	Blows / f1
TILL (SOUTHERN) brown, silt with some clay, weathered, damp, root network TILL (SOUTHERN) grey, clay with some silt, massive, moist cohesive CLAY silty, grey, (moist), occasional fine sand laminae (saturated) SAND med-coarse, dark grey to black, saturated TILL (RANNOCH) olive grey, silt with trace clay, pebbles, occasional cobbles, moist SAND mixture fine-coarse sand, gravel, dark grey to black, saturated TILL (RANNOCH) olive grey, silt with trace clay, pebbles, occasional cobbles, moist SAND mixture fine-coarse sand, gravel, dark grey to black, saturated SHALE black, minor weathering	3 10 6 20 9 30 12 40 15 50 18 60 21 70 24 80 27 90 30 100 33 110 36 120 39	でいていくりなくでいかしていいというというというというというというというというというというというというとい		

NOTES - ALL WELLS ARE IN SEPARATE HOLES

DEEPEST BOREHOLE CONTINUOUSLY SAMPLED

WELL TYPE, SEE CONSTRUCTION DETAILS (end of Appendix)

PROJECT NAME: WARWICK LANDFILL SITE PROJECT NO.: 297051.01

CLIENT: CANADIAN WASTE SERVICES INC. DATE: MARCH 2 TO 4, 1998

BOREHOLE TYPE: 108 mm ID HOLLOW STEM AUGER GEOLOGIST: JDF / JMP

GROUND ELEVATION: 241.0 m ASL REVIEWER: JTB

						AMPL			CONE		
		STRATIGRAPHY					- %		PENETRATION	WATER CONTENT %	
DEPTH	STRATIGRAPHIC DESCRIPTION	ATIG	MONITOR		ż	%		70	"N" VALUE 10 20 30	10 20 30	REMARKS
(m)		Ř	DETAILS	TYPE	N. AVTUE	% WATER	RECOVERY	RQD	 	1 1 1	-
200		₹			.UE	Ë	/ERY	(%)	SHEAR STRENGTH	⊢ W _P W _L	
	CLAYEY SILT (CON'T):		///////								RECOVERY NOT
	MEDIUM GREEN GREY, GRADING TO GREY, CLAYEY SILT, TRACE DISSEMINATED FINE			29SS	35	13			•	Ť	MEASURED. P.L. = 15.1
	SAND AND GRAVEL, FINE SANDY SILT FROM 21.3 m TO 21.5 m, HARD TO			30CC 31SS	- >50	- 14	100 50		>50		L.L = 30.1
22	VERY STIFF AT 10.2 m, BECOMING HARD AT 16.6 m, RANGING BETWEEN DTPL AND			0133							
	APL. (RANNOCH TILL)			32CC	-	-	100		1		
	(NANNOOTI TIEE)								>50		
				33SS 34CC	59 _	11 -	67 100		>50	1	P.L. = 14.0
24				3400			100				L.L = 30.4
				35SS	>50	10	100		>50		
				36CC	-	_	100				
26											
20									1		
				37SS	>50	7	70		>50	†	
27.3				38SS	>50	9	50		>50 _	1	
27.6	MEDIUM GREEN GREY TO GREY, SILT,		(沙澤)	5033							
	SOME CLAY AND SAND, SHALE FRAGMENTS, / HARD, DTPL.			39CC	_	-	90		1		
28.8			** **********************************								
	BLACK, SHALE, CLAYEY SILT INFILLED FRACTURES, FISSILE, SATURATED.										
30	BOREHOLE TERMINATED AT 28.80 m IN SHALE.										
	STALE.										
32											
					l						
34											
36											
38											
ļ											
40											
JAGGER HIMS				•							•

PROJECT NAME: WARWICK LANDFILL SITE PROJECT NO.: 297051.01

CLIENT: CANADIAN WASTE SERVICES INC. DATE: MARCH 2 TO 4, 1998

BOREHOLE TYPE: 108 mm ID HOLLOW STEM AUGER GEOLOGIST: JDF / JMP

GROUND ELEVATION: 241.0 m ASL REVIEWER: JTB

		SI			S	AMPL	E		CONE PENETRATION	WATER	
DEPTH	STRATIGRAPHIC DESCRIPTION	TRATIGRAPHY	MONITOR		ż	%	% Б		"N" VALUE	CONTENT %	REMARKS
(m)		GRA	DETAILS	TYPE	ı' VALUE	6 WATER	ECO	RQ D	10 20 30	10 20 30	
0		폭		'''	E	ΤĘŖ	RECOVERY	(%)	SHEAR STRENGTH	⊢—— W _P W _L	
	CLAYEY SILT TO SILTY CLAY:		///////								BOREHOLE
	MOTTLED BROWN TO 4.4 m, BECOMING GREY, CLAYEY SILT TO SILTY CLAY, TRACE			1CC			67				CONTINUOUSTLY SAMPLED, SHELBY TUBE SOIL
	DISSEMINATED FINE SAND AND GRAVEL, FINE SAND LENS (<10 mm) AT 3.4 m,										DESCRIPTIONS COMPLETED BY LABORATORY.
2	FINE TO MEDIUM SAND LENS (<10 mm) AT 6.8 m, DISCOLOURED FRACTURES TO			255	40	19	67		40 🛌	•	
	4.6 m, SMALL VESICLES 6.7 m TO 7.3 m, HARD TO STIFF AT 4.6 m, BECOMING HARD			3CC	_		100				
	AT 6.8 m, DTPL GRADING TO WTPL. (SOUTHERN TILL)			4SS	45	21	85		45		
4				5CC	-	-	100				
4.4				6SS	12	22					RECOVERY NOT
4.6				7CC	-	-	100				MEASURED.
6				855	11	21	75				
										\	D. 400
				9SS 10ST	49 _	22 30	100 92		49 -	1	P.L. = 18.2 L.L = 33.8
8				11CC	-	-	50				
8.4	21.14714 2117			12CC		15	100			1	
	CLAYEY SILT: MEDIUM GREEN GREY, GRADING TO GREY,										P.L. = 17.3 L.L = 34.0
	CLAYEY SILT, TRACE DISSEMINATED FINE SAND AND GRAVEL, FINE SANDY SILT FROM 21.3 m TO 21.5 m, HARD TO VERY STIFF			1388	40	13	83		40 -/	•	
10	AT 10.2 m, BECOMING HARD AT 16.6 m, RANGING BETWEEN DTPL AND APL.			14CC	-	14	50		/	†	
	(RANNOCH TILL)										
				15SS	24	15	100			•	
				16CC	_	-	60				
12				17SS	20	16	100			•	
				18ST		18	92 87			1	
14				20SS	16	17	100			•	
				21CC	-		80				
				2255	18	17	_			•	RECOVERY NOT
16				23CC	_	-	92				MEASURED.
]					\		
				2455	26	16				•	RECOVERY NOT MEASURED.
				25CC	-		60				
18				\vdash					$ \ \ \ \ $		
				2655	36	17	100			•	NO RECOVERY. STONE BLOCKING SAMPLER.
				27CC	_	_	0				SESONINO SAWI LEN
20				28SS	38	13	90			Į.	
LAGGER HIMS L	•	•		•	•			•			•

BOREHOLE - OW22A-10

PRE	JECT	T NAME:WARWICK LAN	DFI	LL SITE						_ PROJE	ECT ND.:	2970051.13	,
CLI	ENT:	WASTE MANAGEMENT OF (CAN	ADA COR	RPDF	RAT	IΠN			_ DATE:	MARCH	15, 2004	
ВПР	REHOL	LE TYPE: <u>108 mm ID HOL</u>	LUW	/ STEM	AUG	ER							
GRE	IUND	ELEVATION: 243.86 m A	.S.L					GE	EDLI	OGIST: B	JL	REVIEWER:	JTB
			ST			S	AMPLE			CONE PENETRATION	WATER CONTENT %		
D	EPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		z,	%	% R	1	"N" VALUE	10 20 30	REMARKS	
			RAPHY	DETAILS	TYPE	VALUE	WATER	RECOVERY	RQD (10 20 30		
0						'''		Ŕ	(%)	SHEAR STRENGTH	W _P W _L		
		CLAYEY SILT TO SILTY CLAY: CLAYEY SILT TO SILTY CLAY; LIGHT BROWN;											
		DISSEMINATED FINE SAND AND FINE TO MEDIUM GRAVEL; WTPL BECOMING DTPL AT 0.3 m; STIFF; NO ODOURS OR VISIBLE STAINING.											
2													
	l .												
4	3./	WASTE:											
		WASTE; DRY BECOMING SATURATED AT 6.1											
	l	m.											
6													
		CLAYEY SILT TO SILTY CLAY: CLAYEY SILT TO SILTY CLAY; DARK GREY			155	10		30					
8		BECOMING MEDIUM GREY AT 8.5 m; DISSEMINATED FINE SAND AND FINE TO											
	8.4 8.7	MEDIUM GRAVEL; WTPL; STIFF; DECAY ODOUR AND STAINING TO 8.5 m.			2SS 3SS	8 12		25 30		8			
	l	BOREHOLE TERMINATED AT 8.7 m IN CLAYEY SILT TO SILTY CLAY.											
10													
12													
14													
16													
18													

RWDI 4510 RHODES DRIVE, UNIT 530 WINDSOR, ONTARIO N8W 5K5

BOREHOLE LOG OW39A-26

PAGE 1 OF 2

CLIEN	T Waste	Manag	gement of Canada			PROJECT NAME OW39 Nest Drilling		_
PROJE	CT NUM	BER	1701237			PROJECT LOCATION Twin Creeks La	ndfill, Wat	ford, ON.
DATE	STARTED	17	7-APR-17	COMPLETED	18-APR-17	GROUND ELEVATION 234.9 mASL H	OLE SIZE	101.6 mm
DRILL	ING CON	ITRAC	TOR DIRECT EN	VIRONMENTAL	DRILLING INC.			
DRILL	ING MET	HOD	HOLLOW STEM A	UGER				
LOGG	ED BY	HF		CHECKED BY	_			
NOTES	5							
DEPTH (m)	SAMPLE TYPE NUMBER	RECOVERY %	REMARKS	GRAPHIC		RIAL DESCRIPTION		WELL DIAGRAM
			Stratigraphy amended from original OW39-26 borehole log by Jagger Hims Limited (1998)	7.3 8.2 9 8.2 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Mottled brown and glayey silt to silty clay ilty fine sand layers a ayer from 2.7 m to 4 to 4.3 m, very stiff at a clayer silt to silt irey, clayey silt to silt irey, clayey silt to silt irey, clayey silt to silt iravel, very stiff WTPlayer, very stiff with iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, and iravel, iravel, iravel, and iravel, irav	Y CLAY (Southern Till) rey to 1.4 m. Brown becoming grey at 4.3, , trace disseminated fine sand and gravel, at 1.5 m to 1.6 m and 1.9 m to 2.0 m. Sand .0 m, roolets to 1.4 m, discoloured fractures 5.3 m, WTPL becoming APL at 3.0 m. Y CLAY Cy clay with sand pockets, WTPL. Y CLAY (Southern Till) Ty clay, trace disseminated fine sand and L grading to DTPL.	227.6	Monitor constructed of 51 mm ID PVC screen with steel protective casing. → Seal: Hydrated bentonite chips.

RWDI 4510 RHODES DRIVE, UNIT 530 WINDSOR, ONTARIO N8W 5K5

BOREHOLE LOG OW39A-26

PAGE 2 OF 2

CLIEN	T Waste	Manag	gement of Canada			PROJECT NAMEC	W39 Nest Drilli	ng	
PROJE	CT NUM	BER	1701237			PROJECT LOCATION	Twin Creeks	Landfill, W	/atford, ON.
DATE	STARTED	<u> 17</u>	7-APR-17	COMPLETE	D 18-APR-17	GROUND ELEVATION _	234.9 mASL	HOLE SIZ	E 101.6 mm
DRILL	ING CON	TRAC	TOR DIRECT EN	VIRONMENT	AL DRILLING INC.				
			HOLLOW STEM A						
		HF		CHECKED E	BY <u>-</u>				
NOTE	S								
(m)	SAMPLE TYPE NUMBER	RECOVERY %	REMARKS	GRAPHIC LOG	МАТЕР	RIAL DESCRIPTION			WELL DIAGRAM
24 26			Stratigraphy amended from original OW39-26 borehole log by Jagger Hims Limited (1998)	24.4 25.4 25.6	fine sand and gravel, stiff to hard about 17 Brown-grey clayey sa trace gravel, very sof	ch Till) (con't) rading to grey, clayey silt, trace vessicles from 23.8r 0 m. Ranging from DTPL nd to sandy clay with dissit/loose. Saturated, very we self, some disseminated. Broken shale and fissile leteration.	n to 24. m, very to APL. eminated sand et, runny.	210.5 with 209.5	Seal: Hydrated bentonite chips. Borehole Seal Filter pack: #2 sand.
						Refusal at ~ 25.6 m depth			

1 1 2 2 2 3 3 3 4 Sand pack: Solve uses immediate very line grave. Art. sun becoming immated degrees degrees → Hole plug → Baked native clay → Sand pack: No. 2 slica sand 51 mm diameter we constructed protective casing with well screen.	1		350 Wo Guelph		n Road West			PAGE 1 OF
PROJECT NUMBER 1401007.5 DATE STARTED 10/1/14 COMPLETED 10/1/14 GROUND ELEVATION 238.13 m HOLE SIZE 152 mm GROUND WATER LEVELS: DRILLING CONTRACTOR Direct Environmental Drilling Inc. DRILLING METHOD 165 mm Solid Stem Auger LOGGED BY PEJI-HF CHECKED BY B.I. AT TIME OF DRILLING NOTES Depth is compensated for well angle. MATERIAL DESCRIPTION WELL DIAGRAM MATERIAL DESCRIPTION WELL DIAGRAM WELL DIAGRAM WELL DIAGRAM Borehole inclined at 4 degrees 2.7 m. Borehole gravel, APL, stiff becoming firm at 2.7 m. Borehole inclined at 4 degrees		INCERS S			ent of Canada Corporation	PROJECT NAME OW40D-4 Relocati	ion	
DATE STARTED 10/1/14 COMPLETED 10/1/14 GROUND ELEVATION 238.13 m HOLE SIZE 152 mm DRILLING CONTRACTOR Direct Environmental Drilling Inc. DRILLING METHOD 165 mm Solid Stem Auger LOGGED BY PEJ/HF CHECKED BY BUL AT TIME OF DRILLING								
DRILLING METHOD 165 mm Solid Stem Auger LOGGED BY PEJIFF CHECKED BY BJL AT END OF DRILLING NOTES Depth is compensated for well angle. AFTER DRILLING AFTER DRILLING AFTER DRILLING AFTER DRILLING MATERIAL DESCRIPTION WELL DIAGRAM WELL DIAGRAM Silty Clay to Clayey Silt with disseminated fine sand, trace rootlets, rusty to grey fractures, some dissminated very fine gravel, APL, stiff becoming firm at 2.7 m. Borehole inclined at 4 degrees Thole plug Borehole inclined at 4 degrees Hole plug Borehole inclined at 4 degrees Borehole inclined at 4 degrees Hole plug								
NOTES Depth is compensated for well angle. AFTER DRILLING AFTER DR								
NOTES Depth is compensated for well angle. AFTER DRILLING WELL DIAGRAM WELL DIAGRAM Silty Clay to Clayey Silt Mottled brown-grey silty clay to clayey silt with disseminated fine sand, trace rootlets, rusty to grey fractures, some dissminated very fine gravel, APL, stiff becoming firm at 2.7 m. Borehole inclined at 4 degrees Hole plug	DRILLI	NG MET	HOD	165 r	nm Solid Stem Auger	AT TIME OF DRILLING		
MATERIAL DESCRIPTION WELL DIAGRAM Sitty Clay to Clayey Sitt Mottled brown-grey sitly clay to clayey sit with disseminated fine sand, trace rootlets, rusty to grey fractures, some dissminated very fine gravel, APL, stiff becoming firm at degrees Hole plug Hole plug	LOGGE	ED BY _	PEJ/H	F	CHECKED BY BJL	AT END OF DRILLING		
Silty Clay to Clayey Silt Mottled brown-grey silty clay to clayey silt with disseminated fine sand, trace rootlets, rusty to grey fractures, some dissminated very fine gravel, APL, stiff becoming firm at 2.7 m. Borehole inclined at 4 degrees Hole plug	NOTES	_ Depth	is cor	npensa	ated for well angle.	AFTER DRILLING		
Mottled brown-grey sitly clay to clayey silt with disseminated fine sand, trace rootlets, rusty to grey fractures, some dissminated very fine gravel, APL, stiff becoming firm at degrees Hole plug Baked nativ clay	DEPTH (m)	SAMPLE TYPE NUMBER		GRAPHIC LOG	MATERIAL	. DESCRIPTION		WELL DIAGRAM
No. 2 silica sand S1 mm diameter we constructed PVC with st protective casing with well screen slot size 10. Refusal at 4.31 meters. Borehole terminated at 4.3 meter depth.	2				Mottled brown-grey silty clay to clayer rusty to grey fractures, some dissmin	y silt with disseminated fine sand, trace rootlets, ated very fine gravel, APL, stiff becoming firm at		inclined at 45 degrees Hole plug Baked native clay Sand pack:
Refusal at 4.31 meters. Borehole terminated at 4.3 meter depth.	D4.GPJ DAIA IEMPLAI	CC	100					No. 2 silica sand 51 mm diameter well constructed of
Borehole terminated at 4.3 meter depth.	4		100			cal at 4.31 meters	235.08	protective casing with
	NEKAL BH / 1P / WE							

BOREHOLE NO. OW40A-7

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS / WARWICK LANDFILL PROJECT NO.: 02-970051.20

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION DATE COMPLETED: Oct 10, 2008

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER SUPERVISOR: BJL

GROUND ELEVATION: 239.2 mASL REVIEWER: PEJ

		STI				AMPLI	Ε		CONE PENETRATION	WATE	R	UTM CO-ORDINATES UTM Zone: 17 NAD: 83
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD ("N" VALUE 10 20 30	10 20		Easting: <u>428873</u> Northing: <u>4757002</u>
0.0		PHY		E	뜶	FR	VERY	(%)	SHEAR STRENGTH	l	 WL	REMARKS
0.3 — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 — 1.0 — 1.1 — 1.1 — 1.1 — 1.2 — 1.3 — 1.4 — 1.5 —	TOPSOIL. DARK BROWN, SILTY CLAY TO CLAYEY SILT TOPSOIL, TRACE MEDIUM GRAVEL AND ROOTLETS, HOMOGENOUS STRUCTURE, DAMP, FIRM. SILTY CLAY TO CLAYEY SILT: MOTTLE BROWN-GREY SILTY CLAY TO CLAYEY SILT, BECOMING BROWN AT 2.2 m THEN GREY AT 3.8 m, WITH DISSEMINATED FINE SAND, RUSTY TO GREY FRACTURES TO 3.2 m, SOME VERY FINE TO DISSEMINATED SAND AND GRAVEL, APL, STIFF BECOMING FIRM AT 4.4 m (SOUTHERN TILL, ACTIVE AQUITARD). SILTY CLAY TO CLAYEY SILT: GREY SILTY CLAY TO CLAYEY SILT WITH LAMINATED FINE SILTY SAND LAYERS, WITHIN THE SILTY CLAY: TRACE FINE GRAVEL, MASSIVE, APL, VERY STIFF; WITHIN THE SILTY SAND: VERY FINE, MOIST, COMPACT (INTERBEDDED SILT AND CLAY). BOREHOLE TERMINATED AT 6.9 m IN SILTY CLAY TO CLAYEY SILT.			SS1	17		88		0			WATER LEVEL NOTED AT 4.9 m BELOW GROUND SURFACE UP- COMPLETION CLAY BACKFILL WAS USED TO SEAL ABOVE THE FILTER PACK BOREHOLE TERMINATED AT 6.1 IN SILTY CLAY TO CLAYEY SILT

BOREHOLE NO. OW40A-28

PAGE 1 of 2

PROJECT NAME: TWIN CREEKS / WARWICK LANDFILL PROJECT NO.: 02-970051.20

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION DATE COMPLETED: Oct 10, 2008

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER SUPERVISOR: BJL

GROUND ELEVATION: 238.2 mASL REVIEWER: PEJ

	ELEVATION: 238.2 mASL			······						EWER: _P	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		ST				SAMPL	E		CONE PENETRATION	WATER	UTM CO-ORDINATES
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	10 20 30	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>428874</u> Northing: <u>4756999</u>
0.0		=			m	70	ΕRΥ		SHEAR STRENGTH	W _P W _L	REMARKS
0.3	TOPSOIL: DARK BROWN, SILTY CLAY TO CLAYEY SILT TOPSOIL, TRACE MEDIUM GRAVEL AND ROOTLETS, HOMOGENOUS STRUCTURE, DAMP, FIRM.			SS1	6		63				
	SILTY CLAY TO CLAYEY SILT: MOTTLE BROWN-GREY SILTY CLAY TO CLAYEY SILT, BECOMING BROWN AT 2.2 m THEN GREY AT 3.8 m, WITH DISSEMINATEDFINE SAND, RUSTY TO			SS2	12		63				
2.0	GREY FRACTURES TO 3.2 m, SOME VERY FINE TO DISSEMINATED SAND AND GRAVEL, APL, STIFF BECOMING FIRM AT 4.4 m (SOUTHERN TILL,			SS3	15		100				
.0	ACTIVE AQUITARD).			SS4	16		100		**************************************		·
			X	SS5	14		100				WATER LEVEL NOTED AT 3.5 n BELOW GROUND SURFACE UP
.0				SS6	8		46				COMPLETION
5.0				SS7	6		100				
.0				SS8	5		100				
6.5	SILTY CLAY TO CLAYEY SILT:			SS9	19		100				
6.8	GREY SILTY CLAY TO CLAYEY SILT WITH LAMINATEDFINE SILTY SAND LAYERS, WITHIN THE SILTY CLAY: TRACE FINE GRAVEL, MASSIVE, APL, VERY SIFF; WITHIN THE SILTY SAND: VERY FINE, MOIST, COMPACT (INTERBEDDED SILT AND CLAY).			SS10	16		63				
1.0	SILTY CLAY TO CLAYEY SILT: GREY SILTY CLAY TO CLAYEY SILT WITH OCCASIONAL VERY FINE GRAVEL BECOMING			SS11	12		100				
0.0	TRACE MEDIUM GRAVEL AT 7.6 m, THEN TRACE COARSE GRAVEL AT 9.8 m, MASSIVE, APL BECOMING DTPL AT 12.9 m, THEN APL AT 13.6 m, VERY STIFF BECOMING STIFF AT 7.6 m.			SS12	8		100				
				SS13	11		92				
0.0				SS14	9		100				
1.0				SS15	8		100				
2.0				SS16	10		100				
				SS17	11		100				
3.0				SS18	13		100				
4.0				SS19	9		100				
				,							
5.0	 ns Limited	1999	<u> 1717</u>	SS20	5	<u></u>	100	<u></u>			

BOREHOLE NO. OW40A-28

PAGE 2 of 2

PROJECT NAME: TWIN CREEKS / WARWICK LANDFILL

PROJECT NO.: 02-970051.20

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION

DATE COMPLETED: Oct 10, 2008

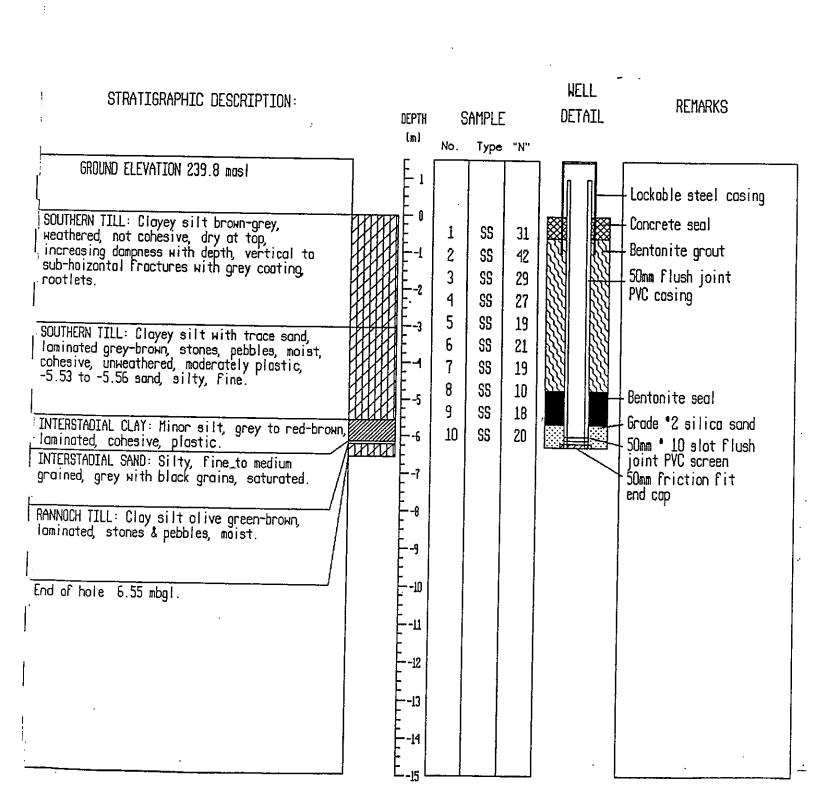
BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER

SUPERVISOR: BJL

GROUND ELEVATION: 238.2 mASL

REVIEWER: PEJ

		ST				SAMPLI	E		CONE PENETRATION	WATER	UTM CO-ORDINATES
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	10 20 30	UTM Zone: <u>17</u> NAD: <u>83</u> Easting: <u>428874</u> Northing: <u>4756999</u>
15.0		\ \ \				٠,	RY		SHEAR STRENGTH	W _P W _L	REMARKS
16.0	SILTY CLAY TO CLAYEY SILT: CONTINUED.										
				SS21	6		100				_
17.0	SILTY CLAY TO CLAYEY SILT: DARK GREY TO OLIVE GREEN SILTY CLAY TO			SS22	10		88				
18.0	CLAYEY SILT WITH TRACE TO SOME VERY FINE TO COARSE SAND AND GRAVEL, HOMOGENOUS, APL TO DTPL, STIFF BECOMING VERY STIFF AT 17.4 m, THEN BECOMING STIFF AT 21.3 m, VERY STIFF AT 22.9 m, AND HARD AT 25.9 m.			SS23	16		100				, , , , , , , , , , , , , , , , , , ,
19.0				SS24	20		79				
20.0				SS25	15		100				·
21.0				SS26	13		100				
22.0				3320	13		100				
24.0				SS27	26		100				
25.0				SS28	21		100				
26.0				SS29	34		100				CLAY BACKETT WAS USED TO
27.0				0000			24				CLAY BACKFILL WAS USED TO SEAL ABOVE THE FILTER PACK
28.0	SHALE: BLACK, LAMINATED DARK AND LIGHT LAYERS, FRACTURED/WEATHERED, SATURATED, SOFT ROCK (INTERFACE AQUIFER). BOREHOLE TERMINATED AT 28.0 m IN SHALE.			SS30			21				
29.0										*	
30.0	ls Limited										


CLIENT: Laidlaw Waste Systems

PROJECT: Warwick Landfill

LOCATION: Warwick Township, Lot 20, Conc.3

GEOLOGIST/ENGINEER: KPK

DATE COMPLETED: November 6, 1990

CLIENT: Laidlaw Waste Systems [][M 24729-016 PROJECT: Worwick Landfill LOCATION: Warwick Township, Lot 20, Conc. 3 GEOLOGIST/ENGINEER: KPK DATE COMPLETED: NOVEMBER 7, 1990 SAMPLE WELL STRATIGRAPHIC DESCRIPTION REMARKS DETAIL DEPTH (m) No. ⊢ "N" Lockable steel casing Gas probe GROUND ELEVATION 239.9 masl Concrete seal OUTHERN TILL: Weathered clayey silt brown/grey, mottled, damp, stiff, stones, pebbles, some vertical to sub-horizontal fractures, Bentonite seal SS | 19 1 2 SS 36 Grade * 3 Silica sand linor oxidization in fractures. 3 SS 25mm PVC casing, hand slotted with filter wrap: 32 19 4 SS SS 20 5 25mm end cap OUTHERN TILL: Clayey silt, mossive, moist rirm, stones and pebbles, decrease in fracture frequency, some clay infilling 25 SS 50mm casing 7 SS 19 **In** fractures. SS 8 10 Native backfill INTERSTADIAL CLAY: Minor silt, grey/brown with SS 14 Bentonite seal pinor reddish laminations, firm, maist to wet, 10 SS 24 ohesive, plastic. Grade *2 Silica sand INTERSTADIAL SAND, SILT, CLAY: Brown/grey, pominated, saturated. -? 50mm *10 Slot Flush Joint PYC Screen ANNOCH TILL: Clay/silt, alive green/grey, large stones, firm, moderately plastic & pohesive, moist. -8 End cap Cave in NO OF HOLE 6.70m. - -9 -10 -11 --12 -13 -14

BOREHOLE NO. OW49-29

PAGE 1 of 2

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 13, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 242.4 mASL REVIEWER: PEJ

		1						en service de la constante				
		TS				5	AMPLI	E	,	CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY		IITOR AILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 I I I SHEAR STRENGTH	10 20 30	REMARKS
0.1	AGGREGATE FILL: SURFICIAL LAYER OF CRUSHED AGGREGATE FILL.	m	N		SS1	8	18.2	93		•	•	
1.0	TOPSOIL: DARK BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, TRACE MEDIUM GRAVEL, DAMP, FIRM, TRACE ROOTLETS.				SS2	14	18.8	93				
0	CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH GREY FRACTURES FROM 1.1 m THEN BROWN AT 2.3 m BECOMING GREY AT 5.3 m, CLAYEY SILT TO				SS3	32	16.8	97			•	
	SILTY CLAY WITH DISSEMINATED FINE SAND AND FINE TO MEDIUM GRAVEL, GREY FRACTURES FROM 1.5 TO 4.6 m, DTPL BECOMING WTPL AT 3.0 m, THEN DTPL AT 3.8 m BECOMING WTPL AT 5.3 m,				SS4	45	18.6	93		4 <u>5</u>		
.0	STIFFBECOMINGHARD AT 1.5 m THEN VERY STIFF AT 3.8 m BECOMING STIFF AT 4.6 m TRACE ROOTLETS.				SS5	54	22.6	60		54	•	
.0_					SS9	11	22.2	12			•	
					SS6	27	21.9	93		>	♦	
5.0					SS7	12	25.4	93			•	
.0					SS8	7	21	93		•		
.0_					SS10	14	26.2	97		•	•	
3.0					SS11	8	19.9	97			•	
9.1					SS12	13	19.5	90			6	
9.4	SILT: BROWN SILT, MOIST, DENSE. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH				SS13	49	12.1	93		4 <u>9</u>		
	DISSEMINATEDFINE SAND AND GRAVEL AND SILT NODULES (2 cm IN DIAMETER) FROM 10.1 TO 10.3 m, DTPL BECOMING APL AT 13.0 m.				SS14	36	12.6	87		4	0	
1.0					SS15	36	12.8	93		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
2.0					SS16	40	15.3	97				
3.0					SS17	18	18.9	100 '			•	
3-444.444.					SS18	15	16.9	100		•	•	
4.0					SS19	19	14.6	107				
5.0			M		SS20	15	16.9	100				

BOREHOLE NO. OW49-29

PAGE 2 of 2

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 13, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 242.4 mASL REVIEWER: PEJ

				1					1		1
		ST				SAMPL	E		CONE PENETRATION	WATER	
DEDTIL		STRATIGRAPHY					%		"N" VALUE	CONTENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	I GF	MONITOR DETAILS		z	% v	REC	R	10 20 30	10 20 30	REMARKS
		AP		TYPE	N VALUE	% WATER	RECOVERY	RQD (%)			
15.0		=			m	岁	RY	5	SHEAR STRENGTH	W _P W _L	
	CLAYEY SILT TO SILTY CLAY:CONTINUED.		7117								
									56		
				SS21	56	16.2	113		-		
16.0											
				SS22	28	17.4	113		9	4	
17.0				SS23	26	21.9	107				
	SAND: GREY FINE SAND, WELL SORTED, WET, COMPACT.					25			1	I	
and the second second second	,,,,										
18.0				SS24	21	19.5	107			P	
				SS25	37	16.2	107			•	
19.0											
				SS26	60	19.7	100		60		
				0023		10	100				
20.0											
20.1	CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH			SS27	18	16.5	93			•	•
	DISSEMINATED FINE SAND AND GRAVEL WITH										
21.0	SOME SATURATED SILT NODULES (3 cm IN DIAMETER) FROM 21.3 TO 21.6 m, WITH COARSE			SS28	64	14.7	97		<u>64</u> ⊳	•	
	SHALE CLASTS FROM 22.9 TO 25.0 m, APL BECOMING DTPL AT 22.1 m, THEN APL AT 25.6 m,										
	HARD BECOMING VERY STIFF AT 23.5 m THEN HARD AT 23.8 m.			SS29	58	13.4	100		58		
22.0	TIAND AT 23.8 III.						,				
									60		
				SS30	60	9.9	100		500	•	
23.0									62		
2				SS31	62	9.3	83		62	•	
				SS32	26	12	108			•	
24.0				SS33	50	9.8	92		50		
2				0000	30	3.0	32				
É				SS34	55	9.1	83		5 <u>5</u>		
25.0											
4		MM		SS35	48	9.6	92		48,	•	
25.0 25.0 26.0 27.0 27.7 28.0 28.0 28.7 28.7 28.7											
26.0				SS36	50	14.4	100		50▶	þ	
2											
				SS37	30	14.5	104			•	
27.0			$\rightarrow \uparrow \mid \searrow \rangle$								
				SS38	34	13.9	100			7	NATIVE CLAY BACKFILL WAS
27.7				SS39	27	111	100				PLACED ABOVE THE FILTER PACK.
28.0	SAND: GREY FINE TO COARSE SAND, SUBROUNDED,			3339	32	11.1	100			1	
	POORLY SORTED, SATURATED, DENSE.	:::::	※目※								
28.5 —	SHALE:	H	⊟	SS40	25	16.2	104		6	è	,
29.0	SHALE, WEATHERED, FRACTURED, FISSILE.	4									
	BOREHOLE TERMINATED AT 28.7 m IN SHALE.										
5											
30.0								<u> </u>			
Jagger Hin	is Limited										

BOREHOLE NO. OW51A-15

PAGE 1 OF 1

PROJECT NAME:	WARWICK WELL REHABILITATION	PROJECT NO.: 02-970051.13
CLIENT: WASTE	MANAGEMENT OF CANADA CORPORATION	DATE: SEPTEMBER 7, 2005
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	SUPERVISOR: MOL
GROUND ELEVATION:	249.58 m ASL	REVIEWER: JTB

										_		_		_		
			STI				SAMPL	E		PEN	CONE IETRAT	ION		VAT		
DEP [.]		STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (' VALU 20 :				ENT %	REMARKS
0			₹			m	ν.	ÄΫ́	(%)	SHE	AR ENGTH		WP		WL	
		CLAYEY SILT TO SILTY CLAY: BROWN, CLAYEY SILT TO SILTY CLAY CAP								-						
		TO 1.8 m, DTPL.														
2	1.8	WASTE:			-											
		WASTE TO 15.2 m, SATURATED AT 13.7 m.		[+: +: -:												
					-					-						
4					-					-						
6					<u> </u>					$\left \cdot \right $						
				1.5 . 71												
8																
					SS1	32		20								
												-				
10					SS2	-		-								
					SS3	34		35								
					330	-		55								
					SS4	37		50				1				
12					SS5	. 50					>50					
					-	>50		50			750	_				
					SS6	-		-								
14					SS7	13		<5								
				±] /						
		CLAYEY SILT TO SILTY CLAY:		SS8	7		<5								
\vdash	15.2	GREY, CLAYEY SILT TO SILTY CLAY, APL TO WTPL, STIFF, MASSIVE, ORGANIC ODOUR, NO		iiiniii	SS8	10		95		\						
16	15.8	VISIBLE STAINING.			230	L										
		BOREHOLE TERMINATED AT 15.8 m IN CLAYEY SILT TO SILTY CLAY.														
\vdash																
18																
20																
			1	1	1	1	i	ı	i .					- 1	- 1	I .

BOREHOLE NO. OW54A-4

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS/WARWICK LANDFILL PROJECT NO.: 02-970051.20

CLIENT: WASTE MANAGEMENT CORPORATION OF CANADA DATE COMPLETED: May 02, 2008

BOREHOLE TYPE: 110 mm GEOPROBE SUPERVISOR: MOL

GROUND ELEVATION: 242.1 mASL REVIEWER: BJL SAMPLE CONE PENETRATION **UTM CO-ORDINATES** WATER CONTENT % STRATIGRAPHY UTM Zone: 17 NAD: 83 Easting: <u>429482</u> Northing: <u>4758435</u> "N" VALUE DEPTH MONITOR N VALUE RQD (%) RECOVERY STRATIGRAPHIC DESCRIPTION 10 20 30 TYPE WATER 10 20 30 DETAILS REMARKS . Wp WL SILTY CLAY TO CLAYEY SILT: MOTTLED BROWN-GREY BECOMING BROWN AT 1.5 m, THEN WITH GREY FRACTURES AT 3.0 m, SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED SS1 FINE SAND AND GRAVEL, TRACE ORGANIC NODULES FROM 1.5 m TO 3.0 m, FRACTURED, 1.0 BLOCKY, APL, STIFF. 2.0 SS2 3.0 SS3 4.0 SS4 5.0 5.0 DRY AT THE TIME OF COMPLETION BOREHOLE TERMINATED AT 5.0 m IN SILTY CLAY TO CLAYEY SILT. 6.0 GEOLOGIC B/W (METRIC) WITH UTM 2-97005120 BH 0W54 AND 70.GPJ JAGGER HIMS BASIC.GDT 12/19/08 7.0 8.0 9.0 10.0 11.0 12.0 13,0 14.0 북

BOREHOLE NO. OW54-10

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL_____ PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 13, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 242.4 mASL REVIEWER: PEJ

		ST				SAMPL	E		CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH	10 20 30 1 1 1 1 W _P W _L	REMARKS
	FILL: BROWN AND GREY CLAYEY SILT TO SILTY CLAY FILL WITH ORGANIC TOPSOIL NODULES (1 TO 3 cm IN DIAMETER), TRACE ROOTLETS, DISSEMINATED			SS1	18	16.9	93			9	
0.9	FINE SAND AND GRAVEL, BLOCKY, TRACE COARSE GRAVEL, DTPL TO APL, VERY STIFF TO STIFF.			SS2	15	16.6	93			•	
2.0	CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY FRACTURES TO 2.3 m THEN BROWN WITH SATURATED SILT NODULES (1 TO 3 cm IN			SS3	29	18.4	87			•	
3.0	DIAMETER) FROM 4.0 TO 4.1 m BECOMING GREY AT 5.3 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMING APL AT 5.3 m, THEN WTPL AT 6.0 m			SS4	27	20.5	93		000000000000000000000000000000000000000	•	
	AND APL AT 9.0 m, VERY STIFF BECOMING STIFF AT 5.3 m THEN VERY STIFF AT 7.6 m BECOMING STIFF AT 8.4 m.			SS5	24	20.5	97			•	
4.0				SS6	18	23.4	93			•	
5.0				SS7	20	24.1	97		Victoria de la companya del companya de la companya del companya de la companya d	•	
3.0				SS8	8	24.5	67			•	
				SS9	11	25	90				
7.0				SS10	11	17.9	93		•		
3.0				SS11	20	18.5	97			9	
0.0				SS12	10	21.3	93				NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.
9,4	SAND: BROWN, FINE SILTY SAND, POORLY SORTED,			SS13	12	19.6	90			-	
10.1	SATURATED, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, APL,			SS14	25	15.4	87				BOREHOLE WAS OVERDRILI AND SUBSEQUENTLY BACKFILLED WITH NATIVE
1.0	VERY STIFF. BOREHOLE TERMINATED AT 10.7 m IN CLAYEY SILT TO SILTY CLAY.	aassa 									CLAY SOIL BACKFILL FOR W INSTALLATION.
2.0											
3.0											
4.0											
.144144311											

BOREHOLE - OW56-4

PROJECT	NAME: WARWICK LAN	DF1	LL SITE						_ PROJE	CT NO.:	297051.04
CLIENT:	CANADIAN WASTE SERV	ICE	S INC.						_ DATE:	JANUARY	15, 1999
BOREHOL	LE TYPE: <u>108 mm ID HOL</u>		√ STEM	AUG	ER						
GROUND	ELEVATION: 240.0 m	Α.S	S.L.				GE	EOL	OGIST: _T	KC	REVIEWER: JTB
		SI			5	SAMPLI	E		CONE	WATER CONTENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		z,	%	%		"N" VALUE		REMARKS
		ŘAP	DETAILS	TYPE	VALUE	WATER	RECOVERY	RQD	10 20 30	10 20 30	
0		₹			⊨	R	/ERY	8	SHEAR STRENGTH	$ w_{\!\scriptscriptstyle P} w_{\!\scriptscriptstyle L} $	
	CLAYEY SILT TO SILTY CLAY:										BOREHOLE CONTINUOUSLY CORED FROM 2.9 m TO
	MOTTLED BROWN AND GREY; CLAYEY SILT										3.9 m.
	TO SILTY CLAY, TRACE DISSEMINATED FINE SAND; GREY FRACTURES; MASSIVE; APL; VERY STIFF.										BOREHOLE INCLINED AT 45 DEGREES.
2	(SOUTHERN TILL)										
											DEPTHS PROVIDED ARE VERTICAL DEPTHS.
				1CC			100				PUSHED STONE TO
3.9											2.9 m.
	BOREHOLE TERMINATED AT 3.9 m IN CLAYEY SILT TO SILTY CLAY.										
6											
8											
10											
12											
14											
ļ											
16											
ļ											
18											
					<u> </u>						
JAGGER H IMS LI	MITED		l		<u> </u>						

BOREHOLE - 0W57-15, 0W57-4

PROJECT NO.: 297051.04 PROJECT NAME: WARWICK LANDFILL SITE CLIENT: CANADIAN WASTE SERVICES INC. DATE: JAN 14/MAR 30, 1999 BOREHOLE TYPE: 108 mm ID HOLLOW STEM AUGER GEOLOGIST: TKC GROUND ELEVATION: 240.8 m A.S.L. REVIEWER: JTB CONF SAMPLE WATER STRATIGRAPHY PENETRATION CONTENT % DEPTH (m) % "N" VALUE 28 STRATIGRAPHIC DESCRIPTION MONITOR REMARKS RECOVERY 10 20 30 10 20 30 RQD **DETAILS** 8 SHEAR STRENGTH $\overline{W_P}$ 0 1CC 100 BOREHOLE CONTINUOUSLY CLAYEY SILT TO SILTY CLAY: CORED. MOTTLED BROWN AND GREY AT 3.5 m; MOTITED BROWN AND GREY AT 3.3 MI, CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND AND GRAVEL; MASSIVE TO BLOCKY; ROOTLETS TO 2.1 m; DISCOLOURED FRACTURES TO 4.3 m; DTPL TO APL; VERY STIFF TO STIFF. MONITORING WELLS INSTALLED IN 155 22 2 100 SEPARATE BOREHOLES. (SOUTHERN TILL) 2CC 60 SHALLOW BOREHOLE INCLINED AT 45 **2SS** 10 79 DEGREES. 3CC 100 SILT: **3SS** 100 5.3 MEDIUM GREY: SILT; UNIFORM; SATURATED; 4CC 80 LOOSE. 6 CLAYEY SILT: 4SS 100 GREY TO GREY GREEN; CLAYEY SILT, TRACE DISSEMINATED FINE SAND AND SHALE FRAGMENTS, SILT AT 8.2 m TO 8.5 m; MASSIVE; DTPL TO WTPL; FIRM TO 5CC 70 17 555 VÉRY STIFF. 100 8 (RANNOCH TILL) 60 655 12 80 7CC 60 10 10.7 SILT: 755 13 80 8CC 50 MEDIUM GREY: SILT; UNIFORM; SATURATED; COMPACT. 12 12.0 CLAYEY SILT: MEDIUM GREY; CLAYEY SILT, TRACE DISSEMINATED FINE SAND AND GRAVEL; MASSIVE; DTPL TO WTPL; STIFF TO VERY 888 13 0 NO RECOVERY 9CC 50 (RANNOCH TILL) 14 80 10CC 85 14.9 BOREHOLE TERMINATED AT 14.9 m IN CLAYEY SILT. 16 18

20

BOREHOLE - 0W58-14, 0W58-4

PROJECT NAME: WARWICK LANDFILL SITE PROJECT NO.: 297051.04 CLIENT: CANADIAN WASTE SERVICES INC. DATE: JAN 13/MAR 31, 1999 BOREHOLE TYPE: 108 mm ID HOLLOW STEM AUGER GEOLOGIST: TKC GROUND ELEVATION: 241.2 m A.S.L. REVIEWER: JTB CONE SAMPLE WATER STRATIGRAPHY PENETRATION CONTENT % DEPTH (m) "N" VALUE 28 STRATIGRAPHIC DESCRIPTION MONITOR REMARKS RECOVERY 10 20 30 10 20 30 RQD **DETAILS** 8 SHEAR STRENGTH $\overline{W_P}$ 0 BOREHOLE CONTINUOUSLY CORED. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN AND GREY, TO GREY AT MOTILED BROWN AND GREY, TO GREY AT 3.5 m; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND AND GRAVEL, SILT TO SANDY SILT AT 6.1 m TO 6.2 m; ROOTLETS TO 1.7 m; DISCOLOURED FRACTURES TO 4.7 m; MASSIVE; DTPL TO WTPL; VERY STIFF TO FIRM. MONITORING WELLS 2 1SS 88 INSTALLED IN SEPARATE BOREHOLES. 2CC 70 (SOUTHERN TILL) 255 19 100 SHALLOW BOREHOLE INCLINED AT 45 3CC 57 DEGREES. 3SS 10 5 4CC 70 6 4SS 10 5CC 70 7.6 SILT: 5SS 18 8 85 6CC GREY; SANDY SILT TO SILT; MASSIVE; SATURATED; COMPACT. 75 8.8 CLAYEY SILT: 6SS 21 80 GREY; CLAYEY SILT, TRACE DISSEMINATED FINE SAND AND GRAVEL, SILT AT 12.6 m TO 12.8 m; FISSILE SHALE FRAGMENTS; MASSIVE; DTPL TO APL; VERY STIFF TO 7CC 33 10 (RANNOCH TILL) **7SS** 14 100 8CC 40 12 888 100 9CC 55 13.6 14 GREY; SANDY TO CLAYEY SILT; COMPACT. 10CC 14.3 BOREHOLE TERMINATED AT 14.3 m IN SILT. 16 18 20

BOREHOLE NO. OW58-6

PAGE 1 OF 1

														PAGE 1 OF 1
PR	OJECT	NAME: WARWICK WELL RE	HAE	BILITATIO	N					_ PF	ROJ	EC.	T NO.	: 02-970051.13
CLI	ENT:	WASTE MANAGEMENT OF C	ANA	DA CORP	ORA	OITA	N			_ D/	ATE	::	SEP1	EMBER 8, 2005
во	REHO	LE TYPE: 108 mm I.D. HOLLOW	STE	EM AUGEF	RS					SI	JPE	RVI	SOR:	AAP
GR	OUND	ELEVATION: 241.15 m AS	SL							- RI	EVIE	EWE	R:	JTB
							AMPL			CONE				
			STRATIGRAPHY				AWIFL	%		"N" VAL	TION		ATER	6
	EPTH (m)	STRATIGRAPHIC DESCRIPTION	TIGR	MONITOR DETAILS	TYPE	z <	% W/		RQD	10 20	30		20 30	REMARKS
			PHY		m	VALUE	WATER	RECOVERY	0 (%)	SHEAR	1	⊢ W _P	W	
0		CLAYEY SILT TO SILTY CLAY:						_		STRENGTH	Т	WP	\	BOREHOLE INCLINED AT 45°.
-	1	MEDIUM TO LIGHT BROWN, CLAYEY SILT TO SILTY CLAY, DISSEMINATED FINE SAND, OCCASIONAL MEDIUM TO FINE GRAVEL, LIGHT												STRATIGRAPHIC DESCRIPTION BASED ON AUGER CUTTINGS
	1	GREY FRACTURES, DTPL, STIFF, TRACE ROOTLETS, NO ODOUR.												AND CONTINUOUS CORE.
2	-													
	1													
-	-	- 3.0 m MEDIUM TO DARK BROWN, DTPL TO APL.												
4	1													
	-													
		- 5.0 m MEDIUM GREY WITH MEDIUM BROWN FRACTURES TO 5.3 m, APL,												
6	6.0	MASSIVE.			СС			100						
Ľ	0.0	BOREHOLE TERMINATED AT 6.0 m IN CLAYEY SILT TO SILTY CLAY.												
\vdash	1	CEATET SIET TO SIETT CEAT.												
	1													
8	-													
\vdash	1													
10]													
-	1													
]													
12	1													
	1													
	_													
-	-													
14	1													
-	-													
	1													
16	-													
	1													
\vdash	-													
18	1													
 	-													
	1													
<u> </u>	1													

JAGGER HIMS LIMITED

BOREHOLE - 0W59-10, 0W59-4

PROJECT NAME: WARWICK LANDFILL SITE PROJECT NO.: 297051.04

CLIENT: CANADIAN WASTE SERVICES INC. DATE: JAN 13/MAR 31, 1999 BOREHOLE TYPE: 108 mm ID HOLLOW STEM AUGER GEOLOGIST: TKC GROUND ELEVATION: 241.1 m A.S.L. REVIEWER: JTB CONE SAMPLE WATER STRATIGRAPHY PENETRATION CONTENT % DEPTH (m) "N" VALUE 28 STRATIGRAPHIC DESCRIPTION MONITOR REMARKS RECOVERY 10 20 30 10 20 30 RQD **DETAILS** +++ 8 SHEAR STRENGTH $\overline{W_P}$ 0 1CC 100 BOREHOLE CONTINUOUSLY CLAYEY SILT TO SILTY CLAY: CORED. MOTTLED BROWN AND GREY, TO GREY AT 3.5 m; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED SAND AND GRAVEL, SAND LAMINAE (< 2 mm THICK) AT
4.0 m, SILT AT 6.8 m TO 7.0 m;
ROOTLETS TO 1.8 m; DISCOLOURED
FRACTURES TO 4.4 m; MASSIVE; DTPL TO
APL, BECOMING WTPL WITH DEPTH; HARD MONITORING WELLS INSTALLED IN 33 2 1SS 100 SEPARATE BOREHOLES. 2CC 50 SHALLOW BOREHOLE 2SS 100 (SOUTHERN TILL) INCLINED AT 45 3CC 67 DEGREES. 3SS | 10 100 4CC 75 6 4SS 8 100 5CC 100 7.6 SILT: 5SS 13 100 8 GREY; SILT, TRACE FINE SAND AND CLAY; 6CC 50 MASSIVE; SATURATED; COMPACT. 8.7 CLAYEY SILT: GREY; CLAYEY SILT, TRACE DISSEMINATED FINE SAND AND GRAVEL; MASSIVE; DTPL; 6SS 22 100 VERY STIFF. (RANNOCH TILL) 9.8 10 BOREHOLE TERMINATED AT 9.8 m IN 12 14 16 18 20

AGGER HIMS LIMITED

BOREHOLE NO. OW59-6

PAGE 1 OF 1

PROJECT NAME:	WARWICK WELL REHABILITATION	PROJECT NO.: 02-970051.13	
CLIENT: WASTE	MANAGEMENT OF CANADA CORPORATION	DATE: SEPTEMBER 9, 2005	
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	SUPERVISOR: AAP	
GROUND ELEVATION:	241.14 m ASL	REVIEWER: JTB	

		ST				SAMPL	E.		CONE PENETRA	TION		/ATE		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VAL 10 20	30 I	10	20		REMARKS
)	CLAYEY SILT TO SILTY CLAY:		/////////				<u> </u>		STRENGTH	1	WP	Τ	W _L	BOREHOLE INCLINED AT 45
	MEDIUM BROWN BECOMING DARK								1					STRATIGRAPHIC DESCRIPTIO
	BROWN-GREY BY 5.0 m, CLAYEY SILT TO SILTY CLAY, DISSEMINATED FINE SAND, OCCASIONAL FINE TO MEDIUM GRAVEL. DTPL								1					BASED ON AUGER CUTTING AND CONTINUOUS CORE.
	OCCASIONAL FINE TO MEDIUM GRAVEL, DTPL BECOMING APL BY 5.0 m, GREY FRACTURES, ROOTLETS TO 5.0 m, NO								1					
2	ODOURS OR VISIBLE STAINING.								1					
									1					
]					
<u> </u>			711/1/11						111					
									1					
	- 5.0 m DARK GREY WITH LIGHT GREY FRACTURES, MASSIVE, SOFT, APL, NO			СС			100]					
	ROOTLETS, NO ODOURS.		.											
6.0	BOREHOLE TERMINATED AT 6.0 m IN		The St.						1					
	CLAYEY SILT TO SILTY CLAY.								1					
]					
									4					
3									1					
									1					
]					
0									111					
<u>-</u>									1					
									1					
									1					
2									1					
									1					
]					
									4					
4									1					
									1					
									4					
									1					
6									1					
]					
									$ \cdot $					
8									1					
]					
4														
_									1					
0						1	1	+	1	1				

BOREHOLE - 0W60-25, 0W60-8, 0W60-4

PROJECT NAME: WARWICK LANDFILL SITE PROJECT NO.: 297051.01 CLIENT: CANADIAN WASTE SERVICES INC. DATE: JANUARY 12 TO 13, 1999 BOREHOLE TYPE: ____108 mm ID HOLLOW STEM AUGER GROUND ELEVATION: 234.6 m A.S.L. GEOLOGIST: JDF REVIEWER: JTB CONE SAMPLE WATER PENETRATION | CONTENT % DEPTH (m) "N" VALUE STRATIGRAPHIC DESCRIPTION MONITOR REMARKS RECOVERY 10 20 30 WATER **DETAILS** TYPE VALUE 1 8 SHEAR STRENGTH ₩ TOPSOIL: BOREHOLE CONTINUOUSLY SAMPLED. 0.1 1CC 100 DARK BROWN; ROOTLETS; MOIST. MONITORING WELLS INSTALLED IN SEPARATE CLAYEY SILT TO SILTY CLAY: 23.4 29 1SS BOREHOLES. MOTTLED BROWN/GREY, GREY AT 3.8 m; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND; DISCOLOURED FRACTURES TO 4.1 m; MASSIVE; FIRM TO VERY STIFF; DTPL TO WTPL. (SOUTHERN TILL) 2CC 100 2 SHALLOW BOREHOLE INCLINED AT 45 DEGREES. 2SS 20 58 21.6 3CC 100 PL = 15.1LL = 30.7355 15 18.3 58 100 4SS 24 | 17.3 | 80 6 PL = 15.9LL = 26.85CC PARTICLE SIZE 6.9 DISTRIBUTION AT 7.0 m SILT: SAND - <1 % SILT - 78 % CLAY - 22 % 61 | 14.3 | 50 GREY; SANDY SILT TO SILT; VERY DENSE. 7.9 6CC 100 8 CLAYEY SILT: GREY TO GREY GREEN, TURNING GREY CLAYEY SILT, TRACE DISSEMINATED FINE TO MEDIUM SAND, GRAVEL, AND FISSILE SHALLE FRAGMENTS; MASSIVE; VERY STIFF TO HARD; DTPL TO APL. (RANNOCH TILL) 6SS 21 17.0 80 7CC 100 10 **7SS** 28 18.0 54 8CC 100 12 855 31 15.0 75 9CC 100 955 36 15.3 58 14 10CC 100 PL = 15.9LL = 29.01055 27 71 16.0 11CC 100 16 11SS 36 58 12CC 100 18 12SS 25 80 16.1 13CC 100

13SS 26

JAGGER HIMS LIMITED

63

BOREHOLE - 0W60-25, 0W60-8, 0W60-4

CLIENT: CANADIAN WASTE SERVICES INC. DATE: JANUARY 12 TO 13, 199!	PROJEC1	NAME: WARWICK LAN	DFI	LL SITE						_ PROJE	CT ND.:	297051.01
GEDUND ELEVATION: 234.6 m A.S.L. GEDUGIST JDF REVIEWER: JTB DEFTH (II) STRATGRAPHIC DESCRIPTION BY STRATGRAPHIC	CLIENT:	CANADIAN WASTE SERVI	ICE:	S INC.						_ DATE:	JANUARY	12 TO 13, 199
DEFINE STRATIGRAPHIC DESCRIPTION STRATIGRAPHIC DESCR	BOREHOL	LE TYPE: 108 mm ID HOL	LOV	/ STEM	AUG	ER						
DEPTH STRATIGRAPHIC DESCRIPTION STRATIGRAPHIC DESCRI	GROUND	ELEVATION: 234.6 m A	.S.L	1				. GE	EDLI	OGIST: _	IDF	REVIEWER <u>: JTB</u>
CAMPY SILT 10 SILTY CLAY, TRACE 145S 36 SECOND 10 SAMPLED. 10 SILTY CLAY, TRACE 10 SILTY SILT TO SILTY CLAY, TRACE 10 SILTY SILT TO SILTY CLAY, TRACE 10 SILTY SILT TO WIFL 10 SILTY SILT TO WIFL 10 SILTY SILT TO WIFL 10 SILTY SILTY SILT TO WIFL 10 SILTY SIL	DEDTH		STF				SAMPL	E				
CAMPY SILT 10 SILTY CLAY, TRACE 145S 36 SECOND 10 SAMPLED. 10 SILTY CLAY, TRACE 10 SILTY SILT TO SILTY CLAY, TRACE 10 SILTY SILT TO SILTY CLAY, TRACE 10 SILTY SILT TO WIFL 10 SILTY SILT TO WIFL 10 SILTY SILT TO WIFL 10 SILTY SILTY SILT TO WIFL 10 SILTY SIL	(m)	STRATIGRAPHIC DESCRIPTION	RATIGR	MONITOR					 20	"N" VALUE	1	REMARKS
CLAYEY SILT: GREP; CLAYEY SILT TO SILTY CLAY, TRACE GREP; CLAYEY SILT TO SILTY CLAY, TRACE GREP; CLAYER SHAD, GRAVEL. TABLE PRACTURED.			APHY	DETAILS	PΕ	ALUE	ATER	COVE				
CLYEY SILT 10 SILTY CLAY, TRACE DISSEMINATED FINE SAND, GRAVE, TARD TO SESSIMATED FINE SAND, GRAVE, TARD TO (RANDOCH TILL) 23.5 23.5 24. 24. 24. 25. SAULE FROMENTS; COMPACT, SAND WITH STRICE SILE PROMENTS; COMPACT, SAULE FROMENTS; COMPACT, SAULE FROMENTS; COMPACT, SAULE SHALE; FRACTURED. 26. SINGLE SHALE; FRACTURED. 27. SAULE SHALE; FRACTURED. 28. SAMPLED. SAMPLED.	20			<u> </u>	14CC				<u> </u>	SHEAR STRENGTH	W _P W _L	BOREHOLE CONTINUOUSLY
22 VERY SIRTY APL TO WIPL (RNINOCH TILL) 1500 80												SAMPLED.
23.5 SILTY SAND: 23.5 SOUTH STATE SOUTH		DISSEMINATED FINE SAND, GRAVEL, AND FISSILE SHALE FRAGMENTS; HARD TO			1455	36	18.4	63				
2.3.5 SILTY SAND:	22				15CC			80		/		
23.5 GREY, SILTY FINE TO COARSE SAND WITH 24 24.2 SHALE FRACIURED. SHALE PRACHENIS COMPACT; SHALE PRACHENIS COMPACT; SHALE PRACHURED. SHALE PRACHURED. BOREHOLE TERMINATED AT 25.0 m in SHALE BEDROCK. 30 30 32 34 35 36 38 38 38							24.1					
## 24.2 SHALE FRACMENTS: (DASAL SAND) SHALE FRACMENTS: (DASAL SAND) SHALE STATURED. 15SS NA. NA. NA. NA. NA. NA. NA. NA. NA. NA.	23.5	/			1600			10				HEAVING SAND - NO
SHALE; FRACTURED. 17CC 100	24 24.2	SHALE FRAGMENTS; COMPACT;			1655	NA NA	NA	NA NA				SPLIT SPOON SAMPLE
BOREHOLE TERMINATED AT 25.0 m N SHALE BEDROCK. 28 28 30 30 30 30 30 30 30 30 30 3	25.0											DISTRIBUTION AT 23.6 m
28				•								SAND - 71 % SILT - 18 %
32 32 34 36	26	IN STALL BEBROOK										OBAT TT 78
32 32 34 36												
32 32 34 36												
30 32 32 34 36 38	28											
30 32 32 34 36 38												
30 32 32 34 36 38												
32 34 35 36 38												
34 36 38												
34 36 38												
36	32											
36												
36												
38	34											
38												
38												
40	36											
40												
40												
	38											
	[ļ						
MIN IN A 1 1953 I 1911 I I		INITED				<u> </u>						

BOREHOLE - 0W61-26, 0W61-6, 0W61-4

PROJECT	NAME: WARWICK LAN	DFI	LL SITE						_ PROJ	JECT NO.	297051.01
CLIENT:	CANADIAN WASTE SERV	CE:	S INC.						_ DATE	: JANUAF	RY 7 TO 8, 1999
BOREHOL	E TYPE: 108 mm ID HOL	L□V	/ STEM	AUG	ER						
GROUND	ELEVATION: 232.9 m A.S	ì.L.					. GE	EOL	DGIST: U	DF	REVIEWER: JTB
		SI			5	SAMPL	E		CONE	WATER CONTENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	RATIG	MONITOR		z	24	% 70		"N" VALUE		REMARKS
		STRATIGRAPHY	DETAILS	TYPE	VALUE	WATER	RECOVERY	RQD (10 20 30	10 20 30	
20			IN.	1355		17.0		8	SHEAR STRENGTH	W _P W _L	BOREHOLE CONTINUOUSLY
	CLAYEY SILT: GREY: CLAYEY SILT TO SILTY CLAY, TRACE			14CC			100		\		SAMPLED.
	GREY; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND, GRAVEL, AND FISSILE SHALE FRAGMENTS;								$ \cdot \cdot $		
22	VERY STIFF; APL. (RANNOCH TILL)			14SS		15.4	62 100		}	 	
				15SS		13.4					'N' VALUE NOT MEASURED.
24				16CC			100				
	SAND:			16SS 17CC		19.3	50 100		4		PARTICLE SIZE DISTRIBUTION AT 26 m
25.6	/ GREY; FINE TO COARSE SAND, TRACE SILT \ AND CLAY, TRACE SHALE FRAGMENTS; COMPACT; SATURATED. (BASAL SAND)								\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		GRAVEL - 3 % SAND - 87 %
26.3				17SS	95	14.5	100		95 —	. ↓	SILT - 6 % CLAY - 4 %
	BOREHOLE TERMINATED AT 26.3 m IN SILTY SAND WITH SHALE FRAGMENTS.										AUGER REFUSAL AT 26.3 m.
											20.3 m.
28											
30											
32											
34											
36											
38											
40											
JAGGER H IMS LI	MITED										

BOREHOLE - 0W61-26, 0W61-6, 0W61-4

PROJE	ECT	NAME: WARWICK LAN	DFI	LL SITE						_ PROJE	CT N□.:	297051.01
CLIEN	IT:_	CANADIAN WASTE SERVI	CE	S INC.						_ DATE:	JANUARY	7 TO 8, 1999
BOREH	HDL	E TYPE: 108 mm ID HOLI	LUV	√ STEM	AUG	ER						
GROUN	۷D	ELEVATION: 232.9 m A.S	ì.L.					GE	EDLO	JGIST: J	DF	REVIEWER: JTB
DEPTI (m)	Н	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	AMPLE % WATER	% RECOVER	RQD (CONE PENETRATION "N" VALUE 10 20 30	WATER CONTENT %	REMARKS
0		CLAYEY SILT TO SILTY CLAY:	L`	H1414		Е		Ŕ	(%)	SHEAR STRENGTH	W _P W _L	BOREHOLE CONTINUOUSLY
2		MOTTLED BROWN/GREY, GREY AT 3.6 m; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND; 2 mm SILTY FINE SAND LAMINATION AT 4.6 m; BLOCKY TO MASSIVE; VERY STIFF; DTPL TO WTPL. (SOUTHERN TILL)			1CC 1SS 2CC	29	17.9	33 84		•		SAMPLED. ICE BLOCKED 1CS. MONITORING WELLS INSTALLED IN SEPARATE BOREHOLES. SHALLOW BOREHOLE
3.6	5				3CC		17.1	50 88 67 100			1	INCLINED AT 45 DEGREES. PL = 15.8 LL = 28.0
6 6.4 6.4		CLAEYEY SILT: GREY; CLAYEY SILT; SATURATED; DENSE. CLAYEY SILT: GREY TO GREY GREEN, TURNING GREY CLAYEY SILT, TRACE DISSEMINATED FINE TO MEDIUM SAND, GRAVEL, AND FISSILE SHALE FRAGMENTS; MASSIVE; STIFF TO VERY STIFF; APL. (RANNOCH TILL)			5CC	8 22	23.0	50 100				PL = 13.0 LL = 22.9 PARTICLE SIZE DISTRIBUTION AT 6.2 m. SAND - 3 % SILT - 60 % CLAY - 37 %
14 15 16 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18		FINE TO MEDIUM SAND: GREY; ALTERNATING LAYERS OF CLAYEY SILT, TRACE DISSEMINATED SAND AND GRAVEL WITH FINE TO MEDIUM SAND; TRACE TO SOME SILT; COMPACT; SATURATED. CLAYEY SILT: GREY TO GREY GREEN, TURNING GREY CLAYEY SILT, TRACE DISSEMINATED FINE TO MEDIUM SAND, GRAVEL, AND FISSILE SHALE FRAGMENTS; AMSSIVE; VERY STIFF; APL TO WIPL.			9SS 10CC 10SS 11CC 11SS 12CC 12SS 13CC	35 14 21	14.2 14.8 16.2	83 100 66 100 58 50 0 100		96		STONE PL > NON COHESIVE SOIL UPPER CONTACT IS INFERRED.

BOREHOLE - 0W62-30, 0W62-7, 0W62-4

PROJEC1	NAME:WARWICK LAN	DFI	LL SITE						_ PROJ	JECT NO.	: 297051.01
CLIENT:	CANADIAN WASTE SERV	ICE	S INC.						_ DATE	: <u>Januaf</u>	RY 6 TO 8, 1999
BOREHOL	E TYPE: 108 mm ID HOL	LOV	√ STEM	AUG	ER						
GROUND	ELEVATION: 240.1 m A.S	.L.					. GE	EOLI	OGIST:	JDF	reviewer <u>: Jtb</u>
		ST				SAMPL	E		CONE PENETRATION	WATER CONTENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	RATIG	MONITOR	_	z,	%	% RI		"N" VALUE	10 20 30	REMARKS
		STRATIGRAPHY	DETAILS	JA/L	VALUE	WATER	RECOVERY	RQD (3	'' ' ''		
20			 	14CC			₹ 40	38	SHEAR STRENGTH	W _P W _L	BOREHOLE CONTINUOUSLY
	CLAYEY SILT: GREY TO GREY GREEN; TURNING GREY				1						SAMPLED.
	CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND, GRAVEL,			1455	31	16.3	58				
22	AND FISSILE SHALE FRAGMENTS; VERY STIFF TO HARD; DTPL TO WTPL. (RANNOCH TILL)			1500	1		50				
	(NAMINOCH TILL)										
				15SS 16CC	1	18.9	62 5				SAMPLER PLUGGED BY STONE
24				1655	25	13.7	67		. /		STONE
				1700		13.7	10		\		
				17SS	31	16.0	62				SAMPLER PLUGGED BY STONE
26				1800			<10		}		
				1855	27	18.4	67				
28 28.1				1900	:		100				PARTICLE SIZE
	SILTY SAND: GREY; SILTY SAND, CLY, WITH										DISTRIBUTION - 28.3 m SAND - 9 %
	SHALE FRAGMENTS; COMPACT; SATURATED. (BASAL SAND)			19SS 20CC	1	16.7	90		•	•	SILT - 51 % CLAY - 40 %
30 26.3	BOREHOLE TERMINATED AT 30.0 m										
	IN SILTY SAND WITH SHALE FRAGMENTS.										
32											
34									-		
36									-		
38									-		
JAGGER H IMS LI	MITED	<u> </u>	l	<u> </u>			l	<u> </u>		<u> </u>	

BOREHOLE - 0W62-30, 0W62-7, 0W62-4

PROJECT	NAME: <u>WARWICK LAN</u>	DF1	LL S	ITE						_ PROJE	ECT NO.:	297051.01
CLIENT:	CANADIAN WASTE SERVI	ICE	S INC							_ DATE:	JANUAR	Y 6 TO 8, 1999
BOREHOL	LE TYPE: <u>108 mm ID HOL</u>	LOV	√ STE	Μ	AUG	ER						
GROUND	ELEVATION: 240.1 m A.S	.L						GE	EOL	OGIST: _	DF	REVIEWER: JTB
		Ŋ				5	SAMPL			CONE	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONIT	OR		zį	*	%		"N" VALUE	CONTENT %	REMARKS
	STATISTAN THE BESSAM TION	RAPH	DETAI		TYPE	VALUE		RECOVERY	RQD	10 20 30	10 20 30	
0		~				<u></u>	70	ERY	8	SHEAR STRENGTH	W _P W _L	
	CLAYEY SILT TO SILTY CLAY:				1CC			100				BOREHOLE CONTINUOUSLY SAMPLED.
	MEDIUM BROWN TURNING GREY AT 3.4 m; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND; ROOTLETS TO 2.6 m; DISCOLOURED FRACTURES TO				100	4.6		64				MONITORING WELLS INSTALLED IN SEPARATE
2	2.6 m; DISCOLOURED FRACTURES TO 4.1 m; MASSIVE; HARD TO STIFF; DTPL TO WTPL. (SOUTHERN TILL)				2CC	10	16.3	100			•	BOREHOLES.
												SHALLOW BOREHOLE INCLINED AT 45 DEGREES.
					N	19	20.6			†		
4					3CC			100				
					3SS	12	21.5	58				PL = 17.1 LL = 33.1
					4CC			100			 	LL = 33.1
6 6.2										4		PL = 19.6 LL = 39.3
	CLAYEY SILT:				4SS 5CC	9	26.7	67 100			,	PARTICLE SIZE
6.7	GREY; CLAYEY SILT, TRACE FINE SAND; LOOSE; SATURATED.				ECC			74				DISTRIBUTION AT 6.6 m SAND - 3 % SILT - 64 %
8	CLAYEY SILT:				6CC		19.4	100		l		SILT - 64 % CLAY - 33 %
	GREY TO GREY GREEN, TURNING GREY; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE SAND, GRAVEL, AND FISSILE SHALE FRAGMENTS; SAND LAMINAE (<2 mm THICK) AT 7 m; MASSIVE VERY STIFF TO STIFF; DTPL TO WTPL.											
	AND FISSILE SHALE FRAGMENTS; SAND LAMINAE (<2 mm THICK) AT 7 m; MASSIVE				6SS 7CC	19	17.9	50 100		•		
10	(RANNOCH TILL)				/			100				
					755	20	17.7	78				
					800			100				
12												
					8SS 9CC	18	18.7	58 100				
							40.4					
14					10CC	22	18.1	80 100] <i>}</i>		
]							
					h	10	21.2			{		
16					11CC			50			!	
					11SS	10	14.1	70				PL = 18.5 LL = 35.0
					12CC		17.1	<2				
18												SAMPLER PLUGGED BY STONE.
					12SS	18	16.4	75		•		PL = 15.4 LL = 27.7
					13CC			5				SAMPLER PLUGGED BY STONE.
20					1388	30	16.3	58				STONE.
JAGGER H IMS LI	MITED											

BOREHOLE NO. OW62-5

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 2-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Jan 20, 2011

BOREHOLE TYPE: 168 mm GEOPROBE WITH CONTINUOUS SAMPLING SUPERVISOR: JLM

GROUND ELEVATION: 240.3 mASL REVIEWER: PEJ

		STR			S	AMPLI			CONE PENETRA	TION	CON	ATER FENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS		z	% V	% REC	R	"N" VAL			20 30	REMARKS
(,		RAPH	DETAILS	TYPE	N VALUE	WATER	RECOVERY	RQD (%)	-+-	+			
0.0	TOPOOU	→			""	ת	RY		SHEAR STRENG	TH	W _P	WL	
0.1	TOPSOIL: DARK BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, FIRM, TRACE ROOTLETS.												BOREHOLE INCLINED AT 45 DEGREES
	CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN AT												
	3.2 m BECOMING GREY AT 5.2 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND												
1.0	GRAVEL, DTPL BECOMING APL AT 5.0 m.												
2.0													
3.0													
4.0													
5.0													
6.0													
6.0	BOREHOLE TERMINATED AT 6.0 m IN CLAYEY SILT TO SILTY CLAY.												
7.0													
7.0													
8.0													
8.0 9.0 GENIVAR													
10.0													
GENIVAR	1		I					l				ı	I

BOREHOLE - 0W67-11, 0W67-4

CLIENT: CANADIAN WASTE SERVICES INC. DATE: JUNE 4, 1999 BUREHOLE TYPE: 108 nn ID HOLLOW STEM AUGER GROUND ELEVATION: 242.6 nn A.S.L. DEPTH (m) STRATGRAPHIC DESCRIPTION OCAMPY SILT TO SILT CLARY MOTHER BROWN AND GRAY, LATE THE DESCRIPTION STRATE SHOWN AND GRAY LEVELS IN TO ARE SECONNEY WITH AT ABOUT 5.0 nr MAN BROWN AND GRAY LEVELS IN TO ARE SECONNEY WITH AT ABOUT 5.0 nr MAN BROWN AND GRAY LEVELS IN TO ARE SECONNEY WITH AT ABOUT 5.0 nr MAN BROWN AND GRAY LEVELS IN THE SHOWN AND GRAY LEVELS IN THE SH	PROJEC1	T NAME: <u>Warwick Lan</u>	DF]	ILL S	SITE	- -					_ PROJE	ECT NO.:	297051.04
DEPTH	CLIENT:	CANADIAN WASTE SERVI	<u>ICE</u>	S IN	С.						_ DATE:	JUNE 4,	1999
DEPTH (m) STRATIGRAPHIC DESCRIPTION STRATIGRAPHIC DE	BOREHOL	LE TYPE: <u>108 mm ID HOL</u>	LOV	√ ST	EM	AUG	ER						
DEFINITION STRATIGRAPHIC DESCRIPTION STRATIGRAPHIC D	GROUND	ELEVATION: 242.6 m A.S	3.L.						. GE	EOL	OGIST: _J	IDF	REVIEWER: JTB
CLYPEY SILT TO SILTY CLAY: MOTTLED BROWN AND GREY; BECOWING DESEMBLY BROWN AND GREY; BECOWING CORED. DESEMBLY BROWN AND GREY; BECOWING CORED. DESCRIPTION OF THE CORE PINE DESCRIPTION OF T	(m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY			TYPE	z.	%	%		PENETRATION "N" VALUE 10 20 30	10 20 30	REMARKS
	2	MOTTLED BROWN AND GREY, BECOMING GREY AT 4.3 m; CLAYEY SILT, TRACE FINE DISSEMINATED SAND AND GRAVEL; ROOTLETS TO 2.4 m; MASSIVE; DISCOLOURED FRACTURES TO 5.0 m; DTPL TO APL, BECOMING WTPL AT ABOUT 5.0 m; HARD TO STIFF. (SOUTHERN TILL) SILT: GREY; SILT, CLAYEY SILT AT 8.8 m TO 9.1 m; LAMINATED SILT AND CLAYEY SILT AT 9.1 m TO 9.8 m, CLAYEY SILT TO SILT AT 9.8 m TO 10.2 m. SAND: DARK GREY TO BLACK; SILTY SAND TO MEDIUM SAND; SATURATED; LOOSE TO COMPACT. CLAYEY SILT: MEDIUM GREY TO GREEN GREY; CLAYEY SILT, TRACE DISSEMINATED FINE SAND AND GRAVEL; MASSIVE; APL. (RANNOCH TILL) BOREHOLE TERMINATED AT 11.0 m IN				1CC 1SS 2CC 2SS 3CC 3SS 4CC 4SS 5CC 5SS 6CC	27 32 20 10 12	TER	100 50 100 67 100 75 100 60 100 100 100	(%)	SHEAR STRENGTH		MONITORING WELLS INSTALLED IN SEPARATE BOREHOLES. SHALLOW BOREHOLE INCLINED AT 45

JAGGER H IMS LIMITED

BOREHOLE NO. OW68-5

PROJECT NAME:	WARWICK LANDFILL SITE	PROJECT NO.: 2970051.04
CLIENT: CANADI	AN WASTE SERVICES INC.	DATE: JANUARY 9, 2002
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	GEOLOGIST: JPB
GROUND ELEVATIO	N· 240 91 mΔSI	REVIEWER: .ITB

		ELLVATION. 240.31 MAGE	l		l							_	
			STR			s	AMPL			CONE PENETRATION		TER	
	РТН	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR	_	ż	%	% RI	_	"N" VALUE 10 20 30		ENT %	REMARKS
1 '	(m)		Ä	DETAILS	TYPE	N. AVTUE	% WATER	RECOVERY	RQ D	10 20 30		.0 30	
0			Ŧ			Ē	ER	'ERY	(%)	SHEAR STRENGTH	W _P	W _L	
	0.3	TOPSOIL											BOREHOLE CONTINUOUSLY
		CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN, GREY, AND ORANGE,			1CC			100					CORED
		BECOMING BROWN WITH DEPTH; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED											
2		FINE GRAVEL; ROOTLETS TO ABOUT 3.0 m; DISCOLOURED FRACTURES TO 4.0 m; DTPL			2CC			60					
		TO WTPL.											
					3CC			100					
4	4.0	SILTY SAND:											
	5 0	SILTY SAND: BROWN; SILTY SAND, TRACE DISSEMINATED MEDIUM TO COARSE GRAVEL; SATURATED.			4CC			90					
	5.0	BOREHOLE TERMINATED AT 5.0 m IN SILTY		<u> 40 </u>									
6		SAND.											
8													
10													
12													
14													
16													
									ļ				
18													
20					ļ				l				
	H _{IMS} L												•

BOREHOLE NO. OW69-5A

PROJECT NAME:	WARWICK LANDFILL SITE	PROJECT NO.: 2970051.04
CLIENT: CANAD	IAN WASTE SERVICES INC.	DATE: JANUARY 9, 2002
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	GEOLOGIST: JPB
GROUND ELEVATION	ON: 240 11 mASI	REVIEWER: .ITR

		, ,				AMPL	E		CONE			
DEDTU	OTD ATIOD A DUIG DESCRIPTION	STRATIGRAPHY	MONITOR		_		%		"N" VALUE		TER ENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	IGRA	DETAILS	TYPE	N. AVTUE	% WATER	RECOVERY	R Q	10 20 30	10 2	0 30	REMARKS
		뫔		""	TOE.	TER	VERY	(%)	SHEAR STRENGTH	 W _P	W _L	
	CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN, GREY, AND ORANGE,			1GS						:		BOREHOLE CONTINUOUSLY CORED
	BECOMING GREY AT 3.6 m; CLAYEY SILT TO SILTY CLAY, TRACE DISSEMINATED FINE											CORED
	TO MEDIUM GRAVEL; ROOTLETS TO 2.0 m; DISCOLOURED FRACTURES TO 5.0 m; DTPL			2CC			50					BOREHOLE INCLINED AT
2	TO WTPL.											45 DEGREES
				3CC			60					
4				4CC			90					
				5CC			90					
5.0	BOREHOLE TERMINATED AT 5.0 m IN		<u> </u>									
6	CLAYEY SILT TO SILTY CLAY.											
8												
10												
12												
14												
16									1			
18												
[
20												

BOREHOLE NO. OW70B-5

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS/WARWICK LANDFILL

CLIENT: WASTE MANAGEMENT CORPORATION OF CANADA

BOREHOLE TYPE: 168 mm GEOPROBE

GROUND ELEVATION: 242.0 mASL

PROJECT NO.: 02-970051.20

DATE COMPLETED: May 16, 2008

SUPERVISOR: MOL

REVIEWER: BJL

		Τ			, c	AMPL	E		CONE		UTM CO-ORDINATES
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	77	N VALUE	% WATER	%	RQD (%)	"N" VALUE	WATER CONTENT %	UTM Zone: 17 NAD: 83 Easting: Northing:
0.0		АРНҮ		TYPE	TUE	ATER	RECOVERY) (%)	SHEAR STRENGTH	H H H	REMARKS
0.0 1.0 2.0 3.0 4.0 5.0 5.2	SILTY CLAY TO CLAYEY SILT: MOTTLED BROWN-GREY BECOMING BROWN AT 1.5 m, THEN GREY TO OLIVE GREEN AT 3.0 m, SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED FINE SAND AND GRAVEL, FRACTURED WITH BLACK AND ORANGE MINERALIZATION FROM 3.0 m TO 4.5 m, GREY, FINE SILTY SAND LENSES AT 4.9 m, DTPL BECOMING APL AT 3.0 m, VERY STIFF BECOMING STIFF AT 3.0 m.			SS1 SS2	25 21		X		STRENGTH	WP WL	CLAY BACKFILL WAS USED TO SEAL ABOVE THE FILTER PACE
7.0 											
2.0		The second secon									
4.0											

BOREHOLE NO. OW71A-5

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 2-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Jan 20, 2011

BOREHOLE TYPE: 168 mm GEOPROBE WITH CONTINUOUS SAMPLING SUPERVISOR: JLM

GROUND ELEVATION: 242.3 mASL REVIEWER: PEJ

									_					
		STF				AMPLI		ı	PENE	ONE TRATION		WATE	ER	
DEPTH	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		z	%	% RE	70		VALUE) 20		REMARKS
(m)		RAPI	DETAILS	TYPE	N VALUE	WATER	RECOVERY	RQD (%)	— " +	1 1	_			TALIM WATER
0.0		4			Æ	ER	ΞRΥ	%)	SH STRE	EAR ENGTH	⊢ W _F		W _L	
0.1	TOPSOIL: DARK BROWN, CLAYEY SILT TO SILTY CLAY													BOREHOLE INCLINED AT 45 DEGREES
	TOPSOIL, DAMP, FIRM, TRACE ROOTLETS. CLAYEY SILT TO SILTY CLAY:													DEGREES
	MOTTLED BROWN-GREY BECOMING BROWN AT 1.4 m, THEN GREY AT 3.3 m, CLAYEY SILT TO SILTY													
1.0	CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMING APL AT 3.3 m.													
2.0														
3.0														
4.0														
5.0														
5.4 —	BOREHOLE TERMINATED AT 5.4 m IN CLAYEY SILT TO SILTY CLAY.	ZXXZ												
	TO SILTI CLAT.													
6.0														
7.0														
8.0														
9.0														
7.0 8.0 9.0 GENIVAR														
CENIXA B														
GENIVAR														

BOREHOLE NO. OW72-6

PAGE 1 OF 1

PROJECT NAME: W	VARWICK WELL REHABILITATION	PROJECT NO.:	02-970051.13
CLIENT: WASTE M	ANAGEMENT OF CANADA CORPORATION	DATE: SEPTE	MBER 8, 2005
BOREHOLE TYPE: 10	8 mm I.D. HOLLOW STEM AUGERS	SUPERVISOR:	AAP
GROUND ELEVATION:	241.15 m ASL	REVIEWER: J	тв

	ELEVATION: 241.15 m AS	1							<u> </u>	_			
		STI			S	SAMPL	E		CONE PENETRATION		VATER		
DEPTH	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		ż	%	% 72		"N" VALUE		NTEN		REMARKS
(m)		GRA	DETAILS	TYPE	\ \ A	% WATER	RECOVERY	RQD	10 20 30		20 3		
		PHY		'''	VALUE	TER	VER	(%)	SHEAR	<u> </u>			
<u> </u>	CLAYEY SILT TO SILTY CLAY:		111111111				_ <		STRENGTH	WP		W∟	BOREHOLE INCLINED AT 45
	MOTTLED BROWN AND GREY, CLAYEY SILT												STRATIGRAPHIC DESCRIPTIO
	TO SILTY CLAY, DISSEMINATED FINE SAND, FRACTURES, DTPL BECOMING APL AT 3.9 m, STIFF, NO ODOUR OR VISIBLE STAINING.												BASED ON AUGER CUTTING AND CONTINUOUS CORE.
_	The speak at violett annimies												
2													
4													
			:						$ \ \ \ $				
	- 5.0 m APL, SOFT, MASSIVE, NO FRACTURES BELOW 5.4 m.			СС			100						
6.0													
	BOREHOLE TERMINATED AT 6.0 m IN												
	CLAYEY SILT TO SILTY CLAY.												
В													
0													
2													
4													
<u> </u>													
6													
									$ \ \ \ $				
\dashv									$\mid \mid \mid \mid \mid$				
\dashv													
8]				
_									$\mid \mid \mid \mid \mid$				
\dashv									$\mid \mid \mid \mid \mid$				
.0			1						1 [l

BOREHOLE NO. OW72-10

PAGE 1 OF 1

PROJECT NAME: WARWICK WELL REHABILITATION PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION DATE: SEPTEMBER 7, 2005

BOREHOLE TYPE: 108 mm I.D. HOLLOW STEM AUGERS SUPERVISOR: MOL

GROUND ELEVATION: 242.12 m ASL REVIEWER: JTB

		STI				AMPL	.E		CONE PENETRATIO	- 1	TER		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALU 10 20 3	E 0 ———	TENT 20 30	_	REMARKS
2 4 4 6 8 9.1 9.2 10 10.4	CLAYEY SILT TO SILTY CLAY; GREY, CLAYEY SILT TO SILTY CLAY, DISSEMINATED FINE TO MEDIUM SAND, RUST COLOURED FRACTURES TO 4.4 m, DTPL BECOMING APL BY 4.6 WITH A LAYER WITEL FROM 7.3 m TO 8.0 m, VERY STIFF BECOMING FIRM AT 5.3 m, MASSIVE, SOME RED STAINING VISIBLE FROM 8.7 m TO 8.8 m, NO ODOURS. SILT, DISSEMINATED COARSE SAND AND FINE GRAYEL, TRACE CLAYEY SILT NODULES, VERY LOOSE, SATURATED, NO VISIBLE STAINING, NO ODOURS. CLAYEY SILT TO SILTY CLAY (TILL): GREY TO GREYISH GREEN, CLAYEY SILT TO SILTY CLAY, TRACE FINE GRAVEL, DTPL, HARD, NO VISIBLE STAINING, NO ODOURS. BOREHOLE TERMINATED AT 10.4 m IN CLAYEY SILT TO SILTY CLAY (TILL).			SS1	10		95 95 95 95 95 96 97 97 98						

BOREHOLE NO. OW73-6

PAGE 1 OF 1

PROJECT NAME:	WARWICK WELL REHABILITATION	PROJECT NO.: 02-970051.13	
CLIENT: WAST	E MANAGEMENT OF CANADA CORPORATION	DATE: SEPTEMBER 8, 2005	
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	SUPERVISOR: AAP	
GROUND ELEVATION	l: 241.78 m ASL	REVIEWER: JTB	

		SI			S	AMPL	E		CONE PENETRATION	w	/ATER		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH			REMARKS	
	CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN AND GREY, CLAYEY SILT								STRENGTH	Ï		BOREHOLE INCLINED AT 45	
\dashv	TO SILTY CLAY, DISSEMINATED FINE SAND,											STRATIGRAPHIC DESCRIPTIO BASED ON AUGER CUTTING AND CONTINUOUS CORE.	
	FRACTURES, DTPL BECOMING DTPL TO APL AT 4.1 m, STIFF BECOMING SOFT BY 5.0 m, NO ODOUR OR VISIBLE STAINING.											74.0 00111110000 00112	
2	m, NO ODOUR OR VISIBLE STAINING.												
<u> </u>													
\dashv	- 5.0 m MEDIUM TO DARK GREY WITH			СС			75		$\mid \mid \mid \mid \mid$				
	LIGHT GREY FRACTURES AND SOME YELLOW BROWN MOTTLES AT 5.1 m, MASSIVE, SOFT.			-			, ,						
6.0													
	BOREHOLE TERMINATED AT 6.0 m IN CLAYEY SILT TO SILTY CLAY.												
,													
3													
0													
2													
4													
6													
									$ \ \ \ $				
В]				
							_		$\mid \mid \mid \mid \mid$				
_													

BOREHOLE NO. OW73-9

PAGE 1 OF 1

PROJECT NAME:	WARWICK WELL REHABILITATION	PROJECT NO.: 02-970051.13
CLIENT: WAST	E MANAGEMENT OF CANADA CORPORATION	DATE: SEPTEMBER 6, 2005
BOREHOLE TYPE:	108 mm I.D. HOLLOW STEM AUGERS	SUPERVISOR: MOL
GROUND ELEVATION	. 241 83 m ASI	PEVIEWER: ITR

		STI				SAMPL	.E		PENE	ONE ETRATION		/ATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	'N' VALUE	% WATER	% RECOVERY	RQD (%)		VALUE 20 30		20 30	REMARKS
	CLAYEY SILT TO SILTY CLAY: BROWN BECOMING GREY AT 3.0 m, CLAYEY												MONITORING WELL INSTAL IN BOREHOLE 1 m TO T NORTH.
	SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND, OCCASIONAL COARSE GRAVEL, VERY STIFF BECOMING FIRM BY 4.6 m,			SS1	23		30						NORTH.
2	DTPL BECOMING APL BY 5.5 m, FRACTURES UP TO 4.4 m, MASIVE, NO ODOURS OR VISIBLE STAINING.			331	23		30			\mathbb{N}			
				SS2	34		70			1			
_				SS3	37		80				1		
				SS4	26		80						
				SS5	11		80						
_				SS6	11		90						
<u>-</u>				SS7	10		95		╽				
4				SS8	8		95						
7.6	T GREY, SILTY SAND TO SANDY SILT, LOOSE,	\geq		SS9	5		95						
<u> </u>	ODOURS. CLAYEY SILT TO SILTY CLAY SILTY SAND TO SANDY SILT:								$ \setminus $				
8.8	☐ GREYISH BROWN, SILTY SAND TO SANDY	\models	- -	SS10	14		70			$\setminus \setminus$			
0	STAINING, NO ODOURS.			SS11	23		80			•			
	CLAYEY SILT TO SILTY CLAY (TILL): GREY TO GREYISH GREEN, CLAYEY SILT TO SILTY CLAY, TRACE FINE GRAVEL, DTPL,			SS12	19		80			1			
	VERY STIFF, NO VISIBLE STAINING, NO ODOURS.			SS13	18		80			 			
2 12.0				SS14	15		90						
	BOREHOLE TERMINATED AT 12.0 m IN CLAYEY SILT TO SILTY CLAY (TILL).												
\dashv													
4													
4													
_													
6													
									$\left \cdot \right $				
8									$\ \ $				
20									$\mid \mid$				

BOREHOLE NO. OW75-3

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13 CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 26, 2009 BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: LMS

GROUND ELEVATION: 235.3 mASL REVIEWER: PEJ SAMPLE CONE PENETRATION WATER STRATIGRAPHY CONTENT % "N" VALUE DEPTH MONITOR STRATIGRAPHIC DESCRIPTION RECOVERY % WATER N VALUE REMARKS RQD 10 20 30 10 20 30 (m) DETAILS TYPE (%) . Wp w. TOPSOIL:
DARK BROWN, CLAYEY SILT TO SILTY CLAY
TOPSOIL, DAMP, SOFT, TRACE ROOTLETS. **BOREHOLE INCLINED AT 45** 0.2 CLAYEY SILT TO SILTY CLAY:

MOTTLED BROWN/GREY, BECOMING BROWN
FROM 1.5 m, WITH GREY FRACTURING TO 2.4 m,
CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED
FINE TO MEDIUM SAND AND GRAVEL, APL
BECOMING DTPL AT 0.6 m, THEN DTPL AT 0.9 m, 1.0 NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK. STIFF BECOMING VERY STIFF AT 0.7 m, TRACE ROOTLETS. 2.0 3.0 3.2 BOREHOLE TERMINATEDAT 3.2 m IN CLAYEY SILT TO SILTY CLAY. 4.0 5.0 6.0 7.0 8.0 GEOLOGIC B/W (METRIC) 2-97005113 LOGS.GPJ JAGGER HIMS BASIC.GDT 5/1/09 9.0 10.0 11.0 12.0 13.0

崱 Jagger Hims Limited

14.0

BOREHOLE NO. OW75-7

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL

PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP.

DATE COMPLETED: Mar 16, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER

SUPERVISOR: MEQ

REVIEWER: PEJ

GROUND ELEVATION: 234.7 mASL

SAMPLE STRATIGRAPHY WATER CONTENT % "N" VALUE DEPTH MONITOR RECOVERY STRATIGRAPHIC DESCRIPTION REMARKS N VALUE RQD (m) 10 20 30 10 20 30 **DETAILS** TYPE WATER (%) SHEAR STRENGTH WP WL TOPSOIL: 0.2 DARK BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, SOFT, TRACE ROOTLETS. SS1 12 17.8 93 CLAYEY SILT TO SILTY CLAY MOTTLED BROWN/GREY, BECOMING BROWN FROM 1.5 m WITH GREY FRACTURING TO 2.4 m, 1.0 SS2 17 19.8 97 THEN GREY AT 3.4 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE TO MEDIUM SAND AND GRAVEL API BECOMING DTPL AT 0.6 m THEN DTPL AT 0.9 m BECOMINGAPL AT 4.0 m AND WTPL SS3 2.0 25 17.8 100 AT 7.3 m, STIFF BECOMING VERY STIFF AT 0.7 m, THEN STIFF AT 3.8 m BECOMING VERY STIFF AT 6.0 m, TRACE ROOTLETS. SS4 17.3 50 3.0 SS5 16 17.5 57 4.0 SS6 97 14 17.4 5.0 SS7 12 18.2 97 NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK. SS8 10 15.8 93 6.0 97 SS9 16 23.7 SAND: GREY, FINE SILTY SAND, SATURATED, COMPACT. 6.9 7.0 BOREHOLE WAS OVERDRILLED AND SUBSEQUENTLY BACKFILLED WITH NATIVE CLAYEY SOIL FOR WELL CLAYEY SILT TO SILTY CLAY:
GREY CLAYEY SILT TO SILTY CLAY WITH
DISSEMINATED FINE SAND AND GRAVEL, APL, SS10 24.3 83 7.6 INSTALLATION. 5/1/09 8,0 BOREHOLE TERMINATED AT 7.6 m IN CLAYEY SILT GDT JAGGER HIMS BASIC 9.0 10.0 GPJ 2-97005113 LOGS CONT. 11.0 12.0 GEOLOGIC B/W (METRIC) 13.0 14.0

BOREHOLE NO. OW76-5

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 25, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MOL/LMS

GROUND ELEVATION: 237.5 mASL REVIEWER: PEJ

				,			,	CONE PENETRATION	WATER	
STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 I I I SHEAR STRENGTH	10 20 30 1 1 1 W _P W _L	REMARKS
TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST. FIRM									***************************************	BOREHOLE INCLINED AT 45 DEGREES.
CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS.										NATIVE CLAY BACKFILL WA
										PLACED ABOVE THE FILTER PACK.
SILT:			CC1		17.9	100			0	
CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH										
OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT										
TO SILTY CLAY.										
								And the state of t		
									77.	
									A TOTAL COMPANIES	
									THAT IS THE CONTRACT OF THE CO	
									NATIONAL PROPERTY.	
									E PROPERTIE DE LA CONTRACTOR DE LA CONTR	
									THE TAXABLE PARTY AND THE PART	
									THE STATE OF THE S	
								V.	ANALYST TOTAL TOTAL	,
									201	
	BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF.	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATED AT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATED AT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATED AT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, CCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT BOREHOLE TERMINATEDAT 5.4 m IN CLAYEY SILT	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: MOTHEDBROWN/GREY BECOMING BROWN WITH GREY AND RUSTY FRACTURES, THEN GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL TO APL, STIFF TO VERY STIFF, TRACE ROOTLETS. SILT: GREY SILT, WET, COMPACT. CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, OCCASIONAL MEDIUM GRAVEL, WTPL, STIFF. BOREHOLE TERMINATED AT 5.4 m IN CLAYEY SILT

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 26, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: LMS

GROUND ELEVATION: 241.6 mASL REVIEWER: PEJ

		STR			1	SAMPL		Ι	CONE PENETRATION	WATER CONTENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 I I I SHEAR STRENGTH	10 20 30 1 1 1 W _P W _L	REMARKS
0.0	TOPSOIL. BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, MOIST, FIRM. CLAYEY SILT TO SILTY CLAY: BROWN WITH GREY FRACTURES BECOMING GREY FROM 3.7 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMING APL AT 3.7 m, VERY STIFF BECOMING STIFF, TRACE ROOTLETS. BOREHOLE TERMINATEDAT 4.3 m IN CLAYEY SILT TO SILTY CLAY.			CC1			92		STRENGTH	Wp Wt.	NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 02, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 239.5 mASL REVIEWER: PEJ

	ELEVATION: 239.5 mASL									EWER: PE	
		STF				SAMPL			CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH	10 20 30	REMARKS
0.0	TOPSOIL: DARK BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, SOFT, TRACE ROOTLETS. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY, BECOMING BROWN WITH GREY FRACTURES FROM 1.1 m, THEN BROWN FROM 1.7 m, CLAYEYSILT TO SILTY CLAY, APL BECOMING DTPL AT 0.8 m, STIFF BECOMING VERY STIFF AT 3.0 m, TRACE ROOTLETS. BOREHOLE TERMINATEDAT 3.9 m IN CLAYEY SILT TO SILTY CLAY.			CC1	UE .	17.6	100	96)	SHEAR STRENGTH	W _P W _L	BOREHOLE INCLINED AT 45 DEGREES. NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.
13.0											

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 16, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 239.4 mASL REVIEWER: PEJ

		ST				SAMPLI	E		CONE PENETRATION	WATER	
DEPTH	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		z	%	% RE	_Z	"N" VALUE	CONTENT %	REMARKS
(m)		3RAPI	DETAILS	ТүрЕ	N VALUE	WATER	RECOVERY	RQD (%)	10 20 30	10 20 30	REWARNS
0,0		4			E	ER	ΞRΥ	8	SHEAR STRENGTH	W _P W _L	
0.2 —	TOPSOIL: DARK BROWN, CLAYEY SILT TO SILTY CLAY			SS1	12	24.6	77		•	P	
	TOPSOIL, DAMP, SOFT, TRACE ROOTLETS. CLAYEY SILT TO SILTY CLAY:								100		
1.0	MOTTLED BROWN/GREY, BECOMING BROWN WITH GREY FRACTURES FROM 1.1 m, THEN BROWN AT 1.7 m BECOMING GREY FROM 4.9 m,			SS2	21	18.8	100			4	
	CLAYEY SILT TO SILTY CLAY, WITH INCREASED SILT CONTENT FROM 4.3 TO 5.3 m, APL BECOMING								0.000		
2.0	DTPL AT 0.8 m, THEN APL AT 4.6 m, STIFF BECOMING VERY STIFF AT 0.8 m TO HARD AT 2.3			SS3	25	21.5	97			•	
	m, THEN VERY STIFF AT 3.0 m, THEN STIFF AT 4.6 m BECOMING VERY STIFF AT 5.3 m.			SS4	50	21.2	57		50		
3.0						21.2					
				SS5	20	22.9	100		•	•	
4.0											
				SS6	17	21	107				
5.0				SS7	13	23.1	107				NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER
											PACK.
5.5 5.6	SAND: BROWN, FINE TO MEDIUM SAND, SUBROUNDED,			SS8	23	19	93		6	•	
6.3	POORLY SORTED, SATURATED, COMPACT. CLAYEY SILT TO SILTY CLAY: CDEX. CLAYEY, SILT TO SILTY CLAY.								000000000000000000000000000000000000000		
	GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, APL, STIFF.								000000000000000000000000000000000000000		
7.0	BOREHOLE TERMINATEDAT 6.2 m IN CLAYEY SILT TO SILTY CLAY.								100000000000000000000000000000000000000		
8.0									12.000		
3									0.000		
90									000000000000000000000000000000000000000		
									0.000		
10.0									0000 0000 0000 0000 0000 0000 0000 0000 0000		
									100000000000000000000000000000000000000		
11.0									V V V V V V V V V V V V V V V V V V V		
									190000000000000000000000000000000000000	200	
2 120									VALUE OF THE PARTY		
12.0									A ADDITION OF A PRINCIPAL OF A PRINC		
11.0.									000 MONTH TO THE	111111111111111111111111111111111111111	
13.0									Marin Secretary No.	111111111111111111111111111111111111111	
										100000000000000000000000000000000000000	
14.0									Manufacture and the second		
										10.17.17.17.17.17.17.17.17.17.17.17.17.17.	
15.0 Lagger Him									100000000000000000000000000000000000000		

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 02, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 237.9 mASL REVIEWER: PEJ

GROU	ND	ELEVATION: 237.9 MASL								- KEAII	:WEK: PE	_V
			S			9	SAMPL	E		CONE PENETRATION	WATER	atti kiteli uvosi astieviti sikuvutus asamatavanna paanin apavenptuuseneessa adalapakse oole
DEPTI	н	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		_	%	% R		"N" VALUE	CONTENT %	DEMARKO
(m)		on mark the best the next	3RAPI	DETAILS	TYPE	N VALUE	% WATER	RECOVERY	RQD (%)	10 20 30	10 20 30	REMARKS
0.0			₹			m	R	RY	<u> </u>	SHEAR STRENGTH	W _P W _L	
0.1	-	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL WITH ROOTLETS, DAMP, FIRM.										BOREHOLE INCLINED AT 45 DEGREES.
1.0		CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH										
		GREY FRACTURES FROM 1.5 m, THEN BROWN FROM 2.7 m, CLAYEY SILT TO SILTY CLAY WITH										
		DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMING APL AT 3.0 m, STIFF BECOMING VERY STIFF AT 0.6 m THEN STIFF AT 1.8 m, TRACE										
2.0		ROOTLETS.										
3.0												
												NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.
4.0 4.1		SILT:										
4.7		BROWN SILT, MOIST, VERY DENSE.			CC1		24.8	100			•	
5.0 4.9		CLAYEY SILT TO SILTY CLAY: BROWN SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL,		0.40-D0.40								
		STIFF. BOREHOLE TERMINATED AT 4.9 m IN CLAYEY SILT										
6.0		TO SILTY CLAY.										
7.0												
8.0												
00 00 00 00 00 00 00 00 00 00 00 00 00												
9.0												
5 												
0 0 0 10.0	12											
Z												
11.0												
5												
2000												
12.0												
90 90 10.0 10.0 10.0 10.0 10.0 10.0 10.0												
13.0												
5 AA												
14.0												
15.0												

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 25, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 237.8 mASL REVIEWER: PEJ

		_			***************************************		40.000			,	
		ST				SAMPL	E	_	CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS		z	% \	% REO	RQD	"N" VALUE	10 20 30	REMARKS
		APH	DETAILS	TYPE	N VALUE	% WATER	RECOVERY	λD (%)			
0.0	TOPSOIL:	32.	3000		-'''	ע	~~	ļ_	SHEAR STRENGTH	W _P W _L	
0.1	BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL WITH ROOTLETS, DAMP, FIRM.										
1.0	CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH			SS1	5	20.8	27		9		
anno de la como	GREY FRACTURES FROM 1.5 m, THEN BROWN AT 2.7 m, CLAYEY SILT TO SILTY CLAY WITH										
	DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMING APL AT 3.0 m, STIFF BECOMING VERY								111111111111111111111111111111111111111		
2.0	STIFF AT 0.6 m THEN STIFF AT 1.8 m, TRACE ROOTLETS.										
				SS2	15	19.8	32			•	
3.0											
4.0				SS3	7	18.3	38			•	
4.1 -	SILT:								1000		
4.7 -	BROWN SILT, MOIST, VERY DENSE. CLAYEY SILT TO SILTY CLAY:								000000000000000000000000000000000000000		
5,0	BROWN SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED FINE SAND AND GRAVEL, FINE								V 1000		
	BROWN SILT NODULES (5 cm IN DIAMETER) FROM 6.1 TO 6.7 m, DTPL TO WTPL AT 5.5 m, THEN APL			SS4	5	25.9	42			,	
6.0	AT 6.0 m, STIFF BECOMING VERY STIFF AT 6.0 m.										NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER
				SS5	6	20.7	50				PACK.
7.0 6.7 =	SAND:								100 mm m m m m m m m m m m m m m m m m m		
7.4 -	BROWN MEDIUM TO COARSE SAND, POORLY SORTED, SATURATED, COMPACT.			SS6	17	18.1	50		1000	•	
	CLAYEY SILT TO SILTY CLAY: GREY SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED FINE TO MEDIUM SAND AND								B-1000000 - 1000000		
8.0	GRAVEL, APL, STIFF. BOREHOLE TERMINATED AT 7.4 m IN CLAYEY SILT	1							0.000		
80/1/6	TO SILTY CLAY.										
9.0									300000000000000000000000000000000000000		
9.0 10.0	-								0.00 to 0.00 t	100	
10.0									1,010,000,000		
Д Т					:				1000		
) 11 0											•
11.0									Variation in National States		
50											
12.0											
2-9/0									Annual control of the	1	
11.0. 11.0. 12.0. 12.0. 13.0. 14.0. 15.0. 14.0. 15.0.											
E)									And the second section of the		
S/B 14.0											·
										,	
									1		
팅 <u>15.0</u>	ims Limited			<u></u>		<u> </u>	<u> </u>				

PAGE 1 of 2

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 20, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 237.9 mASL REVIEWER: PEJ

		1	1					************		I			Towns and the second
		SI				8	AMPLI	E		CONE PENETRATION	WAT	ER	
DEST		STRATIGRAPHY						%		"N" VALUE	CONT		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	TIGE	MON DET	ITOR All S	ایا	z	% v	RECOVERY	RQD	10 20 30	10 20	30	REMARKS
` ′		ΑP	DET	7 (120	ТҮРЕ	N VALUE	% WATER	100	D (S				
		1 ±			'''	Е	FR	ERY	(%)	SHEAR STRENGTH	├ W _P	I WL	
0.0	TOPSOIL:	Wir	1					·			VVP	V VL	
	BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL WITH ROOTLETS, DAMP, FIRM.				SS1	5		46		•			
	CLAYEY SILT TO SILTY CLAY:												
1.0	MOTTLED BROWN/GREY BECOMING BROWN WITH GREY FRACTURES TO 1.5 m, THEN BROWN AT 2.7				SS2	23		42		7			
.,,,,,,,,,,	m, CLAYEY SILT TO SILTY CLAY WITH												
	DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMING APL AT 3.0 m, STIFF BECOMING VERY				SS3	17		102		1 1			
2.0	STIFF AT 0.6 m THEN STIFF AT 1.8 m, TRACE ROOTLETS.												
	ROOTLETS.				SS4	9		79		1	6		
3.0					SS5	13		60					
						40		7.4					
					SS6	12		71		ľ			
4.0					SS7	9		113					
4.1	SILT:	m_{μ}			337	9		113					
	BROWN SILT, MOIST, VERY DENSE.				SS8	8		54					
4.7	CLAYEY SILT TO SILTY CLAY:					Ü		0-4					
5.0	BROWN SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED FINE SAND AND GRAVEL, FINE		N		SS9	10		48					,
	BROWN SILT NODULES (5 cm IN DIAMETER) FROM		N										
	6.1 TO 6.7 m, DTPL TO WTPL AT 5.5 m, THEN APL AT 6.0 m, STIFF BECOMING VERY STIFF AT 6.0 m.				SS10	12		58					
6.0													
					SS11	20		65					
6.7	SAND:												
7.0 6.8	BROWN MEDIUM TO COARSE SAND, WET,				SS12	16		69					
	CLAYEY SILT TO SILTY CLAY:												
	GREY SILTY CLAY TO CLAYEY SILT WITH				SS13	14		63		•			
8.0	DISSEMINATED FINE TO MEDIUM SAND AND GRAVEL, APL BECOING WTPL AT 10.7 m, THEN APL		N										
,	AT 24.7 m, DISSEMINATED COARSE SAND AND				SS14	13		63					
5	MEDIUM GRAVEL AT 25.0 m WITH SOME SHALE ROCK FRAGMENTS, STIFF BECOMING VERY STIFF		N										
	AT 9.1 m, THEN FIRM TO STIFF AT 11.0 m BECOMING VERY STIFF AT 18.3 m, THEN HARD		N		SS15	12		65		•			
5	FROM 18.9 TO 19.5 m BECOMING VERY STIFF AT		N										
9.0	19.5 m TO HARD AT 24.4 m.				SS16	16							
10.0													
					SS17	18	18.4	67		•	•		
11.0					SS18	16	18.4	58)	9		
5 11.2												\	
					SS19	6	21.7	69		9		P	,
			N		0000	_	40-			\			
12.0			N		SS20	9	16.7	75		/			
			N		SS21	,	17.0	50					
			N		J021	4	17.2	58			١١١		
13.0			N		SS22	12	20.9	67				b .	
			M		3322	12	20.0	٠,		<i> </i>			
			N		SS23	8	25	75					
14.0					- 22	-				\			
					SS24	16	24	46				-	
10.0 11.0 12.0 13.0													
15.0					SS25	7	27.6	108		6		}	
Jagger Him	s Limited												

PAGE 2 of 2

PROJECT NAME: TWIN CREEKS LANDFILL

PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP.

DATE COMPLETED: Feb 20, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER

SUPERVISOR: MEQ

REVIEWER: PEJ

GROUND ELEVATION: 237.9 mASL

SAMPLE CONE PENETRATION WATER STRATIGRAPHY CONTENT % "N" VALUE DEPTH MONITOR DETAILS STRATIGRAPHIC DESCRIPTION RECOVERY N VALUE RQD (%) REMARKS 10 20 30 (m) 10 20 30 WATER . W_P w. CLAYEY SILT TO SILTY CLAY: CONTINUED. SS26 21.4 108 16.0 11 75 SS27 13.8 SS28 12 15 88 17.0 SS29 14 17.9 63 18.0 SS30 15 14.2 50 SS31 19 14.9 83 19.0 SS32 15.3 36 50 SS33 20 17.2 96 20.0 21.0 SS34 20 15.5 83 SS35 18 15.1 100 22.0 SS36 21 15.7 108 24 SS37 16.8 108 23,0 5/1/09 SS38 26 19.2 108 HIMS BASIC.GDT 24.0 17 16 104 SS39 NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK. SS40 17.7 100 25.0 60 JAGGER SS41 60 11.9 42 106 SS42 106 8.6 100 26.0 GPJ 26.2 BOREHOLE CAVED TO 26.2 m DURING WELL INSTALLATION. GEOLOGIC B/W (METRIC) 2-97005113 LOGS. SHALE, WEATHERED, FRACTURED, FISSILE BOREHOLE TERMINATED AT 26.4 m IN SHALE. 27.0 28.0 29.0 Jagger Hims Limited

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 03, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

										EWER: P	
		STI			5	SAMPL	г		CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 I I I SHEAR STRENGTH	10 20 30 1 1 1 W _P W _t	REMARKS
0.0	TOPSOIL. BROWN TO BROWN/GREY, CLAYEY SILT TO SILTY CLAY TOPSOIL, SOME COARSE SAND, SOME FINE GRAVEL, MOIST, FIRM, WITH ROOTLETS. CLAYEY SILT TO SILTY CLAY. MOTTLED BROWN/GREY BECOMING BROWN FROM 1.4 m, WITH GREY AND RUSTY FRACTURING, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL, STIFF, VERY STIFF FROM 1.8 m TO 2.4 m, TRACE ROOTLETS. BOREHOLE TERMINATED AT 3.5 m IN CLAYEY SILT TO SILTY CLAY.			CC1		21.3	100		STRENGTH	Wp W₁	BOREHOLE INCLINED AT 45 DEGREES. NATIVE CLAY BACKFILL WA PLACED ABOVE THE FILTER PACK.

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 09, 2006

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 235.5 mASL REVIEWER: PEJ

		T				SAMPLI	_		CONE			
		STRATIGRAPHY				AWPL			CONE PENETRATION		ATER FENT %	
DEPTH	STRATIGRAPHIC DESCRIPTION	ATIC	MONITOR		z	%	% RE	77	"N" VALUE			REMARKS
(m)	CTWATER THE BESONN THEN	3RAF	DETAILS	TYPE	N VALUE	% WATER	CO\	RQD (%)	10 20 30	10	20 30 	KLMAKKS
		AH,		m	JE.	TER I	RECOVERY	(%)	SHEAR	-		
0.0	TOPSOIL:	3 7. 3						<u> </u>	STRENGTH	W _P	W _L	
0.3	BROWN TO BROWN/GREY, CLAYEY SILT TO SILTY CLAY TOPSOIL, SOME COARSE SAND, SOME FINE			SS1	12	22.1	100		9		9	
10000000000000	GRAVEL, MOIST, FIRM, WITH ROOTLETS.											
1.0	CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN											
	FROM 1.4 m, WITH GREY AND RUSTY FRACTURING, CLAYEY SILT TO SILTY CLAY WITH											
*********	DISSEMINATED FINE SAND AND GRAVEL, DTPL, STIFF, VERY STIFF FROM 1.8 m TO 2.4 m, TRACE			SS2	27	20.5	100					
2.0	ROOTLETS.											
3.0												and the second s
and the second												
				SS3	17	19.4	100		1 1			
4.0												
												NATIVE OLAV DAGVEN LAVAG
4.6	CAND	HHH	777									NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.
5.0 4.7	SAND: BROWN COARSE SAND WITH MEDIUM GRAVEL,			SS4	12	28.7	50		1 6		•	17.00
	POORLY SORTED, WET, COMPACT. CLAYEY SILT TO SILTY CLAY:											
	GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL,			SS5	40	26.7	67				4	
6.0 5.8	VERY STIFF.		<u> </u>									
	BOREHOLE TERMINATEDAT 5.8 m IN CLAYEY SILT TO SILTY CLAY.											
7.0												
8.0												
9.0												
No.												
10.0												
									300			
55									0.00			-
11.0												
5												
2												
12.0												
4												
13.0									V			
					Í							
14.0												
9.0 9.0 10.0 11.0 11.0 12.0 13.0 14.0 14.0												
D 450												
5 <u> 15.0 </u> Jagger Hin	as I imited		L									1

PAGE 1 of 2

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 06, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ/LMD

GROUND ELEVATION: 236.6 mASL REVIEWER: PEJ

			***************************************			SAMPL	E		CONE PENETRATION		
		STRATIGRAPHY					- %			WATER CONTENT %	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	ATIG	ONITOR ETAILS		z	%		R	"N" VALUE 10 20 30	10 20 30	REMARKS
()		RA L	ETAILS	TYPE	N VALUE	% WATER	RECOVERY	RQD (%)			
0.0		4			Ē	F F	岁	8	SHEAR STRENGTH	W _P W _L	
0.3	TOPSOIL: BROWN TO BROWN/GREY, CLAYEY SILT TO SILTY		3 777	SS1	6	26.4	88				
	CLAY TOPSOIL, SOME COARSE SAND, SOME FINE GRAVEL, MOIST, FIRM, WITH ROOTLETS.			001	Ĭ	20,1					
1.0	CLAYEY SILT TO SILTY CLAY:			SS2	7	18.4	83		4	4	
	MOTTLED BROWN/GREY BECOMING BROWN FROM 1.4 m WITH GREY AND RUSTY FRACTURES,										
	CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL, STIFF, VERY STIFF			SS3	12	17.2	92		१	4	
2.0	FROM 1.8 m TO 2.4 m, TRACE ROOTLETS.			SS4	17	22.5	100				
				001		22.0	100				
				SS5	13	21.9	50				
3.0											
				SS6	10	19.8	92			•	
4.0				SS7	11	21.1	100			•	
4.6	SAND:			SS8	10	14	100		•	•	
5.0	BROWN COARSE SAND, POORLY SORTED, WITH MEDIUM GRAVEL, WET, COMPACT.			559	18	17	104				
	CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH			333	16	''	104				·
6.0	DISSEMINATED FINE SAND AND GRAVEL, DTPL BECOMINGAPL AT 6.1 m, APL FROM 12.2 TO 13.4 m			SS10	18	13.6	100				
	WITH GREY WET SILT NODULES (2 TO 6 cm IN DIAMETER), THEN WTPL BECOMINGAPL AT 14.0 m,										
	THEN WTPL AT 15.8 m BECOMING APL AT 22.2 m, BECOMING DTPL AT 23.5 m, BECOMING WTPL AT			SS11	13	14.4	104				
7.0	24.7 m WITH SHALE ROCK FRAGMENTS AT 26.2 m, VARYING STIFF TO VERY STIFF TO DEPTH.			SS12	12	16.2	54				
D 00				SS13	12	19.5	50		•	•	
8.0				SS14	13	18.1	104				
3											
9.0				SS15	12	17.8	104			•	
Δή Δ				SS16	10	18.2	104				:
r				3510	"	10.2	104				
10.0				SS17	11	16.7	104		•		
2											
<u> 11.0</u>				SS18	12	16.6	71				:
				SS19	11	17.5	100			•	
9.0 9.0 9.0 10.0 9.0				SS20	10	15.7	92				
3				SS21	15	17.2	104.				
2 40.6			1/	3321	"	''.2	154.				
<u> 13.0</u>				SS22	25	14.3	71			•	
<u> </u>											
14.0			1 //	SS23	20	18.4	104		1		
				SS24	14	21.3	104			\	
5											
5 <u> 15.0 </u> Jagger Hin	s I imited	MANY /		SS25	12	21.1	104				

PAGE 2 of 2

PROJECT NAME: TWIN CREEKS LANDFILL

PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP.

DATE COMPLETED: Mar 06, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER

SUPERVISOR: MEQ/LMD

GROUND ELEVATION: 236.6 mASL

REVIEWER: PEJ

		1	1				TO STATE OF THE PARTY OF THE PA		T		
		SI				SAMPL	E		CONE PENETRATION	WATER	
DEPTH		STRATIGRAPHY					%		"N" VALUE	CONTENT %	
(m)	STRATIGRAPHIC DESCRIPTION	ĪĢR	MONITOR DETAILS	-	z <	%	REC	RQ	10 20 30	10 20 30	REMARKS
		AP		TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)			
15.0		₹			Ш	13	? ?) 0	SHEAR STRENGTH	W _P W _L	
	CLAYEY SILT TO SILTY CLAY: CONTINUED.	MI	11/								
				SS26	10	18.1	104				
16.0											
manufaction of the second				SS27	9	14.7	100		4	•	
17.0				SS28	15	17	104		4	þ	
aminintaine.											
				SS29	25	19.8	42			•	
18.0				5534	40	440	70				
				SS31	18	14.3	79				
				SS32	17	16.3	83				
19.0									\ \tag{\frac{1}{2}}		
				SS33	20	16.1	71		•	•	
20.0				SS34	24	13.4	92		•	•	
				SS35	22	13.4	33		<i>)</i>	9	
21.0				SS36	16	16.5	83				
				3330	10	16.5	03			\ \	
				SS37	11	19.1	92			\	
22.0											
				SS38	19	13.4	100		 	4	
23.0				SS39	27	17.6	63			\	
Ž											
O.S.				SS40	26	15.9	100				
24.0				SS41	28	16	100				
a S				0041	20	10	100				
į				SS42	21	18	113				
25.0										1	
Ă				SS43	38	21.8	83			>	NATIVE OF AN DAOMER AND
<u>a</u>			হ্মেক হ্মেক							/	NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.
Z 26.0			I₩ F ₩	SS44	8	16.3	104			<i>•</i>	17130
SSC							,			/	
5				SS45	22	8.9	100		8		
27.0 26.8 ==	SHALE: BLACK SHALE ROCK, WEAHTERED, FRACTURED,	T		SS46		13.7	33			9	
5 ap	FISSILE.										
ή ()	BOREHOLE TERMINATED AT 26.9 m IN SHALE.										
28.0											
<u> </u>											
PV PV	·										
5 29.0											
ECL											
25.0 PSP (25.0 P											
≒ <u>[30.0]</u> Jagger Him	ıs Limited	1	L		emmonature too			<u></u>			

600 Southgate Drive, Guelph, ON N1G 4P6 Tel: 519.823.1311 Fax: 519.823.1316

MONITORING WELL

E: 428,284.0

N: 4,758,335.0

Page 1 of 1

OW81-5

PROJECT NAME: OW81 and GP8 Drilling Program

PROJECT NO.: 1902909

rwdi.com

CLIENT: Waste Management of Canada Corporation Twin Creeks Landfill Site PROJECT LOCATION:

DRILLING CONTRACTOR: Direct Environmental Drilling Inc. DRILLING METHOD: Hollow Stem Auger - Continuous Sampling

BOREHOLE DIAMETER: 203 mm

DATE STARTED: 07/3/19

COMPLETED: 07/3/19

GROUND ELEVATION: 235.31 mASL

LOGGED BY: YL

CHECKED BY: PEI

SUBSURFACE PROFILE SAMPLE SAMPLE TYPE DEPTH [mbgs] GRAPHIC LOG RECOVERY (%) DEPTH [mbgs] ELEV. [mASL] NUMBER 'N" VALUE REMARKS RQD MATERIAL DESCRIPTION WELL DIAGRAM **CLAYEY SILT TO SILTY CLAY** Stratigraphy from Brown clayey silt to silty clay, some sand, trace gravel, surface to 4.3 m 235 orange to dark brown mottling to 2.3 m, becoming inferred from Monitoring well OW81-27. brown to grey at bottom, APL to WTPL, firm to very constructed using firm. 51 mm inside diameter schedule 40 flush joint PVC casing, with a 0.7 m stick up. 234 Seal: bentonite plug from 0 to 3.3 m depth. - Trace light to dark brown silt inclusions at 2.3 to 2.9 2. 233 3-232 Seal: baked clay from 3,3 to 3.6 m depth. - Sandy silt to silty sand lenses encountered at 4.6 m 4 and 5.1 m, less than 0.1 m in thickness. Filter pack: No. 2 231 silica sand. #10 slot PVC well screen. CC N/A 100 N/A Weep hole drilled in 5 well point. Borehole terminated at 5.4 m depth. Cave: native soil. 230

5.4

600 Southgate Drive, Guelph, ON N1G 4P6 Tel: 519.823.1311 Fax: 519.823.1316

MONITORING WELL OW81-7

E: 428,285.0

N: 4,758,342.0

PROJECT NAME: OW81 and GP8 Drilling Program

PROJECT NO.: 1902909

CLIENT: Waste Management of Canada Corporation PROJECT LOCATION: Twin Creeks Landfill Site

DRILLING CONTRACTOR: Direct Environmental Drilling Inc. DRILLING METHOD:

Hollow Stem Auger - Split Spoon Sampling

203 mm **BOREHOLE DIAMETER:**

DATE STARTED: 06/25/19

COMPLETED: 06/25/19

GROUND ELEVATION: 235.84 mASL

LOGGED BY: YL

CHECKED BY: PEJ

		S	AMF	PLE					SUBSURFACE PROFILE	
DEPTH [mbgs] ELEV. [mASL]	SAMPLE TYPE	NUMBER	"N" VALUE	RECOVERY (%)	RQD	REMARKS	DEPTH [mbgs]	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
235	- 235					Augered to 5.3 m depth without sampling. Stratigraphy from surface to 5.3 m inferred from OW81-27.	0.0		CLAYEY SILT TO SILTY CLAY Brown to grey clayey silt to silty clay, some disseminated fine sand, trace fine gravel, mottling to 2.3 m, becoming brown then grey at bottom, APL to WTPL, firm to very stiff.	Monitoring well constructed from 51 mm inside diameter schedule 40 flush joint PVC casing, with a stick up of 0.7 m.
- 233									- Trace light to dark brown silt inclusion at 2.3 to 2.9 m.	Seal: hydrated bentonite chips from 0 to 5.8 m.
- 232 4 - 231					-				- Sandy silt to silty sand lenses encountered at 4.6 m and 5.1 m, less than 0.1 m in thickness Fine sandy silt laminations encountered between 5.3 and 5.5 m.	
- 230		SS 1 1 SS 2	7	104	+				- Fine to medium sand lens encountered between 6.5 and 6.7 m, wet to saturated, compact DTPL starting at 6.9 m.	Seal: timed-release bentonite pellets from 5.8 to 6.1 m. #10 slot PVC well
- 229			20	104			7.5		- Fine to medium sand lens encountered at 7.4 m, less than 0.1 m in thickness. Borehole terminated at 7.5 m.	screen. Filter pack: No. 2 silica sand. Weep hole drilled well point.

MONITORING WELL

OW81-27

E: 428,283.0

N: 4,758,339.0

PROJECT NAME: OW81 and GP8 Drilling Program

PROJECT NO.: 1902909

CLIENT: Waste Management of Canada Corporation **PROJECT LOCATION:** Twin Creeks Landfill Site

DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

DRILLING METHOD: Hollow Stem Auger - Split Spoon Sampling

BOREHOLE DIAMETER: 203 mm

DATE STARTED: 06/24/19

COMPLETED: 06/25/19

GROUND ELEVATION: 235.77 mASL

LOGGED BY: VI

CHECKED BY: PFI

DRILLI	ING	CONT	RACT	OR:	Dire	ect Environmenta	al Drillin	ng Inc	LOGGED BY: YL CH	HECKED BY: PEJ
			SAME	PLE					SUBSURFACE PROFILE	T
ELEV. [mASL]		NUMBER	"N" VALUE	RECOVERY (%)	RQD	REMARKS	DEPTH [mbgs]	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
0 -		SS	5	108			0.4		CLAYEY SILT TO SILTY CLAY TOPSOIL	Seal: hydrated bentonite chips from 0 to 0.9 m
1-23	35	SS	12	100	†				CLAYEY SILT TO SILTY CLAY Brown to grey clayey silt to silty clay, some sand, trace	from 0 to 0.9 m depth
- 23	34	2 55							gravel, orange to dark brown mottling to 2.3 m, becoming brown then grey at 6.7 m, APL to DTPL, firm	
2-		SS SS	14	117				Ξ	to very stiff.	
3-23	33	4	11	100				Η	- Trace light to dark brown silt inclusions at 2.3 to 2.9	Monitoring well
- 2	32	SS 5	10	125				Ξ	m.	constructed using 51 mm inside diameter schedule
4-		SS 6	8	125						40 flush joint PVC casing, with a 0.7 r
5-23	31	SS 7	N/A	100					- Sandy silt to silty sand lenses encountered at 4.6 m and 5.1 m, less than 0.1 m in thickness.	stick up.
1	30	SS 8	N/A	100					- Silty sand to sandy silt laminations encountered	
6-		SS	15	136				II.	between 6.1 to 6.7 m, moist to wet. - Clayey silt lens encountered at 6.3 m, less than 0.1 m	
7-22	29	9 SS	17	100					in thickness, soft. - Sand lenses encountered at 6.5, 6.6 and 6.9 m, less	
- 22	28	10 SS						Ξ	than 0.1 m in thickness, moist to wet.	
8-	E	11	17	100				Ė		
9-22	27	55 12	18	100						
- 22	26	SS 13	19	96					9	
0 +		SS 14	12	54						
1 - 2:	25	SS 15	14	100						
- 22	24	SS 16	17	83				H		
2-		SS	14	125	1			=		
3 - 22	23	17 SS						#		Seal: high solids bentonite grout
	22	18	16	117						from 0.91 to 25.3 r depth.
4-		55 19	14	88						

600 Southgate Drive, Guelph, ON N1G 4P6 Tel: 519.823.1311 Fax: 519.823.1316

MONITORING WELL OW81-27

E: 428,283.0

N: 4,758,339.0

PROJECT NAME: OW81 and GP8 Drilling Program

PROJECT NO.: 1902909

CLIENT: Waste Management of Canada Corporation Twin Creeks Landfill Site PROJECT LOCATION:

DRILLING CONTRACTOR: Direct Environmental Drilling Inc. DRILLING METHOD:

Hollow Stem Auger - Split Spoon Sampling

BOREHOLE DIAMETER: 203 mm

DATE STARTED: 06/24/19

COMPLETED: 06/25/19

GROUND ELEVATION: 235.77 mASL

LOGGED BY: YL

CHECKED BY: PEI

SAMPLE SUBSURFACE PROFILE SAMPLE TYPE DEPTH [mbgs] GRAPHIC LOG RECOVERY (%) DEPTH [mbgs] ELEV. [mASL] NUMBER REMARKS 'N" VALUE MATERIAL DESCRIPTION WELL DIAGRAM 221 10 117 20 15 SS N/A 117 220 15.9 **CLAYEY SILT** Grey clayey silt, trace fine sand and gravel, APL to DTPL, stiff to hard. 17 17 0 218 100 21 19 20 12 117 215 21 55 20 54 22 23 21 121 23.5 SANDY CLAY SILT 212 24 Brown to grey sandy clay silt, some sandy clay, some fine to medium rounded gravel, trace silt, APL to WTPL, firm to stiff. 87 0 25 Seal: timed-release bentonite pellets from 25.3 to 25.6 m 210 depth. - Grey weathered shale encountered at 26.0 m and at 26 SS 32 92 26.5 m. 28 #10 slot PVC well - Auger refusal at 27.4 m at shale bedrock. 209 screen. 27 Borehole terminated at 27.4 m depth. Filter pack: No. 2

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 02, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 240.0 mASL REVIEWER: PEJ

		(n			5	SAMPL	E		CONE PENETRATION	14/4755	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 I I I SHEAR STRENGTH	WATER CONTENT % 10 20 30 1 1 1 W _P W _L	REMARKS
0.0 0.6 — 1.0 0.6 — 1.0 0.6 — 1.0 0.6 — 1.0 0.6 — 1.0 0.6 — 1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DRY, SOFT TO FIRM. CLAYEY SILT TO SILTY CLAY: BROWN/GREY BECOMING GREY FROM 4.5 m, CLAYEY SILT TO SILTY CLAY, SOME COARSE SAND, DTPL, STIFF, VERY STIFF FROM 1.8 m TO 2.4 m, FRACTURES WITH CALCIUM DEPOSITS FROM 0.6 m TO 2.4 m. BOREHOLE TERMINATEDAT 4.9 m IN CLAYEY SILT TO SILTY CLAY.			CC1		20.5				Φ	NATIVE CLAY BACKFILL WAS PLACED ABOVE THE FILTER PACK.

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 26, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 240.1 mASL REVIEWER: PEJ

DEPTH (m) STRATIGRAPHIC DESCRIPTION			S			(SAMPL	E		CONE PENETRATION	WATER	
DI	(m)	STRATIGRAPHIC DESCRIPTION	TRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR	10 20 30	REMARKS -
13.0 13.0 SS21 6 15.7 96 SS22 7 16.8 104 SS23 7 16.2 104 BOREHOLE TERMINATED AT 14.0 m IN CLAYEY SILT TO SILTY CLAY.	0.1 — 1.0 3.0 3.0 4.0 4.1 — 5.0 6.0 7.0 6.9 — 11.0 12.0	BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, SOFT TO FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH GREY FRACTURES FROM 1.2 m, THEN BROWN FROM 3.3 m, SILTY CLAY TO CLAYEY SILT WITH DISSEMINATED FINE SAND AND GRAVEL, TRACE COARSE SAND, DTPL BECOMING APL AT 3.7 m, FIRM TO STIFF, OCCASIONAL MINERALIZATION IN FRACTURES FROM 0.6 TO 2.4 m. SILT: BROWN BECOMING GREY AT 4.9 m, SILT WITH OCCASIONAL CLAY POCKETS, MOIST BECOMING WET AT 6.3 m, COMPACT. CLAYEY SILT TO SILTY CLAY: GREY CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, APL TO 11.0 m BECOMING WTPL, STIFF BECOMING FIRM AT 12.8 m.			\$\$2 \$\$3 \$\$4 \$\$5 \$\$8 \$\$9 \$\$10 \$\$11 \$\$12 \$\$13 \$\$14 \$\$15 \$\$16 \$\$17 \$\$18 \$\$19 \$\$20 \$\$21	4 13 15 18 12 11 8 14 12 11 10 6 11 10 9 8 8 6 7	17.9 16.4 19 22.6 21.1 19.1 18.2 16.4 16.7 17.8 20.7 18.3 16.7 17.4 17.4 17.8 16.6 16.2 17.1 17.4 17.8	67 100 92 92 100 104 104 104 100 104 104 104 104 104		STRENGTH		BOREHOLE WAS OVERDRILLE AND SUBSEQUENTLY BACKFILLED WITH NATIVE CLAYEY SOIL FOR WELL

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.32

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION DATE COMPLETED: Aug 21, 2009

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 238.9 mASL REVIEWER: PEJ

		STF			S	SAMPLI			CONE PENETRATION		ATER	
DEPTH	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR		z	%	% RE	77	"N" VALUE		ΓENT %	REMARKS
(m)	STRATISTICAL FILE DESCRIPTION	3RAF	DETAILS	TYPE	N VALUE	WATER	RECOVERY	RQD (%)	10 20 30		20 30 	- REWARKS
0.0		¥		т	Ē	ᇁ	ÆRY	%)	SHEAR STRENGTH	⊢ W _P	WL	
0.2 -	TOPSOIL: GREY/BROWN, CLAYEY SILT TO SILTY CLAY	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>										GEOTEXTILE FABRIC
0.2	TOPSOIL, DAMP, SOFT.	_										SEPARATOR INSTALLED AT 0.44 m.
	CLAYEY SILT TO SILTY CLAY: MOTTLED GREY/BROWN, BECOMING BROWN											
1.0	WITH GREY FRACTURING AT 1.2 m, THEN GREY, MASSIVE AT 3.2 m CLAYEY SILT TO SILTY CLAY,											
	WITH DISSEMINATED FINE TO MEDIUM SAND AND GRAVEL, DTPL TO APL AT 4.6 m, SOFT BECOMING											GEOLOGIC INFORMATION OBTAINED FROM FORMER GAS
	STIFF AT 0.6 m, THEN VERY STIFF AT 1.8 m BECOMING STIFF AT 3.7 m, RUSTY COLOURED											PROBE GP1.
	FRACTURES AT 1.4 m, FINE SAND/SILT NODULES (APPROXIMATELY 2-3 mm IN DIAMETER) FROM 1.2											
2.0	m TO 2.3 m.											
3.0												
4.0												
5.0												
5.2 -	BOREHOLE TERMINATED AT 5.2 m IN CLAYEY SILT	- KKKK	(505 s) - (505 s)									
	TO SILTY CLAY.											
6.0												
7.0												
7.0												
8.0												
9.0												
10.0	ims Limited											

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 25, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 237.9 mASL REVIEWER: PEJ

		T	1	1			and the second s			1	
		STF				SAMPL		T	CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR	10 20 30	REMARKS
0.0	TOPCOU	133 65.				٠	~		STRENGTH	W _P W _L	
0.1	TOPSOIL: BROWN/RUSTY BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, SOFT, SOME ROOTLETS. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH			SS1	3		53				GEOTEXTILE FILTER CLOTH PLACED BETWEEN BENTONITE SEAL AND SAND FILTER PACK
1.0	GREY FRACTURES TO 1.2 m, THEN BROWN AT 2.3 m, CLAYEY SILT TO SILTY CLAY WITH DISSEMINATED FINE SAND AND GRAVEL, DTPL, FIRM TO STIFF, SOME MINERALIZATION IN FRACTURES FROM 0.8 m TO 1.8 m, ROOTLETS FROM 1.8 m TO 2.3 m. INTERMITTENT NODULES (1			SS2	10		63				
2.0	TO 2 cm IN DIAMETER) OF FINE SILTY SAND, MOIST TO WET FROM 3.0 m TO BOTTOM OF BOREHOLE.			SS3	14		70				
				SS4	10	18.6	67		•	•	
3.0											
4.0	,			SS5	10		90				
4.6				SS6	8	19.6	80			•	
5.0	BOREHOLE TERMINATED AT 4.6 m IN CLAYEY SILT TO SILTY CLAY.										
6.0											
7.0											
8.0											
9.0											
										,	•
10.0	ns Limited								AND CONTROL OF THE PARTY OF THE		

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Mar 09, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 235.5 mASL REVIEWER: PEJ

		ST			8	SAMPL	E		CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH	10 20 30	REMARKS
0.2 —	TOPSOIL: DARK BROWN SILTY CLAY TO CLAYEY SILT TOPSOIL, WITH DISSEMINATED FINE SAND AND GRAVEL, WET, SOFT, SOME ROOTLETS.			SS1	10	19.8	50		•	•	GEOTEXTILE FILTER CLOTH PLACED BETWEEN BENTONIT SEAL AND SAND FILTER PACE
1.0	CLAYEY SILT TO SILTY CLAY: MOTTLEDBROWN/GREY BECOMING BROWN WITH GREY FRACTURES AND MINERALIZATION TO 1.3 m THEN BECOMING BROWN AT 2.6 m AND GREY AT 3.2 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE TO MEDIUM SAND AND GRAVEL, DTPL BECOMING APL AT 3.2 m, STIFF			SS2	16	17.6	63				OLILINO ONO TILILINA
2.0	BECOMING VERY STIFF AT 0.9 m, THEN STIFF AT 3.0 m, TRACE ROOTLETSFROM 1.5 m TO 1.7 m AND FROM 2.7 m TO 3.0 m.			SS3	18	19.2	73				
3.0				SS4	16	20.1	80			•	
				SS5	12	19.5	83			•	
1.0				SS6	13	24.2	111				
4.6	BOREHOLE TERMINATED AT 4.6 m IN CLAYEY SILT TO SILTY CLAY.										
7.0											
8.0		And the state of t									
9.0											
0.0										,	

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.32

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION DATE COMPLETED: Aug 21, 2009

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 237.9 mASL REVIEWER: PEJ

		(0				SAMPLI	E		CONE PENETRATION		
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30	WATER CONTENT %	REMARKS
0.0		₹			т	Ä	RY	٠	SHEAR STRENGTH	W _P W _L	
0.1	TOPSOIL: BROWN/GREY, CLAYEY SILT TO SILTY CLAY TOPSOIL, DRY, SOFT TO FIRM. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY BECOMING BROWN WITH			SS1	16	16.3	100			•	GEOTEXTILE FABRIC SEPARATOR INSTALLED AT 0.30 m.
1.0	GREY FACED FRACTURES AT 0.9 m THEN BROWN AT 2.2 m, BECOMING GREY AT 3.7 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE TO COARSE SAND AND FINE GRAVEL, DTPL TO APL AT 3.7 m, STIFF AND VERY STIFF, BECOMING FIRM AT 3.8 m.			SS2	14	18.5	100		•	•	
2.0				SS3	15	19.2	96		•	•	
3.0				SS4	16	19.6	100			•	
<u></u>				SS5	14	20.2	100			•	
4.0				SS6	8	20.5	100			•	
5.0	BOREHOLE TERMINATED AT 5.1 m IN CLAYEY SILT			SS7	5	21.2	111			•	
	TO SILTY CLAY.										
6.0											
7.0											
8.0											
9.0											

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.32

CLIENT: WASTE MANAGEMENT OF CANADA CORPORATION DATE COMPLETED: Aug 21, 2009

BOREHOLE TYPE: 168 mm HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 241.1 mASL REVIEWER: PEJ

						,	SAMPL			CONE		
			STRA					- %		CONE PENETRATION	WATER CONTENT %	
DEPTH (m)	1	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	RECOVERY	RQD (%)	"N" VALUE 10 20 30	10 20 30	REMARKS
0.0			PHY			_ 	ĒŖ	VERY	(%)	SHEAR STRENGTH	W _P W _L	
0.2	BRO	PSOIL: DWN/GREY, CLAYEY SILT TO SILTY CLAY PSOIL, DAMP, SOFT TO FIRM.			SS1	4	18.6	100		•	•	GEOTEXTILE FABRIC SEPARATOR INSTALLED AT 0.46 m.
1.0	MO GRI m E SIL ⁻ CO AT VEF	AYEY SILT TO SILTY CLAY: TITLED BROWN/GREY BECOMING BROWN WITH EY FRACTURES AT 1.3 m THEN BROWN AT 2.1 BECOMING GREY AT 3.7 m, CLAYEY SILT TO TY CLAY, WITH DISSEMINATED FINE TO ARSE SAND AND FINE GRAVEL, DTPL TO APL 3.7 m, FIRM BECOMING STIFF AT 0.8 m, THEN RY STIFF AT 1.5 m BECOMING STIFF AT 3.0 m,			SS2	12	16.8	92			•	
2.0	THE	EN FIRM AT 3.8 m.			SS3	19	23.8	92			•	
					SS4	20	19.5	100		•	•	
3.0					SS5	12	21.8	96			•	
4.0					SS6	7	22.8	100				
					60-							
5.2	BOI	REHOLE TERMINATED AT 5.2 m IN CLAYEY SILT SILTY CLAY.			SS7	6	24.6	92			•	
6.0												
7.0												
8.0												
9.0												
0.0		nited										

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 27, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 241.5 mASL REVIEWER: PEJ

0	STRATIGRAPHIC DESCRIPTION TOPSOIL: BROWN/GREY, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, SOFT TO FIRM, SOME ROOTLETS. CLAYEY SILT TO SILTY CLAY: MOTLED BROWN/GREY BECOMING BROWN WITH GREY FRACTURES TO 1.1 m THEN BROWN AT 2.3 m BECOMING GREY AT 3.0 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE TO COARSE SAND AND FINE GRAVEL, SILTY SAND LENS (10 cm THICK) AT 1.7 m, DTPL TO APL AT 3.8 m, FIRM TO STIFF.	STRATIGRAPHY .	MONITOR DETAILS	TYPE %	N VALUE 4	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH	10 20 30 1 1 1 W _P W _L	REMARKS
0.1	BROWN/GREY, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, SOFT TO FIRM, SOME ROOTLETS. CLAYEY SILT TO SILTY CLAY: MOTLED BROWN/GREY BECOMING BROWN WITH GREY FRACTURES TO 1.1 m THEN BROWN AT 2.3 m BECOMING GREY AT 3.0 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE TO COARSE SAND AND FINE GRAVEL, SILTY SAND LENS (10 cm THICK) AT 1.7 m, DTPL TO APL AT 3.8			SS1	4						
	m BECOMING GREY AT 3.0 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE TO COARSE SAND AND FINE GRAVEL, SILTY SAND LENS (10 cm THICK) AT 1.7 m, DTPL TO APL AT 3.8					17.3	67			•	GEOTEXTILE FILTER CLOTH PLACED BETWEEN BENTONI' SEAL AND SAND FILTER PAC
.0				SS2	12	18.3	83				
				SS3	12	18.7	80				
				SS4	10	18.1	80				
				SS5	15	21.2	80				
				SS6	9	22.1	73			•	
	BOREHOLE TERMINATED AT 4.6 m IN CLAYEY SILT TO SILTY CLAY.	<u> </u>	<u> </u>	SS7	6	22.6	100				
.0.											
.0											
de Carrero											
ACcuss											

PAGE 1 of 1

PROJECT NAME: TWIN CREEKS LANDFILL PROJECT NO.: 02-970051.13

CLIENT: WASTE MANAGEMENT OF CANADA CORP. DATE COMPLETED: Feb 26, 2009

BOREHOLE TYPE: 200 mm DIA. HOLLOW STEM AUGER SUPERVISOR: MEQ

GROUND ELEVATION: 240.6 mASL REVIEWER: PEJ

		ST		***************************************	5	SAMPL	E		CONE PENETRATION	WATER	
DEPTH (m)	STRATIGRAPHIC DESCRIPTION	STRATIGRAPHY	MONITOR DETAILS	TYPE	N VALUE	% WATER	% RECOVERY	RQD (%)	"N" VALUE 10 20 30 1 1 1 SHEAR STRENGTH	10 20 30 1	REMARKS
0.1	TOPSOIL: BROWN, CLAYEY SILT TO SILTY CLAY TOPSOIL, DAMP, FIRM, SOME ROOTLETS. CLAYEY SILT TO SILTY CLAY: MOTTLED BROWN/GREY, BECOMING BROWN WITH GREYFRACTURES FROM 0.8 TO 2.3 m, THEN			SS1	7	16.6	67		9		GEOTEXTILE FILTER CLOTH PLACED BETWEEN BENTONIT SEAL AND SAND FILTER PACE
1.0	GREY AT 3.7 m, CLAYEY SILT TO SILTY CLAY, WITH DISSEMINATED FINE SAND AND GRAVEL, CLAYEY SILT FROM 2.3 m WITH SILT POCKETS FROM 2.8 m, DTPL TO APL, FIRM TO STIFF, TRACE ROOTLETS FROM 2.3 TO 3.0 m.			SS2	13	20.3	77				
2.0				SS3	14	18.1	80				
3.0				SS4	12	23.5	87				
				SS5	6	24	87			•	
4.6 —				SS6	9	21.5	83			•	
5.0	BOREHOLE TERMINATED AT 4.6 m IN CLAYEY SILT TO SILTY CLAY.			SS7	6	24.3	167			——————————————————————————————————————	
6.0											
7.0											
B.O.											
To be the control of											
9.0											
0.0	ns Limited								AND CONTROL OF THE ACT		

600 Southgate Drive, Guelph, ON N1G 4P6 Tel: 519.823.1311 Fax: 519.823.1316 **GAS PROBE**

GP8

E: 428,283.0

N: 4,758,343.0

Page 1 of 1

PROJECT NAME: OW81 and GP8 Drilling Program

PROJECT NO.: 1902909

rwdi.com

CLIENT: Waste Management of Canada Corporation **PROJECT LOCATION:** Twin Creeks Landfill Site

DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

DRILLING METHOD:

Hollow Stem Auger - Split Spoon Sampling

BOREHOLE DIAMETER: 203 mm

DATE STARTED: 06/26/19

COMPLETED: 06/26/19

GROUND ELEVATION: 235.95 mASL

LOGGED BY: YL

CHECKED BY: PEJ

			5	SAME	PLE					SUBSURFACE PROFILE	
DEPTH [mbgs]	ELEV. [mASL]	SAMPLE TYPE	NUMBER	"N" VALUE	RECOVERY (%)	RQD	REMARKS	DEPTH [mbgs]	GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM
1-	- 235						Augered to 3.0 m depth without sampling. Stratigraphy from surface to 3.0 m inferred from OW81-D.		:::H:::H:::H::::H::::H:::H:::H:::H:::H	CLAYEY SILT TO SILTY CLAY Brown to grey clayey silt to silty clay, some sand, trace gravel, orange and dark brown mottling to 2.3 m, becoming brown then grey at 6.7 m, APL to DTPL, firm to very stiff.	Seal: bentonite chips from 0 to 0.6 m depth. Geotextile fabric installed between bentonite seal and filter pack. Gas probe constructed using 51 mm inside diameter schedule 40 flush joint PVC casing, with a stick up of 0.9 m.
2-	- 234								Н.Н.Н.Н.Н.	- Trace light to dark brown silt inclusion encountered between 2.3 to 2.9 m.	
3-	- 233 -	I.	SS 1	14	96				Н. Н. Н. Н. Н. Н.		Filter pack: No. 2 silica sand
4-	- 232 -	7	SS 2	11	96					Sandy sift to silty fine sand laminations open intered	#10 slot PVC well screen.
5-	- 231	7	SS 3	9	96			5.2	H H H	- Sandy silt to silty fine sand laminations encountered between 4.6 to 5.0 m. Borehole terminated at 5.2 m depth.	Weep hole drilled i well point.

MONITORING WELL LW1

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Leachate Well Drilling

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: Twin Creeks Landfill

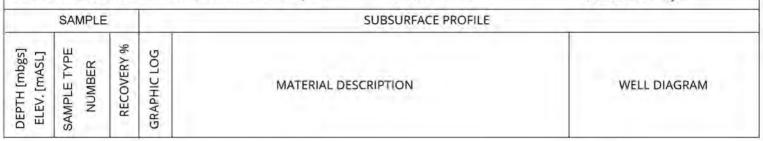
DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

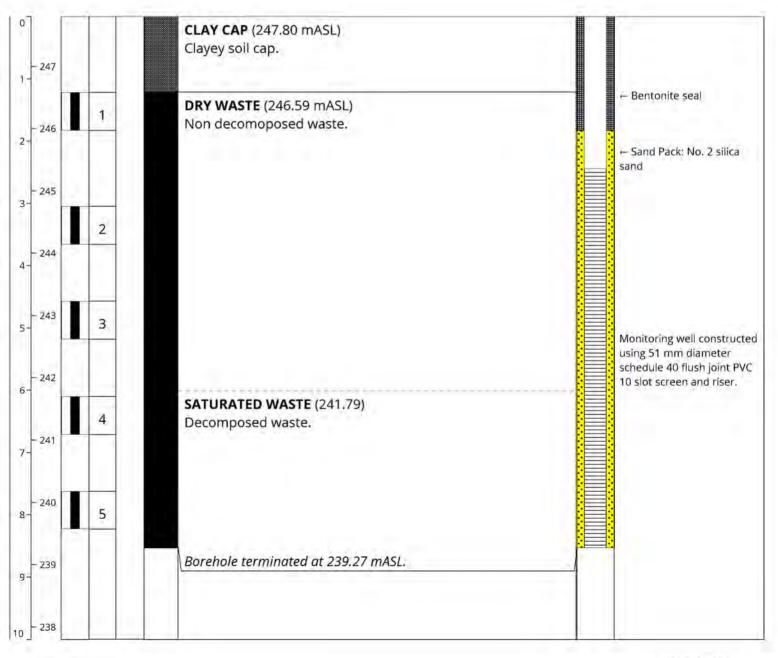
DRILLING METHOD: H

Hollow Stem Auger

BOREHOLE DIAMETER: 203 mm

...


COMPLETED: Nov. 23, 2017


ELEVATION: Ground: 247.80 mASL, Top of Pipe: 248.55 mASL

Nov. 23, 2017

LOGGED BY: HF

DATE STARTED:

MONITORING WELL LW2

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Leachate Well Drilling

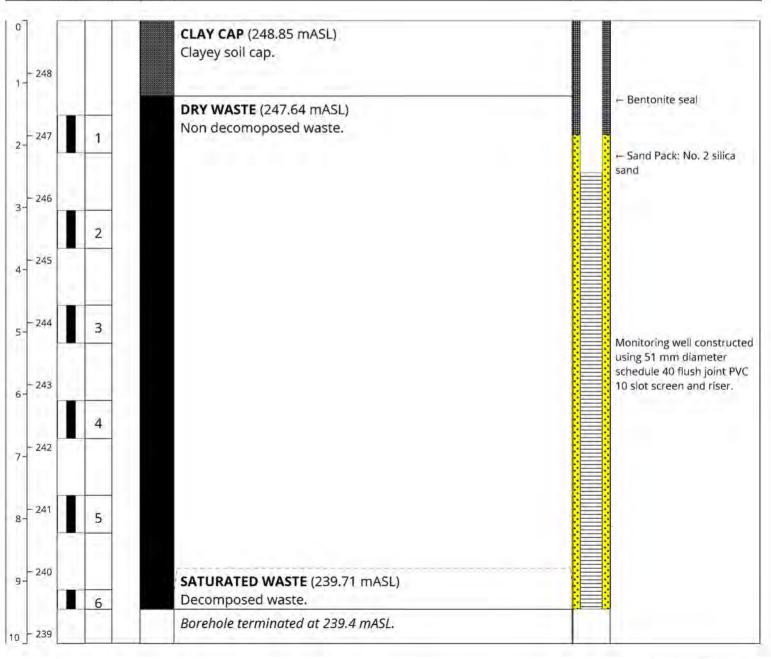
PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: Twin Creeks Landfill

DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

DRILLING METHOD: Hollow Stem Auger


BOREHOLE DIAMETER: 203 mm

DATE STARTED: Nov. 23, 2017 COMPLETED: Nov. 23, 2017

ELEVATION: Ground: 248.85 mASL, Top of Pipe: 249.01 mASL

LOGGED BY: HF CHECKED BY: BJL

SAMPLE		SUBSURFACE PROFILE	
DEPTH [mbgs] ELEV. [mASL] SAMPLE TYPE NUMBER	RECOVERY % GRAPHIC LOG	MATERIAL DESCRIPTION	WELL DIAGRAM

530-4510 Rhodes Drive, Windsor, ON N8W 5K5

Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Leachate Well Drilling

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: Twin Creeks Landfill

DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

MONITORING WELL LW3

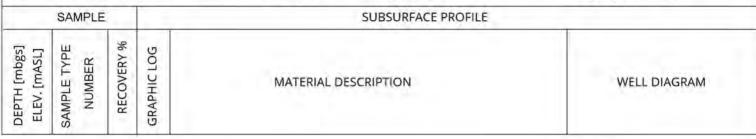
DRILLING METHOD:

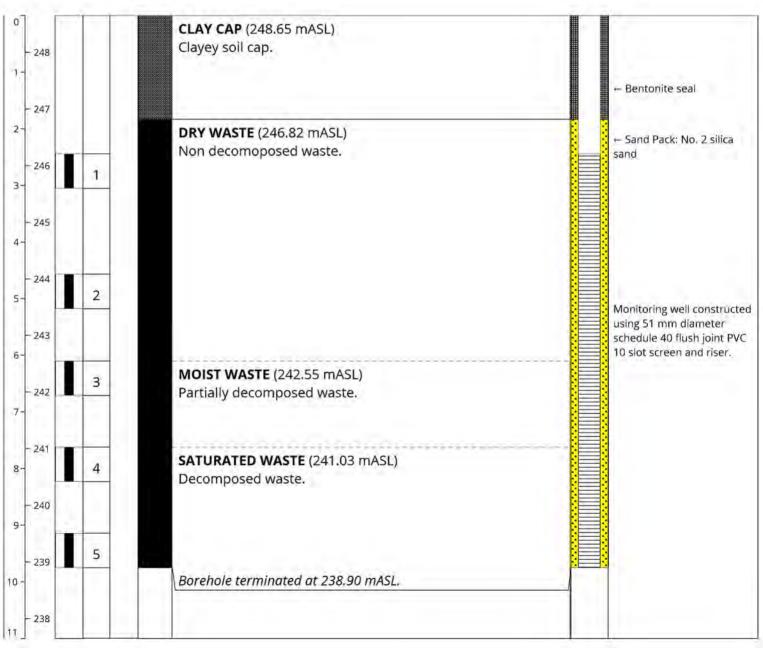
Hollow Stem Auger

BOREHOLE DIAMETER:

203 mm

.


COMPLETED: Nov. 23, 2017


ELEVATION: Ground: 248.65 mASL, Top of Pipe: 249.41 mASL

Nov. 23, 2017

LOGGED BY: HF

DATE STARTED:

MONITORING WELL LW4

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Leachate Well Drilling

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: Twin Creeks Landfill

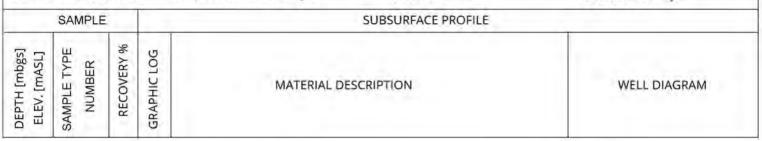
DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

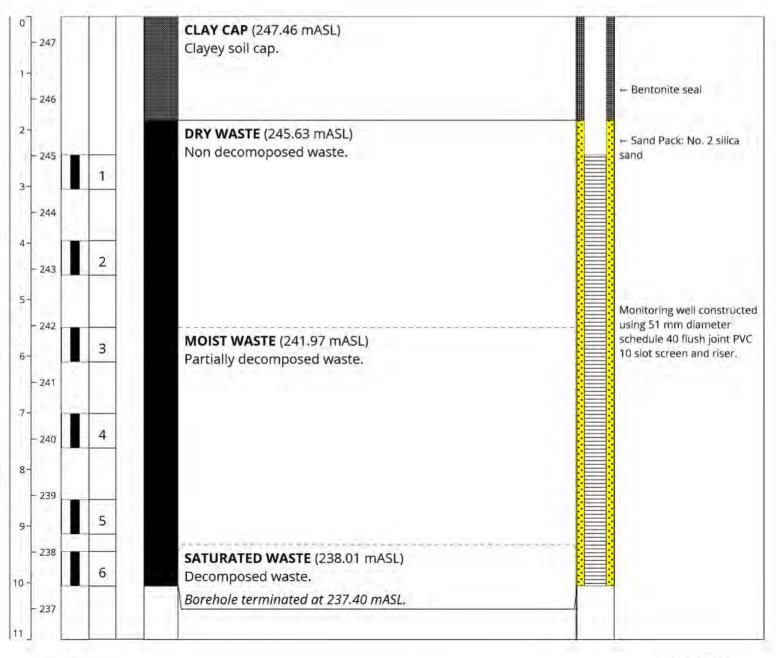
DRILLING METHOD: H

Hollow Stem Auger

BOREHOLE DIAMETER:

203 mm


COMPLETED: Nov. 24, 2017


ELEVATION: Ground: 247.46 mASL, Top of Pipe: 248.24 mASL

Nov. 24, 2017

LOGGED BY: HF

DATE STARTED:

MONITORING WELL LW5

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Leachate Well Drilling

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

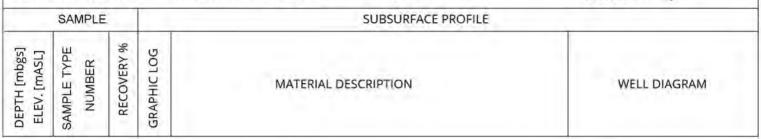
PROJECT LOCATION: Twin Creeks Landfill

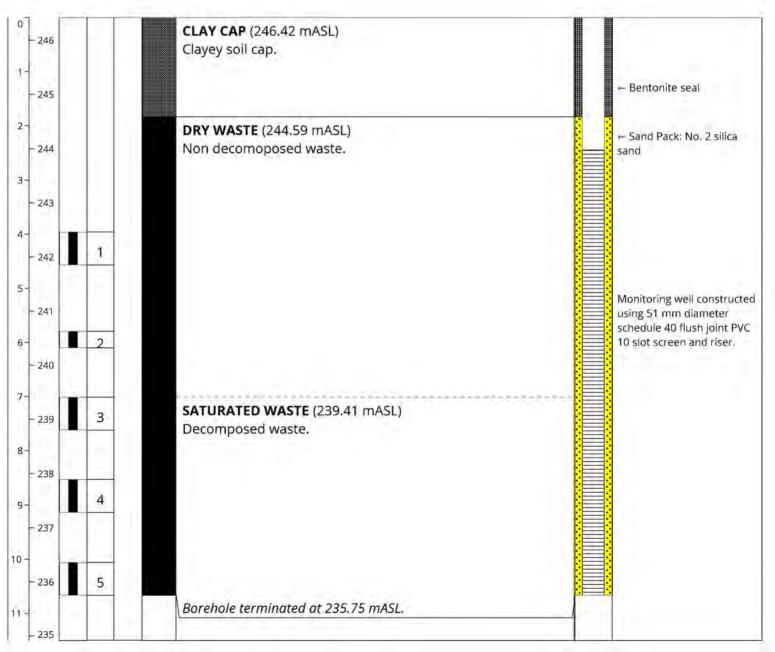
DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

DRILLING METHOD: Holl

Hollow Stem Auger

BOREHOLE DIAMETER: 203 mm


Nov. 24, 2017 CC


COMPLETED: Nov. 24, 2017

ELEVATION: Ground: 246.42 mASL, Top of Pipe: 247.22 mASL

LOGGED BY: HF

DATE STARTED:

530-4510 Rhodes Drive, Windsor, ON N8W 5K5

Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Leachate Well Drilling

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: Twin Creeks Landfill

DRILLING CONTRACTOR: Direct Environmental Drilling Inc.

MONITORING WELL LW6

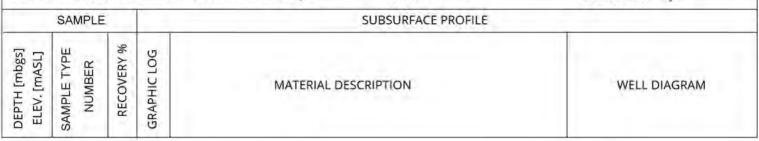
DRILLING METHOD:

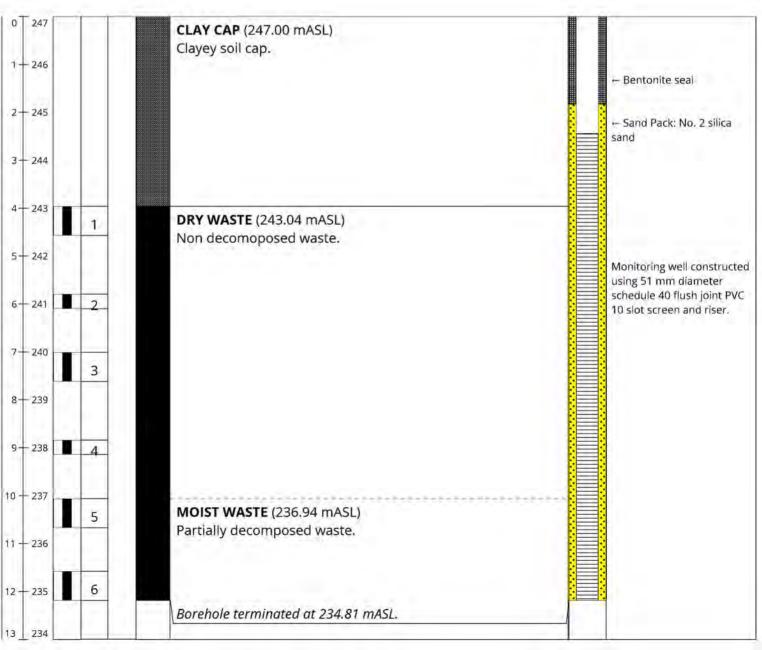
Hollow Stem Auger

BOREHOLE DIAMETER:

203 mm

...


COMPLETED: Nov. 24, 2017


ELEVATION: Ground: 247.00 mASL, Top of Pipe: 247.80 mASL

Nov. 24, 2017

LOGGED BY: HF

DATE STARTED:

PIEZOMETER

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Piezometer Installation

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: DRILLING CONTRACTOR:

nwdi.com

Twin Creeks Landfill

Direct Environmental Drilling Inc.

DRILLING METHOD:

Hollow Stem Auger

BOREHOLE DIAMETER:

203 mm

DATE STARTED: Nov. 24, 2017

mASL

P1

COMPLETED: Nov. 24, 2017

Page 1 of 1

GROUND ELEVATION: 239.17

LOGGED BY: HF

CHECKED BY: BJL

SAMPLE SUBSURFACE PROFILE SAMPLE TYPE GRAPHIC LOG DEPTH [mbgs] ELEV. [mASL] RECOVERY NUMBER MATERIAL DESCRIPTION WELL DIAGRAM TOPSOIL (239.17 mASL) - Bentonite seal - Geotextile (above sand pack) 239 CLAYEY SILT TO SILTY CLAY (239.02 mASL) - Sand pack: No. 2 silica sand Piezometer constructed using 51 mm diameter schedule 40 flush joint PVC 10 slot screen and riser. 238 Borehole terminated at 238.00 mASL. Notes: (1) Clay auger cuttings were mounded around the base of the piezometer at ground surface; (2) Top of pipe elevation: 240.38 mASL; (3) mASL denotes metre above sea level.

PIEZOMETER P2

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Piezometer Installation

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

PROJECT LOCATION: DRILLING CONTRACTOR:

Twin Creeks Landfill

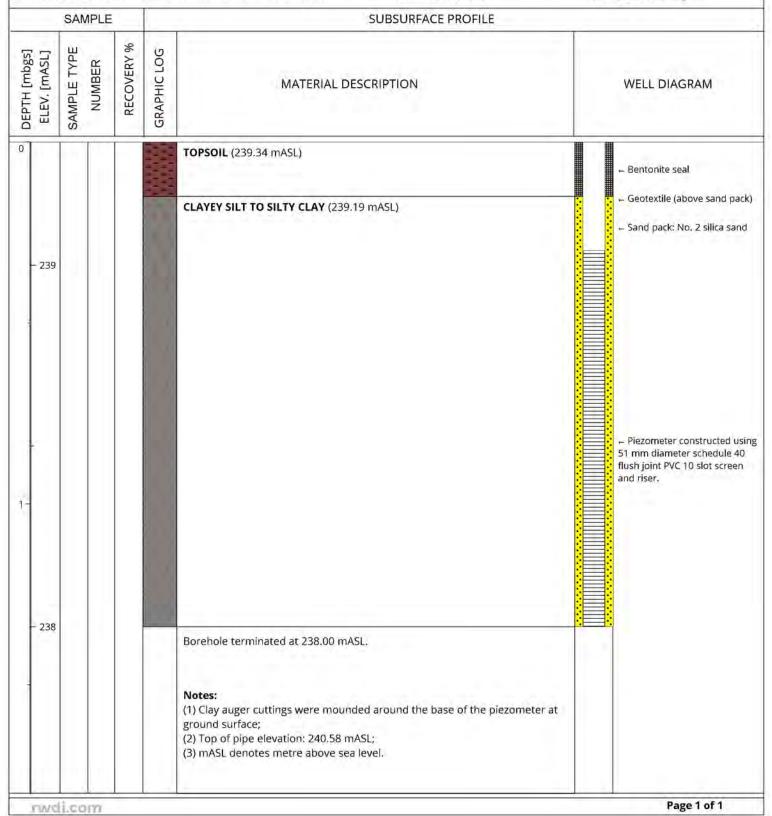
Direct Environmental Drilling Inc.

DRILLING METHOD:

Hollow Stem Auger

BOREHOLE DIAMETER:

203 mm


DATE STARTED: Nov. 24, 2017

mASL

COMPLETED: Nov. 24, 2017

GROUND ELEVATION: 239.34

LOGGED BY: HF

530-4510 Rhodes Drive, Windsor, ON N8W 5K5 Tel: 519.823.1311 Fax: 519.823.1316

PROJECT NAME: Piezometer Installation

PROJECT NO.: 1702478

CLIENT: Waste Management of Canada Corporation

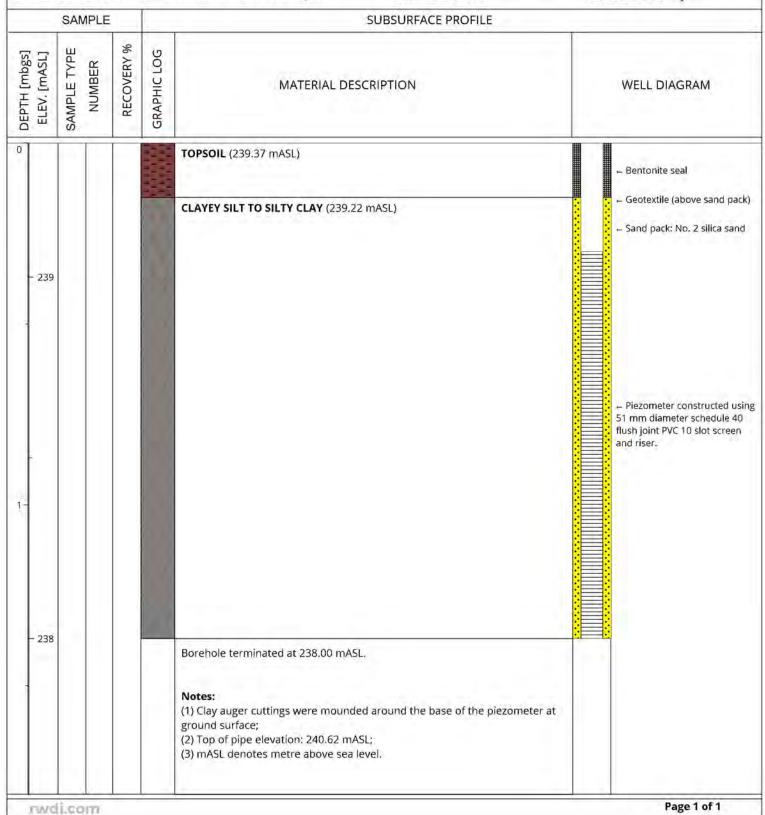
PROJECT LOCATION: Twin Creeks Landfill

DRILLING CONTRACTOR: Direct Environmental Drilling Inc. DRILLING METHOD:

Hollow Stem Auger

BOREHOLE DIAMETER:

203 mm


DATE STARTED: Nov. 24, 2017 COMPLETED: Nov. 24, 2017

P3

GROUND ELEVATION: 239.37 mASL

PIEZOMETER

LOGGED BY: HF

APPENDIX E:

Field Protocols

REPORT

GENERAL FIELD SAMPLING PROTOCOLS

LAST UPDATED: FEBRUARY 11, 2019

RWDI AIR Inc. Consulting Engineers & Scientists4510 Rhodes Drive | Suite 530

Windsor Ontario Canada N8W 5K5

T: 519.974.7384 F: 519.823.1316

TABLE OF CONTENTS

1	SURFACE WATER MONITORING	1
1.1	Sampling DOC in Surface Water	1
2	WELL DEVELOPMENT	2
3	LIQUID LEVEL MONITORING	2
4	FIELD HYDRAULIC CONDUCTIVITY TESTING	3
4.1	Rising Head Test	3
4.2	Falling Head Test	4
5	GROUNDWATER AND LEACHATE SAMPLING	5
5.1	Monitoring Well Purging	5
5.2	Sampling with Inertial Lift Pump	6
5.3	Sampling with a Bladder Pump	6
5.4	Potable Water Supply Well Sampling	7
5.5	Sampling DOC in Groundwater	8
5.6	Filter Blank Preparation for DOC (if required)	8
6	SAMPLING REQUIREMENTS	9
6.1	Field Filtration	9
6.2	Sample Preservation	9
6.3	Sampling for Volatile Organic Compounds	10
6.4	Duplicate Sample Collection	10
6.5	Field Blanks	12
66	Trin Blanks	12

7	SAMPLE HANDLING	. 13
7.1	General Considerations	13
7.2	Sample Labeling	14
7.3	Sample Storage and Shipping	14
7.4	Chain of Custody Procedures	15
8	FIELD WATER AND LEACHATE QUALITY ANALYSIS	.16
8.1	Collection of Field Quality Analysis Samples	16
8.2	Calibration and Maintenance of Field Equipment	16
9	SAMPLING EQUIPMENT DECONTAMINATION	.17
9.1	Sampling Equipment Decontamination	17
10	FIELD NOTEBOOK DOCUMENTATION	.17
10.1	Chain of Custody	17
10.2	Daily Activity Log Sheet	18
10.3	Development / Purging Record	18
10.4	Drilling Inventory Sheet	18
10.5	Equipment Calibration Record	18
10.6	Field Borehole Log	18
10.7	Field Monitor Installation Form	18
10.8	Groundwater Level Monitoring Field Record	18
10.9	Hydraulic Conductivity Testing Field Data Sheet	18
10.10	Visitor Log Record	19
10.11	Water Sampling Field Data Sheet	10

1 SURFACE WATER MONITORING

Surface water flow is typically precipitation dependent. When sufficient precipitation occurs to produce flowing conditions within the surface water drainage network, flowing water is monitored to assess potential effects from leachate to runoff flowing over the landfill cap and/or waste disposal area. Surface water sampling will typically consist of the general protocols noted below.

- If sampling is occurring within a drainage ditch, the surface water flow rate should be measured in the field. The flow rate may be determined by measuring the approximate width and depth of the ditch and/or channel. To measure velocity, a floating object may be used to measure the time it takes it to travel (float) a specified distance. Thus, the cross-sectional area of the ditch and/or channel (width X depth) times the velocity per distance gives a flow rate. The floating object may be used several times and an average water velocity may be calculated. Care should be taken to account for windy conditions and that the floating object is not influenced by wind or hindered by ancillary vegetative growth and/or debris.
- An unpreserved sampling bottle typically used as part of the sampling suite of bottles may be used to scoop water from the ditch/channel and to fill the required bottle set.
- Field chemical assessment may be completed within the ditch/channel. If the ditch/channel depth does
 not allow proper submergence of the field equipment, it is recommended that an inert, non-preserved
 sampling bottle be filled to perform the field testing. Field measurement for dissolved oxygen may not be
 possible during low flow conditions.
- During water retrieval, care should be taken as to minimize the collection of floating detritus/debris and
 the disturbance of bottom sediment. If the sampler is able to stand within the ditch/channel to conduct
 the sampling, water should be collected upstream to minimize impacts from disturbed sediment.
- Sample preservation and volatile organic sampling protocols should adhere to Sections 6.2 and 6.3, respectively, of this protocol.
- Sample handling and sampling equipment decontamination protocols should adhere to Sections 7 and 9, respectively, of this protocol.

1.1 Sampling DOC in Surface Water

- Attach a decontaminated funnel to a new unused piece of Waterra® tubing that is approximately 1 meter in length.
- Connect a QED filter to the Waterra® tubing using a QED discharge tube as a connector.
- Slowly pour sample water into funnel from sampling container and permit approximately 425 mL of water to gravity drain out through the filter and discard.
- Do not force the water through the filter by blowing or using pressurized air since sediment or filter media may be forcibly passed through the filter and affect sample analytical results.
- Collect a sample for DOC into the dedicated preserved bottle (approximately 125 ml) after discarding approximately 425 mL of water through the filter.

2 WELL DEVELOPMENT

Monitoring wells should be developed to remove drilling fluids and sediment introduced during drilling. Development would continue until the discharge water is relatively sediment free. If properly performed, development will improve the hydraulic properties of the filter pack.

The procedure is as noted below.

- Wells will be developed by one of the two methods noted below.
 - > Pumping with an inertial lift pump assemblage. The pump consisting of dedicated polyethylene tubing with a check valve at the downhole end.
 - > Pumping with a small diameter submersible pump.
- Equipment will be assembled and decontaminated prior to installation in the well. Care will be taken not to introduce sediment or contamination with the equipment during installation.
- Develop the well by purging/pumping water from the well until three (3) well volumes are measured or until purged/pumped to dryness. The effectiveness of the development is monitored at regular intervals by observing the turbidity of the discharge water. Additionally, electrical conductance, temperature and pH measurements will also be taken periodically during development. These measurements along with the volume of water removed will be recorded in the field.

3 LIQUID LEVEL MONITORING

Water level and fluid pressure transducers can be used to determine groundwater flow directions and, when combined with hydraulic gradient data, flow rates. Water levels are measured in wells using a portable water level meter consisting of an electronic probe attached to a coaxial graduated cable. When the probe makes contact with the liquid, a circuit is completed and an alarm sounds.

The depth to water can be read from the probe's graduated cable. Pressure transducer information can be downloaded from the datalogger to a laptop computer on a routine basis.

The procedure for obtaining water level information is as noted below.

- Carefully remove the well cap to avoid introduction of foreign material into the well.
- Lower the pre-cleaned water level probe slowly down the monitoring well until an audible alarm sounds. This indicates that the probe has contacted the liquid.
- Determine the depth to the top of liquid in the monitoring well from the graduated cable. Use the highest point on the well riser to reverence the depth to liquid. Repeat the measurement a second time for confirmation.
- Record the water level to the nearest 0.01 m in the project designated Field Book.
- Check historical liquid level measurements for the well, if available. If liquid level varies more than 0.1 m from the previous reading, re-check liquid level for confirmation.
- Slowly remove the probe from the monitoring well and dry the cable and probe with clean tissue as they are removed. Decontaminate the probe between monitoring wells following the decontamination protocols presented in Section 9.

4 FIELD HYDRAULIC CONDUCTIVITY TESTING

A Hydraulic Conductivity Test (or Slug Test) is a common method used to determine the in-situ hydraulic conductivity of the hydrostratigraphic unit adjacent to a monitoring well screen. This is accomplished by analyzing the water level response with time in the monitor following either an induced decrease (Rising Head Test) or induced increase (Falling Head Test) in water level.

4.1 Rising Head Test

The procedure for completing a Rising Head Test is as noted below.

- Measure and record the static water level as outlined in Section 2. Only wells that have fully recovered to static level conditions should be slug tested.
- Calibrate and setup a pressure transducer into the monitoring well at a point below any inertial lift or submersible pump. If the well is thought to have a high hydraulic conductivity (based on observed lithology during drilling), it is preferable to use a direct read cable so that real time data may be observed during testing. Otherwise, the pressure transducer should be hung on an inert down borehole cable.
- Prepare the apparatus for removing the water column from the monitor. Equipment could include a
 dedicated inertial lift pump, if previously in place in the well, a bailer or a submersible pump.
- Remove water from the well as quickly as possible.
- Upon removal of the desired volume of water from the well, start a stopwatch, and record the actual time and initial water level.
- Record the water level response versus time at 10 second intervals for the first 5 minutes of the test.
- Examine the collected data and establish an approximate rate of water level recovery. By noting levels and
 completing the calculations on the Hydraulic Conductivity Field Data Record, estimate the time required for
 the water level to achieve a pre-determined level. From this estimate, establish a schedule of water level
 measurements such that a sufficient database is available for analysis.
- Terminate the test the pre-determined head level is attained.

4.2 Falling Head Test

With respect to leachate wells it is preferable not to draw contaminated liquid to surface. In such instances it would be preferable to complete a falling head test where a slug of water is introduced to the well and the rate of liquid level decrease is measured over time.

It should be noted that any leachate characterization work should be completed prior to commencing with a falling head test.

The procedure for completing a Falling Head Test is as noted below.

- Measure and record the static water level as outlined in Section 2. Only wells that have fully recovered to static level conditions should be slug tested.
- Calibrate and setup a pressure transducer into the monitoring well. If the well is thought to have a high hydraulic conductivity (based on observed lithology during drilling), it is preferable to use a direct read cable so that real time data may be observed during testing. Otherwise, the pressure transducer should be hung on an inert down borehole cable.
- Prepare a measured amount of potable water, sufficient enough to raise the head in the well by a minimum of 2 m above the sand pack within the well.
- Introduce water from the well as quickly as possible.
- Upon introduction of the desired volume of water into the well, start a stopwatch, and record the actual time and initial water level.
- Record the water level response versus time at 10 second intervals for the first 5 minutes of the test.
- Examine the collected data and establish an approximate rate of water level recovery. By noting levels and completing the calculations on the Hydraulic Conductivity Field Data Record, estimate the time required for the water level to achieve a pre-determined level. From this estimate, establish a schedule of water level measurements such that a sufficient database is available for analysis.
- Terminate the test when the pre-determined head level is attained.

5 GROUNDWATER AND LEACHATE SAMPLING

5.1 Monitoring Well Purging

Monitoring wells should be purged prior to sampling such that groundwater and leachate samples are representative of the formation being assessed. Purging involves the removal of at least three volumes of liquid in those monitoring wells with moderate yields and at least one well volume from monitoring wells with low yields (slow water level recovery). Purging can be accomplished by a number of methods including pumping with a submersible pump or an individually dedicated inertial lift pump assemblage.

Selection of purging equipment will depend on the anticipated water level recovery rate as outlined in the third step of the procedure noted below.

- Carefully remove the well cap to avoid introducing foreign materials into the well.
- Determine the depth to water in the monitoring well per Section A.8 of this document. Calculate the volume of liquid in the well using the following formula:

$$V_c = \pi \, (D-W) l^2 x \, 1000$$

Where.

 V_c = Volume in well casing (litres)

I = inside radius of casing (m)

D = well depth (m)

W = depth to water from top of riser (m)

 $\pi = 3.1415$

- Purge the well by pumping. For deep wells with large volumes of liquid and quick level response, pumping is the most effective method of well purging. Bailing is appropriate for shallow wells with slow liquid level recovery rates.
- Measure the purged volume of liquid using a graduated container and record the volume of water and number of well volumes removed.
- Continue purging until the predetermined volume of liquid is removed. Record electrical conductance, pH, temperature, and turbidity observations during purging. The stability of these measurements with time can be used to guide the decision to discontinue purging.
- Well purging data should be recorded in the project designated Field Notebook on the Development/Purging Record.
- Collect groundwater/leachate samples as soon as there is sufficient volume of liquid in the well, in accordance with the protocol specified in Section 5.2.
- Typically, a dedicated water level tape is used for leachate monitoring wells only.
- Leachate sampling from maintenance holes is typically completed using a dedicated bailer per sampling location.

5.2 Sampling with Inertial Lift Pump

An inertial lift pump can be used to collect groundwater samples from most wells. A typical inertial lift pump consists of a length of high density polyethylene tubing with a foot valve on the downhole end of the tubing.

By rapid up-and-down movement of the tubing, the groundwater is drawn through the foot valve and up the tubing to the surface where it can be collected for chemical analysis.

The procedure is as noted below.

- Wearing disposable nitrile gloves, attach the foot valve to the downhole end of the tubing and test that the
 connection is tight by pulling vigorously on the foot valve. Only new polyethylene tubing and foot valves
 should be used. The tubing and foot valve should be dedicated to the monitoring well.
- Place the foot valve and tubing down the monitoring well to the desired sampling depth and cut the tubing approximately 1.2 metres above the top of the well casing.
- Rapidly raise and lower the tubing, thus lifting a water column in the tubing an equal distance to each stroke length. Repeat the up-and-down motion, at a rate of approximately 90 strokes per minute, until water discharges from the tubing.
- If the monitoring well has not been purged, the inertial lift pump can be used for purging prior to sample collection, as outlined in Section 5.1 of this document. Discharge water from the inertial lift pump should be collected into a graduated container to monitor the volume of water removed.
- Once the monitoring well has been purged and recovered sufficiently, repeat the third step to retrieve a sample of groundwater from the monitoring well. Samples should be collected from the pump's discharge directly into sample bottles. Refer to Section 6.1, for the protocol to field filter aqueous metal samples. Refer to Section 6.3 for the protocol to collect volatile organic samples with the inertial lift pump.

The sample handling and collection order should be in accordance with the protocol specified in Section 7.1 of this document.

5.3 Sampling with a Bladder Pump

Groundwater samples at WM sites are collected via QED bladder pumps equipped with high density polyethylene tubing that are dedicated to each individual monitoring well to minimize cross contamination and to encourage the reuse of equipment/supplies and minimize waste. To further minimize cross contamination between wells, clean nitrile gloves should be worn during sample collection activities.

A representative groundwater sample is collected from the groundwater monitoring well locations following the minimal purge sampling method. The minimal purge sampling method requires that a minimum volume of standing water be removed from the pumping system prior to collecting a sample. Thus, the volume of water to be purged consists of one volume of the bladder plus one volume of the discharge tubing.

The field methodology noted below may be utilized to conduct minimal purge groundwater sampling.

- Carefully remove the well cap to avoid introducing foreign materials into the well.
- Before sampling groundwater, determine the depth to water in the monitoring well using a water level contact meter. The meter should be cleaned using phosphate-free detergent between monitoring locations before taking a reading to minimize cross-contamination.
- Calculate the volume of liquid in the discharge line using the following formula:

$$V_d = ((\pi (L)r^2) * 1000) + VB$$

Where, V_d = Volume in discharge line (L)

r = inside radius of discharge line (m)L = length of discharge tubing (m)

VB = volume of bladder in pump (L)

 $\pi = 3.1415$

- Initiate minimal purge sampling.
- Measure the purged volume of liquid using a graduated container and record the volume of water removed.
- Begin the collection of groundwater samples following the removal of the pre-determined minimal volume as calculated above. The field personnel should be aware of any special sampling procedures prior to initiating the groundwater sampling program (e.g., filtering metals/DOC, parameter order of sampling sequencing, etc.).
- Record electrical conductance, pH, temperature, and turbidity measurements after sample collection.
- Well purging data is recorded in the dedicated WM Sampling Field Sheets provided by the laboratory.

5.4 Potable Water Supply Well Sampling

Samples from potable supply wells are typically collected from a cold water tap as close to the wellhead or pump as reasonably practical. It is critical that the sampling location is upstream of any water treatment processes in the water supply system.

The procedure is as noted below.

- Ensure a clean pair of new, non-powdered disposable nitrile gloves are donned prior to collecting each sample.
- Disconnect any hoses, filters or aerators attached to the tap prior to sampling.
- Purge the water supply by running the tap using a smooth flowing water stream at moderate pressure for at least 15 minutes. Note: it may be necessary to open a separate tap downstream of the sampling location to prevent backflow to the sampling location. Field parameters pH, temperature and electrical conductance should be measured at 5 minute intervals. The well is considered purged following stability of the field parameters. If the field parameters are not stable after 15 minutes discretion should be used in collecting the sample.

- Collect the sample directly from the tap using a laboratory supplied unpreserved sample bottle. Decant the
 sample aliquot from the unpreserved bottle into all bottles containing preservative (to avoid splashing
 preservative onto the tap used for sampling). Continue to collect sample in this manner until all laboratory
 provided bottles are filled.
- Record the field parameters noted below for a sample aliquot immediately following sample collection.
 - Label the water sample with the physical address from which the sample was collected.
 - Record the following information in the field notebook.
 - Name of residents or water supply owner/operator.
 - > The physical address from which the sample was collected.
 - > Contact information for the resident or water supply owner/operator.
 - Time the sample was collected.
 - Detailed location from where the sample was collected.
- The sample handling and collection order should be in accordance with the protocol specified in Section 7.1 of this document.

5.5 Sampling DOC in Groundwater

This section discusses the methodology for sampling the parameter dissolved organic carbon (DOC) in groundwater and surface water at Waste Management facilities. Prior to sampling for DOC, please verify that a dedicated DOC sampling bottle is used for the sampling event. These bottles are typically a 125 mL amber glass bottle with sulfuric acid preservative.

The procedure is as noted below.

- Attach filter to dedicated well sampling tube and discard approximately 100 mL of water through the filter.
- Do not force the water through the filter by blowing or using pressurized air since sediment or filter media may be forcibly passed through the filter and affect sample analytical results.
- Collect a sample approximately 125 mL for metals into the dedicated preserved bottle after discarding 100 mL of water sample through the filter.
- Discard an additional approximately 200 mL of water through the filter.
- Collect a sample for DOC into the dedicated preserved bottle after discarding the additional 200 mL of
 water through the filter. However, if the well does not require a sample for metals analyses, then discard
 approximately 425 mL of sample through the filter then fill the dedicated preserved bottle for DOC with
 filtered sample.

5.6 Filter Blank Preparation for DOC (if required)

As samples for metals are not field filtered when sampling for a DOC field blank, at least 225 mL of distilled water must pass through the filter prior to the collection of the DOC sample for the filter blank.

Follow procedures noted above in Section 5.5 using the laboratory prepared and supplied field blank sample water.

6 SAMPLING REQUIREMENTS

6.1 Field Filtration

Aqueous samples for analysis of dissolved (soluble) metals should ideally be filtered in the field. If laboratory filtering is required, it should be performed immediately after sample collection (within a few hours of sample collection).

The procedure is as noted below.

- Aqueous metals samples collected with an inertial lift pump will be filtered using an inline 0.45 micron disposable filter assemblage. Attach the filter assemblage to the pump's discharge to collect samples.
- Raise and lower the tubing, thus lifting a column of water in the tubing a distance equal to the stroke length. Repeat the up-and-down motion at a rate of approximately 90 strokes per minute, until water discharges from the filter.
- Collect samples directly from the filter's discharge into sample bottles. Bottles for metals analysis should be pre-charged with preservative by the laboratory prior to receiving the bottles.
- In-line filters will not be reused.

6.2 Sample Preservation

Preservatives for samples are typically pre-charged into the sample bottles provided by the laboratory. Preservatives are used to keep the parameters of interest as close to their sampling conditions as possible until the analysis can be completed.

The preservation requirements for common analytes are summarized below. It is intended as a guide, as each laboratory may use different sample bottles and preservatives.

Parameter	Container Type	Holding Time	Preservation
General Chemistry	HDPE	7 - 28 Days	None
DOC (field filtered)	Glass Amber	10 Days	H₂SO₄ to pH<2
Metals (Total and Dissolved)	HDPE	60 Days	HNO₃ to pH<2
Mercury	Glass	28 Days	$K_2Cr_2O_7$ + HNO ₃ to pH<2
Nutrients	HDPE	7 - 14 Days	H₂SO₄ to pH<2
Phenols (4-AAP)	Glass Amber	30 Days	H₂SO₄ to pH<2
VOCs	40 mL Glass Vials	14 Days	HCl to pH<2
PAHs	1 L Glass Amber	14 Days	None

6.3 Sampling for Volatile Organic Compounds

Many organic compounds volatilize readily and thus, added care is required during sample collection to minimize aeration. The steps outlined below when used in conjunction with standard groundwater sampling protocols, enhance the accuracy to determine organic compounds content of a liquid. The protocol presents a method for collecting organic samples with the inertial lift pump. Alternatively, organic samples can be collected using a low flow pumping assemblage (where possible).

- Follow the procedure outlined in Section 5.1 for purging monitoring wells with an inertial lift pump.
- Once the monitoring well has been purged and recovered sufficiently to yield a sample, insert
 approximately 2 m of narrow diameter clean polyethylene tubing into the inertial lift pump assemblage,
 leaving about 0.5 m of the narrow tubing extending from the discharge end of the pump.
- Raise and lower the inertial lift pump, thus lifting a water column in both the narrow diameter inner tubing and the inertial lift pump assemblage, a distance equal to each stroke length. Repeat the up-and-down motion until water discharges from both the inner tubing and the inertial lift pump assemblage.
- Once water is discharging from both the inner tubing and the inertial lift pump assemblage stop pumping.
 Water should continue to discharge from the narrow diameter tubing.
- Collect volatile organic compound samples from the discharge of the narrow tubing directly into the laboratory provided sample containers. Follow protocols identified below and in Section A.6 for sampling handling.
- In addition to the standard sample handling protocols, consider the protocols noted below.
 - > Keep sample vials cool prior to and following sampling.
 - Minimize the interval of time that the sample is in contact with the air.
 - Completely fill sample vials, eliminating any air space between the sample and the cap.
 - > Seal sample containers tightly and immediately place vials in an upright position in a sample cooler containing ice packs.

6.4 Duplicate Sample Collection

Duplicates are used to assess the reproducibility of the analytical results and assess sampling handling techniques. The typical procedure for duplicate sample collection is detailed below.

- Determine the sample identification that is distinct from all monitoring well identifiers used in the sampling program (e.g., GWDUP2, etc.).
- Record the duplicate sample ID and the primary sample ID in the field notebook.
- Proceed with the sampling sequence provided above, collecting the sample in a laboratory provided unpreserved sample bottle.

- Decant the sample into the primary sample container and the duplicate sample container as noted below.
 - Add sample to the primary sample container to one half of the container volume.
 - > Add sample to the duplicate sample container to one half of the container volume.
 - Continue adding sample to each container in increments until the required sample volume is achieved.
- Continue the sample collection sequence noted above for each laboratory provided container.
- To prevent VOC volatilization from the sample during collection, VOC samples should be collected by filling one primary sample vial, followed by any duplicate sample vials, filling in sequential order.

One field-prepared duplicate sample is typically collected for every ten samples collected. The field-duplicate is a split sample from a randomly selected sampling location. The field duplicate analytical results are compared to the original sample results. For the field-prepared duplicate samples, the results for the required parameters of analysis are evaluated for the relative percent difference (RPD) of parameter concentrations using the USEPA National Functional Guidelines (USEPA 540-R-10-011) as a general QA/QC RPD screening mechanism. The RPD screening mechanism is such that for concentrations greater than five times the laboratory reportable detection limit (RDL), a concentration difference of less than or equal to 20% would be deemed acceptable. For concentrations less than or equal to five times the RDL, a concentration difference of equal to or less than the RDL would be deemed acceptable. Where an exceedance of the general QA/QC RPD screening mechanism is identified, the results for the required parameters of analysis are evaluated against the applicable performance standards for sample duplicates noted in Tables 5.1 to 5.15 of the *Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act*, as prepared by the Ministry of the Environment, dated March 8, 2004, and amended to July 1, 2011.

The RPD is calculated as follows:

$$\left| \frac{(X_1 - X_2)}{(X_1 + X_2)} \right| * 100$$

 X_1 represents a chemical parameter concentration from the original sample, while X_2 represents a chemical parameter concentration from the duplicate sample.

6.5 Field Blanks

During groundwater sampling, a field blank may be prepared at a randomly selected monitoring location. The location in the field should be representative of average sampling conditions (i.e. not at a well near a haul road where that well represents <5% of locations). The field blank is generally prepared as noted below.

- Place a set of bottles identical to that which will be used to collect an original sample, for the sample with
 the greatest number of parameters in it analytical suite, onto a platform or stable surface. The bottles of
 the field blank set should be placed away from potential adverse influences (e.g., exhaust pipe of a vehicle,
 road dust, etc.).
- The bottles of the field blank set are to be opened and filled with distilled water, as provided by the laboratory.
- The bottles of the field blank set will remain opened while sample collection is occurring.
- Upon completion of sample collection, the field blank bottle set should be capped immediately.
- The field blank bottle set should be appropriately labeled and placed into the cooler with the original sample(s).

6.6 Trip Blanks

Trip blanks are utilized to assess whether or not influences to sample bottles occur during transportation from and to the laboratory. Typically, trip blanks are laboratory-prepared solutions of water. The trip blanks are generally provided in 40 ml vials. Upon receipt from the laboratory, a trip blank should be placed immediately on ice or in a refrigerator and held for no more than 14 days prior to its usage. Once sampling is complete, the trip blank may be placed into a cooler along with natural water samples collected (groundwater and surface water) for shipping to the laboratory. A trip blank should not be placed into a cooler with liquids that may have the potential to influence its chemistry (e.g., leachate, sludge, odorous soils, etc.). If a laboratory-prepared trip blank is held more than 14 days, it should be discarded and a new laboratory-prepared solution be requested from the laboratory.

Trip blanks differ from spiked travel blanks. Spiked travel blanks contain one or more chemical parameter(s) (typically VOCs) of known concentration. Similar to the trip blank, the spiked travel blank is placed into a cooler for transport from and to the laboratory. The spiked travel blank is analyzed at the laboratory for the specified chemicals of known concentration to assess whether or not volatile chemicals are released during transport, as identified by a decreased concentration.

The results of the original sample's volatile chemical concentration may be adjusted by the difference in volatile concentration noted for the trip blank and/or spiked travel blank (i.e., if the spiked travel blank VOC concentration increases by 2 ppm during transport, then it is likely that the original sample would be subject to the same increase in concentration during transport).

7 SAMPLE HANDLING

7.1 General Considerations

Groundwater samples are to be collected after the monitoring well has been purged and has recovered sufficiently to yield a sample. Sampling of monitoring wells will be typically performed using an inertial lift pump. The protocol for inertial lift pump is outlined in Section 5.2.

The general procedures used when handling water samples, to help maintain their integrity and representativeness of site conditions, are outlined below.

- Sampling should be completed immediately after purging. If the well recovers slowly and does not yield
 sufficient quantities to sample immediately, the well may be sampled within 24 hours after purging, or until
 a sufficient volume of groundwater is recovered to conduct proper sampling at an interval of time that may
 be determined based on field observations and historic purging records.
- Samples will be placed in laboratory pre-cleaned bottles pre-charged with preservative. Care should be taken to avoid overfilling the bottle thereby diluting the preservative.
- Samples should be collected following an order which accounts for the volatilization sensitivity of the parameters to be analyzed, as noted below.
 - Volatile organic compounds.
 - Semi-volatile organic compounds.
 - Total and dissolved metals.
 - Nutrients.
 - General chemical parameters.
 - > Field parameters (pH, conductivity, turbidity, and temperature).
- Prepare labels for sample bottles in accordance with the requirements specified in Section 7.2.
- Affix a security seal to the lid of the sample container. If the bottle is opened after being sealed, it will be
 evident from the broken seal;
- Take or ship samples to the laboratory within 48 hours of sampling. For shipment, mark sample coolers with "WATER SAMPLES DO NOT FREEZE";
- Record well sampling data within a dedicated field book. The order in which wells were sampled should also be recorded in the field.

7.2 Sample Labeling

To prevent the misidentification of environmental samples and to aid in the handling of samples, the protocols outlined below should be followed when labeling samples. Each sample should be assigned an alphanumeric identification code that will appear on the sample bottle label and will be recorded on the Chain of Custody forms and Water Sampling Field Data Sheet.

- Attach a non-removable, water resistant label to each sample container (if not provided by laboratory).
- Assign each sample a unique alphanumeric identification code.
- Secure label with tape as required.
- Record the sample identification code on the Water Sampling Field Data Sheet and the Chain of Custody forms.

7.3 Sample Storage and Shipping

The protocol noted below presents a method for packaging and shipping environmental samples to minimize the potential for sample destruction, loss, and tampering.

- Fill out the Chain of Custody form with all relevant information as outlined in Section 7.4. Place the original form in a plastic bag and secure to the inside of the sample cooler lid. A second completed copy of the Chain of Custody form should be retained by the sampler for inclusion in the project file.
- Place approximately 10 cm of inert cushioning materials (e.g., styrofoam peanuts, bubble pack) in the bottom of the cooler. Place bottles in cooler with volatile organic compound vials near the center of the cooler.
- Cover bottles, especially volatile organic compound vials, with ice in plastic bags, or ice packs. Pack cooler with additional cushioning materials.
- Tape drain shut and wrap cooler with tape to secure lid.
- Place laboratory address on top of cooler. To protect the coolers from tampering, the cooler lid should be taped to the cooler body. Place an initialed chain of custody seal over the tape. A broken seal will indicate that the contents may have been tampered with. Specify that the contents of the cooler are Fragile and place "This Side Up" labels, with the arrow pointing to the cooler lid, on all four sides of the cooler. "This Side Up" labels should not be affixed to the cooler lid or the cooler bottom. Also mark the cooler with "Water Samples Do Not Freeze".
- All samples must be shipped or delivered in order to arrive at the laboratory within 48 hours of collection.

7.4 Chain of Custody Procedures

Chain of Custody procedures include the documentation of sample collection methods and the methods used to control the documents. These procedures are used when transporting environmental samples to track sample shipments, to minimize the loss or misidentification of samples, and to minimize unauthorized persons tampering with collected samples. Adherence to chain of custody procedures is essential if sample analytical chemistry results are to be used as evidence in litigation or at administrative hearings held by regulatory agencies.

General procedures to be used are outlined below.

- Sample bottles must be transported to the sampling location by designated personnel. When samples have been collected, completed sample labels must be attached as required to the sample bottles by designated personnel. Each label must be filled out as specified in Section 7.2.
- Once samples have been collected, seal bottles and affix a security seal to the lid. The seal, if broken, will
 indicate that the bottles have been opened after sampling.
- After sampling, the sample identification code must be recorded on the Chain of Custody form and the Water Sampling Field Data Sheet. Sample information such as difficulties encountered during sampling should also be recorded on the Water Sampling Field Data sheets.
- The original Chain of Custody form must accompany the filled sample bottles to the laboratory. The form, once filled out, should be sealed in a plastic bag and taped to the inside of the sample cooler lid. A second copy of the Chain of Custody should be retained by the sampler for inclusion in the project file.
- Mark the liquid level on the sample container with a grease pencil. A discrepancy in the marked liquid level and the received liquid level may signal sample tampering.
- Pack samples for transport/shipment to the analytical laboratory following the protocol outlined in Section 7.3. Seal the cooler with tape and an initialed Chain of Custody seal. A broken seal will indicate that the cooler contents may have been tampered with.
- Transport/ship samples to the analytical laboratory. The laboratory will be required to sign for the samples and note any evidence of tampering on the Chain of Custody form.

8 FIELD WATER AND LEACHATE QUALITY ANALYSIS

8.1 Collection of Field Quality Analysis Samples

Field analysis of pH, electrical conductance, and temperature should be performed on samples from each monitoring well following the collection of samples for chemical analysis. Field analysis should also be used to monitor the progress of purging and well development.

The procedure is as noted below.

- Samples for field water quality analysis should be collected into a pre-cleaned glass or PET beaker with an approximate volume of 200 mL.
- Sample collection order should be in accordance with the protocol specified in Section 7.1.
- To account for parameter sensitivity, measure field parameters in the following order: electrical conductivity, pH, and temperature.
- For individual parameter measurement procedures, refer to the methodologies listed below.

8.2 Calibration and Maintenance of Field Equipment

Field meters should be checked prior to use in the field such that the batteries are charged and that the meters are functioning properly. Instrument calibration should adhere to the manufacturer-provided maintenance manual for each individual meter to be used. Calibration should occur prior to the day's sampling activities, and may be completed by mid-day during extensive sampling events.

Decontaminate instrument probes between measurements in accordance with manufacturer's specifications.

Record the sample readings on the pertinent form in the Field Notebook.

9 SAMPLING EQUIPMENT DECONTAMINATION

9.1 Sampling Equipment Decontamination

The decontamination of sampling equipment used in the collection of environmental samples is important in minimizing the potential of cross contamination between sampling points. All sampling equipment used must be clean and free from residue of previous samples. Decontaminated equipment must not come in contact with soil and other potential sources of contamination between each use.

General procedures to be used are outlined below.

- Wash equipment thoroughly with non-phosphate detergent (e.g., Liquinox) and deionized water. Use a brush to remove any particulate matter or surface film, if recommended by manufacturer. Rinse with deionized water.
- Rinse equipment again with a deionized water that is demonstrated analyte free.
- Air dry.
- Seal the equipment in plastic bags for transportation and storage.

10 FIELD NOTEBOOK DOCUMENTATION

Cerlox bound Field Notebooks with numbered pages will be provided to record all field work details. Separate notebooks will be established for the tasks noted below.

- Summarize daily activities and equipment/supply usage.
- Document field measurements and sampling activities.
- Record drilling observations and well construction details.

The notebooks will be documents in their own right and will be maintained such that a third party reviewing the notebooks will be able to understand the work practices that were followed in the field.

A variety of forms will be used in the process of the field investigation to record data and observations. The forms will be maintained such that data and observations are presented in an organized and useful manner. The forms required to facilitate the data management process are alphabetically listed below. Example forms and a description of their uses follow.

10.1 Chain of Custody

Sample custody from the time of sample bottle preparation, through sample collection and return of sample to the laboratory for analysis is documented on the Chain of Custody Form. One completed Chain of Custody form is required for each shipment of bottles received from or sent to the laboratory.

10.2 Daily Activity Log Sheet

Completed for each day of investigation the Daily Activity Log summarizes field activities performed, weather, and any other pertinent observations.

10.3 Development / Purging Record

Use to record field parameters measured during development and/or purging a well, as well as the purging/development methodology employed and the volume of water removed.

10.4 Drilling Inventory Sheet

Used to track the usage of materials and supplies.

10.5 Equipment Calibration Record

Used to track the daily calibration of field instruments. This record must be updated as required by the instruments protocols.

10.6 Field Borehole Log

Used during drilling activities to record a variety of information concerning site subsurface conditions including, but not limited to stratigraphy, ease of drilling, water levels, etc. A Field Borehole Log will be completed for each borehole drilled on site.

10.7 Field Monitor Installation Form

This form is used to record the construction details of piezometers, including but not limited to screen length, total depth, thickness of filter, filter material types, etc. The form must be completed at the time of monitor installation.

10.8 Groundwater Level Monitoring Field Record

Used to document water levels observed in wells. Water level data should be recorded for wells as directed in the Study Work Plan.

10.9 Hydraulic Conductivity Testing Field Data Sheet

Used to record observations (time vs. water level measurements) made during a hydraulic conductivity test. The form provides space for noting the type of test performed (rising head or falling head test), equipment use, and field analysis parameters. One form should be filled out per well per hydraulic conductivity test.

10.10 Visitor Log Record

Ensure that each visitor to the site is logged on the visitors' log record and that exact records of all conversations are maintained.

10.11 Water Sampling Field Data Sheet

Used to record sampling times and methods, sample identification codes, sample handling procedures, and field analysis data. One form must be completed per sample location per sample event.

APPENDIX F:

Liquid Level Details

Table F-1
Monitoring Well Details Summary
Twin Creeks Environmental Centre - 2021 Monitoring Program

Borehole NO.	Monitor NO.	Monitor Type	Screen Diameter (mm)	Ground Surface (mASL)	Monitor (T.O.P) (mASL)	Screened Interval (m ASL)	Filter Pack (m ASL)	Seal (Granular Bentonite or Dry Benseal) (m ASL)	Seal (Bentonite Grout) (m ASL)	Backfill Elevation (m ASL)	Surface Seal (Concrete) (m ASL)	Unit Description	Monitoring Program Status
OW16	5	S	50	240.68	241.50	236.1 - 239.1	236.1 - 239.2	239.2 - 239.7	NA	NA	239.7 - 240.7	ST(w), ST, IC	Decommissioned
	6	S-ANG	50	240.70	241.36	234.76 - 235.86	234.67 - 236.19	236.62 - 240.70	NA	236.19 - 236.62	NA	ST(w)	Active
	7	Р	50	240.56	241.55	234.0 - 234.5	234.0 - 234.6	234.6 - 235.0	NA	235.0 - 239.7	239.7 - 240.7	IC, IS, RT	Active
OW17	4	S	40	240.17	240.64	235.0 - 238.2	235.0 - 238.2	238.2 - 238.6	NA	NA	238.6 - 239.6	ST (w)	Active
	5	Р	40	240.03	240.66	234.5 - 234.9	234.5 - 235.0	235.0 - 235.3	NA	235.3 - 238.7	238.7 - 239.7	ST (w), ST	Decommissioned
	12	Р	40	240.01	240.50	227.6 - 228.0	227.6 - 228.2	228.2 - 228.4	NA	228.4 - 238.7	238.7 - 239.7	RT	Decommissioned
	30	Р	40	240.09	240.72	209.6 - 211.9	209.6 - 212.1	212.1 - 213.0	NA	213.0 - 238.7	238.7 - 239.7	Deep Sand, Shale	Active
OW19	12	Р	40	240.97	241.83	229.0 - 229.4	229.0 - 229.4	229.4 - 229.7	NA	229.7 - 240.0	240.0 - 241.0	RT	Inactive
	29	Р	51	241.00	241.86	212.2 - 213.7	212.2 - 214.0	214.0 - 214.6	218.1 - 241.0	214.6 - 218.1**	NA	Deep Sand, Silt, Shale	Active
OW39	6	Р	50	234.94	235.92	228.3 - 229.2	228.3 - 229.7	229.7 - 230.9	230.9 - 233.9	NA	233.9 - 234.9	ST	Inactive
	12	Р	50	234.99	235.72	223.0 - 224.2	223.0 - 226.0	226.0 - 227.2	227.2 - 234.0	NA	234.0 - 235.0	IS	Inactive
	17	Р	50	235.03	235.84	219.0 - 220.3	219.0 - 221.0	221.0 - 222.0	222.0 - 234.0	NA	234.0 - 235.0	RT	Inactive
OW39	26	Р	51	234.90	235.74	209.3 - 211.8	209.3 - 211.1	211.1 - 212.2	212.2 - 234.9	NA	NA	Deep Sand, Shale	Decommissioned
OW39A	26	Р	51	234.90	235.60	209.3 - 210.8	209.3 - 211.3	211.3 - 211.7	211.7 - 234.9	NA	NA	Deep Sand, Shale	Active
OW40A	4	Р	50	238.11	239.08	233.54 - 237.02	233.54 - 237.32	237.32 - 238.11	NA	NA	NA	ST(w)	Decommissioned
	7	Р	50	238.19	239.13	231.33 - 232.09	231.33 - 232.40	232.70 - 238.19	NA	232.40 - 232.70**	NA	RT	Active
	28	Р	50	238.21	239.11	210.12 - 210.93	210.73 - 211.24	237.30 - 238.21	211.62 - 237.3	211.24 - 211.62**	NA	Deep Sand, Shale	Active
OW40B	4	S-ANG	50	238.11	238.74	233.87 - 234.94	233.85 - 235.16	235.39 - 238.11	NA	235.16 - 235.39**	NA	ST(w)	Decommissioned
	4r	S-ANG	50	238.05	238.66	233.74 - 234.93	233.74 - 235.46	235.68 - 238.05	NA	235.46 - 235.68**	NA	ST(w)	Decommissioned
OW40D	4	S-ANG	51	238.13	238.76	233.83 - 235.99	233.83 - 236.41	236.41 - 236.73	NA	236.73 - 238.13**	NA	ST(w)	Active
OW46	7	Р	51	239.93	240.66	233.5 - 233.8	233.5 - 234.2	234.2 - 235.1	235.1 - 239.3	NA	239.3 - 239.8	IC, IS, RT	Active
OW47	GP	GP	25	239.93+	NA	237.7 - 238.9	237.7 - 238.9	238.9 - 239.4	NA	NA	239.4 - 239.9	ST(w)	Inactive
	6	Р	51	240.08	240.77	233.5 - 233.8	237.7 - 238.9 233.5 - 234.2	238.9 - 239.4 234.2 - 234.8	NA	234.8 - 237.7	239.4 - 239.9	IC, IS	Active
OW49	29	Р	51	242.35	243.21	213.51 - 214.27	213.49 - 214.81	242.01 - 242.35	215.33 - 242.01	214.81 - 215.33**	NA	Deep Sand, Shale	Active
OW54	10	Р	51	242.41	243.44	232.34 - 233.10	232.33 - 233.72	234.03 - 242.41	NA	233.72 - 234.03**	NA	IS	Active
OW54A	4	S	51	242.10	242.95	237.07 - 238.59	237.07 - 239.36	239.66 - 242.10	NA	239.36 - 239.66	NA	ST(w)	Active
OW56	4	S-ANG	51	240.05	240.46	236.0 - 237.4	236.0 - 237.2	237.5 - 240.0		237.2 - 237.5		ST(w)	Active
OW57	4	S-ANG	51	240.68	241.32	236.9 - 238.0	236.9 - 238.4	238.6 - 240.8		238.4 - 238.6**	NA	ST(w)	Active
	15	Р	51	240.68	241,44	228.7 - 230.3	228.7 - 230.6	240.5 - 240.7 230.7 - 231.0	231.0 - 240.5	230.6 - 230.7** 225.9 - 228.3	NA	RT, Silt	Active
								228.3 - 228.7					

NOTES: 1) m ASL denotes metres above sea level.

- 2) P denotes piezometer.
- 3) S denotes standpipe. ANG Angled well.
- 4) GP denotes gas probe.
- 5) mm denotes millimetres.
- 6) * denotes bottom of screen.

- 7) Elevations are approximate based on available information.
- 8) NA denotes not applicable or data not available.
- 9) ST = Southern Till, ST(w) = Southern Till (weathered)
 - RT = Rannoch Till
 - IC = Interstadial Clay
 - IS = Interstadial Sand

- 10) ** denotes backfill is dried and pulverized clayey soil from borehole.
- 11) *** denotes borehole cave-in.
- 12) () denotes ground surface at installation; based on 1984 data.
- 13) + denotes elevation prior to July 2004 survey.
- 14) Well details for OW17-30 based on imperial scale of borehole logs.

Table F-1
Monitoring Well Details Summary
Twin Creeks Environmental Centre - 2021 Monitoring Program

Borehole NO.	Monitor NO.	Monitor Type	Screen Diameter (mm)	Ground Surface (mASL)	Monitor (T.O.P) (mASL)	Screened Interval (m ASL)	Filter Pack (m ASL)	Seal (Granular Bentonite or Dry Benseal) (m ASL)	Seal (Bentonite Grout) (m ASL)	Backfill Elevation (m ASL)	Surface Seal (Concrete) (m ASL)	Unit Description	Monitoring Program Status
OW58	4	S-ANG	51	241.12	241.71	237.3 - 238.4	237.3 - 238.8	239.0 - 241.2		238.8 - 239.0**	NA	ST(w)	Decommissioned
	6	S-ANG	50	241.15	241.62	235.24 - 236.31	235.12 - 236.73	237.07 - 241.15	NA	236.73 - 237.07	NA	ST(w)	Active
	14	Р	51	241.22	241.53	226.9 - 227.6	226.8 - 229.2	240.9 - 241.2	229.8 - 240.9	229.2 - 229.3**	NA	RT, Silt	Decommissioned
	17	Р	51	241.49	242.17	225.0 - 226.7	210.5 - 225.0	210.7 - 212.3	212.3 - 240.6	224.99 - 227.69	NA	RT, Silt	Active
OW59	4	S-ANG	51	241.29	241.79	237.4 - 238.4	237.4 - 238.8	239.0 - 241.2		238.8 - 239.0**	NA	ST(w)	Decommissioned
	6	S-ANG	50	241.14	241.84	235.23 - 236.30	235.11 - 236.85	237.06 - 241.14	NA	236.85 - 237.06	NA	ST(w)	Active
	10	Р	51	241.25	242.03	232.5 - 233.2	232.3 - 233.5	240.8 - 241.1	234.1 - 240.8	233.5 - 233.7**	NA	Silt (IS)	Inactive
								233.7 - 234.1					
								232.0 - 232.3					
OW60	4	S-ANG	51	235.21	235.73	231.6 - 232.07	231.6 - 233.1	233.2 - 235.2		233.1 - 233.2**		ST(w)	Active
	8	Р	51	235.25	235.76	227.3 - 228.0	227.3 - 228.3	228.5 - 229.1	229.1 - 235.2	228.3 - 228.5**		Silt (IS)	Active
	25	Р	51	235.24	235.74	210.2 - 211.7	210.2 - 212.4	212.4 - 213	213.0 - 235.2			RT, Deep Sand, Shale	Active
OW61	4	S-ANG	51	234.76	235.44	231.6 - 232.7	231.6 - 232.9	233.0 - 234.8		232.9 - 233.0**		ST(w)	Inactive
	6	Р	51	234.60	235.34	228.2 - 229.0	228.2 - 229.4	229.7 - 230.1	230.1 - 234.6	229.4 - 229.7**		ST, Clayey Silt (IS)	Inactive
	26	Р	51	234.67	235.54	208.7 - 209.5	206.7 - 209.6	209.6 - 210.3	210.3 - 234.7	208.5 - 208.7**		RT, Deep Sand	Inactive
OW62	4	S-ANG	51	240.06	240.89	236.8 - 237.9	236.8 - 238.1	238.2 - 240.1		238.1 - 238.2**		ST(w)	Decommissioned
	5	S-ANG	51	240.33	240.88	234.94 - 237.10	234.94 - 237.53	237.96 - 240.33		234.30 - 234.94		ST(w)	Inactive
										237.53 - 237.96**			
	7	Р	51	240.27	240.55	233.6 - 234.3	233.6 - 234.8	234.9 - 240.3		234.9 - 234.9**		ST, Clayey Silt (IS)	Inactive
	30	Р	51	240.14	240.90	210.4 - 211.9	210.4 - 212.9	212.9 - 213.9	213.9 - 240.1	210.1 - 210.4***		RT, Deep Sand	Inactive
OW67	4	S-ANG	51	242.61	243.26	238.9 - 240.0	238.9 - 240.3	240.5 - 240.8	240.8 - 242.6	240.3 - 240.5**	NA	ST(w)	Active
	11	P	51	242.60	243.10	231.9 - 232.7	231.8 - 233.1	233.1 - 233.7	233.7 - 242.6		NA	IS	Active
OW68	5	S	51	240.89	241.68	235.9 - 237.3	235.9 - 238.1	238.1 - 235.9	NA		NA	ST(w)	Active
OW69	5	S-ANG	51	240.11+	240.66+	235.1 - 236.5	235.1 - 237.7	237.7 - 240.1	NA		NA	ST(w)	Active
OW70B	5	S	51	241.96	242.84	236.77 - 238.91	236.77 - 239.22	239.52 - 241.96	NA	239.22 - 239.52	NA	ST(w)	Active
OW71	5	S-ANG	51	242.18	242.79	237.3 - 238.4	237.2 - 238.8	239.3 - 242.2	NA	238.8 - 239.3**	NA	ST(w)	Decommissioned
OW71A	5	S-ANG	51	242.32	242.75	237.69 - 239.84	236.69 - 240.25	240.68 - 242.32	NA	236.90 - 237.69	NA	ST(w)	Active
										240.25 - 240.68**			
OW72	6	S-ANG	50	242.10	242.72	236.19 - 237.25	236.06 - 237.47	237.59 - 242.1	NA	237.47 - 237.59	NA	ST(w)	Active
	10	Р	50	242.12	243.09	232.57 - 233.34	232.37 - 233.74	234.04 - 242.12	NA	233.74 - 234.04	NA	IS	Active
								231.76 - 232.37					
OW73	6	S-ANG	50	241.78	242.43	235.87 - 236.93	235.74 - 237.27	237.48 - 241.78	NA	237.27 - 237.48	NA	ST(w)	Active
	9	Р	50	241.83	242.88	232.69 - 233.45	232.69 - 233.75	234.06 - 241.83	NA	233.75 - 234.06	NA	IS	Active

NOTES: 1) m ASL denotes metres above sea level.

- 2) P denotes piezometer.
- 3) S denotes standpipe. ANG Angled well.
- 4) GP denotes gas probe.
- 5) mm denotes millimetres.
- 6) * denotes bottom of screen.

- 7) Elevations are approximate based on available information.
- 8) NA denotes not applicable or data not available.
- 9) ST = Southern Till, ST(w) = Southern Till (weathered)
 - RT = Rannoch Till
 - IC = Interstadial Clay
 - IS = Interstadial Sand

- 10) ** denotes backfill is dried and pulverized clayey soil from borehole.
- 11) *** denotes borehole cave-in.
- 12) () denotes ground surface at installation; based on 1984 data.
- 13) + denotes elevation prior to July 2004 survey.
- 14) Well details for OW17-30 based on imperial scale of borehole logs.

Table F-1
Monitoring Well Details Summary
Twin Creeks Environmental Centre - 2021 Monitoring Program

Borehole NO.	Monitor NO.	Monitor Type	Screen Diameter (mm)	Ground Surface (mASL)	Monitor (T.O.P) (mASL)	Screened Interval (m ASL)	Filter Pack (m ASL)	Seal (Granular Bentonite or Dry Benseal) (m ASL)	Seal (Bentonite Grout) (m ASL)	Backfill Elevation (m ASL)	Surface Seal (Concrete) (m ASL)	Unit Description	Monitoring Program Status
OW75	3	S-ANG	51	234.70	235.34	231.38 - 232.54	231.38 - 233.07	233.21 - 234.70	NA	233.07 - 233.21**	NA	ST(w)	Inactive
	7	Р	51	234.66	235.65	227.66 - 229.18	227.66 - 228.86	229.17 - 234.66	NA	228.86 - 229.17 227.06 - 227.66	NA	IS, IC	Inactive
OW76	5	S-ANG	51	237.53	238.23	232.2 - 233.27	232.14 - 233.67	233.85 - 237.53	NA	233.67 - 233.85**	NA	ST, IC	Inactive
OW77	4	S-ANG	51	241.60	242.31	237.4 - 238.47	237.29 - 238.76	238.91 - 241.6	NA	238.76 - 238.91**	NA	ST(w)	Inactive
OW78	4	S-ANG	51	239.46	240.14	235.66 - 236.74	235.64 - 236.96	237.18 - 239.46	NA	236.96 - 237.18**	NA	ST(w)	Inactive
	6	Р	51	239.45	240.45	233.16 - 233.92	233.15 - 234.37	234.7 - 239.45	NA	234.37 - 234.70**	NA	IC, IS	Inactive
OW79	5	S-ANG	51	237.85	238.56	232.99 - 234.06	232.98 - 234.37	234.59 - 237.85	NA	234.37 - 234.59**	NA	ST(w)	Active
	7	Р	51	237.83	238.77	230.44 - 231.20	230.44 - 231.73	232.04 - 237.83	NA	231.73 - 232.04**	NA	IS	Active
	26	Р	51	237.89	238.95	212.13 - 212.89	212.13 - 213.35	237.29 - 237.89	213.65 237.29	213.35 - 213.65**	NA	RT, Deep Sand	Active
										211.68 - 212.13***			
OW80	3	S-ANG	51	235.44	236.16	231.98 - 233.05	231.96 - 233.26	233.47 - 235.44	NA	233.26 - 233.47**	NA	ST(w)	Active
	6	Р	51	235.51	236.59	229.71 - 230.47	229.70 - 230.94	231.24 - 235.51	NA	230.94 - 231.24**	NA	IS	Active
	27	Р	51	235.40	236.58	208.78 - 209.54	208.48 - 209.70	235.10 - 235.4	210.02 235.10	209.70 - 210.02**	NA	RT, Deep Sand	Active
OW81	5	S-ANG	51	235.31	236.04	230.30 - 231.40	230.30 - 231.70	232.00 - 235.31	NA	231.70 - 232.00**	NA	ST(w)	Active
	7	Р	51	235.84	236.50	228.40 - 229.40	228.40 - 229.80	230.10 - 235.84	N/A	229.80 - 230.1****	NA	IS	Active
	27	Р	51	235.77	236.55	209.38 - 209.80	209.38 - 210.20	234.87 - 235.77	210.50 - 234.87	210.20 - 210.5****	NA	RT, Deep Sand	Active
OW85	5	S-ANG	51	240.04	240.58	235.14 - 236.21	235.13 - 236.48	236.68 - 240.04	NA	236.48 - 236.68**	NA	ST(w)	Inactive
	8	Р	51	240.08	241.19	232.29 - 233.81	232.28 - 234.58	234.88 - 240.08 226.06 - 231.48	NA	234.58 - 234.88** 231.48 - 232.28**	NA	IS, IC	Inactive
GP	1	GP	51	239.22	240.33	234.31 - 238.88	234.27 - 239.07	239.07 - 239.22	NA	239.07^	NA	ST(w), ST	Decommissioned
	1A	GP	51	238.86	239.89	233.7 - 238.27	233.69 - 238.42	238.42 - 238.86	NA	238.42 ^	NA	ST(w), ST	Active
GP	2	GP	51	237.85	238.91	233.25 - 237.52	233.22 - 237.70	237.7 - 237.85	NA	237.70^	NA	ST(w), ST	Active
GP	3	GP	51	235.52	236.51	231.17 - 235.13	231.16 - 235.22	235.22 - 235.52	NA	235.22 ^	NA	ST(w), ST	Active
GP	4	GP	51	237.87	238.85	232.80 - 237.37	232.8 - 237.52	237.52 - 237.87	NA	237.52 ^	NA	ST(w), ST	Active
GP	5	GP	51	241.11	242.79	235.93 - 240.50	235.92 - 240.65	240.65 - 241.11	NA	240.65 ^	NA	ST(w), ST	Active
GP	6	GP	51	241.49	242.57	236.64 - 241.21	236.61 - 241.34	241.34 - 241.49	NA	241.34^	NA	ST(w), ST	Active
GP	7	GP	51	240.60	241.79	235.75 - 240.32	235.75 - 240.35	240.35 - 240.60	NA	240.35^	NA	ST(w), ST	Active
GP	8	GP	51	235.95	236.82	230.80 - 235.10	230.80 - 235.30	235.30 - 235.95	NA	235.30^	NA	ST(w), ST	Active

NOTES: 1) m ASL denotes metres above sea level.

- 2) P denotes piezometer.
- 3) S denotes standpipe. ANG Angled well.
- 4) GP denotes gas probe.
- 5) mm denotes millimetres.
- 6) * denotes bottom of screen.

- 7) Elevations are approximate based on available information.
- 8) NA denotes not applicable or data not available.
- 9) ST = Southern Till, ST(w) = Southern Till (weathered)
 - RT = Rannoch Till
 - IC = Interstadial Clay
 - IS = Interstadial Sand

- 10) ** denotes backfill is dried and pulverized clayey soil from borehole.
- 11) *** denotes borehole cave-in.
- 12) () denotes ground surface at installation; based on 1984 data.
- 13) + denotes elevation prior to July 2004 survey.
- 14) Well details for OW17-30 based on imperial scale of borehole logs.
- 15) ****denotes bentointe backfill

Table F-2 Leachate Level Elevations - Poplar System Twin Creeks Environmental Centre

D. I.		South Cell		W	est Central Fil	l Area
Date	OW22-9	OW22A-10	OW53-10	OW51-10	OW51A-15	SUMP
T.O.P	243.98	243.78	244.49	246.07^	250.45	248.90
23-Mar-84						
14-Apr-84						
3-May-84	233.65					
29-Jun-84						
27-Jul-84	235.54					
10-Sep-84	235.42					
19-Oct-84	235.55					
27-Nov-84	235.67					
17-Dec-84	235.76					
1-Feb-85	236.13					
27-Feb-85	236.19					
26-Mar-85	236.22					
26-Apr-85	236.46					
21-May-85	236.15					
15-Jul-85	235.64					
10-Sep-85	235.75					
13-Mar-86	236.21					
8-Apr-86						
5-Sep-86	236.49					
25-Feb-87	236.67					
25-Mar-87	236.69					
29-Apr-87	236.72					
22-May-87	236.73					
26-May-88	237.23					
18-Aug-88	237.47					
2-Nov-88	237.38					
6-Jun-89	237.41					
25-Oct-89	237.32					
14-May-90	237.45					
14-Aug-90	236.52					
6-Dec-90	237.58					
15-May-91	237.58					
21-Aug-91	237.66					
15-Nov-91	237.58					
25-May-92	237.56					
10-Nov-92	237.67					
19-Apr-93						
13-Jun-93	237.52					
14-Dec-93	237.67					
10-May-94	237.64					
13-Dec-94	237.65					
9-Jun-95	237.87					
6-Nov-95	237.74		006	005		
6-May-96	237.85		236.50	235.53		
9-Dec-96			236.14	235.44		

NOTES: 1) Blank denotes data not available.

- 2) Elevations in metres above sea level.
- 3) $\,$ + denotes elevation reported is below elevation of well screen.
- 4) T.O.P. denotes 'top of pipe'. Elevations as of July 2004.
- 5) ^ denotes pre 2004 T.O.P. elevation.
- 6) * elevation determined to be anomalous
- 7) T.O.P. elevations adjusted based on updated elevation survey in 2016 $\,$

Table F-2 Leachate Level Elevations - Poplar System Twin Creeks Environmental Centre

Date		South Cell		w	est Central F	ill Area
Date	OW22-9	OW22A-10	OW53-10	OW51-10	OW51A-15	SUMP
T.O.P	243.98	243.78	244.49	246.07^	250.45	248.90
12-May-97	238.48		236.31	235.44		
4-Dec-97	238.54		236.24	235.45		
12-May-98	238.89		236.37	235.41		
18-Dec-98						
13-Jan-99	238.93		236.28			
30-Mar-99						
1-Jun-99						
10-Nov-99			236.51			
21-Dec-99			236.63			
28-Mar-00			236.8			
19-Jun-00						
28-Nov-00			236.76			
20-Jun-01	239.94					
26-Nov-01	240.11					
18-Apr-02	238.50					
21-May-02	238.35		237.27			239.16
5-Jun-02	238.36		237.39			239.37
22-Oct-02	237.98		237.10			239.48
16-May-03	238.05		237.36			240.10
12-Nov-03	238.00		237.59			239.86
25-May-04		236.72	237.78			239.68
26-Nov-04		237.45	236.12			
6-Apr-05						239.40
12-May-05		237.63	237.54			239.27
29-Nov-05		237.64	237.68		235.97	239.40
27-Mar-06						239.15
17-May-06		238.04	237.75		236.16	239.45
22-Nov-06		237.86	237.58		236.40	239.38
4-Apr-07						239.54
3-May-07		237.84	237.75		235.98	239.15
15-Nov-07		237.96	237.72		235.78	239.31
15-May-08		237.69	237.95		235.93	239.51
4-Nov-08		237.38	237.80		237.98*	239.47
12-May-09		237.80	237.95		236.18	239.40
16-Nov-09		237.97	237.77		236.03	239.15
14-May-10		237.61	237.67		235.85	239.59
2-Nov-10		237.76	237.78		235.90	239.63
9-May-11		238.05	238.49		236.03	240.20
1-Nov-11		238.08	238.26		235.91	238.83
7-May-12		238.27	238.26		236.07	239.89
5-Nov-12		237.73	238.42		235.98	238.69
6-May-13		238.18	238.75		236.05	240.91
4-Nov-13		237.84	238.57		236.47	239.03
5-May-14		238.45	239.11		236.71	240.86
23-May-14		237.72 237.77	238.94		236.50	238.99
17-Nov-14			238.39		236.32	238.65 238.34
11-May-15 10-Nov-15		238.06 238.14	238.23 238.20		236.23	238.34 237.31
					236.23	
24-May-16 14-Nov-16		237.96	238.27 238.02		236.03 236.05	241.40
14-Nov-16 15-May-17		237.84	238.02			240.26
_		237.75			236.02	242.01
6-Nov-17		237.65	237.80		236.27	242.05

NOTES: 1) Blank denotes data not available.

- 2) Elevations in metres above sea level.
- 3) + denotes elevation reported is below elevation of well screen.
- 4) T.O.P. denotes 'top of pipe'. Elevations as of July 2016 for active wells.
- 5) ^ denotes pre 2004 T.O.P. elevation.
- 6) * elevation determined to be anomalous

Table F-2 Leachate Level Elevations - Poplar System Twin Creeks Environmental Centre

		South Cell		. 10/	est Central F	ill Area
Date	OW22-9	OW22A-10	OW53-10	OW51-10	OW51A-15	SUMP
T.O.P	243.98	243.78	244.49	246.07^	250.45	248.90
7-May-18	243.50	237.97	238.22	240.07	236.05	243.26
5-Nov-18		238.15	238.27		236.04	244.12
13-May-19		238.60	238.52		236.26	245.14
4-Nov-19		238.24	238.28		236.20	242.54
4-May-20		238.40	238.32		236.14	240.37
2-Nov-20		238.11	238.09		236.34	241.03
17-May-21		238.33	238.31		236.47	241.92
1-Nov-21		238.23	238.28		236.29	242.66

NOTES: 1) Blank denotes data not available.

- 2) Elevations in metres above sea level.
- 3) + denotes elevation reported is below elevation of well screen.
- 4) T.O.P. denotes 'top of pipe'. Elevations as of July 2016 for active wells.
- 5) ^ denotes pre 2004 T.O.P. elevation.
- 6) * elevation determined to be anomalous
- 7) T.O.P. elevations adjusted based on updated elevation survey in 2016

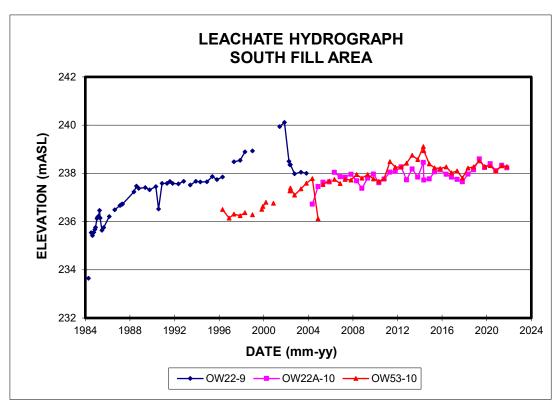


FIGURE F-1

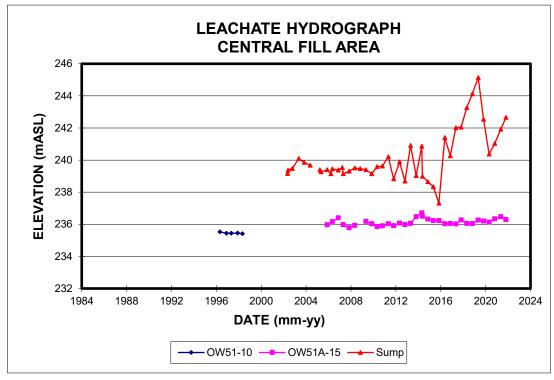


FIGURE F-2

Table F-3 Leachate Management System Liquid Levels - Existing Site Twin Creeks Environmental Centre

Date	MH3SA	МНЗЅВ	мнзѕс	MH3SD	МНЗЅЕ	MH3SF	MH4A	MH4B	МН5А	МН5В	MH6A	мн6в
T.O.P.	241.27	241.19	239.80	239.90	249.99	249.02	241.07	245.64	244.87	242.29	243.90	241.75
Approximate Invert	237.20	237.15	235.80	235.75	236.45	236.50					235.29	235.20
21-May-02	Dry	Dry	236.56	236.54	237.81	239.50	239.46	238.78	240.23	240.22	237.57	237.73
15-Jun-02	Dry	Dry	236.49	236.46	237.71	239.13	238.15	238.75	238.78	238.71	237.76	237.90
22-Oct-02	Dry	Dry	236.11	236.22	237.57	238.82	238.42	238.93	239.66	239.66	238.47	238.55
13-May-03	Dry	Dry	236.92	237.03	238.61	241.87	239.65	239.02	240.15	240.27	238.48	238.57
12-Nov-03	237.59	Dry	236.78	236.79	239.66	242.40	238.56	238.85	240.50	241.04	239.71	239.67
25-May-04	238.34	Dry	236.75	236.76			239.86	238.89	240.59	241.06	239.60	239.56
26-Nov-04	238.20	238.04	235.89	235.44	239.85	242.34	238.36	238.87	240.75	240.81	237.93	237.88
6-Apr-05				236.93			239.19			240.84		238.86
12-May-05	239.14	238.73	236.82	236.83	241.85	244.56	239.15	239.15	241.09	240.90	237.78	237.74
29-Nov-05	Dry	Dry	236.68	236.60	246.08	246.80	237.59	239.19	239.24	239.29		240.26
27-Mar-06			236.75				238.26			239.17		238.04
17-May-06	237.65	Dry	236.35	236.36	242.00	245.02	238.66	239.68	240.05	240.12	237.75	237.69
22-Nov-06	237.47	Dry	236.90	237.03	242.46	244.99	238.19	240.08	239.17	239.25	237.37	237.51
4-Apr-07				236.90			238.89			240.71		237.85
3-May-07	237.82	238.09	236.64	236.75	242.69	244.93	238.68	238.63	240.89		237.70	237.84
15-Nov-07	237.54	<237.18	236.90	236.93	241.07	243.17	237.71	238.98	237.52	237.57	238.80	238.76
15-May-08	237.87	237.85	236.65	236.77	242.61	244.2	238.51	240.29	239.12	239.16	237.99	237.99
4-Nov-08	237.63	237.73	236.86	237.82	242.49	245.14	237.52	238.40	236.38	236.61	236.32	237.36
27-Nov-08												
12-May-09	238.47	237.92	236.56	236.72	240.44	243.79	237.87	240.62	238.29	238.31	237.90	237.86
16-Nov-09	237.83	Dry	236.07	236.07	241.34	243.39	236.34	240.61	236.24	236.32	237.24	237.27
14-May-10	237.73	Dry	233.17	Dry		243.38	238.06	240.33	237.26	237.12	237.03	237.12
2-Nov-10	237.67	Dry	233.38	235.59	240.85	243.20	238.06	240.39	239.27	239.29	237.37	237.39
9-May-11	237.96	237.41	234.43	235.64	242.79	244.89	238.29	241.56	236.29	236.42	237.51	237.60
1-Nov-11	237.86	Dry	234.83	234.97	242.38	244.45	236.52	237.12	238.39	238.37	237.15	237.14
7-May-12	238.19	237.41	233.09	Dry	242.43	244.31	238.38	237.57	237.39	237.38	237.16	237.18
5-Nov-12	237.95	237.19	234.83	Dry	241.86	243.53	238.19	237.57	238.88	239.02	237.81	237.80
6-May-13	238.88	238.67	232.95	Dry	243.04	245.01	238.54	238.35	239.77	239.79	237.71	237.71
4-Nov-13	237.99	237.16	234.79	235.29	242.68	242.72	238.37	237.66	238.97	239.17	237.98	238.27
5-May-14	238.89	238.76	233.00	<235.32	242.97	245.06	238.60	238.38	239.72	239.74	237.70	237.70
23-May-14	237.91	237.24	234.61	235.31	242.70	242.82	238.24	237.73	239.03	239.14	237.86	237.85
17-Nov-14	238.18	<237.29	234.21	<233.65	243.58	243.08	237.27	238.80	236.27	236.32	236.41	235.38
11-May-15	238.60	237.72	233.90	<234.67	244.08	241.34	237.99	240.32	235.99	235.98	236.59	236.49
10-Nov-15	238.05	237.05	233.64	<234.67	242.82	242.97	237.71	238.74*	236.28	236.21	236.04	235.95
24-May-16	238.30	237.05	233.72	<234.69	243.19	244.04	238.39	239.61	238.15	238.14	236.38	236.38
14-Nov-16	238.78	237.44	233.72	<234.69	242.78	242.88	237.64	239.66	237.71	237.61	237.10	236.99
15-May-17	238.99	237.32	234.46	234.36	243.35	244.04	238.38	239.63	239.70	239.69	235.91	235.89
6-Nov-17	238.56	238.00	236.01	234.36	243.99	242.01	235.92	239.58	236.92	236.92	236.69	236.68
7-May-18	239.53	239.32	236.03	235.74	243.98	244.04	234.58	238.91	236.23	236.18	236.98	236.94
5-Nov-18	240.25	240.30	234.83	234.36	243.89	243.92	234.48	239.74	239.47	239.43	236.82	236.82
13-May-19	239.01	239.60	237.44	237.11	243.89	243.92	238.49	239.62	239.74	239.63	240.11	240.00
4-Nov-19	239.00	238.57	237.40	238.11	243.90	243.92	238.79	238.93	236.11	236.06	240.33	240.30
4-May-20	237.93	238.06	235.54	235.51	243.94	243.99	239.24	239.32	239.68	239.63	238.59	238.56
2-Nov-20	238.67	237.99	233.69	235.55	243.43	243.66	235.89	239.43	236.11	236.00	237.92	237.83
17-May-21	239.43	239.51	236.79	236.49	243.88	243.90	238.59	239.44	238.50	238.46	238.50	238.47
1-Nov-21	239.74	239.58	236.82	237.97	243.88	243.92	239.92	239.95	239.95	239.91	240.44	240.45

Notes: 1) * denotes liquid level at MH4B was collected on November 5, 2015.

²⁾ T.O.P. denotes 'top of pipe'.

³⁾ Select historical T.O.P. elevations adjusted based on updated elevation survey in 2016

^{4) +} denotes elevation interpreted to be anomolous

Table F-3 Leachate Management System Liquid Levels - Existing Site Twin Creeks Environmental Centre

Date	МН7А	мн7в	мн8А	мн8в	МН9А	мн9в	MH10	MH11A	MH11B	MH12A	MH12B
T.O.P.	245.68	243.23	243.13	245.89	246.45	242.52	244.43	246.35	242.92	244.39	242.37
Approximate Invert											
21-May-02											
15-Jun-02											
22-Oct-02											
13-May-03											
12-Nov-03											
25-May-04											
26-Nov-04	239.24			-							
6-Apr-05	238.93			-							
12-May-05	238.35	237.80	237.81	238.53							
29-Nov-05	237.64	237.66	237.70	236.90							
27-Mar-06		238.58	237.71								
17-May-06	238.88	238.94	238.36	238.19							
22-Nov-06	236.91	237.53	239.06	238.91							
4-Apr-07				239.03							
3-May-07	238.19	238.65	239.90	239.72							
15-Nov-07	239.03	239.54	237.42	238.24							
15-May-08	239.21	239.84	239.23	239.09	240.72	240.75		241.32	241.22		
4-Nov-08	239.04	239.62	237.34	237.13	240.87	240.00		241.14	239.54		
27-Nov-08											
12-May-09	239.09	239.70	237.23	237.37	240.72	240.75		240.74	240.78		
16-Nov-09	237.82	237.82	236.91	236.94	239.77	239.77		240.64	240.58		
14-May-10	238.57	238.55	237.07	237.08	239.45	239.81		240.51	240.67		
2-Nov-10	238.91	238.91	237.22	237.14	240.10	240.11	237.53	240.08	240.11	237.54	237.48
9-May-11	237.89	238.89	238.30	238.33	239.86	239.82	239.46	238.73	239.58	239.48	239.42
1-Nov-11	238.48	238.48	238.74	238.66	239.66	239.66	237.90	239.32	239.35	237.93	237.83
7-May-12	239.01	239.01	239.64	239.55	238.66	238.66	239.30	239.89	239.92	239.32	239.25
5-Nov-12	238.61	238.61	237.19	237.12	238.22	238.22	236.81	239.56	239.59	236.82	236.75
6-May-13	236.86	236.95	239.29	239.30	238.46	238.45	237.20	239.71	239.69	238.17	238.21
4-Nov-13	238.77	238.70	237.42	237.31	238.44	238.37	237.13	239.79	239.92	237.08	237.19
5-May-14	236.93	236.84	239.35	239.36	238.53	238.53	237.26	239.61	239.65	238.11	238.23
23-May-14	237.23	237.08	237.56	237.46	238.46	238.40	237.17	239.82	239.76	237.13	237.24
17-Nov-14	238.70	238.69	236.96	237.55	237.95	237.96	237.17	239.15	239.15	237.19	237.24
11-May-15	238.81	238.79	239.34	237.19	238.66	238.59	237.62	240.12	240.16	237.57	237.14
10-Nov-15	237.93	237.94	239.54	239.41	238.37	238.35	238.22	239.44	239.36	238.22	238.23
24-May-16	237.76	238.27	238.35	238.34	238.25	238.27	240.25	240.90	240.80	240.24	240.22
14-Nov-16	238.88	238.90	239.14	239.03	238.59	238.58	240.25	239.17	238.09	240.24	240.22
15-May-17	238.98	238.90	239.14	239.03	239.22	239.18	240.81	240.64	240.56	241.00	240.78
6-Nov-17	237.90	237.89	239.33	239.42	239.22	239.16	238.20	238.84	238.97	238.19	238.18
7-May-18	237.90	237.89	239.31	239.01	237.64	237.77	240.20	240.47	240.60	240.19	240.18
5-Nov-18	237.87	237.88	239.00	239.27	237.64	237.64	240.20	240.47	240.60	240.19	240.18
				240.68	240.06						241.00
13-May-19	239.59	239.58	240.55			240.03	241.01	241.11	241.01	241.09	
4-Nov-19	237.02	237.03	237.61	237.92	238.52	238.51	236.46	238.76	238.91	236.43	236.44
4-May-20	238.34	238.35	240.64	240.93	239.40	239.40	237.11	239.29	239.11	237.12	237.11
2-Nov-20	236.56 237.92	236.57	237.61	237.83	237.71	237.72	236.27 237.13	238.39 240.15	238.30 240.27	236.27 237.12	236.23 237.12
17-May-21											

Notes: 1) * denotes liquid level at MH4B was collected on November 5, 2015.

²⁾ T.O.P. denotes 'top of pipe'.

³⁾ Select historical T.O.P. elevations adjusted based on updated elevation survey in 2016

^{4) +} denotes elevation interpreted to be anomolous

Table F-3 Leachate Management System Liquid Levels - Existing Site Twin Creeks Environmental Centre

T.O.P. Approximate Invert 21-May-02 15-Jun-02 22-Oct-02 13-May-03 12-Nov-03 25-May-04	239.71 235.41 237.06 237.28 237.05	239.63 235.10 237.06	239.28 234.93	248.53	249.99	249.42	248.24	247.20	247.76
21-May-02 15-Jun-02 22-Oct-02 13-May-03 12-Nov-03 25-May-04	237.06 237.28	237.06							
15-Jun-02 22-Oct-02 13-May-03 12-Nov-03 25-May-04	237.28								
22-Oct-02 13-May-03 12-Nov-03 25-May-04		227.24	237.05						
13-May-03 12-Nov-03 25-May-04	237.05	237.31	237.29						
12-Nov-03 25-May-04		237.04	237.03						
25-May-04	237.45	237.46	237.48						
-	237.22	237.26	237.24						
	237.27	237.30	237.28						
26-Nov-04	237.50	237.06	236.60						
6-Apr-05			237.23						
12-May-05	237.28	237.30	237.28						
29-Nov-05	237.20	237.22	237.20						
27-Mar-06			237.45						
17-May-06	237.52	237.49	237.51						
22-Nov-06	237.62	237.63	237.60						
4-Apr-07			237.55						
3-May-07	237.10	237.09	237.11						
15-Nov-07	237.65	237.66	237.63						
15-May-08			237.28						
4-Nov-08			237.12						
27-Nov-08	236.95	236.97	236.96						
12-May-09	237.47	237.49	237.49						
16-Nov-09	237.65	237.71	237.69						
14-May-10	237.11	237.13	237.06						
2-Nov-10	237.54	237.54	237.49						
9-May-11	237.85	237.86	237.87						
1-Nov-11	237.83	237.85	237.77						
7-May-12	237.90	237.92	237.89						
5-Nov-12	237.54	237.54	237.49						
6-May-13	237.89	237.89	237.83						
4-Nov-13	237.66	237.66	237.40						
5-May-14	237.84	237.93	237.77						
23-May-14	237.63	237.60	237.77						
17-Nov-14	236.32	236.30	236.28						
11-May-15	237.77	237.78	237.79						
10-Nov-15	237.77	237.76	237.79						
24-May-16 14-Nov-16	237.31	237.29 237.12	237.31 237.12						
		237.12	237.12						
15-May-17	237.13								
6-Nov-17	236.97	237.00	236.99	244.05	242.44	242.34	240.44	220.02	227.00
7-May-18	237.56	237.56	237.56	244.95	242.44		240.44	239.82	237.89
5-Nov-18	237.77	237.77	237.76	244.87	241.94	242.15	240.29	239.78	238.02
13-May-19	238.28	238.30	238.28	245.81	242.98	242.49	240.54	240.05	238.64
4-Nov-19	237.71	237.72	237.71	244.42	241.87	243.21	240.49	239.85	239.68
4-May-20	238.02	238.04	238.01	245.01	243.10	242.81	240.96	239.96	238.60
2-Nov-20	237.70	237.69	237.70	244.19	241.99	242.94	241.39	239.68	237.89
17-May-21 1-Nov-21	237.82 238.01	237.83 238.00	237.81 237.99	244.93 244.45	243.10 242.72	243.01 243.14	241.90 242.01	239.77 239.58	238.63 238.74

Notes: 1) * denotes liquid level at MH4B was collected on November 5, 2015.

²⁾ T.O.P. denotes 'top of pipe'.

³⁾ Select historical T.O.P. elevations adjusted based on updated elevation survey in 2016

^{4) +} denotes elevation interpreted to be anomolous

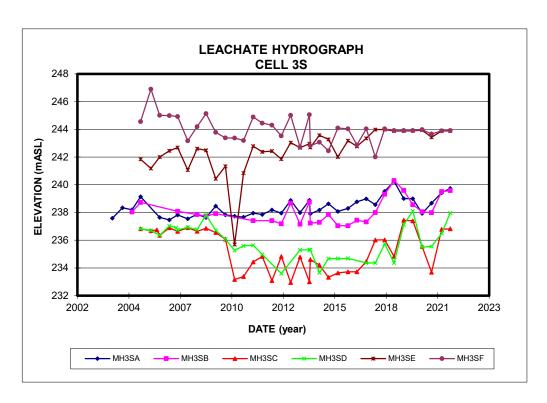


FIGURE F-3

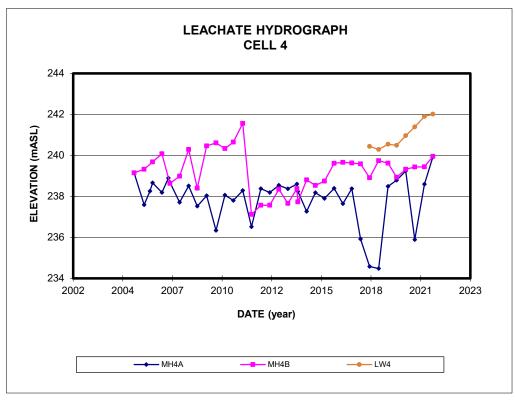


FIGURE F-4

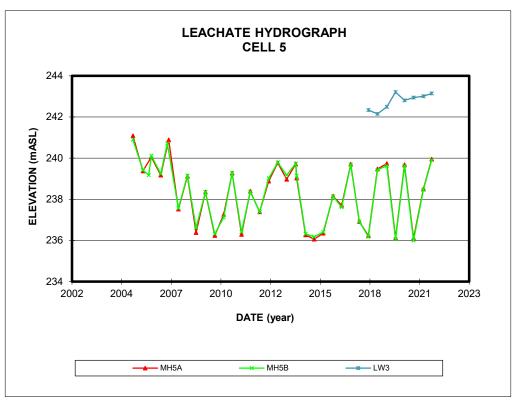


FIGURE F-5

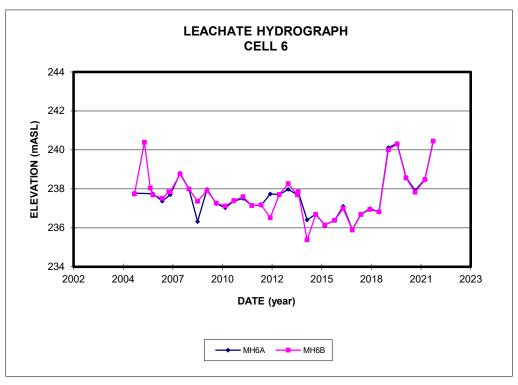
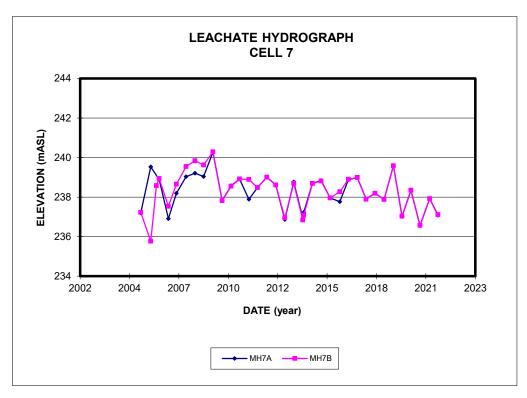



FIGURE F-6

FIGURE F-7

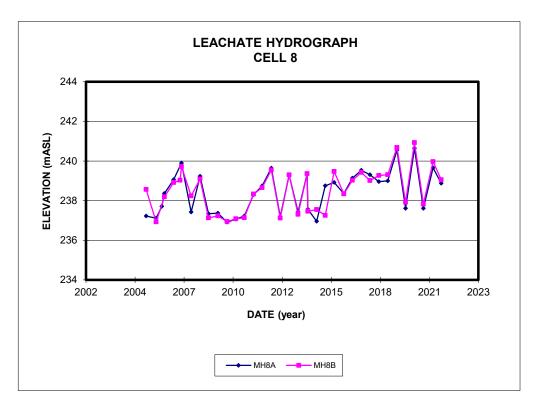


FIGURE F-8

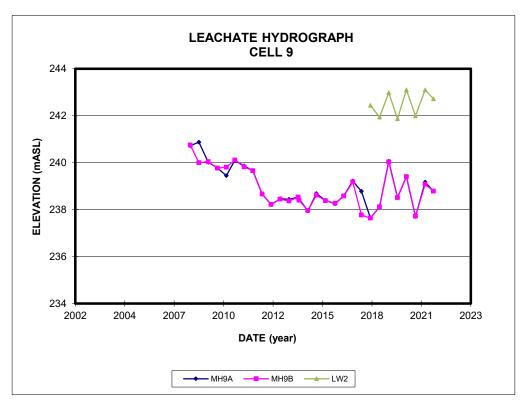


FIGURE F-9

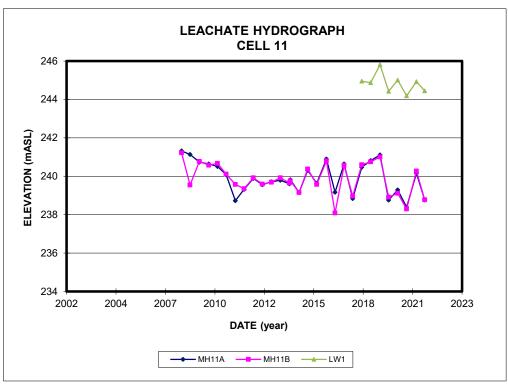


FIGURE F-10

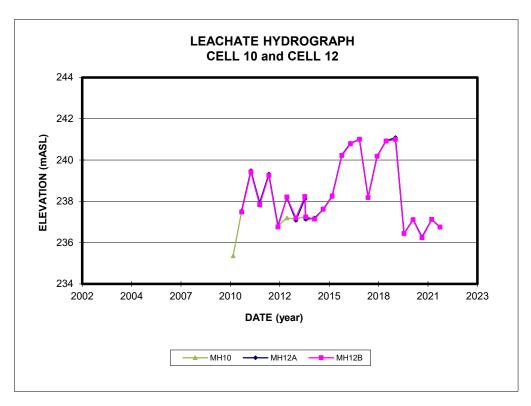


FIGURE F-11

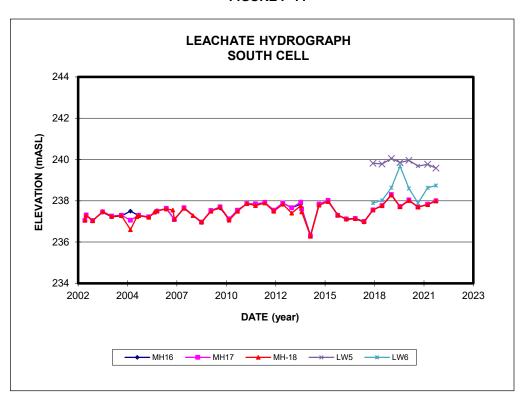


FIGURE F-12

Table F-4 Groundwater Level Elevations Twin Creeks Environmental Centre

	OW16-5*	OW16-6*	OW16-7	OW17-4	OW17-30	OW19-29	OW39-26	OW39A-26	OW40-6	OW40A-4	OW40B-4	OW40B-4r	OW40D-4*	OW40A-7	OW40-28	OW40A-28
T.O.P.	241.50	241.36	241.55	240.64	240.72	241.83	235.74	235.60	239.14	239.08	238.74	238.66	238.76	239.13	239.09	239.11
23-Mar-84	238.57		238.73	235.65	232.27											
12-Apr-84	240.08		238.97	237.88	232.80											
3-May-84	239.97		238.85	238.67	232.88											
29-Jun-84	239.83		238.75	238.86	233.26											
27-Jul-84	239.31		238.29	238.48	233.43											
10-Sep-84	239.02		238.25	238.35	233.30											
19-Oct-84	238.84		238.25		233.28											
27-Nov-84	239.16		238.60		233.35											
17-Dec-84	239.49		238.62	238.60	233.38											
1-Feb-85	239.31		238.40	238.54	233.44											
27-Feb-85	239.45		238.37	238.80	237.14											
26-Mar-85	239.81		238.75	238.97	235.58											
26-Apr-85	239.87		238.80	238.98	236.51											
21-May-85	239.36		237.86	238.66	236.40											
15-Jul-85	238.71		237.68	238.02	233.17											
10-Sep-85	238.30		237.69	237.38	232.97											
13-Mar-86				238.66	235.13											
8-Apr-86	239.68		238.59													
5-Sep-86	237.88		238.17	238.19	235.80											
25-Feb-87	240.01		238.73	238.35	235.88											
25-Mar-87	240.07		238.92	238.45	233.85											
29-Apr-87	240.04		238.94	238.64	233.95											
22-May-87	239.63		238.71	238.36	233.78											
26-May-88	239.34		238.45	237.66	233.67											
18-Aug-88	238.77		237.92	237.42	232.68											
2-Nov-88	238.72		238.14	236.86	232.71											
6-Jun-89				237.10	233.02											
25-Oct-89	238.38		237.64	237.16	232.38				233.58						230.35	
14-May-90	239.52		238.57	238.16	234.00				237.15						230.66	
14-Aug-90	238.85		238.02	238.10	233.70				236.86						230.71	
6-Dec-90	239.56		238.61	237.83	234.13				237.19						230.87	
15-May-91	239.92		238.90	238.13	233.66				237.33						231.10	
21-Aug-91	238.69		237.72	238.85	233.56				236.50						230.76	
15-Nov-91	237.54		236.80	237.41	233.36				234.96						230.73	
25-May-92	238.88		238.56	237.86	234.09				236.79						230.84	
10-Nov-92	239.26		238.52	238.36	234.50				237.14						231.02	
19-Apr-93																
13-Jun-93	239.34		238.54	237.65	234.22				237.20						231.21	
4-Dec-93	237.60		238.06	237.72	234.50				234.36						231.03	
10-May-94	239.39		238.65	238.43	234.34				236.58						230.97	
13-Dec-94	236.88		236.84	236.80	234.25				236.92						230.74	

Table F-4 Groundwater Level Elevations Twin Creeks Environmental Centre

T.O.P.	241.50	244.26						OW39A-26	OW40-6	OW40A-4	OW40B-4	OW40B-4r	OW40D-4*	OW40A-7		OW40A-28
		241.36	241.55	240.64	240.72	241.83	235.74	235.60	239.14	239.08	238.74	238.66	238.76	239.13	239.09	239.11
9-Jun-95	239.25		238.59	238.00	234.00				235.39						230.73	
6-Nov-95	237.25		236.86	237.84	234.24											
6-May-96	238.90		238.78	238.86	234.49											
9-Dec-96	238.91		238.50	238.77	232.93											
12-May-97	239.70		238.97	239.05	235.05											
4-Dec-97	237.61		238.31	237.71	234.60											
3-Mar-98			239.03		234.98										231.60	
12-May-98	239.70		239.08	239.15	234.69											
21-Jul-98					234.53	234.16	231.28								230.55	
18-Dec-98	236.36		237.31	237.65	233.84											
13-Jan-99	236.37		237.49	237.06	233.86	233.04	231.26		236.09						230.58	
30-Mar-99	238.80		238.60	238.69	233.45											
1-Jun-99	238.70		238.44	238.06	233.32	233.92	231.31		236.94						230.46	
10-Nov-99	Dry		236.49	237.29	232.96	233.63	231.45		235.17						230.12	
21-Dec-99	Dry		237.22	238.05	233.10											
28-Mar-00	237.69		238.11	238.21	233.20											
19-Jun-00	238.59		238.42	238.72	233.06	233.71	230.90		237.18						230.15	
28-Nov-00	237.90		237.99	238.33	233.25	234.06	230.82		237.04						230.30	
5-Dec-00	237.70		238.21	238.74	233.36											
10-Apr-01	239.94		238.88	238.35	233.75											
20-Jun-01	238.89		238.49	239.03	233.74	234.28	231.37		237.42						230.65	
26-Nov-01	238.46		238.35	239.08	233.52	234.14	231.45		237.22						230.57	
21-May-02	239.75		238.82	239.86	233.80	234.32	231.78		237.33						230.73	
5-Jun-02	239.33		238.94	239.70	233.86	234.38	231.49		237.30						230.76	
22-Oct-02	236.47		237.37	238.57	233.39	233.86										
13-May-03	238.78		238.62	239.82	233.00	233.45										
	<237.24**		237.80	239.95												
25-May-04	239.53		238.50	239.28												
21-Jun-04	237.25		227.22	238.93	233.71	234.25										
27-Sep-04	<237.24**		237.22 236.80	238.51	233./1	234.25										
26-Nov-04 12-May-05	239.11		236.80	238.51	233.12	234.29										
29-Nov-05	239.11	234.98	236.79	238.94	233.12	234.29										
17-May-06		234.36	238.20	238.61	233.30	234.46										
22-Nov-06		237.05	238.00	239.64	233.30	234.40										
3-May-07		237.03	238.62	239.44												
3-May-07 15-Nov-07		<235.29**	236.23	239.44												
15-Nov-07 15-May-08		235.44	230.23	239.04	232.85	234.21	228.77									
4-Nov-08		237.68	237.66	238.99	232.65	234.21	231.00			235.53				236.41		230.12
12-May-09		239.36	238.61	239.39	233.54	234.85	231.48			235.99	235.99			237.11		230.12
16-Nov-09		237.54	237.74	238.84	233.35	234.62	231.51			233.33	236.28			236.63		230.52

Table F-4 Groundwater Level Elevations Twin Creeks Environmental Centre

	OW16-5*	OW16-6*	OW16-7	OW17-4	OW17-30	OW19-29	OW39-26	OW39A-26	OW40-6	OW40A-4	OW40B-4	OW40B-4r	OW40D-4*	OW40A-7	OW40-28	OW40A-28
T.O.P.	241.50	241.36	241.55	240.64	240.72	241.83	235.74	235.60	239.14	239.08	238.74	238.66	238.76	239.13	239.09	239.11
14-May-10		238.57	238.37	239.72	233.39	234.61	231.61				237.52			236.99		230.55
9-Nov-10		236.23	236.31	239.20	233.08	234.35	230.80				235.43			236.63		230.33
9-May-11		239.27	238.54	239.64	233.16	234.48	230.64				237.92			237.01		230.37
1-Nov-11		237.89	237.76	239.71	233.18	234.47	230.76				237.27			236.79		230.44
7-May-12		238.65	238.29	239.39	233.50	234.78	230.94				237.96			237.10		230.68
5-Nov-12		236.18	236.07	239.73	233.01	234.32	230.47					234.45		235.93		230.28
6-May-13		238.88	238.18	238.93	232.95	234.26	230.47					237.10		236.77		230.11
4-Nov-13		236.39	236.30	239.52	233.04	234.41	230.52					235.77		235.80		231.12
5-May-14		239.52	238.77	239.26	233.17	234.56	230.93					237.54		237.15		230.42
23-May-14				239.45												
27-May-14																
17-Nov-14		238.77	238.41	239.06	233.18	234.58	230.38						234.68	236.89		230.46
11-May-15		239.27	238.65	239.19	233.18	234.57	230.54						236.51	237.10		230.46
10-Nov-15		236.85	236.85	239.53	232.95	234.30	230.25						236.07	236.80		230.28
24-May-16		238.99	238.48	239.55	233.02	234.33	230.23						237.60	237.46		230.40
14-Nov-16		236.68	236.87	239.40	232.64	234.07							235.77	236.67		230.06
15-May-17		238.97	238.34	239.29	232.77	234.15		229.71					237.49	237.43		230.16
6-Nov-17		236.88	236.56	239.67	232.50	233.93		229.61					235.91	236.22		229.89
7-May-18		239.32	238.53	239.54	232.60	234.08		229.25					237.07	237.14		229.94
5-Nov-18		238.74	238.36	239.85	232.42	233.94		229.17					237.26	237.21		229.85
13-May-19		239.80	239.01	239.69	232.85	234.29		229.76					237.82	237.46		230.19
4-Nov-19		238.08	237.98	239.33	232.63	234.07		229.64					237.70	237.07		229.96
4-May-20		239.48	238.91	239.63	232.90	234.24		230.15					237.80	237.32		230.24
2-Nov-20		236.97	237.14	239.09	232.47	233.94		229.38					235.90	236.34		229.89
17-May-21		238.89	238.76	239.36	232.57	233.53		230.43					235.86	237.56		229.88
1-Nov-21		239.38	238.62	239.50	232.50	233.63		230.65					238.02	237.22		229.75

2) T.O.P. denotes 'top of pipe'. Elevations as of July 2004.

3) Elevations in metres above sea level.

4) + denotes elevation reported is below elevation of well screen.

5) * denotes angled monitoring well.

6) ^ denotes pre 2004 T.O.P. elevation.

7) ** denotes level below top of pump.

8) NR denotes not required for the 2008 Second Quarter Monitoring Program.

9) Liquid level monitoring for OW59-10 is no longer required under the amended ECA for Waste, but continues to be monitored for changes in potentiometric pressures near Cell 7 of the Existing Site.

10) Bold denotes datum is anamlous and is excluded from the interpretations.

11) OW39-26 noted to have been damaged during the fall 2016 monitoring event.

Table F-4 Groundwater Level Elevations Twin Creeks Environmental Centre

	OW46-7	OW47-6	OW49-29	OW54-4	OW54A-4	OW54-10	OW56-4*	OW57-4*	OW57-15	OW58-4*	OW58-6*	OW58-14	OW58-17	OW59-4*	OW59-6*	OW59-10
T.O.P.	240.66	240.77	243.21	242.71	242.95	243.44	240.46	241.32	241.44	241.71	241.62	241.53	242.17	241.79	241.84	242.03
23-Mar-84																
12-Apr-84																
3-May-84																
29-Jun-84																
27-Jul-84																
10-Sep-84																
19-Oct-84																
27-Nov-84																
17-Dec-84																
1-Feb-85																
27-Feb-85																
26-Mar-85																
26-Apr-85																
21-May-85																
15-Jul-85																
10-Sep-85																
13-Mar-86																
8-Apr-86																
5-Sep-86																
25-Feb-87																
25-Mar-87																
29-Apr-87																
22-May-87																
26-May-88 18-Aug-88																
2-Nov-88																
6-Jun-89																
25-Oct-89																
14-May-90																
14-Aug-90																
6-Dec-90	237.78	237.94														
15-May-91	238.21	238.45														
21-Aug-91	238.37	238.26														
15-Nov-91	237.41	237.59														
25-May-92	236.99	237.64														
10-Nov-92	237.28	237.70														
19-Apr-93																
13-Jun-93	237.49	238.06														
4-Dec-93	238.04	237.42														
10-May-94	237.93	237.72														
13-Dec-94	236.69	236.87														

Table F-4 Groundwater Level Elevations Twin Creeks Environmental Centre

	OW46-7	OW47-6	OW49-29	OW54-4	OW54A-4	OW54-10	OW56-4*	OW57-4*	OW57-15	OW58-4*	OW58-6*	OW58-14	OW58-17	OW59-4*	OW59-6*	OW59-10
T.O.P.	240.66	240.77	243.21	242.71	242.95	243.44	240.46	241.32	241.44	241.71	241.62	241.53	242.17	241.79	241.84	242.03
9-Jun-95	237.27	237.42														
6-Nov-95	237.18	236.80														
6-May-96		236.79														
9-Dec-96	237.47	237.20														
12-May-97	237.91	237.68														
4-Dec-97	237.78	237.34														
3-Mar-98	238.38	237.83														
12-May-98	238.71	238.20														
21-Jul-98																
18-Dec-98	237.60	236.81														
13-Jan-99	237.89	236.74					236.89	237.10		Dry				Dry		
30-Mar-99	237.80	237.19					237.61									
1-Jun-99		238.11					238.34	237.10	237.87	Dry		237.03		238.79		
10-Nov-99	236.92	235.78					236.26	237.32	237.70	Dry		236.48		Dry		235.33
21-Dec-99	237.10			240.50			Dry	237.16	237.40	Dry		233.96		Dry		
28-Mar-00	237.65			240.09			Dry	237.15	237.43	237.37		236.06		Dry		
19-Jun-00	237.24	237.96					236.74	238.78	237.86	Dry		236.39		Dry		236.54
28-Nov-00	238.09	237.19					237.76	237.83	238.49	237.39		237.10		237.52		236.82
5-Dec-00	236.94	238.27		240.72			236.19	237.81	238.46	237.36		237.11		Dry		236.77
10-Apr-01	238.35	237.72		241.58			237.21	237.84	238.55	Dry		236.06		237.83		237.30
20-Jun-01	238.57	238.19					238.75	238.24	238.80	Dry		237.55		238.95		237.54
26-Nov-01	238.16	237.88		240.88			238.94	238.59	238.96	238.97		235.46		237.80		236.77
21-May-02	238.83	238.21		241.18			239.08	238.53	239.05	237.43		238.07		237.51		237.59
5-Jun-02	238.90	238.26		241.03			237.43	237.63	238.99	237.55		238.13		237.62		237.64
22-Oct-02	238.13	237.75		238.55			237.99	239.10	238.86	238.51		238.00		237.45		236.29
13-May-03	237.82	237.34		240.48			238.61	238.05	237.66	<237.96**		237.24		237.39		235.33
12-Nov-03	238.37	237.61		240.78			239.81	238.58	238.31	238.98		237.89		237.41		236.79
25-May-04	238.87	238.38		240.95			239.12	238.80	238.82	<237.75**		238.23		Dry		238.22
21-Jun-04																
27-Sep-04	238.62	238.00		239.36			238.53	239.32	238.93	238.95		238.40		237.72		238.88
26-Nov-04	238.03	237.45		238.57			239.72	238.62	238.61	238.68		237.86		237.60		238.56
12-May-05	238.41	237.99		240.55			238.79	238.35	238.45	238.52		238.37		237.48		238.42
29-Nov-05	237.79	236.92		240.44			239.47	238.07	238.30		235.48	238.28			238.04	238.52
17-May-06	238.39	237.47		240.97			238.01	238.09	238.64		235.98	238.53			239.57	237.13
22-Nov-06	238.27	237.39		240.30			238.45	238.36	238.73		237.07	238.47			238.56	238.83
3-May-07	238.81	238.22		240.92			238.83	238.73	239.00		238.09	238.87			238.69	239.06
15-Nov-07	237.44	236.47		239.03			236.42	238.12	238.02		237.89	238.29			238.29	238.36
15-May-08	237.43	236.54			237.44		237.24	237.76	237.55		237.39	238.05			238.04	238.35
4-Nov-08	237.94	237.35			239.72		237.92	238.44	238.36		238.57	238.26			238.98	239.05
12-May-09	238.43	238.35	234.25		239.45	240.98	239.10	239.02	238.79		239.32	238.58			239.56	239.27
16-Nov-09	238.25	237.92	233.99		239.72	240.54	238.42	238.79	238.70		238.64	238.67			239.25	238.95

Table F-4
Groundwater Level Elevations
Twin Creeks Environmental Centre

	OW46-7	OW47-6	OW49-29	OW54-4	OW54A-4	OW54-10	OW56-4*	OW57-4*	OW57-15	OW58-4*	OW58-6*	OW58-14	OW58-17	OW59-4*	OW59-6*	OW59-10
T.O.P.	240.66	240.77	243.21	242.71	242.95	243.44	240.46	241.32	241.44	241.71	241.62	241.53	242.17	241.79	241.84	242.03
14-May-10	238.46	237.91	234.06		239.63	240.02	238.75	238.90	238.50		239.17	239.28			239.42	239.53
9-Nov-10	237.68	237.28	233.62		239.67	239.50	237.36	238.39	238.37		237.99	238.44			238.93	238.71
9-May-11	238.16	237.78	233.85		239.88	239.47	238.86	238.61	238.43		237.66	238.35			239.29	239.71
1-Nov-11	238.32	237.95	233.83		239.94	239.63	238.45	238.96	238.75		238.56	238.64			239.33	239.90
7-May-12	238.31	238.23	234.16		240.05	239.46	238.87	239.38	238.34		238.56	238.58			239.83	239.91
5-Nov-12	237.70	237.38	233.49		240.14	238.75	237.37	238.46	238.47		237.59	238.53			238.42	239.59
6-May-13	237.64	237.02	233.63		240.41	238.83	238.24	238.10	238.06		237.15	238.30			238.93	239.46
4-Nov-13	237.58	237.26	233.80		240.20	238.89	237.55	238.34	238.35		237.51	238.39			238.51	239.64
5-May-14	238.46	238.12	233.91		240.46	238.99	238.91	238.95	238.67		237.64	238.14			239.55	239.01
23-May-14					240.67		238.97	239.02			237.77					
27-May-14												237.13	234.77			
17-Nov-14	237.56	238.28	233.85		240.72	238.98	238.69	238.85	238.89		238.03	238.71	237.33		239.44	239.20
11-May-15	238.66	238.03	233.86		240.95	238.85	239.36	239.36	238.75		238.12	238.80	237.84		239.95	238.91
10-Nov-15	238.20	237.94	233.49		240.01	238.53	237.99	238.60	238.59		238.03	238.65	237.88		239.15	238.80
24-May-16	238.42	238.20	233.65		241.12	238.69	238.97	238.85	238.50		237.59	238.59	237.52		239.56	238.71
14-Nov-16	238.38	237.66	233.22		240.52	238.30	237.87	238.50	238.43		237.99		236.60		238.66	238.75
15-May-17	238.30	237.51	233.46		241.36	238.30	238.93	238.93	238.47		237.67		237.35		239.46	238.75
6-Nov-17	238.30	237.58	233.00		239.88	238.42	238.47	238.80	238.58		238.66		237.66		239.25	238.90
7-May-18	238.70	237.76	233.19		241.46	238.23	239.29	239.90	238.93		239.87		237.67		240.16	239.06
5-Nov-18	238.94	237.93	233.01		241.07	238.46	238.85	239.28	238.98		239.44		237.85		239.70	239.24
13-May-19	239.15	239.52	233.43		241.79	238.63	239.61	240.25	239.30		240.50		237.98		240.56	239.41
4-Nov-19	239.02	238.30	232.41		240.79	238.19	239.00	239.06	239.05		239.18		238.02		239.61	239.04
4-May-20	239.28	238.64	233.29		241.80	238.38	239.53	240.24	239.33		240.42		237.98		240.41	239.14
2-Nov-20	238.71	237.97	232.99		239.62	237.96	238.68	238.89	238.71		240.17		237.73		238.92	238.52
17-May-21	238.99	238.10	233.07		240.95	237.89	239.09	240.04	239.07		240.01		237.39		239.91	238.55
1-Nov-21	239.21	238.14	232.88		241.34	238.19	238.84	239.42	239.18		240.92		237.77		239.40	238.50

2) T.O.P. denotes 'top of pipe'. Elevations as of July 2004.

3) Elevations in metres above sea level.

4) + denotes elevation reported is below elevation of well screen.

5) * denotes angled monitoring well.

6) ^ denotes pre 2004 T.O.P. elevation.

7) ** denotes level below top of pump.

8) NR denotes not required for the 2008 Second Quarter Monitoring Program.

9) Liquid level monitoring for OW59-10 is no longer required under the amended ECA for Waste, but continues to be monitored for changes in potentiometric pressures near Cell 7 of the Existing Site.

10) Bold denotes datum is anamlous and is excluded from the interpretations.

11) OW39-26 noted to have been damaged during the fall 2016 monitoring event.

Table F-4 Groundwater - Liquid Level Elevations Twin Creeks Environmental Centre

	OW60-4*	OW60-8	OW60-25	OW67-4*	OW67-11	OW68-5	OW69-5*	OW70-5*	OW70B-5	OW71-5*	OW71A-5*	OW72-6*	OW72-10	OW73-6*	OW73-9	OW79-5*
T.O.P.	235.73	235.76	235.74	243.26	243.1	241.68	240.66^	242.53^	242.84	242.79	242.75	242.72	243.09	242.43	242.88	238.559
23-Mar-84																
12-Apr-84																
3-May-84																
29-Jun-84																
27-Jul-84																
10-Sep-84																
19-Oct-84																
27-Nov-84																
17-Dec-84																
1-Feb-85																
27-Feb-85																
26-Mar-85																
26-Apr-85																
21-May-85																
15-Jul-85																
10-Sep-85																
13-Mar-86																
8-Apr-86																
5-Sep-86																
25-Feb-87																
25-Mar-87																
29-Apr-87																
22-May-87																
26-May-88																
18-Aug-88																
2-Nov-88																
6-Jun-89																
25-Oct-89																
14-May-90																
14-Aug-90																
6-Dec-90																
15-May-91																
21-Aug-91																
15-Nov-91																
25-May-92																
10-Nov-92																
19-Apr-93																
13-Jun-93																
4-Dec-93																
10-May-94																
13-Dec-94																

Table F-4 Groundwater - Liquid Level Elevations Twin Creeks Environmental Centre

	OW60-4*	OW60-8	OW60-25	OW67-4*	OW67-11	OW68-5	OW69-5*	OW70-5*	OW70B-5	OW71-5*	OW71A-5*	OW72-6*	OW72-10	OW73-6*	OW73-9	OW79-5*
T.O.P.	235.73	235.76	235.74	243.26	243.1	241.68	240.66^	242.53^	242.84	242.79	242.75	242.72	243.09	242.43	242.88	238.559
9-Jun-95																
6-Nov-95																
6-May-96																
9-Dec-96																
12-May-97																
4-Dec-97																
3-Mar-98																
12-May-98																
21-Jul-98																
18-Dec-98																
13-Jan-99	235.00	234.11	231.19													
30-Mar-99																
1-Jun-99	234.51	230.91	231.65													
10-Nov-99	231.60	228.19	231.49	241.09	238.38											
21-Dec-99				240.88	238.71											
28-Mar-00				241.67	239.18											
19-Jun-00	235.14	234.63		242.18	239.58											
28-Nov-00	235.14	234.46	231.73	241.88	239.65											
5-Dec-00				241.83	240.57											
10-Apr-01				242.37	239.96											
20-Jun-01	234.55	234.84	232.04	241.70	239.94											
26-Nov-01	234.99	234.47	231.88	242.44	239.47											
21-May-02	234.48	235.06	232.01	242.10	239.97	239.32	238.55	241.69								
5-Jun-02	234.49	235.02	232.06	241.97	239.97	239.18	238.57	239.18								
22-Oct-02				239.75	238.59	236.79	238.25	239.52								
13-May-03				242.35	238.31	239.54	237.23	241.44								
12-Nov-03				242.43	238.32	237.48	237.49	240.67								
25-May-04				242.69	239.32	239.77	238.34	241.81		244.50						
21-Jun-04				240.57	220.77	227.42	220.40	240.22		241.58						
27-Sep-04				240.57	238.77 238.23	237.42 <237.30**	238.49 237.99	240.22 239.50		240.28 239.22						
26-Nov-04 12-May-05				239.94 242.00	238.77	239.11	237.99	239.50		239.22						
29-Nov-05				242.69	238.12	237.33	237.69	238.84		238.52		236.19	237.14	237.35	238.65	
17-May-06				242.09	239.28	239.59	237.66	241.38		241.50		236.53	237.14	239.52	236.03	
22-Nov-06				242.72	239.20	238.56	237.00	241.50		241.46		237.30	239.05	239.32	239.05	
3-May-07				242.32	239.58	239.63	238.33	241.74		241.97		237.30	240.09	238.20	239.03	
15-Nov-07				<239.54**	239.36	<237.30**	237.44	271./4		238.48		239.33	2-0.09	238.82	239.10	
15-Nov-07	234.82	233.97	229.04	239.64	238.39	238.13	236.71		DRY	240.19		239.33	240.90	238.47	239.82	
4-Nov-08	234.51	233.77	230.88	242.53	238.38	238.78	237.80		238.66	239.42		240.08	241.49	239.04	239.70	
12-May-09	235.15	235.05	231.94	242.52	240.82	239.62	237.78		238.27	240.12		239.62	240.88	238.65	239.44	237.31
16-Nov-09	234.73	234.09	231.78	242.05	239.31	237.72	238.14		239.84	240.48		240.03	240.45	238.98	239.17	233.17

Table F-4 Groundwater - Liquid Level Elevations Twin Creeks Environmental Centre

	OW60-4*	OW60-8	OW60-25	OW67-4*	OW67-11	OW68-5	OW69-5*	OW70-5*	OW70B-5	OW71-5*	OW71A-5*	OW72-6*	OW72-10	OW73-6*	OW73-9	OW79-5*
T.O.P.	235.73	235.76	235.74	243.26	243.1	241.68	240.66^	242.53^	242.84	242.79	242.75	242.72	243.09	242.43	242.88	238.559
14-May-10	235.16	234.94	231.92	242.64	239.31	239.76	237.78		239.91	242.10		238.65	239.86	238.39	238.87	235.77
9-Nov-10	234.62	230.76	231.59	242.55	238.41	<237.30**	237.82		240.25			239.77	239.72	238.82	238.95	DRY
9-May-11	235.14	234.86	231.75	242.39	239.14	239.66	237.47		241.54		241.05	238.95	239.41	238.18	238.74	236.42
1-Nov-11	234.98	234.27	231.76	241.86	238.95	238.26	238.15		240.86		241.14	239.60	239.55	238.77	238.99	<233.74**
7-May-12	235.10	234.94	232.10	241.68	239.24	238.91	238.62		241.35		241.46	239.10	239.29	238.39	238.87	236.60
5-Nov-12	232.45	231.28	231.56	242.44	237.95	237.35	238.09		240.44		239.61	239.30	238.91	239.74	238.73	233.74
6-May-13	235.14	234.72	229.55	242.13	238.71	239.29	237.44		241.85		241.57	238.36	238.65	237.98	238.38	236.54
4-Nov-13	232.68	231.25	231.71	242.53	238.08	237.79	237.97		240.71		239.77	239.45	239.10	239.79	238.79	233.87
5-May-14	235.11	234.92	231.94	242.48	239.03	239.63	238.54		241.94		242.18	238.49	238.70	238.12	238.58	237.35
23-May-14							237.97					238.70		238.24		
27-May-14																
17-Nov-14	235.19	234.78	231.94	242.28	239.11	239.37	238.45		241.35		242.01	239.11	238.75	238.80	238.96	235.04
11-May-15	235.18	235.06	231.89	242.27	239.00	239.46	238.23		241.73		241.99	238.63	238.56	238.33	238.66	236.96
10-Nov-15	232.42	232.42	231.59	242.19	238.10		238.23		240.64		240.30	239.17	238.53	238.77	238.67	233.16
24-May-16	235.01	234.83	231.77	242.06	238.75	239.35	238.03		241.80		242.04	238.38	238.39	238.08	238.44	236.79
14-Nov-16	<232.44	231.81	231.38	241.96	237.71	237.43	238.02		240.87		241.27	238.96	238.51	238.72	238.68	233.77
15-May-17	234.95	234.78	231.55	242.19	237.80	238.98	237.90		241.82		242.04	236.49	238.39	238.17	238.49	236.93
6-Nov-17	232.44	231.29	231.22	242.51	237.51	237.34	238.12		240.96		241.86	238.92	238.26	238.70	238.70	233.77
7-May-18	235.14	234.73	231.36	242.49	237.81	239.32	238.47		241.95		242.27	240.06	238.38	239.40	238.83	236.85
5-Nov-18	235.03	234.52	231.24	242.56	238.04	239.32	238.58		241.29		242.14	240.09	238.53	239.67	238.83	235.61
13-May-19	235.03	235.06	231.63	242.60	238.04	239.91	239.15		242.04		242.30	240.54	238.82	240.20	239.17	237.36
4-Nov-19	234.98	233.99	231.34	242.53	237.77	239.05	238.84		241.34		241.97	239.99	238.46	239.71	239.01	<233.74**
4-May-20	235.15	235.01	231.57	242.32	237.93	239.43	239.32		241.90		242.14	240.61	238.58	240.73	239.06	237.01
2-Nov-20	232.45	231.00	231.27	242.47	237.67	238.05	238.77		241.27		241.20	239.81	238.16	239.26	238.71	233.73
17-May-21	234.74	234.78	231.23	241.86	237.87	238.91	239.08		241.30		241.80	240.50	238.29	240.71	238.78	236.06
1-Nov-21	235.24	234.77	230.99	242.50	237.96	239.86	239.07		241.62		242.24	240.46	238.33	240.17	238.77	235.53

2) T.O.P. denotes 'top of pipe'. Elevations as of July 2004.

3) Elevations in metres above sea level.

4) + denotes elevation reported is below elevation of well screen.

5) * denotes angled monitoring well.

6) ^ denotes pre 2004 T.O.P. elevation.

7) ** denotes level below top of pump.

8) NR denotes not required for the 2008 Second Quarter Monitoring Program.

9) Liquid level monitoring for OW59-10 is no longer required under the amended CofA for Waste, but continues to be monitored for changes in potentiometric pressures near Cell 7 of the Existing Site.

10) Bold denotes datum is anamlous and is excluded from the interpretations.

11) OW81-5, OW81-7 and OW81-27 installed in June 2019

Table F-4 Groundwater - Liquid Level Elevations Twin Creeks Environmental Centre

	OW79-7	OW79-26	OW80-3*	OW80-6	OW80-27	OW81-5*	OW81-7	OW81-27	P1	P2	Р3
T.O.P.	238.773	238.954	236.156	236.59	236.58	236.04	236.5	236.55	240.38	240.58	240.62
23-Mar-84											
12-Apr-84											
3-May-84											
29-Jun-84											
27-Jul-84											
10-Sep-84											
19-Oct-84											
27-Nov-84											
17-Dec-84											
1-Feb-85											
27-Feb-85											
26-Mar-85											
26-Apr-85											
21-May-85											
15-Jul-85											
10-Sep-85											
13-Mar-86											
8-Apr-86											
5-Sep-86											
25-Feb-87											
25-Mar-87											
29-Apr-87											
22-May-87											
26-May-88											
18-Aug-88											
2-Nov-88											
6-Jun-89											
25-Oct-89											
14-May-90											
14-Aug-90											
6-Dec-90											
15-May-91											
21-Aug-91											
15-Nov-91											
25-May-92											
10-Nov-92											
19-Apr-93											
13-Jun-93											
4-Dec-93											
10-May-94											
13-Dec-94											

Table F-4 Groundwater - Liquid Level Elevations Twin Creeks Environmental Centre

	OW79-7	OW79-26	OW80-3*	OW80-6	OW80-27	OW81-5*	OW81-7	OW81-27	P1	P2	Р3
T.O.P.	238.773	238.954	236.156	236.59	236.58	236.04	236.5	236.55	240.38	240.58	240.62
9-Jun-95											
6-Nov-95											
6-May-96											
9-Dec-96											
12-May-97											
4-Dec-97											
3-Mar-98											
12-May-98											
21-Jul-98											
18-Dec-98											
13-Jan-99											
30-Mar-99											
1-Jun-99											
10-Nov-99											
21-Dec-99											
28-Mar-00											
19-Jun-00											
28-Nov-00											
5-Dec-00											
10-Apr-01											
20-Jun-01											
26-Nov-01											
21-May-02											
5-Jun-02											
22-Oct-02											
13-May-03											
12-Nov-03											
25-May-04											
21-Jun-04											
27-Sep-04											
26-Nov-04											
12-May-05											
29-Nov-05											
17-May-06											
22-Nov-06											
3-May-07											
15-Nov-07											
15-May-08											
4-Nov-08											
12-May-09	236.25	231.68	234.94	235.45	230.99						
16-Nov-09	232.48	231.71	234.32	234.41	231.06						

Table F-4 Groundwater - Liquid Level Elevations Twin Creeks Environmental Centre

	OW79-7	OW79-26	OW80-3*	OW80-6	OW80-27	OW81-5*	OW81-7	OW81-27	P1	P2	Р3
T.O.P.	238.773	238.954	236.156	236.59	236.58	236.04	236.5	236.55	240.38	240.58	240.62
14-May-10	233.55	231.39	235.18	235.13	230.79						
9-Nov-10	232.31	230.98	234.54	233.85	230.41						
9-May-11	234.94	230.82	235.01	235.46	230.29						
1-Nov-11	233.83	230.97	234.93	235.10	230.33						
7-May-12	235.62	231.14	234.78	235.05	230.51						
5-Nov-12	232.40	230.69	234.87	233.32	230.03						
6-May-13	235.67	230.46	234.78	235.24	229.89						
4-Nov-13	232.25	230.83	234.85	233.34	230.01						
5-May-14	236.35	230.92	235.54	235.54	230.33						
23-May-14											
27-May-14											
17-Nov-14	235.17	230.39	235.02	235.31	229.88						
11-May-15	236.15	230.54	234.67	235.14	230.05						
10-Nov-15	233.16	230.28	234.68	234.15	229.76						
24-May-16	236.13	230.20	234.93	235.17	229.74						
14-Nov-16	233.29	229.71	234.73	234.57	229.30						
15-May-17	236.28	229.91	234.86	235.27	229.53						
6-Nov-17	232.89	229.83	234.82	234.29	229.37						
7-May-18	236.19	229.46	235.08	235.42	229.10						
5-Nov-18	234.82	229.38	235.18	235.37	228.98				239.11	239.32	239.31
13-May-19	236.59	229.97	235.25	235.56	229.50				239.14	239.37	239.36
4-Nov-19	233.88	229.88	235.32	235.12	229.39	234.64	234.38	229.42	239.13	239.34	239.34
4-May-20	236.17	230.35	234.84	235.21	229.87	235.12	235.11	229.88	238.85	238.95	239.03
2-Nov-20	232.57	229.59	235.20	234.05	229.19	234.75	234.54	229.27	237.98	238.20	238.20
17-May-21	235.38	230.60	234.49	234.85	230.11	234.91	234.90	230.15	238.69	238.76	238.85
1-Nov-21	235.34	230.84	235.33	235.39	230.36	235.16	235.05	230.42	239.11	239.11	239.27

- 2) T.O.P. denotes 'top of pipe'. Elevations as of July 2004.
- 3) Elevations in metres above sea level.
- 4) + denotes elevation reported is below elevation of well screen.
- 5) * denotes angled monitoring well.
- 6) ^ denotes pre 2004 T.O.P. elevation.
- 7) ** denotes level below top of pump.
- 8) NR denotes not required for the 2008 Second Quarter Monitoring Program.
- 9) Liquid level monitoring for OW59-10 is no longer required under the amended CofA for Waste, but continues to be monitored for changes in potentiometric pressures near Cell 7 of the Existing Site.
- 10) Bold denotes datum is anamlous and is excluded from the interpretations.
- 11) OW81-5, OW81-7 and OW81-27 installed in June 2019

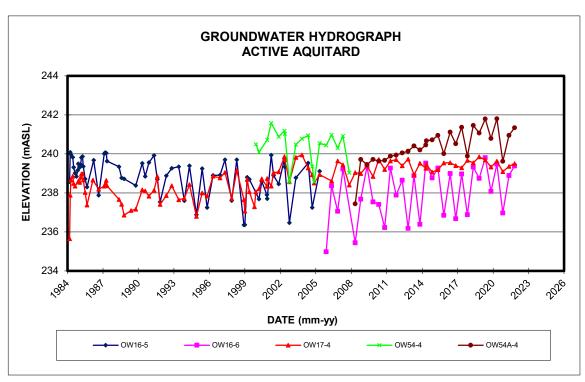


FIGURE F-13

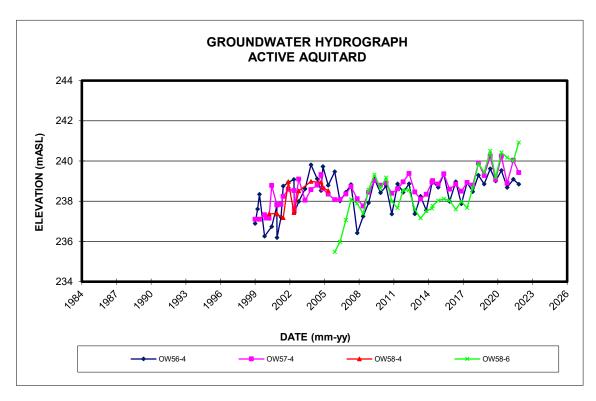


FIGURE F-14

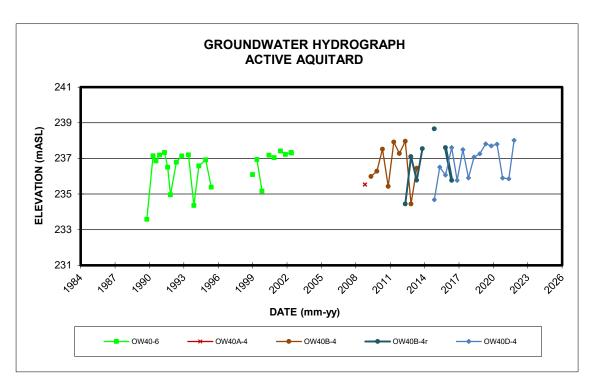


FIGURE F-15

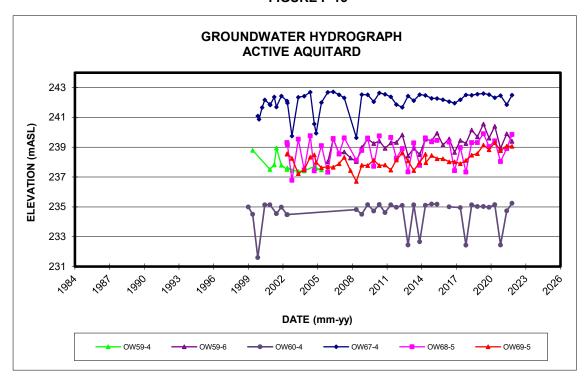


FIGURE F-16

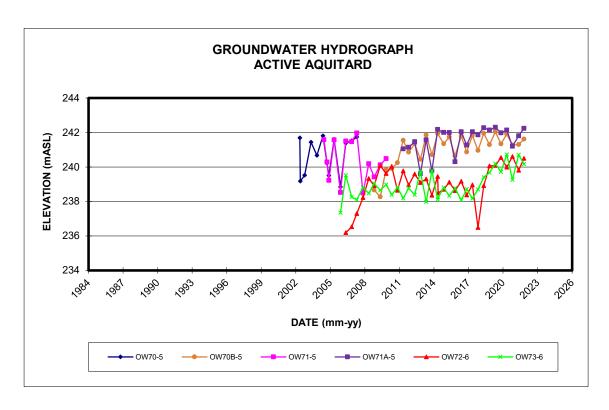


FIGURE F-17

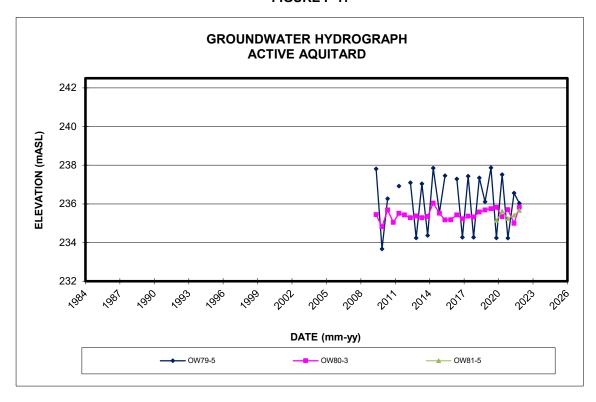


FIGURE F-18

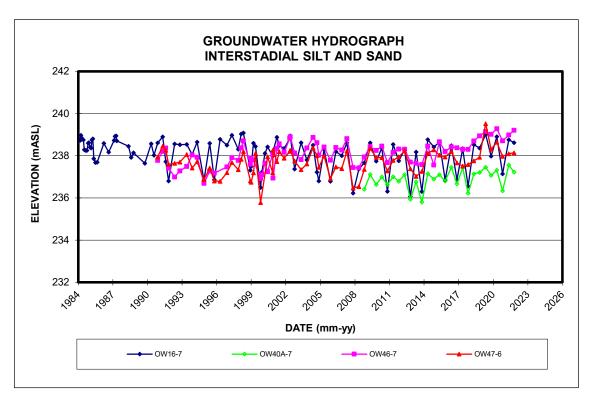


FIGURE F-19

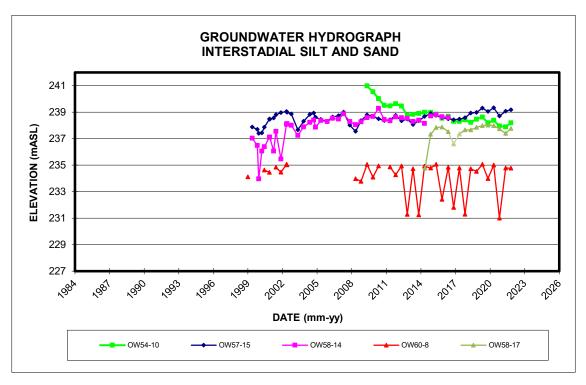


FIGURE F-20

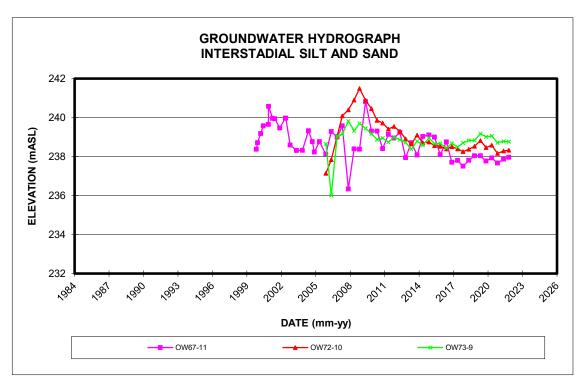


FIGURE F-21

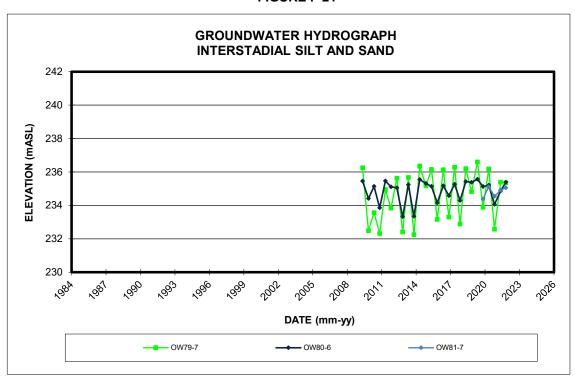


FIGURE F-22

FIGURE F-23

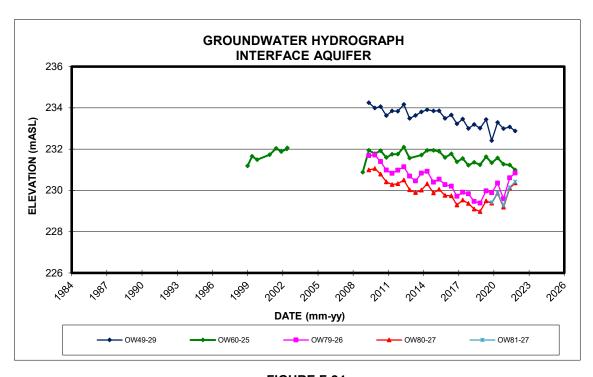


FIGURE F-24

Table F-5
Vertical Hydraulic Gradients
Twin Creeks Environmetnal Centre - 2021 Annual Monitoring Report

			Ma	ay 2021 Grou	ındwater	Hydraulic Gr	adient	Details						H	Historical Ve	ertical Hydra	ulic Gradie	nts	
			Upper Monitor					Lower Monitor											
					Static					Static	Vertical								
Date	Monitor	Туре	Hydrostatigraphic	Measuring	Water	Monitor	Туре	Hydrostatigraphic	Measuring	Water	Gradient	2020	2019	2018	2017	2016	2015	2014	2013
	Designation		Unit	Point	Level	Designation		Unit	Point	Level	2021								
				(mASL)	(mASL)				(mASL)	(mASL)									
			•					Active Aquitard to Interstadial	Silt and Sand										
17-May-21	OW16-6	S	ACTIVE AQUITARD	234.76	238.89	OW16-7	Р	INTERSTADIAL SILT AND SAND	234.00	238.76	0.165	0.749	1.045	1.044	-0.474	0.671	0.816	0.144	0.153
17-May-21	OW17-4	S	ACTIVE AQUITARD	235.00	239.36	OW46-7	Р	INTERSTADIAL SILT AND SAND	233.50	238.99	0.247	0.233	0.360	0.560	0.660	0.753	0.353	0.148	0.254
17-May-21	OW40D-4	S	ACTIVE AQUITARD	233.83	235.86	OW40A-7	Р	INTERSTADIAL SILT AND SAND	231.33	237.56	-0.681	0.193	0.142	-0.027	0.024	0.056	-0.236	0.217	0.061
17-May-21	OW54A-4	S	ACTIVE AQUITARD	237.07	240.95	OW54-10	Р	INTERSTADIAL SILT AND SAND	232.34	237.89	0.647	0.723	0.668	0.683	0.647	0.514	0.444	0.190	0.205
17-May-21	OW56-4	S	ACTIVE AQUITARD	236.00	239.09	OW47-6	Р	INTERSTADIAL SILT AND SAND	233.50	238.10	0.395	0.357	0.037	0.613	0.568	0.308	0.532	0.156	0.278
17-May-21	OW57-4	S	ACTIVE AQUITARD	239.90	240.04	OW57-15	Р	INTERSTADIAL SILT AND SAND	228.70	239.07	0.087	0.081	0.084	0.086	0.041	0.031	0.054	0.051	0.009
17-May-21	OW58-6	S	ACTIVE AQUITARD	235.24	240.01	OW58-17	Р	INTERSTADIAL SILT AND SAND	226.90	237.39	0.314	0.293	0.302	0.264	0.038	0.008	-0.082	-0.052	-0.126
17-May-21	OW59-6	S	ACTIVE AQUITARD	235.23	239.91	OW59-10	Р	INTERSTADIAL SILT AND SAND	232.50	238.55	0.498	0.466	0.421	0.402	0.260	0.311	0.381	*	*
17-May-21	OW60-4	S	ACTIVE AQUITARD	231.60	234.74	OW60-8	P	INTERSTADIAL SILT AND SAND	227.30	234.78	-0.009	0.033	-0.007	0.096	0.040	0.042	0.028	0.026	0.057
17-May-21	OW67-4	S	ACTIVE AQUITARD	238.90	241.86	OW67-11	P	INTERSTADIAL SILT AND SAND	231.90	237.87	0.570	0.627	0.652	0.668	0.627	0.473	0.467	0.344	0.353
17-May-21	OW72-6	S	ACTIVE AQUITARD	236.19	240.50	OW72-10	Р	INTERSTADIAL SILT AND SAND	232.57	238.29	0.610	0.562	0.476	0.464	-0.022	-0.003	0.019	-0.039	-0.055
17-May-21	OW73-6	S	ACTIVE AQUITARD	235.87	240.71	OW73-9	Р	INTERSTADIAL SILT AND SAND	232.69	238.78	0.607	0.524	0.322	0.180	-0.101	-0.113	-0.104	-0.094	-0.084
17-May-21	OW79-5	s	ACTIVE AQUITARD	232.99	236.06	OW79-7	Р	INTERSTADIAL SILT AND SAND	230.44	235.38	0.267	0.324	0.302	0.257	0.255	0.259	0.318	0.153	0.152
17-May-21	OW80-3	s	ACTIVE AQUITARD	231.98	234.49	OW80-6	Р	INTERSTADIAL SILT AND SAND	229.71	234.85	-0.158	-0.164	-0.138	-0.151	-0.181	-0.106	-0.207	-0.079	-0.098
17-May-21	OW81-5	s	ACTIVE AQUITARD	230.30	234.91	OW81-7	, P	INTERSTADIAL SILT AND SAND	228.40	234.90	0.005	0.006	-0.130	-0.101	-0.101	-0.100	-0.201	-0.079	-0.090
17-IVIAY-21	OW81-3	3	ACTIVE AQUITAND	230.30	254.91	Ovv01-7	Г	Interstadial Silt and Sand to Int		254.90	0.003	0.000	_	_	_	_	_	_	_
17-May-21	OW40A-7	P	INTERSTADIAL SILT AND SAND	231.33	237.56	OW40A-28	Р	INTERFACE AQUIFER	210.12	229.88	0.362	0.334	0.343	0.339	0.343	0.333	0.313	0.318	0.314
17-May-21	OW67-11	r P	INTERSTADIAL SILT AND SAND	231.90	237.87	OW49-29	Р	INTERFACE AQUIFER	213.51	233.07	0.261	0.252	0.251	0.251	0.236	0.333	0.279	0.276	0.274
		P D					P												
17-May-21	OW60-8	P	INTERSTADIAL SILT AND SAND	227.30	234.78	OW60-25	•	INTERFACE AQUIFER	210.20	231.23	0.208	0.201	0.201	0.197	0.189	0.179	0.185	0.181	0.313
17-May-21	OW46-7	'	INTERSTADIAL SILT AND SAND	233.50	238.99	OW17-30	Р	INTERFACE AQUIFER	209.60	232.57	0.269	0.267	0.264	0.255	0.231	0.226	0.203	0.215	0.204
17-May-21	OW59-10	P -	INTERSTADIAL SILT AND SAND	232.50	238.55	OW19-29	P _	INTERFACE AQUIFER	212.20	233.53	0.247	0.241	0.252	0.245	0.227	0.216	0.214	0.225	0.263
17-May-21	OW79-7	Р	INTERSTADIAL SILT AND SAND	230.44	235.38	OW79-26	Р	INTERFACE AQUIFER	212.13	230.60	0.261	0.318	0.361	0.368	0.348	0.324	0.306	0.297	0.285
17-May-21	OW80-6	Р	INTERSTADIAL SILT AND SAND	229.71	234.85	OW80-27	Р	INTERFACE AQUIFER	208.78	230.11	0.227	0.256	0.290	0.302	0.274	0.259	0.243	0.249	0.256
17-May-21	OW81-7	Р	INTERSTADIAL SILT AND SAND	228.40	234.90	OW81-27	P	INTERFACE AQUIFER	209.38	230.15	0.250	0.275	-	-		-	<u> </u>	-	-
			Novei	mber 2021 G	roundwa	ter Hydraulic	Gradie								Historic	cal Vertical	Hydraulic G	iradients	
	01440.0	_	AOTIVE AOUSTABB	00170	000.00	l 04445 =		Active Aquitard to Interstadial		000.00	4.000		1 0.400	l 0.505	0.404		I	1 0001	0.040
01-Nov-21	OW16-6	S	ACTIVE AQUITARD	234.76	239.38	OW16-7	Р	INTERSTADIAL SILT AND SAND	234.00	238.62	1.000	-0.225	0.130	0.505	0.421	-0.250	0.000	0.081	0.048
01-Nov-21	OW17-4	S	ACTIVE AQUITARD	235.00	239.50	OW46-7	P _	INTERSTADIAL SILT AND SAND	233.50	239.21	0.193	0.253	0.207	0.607	0.913	0.680	0.887	0.288	0.342
01-Nov-21	OW40D-4	S	ACTIVE AQUITARD	233.83	238.02	OW40A-7	Р	INTERSTADIAL SILT AND SAND	231.33	237.22	0.320	-0.176	0.253	0.019	-0.596	-0.360	-0.292	-0.744	-0.007
01-Nov-21	OW54A-4	S	ACTIVE AQUITARD	237.07	241.34	OW54-10	Р	INTERSTADIAL SILT AND SAND	232.34	238.19	0.666	0.351	0.550	0.552	0.309	0.469	0.313	0.218	0.175
01-Nov-21	OW56-4	S	ACTIVE AQUITARD	236.00	238.84	OW47-6	Р	INTERSTADIAL SILT AND SAND	233.50	238.14	0.280	0.283	0.281	0.370	0.024	0.084	0.020	0.085	0.078
01-Nov-21	OW57-4	S	ACTIVE AQUITARD	239.90	239.42	OW57-15	Р	INTERSTADIAL SILT AND SAND	228.70	239.18	0.021	0.016	0.001	0.026	-0.073	0.006	0.001	-0.007	-0.002
01-Nov-21	OW58-6	S	ACTIVE AQUITARD	235.24	240.92	OW58-17	Р	INTERSTADIAL SILT AND SAND	226.90	237.77	0.378	0.293	0.139	0.191	-0.026	0.167	-0.074	-0.068	-0.093
01-Nov-21	OW59-6	S	ACTIVE AQUITARD	235.23	239.40	OW59-10	Р	INTERSTADIAL SILT AND SAND	232.50	238.50	0.330	0.146	0.210	0.168	-0.264	-0.033	0.128	*	*
01-Nov-21	OW60-4	S	ACTIVE AQUITARD	231.60	235.24	OW60-8	Р	INTERSTADIAL SILT AND SAND	227.30	234.77	0.110	0.337	0.230	0.119			-	0.055	0.293
01-Nov-21	OW67-4	S	ACTIVE AQUITARD	238.90	242.50	OW67-11	Р	INTERSTADIAL SILT AND SAND	231.90	237.96	0.649	0.685	0.680	0.646	0.670	0.607	0.584	0.322	0.441

			Ma	ay 2021 Grou	ındwater	Hydraulic Gr	adient	Details						ŀ	listorical Ve	rtical Hydra	aulic Gradie	nts	
			Upper Monitor					Lower Monitor											
					Static					Static	Vertical								
Date	Monitor	Туре	Hydrostatigraphic	Measuring	Water	Monitor	Туре	Hydrostatigraphic	Measuring	Water	Gradient	2020	2019	2018	2017	2016	2015	2014	2013
	Designation		Unit	Point	Level	Designation		Unit	Point	Level	2021								
				(mASL)	(mASL)				(mASL)	(mASL)									
01-Nov-21	OW72-6	S	ACTIVE AQUITARD	236.19	240.46	OW72-10	Р	INTERSTADIAL SILT AND SAND	232.57	238.33	0.588	0.455	0.423	0.431	-0.254	0.124	0.177	0.059	0.055
01-Nov-21	OW73-6	S	ACTIVE AQUITARD	235.87	240.17	OW73-9	Р	INTERSTADIAL SILT AND SAND	232.69	238.77	0.440	0.171	0.222	0.265	-0.487	0.013	0.031	-0.029	0.152
01-Nov-21	OW79-5	S	ACTIVE AQUITARD	232.99	235.53	OW79-7	Р	INTERSTADIAL SILT AND SAND	230.44	235.34	0.075	0.454	-0.057	0.309		0.188		-0.031	0.531
01-Nov-21	OW80-3	S	ACTIVE AQUITARD	231.98	235.33	OW80-6	Р	INTERSTADIAL SILT AND SAND	229.71	235.39	-0.026	0.505	0.087	-0.085	-0.009	0.070	0.233	-0.059	0.317
01-Nov-21	OW81-5	S	ACTIVE AQUITARD	230.30	235.16	OW81-7	Р	INTERSTADIAL SILT AND SAND	228.40	235.05	0.058	0.108	0.137	-	-	-	-	-	-
•								Interstadial Silt and Sand to Int	erface Aquifer			•	•		•		•	•	
01-Nov-21	OW40A-7	Р	INTERSTADIAL SILT AND SAND	231.33	237.22	OW40A-28	Р	INTERFACE AQUIFER	210.12	229.75	0.352	0.304	0.335	0.347	0.298	0.312	0.307	0.304	0.221
01-Nov-21	OW67-11	Р	INTERSTADIAL SILT AND SAND	231.90	237.96	OW49-29	Р	INTERFACE AQUIFER	213.51	232.88	0.276	0.254	0.291	0.273	0.245	0.244	0.251	0.283	0.231
01-Nov-21	OW60-8	Р	INTERSTADIAL SILT AND SAND	227.30	234.77	OW60-25	Р	INTERFACE AQUIFER	210.20	230.99	0.221	-0.016	0.155	0.192	0.004	0.025	0.049	0.172	-0.028
01-Nov-21	OW46-7	Р	INTERSTADIAL SILT AND SAND	233.50	239.21	OW17-30	Р	INTERFACE AQUIFER	209.60	232.50	0.281	0.261	0.267	0.273	0.243	0.240	0.220	0.190	0.197
01-Nov-21	OW59-10	Р	INTERSTADIAL SILT AND SAND	232.50	238.50	OW19-29	Р	INTERFACE AQUIFER	212.20	233.63	0.240	0.226	0.245	0.261	0.245	0.231	0.222	0.233	0.264
01-Nov-21	OW79-7	Р	INTERSTADIAL SILT AND SAND	230.44	235.34	OW79-26	Р	INTERFACE AQUIFER	212.13	230.84	0.246	0.163	0.218	0.297	0.167	0.196	0.157	0.261	0.078
01-Nov-21	OW80-6	Р	INTERSTADIAL SILT AND SAND	229.71	235.39	OW80-27	Р	INTERFACE AQUIFER	208.78	230.36	0.240	0.233	0.274	0.306	0.235	0.252	0.210	0.259	0.159
01-Nov-21	OW81-7	Р	INTERSTADIAL SILT AND SAND	228.40	235.05	OW81-27	Р	INTERFACE AQUIFER	209.38	230.42	0.243	0.277	0.261	-	-	-	-	-	-

NOTES: 1) mASL - Metres Above Sea Level

2) P - denotes piezometer. The measuring point is the mid-point of the filter pack.

S - denotes standpipe. The measuring point is the groundwater table.

3) Negative (-) vertical hydraulic gradients are upward.

4) < denotes liquid elevation at either top of pump or dry well conditions.

5) -- denotes hydraulic gradient can not be calculated.

6) OW40B-4r was decomissioned in October 2014 and was replaced with OW40D.

7) OW58-14 was decomissioned in April 2014 and was replaced with OW58-17.

8) *' denotes monitoring location not assessed for vertical hydraulic gradient prior to 2015.

9) OW81-5, OW81-7 and OW81-27 installed in June 2019 and monitored beginning in November 2019.

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

			Leachate Elevation						
Year	Date	Weekday		(m	asl)				
			PS1	PS3	PS5	PS7			
.O.P.			235.97	240.63	241.62	-			
2021	1-Jan-21	Friday	226.85	226.71	227.19	-			
2021	2-Jan-21	Saturday	226.85	226.71	227.18	-			
2021	3-Jan-21	Sunday	226.87	227.09	227.19	-			
2021	4-Jan-21	Monday	226.86	226.92	227.19	-			
2021	5-Jan-21	Tuesday	226.85	226.95	227.19	-			
2021	6-Jan-21	Wednesday	226.85	226.70	227.19	-			
2021	7-Jan-21	Thursday	226.84	226.71	227.19	-			
2021	8-Jan-21	Friday	226.85	226.83	227.18	-			
2021	9-Jan-21	Saturday	226.85	226.70	227.19	-			
2021	10-Jan-21	Sunday	226.90	227.43	227.20	-			
2021	11-Jan-21	Monday	226.87	227.00	227.20	-			
2021	12-Jan-21	Tuesday	226.86	226.92	227.19	-			
2021	13-Jan-21	Wednesday	226.85	226.70	227.19	-			
2021	14-Jan-21	Thursday	226.85	226.71	227.19	-			
2021	15-Jan-21	Friday	226.84	226.71	227.18	-			
2021	16-Jan-21	Saturday	226.85	226.71	227.19	-			
2021	17-Jan-21	Sunday	226.85	226.71	227.18	-			
2021	18-Jan-21	Monday	226.85	226.71	227.19	-			
2021	19-Jan-21	Tuesday	226.85	226.71	227.19	-			
2021	20-Jan-21	Wednesday	226.85	226.71	227.18	-			
2021	21-Jan-21	Thursday	226.85	226.71	227.18	-			
2021	22-Jan-21	Friday	226.85	226.71	227.19	-			
2021	23-Jan-21	Saturday	226.85	226.71	227.18	-			
2021	24-Jan-21	Sunday	226.85	226.71	227.19	-			
2021	25-Jan-21	Monday	226.85	226.71	227.18	-			
2021	26-Jan-21	Tuesday	226.85	226.71	227.19	-			
2021	27-Jan-21	Wednesday	226.85	226.71	227.18	-			
2021	28-Jan-21	Thursday	226.85	226.71	227.19	-			
2021	29-Jan-21	Friday	226.84	226.71	227.18	-			
2021	30-Jan-21	Saturday	226.83	226.71	227.18	-			
2021	31-Jan-21	Sunday	226.85	226.71	227.18	-			
2021	1-Feb-21	Monday	226.85	226.71	227.18	-			
2021	2-Feb-21	Tuesday	226.85	226.71	227.18	-			
2021	3-Feb-21	Wednesday	226.85	226.71	227.19	-			

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

			Leachate Elevation						
Year	Date	Weekday		(m	asl)				
			PS1	PS3	PS5	PS7			
.O.P.			235.97	240.63	241.62	-			
2021	4-Feb-21	Thursday	226.84	226.71	227.18	-			
2021	5-Feb-21	Friday	226.85	226.71	227.19	-			
2021	6-Feb-21	Saturday	226.85	226.71	227.18	-			
2021	7-Feb-21	Sunday	226.85	226.71	227.19	-			
2021	8-Feb-21	Monday	226.84	226.71	227.18	-			
2021	9-Feb-21	Tuesday	226.85	226.71	227.19	-			
2021	10-Feb-21	Wednesday	226.85	226.71	227.19	-			
2021	11-Feb-21	Thursday	226.85	226.71	227.18	-			
2021	12-Feb-21	Friday	226.85	226.71	227.19	-			
2021	13-Feb-21	Saturday	226.85	226.71	227.18	-			
2021	14-Feb-21	Sunday	226.85	226.71	227.19	-			
2021	15-Feb-21	Monday	226.84	226.71	227.18	-			
2021	16-Feb-21	Tuesday	226.85	226.71	227.18	-			
2021	17-Feb-21	Wednesday	226.84	226.71	227.18	-			
2021	18-Feb-21	Thursday	226.84	226.71	227.18	-			
2021	19-Feb-21	Friday	226.84	226.71	227.18	-			
2021	20-Feb-21	Saturday	226.84	226.72	227.19	-			
2021	21-Feb-21	Sunday	226.84	226.71	227.18	-			
2021	22-Feb-21	Monday	226.84	226.71	227.18	-			
2021	23-Feb-21	Tuesday	226.84	226.71	227.19	-			
2021	24-Feb-21	Wednesday	226.84	226.71	227.18	-			
2021	25-Feb-21	Thursday	226.83	226.71	227.19	-			
2021	26-Feb-21	Friday	226.84	226.71	227.18	-			
2021	27-Feb-21	Saturday	226.84	226.71	227.19	-			
2021	28-Feb-21	Sunday	226.84	226.71	227.18	-			
2021	1-Mar-21	Monday	226.84	226.71	227.18	-			
2021	2-Mar-21	Tuesday	226.83	226.71	227.18	-			
2021	3-Mar-21	Wednesday	226.84	226.71	227.18	-			
2021	4-Mar-21	Thursday	226.84	226.71	227.19	-			
2021	5-Mar-21	Friday	226.84	226.71	227.19	-			
2021	6-Mar-21	Saturday	226.84	226.71	227.19	-			
2021	7-Mar-21	Sunday	226.84	226.71	227.18	-			
2021	8-Mar-21	Monday	226.84	226.71	227.18	-			
2021	9-Mar-21	Tuesday	226.84	226.71	227.19	-			

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

				Leachate Elevation						
Year	Date	Weekday		(m	asl)					
			PS1	PS3	PS5	PS7				
.O.P.			235.97	240.63	241.62	-				
2021	10-Mar-21	Wednesday	226.84	226.71	227.18	-				
2021	11-Mar-21	Thursday	226.84	226.71	227.18	-				
2021	12-Mar-21	Friday	226.82	226.71	227.19	-				
2021	13-Mar-21	Saturday	226.80	226.71	227.18	-				
2021	14-Mar-21	Sunday	226.80	226.71	227.19	-				
2021	15-Mar-21	Monday	226.83	226.71	227.18	-				
2021	16-Mar-21	Tuesday	226.83	226.71	227.18	-				
2021	17-Mar-21	Wednesday	226.83	226.71	227.19	-				
2021	18-Mar-21	Thursday	226.84	226.71	227.18	-				
2021	19-Mar-21	Friday	226.83	226.71	227.19	-				
2021	20-Mar-21	Saturday	226.84	226.71	227.18	-				
2021	21-Mar-21	Sunday	226.84	226.71	227.18	-				
2021	22-Mar-21	Monday	226.84	226.71	227.18	-				
2021	23-Mar-21	Tuesday	226.84	226.71	227.18	-				
2021	24-Mar-21	Wednesday	226.84	226.71	227.18	-				
2021	25-Mar-21	Thursday	226.84	226.71	227.18	-				
2021	26-Mar-21	Friday	226.83	226.71	227.18	-				
2021	27-Mar-21	Saturday	226.83	226.71	227.19	-				
2021	28-Mar-21	Sunday	226.84	226.71	227.18	-				
2021	29-Mar-21	Monday	226.83	226.71	227.18	-				
2021	30-Mar-21	Tuesday	226.83	226.71	227.18	-				
2021	31-Mar-21	Wednesday	226.84	226.71	227.18	-				
2021	1-Apr-21	Thursday	226.84	226.71	227.18	-				
2021	2-Apr-21	Friday	226.84	226.71	227.19	-				
2021	3-Apr-21	Saturday	226.84	226.71	227.18	-				
2021	4-Apr-21	Sunday	226.84	226.71	227.19	-				
2021	5-Apr-21	Monday	226.84	226.71	227.18	-				
2021	6-Apr-21	Tuesday	226.84	226.71	227.19	-				
2021	7-Apr-21	Wednesday	226.83	226.71	227.18	-				
2021	8-Apr-21	Thursday	226.84	226.71	227.19	-				
2021	9-Apr-21	Friday	226.84	226.71	227.19	-				
2021	10-Apr-21	Saturday	226.83	226.71	227.18	-				
2021	11-Apr-21	Sunday	226.84	226.71	227.18	-				
2021	12-Apr-21	Monday	226.84	226.71	227.18	-				

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

			Leachate Elevation						
Year	Date	Weekday		(m	asl)				
			PS1	PS3	PS5	PS7			
.O.P.			235.97	240.63	241.62	-			
2021	13-Apr-21	Tuesday	226.84	226.71	227.19	-			
2021	14-Apr-21	Wednesday	226.84	226.71	227.18	-			
2021	15-Apr-21	Thursday	226.84	226.71	227.18	-			
2021	16-Apr-21	Friday	226.84	226.71	227.19	-			
2021	17-Apr-21	Saturday	226.84	226.71	227.18	-			
2021	18-Apr-21	Sunday	226.84	226.71	227.18	-			
2021	19-Apr-21	Monday	226.84	226.71	227.20	-			
2021	20-Apr-21	Tuesday	226.84	226.71	227.18	-			
2021	21-Apr-21	Wednesday	226.84	226.71	227.18	-			
2021	22-Apr-21	Thursday	226.84	226.71	227.19	-			
2021	23-Apr-21	Friday	226.84	226.71	227.18	-			
2021	24-Apr-21	Saturday	226.84	226.71	227.18	-			
2021	25-Apr-21	Sunday	226.84	226.71	227.18	-			
2021	26-Apr-21	Monday	226.84	226.71	227.19	-			
2021	27-Apr-21	Tuesday	226.84	226.71	227.18	-			
2021	28-Apr-21	Wednesday	226.84	226.71	227.19	-			
2021	29-Apr-21	Thursday	226.84	226.71	227.19	-			
2021	30-Apr-21	Friday	226.84	226.71	227.18	-			
2021	1-May-21	Saturday	226.84	226.71	227.19	-			
2021	2-May-21	Sunday	226.84	226.71	227.18	-			
2021	3-May-21	Monday	226.84	226.71	227.17	-			
2021	4-May-21	Tuesday	226.84	226.71	227.18	-			
2021	5-May-21	Wednesday	226.84	226.71	227.18	-			
2021	6-May-21	Thursday	226.84	226.71	227.19	-			
2021	7-May-21	Friday	226.84	226.71	227.18	-			
2021	8-May-21	Saturday	226.84	226.71	227.17	-			
2021	9-May-21	Sunday	226.84	226.71	227.18	-			
2021	10-May-21	Monday	226.83	226.71	227.18	-			
2021	11-May-21	Tuesday	226.83	226.71	227.19	-			
2021	12-May-21	Wednesday	226.83	226.71	227.13	-			
2021	13-May-21	Thursday	226.83	226.71	227.04	-			
2021	14-May-21	Friday	226.84	226.67	226.94	-			
2021	15-May-21	Saturday	226.84	226.65	226.91	-			
2021	16-May-21	Sunday	226.84	226.65	226.91	-			

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

			Leachate Elevation						
Year	Date	Weekday		(m	asl)				
			PS1	PS3	PS5	PS7			
.O.P.			235.97	240.63	241.62	-			
2021	17-May-21	Monday	226.84	226.65	226.91	-			
2021	18-May-21	Tuesday	226.84	226.65	226.91	-			
2021	19-May-21	Wednesday	226.84	226.65	226.90	-			
2021	20-May-21	Thursday	226.84	226.65	226.87	-			
2021	21-May-21	Friday	226.84	226.65	226.85	-			
2021	22-May-21	Saturday	226.84	226.65	226.84	-			
2021	23-May-21	Sunday	226.84	226.66	226.85	-			
2021	24-May-21	Monday	226.84	226.64	226.85	-			
2021	25-May-21	Tuesday	226.84	226.65	226.84	-			
2021	26-May-21	Wednesday	226.84	226.66	226.85	-			
2021	27-May-21	Thursday	226.84	226.65	226.84	-			
2021	28-May-21	Friday	226.84	226.66	226.85	-			
2021	29-May-21	Saturday	226.84	226.66	226.85	-			
2021	30-May-21	Sunday	226.84	226.66	226.84	-			
2021	31-May-21	Monday	226.84	226.65	226.85	-			
2021	1-Jun-21	Tuesday	226.84	226.65	226.85	-			
2021	2-Jun-21	Wednesday	226.84	226.66	226.84	-			
2021	3-Jun-21	Thursday	226.84	226.66	226.85	-			
2021	4-Jun-21	Friday	226.84	226.64	226.85	-			
2021	5-Jun-21	Saturday	226.84	226.64	226.84	-			
2021	6-Jun-21	Sunday	226.84	226.76	226.85	-			
2021	7-Jun-21	Monday	226.84	226.80	226.84	-			
2021	8-Jun-21	Tuesday	226.84	226.66	226.84	-			
2021	9-Jun-21	Wednesday	226.84	226.67	226.85	-			
2021	10-Jun-21	Thursday	226.83	226.66	226.84	-			
2021	11-Jun-21	Friday	226.83	226.80	226.84	-			
2021	12-Jun-21	Saturday	226.84	226.66	ND	-			
2021	13-Jun-21	Sunday	226.84	226.66	226.84	-			
2021	14-Jun-21	Monday	226.84	226.66	226.84	-			
2021	15-Jun-21	Tuesday	226.84	226.66	226.85	-			
2021	16-Jun-21	Wednesday	226.84	226.66	226.84	-			
2021	17-Jun-21	Thursday	226.84	226.66	226.84	-			
2021	18-Jun-21	Friday	226.84	226.66	226.84	_			
2021	19-Jun-21	Saturday	226.84	226.66	226.84	-			

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

				Leachate Elevation						
Year	Date	Weekday		(m	asl)					
			PS1	PS3	PS5	PS7				
.O.P.			235.97	240.63	241.62	-				
2021	20-Jun-21	Sunday	226.84	226.66	226.85	-				
2021	21-Jun-21	Monday	226.84	226.66	226.84	-				
2021	22-Jun-21	Tuesday	226.84	226.66	226.85	-				
2021	23-Jun-21	Wednesday	226.84	226.66	226.84	-				
2021	24-Jun-21	Thursday	226.83	226.66	226.84	-				
2021	25-Jun-21	Friday	226.84	226.66	226.84	-				
2021	26-Jun-21	Saturday	226.84	226.66	226.84	-				
2021	27-Jun-21	Sunday	226.84	226.66	226.84	-				
2021	28-Jun-21	Monday	226.84	226.66	226.84	-				
2021	29-Jun-21	Tuesday	226.83	226.66	226.85	-				
2021	30-Jun-21	Wednesday	226.84	226.66	226.84	-				
2021	1-Jul-21	Thursday	226.84	226.66	226.85	-				
2021	2-Jul-21	Friday	226.84	226.66	226.84	-				
2021	3-Jul-21	Saturday	226.84	226.66	226.84	-				
2021	4-Jul-21	Sunday	226.84	226.82	226.85	-				
2021	5-Jul-21	Monday	226.84	226.80	226.85	-				
2021	6-Jul-21	Tuesday	226.84	226.70	226.84	-				
2021	7-Jul-21	Wednesday	226.84	226.66	226.84	-				
2021	8-Jul-21	Thursday	226.84	226.66	226.85	-				
2021	9-Jul-21	Friday	226.81	226.66	226.84	-				
2021	10-Jul-21	Saturday	226.79	226.66	226.84	-				
2021	11-Jul-21	Sunday	226.79	226.66	226.85	-				
2021	12-Jul-21	Monday	226.79	226.66	226.85	-				
2021	13-Jul-21	Tuesday	226.79	226.66	226.84	-				
2021	14-Jul-21	Wednesday	226.79	226.66	226.85	-				
2021	15-Jul-21	Thursday	226.79	226.66	226.84	-				
2021	16-Jul-21	Friday	226.79	226.66	226.85	-				
2021	17-Jul-21	Saturday	226.79	226.66	226.85	-				
2021	18-Jul-21	Sunday	226.79	226.66	226.84	-				
2021	19-Jul-21	Monday	226.79	226.66	226.85	-				
2021	20-Jul-21	Tuesday	226.79	226.66	226.85	-				
2021	21-Jul-21	Wednesday	226.79	226.66	226.85	-				
2021	22-Jul-21	Thursday	226.79	226.66	226.85	-				
2021	23-Jul-21	Friday	226.79	226.66	226.85	-				

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

				Leachate	Elevation	
Year	Date	Weekday		(m	asl)	
			PS1	PS3	PS5	PS7
T.O.P.			235.97	240.63	241.62	-
2021	24-Jul-21	Saturday	226.79	226.66	226.85	-
2021	25-Jul-21	Sunday	226.79	226.66	226.85	-
2021	26-Jul-21	Monday	226.79	226.67	226.85	-
2021	27-Jul-21	Tuesday	226.79	226.66	226.85	-
2021	28-Jul-21	Wednesday	226.79	226.66	226.85	-
2021	29-Jul-21	Thursday	226.79	226.66	226.85	-
2021	30-Jul-21	Friday	226.79	226.66	226.82	-
2021	31-Jul-21	Saturday	226.79	226.66	226.84	-
2021	1-Aug-21	Sunday	226.79	226.66	226.82	-
2021	2-Aug-21	Monday	226.79	226.66	226.83	-
2021	3-Aug-21	Tuesday	226.79	226.66	226.70	-
2021	4-Aug-21	Wednesday	226.79	226.72	226.71	-
2021	5-Aug-21	Thursday	226.79	226.66	226.78	-
2021	6-Aug-21	Friday	226.79	226.67	226.71	-
2021	7-Aug-21	Saturday	226.79	226.66	226.74	-
2021	8-Aug-21	Sunday	226.79	226.66	226.67	-
2021	9-Aug-21	Monday	226.79	226.66	226.78	-
2021	10-Aug-21	Tuesday	226.79	226.70	226.82	-
2021	11-Aug-21	Wednesday	226.79	226.65	226.85	-
2021	12-Aug-21	Thursday	226.79	226.67	225.91	-
2021	13-Aug-21	Friday	226.79	226.69	226.78	-
2021	14-Aug-21	Saturday	226.79	226.67	226.80	-
2021	15-Aug-21	Sunday	226.79	226.67	226.81	-
2021	16-Aug-21	Monday	226.79	226.67	226.81	-
2021	17-Aug-21	Tuesday	226.79	226.67	226.81	-
2021	18-Aug-21	Wednesday	226.79	226.67	226.80	-
2021	19-Aug-21	Thursday	226.79	226.67	226.81	-
2021	20-Aug-21	Friday	226.79	226.67	226.81	-
2021	21-Aug-21	Saturday	226.79	226.67	226.82	-
2021	22-Aug-21	Sunday	226.79	226.66	226.81	-
2021	23-Aug-21	Monday	226.79	226.68	226.80	-
2021	24-Aug-21	Tuesday	226.79	226.67	226.81	-
2021	25-Aug-21	Wednesday	226.79	226.67	226.83	-
2021	26-Aug-21	Thursday	226.79	226.68	226.79	-

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

				Leachate	Elevation	
Year	Date	Weekday		(m	asl)	
			PS1	PS3	PS5	PS7
T.O.P.			235.97	240.63	241.62	-
2021	27-Aug-21	Friday	226.79	226.68	226.82	-
2021	28-Aug-21	Saturday	226.79	226.67	226.81	-
2021	29-Aug-21	Sunday	226.79	ND	ND	-
2021	30-Aug-21	Monday	226.79	226.70	226.81	-
2021	31-Aug-21	Tuesday	226.79	226.72	226.81	-
2021	1-Sep-21	Wednesday	ND	ND	226.81	-
2021	2-Sep-21	Thursday	226.79	226.67	226.81	-
2021	3-Sep-21	Friday	226.79	226.74	226.81	-
2021	4-Sep-21	Saturday	226.78	226.81	226.81	-
2021	5-Sep-21	Sunday	226.78	226.67	226.81	-
2021	6-Sep-21	Monday	226.79	226.67	226.81	-
2021	7-Sep-21	Tuesday	226.79	226.67	226.82	-
2021	8-Sep-21	Wednesday	226.78	226.67	226.79	-
2021	9-Sep-21	Thursday	226.79	226.68	226.80	-
2021	10-Sep-21	Friday	226.79	226.73	226.82	-
2021	11-Sep-21	Saturday	226.79	226.67	226.81	-
2021	12-Sep-21	Sunday	226.79	226.69	226.84	-
2021	13-Sep-21	Monday	226.79	226.80	226.83	-
2021	14-Sep-21	Tuesday	226.79	226.67	226.81	-
2021	15-Sep-21	Wednesday	226.79	226.67	226.80	-
2021	16-Sep-21	Thursday	226.79	226.67	226.82	-
2021	17-Sep-21	Friday	226.79	226.67	226.80	-
2021	18-Sep-21	Saturday	ND	ND	ND	-
2021	19-Sep-21	Sunday	226.79	226.67	226.80	-
2021	20-Sep-21	Monday	226.79	226.71	226.80	-
2021	21-Sep-21	Tuesday	226.79	226.67	226.81	-
2021	22-Sep-21	Wednesday	226.79	226.67	226.82	-
2021	23-Sep-21	Thursday	226.78	226.65	227.19	-
2021	24-Sep-21	Friday	226.79	226.66	227.21	-
2021	25-Sep-21	Saturday	226.83	227.10	227.25	-
2021	26-Sep-21	Sunday	226.92	227.25	227.29	-
2021	27-Sep-21	Monday	226.83	227.01	227.30	-
2021	28-Sep-21	Tuesday	226.81	226.89	227.29	-
2021	29-Sep-21	Wednesday	226.79	226.65	227.27	-

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

			Leachate Elevation						
Year	Date	Weekday		(m	asl)				
			PS1	PS3	PS5	PS7			
.O.P.			235.97	240.63	241.62	-			
2021	30-Sep-21	Thursday	226.79	226.65	227.27	-			
2021	1-Oct-21	Friday	226.79	226.65	227.26	-			
2021	2-Oct-21	Saturday	226.79	226.66	227.26	-			
2021	3-Oct-21	Sunday	226.79	226.66	227.26	-			
2021	4-Oct-21	Monday	226.79	226.65	227.26	-			
2021	5-Oct-21	Tuesday	226.79	226.65	227.26	-			
2021	6-Oct-21	Wednesday	226.79	226.65	227.26	-			
2021	7-Oct-21	Thursday	226.78	226.65	227.26	-			
2021	8-Oct-21	Friday	226.79	226.65	227.26	-			
2021	9-Oct-21	Saturday	226.79	226.65	227.26	-			
2021	10-Oct-21	Sunday	226.79	226.65	227.26	-			
2021	11-Oct-21	Monday	226.79	226.65	227.26	-			
2021	12-Oct-21	Tuesday	226.79	226.65	227.26	-			
2021	13-Oct-21	Wednesday	226.79	226.65	227.26	-			
2021	14-Oct-21	Thursday	226.79	226.65	227.26	-			
2021	15-Oct-21	Friday	226.79	228.00	227.26	-			
2021	16-Oct-21	Saturday	226.79	227.77	227.26	-			
2021	17-Oct-21	Sunday	226.85	229.52	227.28	-			
2021	18-Oct-21	Monday	226.83	229.24	227.30	-			
2021	19-Oct-21	Tuesday	226.81	228.42	227.31	-			
2021	20-Oct-21	Wednesday	226.80	228.22	227.30	-			
2021	21-Oct-21	Thursday	226.80	228.26	227.30	-			
2021	22-Oct-21	Friday	226.80	227.54	227.29	-			
2021	23-Oct-21	Saturday	226.83	228.98	ND	-			
2021	24-Oct-21	Sunday	ND	ND	ND	-			
2021	25-Oct-21	Monday	226.86	231.03	227.30	-			
2021	26-Oct-21	Tuesday	226.84	230.07	227.34	-			
2021	27-Oct-21	Wednesday	226.84	231.48	227.36	-			
2021	28-Oct-21	Thursday	226.84	232.96	227.36	-			
2021	29-Oct-21	Friday	226.85	232.90	227.35	-			
2021	30-Oct-21	Saturday	226.92	232.83	227.36	-			
2021	31-Oct-21	Sunday	226.99	232.78	227.39	-			
2021	1-Nov-21	Monday	226.87	232.94	227.39	-			
2021	2-Nov-21	Tuesday	226.85	232.99	227.37	-			

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

				Leachate Elevation						
Year	Date	Weekday		(m	asl)					
			PS1	PS3	PS5	PS7				
.O.P.			235.97	240.63	241.62	-				
2021	3-Nov-21	Wednesday	226.84	232.99	227.35	-				
2021	4-Nov-21	Thursday	226.83	232.99	227.32	-				
2021	5-Nov-21	Friday	226.82	229.24	227.31	-				
2021	6-Nov-21	Saturday	226.83	227.30	227.31	-				
2021	7-Nov-21	Sunday	226.93	228.01	227.33	-				
2021	8-Nov-21	Monday	226.83	227.12	227.32	-				
2021	9-Nov-21	Tuesday	226.80	226.75	227.30	-				
2021	10-Nov-21	Wednesday	226.80	226.64	227.28	-				
2021	11-Nov-21	Thursday	226.79	226.64	227.26	-				
2021	12-Nov-21	Friday	226.79	226.64	227.26	-				
2021	13-Nov-21	Saturday	226.79	226.64	227.26	-				
2021	14-Nov-21	Sunday	226.84	227.43	227.27	-				
2021	15-Nov-21	Monday	226.82	227.07	227.28	-				
2021	16-Nov-21	Tuesday	226.80	227.04	227.28	-				
2021	17-Nov-21	Wednesday	226.81	227.05	227.29	-				
2021	18-Nov-21	Thursday	226.79	226.75	227.28	-				
2021	19-Nov-21	Friday	226.79	226.64	227.28	-				
2021	20-Nov-21	Saturday	226.79	226.65	227.28	-				
2021	21-Nov-21	Sunday	226.88	227.77	227.30	-				
2021	22-Nov-21	Monday	226.82	227.07	227.29	-				
2021	23-Nov-21	Tuesday	226.79	226.64	227.28	-				
2021	24-Nov-21	Wednesday	226.79	226.64	227.28	-				
2021	25-Nov-21	Thursday	226.79	226.64	227.28	-				
2021	26-Nov-21	Friday	226.78	226.64	227.28	-				
2021	27-Nov-21	Saturday	226.86	227.46	227.29	-				
2021	28-Nov-21	Sunday	226.96	227.86	227.30	-				
2021	29-Nov-21	Monday	226.84	227.07	227.30	-				
2021	30-Nov-21	Tuesday	226.80	226.75	227.29	-				
2021	1-Dec-21	Wednesday	226.79	226.64	227.29					
2021	2-Dec-21	Thursday	226.79	226.71	227.29					
2021	3-Dec-21	Friday	226.79	226.68	227.29	-				
2021	4-Dec-21	Saturday	226.81	227.08	227.30	-				
2021	5-Dec-21	Sunday	226.92	227.84	227.31	_				
2021	6-Dec-21	Monday	226.90	227.73	227.32	-				

Table F-6 Leachate Level Elevations - Primary Drainage Layer Twin Creeks Environmental Centre

		Weekday	Leachate Elevation			
Year	Date		(m asl)			
			PS1	PS3	PS5	PS7
T.O.P.			235.97	240.63	241.62	-
2021	7-Dec-21	Tuesday	226.82	227.05	227.33	-
2021	8-Dec-21	Wednesday	226.80	227.02	227.32	-
2021	9-Dec-21	Thursday	226.80	226.86	227.31	-
2021	10-Dec-21	Friday	226.80	226.98	227.31	-
2021	11-Dec-21	Saturday	226.83	227.45	227.31	-
2021	12-Dec-21	Sunday	226.95	227.94	227.32	-
2021	13-Dec-21	Monday	226.84	227.55	227.34	-
2021	14-Dec-21	Tuesday	226.82	227.55	227.34	-
2021	15-Dec-21	Wednesday	226.81	227.55	227.32	-
2021	16-Dec-21	Thursday	226.81	227.55	227.32	-
2021	17-Dec-21	Friday	226.79	227.55	227.32	-
2021	18-Dec-21	Saturday	226.79	227.55	227.32	-
2021	19-Dec-21	Sunday	226.83	227.55	227.32	-
2021	20-Dec-21	Monday	226.82	227.55	227.32	-
2021	21-Dec-21	Tuesday	226.80	227.55	227.32	-
2021	22-Dec-21	Wednesday	226.80	227.55	227.32	-
2021	23-Dec-21	Thursday	226.80	227.55	227.32	-
2021	24-Dec-21	Friday	226.80	227.55	227.32	-
2021	25-Dec-21	Saturday	226.88	227.55	227.32	-
2021	26-Dec-21	Sunday	226.94	227.55	227.33	-
2021	27-Dec-21	Monday	227.01	227.55	227.34	-
2021	28-Dec-21	Tuesday	226.88	227.02	227.34	-
2021	29-Dec-21	Wednesday	226.82	226.61	227.34	-
2021	30-Dec-21	Thursday	226.80	227.92	227.34	-
2021	31-Dec-21	Friday	226.83	228.33	227.34	-

Note: 1) 'm asl' denotes metres above sea level.

- 2) ' ' denotes data not available as pumping station not installed.
- 3) 'ND' denotes no data for that day.
- 4) T.O.P. denotes 'top of pipe'.
- 5) 'Italics' denotes a false elevation due to level sensor error.

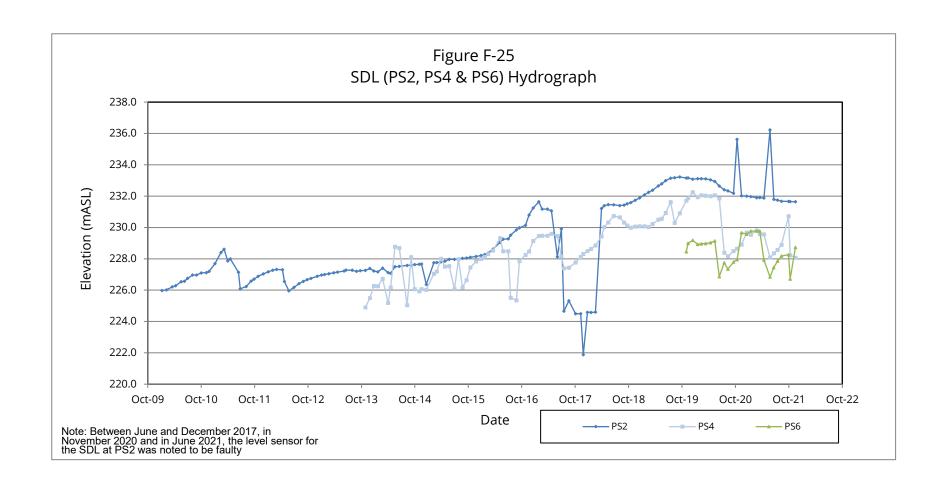
Table F-7
Groundwater Level Elevations - Secondary Drainage Layer
Twin Creeks Environmental Centre

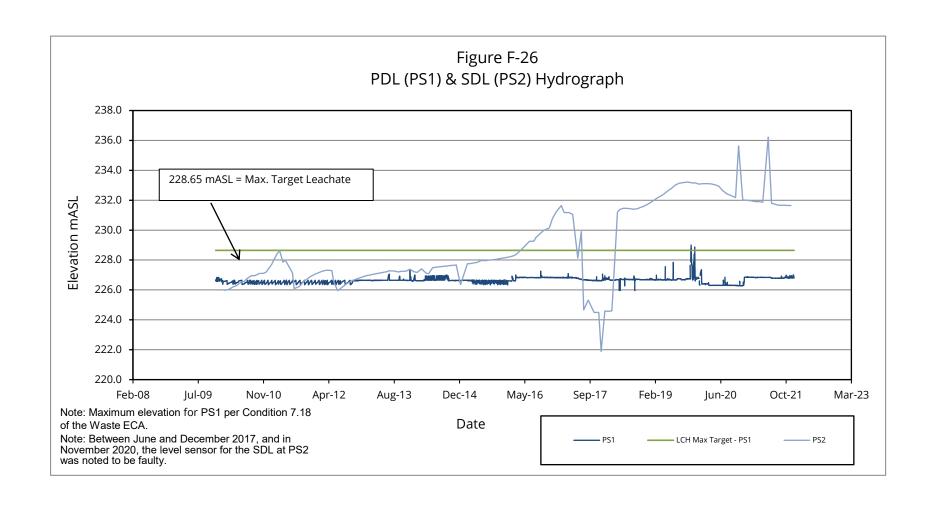
T.O.P.	PS2	PS4	PS6	PS8
	GW Elevation (mASL)	GW Elevation (mASL)	GW Elevation (mASL)	
T.O.P.	235.72	240.29	241.56	-
20-Jan-10	225.97	-	-	-
19-Feb-10	226.01	-	-	-
31-Mar-10	226.21	-	-	-
23-Apr-10	226.28	-	-	-
31-May-10	226.54	-	-	-
22-Jun-10	226.57	-	-	-
14-Jul-10	226.75	-	-	-
17-Aug-10	226.96	-	-	-
14-Sep-10	226.96	-	-	-
15-Oct-10	227.10	-	-	-
19-Nov-10	227.12	-	-	-
8-Dec-10	227.19	-	-	-
18-Jan-11	227.69	-	-	-
28-Feb-11	228.40	-	-	-
21-Mar-11	228.61	-	-	-
15-Apr-11	227.86	-	-	-
3-May-11	227.99	-	-	-
28-Jun-11	227.14	-	-	-
10-Jul-11	226.09	-	-	-
19-Aug-11	226.23	-	-	-
22-Sep-11	226.58	-	-	-
12-Oct-11	226.70	-	-	-
9-Nov-11	226.88	-	-	-
14-Dec-11	227.04	-	-	-
17-Jan-12	227.17	-	-	-
17-Feb-12	227.27	-	-	-
15-Mar-12	227.32	-	-	-
24-Apr-12	227.30	-	-	-
7-May-12	226.56	-	-	-
7-Jun-12	225.95	-	-	-
12-Jul-12	226.18	-	-	-
15-Aug-12	226.41	-	-	-
13-Sep-12	226.56	-	-	-
10-Oct-12	226.67	-	-	-
5-Nov-12	226.75	-	-	-
18-Dec-12	226.88	-	-	-
16-Jan-13	226.96	-	-	-
6-Feb-13	226.99	-	-	-
8-Mar-13	227.05	-	-	-
10-Apr-13	227.11	-	-	-
6-May-13	227.15	-	-	-
20-Jun-13	227.22	-	-	-

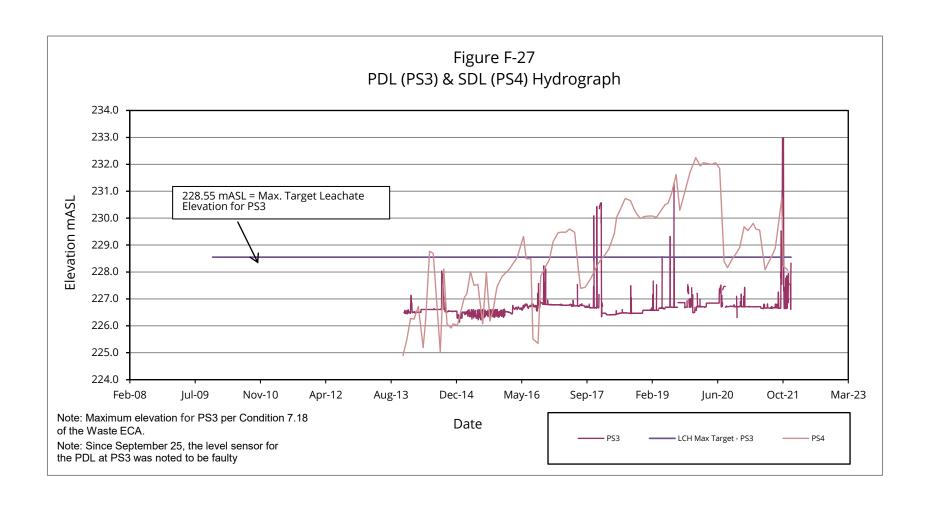
Table F-7
Groundwater Level Elevations - Secondary Drainage Layer
Twin Creeks Environmental Centre

T.O.P.	PS2	PS4	PS6	PS8
	GW Elevation (mASL)	GW Elevation (mASL)	GW Elevation (mASL)	
T.O.P.	235.72	240.29	241.56	-
3-Jul-13	227.28	-	-	-
15-Aug-13	227.27	-	-	-
13-Sep-13	227.20	-	-	-
9-Oct-13	227.24	-	-	-
13-Nov-13	227.26	224.90	-	-
13-Dec-13	227.38	225.49	-	-
10-Jan-14	227.22	226.27	-	-
6-Feb-14	227.17	226.25	-	-
11-Mar-14	227.40	226.72	-	-
17-Apr-14	227.12	225.19	-	-
5-May-14	227.08	226.17	-	-
4-Jun-14	227.49	228.77	-	-
3-Jul-14	227.52	228.69	-	-
26-Aug-14	227.58	225.04	-	-
22-Sep-14	227.60	228.11	-	-
16-Oct-14	227.63	226.07	-	-
17-Nov-14	227.65	225.92	-	-
2-Dec-14	227.67	226.07	-	-
4-Jan-15	226.36	226.02	-	-
25-Feb-15	227.75	227.05	-	-
17-Mar-15	227.76	227.19	-	-
14-Apr-15	227.80	228.01	-	-
11-May-15	227.84	227.50	-	-
10-Jun-15	227.96	227.54	-	-
16-Jul-15	227.96	226.07	-	-
13-Aug-15	227.99	227.97	-	-
9-Sep-15	228.03	226.18	-	-
6-Oct-15	228.05	226.64	-	-
2-Nov-15	228.10	227.44	-	-
11-Dec-15	228.15	227.83	-	-
14-Jan-16	228.21	227.99	-	-
9-Feb-16	228.27	228.13	-	-
3-Mar-16	228.36	228.30	-	-
5-Apr-16	228.62	228.53	-	-
24-May-16	229.05	229.32	-	-
13-Jun-16	229.25	228.49	-	-
19-Jul-16	229.27	228.49	-	-
4-Aug-16	229.51	225.51	-	-
12-Sep-16	229.84	225.35	-	-
3-Oct-16	229.98	227.85	-	-
14-Nov-16	230.14	228.25	-	-
8-Dec-16	230.79	228.46	-	-
6-Jan-17	231.24	229.14	-	-
13-Feb-17	231.64	229.46	-	-

Table F-7
Groundwater Level Elevations - Secondary Drainage Layer
Twin Creeks Environmental Centre


T.O.P.	PS2	PS4	PS6	PS8
	GW Elevation	GW Elevation	GW Elevation	
	(mASL)	(mASL)	(mASL)	
T.O.P.	235.72	240.29	241.56	-
8-Mar-17	231.17	229.48	-	-
13-Apr-17	231.17	229.48	-	-
11-May-17	231.06	229.60	-	-
20-Jun-17	228.13	229.47	-	-
17-Jul-17	229.90	228.16	-	-
4-Aug-17	224.66	227.39	-	-
7-Sep-17	225.32	227.43	-	-
23-Oct-17	224.49	227.77	-	-
27-Nov-17	224.49	228.12	-	-
15-Dec-17	221.88	228.31	-	-
12-Jan-18	224.59	228.50	-	-
5-Feb-18	224.57	228.63	-	-
8-Mar-18	224.60	228.85	-	-
19-Apr-18	231.21	229.43	-	-
7-May-18	231.38	230.03	-	-
4-Jun-18	231.46	230.32	-	-
11-Jul-18	231.45	230.73	-	-
21-Aug-18	231.40	230.65	-	-
20-Sep-18	231.43	230.31	-	-
11-Oct-18	231.51	230.13	-	-
5-Nov-18	231.59	229.99	-	-
5-Dec-18	231.73	230.06	-	-
4-Jan-19	231.88	230.08	-	-
6-Feb-19	232.08	230.08	-	-
7-Mar-19	232.24	230.03	-	-
3-Apr-19	232.37	230.22	-	-
13-May-19	232.65	230.50	-	-
5-Jun-19	232.78	230.56	-	-
2-Jul-19	232.99	230.93	-	-
5-Aug-19	233.14	231.62	-	-
2-Sep-19	233.17	230.29	-	-
7-Oct-19	233.22	230.90	-	-
20-Nov-19	233.15	231.71	228.45	-
3-Dec-19	233.16	231.87	228.99	-
3-Jan-20	233.08	232.25	229.18	-
6-Feb-20	233.11	231.94	228.92	-
2-Mar-20	233.11	232.06	228.95	-
1-Apr-20	233.10	232.03	228.98	-
4-May-20	233.04	232.00	229.03	-
3-Jun-20		232.06	229.14	-
3-Jul-20		231.85	226.86	-
- J = 0	===	_==	3.00	


Table F-7
Groundwater Level Elevations - Secondary Drainage Layer
Twin Creeks Environmental Centre


T.O.P.	PS2	PS4	PS6	PS8
	GW Elevation (mASL)	GW Elevation (mASL)	GW Elevation (mASL)	
T.O.P.	235.72	240.29	241.56	-
6-Aug-20	232.41	228.39	227.75	-
1-Sep-20	232.33	228.16	227.34	-
9-Oct-20	232.18	228.50	227.79	-
2-Nov-20	235.62	228.65	227.94	-
3-Dec-20	232.02	228.90	229.66	-
7-Jan-21	231.99	229.68	229.57	-
4-Feb-21	231.96	229.54	229.77	-
17-Mar-21	231.90	229.81	229.77	-
7-Apr-21	231.91	229.59	229.77	-
5-May-21	231.87	229.56	227.92	-
16-Jun-21	236.22	228.08	226.84	-
12-Jul-21	231.79	228.35	227.44	-
6-Aug-21	231.74	228.57	227.85	-
3-Sep-21	231.67	228.89	228.18	-
21-Oct-21	231.66	230.72	228.26	-
1-Nov-21	231.65	228.23	226.71	-
7-Dec-21	231.64	228.06	228.73	-

NOTES: 1) Pump Station PS8 to be constructed in the future.

- 2) PS2 operational by November 2009.
- 3) PS4 operational by November 2013.
- 4) PS5 operational by November 2019.
- 5) T.O.P. denotes 'top of pipe'.
- 6) mASL denotes metres above sea level.
- 7) Italics denotes a level sensor error.

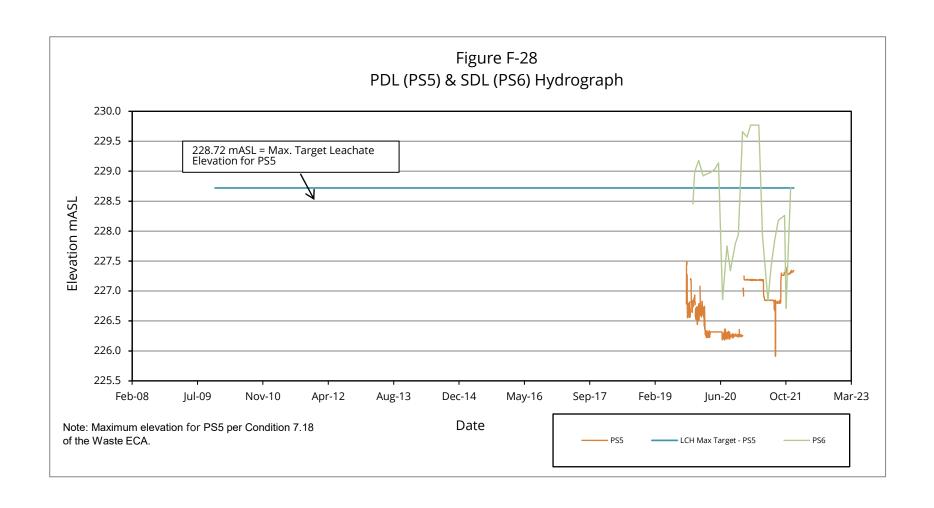


Table F-8 Leachate Level Elevations - Early Vertical Gas Wells Twin Creeks Environmental Centre Expansion Site

Date	Ce	II 1	Ce	II 2
	EV299 (1A S1)	EV268 (1A S2)	EV022 (2B)	EV226 (2D)
Well Base	230.08	231.70	229.65	230.15
T.O.P. 2018	257.02	254.77	258.19	256.88
7-May-18	Dry @ 230.08	Dry @ 231.70	Dry @ 229.65	Dry @ 230.15
5-Nov-18	Dry @ 230.08	Dry @ 231.70	Dry @ 229.65	Dry @ 230.15
T.O.P. May 2019	257.93	260.52	258.82	257.92
31-May-19	OBS @ 237.17	OBS @242.82	OBS @ 252.15	OBS @ 254.92
T.O.P. Nov 2019	257.71	261.97	258.45	260.34
4-Nov-19	OBS @249.96	Dry @ 232.19	OBS @ 251.84	OBS @ 255.42
T.O.P. May 2020	257.19	261.72	258.06	259.74
5-May-20	OBS @ 249.37	Dry @ 232.08	OBS @ 251.49	OBS @ 256.49
T.O.P. Nov 2020	256.87	261.61	258.74	259.17
2-Nov-20	OBS @ 249.18	Dry @ 232.14	OBS @ 252.19	OBS @ 251.53
T.O.P. May 2021	256.57	260.70	257.44	258.62
17-May-21	OBS @ 248.92	Dry @ 232.16	OBS @ 250.98	OBS @ 255.33
T.O.P. Nov 2021	256.31	260.53	257.21	258.14
1-Nov-21	OBS @ 248.68	Dry @ 232.10	OBS @ 250.73	OBS @ 254.87

NOTES: 1) Blank denotes data not available.

- 2) Elevations in metres above sea level.
- 3) T.O.P. denotes 'top of pipe'.
- 4) Liquid levels are accurate to 0.1 m due to gas and condensate interferences during the measuring of liquid levels from leachate monitoring wells/locations.
- 5) OBS denotes 'Not Determined' as the liquid level probe was unable to reach bottom of Early Vertical Gas Well.

APPENDIX G:

Leachate Chemical Results

Table G-1 Leachate - Field Analytical Results Twin Creeks Environmental Centre

Location	рН	Conductivity	Temperature	Turbidity	DO							
Location	(as units)	(µS/cm)	(°C)	(NTU)	(mg/L)							
	Ex	pansion Site - Equ	ualization Tank									
		January 12	2, 2021									
Equalization Tank	7.5	>20,000	11.0	>1000	1.36							
		May 19, 2	2021									
Equalization Tank	7.7	19,950	16.2	223	1.22							
		August 11	, 2021									
Equalization Tank	7.6	>20,000	24.9	234	0.60							
		November	4, 2021									
Equalization Tank 7.4 12,780 14.3 178 0.76												
	E	xpansion Site - P	ump Stations									
		May 18, 2	2021									
PS1	7.2	>20,000	28.5	>1000	0.52							
		May 19, 2	2021									
PS3	8.2	>20,000	20.4	173	1.63							
PS5	7.3	16,220	23.5	270	1.05							
		Existing	Site									
		May 18, 2	2021									
CFA-Comp	7.1	6,590	20.2	194	4.88							
MH-18	8.2	9,190	15.4	28.5	2.71							
SUMP	6.8	9,260	14.2	>1000	2.88							

Notes: 1) µS/cm denotes micro-siemens per centimetre.

^{2) &}lt;sup>0</sup>C denotes degrees Celsius.

³⁾ NTU denotes nephelometric turbidity units.

⁴⁾ mg/L denotes milligrams per litre.

⁵⁾ DO denotes dissolved oxygen.

⁶⁾ NA denotes not available due to equipment malfunction.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)
Date		23-May-08	21-May-09	20-May-10	10-May-11	08-May-12	07-May-13	07-May-14	19-May-15	30-May-16
Laboratory		Maxxam								
Alkalinity (Total as CaCO3)	mg/L	5770	6480	7060	4570	4300	940	5600	4700	4600
Conductivity	umho/cm	13100	15000	16400	10800	12000	2600	14000	13000	15000
Dissolved Chloride (CI)	mg/L	1300	1500	1800	1100	1400	200	1500	1800	2600
Dissolved Organic Carbon	mg/L	435		462	265	273	49	330	330	300
Dissolved Sulphate (SO4)	mg/L	10	81	5	59	54	78	72	0.5	10
Mercury (Hg)	mg/L	<0.0002	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001
Nitrate (N)	mg/L	<0.1	<1	<1	<1	<2.0	<0.10	<0.50	<1.0	<1.0
Nitrite (N)	mg/L	0.03	<0.1	<0.1	<0.1	<0.20	<0.010	<0.050	<0.10	<0.10
pH	units	7.6	8.0	7.7	7.6	7.7	7.5	7.8	7.8	7.5
Phenols-4AAP	mg/L	0.10	0.07	0.08	0.06	0.05	0.01	0.08	0.05	0.07
Total Ammonia-N	mg/L	576	724	857	558	529	100	795	592	560
Total Arsenic (As)	mg/L	0.007	0.010	0.007	0.006	<0.01	0.003	0.010	0.010	<0.01
Total Barium (Ba)	mg/L	0.19	0.19	0.20	0.20	0.19	0.11	0.23	0.23	0.29
Total BOD	mg/L	200	140	200	74	81	14	94	60	88
Total Boron (B)	mg/L	70	58	56	28	20	2.0	17	43	49
Total Cadmium (Cd)	mg/L	<0.0001	<0.0001	<0.0005	<0.0005	<0.001	<0.0001	<0.0001	<0.0005	<0.001
Total Calcium (Ca)	mg/L	100	100	85	110	140	96	130	110	130
Total Chemical Oxygen Demand (COD)	mg/L	1200	1200	1400	850	860	180	1000	950	980
Total Chromium (Cr)	mg/L	1.5	1.2	1.1	0.4	0.4	0.0	0.3	1.6	1.5
Total Copper (Cu)	mg/L	<0.002	0.002	<0.01	<0.01	<0.02	0.005	<0.01	<0.02	<0.02
Total Dissolved Solids	mg/L	8000	9410	9960	6320	5110	1200	6210	6360	7400
Total Iron (Fe)	mg/L	7.9	5.2	5.2	3.5	2.9	5.9	5.1	7.4	24.0
Total Kjeldahl Nitrogen (TKN)	mg/L	720	810	930	570	600	100	860	630	580
Total Lead (Pb)	mg/L	0.0082	0.0094	0.0080	0.0040	<0.005	0.0022	0.0034	0.0150	0.0640
Total Magnesium (Mg)	mg/L	240	390	340	300	290	60	330	270	310
Total Manganese (Mn)	mg/L	0.37	0.37	0.23	0.26	0.33	0.25	0.24	0.34	0.23
Total Nickel (Ni)	mg/L	1.10	0.96	0.93	0.44	0.42	0.05	0.35	0.96	0.92
Total Phosphorus	mg/L	3.5	5.2	5.8	2.3	1.8	<0.6	2.4	3.1	2.4
Total Potassium (K)	mg/L	340	520	520	500	440	89	620	390	380
Total Sodium (Na)	mg/L	1600	1800	1700	1200	1200	180	1300	1700	2100
Total Suspended Solids	mg/L	20	14	15	64	20	120	29	12	97
Total Zinc (Zn)	mg/L	0.10	0.08	0.05	<0.05	<0.1	0.02	0.04	<0.05	<0.1
Un-ionized Ammonia	mg/L	3.3	5.4	8.2	2.4	9.7	0.2	29.0	12.0	2.3
Ion Percentage	mg/L	11.5	7.1	15.8	5.2	7.5	6.0	11.5	6.2	5.2

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) µmho/cm denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

		Course	Curren	Sump	Sump	Sump		
Parameter		Sump (Central Fill Area)	Sump (Central Fill Area)	(Central Fill Area)	(Central Fill Area)	(Central Fill Area)		
Date	Units	26-May-17	11-May-18	16-May-19	12-May-20	18-May-21		
Laboratory		Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas		
Alkalinity (Total as CaCO3)	mg/L	3900	2800	290	2900	2900		
Conductivity	umho/cm	11000	7700	880	11000	8900		
Dissolved Chloride (CI)	mg/L	1500	860	68	1900	1500		
Dissolved Organic Carbon	mg/L	230	150	25	180	140		
Dissolved Sulphate (SO4)	mg/L	39	40	58	23	0.5		
Mercury (Hg)	mg/L	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010		
Nitrate (N)	mg/L	<0.50	<1.0	<0.10	1.85	<0.50		
Nitrite (N)	mg/L	0.055	<0.10	0.137	0.085	<0.050		
рН	units	7.6	7.6	7.8	7.6	7.3		
Phenois-4AAP	mg/L	<0.20	<0.080	<0.0040	0.085	<0.020		
Total Ammonia-N	mg/L	512	354	11.1	416	349		
Total Arsenic (As)	mg/L	0.006	<0.005	0.002	<0.01	<0.005		
Total Barium (Ba)	mg/L	0.17	0.11	0.05	0.2	0.24		
Total BOD	mg/L	63	43	5	49	37		
Total Boron (B)	mg/L	25.0	7.4	1.3	23	18		
Total Cadmium (Cd)	mg/L	<0.0001	<0.0005	<0.0001	<0.001	<0.0005		
Total Calcium (Ca)	mg/L	95	95	76	120	150		
Total Chemical Oxygen Demand (COD)	mg/L	660	480	63	570	450		
Total Chromium (Cr)	mg/L	0.56	0.11	0.01	0.19	0.12		
Total Copper (Cu)	mg/L	0.003	<0.01	0.006	<0.02	<0.01		
Total Dissolved Solids	mg/L	4640	3050	525	4870	3560		
Total Iron (Fe)	mg/L	3.4	4.5	2.2	13	54		
Total Kjeldahl Nitrogen (TKN)	mg/L	530	330	11	420	340		
Total Lead (Pb)	mg/L	0.0047	<0.003	0.0011	0.019	0.006		
Total Magnesium (Mg)	mg/L	210	140	22	200	170		
Total Manganese (Mn)	mg/L	0.098	0.110	0.053	0.18	0.29		
Total Nickel (Ni)	mg/L	0.360	0.130	0.011	0.280	0.180		
Total Phosphorus	mg/L	1.60	0.97	0.24	1.00	1.20		
Total Potassium (K)	mg/L	340	260	12	220	210		
Total Sodium (Na)	mg/L	1100	640	57	1100	930		
Total Suspended Solids	mg/L	20	41	52	88	270		
Total Zinc (Zn)	mg/L	0.02	<0.05	0.01	<0.10	<0.05		
Un-ionized Ammonia	mg/L	3.10	1.10	0.03	0.92	0.69		
Ion Percentage	mg/L	14.8	16.0	3.8	14.1	13.9		

- 2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).
- 3) µmho/cm denotes micro-ohms per centimetre.
- NTU denotes nephelometric turbidity unit.
- mg/L denotes milligrams per litre.
- 4) Maxxam denotes Maxxam Analytics Inc.
- 5) Italics denotes parameter concentration is presented as half the laboratory RDL for lon Percentage calculation.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)
Date		23-May-08	20-May-09	20-May-10	10-May-11	08-May-12	07-May-13	07-May-14	19-May-15	30-May-16
Laboratory		Maxxam								
Alkalinity (Total as CaCO3)	mg/L	18300	189	160	186	270	850	17000	240	16000
Conductivity	umho/cm	31100	640	501	653	950	2400	30000	660	27000
Dissolved Chloride (CI)	mg/L	850	22	11	21	34	110	700	18	600
Dissolved Organic Carbon	mg/L	1480.0	70.3	8.9	12.0	12.2	94.0	64.0	8.3	1100.0
Dissolved Sulphate (SO4)	mg/L	10	97	78	110	170	230	10	72	10
Mercury (Hg)	mg/L	<0.03	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.0015	<0.00010	<0.002
Nitrate (N)	mg/L	<1.0	0.6	0.1	0.5	0.74	<0.10	<1.0	1.44	<1.0
Nitrite (N)	mg/L	0.10	0.37	0.03	0.04	0.51	<0.010	<0.10	0.03	<0.10
рН	units	7.80	7.60	8.00	7.99	8.01	8.05	7.81	8.24	7.78
PhenoIs-4AAP	mg/L	0.60	0.03	<0.001	<0.001	0.0012	0.024	0.35	0.001	0.37
Total Ammonia-N	mg/L	2860.0	13.7	8.0	11.5	29.0	164.0	3540.0	13.5	2550.0
Total Arsenic (As)	mg/L	0.110	0.002	0.001	0.001	0.002	0.006	0.160	<0.001	<0.1
Total Barium (Ba)	mg/L	0.350	0.027	0.037	0.023	0.038	0.066	0.710	0.010	<0.5
Total BOD	mg/L	1800	59	<2	<2	22	120	1500	<2.0	1300
Total Boron (B)	mg/L	260.0	0.9	0.7	1.0	2.1	12.0	560.0	1.1	290.0
Total Cadmium (Cd)	mg/L	<0.001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.01
Total Calcium (Ca)	mg/L	19	61	56	65	79	80	58	62	31
Total Chemical Oxygen Demand (COD)	mg/L	4400	34	33	41	33	310	3700	20	3600
Total Chromium (Cr)	mg/L	0.290	<0.005	0.006	<0.005	<0.005	0.014	0.510	<0.005	<0.5
Total Copper (Cu)	mg/L	0.030	0.003	0.004	0.004	<0.002	0.004	<0.1	0.003	<0.2
Total Dissolved Solids	mg/L	20000	412	334	416	494	1150	11600	360	10900
Total Iron (Fe)	mg/L	1.0	1.7	3.3	2.3	1.3	1.9	<1.0	0.1	<10.0
Total Kjeldahl Nitrogen (TKN)	mg/L	3500	14	11	12	33	160	3500	16	2500
Total Lead (Pb)	mg/L	0.0280	0.0013	0.0015	0.0011	0.0007	0.0013	0.0200	<0.0005	<0.05
Total Magnesium (Mg)	mg/L	220	21	19	22	28	40	450	21	220
Total Manganese (Mn)	mg/L	0.030	0.089	0.036	0.030	0.073	0.080	0.050	0.005	<0.2
Total Nickel (Ni)	mg/L	0.300	0.004	0.005	0.005	0.004	0.017	0.460	0.002	0.200
Total Phosphorus	mg/L	4.30	0.12	<0.3	0.17	0.18	<0.6	7.80	0.94	5.40
Total Potassium (K)	mg/L	540.0	7.9	7.0	6.7	14.0	31.0	1100.0	7.0	540.0
Total Sodium (Na)	mg/L	3200	26	19	28	48	200	6300	25	3100
Total Suspended Solids	mg/L	66	22	25	16	18	30	21	3	6
Total Zinc (Zn)	mg/L	0.10	<0.01	0.02	<0.01	<0.01	<0.01	<0.1	<0.01	<1
Un-ionized Ammonia	mg/L	110.00	0.41	0.23	0.09	0.22	3.40	220.00	0.62	77.00
Ion Percentage	mg/L	30.0	3.6	8.6	4.5	1.0	12.6	7.5	1.9	24.1

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) $\mu mho/cm$ denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)		
Date		26-May-17	11-May-18	16-May-19	12-May-20	18-May-21		
Laboratory		Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas		
Alkalinity (Total as CaCO3)	mg/L	13000	6800	960	3700	5000		
Conductivity	umho/cm	23000	13000	2600	7700	9000		
Dissolved Chloride (CI)	mg/L	540	450	140	240	250		
Dissolved Organic Carbon	mg/L	810	290	70	170	240		
Dissolved Sulphate (SO4)	mg/L	20	84	230	200	100		
Mercury (Hg)	mg/L	<0.0001	<0.0001	<0.0001	<0.00010	<0.0015		
Nitrate (N)	mg/L	<1.0	<2.0	<0.10	<0.50	<0.50		
Nitrite (N)	mg/L	<0.10	<0.20	0.031	<0.050	<0.050		
pH	units	7.8	7.8	8.0	8.0	8.1		
PhenoIs-4AAP	mg/L	<0.20	<0.20	<0.020	0.056	0.078		
Total Ammonia-N	mg/L	1720	935	112	638	826		
Total Arsenic (As)	mg/L	0.04	0.02	<0.01	0.02	0.02		
Total Barium (Ba)	mg/L	0.31	0.21	0.12	0.09	0.06		
Total BOD	mg/L	720	190	6	130	180		
Total Boron (B)	mg/L	210	97	34	61	75		
Total Cadmium (Cd)	mg/L	<0.0005	<0.001	<0.001	<0.001	<0.001		
Total Calcium (Ca)	mg/L	40	100	110	75	44		
Total Chemical Oxygen Demand (COD)	mg/L	1900	930	130	650	750		
Total Chromium (Cr)	mg/L	0.18	0.09	<0.05	0.06	0.06		
Total Copper (Cu)	mg/L	<0.01	<0.02	<0.02	<0.02	<0.02		
Total Dissolved Solids	mg/L	8740	4540	1280	3230	3070		
Total Iron (Fe)	mg/L	<0.5	2.0	3.0	1.0	<1		
Total Kjeldahl Nitrogen (TKN)	mg/L	2200	870	99	670	830		
Total Lead (Pb)	mg/L	0.006	<0.005	<0.005	<0.005	<0.005		
Total Magnesium (Mg)	mg/L	170	130	77	94	82		
Total Manganese (Mn)	mg/L	0.03	0.32	0.33	0.25	0.07		
Total Nickel (Ni)	mg/L	0.17	0.10	0.04	0.07	0.08		
Total Phosphorus	mg/L	4.50	2.80	0.31	1.70	1.7		
Total Potassium (K)	mg/L	400	220	80	140	150		
Total Sodium (Na)	mg/L	2400	1200	450	810	900		
Total Suspended Solids	mg/L	18	24	57	12	13		
Total Zinc (Zn)	mg/L	<0.05	<0.1	<0.1	<0.1	<0.1		
Un-ionized Ammonia	mg/L	45	7	3	20	43		
Ion Percentage	mg/L	26.6	25.6	15.9	16.8	26.7		

- 2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).
- 3) µmho/cm denotes micro-ohms per centimetre.
- NTU denotes nephelometric turbidity unit.
- mg/L denotes milligrams per litre.
- 4) Maxxam denotes Maxxam Analytics Inc.
- 5) Italics denotes parameter concentration is presented as half the laboratory RDL for lon Percentage calculation.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	CFA-Comp								
Date	Units	23-May-08	21-May-09	20-May-10	10-May-11	08-May-12	07-May-13	07-May-14	19-May-15	30-May-16
Laboratory		Maxxam								
Alkalinity (Total as CaCO3)	mg/L	4100	4520	2930	4330	4100	3400	3000	2300	2300
Conductivity	umho/cm	10400	10800	8730	10800	10000	8900	7100	6400	6000
Dissolved Chloride (CI)	mg/L	1000	980	850	960	1000	720	580	440	470
Dissolved Organic Carbon	mg/L	793	935	305	467	268	440	180	150	110
Dissolved Sulphate (SO4)	mg/L	292	100	410	190	260	150	120	130	280
Mercury (Hg)	mg/L	<0.0002	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001
Nitrate (N)	mg/L	<0.1	<1	<1	<1	<2.0	<1.0	<0.5	2.9	6.7
Nitrite (N)	mg/L	<0.01	<0.1	<0.1	<0.1	<0.20	<0.10	<0.05	1.73	0.44
рН	units	7.70	7.60	7.80	7.71	7.83	7.62	7.77	7.87	7.59
Phenois-4AAP	mg/L	0.360	0.072	0.210	0.200	0.093	0.240	0.038	0.018	<0.020
Total Ammonia-N	mg/L	411	724	385	521	495	512	380	381	264
Total Arsenic (As)	mg/L	0.014	0.014	0.017	0.011	0.010	0.012	0.008	0.008	<0.005
Total Barium (Ba)	mg/L	0.19	0.19	0.23	0.22	0.25	0.26	0.24	0.19	0.17
Total BOD	mg/L	1200	1700	330	480	120	600	130	63	35
Total Boron (B)	mg/L	6.4	7.7	6.6	8.2	15.0	14.0	6.9	5.5	6.2
Total Cadmium (Cd)	mg/L	0.0018	0.0014	0.0004	<0.0005	<0.001	0.0003	0.0001	<0.0005	<0.0005
Total Calcium (Ca)	mg/L	380	370	360	230	200	220	190	140	160
Total Chemical Oxygen Demand (COD)	mg/L	2400	2500	1100	1600	910	1700	570	460	340
Total Chromium (Cr)	mg/L	0.070	0.100	0.059	0.070	0.050	0.057	0.032	0.040	<0.03
Total Copper (Cu)	mg/L	0.080	0.025	0.033	0.010	<0.02	0.008	<0.01	<0.01	<0.01
Total Dissolved Solids	mg/L	6670	6930	5540	6420	4630	4140	3120	2590	2690
Total Iron (Fe)	mg/L	27.0	26.0	33.0	17.0	8.0	19.0	7.4	3.2	3.5
Total Kjeldahl Nitrogen (TKN)	mg/L	530	810	400	550	490	580	410	410	250
Total Lead (Pb)	mg/L	0.0180	0.0083	0.0200	0.0050	0.0050	0.0060	0.0025	0.0040	<0.003
Total Magnesium (Mg)	mg/L	310	350	340	320	400	240	200	150	170
Total Manganese (Mn)	mg/L	3.30	2.50	2.30	1.10	0.74	0.74	0.35	0.32	0.31
Total Nickel (Ni)	mg/L	0.240	0.210	0.180	0.220	0.250	0.120	0.110	0.087	0.064
Total Phosphorus	mg/L	1.0	5.2	2.5	2.3	1.5	2.2	1.2	1.5	<1.5
Total Potassium (K)	mg/L	320	340	250	350	390	260	220	180	150
Total Sodium (Na)	mg/L	960	1000	830	1100	1400	740	700	490	460
Total Suspended Solids	mg/L	86	78	830	21	8	18	86	46	26
Total Zinc (Zn)	mg/L	17.00	2.40	0.37	0.88	0.20	0.27	0.07	0.10	0.07
Un-ionized Ammonia	mg/L	5.5	5.4	6.1	2.9	6.1	6.0	8.9	7.6	1.9
Ion Percentage	mg/L	2.9	1.4	5.2	3.1	6.6	5.7	3.9	7.0	10.0

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) µmho/cm denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter		CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp		
rai dilletei	Units	CFA-Comp	CFA-Comp	CFA-Collip	CFA-Comp	CFA-Comp		
Date	Onits	26-May-17	11-May-18	16-May-19	12-May-20	18-May-21		
Laboratory		Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas		
Alkalinity (Total as CaCO3)	mg/L	3400	2800	1300	3200	2900		
Conductivity	umho/cm	8000	6800	3600	9100	6300		
Dissolved Chloride (Cl)	mg/L	680	450	250	850	590		
Dissolved Organic Carbon	mg/L	190	140	64	200	110		
Dissolved Sulphate (SO4)	mg/L	53	230	220	93	190		
Mercury (Hg)	mg/L	<0.0001	<0.0001	<0.0001	<0.00010	<0.00010		
Nitrate (N)	mg/L	<1.0	<1.0	1.55	2.54	0.13		
Nitrite (N)	mg/L	0.100	0.240	0.163	0.422	0.095		
рН	units	7.7	7.6	7.7	7.8	7.6		
PhenoIs-4AAP	mg/L	<0.080	<0.080	<0.0080	<0.040	<0.020		
Total Ammonia-N	mg/L	396	412	150	495	302		
Total Arsenic (As)	mg/L	0.006	<0.005	0.003	<0.01	0.018		
Total Barium (Ba)	mg/L	0.20	0.17	0.10	0.22	0.22		
Total BOD	mg/L	76	38	38	62	38		
Total Boron (B)	mg/L	7.9	5.0	3.0	12	8.6		
Total Cadmium (Cd)	mg/L	<0.0001	<0.0005	<0.0001	<0.001	<0.0005		
Total Calcium (Ca)	mg/L	110	140	140	150	180		
Total Chemical Oxygen Demand (COD)	mg/L	550	430	180	610	330		
Total Chromium (Cr)	mg/L	0.039	0.030	0.013	0.21	0.05		
Total Copper (Cu)	mg/L	0.003	<0.01	0.004	<0.02	0.01		
Total Dissolved Solids	mg/L	3280	2530	1630	3940	2400		
Total Iron (Fe)	mg/L	2.4	2.5	2.5	8.0	11		
Total Kjeldahl Nitrogen (TKN)	mg/L	460	350	140	470	300		
Total Lead (Pb)	mg/L	0.001	<0.003	0.001	0.009	0.005		
Total Magnesium (Mg)	mg/L	180	120	110	200	170		
Total Manganese (Mn)	mg/L	0.20	0.63	0.30	0.42	0.46		
Total Nickel (Ni)	mg/L	0.110	0.078	0.029	0.16	0.089		
Total Phosphorus	mg/L	1.20	0.87	0.50	1.80	1.2		
Total Potassium (K)	mg/L	210	140	75	220	150		
Total Sodium (Na)	mg/L	660	400	270	820	540		
Total Suspended Solids	mg/L	17	20	23	77	180		
Total Zinc (Zn)	mg/L	0.03	<0.05	0.02	<0.1	<0.05		
Un-ionized Ammonia	mg/L	2.20	1.30	0.55	4	1.9		
Ion Percentage	mg/L	15.9	24.6	4.6	8.5	14.4		

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

³⁾ $\mu mho/cm$ denotes micro-ohms per centimetre.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter.										
Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date	Onits	02-Mar-10	31-May-10	21-Sep-10	19-Nov-10	28-Feb-11	10-May-11	10-Aug-11	09-Nov-11	01-Mar-12
Laboratory		Maxxam								
Alkalinity (Total as CaCO₃)	mg/L		1820		3090		5460		3360	
Conductivity	umho/cm		4390		7220		13000		8020	
Dissolved Chloride (CI)	mg/L		330		510		1300		750	
Dissolved Organic Carbon	mg/L	308	958	547	2430	3110	3020	1250	762	634
Dissolved Sulphate (SO ₄)	mg/L		<20		<50		25		10	
Mercury (Hg)	mg/L		<0.0001		<0.0001		<0.0001		<0.0001	
Nitrate (N)	mg/L		<0.1		<0.1		<1		<1	
Nitrite (N)	mg/L		0.03		0.02		<0.1		<0.1	
рН	units	7.00	7.50	7.30	7.37	7.60	7.44	7.38	7.34	7.53
Phenols-4AAP	mg/L		0.80		1.00		3.90		1.31	
Total Ammonia-N	mg/L		57		128		489		368	
Total Arsenic (As)	mg/L		0.006		0.012		0.032		0.022	
Total Barium (Ba)	mg/L		0.25		0.60		0.51		0.25	
Total BOD	mg/L	370	920	650	3800	1600	3800	2400	1100	460
Total Boron (B)	mg/L		1.3		1.3		4.8		3.3	
Total Cadmium (Cd)	mg/L		0.0001		0.0002		0.0005		0.0002	
Total Calcium (Ca)	mg/L		530		1000		1000		460	
Total Chemical Oxygen Demand (COD)	mg/L		2600		14000		12000		2400	
Total Chromium (Cr)	mg/L		0.048		0.036		0.190		0.100	
Total Copper (Cu)	mg/L		0.005		0.008		<0.01		0.010	
Total Dissolved Solids	mg/L		2720		4010		7410		4540	
Total Iron (Fe)	mg/L		9.5		12.0		5.7		4.2	
Total Kjeldahl Nitrogen (TKN)	mg/L	26	66	70	140	400	580	330	330	520
Total Lead (Pb)	mg/L		0.0013		0.0020		<0.003		0.0022	
Total Magnesium (Mg)	mg/L		200		250		460		230	
Total Manganese (Mn)	mg/L		3.3		8.1		4.8		1.5	
Total Nickel (Ni)	mg/L		0.029		0.074		0.190		0.110	
Total Phosphorus	mg/L	0.79	2.70	1.10	7.00	6.00	5.50	2.50	2.40	4.60
Total Potassium (K)	mg/L		81		150		500		270	
Total Sodium (Na)	mg/L		270		410		1200		670	
Total Suspended Solids	mg/L		56		76		67		39	
Total Zinc (Zn)	mg/L		0.14		0.16		0.24		0.15	
Un-ionized Ammonia	mg/L		0.07		0.17		5.80		1.50	
Ion Percentage	mg/L		19.0		17.8		10.1		1.8	

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) $\mu mho/cm$ denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date	Units	15-May-12	01-Aug-12	05-Nov-12	22-Feb-13	13-May-13	21-Aug-13	13-Nov-13	11-Mar-14	05-May-14
Laboratory		Maxxam								
Alkalinity (Total as CaCO3)	mg/L	5500		6500		6500		6500		4900
Conductivity	umho/cm	15000		2000		15000		18000		13000
Dissolved Chloride (CI)	mg/L	1800		1600		1900		2400		1300
Dissolved Organic Carbon	mg/L	468	234	1070	460	450	550	530	2200	3000
Dissolved Sulphate (SO4)	mg/L	<20		88		10		10		25
Mercury (Hg)	mg/L	<0.00010		<0.00010		<0.00010		<0.00010		<0.00010
Nitrate (N)	mg/L	<1.0		<2.0		<1.0		<1.0		<2.0
Nitrite (N)	mg/L	<0.10		<0.20		<0.10		<0.10		<0.20
рН	units	7.74	7.45	7.67	7.50	7.80	7.76	7.94	7.28	7.70
Phenois-4AAP	mg/L	0.55		0.81		0.13		0.19		1.00
Total Ammonia-N	mg/L	663		715		859		924		676
Total Arsenic (As)	mg/L	0.044		0.040		0.040		0.046		0.050
Total Barium (Ba)	mg/L	0.27		0.37		0.22		0.31		0.75
Total BOD	mg/L	350	460	1600	480	240	200	120	5200	5500
Total Boron (B)	mg/L	7.7		6.5		6.5		8.3		9.7
Total Cadmium (Cd)	mg/L	0.0008		0.0002		<0.001		<0.0005		<0.001
Total Calcium (Ca)	mg/L	180		300		110		79		1400
Total Chemical Oxygen Demand (COD)	mg/L	1900		4900		1600		1800		12000
Total Chromium (Cr)	mg/L	0.14		0.18		0.15		0.20		0.45
Total Copper (Cu)	mg/L	0.020		0.013		<0.02		<0.01		0.030
Total Dissolved Solids	mg/L	7170		7860		7280		8460		8430
Total Iron (Fe)	mg/L	2.8		5.2		2.2		2.0		120.0
Total Kjeldahl Nitrogen (TKN)	mg/L	700	300	760	730	910	1000	1100	660	770
Total Lead (Pb)	mg/L	0.0030		0.0023		<0.005		<0.003		0.0090
Total Magnesium (Mg)	mg/L	490		420		390		370		530
Total Manganese (Mn)	mg/L	0.19		0.71		0.10		0.10		14.00
Total Nickel (Ni)	mg/L	0.28		0.33		0.32		0.34		0.79
Total Phosphorus	mg/L	4.0	1.8	5.2	3.3	3.3	5.7	4.8	10.0	23.0
Total Potassium (K)	mg/L	590		520		620		670		760
Total Sodium (Na)	mg/L	1600		1700		1600		1800		2000
Total Suspended Solids	mg/L	56		27		22		13		360
Total Zinc (Zn)	mg/L	0.36		0.20		0.20		0.15		3.60
Un-ionized Ammonia	mg/L	6.7		5.1		6.6		25.0		19.0
Ion Percentage	mg/L	1.9		5.1		12.5		14.1		31.1

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) $\mu mho/cm$ denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter		Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
<u></u>	Units									
Date	_	28-Jul-14	19-Nov-14	05-Mar-15	27-May-15	30-Jul-15	18-Nov-15	15-Mar-16	30-May-16	25-Jul-16
Laboratory		Maxxam								
Alkalinity (Total as CaCO3)	mg/L		5300		7700		7000		8100	
Conductivity	umho/cm		16000		20000		19000		18000	
Dissolved Chloride (Cl)	mg/L		1900		2300		2200		1900	
Dissolved Organic Carbon	mg/L	3700	1900	1800	4500	4400	1000	2000	2000	830
Dissolved Sulphate (SO4)	mg/L		20		50		50		10	
Mercury (Hg)	mg/L		<0.00010		<0.0020		<0.00010		<0.0002	
Nitrate (N)	mg/L		<1.0		<5.0		<5.0		<2.0	
Nitrite (N)	mg/L		0.13		<0.50		<0.50		<0.20	
pH	units	7.53	7.70	7.41	7.87	7.61	7.42	7.73	7.71	7.60
Phenois-4AAP	mg/L		1.10		2.40		1.50		1.92	
Total Ammonia-N	mg/L		772		1130		1130		939	
Total Arsenic (As)	mg/L		0.05		0.05		0.06		0.05	
Total Barium (Ba)	mg/L		0.28		0.37		0.31		0.33	
Total BOD	mg/L	7500	3300	3700	7600	8200	6300	3600	3900	960
Total Boron (B)	mg/L		9.6		11.0		11.0		10.0	
Total Cadmium (Cd)	mg/L		<0.001		<0.001		<0.0005		<0.001	
Total Calcium (Ca)	mg/L		480		960		800		480	
Total Chemical Oxygen Demand (COD)	mg/L		5800		14000		9400		7000	
Total Chromium (Cr)	mg/L		0.29		0.37		0.35		0.28	
Total Copper (Cu)	mg/L		<0.02		0.12		<0.02		0.05	
Total Dissolved Solids	mg/L		8620		13600		12000		10700	
Total Iron (Fe)	mg/L		14		25		28		12	
Total Kjeldahl Nitrogen (TKN)	mg/L	1000	1000	920	1200	1400	1200	840	1000	1000
Total Lead (Pb)	mg/L		<0.005		0.006		<0.003		<0.005	
Total Magnesium (Mg)	mg/L		250		380		380		380	
Total Manganese (Mn)	mg/L		3.4		7.8		5.6		3.0	
Total Nickel (Ni)	mg/L		0.34		0.45		0.45		0.38	
Total Phosphorus	mg/L	9.5	7.6	7.5	10.0	11.0	7.4	5.0	5.8	6.5
Total Potassium (K)	mg/L		590		680		700		630	
Total Sodium (Na)	mg/L		1600		1900		1800		1800	
Total Suspended Solids	mg/L		190		110		420		240	
Total Zinc (Zn)	mg/L		0.60		0.80		0.41		0.30	
Un-ionized Ammonia	mg/L		9.5		26.0		13.0		10.0	
Ion Percentage	mg/L		3.7		2.8		2.3		10.0	

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) µmho/cm denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date		03-Nov-16	27-Mar-17	30-May-17	10-Aug-17	20-Oct-17	22-Mar-18	28-May-18	17-Aug-18	08-Nov-18
Laboratory		Maxxam								
Alkalinity (Total as CaCO3)	mg/L	6100		8200		5100		7900		6200
Conductivity	umho/cm	14000		20000		12000		19000		14000
Dissolved Chloride (CI)	mg/L	1400		2300		1400		2600		1500
Dissolved Organic Carbon	mg/L	1000	480	710	880	530	290	820	1000	650
Dissolved Sulphate (SO4)	mg/L	25		50		38		<20		60
Mercury (Hg)	mg/L	<0.0002		<0.0002		<0.0002		<0.0004		<0.0002
Nitrate (N)	mg/L	<1.0		<5.0		<0.10		<2.0		<1.0
Nitrite (N)	mg/L	<0.10		<0.50		0.039		<0.20		<0.10
pH	units	7.80	7.74	8.03	7.78	7.84	7.92	7.81	8.04	7.94
Phenols-4AAP	mg/L	0.660		0.233		0.790		0.110		0.430
Total Ammonia-N	mg/L	821		1150		700		1300		970
Total Arsenic (As)	mg/L	0.048		0.080		0.540		0.100		0.062
Total Barium (Ba)	mg/L	0.27		0.44		0.29		0.46		0.23
Total BOD	mg/L	1600	440	350	410	540	170	240	610	620
Total Boron (B)	mg/L	6.7		11.0		14.0		18.0		14.0
Total Cadmium (Cd)	mg/L	<0.005		<0.001		<0.0005		<0.001		<0.0005
Total Calcium (Ca)	mg/L	270		110		140		96		96
Total Chemical Oxygen Demand (COD)	mg/L	3400		2500		1700		2300		1900
Total Chromium (Cr)	mg/L	0.19		0.33		0.20		0.45		0.24
Total Copper (Cu)	mg/L	0.04		0.35		0.06		0.05		0.08
Total Dissolved Solids	mg/L	7030		8580		5330		6850		6300
Total Iron (Fe)	mg/L	7.1		4.0		5.6		4.0		3.0
Total Kjeldahl Nitrogen (TKN)	mg/L	1200	1000	1200	1400	630	970	1300	1400	980
Total Lead (Pb)	mg/L	<0.003		0.009		0.003		<0.005		0.007
Total Magnesium (Mg)	mg/L	300		340		180		290		200
Total Manganese (Mn)	mg/L	1.10		0.18		0.26		0.18		0.24
Total Nickel (Ni)	mg/L	0.27		0.39		0.19		0.37		0.23
Total Phosphorus	mg/L	4.0	5.9	8.1	10.0	4.7	5.1	8.4	7.2	3.7
Total Potassium (K)	mg/L	460		630		340		680		460
Total Sodium (Na)	mg/L	1300		2000		1100		2200		1400
Total Suspended Solids	mg/L	56		70		83		100		47
Total Zinc (Zn)	mg/L	0.21		0.40		0.13		0.20		0.55
Un-ionized Ammonia	mg/L	11.0		21.0		7.7		28.0		19.0
Ion Percentage	mg/L	12.9		18.3		21.9		17.3		20.5

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) $\mu mho/cm$ denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter		Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
	Units			·		·	·			
Date	-	08-Jan-19	11-Apr-19	23-Jul-19	07-Nov-19	22-Jan-20	12-May-20	11-Aug-20	11-Nov-20	12-Jan-21
Laboratory		Maxxam	Maxxam	Bureau Veritas						
Alkalinity (Total as CaCO3)	mg/L		9900		3900		9300		4600	
Conductivity	umho/cm		21000		10000		26000		12000	
Dissolved Chloride (Cl)	mg/L		2600		1200		3400		1300	
Dissolved Organic Carbon	mg/L	670	890	1000	550	1200	1500	1500	540	750
Dissolved Sulphate (SO4)	mg/L		72		220		25		10	
Mercury (Hg)	mg/L		<0.0002		<0.0002		<0.0002		<0.0002	
Nitrate (N)	mg/L		<5.0		0.061		<1.0		<1.0	
Nitrite (N)	mg/L		<0.50		<0.10		0.12		<0.10	
pH	units	7.88	7.86	7.99	7.47	7.60	7.90	7.98	8.07	7.5
Phenois-4AAP	mg/L		0.240		0.077		1.000		0.11	
Total Ammonia-N	mg/L		1200		620		2000		830	
Total Arsenic (As)	mg/L		0.11		0.07		0.16		0.08	
Total Barium (Ba)	mg/L		0.32		0.28		0.41		0.21	
Total BOD	mg/L	220	330	210	520	1500	1200	1300	230	510
Total Boron (B)	mg/L		12.0		6.8		18.0		7.8	
Total Cadmium (Cd)	mg/L		<0.0005		<0.001		<0.001		<0.001	
Total Calcium (Ca)	mg/L		91		280		150		85	
Total Chemical Oxygen Demand (COD)	mg/L		2800		1200		4600		1400	
Total Chromium (Cr)	mg/L		0.45		0.26		0.76		0.36	
Total Copper (Cu)	mg/L		0.12		0.07		0.08		<0.02	
Total Dissolved Solids	mg/L		8410		5010		11700		4910	
Total Iron (Fe)	mg/L		4.2		5.0		4.0		2	
Total Kjeldahl Nitrogen (TKN)	mg/L	1300	1400	1800	600	1000	2700	2700	940	1400
Total Lead (Pb)	mg/L		0.007		0.006		0.011		<0.005	
Total Magnesium (Mg)	mg/L		230		140		280		130	
Total Manganese (Mn)	mg/L		0.22		1.70		0.55		0.22	
Total Nickel (Ni)	mg/L		0.31		0.23		0.46		0.21	
Total Phosphorus	mg/L	0.1	8.9	11.0	4.0	7.0	12.0	9.5	5.1	6.8
Total Potassium (K)	mg/L		670		380		900		390	
Total Sodium (Na)	mg/L		2000		1100		2700		1200	
Total Suspended Solids	mg/L		120		70		270		29	
Total Zinc (Zn)	mg/L		0.31		0.30		0.20		0.1	
Un-ionized Ammonia	mg/L		24.0		4.2		63.0		40	
Ion Percentage	mg/L		29.4		9.8		18.0		18.0	

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) $\mu mho/cm$ denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter		Equalization Tank	Equalization Tank	Equalization Tank			
	Units	·	·	·			
Date		19-May-21	11-Aug-21	04-Nov-21			
Laboratory		Bureau Veritas	Bureau Veritas	Bureau Veritas			
Alkalinity (Total as CaCO3)	mg/L	10000		6400			
Conductivity	umho/cm	21000		13000			
Dissolved Chloride (Cl)	mg/L	2200		970			
Dissolved Organic Carbon	mg/L	800	850	760			
Dissolved Sulphate (SO4)	mg/L	10		25			
Mercury (Hg)	mg/L	<0.003		<0.0002			
Nitrate (N)	mg/L	<1.0		<0.50			
Nitrite (N)	mg/L	<0.10		<0.050			
рН	units	7.8	7.8	7.7			
Phenols-4AAP	mg/L	0.26		0.87			
Total Ammonia-N	mg/L	1800		705			
Total Arsenic (As)	mg/L	0.12		0.077			
Total Barium (Ba)	mg/L	0.38		0.36			
Total BOD	mg/L	410	240	790			
Total Boron (B)	mg/L	24		8.2			
Total Cadmium (Cd)	mg/L	<0.0005		<0.0005			
Total Calcium (Ca)	mg/L	89		210			
Total Chemical Oxygen Demand (COD)	mg/L	2600		2300			
Total Chromium (Cr)	mg/L	0.53		0.22			
Total Copper (Cu)	mg/L	<0.01		0.01			
Total Dissolved Solids	mg/L	8280		6500			
Total Iron (Fe)	mg/L	3.2		1.6			
Total Kjeldahl Nitrogen (TKN)	mg/L	1500	1700	930			
Total Lead (Pb)	mg/L	0.005		0.004			
Total Magnesium (Mg)	mg/L	280		210			
Total Manganese (Mn)	mg/L	0.17		0.48			
Total Nickel (Ni)	mg/L	0.35		0.2			
Total Phosphorus	mg/L	9.5	10	4.6			
Total Potassium (K)	mg/L	660		400			
Total Sodium (Na)	mg/L	2000		1100			
Total Suspended Solids	mg/L	45		44			
Total Zinc (Zn)	mg/L	0.23		0.34			
Un-ionized Ammonia	mg/L	32		5.6			
Ion Percentage	mg/L	25.9		20.7			

- 2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).
- 3) $\mu mho/cm$ denotes micro-ohms per centimetre.
- NTU denotes nephelometric turbidity unit.
- mg/L denotes milligrams per litre.
- 4) Maxxam denotes Maxxam Analytics Inc.
- 5) Italics denotes parameter concentration is presented as half the laboratory RDL for Ion Percentage calculation.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter.										
Parameter	Units	PS1	PS1							
Date	Offics	07-May-14	19-May-15	31-May-16	26-May-17	11-May-18	15-May-19	12-May-20	18-May-21	
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas	
Alkalinity (Total as CaCO3)	mg/L	1600	4300	11000	6600	8600	8400	8300	7800	
Conductivity	umho/cm	4800	11000	23000	19000	25000	25000	24000	23000	
Dissolved Chloride (CI)	mg/L	440	1100	2800	2700	3000	3300	3500	3300	
Dissolved Organic Carbon	mg/L	590	110	730	630	930	1000	950	890	
Dissolved Sulphate (SO4)	mg/L	10	160	10	100	310	150	50	50	
Mercury (Hg)	mg/L	<0.00010	<0.00010	<0.002	<0.0001	<0.0001	<0.002	<0.00010	<0.0015	
Nitrate (N)	mg/L	<0.50	<1.0	<2.0	<5.0	<5.0	<2.0	<1.0	<2.0	
Nitrite (N)	mg/L	<0.050	0.16	<0.20	<0.50	<0.50	<0.20	0.18	<0.20	
рН	pH	7.5	8.0	7.7	7.9	7.8	8.1	7.9	7.6	
PhenoIs-4AAP	mg/L	0.480	0.390	0.570	<0.40	<0.20	<0.040	<0.040	0.046	
Total Ammonia-N	mg/L	559	379	1590	1240	1610	1520	1650	1780	
Total Arsenic (As)	mg/L	0.04	1.30	0.94	0.39	0.49	0.32	1.6	0.64	
Total Barium (Ba)	mg/L	0.6	9.7	2.3	0.9	1.2	0.9	3.6	1.5	
Total BOD	mg/L	1800	840	760	260	560	390	1100	940	
Total Boron (B)	mg/L	8	6	16	12	14	18	15	13	
Total Cadmium (Cd)	mg/L	<0.001	0.028	0.007	0.002	0.002	0.002	0.010	0.003	
Total Calcium (Ca)	mg/L	1100	17000	480	170	230	190	960	380	
Total Chemical Oxygen Demand (COD)	mg/L	7700	1700	7300	9800	6100	5000	9400	4100	
Total Chromium (Cr)	mg/L	0.37	4.60	1.20	0.60	0.91	0.87	1.80	2.5	
Total Copper (Cu)	mg/L	0.03	3.80	0.33	0.10	0.18	0.08	0.64	0.23	
Total Dissolved Solids	mg/L	4080		9390	8600	9030	11800	11900	8920	
Total Iron (Fe)	mg/L	100	4200	1200	310	330	130	1000	250	
Total Kjeldahl Nitrogen (TKN)	mg/L	650	440	1700	1400	1600	1400	2100	2200	
Total Lead (Pb)	mg/L	0.007	2.000	0.180	0.044	0.072	0.035	0.280	0.091	
Total Magnesium (Mg)	mg/L	430	4200	330	230	220	270	520	300	
Total Manganese (Mn)	mg/L	12.00	92.00	3.00	0.90	1.20	0.85	5.60	2.8	
Total Nickel (Ni)	mg/L	0.63	7.40	2.10	0.78	0.85	0.57	1.50	1.2	
Total Phosphorus	mg/L	11	53	26	29	51	130	150	65	
Total Potassium (K)	mg/L	640	600	850	600	710	980	920	760	
Total Sodium (Na)	mg/L	1700	890	2400	1800	2200	2900	2700	2400	
Total Suspended Solids	mg/L	42	190000	1300	8800	6200	6000	1500	18000	
Total Zinc (Zn)	mg/L	2.9	9.6	7.2	1.6	2.6	1.1	7.6	2	
Un-ionized Ammonia	mg/L	17	66	39	46	26	130	54	25	
Ion Percentage	mg/L	65.0	84.8	18.2	20.7	23.1	11.7	0.3	13.4	

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) $\mu mho/cm$ denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	PS3	PS3							
Date	Offics	07-May-14	27-May-15	31-May-16	26-May-17	11-May-18	15-May-19	12-May-20	19-May-21	
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas	
Alkalinity (Total as CaCO3)	mg/L	4400	8000	12000	11000	9800	16000	14000	14000	
Conductivity	umho/cm	12000	24000	23000	22000	21000	31000	31000	20000	
Dissolved Chloride (CI)	mg/L	840	3000	2000	2100	2000	2900	3200	3600	
Dissolved Organic Carbon	mg/L	840	760	4400	490	420	810	1100	1200	
Dissolved Sulphate (SO4)	mg/L	380	1000	10	100	140	0.1	50	170	
Mercury (Hg)	mg/L	0.0048	<0.0020	<0.002	<0.0001	<0.0001	<0.002	<0.00010	<0.0015	
Nitrate (N)	mg/L	<0.50	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<5.0	
Nitrite (N)	mg/L	<0.05	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.12	
рН	pН	6.1	7.5	7.2	7.8	7.9	7.7	7.9	8.1	
PhenoIs-4AAP	mg/L	1.90	0.09	3.30	1.39	<0.20	<0.20	0.09	0.07	
Total Ammonia-N	mg/L	449	1460	1320	1400	1410	2210	2690	2790	
Total Arsenic (As)	mg/L	1.90	0.24	0.70	0.07	0.05	0.15	0.18	0.19	
Total Barium (Ba)	mg/L	17.00	1.30	5.40	0.14	0.14	0.32	0.2	0.14	
Total BOD	mg/L	7700	240	13000	260	160	540	340	230	
Total Boron (B)	mg/L	8	14	8	11	9.2	16	16	23	
Total Cadmium (Cd)	mg/L	0.030	0.003	0.010	<0.001	<0.001	<0.001	<0.001	<0.001	
Total Calcium (Ca)	mg/L	24000	1000	6600	210	210	350	130	120	
Total Chemical Oxygen Demand (COD)	mg/L	22000	2700	23000	2100	1500	3300	3400	4400	
Total Chromium (Cr)	mg/L	6.80	0.86	2.70	0.32	0.26	0.72	0.70	1.0	
Total Copper (Cu)	mg/L	5.50	0.34	1.80	0.06	0.05	0.10	0.04	0.03	
Total Dissolved Solids	mg/L	8680	11200	16900	9600	7590	12500	12600	13600	
Total Iron (Fe)	mg/L	6800	420	2400	190	92	170	94	64	
Total Kjeldahl Nitrogen (TKN)	mg/L	1100	1700	1400	1400	1300	2100	3400	2900	
Total Lead (Pb)	mg/L	3.000	0.170	0.850	0.026	0.022	0.045	0.023	0.013	
Total Magnesium (Mg)	mg/L	5600	520	1700	690	520	470	390	330	
Total Manganese (Mn)	mg/L	140.0	6.1	42.0	1.5	1.3	1.9	0.6	0.58	
Total Nickel (Ni)	mg/L	10.00	1.30	5.60	1.00	0.90	0.92	0.81	0.88	
Total Phosphorus	mg/L	130.0	12.0	110.0	5.8	4.8	15.0	12.0	9.7	
Total Potassium (K)	mg/L	780	900	680	850	690	1100	1200	1200	
Total Sodium (Na)	mg/L	1000	2500	1400	2300	1900	2900	2900	3500	
Total Suspended Solids	mg/L	210000	1000	43000	1500	2400	5200	1200	2400	
Total Zinc (Zn)	mg/L	18.0	7.5	2.9	4.6	2.8	5.4	4.7	2.4	
Un-ionized Ammonia	mg/L	78	14	80	13	18	64	87	210	
Ion Percentage	mg/L	88.8	2.1	37.6	11.5	17.1	23.4	23.6	20.9	

2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).

3) µmho/cm denotes micro-ohms per centimetre.

NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

4) Maxxam denotes Maxxam Analytics Inc.

Table G-2 Leachate - General Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

					1		T
Parameter		PS5	PS5				
a a a motor	Units						
Date		12-May-20	19-May-21				
Laboratory		Bureau Veritas	Bureau Veritas				
Alkalinity (Total as CaCO3)	mg/L	6400	7700				
Conductivity	umho/cm	15000	16220				
Dissolved Chloride (CI)	mg/L	860	1400				
Dissolved Organic Carbon	mg/L	4100	280				
Dissolved Sulphate (SO4)	mg/L	89	10				
Mercury (Hg)	mg/L	<0.00010	<0.00010				
Nitrate (N)	mg/L	<0.50	<1.0				
Nitrite (N)	mg/L	<0.050	<0.10				
рН	рН	7.4	7.6				
PhenoIs-4AAP	mg/L	4.33	0.04				
Total Ammonia-N	mg/L	1060	1080				
Total Arsenic (As)	mg/L	0.04	0.06				
Total Barium (Ba)	mg/L	0.49	0.31				
Total BOD	mg/L	>8500	230				
Total Boron (B)	mg/L	5.8	7.5				
Total Cadmium (Cd)	mg/L	<0.001	<0.001				
Total Calcium (Ca)	mg/L	730	130				
Total Chemical Oxygen Demand (COD)	mg/L	12000	1600				
Total Chromium (Cr)	mg/L	0.09	0.11				
Total Copper (Cu)	mg/L	<0.02	<0.02				
Total Dissolved Solids	mg/L	9980	5510				
Total Iron (Fe)	mg/L	30	24				
Total Kjeldahl Nitrogen (TKN)	mg/L	1300	1000				
Total Lead (Pb)	mg/L	0.007	0.007				
Total Magnesium (Mg)	mg/L	390	380				
Total Manganese (Mn)	mg/L	3.4	0.33				
Total Nickel (Ni)	mg/L	0.22	0.32				
Total Phosphorus	mg/L	6.3	5.9				
Total Potassium (K)	mg/L	420	510				
Total Sodium (Na)	mg/L	960	1400				
Total Suspended Solids	mg/L	740	280				
Total Zinc (Zn)	mg/L	0.2	0.7				
Un-ionized Ammonia	mg/L	4.3	13				
Ion Percentage	mg/L	3.1	18.8				

- 2) < denotes parameter concentration is below the laboratory method reporting limit (MRL).
- 3) µmho/cm denotes micro-ohms per centimetre.
- NTU denotes nephelometric turbidity unit.

mg/L denotes milligrams per litre.

- 4) Maxxam denotes Maxxam Analytics Inc.
- 5) Italics denotes parameter concentration is presented as half the laboratory RDL for Ion Percentage calculation.

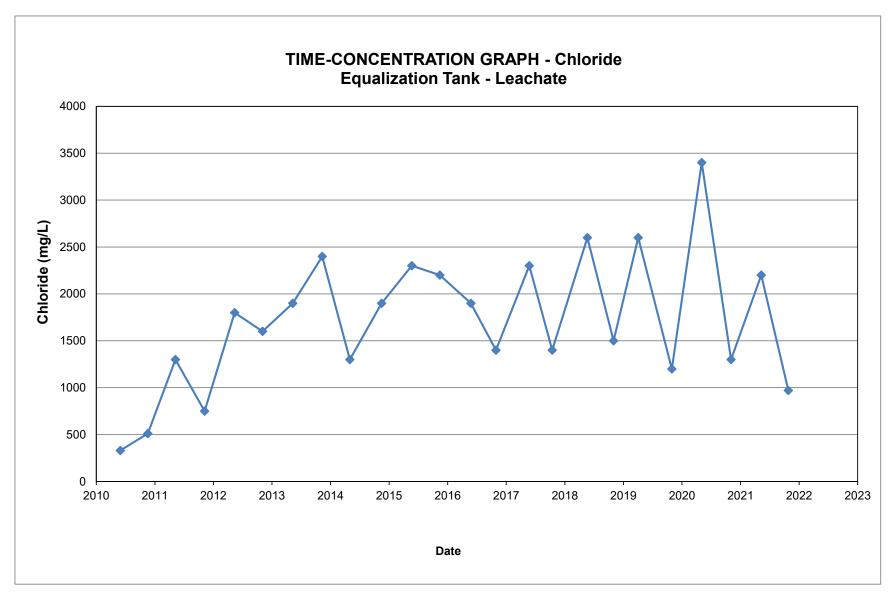


FIGURE G-1

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)
Date		25-May-04	06-Apr-05	27-Mar-06	04-Apr-07	23-May-08	21-May-09	20-May-10	10-May-11	08-May-12	07-May-13	07-May-14	19-May-15
Laboratory		Accutest	Accutest	Accutest	Accutest	MAXXAM							
Benzo(a)pyrene	µg/L					<2	<1	<1	<0.8	<2	<0.8	<2	<1.0
1,2-Dichlorobenzene	µg/L					<5	<3	<3	<2	<5	<2	<5	<2.5
1,3-Dichlorobenzene	µg/L					<5	<3	<3	<2	<5	<2	<5	<2.5
1,4-Dichlorobenzene	µg/L					<5	<3	<3	3	<5	<2	<5	<2.5
Hexachlorobenzene	µg/L					<5	<3	<3	<2	<5	<2	<5	<2.5
1,2,4-Trichlorobenzene	µg/L					<5	<3	<3	<2	<5	<2	<5	<2.5
2,4-Dichlorophenol	µg/L					<3	<2	<2	<1	<3	<1	<3	<1.5
Pentachlorophenol	µg/L					<10	<5	<5	<4	<10	<4	<30	<5.0
Phenol	µg/L					<5	<3	<3	<2	<5	<2	<5	13
2,4,6-Trichlorophenol	µg/L					<5	<3	<3	<2	<5	<2	<5	<2.5
Di-N-butyl phthalate	µg/L					<20	<10	<10	<8	<20	<8	<20	<10
Diethyl phthalate	μg/L					16.0	8.0	7.0	6.0	<10	<4	<10	7.7
Dimethyl phthalate	µg/L					<10	<5	<5	<4	<10	<4	<10	<5.0
Benzene	µg/L	361	96	30	50	87	58	58	41	49	<5.0	34	100
1,4-Dichlorobenzene	µg/L					<20	<20	<10	<20	<10	<10	<4.0	<10
Ethylbenzene	µg/L	318.0	40.3	103.0	171.0	200.0	86.0	180.0	71.0	140.0	<5.0	17.0	160.0
Methylene Chloride(Dichloromethane)	µg/L					<50	<50	<30	<50	<25	<25	<10	<25
Toluene	μg/L	782	<32	15	32	110	<20	27	<20	29	<10	12	50
Vinyl Chloride	μg/L					<20	<20	<10	<20	<10	<10	<4.0	<10
p+m-Xylene	μg/L	1990.0	916.0	339.0	607.0	880.0	520.0	680.0	280.0	520.0	9.1	200.0	640.0
o-Xylene	µg/L	1140.0	493.0	160.0	329.0	430.0	260.0	330.0	200.0	250.0	<5.0	130.0	300.0
Xylene (Total)	µg/L					1300.0	780.0	1000.0	480.0	770.0	9.1	340.0	940.0

Parameter	Units	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)	Sump (Central Fill Area)			
Date		30-May-16	26-May-17	11-May-18	16-May-19	12-May-20	18-May-21			
Laboratory		MAXXAM	MAXXAM	MAXXAM	MAXXAM	Bureau Veritas	Bureau Veritas			
Benzo(a)pyrene	µg/L	<0.80	<1.6	<0.80	<0.20	<20	<0.80			
1,2-Dichlorobenzene	µg/L	<2.0	<4.0	<2.0	<0.50	<50	<2.0			
1,3-Dichlorobenzene	µg/L	<2.0	<4.0	<2.0	<0.50	<50	<2.0			
1,4-Dichlorobenzene	µg/L	<2.0	<4.0	<2.0	<0.50	<50	2.2			
Hexachlorobenzene	μg/L	<2.0	<4.0	<2.0	<0.50	<50	<2.0			
1,2,4-Trichlorobenzene	μg/L	<2.0	<4.0	<2.0	<0.50	<50	<2.0			
2,4-Dichlorophenol	µg/L	<1.2	<2.4	<1.2	<0.30	<30	<1.2			
Pentachlorophenol	µg/L	<10	<8.0	<28	<6.0	<100	<4.0			
Phenol	µg/L	<2.0	<4.0	<2.0	<0.50	<50	<2.0			
2,4,6-Trichlorophenol	µg/L	<2.0	<4.0	<2.0	<0.50	<50	<2.0			
Di-N-butyl phthalate	μg/L	<8.0	<16	<8.0	<2.0	<200	<8.0			
Diethyl phthalate	µg/L	5.0	<8.0	<4.0	<1.0	<100	<4.0			
Dimethyl phthalate	µg/L	<4.0	<8.0	<4.0	<1.0	<100	<4.0			
Benzene	µg/L	21.0	<2.5	<10	<0.20	110	64			
1,4-Dichlorobenzene	µg/L	<20	<5.0	<2.0	<0.50	7.8	<20			
Ethylbenzene	μg/L	<10	<2.5	<10	0.34	190	110			
Methylene Chloride(Dichloromethane)	μg/L	<50	<13	<100	<2.0	<20	<100			
Toluene	μg/L	21.0	<5.0	<10	<0.20	220	<10			
Vinyl Chloride	μg/L	<20	<5.0	<10	<0.20	<2.0	<10			
p+m-Xylene	μg/L	740.00	82.00	18.00	0.81	1500	120			
o-Xylene	μg/L	93	<2.5	<10	<0.20	620	23			
Xylene (Total)	μg/L	830.00	82.00	18.00	0.81	2100	140			

2) Accutest denotes chemical analytical testing was completed by Accutest Laboratories.

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	MH-18 (South Fill Area)	MH-18 (South Fill Area)	MH-18 (South Fill Area)	MH-18 (South Fill Area)	MH18 (South Fill Area)							
Date		25-May-04	06-Apr-05	27-Mar-06	04-Apr-07	23-May-08	20-May-09	20-May-10	10-May-11	08-May-12	07-May-13	07-May-14	19-May-15
Laboratory		Accutest	Accutest	Accutest	Accutest	MAXXAM							
Benzo(a)pyrene	µg/L					<2	<0.2	<0.2	<0.2	<0.2	<0.8	<8	<0.20
1,2-Dichlorobenzene	µg/L					<5	<0.5	<0.5	<0.5	<0.5	<2	<20	<0.50
1,3-Dichlorobenzene	µg/L					<5	<0.5	<0.5	<0.5	<0.5	<2	<20	<0.50
1,4-Dichlorobenzene	µg/L					<5	<0.5	<0.5	<0.5	<0.5	<2	<20	<0.50
Hexachlorobenzene	µg/L					<5	<0.5	<0.5	<0.5	<0.5	<2	<20	<0.50
1,2,4-Trichlorobenzene	µg/L					<5	<0.5	<0.5	<0.5	<0.5	<2	<20	<0.50
2,4-Dichlorophenol	µg/L					<3	<0.3	<0.3	<0.3	<0.3	<1	<10	<0.30
Pentachlorophenol	µg/L					<10	<1	<1	<1	<1	<4	<100	<1.0
Phenol	µg/L					89	<0.5	<0.5	<0.5	<0.5	<2	34	<0.50
2,4,6-Trichlorophenol	µg/L					<5	<0.5	<0.5	<0.5	<0.5	<2	<20	<0.50
Di-N-butyl phthalate	µg/L					<20	<2	<2	<2	<2	<8	<80	<2.0
Diethyl phthalate	μg/L					25	<1	<1	<1	<1	<4	<40	<1.0
Dimethyl phthalate	μg/L					<10	<1	<1	<1	<1	<4	<40	<1.0
Benzene	µg/L	12.0	5.4	9.0	<0.5	9.0	0.3	<0.1	<0.1	<0.10	<5.0	<10	<0.10
1,4-Dichlorobenzene	µg/L					<10	<0.2	<0.2	<0.2	<0.20	<10	<20	0.45
Ethylbenzene	µg/L	891.0	257.0	41.0	<0.5	52.0	0.8	<0.1	<0.1	0.3	<5.0	46.0	<0.10
Methylene Chloride(Dichloromethane)	µg/L					<30	<0.5	<0.5	<0.5	<0.50	<25	<50	<0.50
Toluene	μg/L	90.5	23.3	343.0	<0.5	550.0	8.7	<0.2	<0.2	0.3	<10	450.0	<0.20
Vinyl Chloride	μg/L					14.0	<0.2	<0.2	<0.2	<0.20	<10	<20	<0.20
p+m-Xylene	µg/L	200.0	68.7	135.0	<1.0	190.0	2.6	<0.1	<0.1	1.9	<5.0	140.0	<0.10
o-Xylene	µg/L	97.4	28.0	53.0	<0.5	66.0	1.0	<0.1	<0.1	0.6	<5.0	60.0	<0.10
Xylene (Total)	μg/L					250.0	3.6	<0.1	<0.1	2.5	<5.0	200.0	<0.10

Parameter	Units	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)	MH18 (South Fill Area)			
Date		30-May-16	26-May-17	11-May-18	16-May-19	12-May-20	18-May-21			
Laboratory		MAXXAM	MAXXAM	MAXXAM	MAXXAM	Bureau Veritas	Bureau Veritas			
Benzo(a)pyrene	μg/L	<0.80	<1.6	<2.0	<0.20	<20	<0.80			
1,2-Dichlorobenzene	μg/L	<2.0	<4.0	<5.0	<0.50	<50	<2.0			
1,3-Dichlorobenzene	μg/L	<2.0	<4.0	<5.0	<0.50	<50	<2.0			
1,4-Dichlorobenzene	μg/L	2.1	<4.0	<5.0	<0.50	<50	<2.0			
Hexachlorobenzene	μg/L	<2.0	<4.0	<5.0	<0.50	<50	<2.0			
1,2,4-Trichlorobenzene	μg/L	<2.0	<4.0	<5.0	<0.50	<50	<2.0			
2,4-Dichlorophenol	μg/L	<1.2	<2.4	<3.0	<0.30	<30	<1.2			
Pentachlorophenol	μg/L	<10	<8.0	<70	<6.0	<100	<4.0			
Phenol	μg/L	17.0	16.0	8.8	<0.50	<50	11			
2,4,6-Trichlorophenol	μg/L	<2.0	<4.0	<5.0	<0.50	<50	<2.0			
Di-N-butyl phthalate	μg/L	<8.0	<16	<20	<2.0	<200	<8.0			
Diethyl phthalate	μg/L	11.0	21.0	11.0	<1.0	<100	6.6			
Dimethyl phthalate	μg/L	<4.0	<8.0	<10	<1.0	<100	<4.0			
Benzene	μg/L	10.0	10.0	<10	0.2	3.4	<10			
1,4-Dichlorobenzene	μg/L	<10	<25	<5.0	<0.50	<4.0	<20			
Ethylbenzene	μg/L	49.0	58.0	25.0	0.6	17	14			
Methylene Chloride(Dichloromethane)	μg/L	<25	<100	<100	<2.0	<20	<100			
Toluene	μg/L	520.0	500.0	230.0	<0.20	150	140			
Vinyl Chloride	μg/L	17.0	19.0	<16	0.4	3.1	<10			
p+m-Xylene	μg/L	160.0	170.0	73.0	<0.20	53	40			
o-Xylene	μg/L	60.0	70.0	30.0	0.7	20	15			
Xylene (Total)	μg/L	220.0	240.0	100.0	0.7	73	55			

2) Accutest denotes chemical analytical testing was completed by Accutest Laboratories.
3) MAXXAM denotes chemical analytical testing was completed by Maxxam Analytics Inc.

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter		CFA-Comp											
Date	Units	23-May-08	21-May-09	20-May-10	10-May-11	08-May-12	07-May-13	07-May-14	19-May-15	30-May-16	26-May-17	11-May-18	16-May-19
Laboratory		Maxxam											
Benzo(a)pyrene	μg/L	<2	<1	<1	<4	<2	<0.8	<1	<1.0	<0.80	<0.80	<0.20	<0.20
1,2-Dichlorobenzene	μg/L	<5	<3	<3	<10	<5	<2	<3	<2.5	<2.0	<2.0	<0.50	<0.50
1,3-Dichlorobenzene	μg/L	<5	<3	<3	<10	<5	<2	<3	<2.5	<2.0	<2.0	<0.50	<0.50
1,4-Dichlorobenzene	μg/L	<5	<3	<3	<10	<5	<2	<3	<2.5	<2.0	<2.0	1.1	<0.50
Hexachlorobenzene	μg/L	<5	<3	<3	<10	<5	<2	<3	<2.5	<2.0	<2.0	<0.50	<0.50
1,2,4-Trichlorobenzene	μg/L	<5	<3	<3	<10	<5	<2	<3	<2.5	<2.0	<2.0	<0.50	<0.50
2,4-Dichlorophenol	μg/L	<3		<2	<6	<3	<1	<2	<1.5	<1.2	<1.2	<0.30	<0.30
Pentachlorophenol	μg/L	<10	<5	<5	<20	<10	<4	<10	<5.0	<10	<4.0	<7.0	<6.0
Phenol	μg/L	76.0	110.0	32.0	22.0	6.0	23.0	<3	<2.5	<2.0	<2.0	<0.50	<0.50
2,4,6-Trichlorophenol	μg/L	<5	<3	<3	<10	<5	<2	<3	<2.5	<2.0	<2.0	<0.50	<0.50
Di-N-butyl phthalate	μg/L	<20	<10	<10	<40	<20	<8	<10	<10	<8.0	<8.0	<2.0	<2.0
Diethyl phthalate	µg/L	12.0	23.0	9.0	<20	<10	9.0	<5	<5.0	<4.0	<4.0	<1.0	<1.0
Dimethyl phthalate	μg/L	10.0	<5	<5	<20	<10	<4	<5	<5.0	<4.0	<4.0	<1.0	<1.0
Benzene	μg/L	3.0	4.0	2.0	<3	3.1	3.1	2.3	1.8	<1.0	<2.0	<10	1.3
1,4-Dichlorobenzene	μg/L	<4	<4	<4	<5	3.3	<2.0	<2.0	1.3	<2.0	<4.0	1.1	0.7
Ethylbenzene	μg/L	25.0	23.0	19.0	17.0	22.0	21.0	22.0	15.0	<1.0	<2.0	<10	1.2
Methylene Chloride(Dichloromethane)	μg/L	25.0	39.0	<10	<10	<5.0	<5.0	<5.0	<2.5	<5.0	<10	<100	<2.0
Toluene	μg/L	43.0	49.0	53.0	60.0	27.0	39.0	5.9	5.0	<2.0	<4.0	<10	0.8
Vinyl Chloride	μg/L	<4	<4	<4	<5	<2.0	<2.0	<2.0	<1.0	<2.0	<4.0	<10	<0.20
p+m-Xylene	μg/L	51.0	50.0	34.0	34.0	49.0	36.0	38.0	25.0	7.7	7.9	<10	3.6
o-Xylene	μg/L	18.0	17.0	13.0	20.0	24.0	17.0	16.0	14.0	<1.0	6.5	<10	1.9
Xylene (Total)	µg/L	69.0	67.0	47.0	54.0	72.0	53.0	54.0	39.0	7.7	14.0	<10	5.5

Parameter	Units	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp	CFA-Comp
Date	- Oilles	12-May-20	18-May-21										
Laboratory		Bureau Veritas	Bureau Veritas										
Benzo(a)pyrene	μg/L	<20	<0.80										
1,2-Dichlorobenzene	μg/L	<50	<2.0										
1,3-Dichlorobenzene	μg/L	<50	<2.0										
1,4-Dichlorobenzene	μg/L	<50	<2.0										
Hexachlorobenzene	µg/L	<50	<2.0										
1,2,4-Trichlorobenzene	μg/L	<50	<2.0										
2,4-Dichlorophenol	μg/L	<30	<1.2										
Pentachlorophenol	μg/L	<100	<4.0										
Phenol	μg/L	<50	<2.0										
2,4,6-Trichlorophenol	μg/L	<50	<2.0										
Di-N-butyl phthalate	μg/L	<200	<8.0										
Diethyl phthalate	μg/L	<100	<4.0										
Dimethyl phthalate	μg/L	<100	<4.0										
Benzene	μg/L	<2.0	<10										
1,4-Dichlorobenzene	μg/L	<4.0	<20										
Ethylbenzene	μg/L	<2.0	<10										
Methylene Chloride(Dichloromethane)	µg/L	<20	<100										
Toluene	µg/L	<2.0	<10										
Vinyl Chloride	μg/L	<2.0	<10										
p+m-Xylene	μg/L	14	<10										
o-Xylene	μg/L	8.8	<10										
Xylene (Total)	μg/L	23	<10										

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date		02-Mar-10	31-May-10	21-Sep-10	19-Nov-10	28-Feb-11	10-May-11	10-Aug-11	09-Nov-11	01-Mar-12	15-May-12	01-Aug-12	05-Nov-12
Laboratory		Maxxam											
Benzo(a)pyrene	μg/L		<8		<20		<40		<4		<2		<8
1,2-Dichlorobenzene	μg/L		<20		<50		<100		<10		<5		<20
1,3-Dichlorobenzene	μg/L		<20		<50		<100		<10		<5		<20
1,4-Dichlorobenzene	µg/L		<20		<50		<100		<10		<5		<20
Hexachlorobenzene	μg/L		<20		<50		<100		<10		<5		<20
1,2,4-Trichlorobenzene	μg/L		<20		<50		<100		<10		<5		<20
2,4-Dichlorophenol	μg/L		<10		<30		<60		<6		<3		<10
Pentachlorophenol	μg/L		<40		<100		<200		<20		<10		<40
Phenol	μg/L		150		340		1100		180		<20		110
2,4,6-Trichlorophenol	μg/L		<20		<50		<100		<10		<5		<20
Di-N-butyl phthalate	μg/L		<80		<200		<400		<40		<20		<80
Diethyl phthalate	μg/L		<40		<100		<200		<20		<10		<40
Dimethyl phthalate	μg/L		<40		<100		<200		<20		<10		<40
Benzene	μg/L	1.6	2.0	1.1	<10	<1	<30	2.7	<5	6.9	5.3	7.7	6.0
Ethylbenzene	μg/L	9.0	10.0	6.0	<10	9.0	<30	11.0	13.0	15.0	11.0	20.0	15.0
o-Xylene	μg/L	10.0	9.0	6.4	<10	7.0	<30	8.7	10.0	12.0	6.7	16.0	11.0
p+m-Xylene	μg/L	27.0	24.0	19.0	11.0	20.0	<30	27.0	29.0	32.0	21.0	46.0	32.0
Toluene	μg/L	85.0	76.0	180.0	53.0	88.0	92.0	160.0	270.0	330.0	270.0	230.0	97.0
Dichloromethane	μg/L		160.0		85.0		<100		<30		<13		<25
Vinyl Chloride	μg/L		<2		<20		<50		<10		<5.0		<10

Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date	O.mes	22-Feb-13	13-May-13	21-Aug-13	13-Nov-13	11-Mar-14	05-May-14	28-Jul-14	14-Nov-14	05-Mar-15	27-May-15	30-Jul-15	18-Nov-15
Laboratory		Maxxam											
Benzo(a)pyrene	µg/L		<0.8		<0.8		<40		<20		<100		<80
1,2-Dichlorobenzene	µg/L		<2		<2		<100		<50		<250		<200
1,3-Dichlorobenzene	µg/L		<2		<2		<100		<50		<250		<200
1,4-Dichlorobenzene	µg/L		<2		<2		<100		<50		<250		<200
Hexachlorobenzene	µg/L		<2		<2		<100		<50		<250		<200
1,2,4-Trichlorobenzene	µg/L		<2		<2		<100		<50		<250		<200
2,4-Dichlorophenol	µg/L		<1		<1		<60		<30		<150		<120
Pentachlorophenol	µg/L		<4		<4		<500		<100		<500		<400
Phenol	µg/L		<5		<8		300		110		510		280
2,4,6-Trichlorophenol	µg/L		<2		<2		<100		<50		<250		<200
Di-N-butyl phthalate	µg/L		<8		<8		<400		<200		<1000		<800
Diethyl phthalate	µg/L		6		<4		<200		<100		<500		<400
Dimethyl phthalate	µg/L		<4		<4		<200		<100		<500		<400
Benzene	µg/L	5.5	7.9	8.2	6.6	3.4	3.0	1.2	2.5	3.0	<10	2.0	<10
Ethylbenzene	µg/L	11.0	16.0	18.0	14.0	14.0	13.0	3.4	6.6	11.0	<10	4.3	<10
o-Xylene	μg/L	8.1	11.0	14.0	12.0	13.0	14.0	3.7	6.7	13.0	<10	4.6	<10
p+m-Xylene	μg/L	23.0	35.0	41.0	36.0	36.0	40.0	7.5	16.0	27.0	16.0	10.0	13.0
Toluene	µg/L	47.0	57.0	40.0	20.0	73.0	120.0	25.0	61.0	110.0	67.0	30.0	66.0
Dichloromethane	μg/L		<13		<13		100		<13		<50		<50
Vinyl Chloride	μg/L		<5.0		<5.0		<4.0		<5.0		<20		<20

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date		15-Mar-16	30-May-16	25-Jul-16	03-Nov-16	27-Mar-17	30-May-17	10-Aug-17	20-Oct-17	22-Mar-18	28-May-18	17-Aug-18	08-Nov-18
Laboratory		Maxxam											
Benzo(a)pyrene	μg/L		<0.80		<80		<4.0		<40		<40		<20
1,2-Dichlorobenzene	μg/L		<2.0		<200		<10		<100		<100		<50
1,3-Dichlorobenzene	μg/L		<2.0		<200		<10		<100		<100		<50
1,4-Dichlorobenzene	μg/L		<2.0		<200		<10		<100		<100		<50
Hexachlorobenzene	μg/L		<2.0		<200		<10		<100		<100		<50
1,2,4-Trichlorobenzene	μg/L		<2.0		<200		<10		<100		<100		<50
2,4-Dichlorophenol	μg/L		<1.2		<120		<6.0		<60		<60		<30
Pentachlorophenol	μg/L		<10		<400		<20		<200		<200		<100
Phenol	μg/L		230		<200		14.0		<100		<100		<50
2,4,6-Trichlorophenol	μg/L		<2.0		<200		<10		<100		<100		<50
Di-N-butyl phthalate	μg/L		<8.0		<800		<40		<400		<400		<200
Diethyl phthalate	μg/L		5.6		<400		<20		<200		<200		<100
Dimethyl phthalate	μg/L		<4.0		<400		<20		<200		<200		<100
Benzene	μg/L	1.5	<5.0	4.0	<5.0	3.5	<5.0	3.3	<5.0	<10	3.8	3.3	2.0
Ethylbenzene	μg/L	3.7	5.1	8.6	<5.0	6.4	10.0	8.7	<5.0	<10	10.0	10.0	8.0
o-Xylene	μg/L	5.3	6.1	6.4	<5.0	7.5	11.0	10.0	5.1	<10	11.0	11.0	6.8
p+m-Xylene	μg/L	11.0	14.0	20.0	8.5	17.0	27.0	24.0	11.0	16.0	26.0	24.0	15.0
Toluene	μg/L	84.0	110.0	120.0	210.0	63.0	56.0	56.0	23.0	33.0	51.0	65.0	20.0
Dichloromethane	μg/L		<25		<25		<25				<2.0		<4.0
Vinyl Chloride	μg/L		<10		<10		<10				1.5		<0.40

Parameter	Units	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank	Equalization Tank
Date		08-Jan-19	11-Apr-19	23-Jul-19	07-Nov-19	22-Jan-20	15-May-20	11-Aug-20	11-Nov-20	12-Jan-21	19-May-21	11-Aug-21	04-Nov-21
Laboratory		Maxxam	Maxxam	Bureau Veritas									
Benzo(a)pyrene	μg/L		<20		<2.0		<20		<2.0		<2.0		<2.0
1,2-Dichlorobenzene	μg/L		<50		<5.0		<50		<5.0		<5.0		<5.0
1,3-Dichlorobenzene	μg/L		<50		<5.0		<50		<5.0		<5.0		<5.0
1,4-Dichlorobenzene	μg/L		<50		<5.0		<50		<5.0		<5.0		<5.0
Hexachlorobenzene	μg/L		<50		<5.0		<50		<5.0		<5.0		<5.0
1,2,4-Trichlorobenzene	µg/L		<50		<5.0		<50		<5.0		<5.0		<5.0
2,4-Dichlorophenol	μg/L		<30		<3.0		<30		<3.0		<3.0		<3.0
Pentachlorophenol	μg/L		<100		<10		<100		<10		<10		<10
Phenol	μg/L		<50		9.7		69		21		7.1		39
2,4,6-Trichlorophenol	μg/L		<50		<5.0		<50		<5.0		<5.0		<5.0
Di-N-butyl phthalate	μg/L		<200		<20		<200		<20		<20		<20
Diethyl phthalate	µg/L		<100		<10		<100		<10		<10		<10
Dimethyl phthalate	μg/L		<100		13.0		<100		<10		<10		<10
Benzene	µg/L	3.4	4.6	4.9	2.6	<10	6.1	3.5	2.4	6.5	<10	<10	6.1
Ethylbenzene	μg/L	8.5	16.0	13.0	7.4	17.0	16	9.8	6.6	21	18	13	18
o-Xylene	µg/L	9.2	15.0	15.0	9.3	18.0	21.0	9.7	8.0	22	17	13	16
p+m-Xylene	μg/L	21.0	32.0	35.0	22.0	42.0	45.0	22.0	17.0	48	41	30	39
Toluene	µg/L	34.0	56.0	70.0	57.0	90.0	73.0	93.0	78.0	910	2400	160	200
Dichloromethane	µg/L		<20		94		<20		<20		<100		<20
Vinyl Chloride	μg/L		<2.0		<2.0		<2.0		<2.0		<10		2.6

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter		PS1	PS1								
Farameter	Units	F31	F31	F31	F31	F31	F31	F31	F31		
Date		07-May-14	19-May-15	31-May-16	26-May-17	11-May-18	15-May-19	12-May-20	18-May-21		
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas		
Benzo(a)pyrene	μg/L	<8	<4.0	<4.0	<2.0	<4.0	<4.0	<20	<0.80		
1,2-Dichlorobenzene	μg/L	<20	<10	<10	<5.0	<10	<10	<50	<2.0		
1,3-Dichlorobenzene	μg/L	<20	<10	<10	<5.0	<10	<10	<50	<2.0		
1,4-Dichlorobenzene	μg/L	<20	<10	<10	<5.0	<10	<10	<50	<2.0		
Hexachlorobenzene	μg/L	<20	<10	<10	<5.0	<10	<10	<50	<2.0		
1,2,4-Trichlorobenzene	μg/L	<20	<10	<10	<5.0	<10	<10	<50	<2.0		
2,4-Dichlorophenol	μg/L	<10	<6.0	<6.0	<3.0	<6.0	<6.0	<50	<1.2		
Pentachlorophenol	μg/L	<100	<50	<50	<10	<14	<120	<30	<4.0		
Phenol	μg/L	170	<10	<10	<5.0	16.0	<10	<100	7.2		
2,4,6-Trichlorophenol	μg/L	<20	<10	<10	<5.0	<10	<10	<50	<2.0		
Di-N-butyl phthalate	μg/L	<80	<40	<40	<20	<40	<40	<50	<8.0		
Diethyl phthalate	μg/L	<40	<20	<20	<10	<20	<20	<200	<4.0		
Dimethyl phthalate	μg/L	<40	<20	<20	<10	<20	<20	<100	<4.0		
Benzene	μg/L	<2.0	<0.50	2.8	<10	<10	<2.0	<2.0	<10		
Ethylbenzene	μg/L	4.9	<0.50	5.5	<10	11.0	2.8	2.4	<10		
o-Xylene	μg/L	<2.0	<0.50	6.3	<10	12.0	2.6	2.5	<10		
p+m-Xylene	μg/L	2.8	<0.50	15	<10	25.0	9.0	6.3	<10		
Toluene	μg/L	20.0	5.0	37.0	12.0	44.0	7.7	6.3	16		
Dichloromethane	μg/L	40.0	<2.5	<13	<100	<100	<20	<20	<100		
/inyl Chloride	µg/L	<4.0	<1.0	<5.0	<10	<10	<2.0	<2.0	<10		

Parameter	Units	PS3	P53	PS3	PS3	PS3	PS3	PS3	PS3		
Date		07-May-14	27-May-15	31-May-16	26-May-17	11-May-18	15-May-19	12-May-20	19-May-21		
Laboratory		Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Maxxam	Bureau Veritas	Bureau Veritas		
Benzo(a)pyrene	μg/L	<3	<10	<4.0	<2.0	<2.0	<0.80	<20	<2.0		
1,2-Dichlorobenzene	μg/L	<8	<25	<10	<5.0	<5.0	<2.0	<50	<5.0		
1,3-Dichlorobenzene	μg/L	<8	<25	<10	<5.0	<5.0	<2.0	<50	<5.0		
1,4-Dichlorobenzene	μg/L	<8	<25	<10	<5.0	<5.0	<2.0	<50	<5.0		
Hexachlorobenzene	μg/L	<8	<25	<10	<5.0	<5.0	<2.0	<50	<5.0		
1,2,4-Trichlorobenzene	μg/L	<8	<25	<10	<5.0	<5.0	<2.0	<50	<5.0		
2,4-Dichlorophenol	μg/L	<5	<15	<6.0	<3.0	<3.0	<1.2	<30	<3.0		
Pentachlorophenol	μg/L	<20	<50	<50	<10	<70	<25	<100	<10		
Phenol	μg/L	290.0	<25	490.0	<5.0	<5.0	<2.0	<50	<5.0		
2,4,6-Trichlorophenol	μg/L	<8	<25	<10	<5.0	<5.0	<2.0	<50	<5.0		
Di-N-butyl phthalate	μg/L	<30	<100	<40	<20	<20	<8.0	<200	<20		
Diethyl phthalate	μg/L	43.0	<50	24.0	<10	<10	<4.0	<100	<10		
Dimethyl phthalate	μg/L	<20	<50	<20	<10	<10	<4.0	<2.0	<10		
Benzene	μg/L	<5.0	4.9	<25	<10	<10	4.3	<2.0	<10		
Ethylbenzene	μg/L	<5.0	9.3	<25	<10	<10	3.6	<2.0	<10		
o-Xylene	μg/L	6.6	12.0	<25	<10	<10	3.7	<2.0	<10		
p+m-Xylene	μg/L	13.0	24.0	26.0	<10	<10	7.2	<2.0	<10		
Toluene	μg/L	120.0	52.0	180.0	<10	<10	68.0	2.4	<10		
Dichloromethane	μg/L	470.0	<5.0	<130	<100	<100	<20	<20	<100		
Vinyl Chloride	μg/L	<10	3.4	<50	<10	<10	<2.0	<2.0	<10		

Table G-3 Leachate - Organic Analytical Results - Compliance Monitoring Twin Creeks Environmental Centre

Parameter	Units	PS5	PS5					
Date	Offics	12-May-20	19-May-21					
Laboratory		Bureau Veritas	Bureau Veritas					
Benzo(a)pyrene	μg/L	<20	<0.20					
1,2-Dichlorobenzene	μg/L	<50	<0.50					
1,3-Dichlorobenzene	μg/L	<50	<0.50					
1,4-Dichlorobenzene	μg/L	<50	<1.0					
Hexachlorobenzene	μg/L	<50	<0.50					
1,2,4-Trichlorobenzene	μg/L	<50	<0.50					
2,4-Dichlorophenol	μg/L	<30	<0.30					
Pentachlorophenol	μg/L	<100	<1.0					
Phenol	μg/L	800	<3.0					
2,4,6-Trichlorophenol	μg/L	<50	<0.50					
Di-N-butyl phthalate	μg/L	<200	<2.0					
Diethyl phthalate	μg/L	<100	1					
Dimethyl phthalate	μg/L	<100	<1.0					
Benzene	μg/L	2.5	4.3					
Ethylbenzene	μg/L	7.3	10					
o-Xylene	μg/L	9.2	9.2					
p+m-Xylene	μg/L	19	22					
Toluene	μg/L	87	1700					
Dichloromethane	μg/L	<20	<20					
Vinyl Chloride	μg/L	<2.0	2.2					

APPENDIX G4:

Laboratory Reports

Your P.O. #: 10123733

Your Project #: 2101781-1000

Site#: 500

Site Location: ON07 Your C.O.C. #: na

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5

> Report Date: 2021/01/20 Report #: R6487711

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C110351 Received: 2021/01/14, 09:45

Sample Matrix: Leachate # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Biochemical Oxygen Demand (BOD)	1	2021/01/15	2021/01/20	CAM SOP-00427	SM 23 5210B m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/01/19	CAM SOP-00446	SM 23 5310 B m
рН	1	2021/01/15	2021/01/15	CAM SOP-00413	SM 4500H+ B m
Total Kjeldahl Nitrogen in Water	1	2021/01/15	2021/01/19	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	1	2021/01/18	2021/01/19	CAM SOP-00407	SM 23 4500 B F m
Volatile Organic Compounds in Water	1	N/A	2021/01/17	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5 Your P.O. #: 10123733 Your Project #: 2101781-1000

Site#: 500

Site Location: ON07 Your C.O.C. #: na

Report Date: 2021/01/20

Report #: R6487711 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C110351 Received: 2021/01/14, 09:45

Encryption Key

Keshani Vijh Sample Enry Technician 20 Jan 2021 18:19:43

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Keshani Vijh, Sample Enry Technician Email: Keshani.vijh@bureauveritas.com

Phone# (905)817-5733

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: MSA

RESULTS OF ANALYSES OF LEACHATE

BV Labs ID		OPK150			OPK150		
Sampling Date		2021/01/12			2021/01/12		
COC Number		na			na		
	UNITS	EQUALIZATION TANK	RDL	QC Batch	EQUALIZATION TANK Lab-Dup	RDL	QC Batch
Inorganics							
Total BOD	mg/L	510	2	7151932			
Total Kjeldahl Nitrogen (TKN)	mg/L	1400	50	7153053			
Dissolved Organic Carbon	mg/L	750	4	7155857	770	4	7155857
рН	рН	7.50		7150583			
Total Phosphorus	mg/L	6.8	0.40	7155653	_		

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: MSA

VOLATILE ORGANICS BY GC/MS (LEACHATE)

BV Labs ID		OPK150		
Sampling Date		2021/01/12		
COC Number		na		
	UNITS	EQUALIZATION TANK	RDL	QC Batch
Volatile Organics				
Benzene	ug/L	6.5	2.0	7152070
1,4-Dichlorobenzene	ug/L	<4.0	4.0	7152070
Ethylbenzene	ug/L	21	2.0	7152070
Methylene Chloride(Dichloromethane)	ug/L	<20	20	7152070
Toluene	ug/L	910	2.0	7152070
Vinyl Chloride	ug/L	2.9	2.0	7152070
p+m-Xylene	ug/L	48	2.0	7152070
o-Xylene	ug/L	22	2.0	7152070
Total Xylenes	ug/L	69	2.0	7152070
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	96		7152070
D4-1,2-Dichloroethane	%	109		7152070
D8-Toluene	%	94		7152070
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: MSA

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	-0.3°C

Sample OPK150 [EQUALIZATION TANK]: VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: MSA

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7152070	4-Bromofluorobenzene	2021/01/15	99	70 - 130	101	70 - 130	97	%				
7152070	D4-1,2-Dichloroethane	2021/01/15	102	70 - 130	99	70 - 130	102	%				
7152070	D8-Toluene	2021/01/15	105	70 - 130	104	70 - 130	96	%				
7150583	рН	2021/01/15			103	98 - 103			1.1 (1)	N/A		
7151932	Total BOD	2021/01/20					<2	mg/L	2.6 (1)	30	91	80 - 120
7152070	1,4-Dichlorobenzene	2021/01/15	112	70 - 130	114	70 - 130	<0.40	ug/L	NC (1)	30		
7152070	Benzene	2021/01/15	96	70 - 130	94	70 - 130	<0.20	ug/L	NC (1)	30		
7152070	Ethylbenzene	2021/01/15	94	70 - 130	95	70 - 130	<0.20	ug/L	NC (1)	30		
7152070	Methylene Chloride(Dichloromethane)	2021/01/15	101	70 - 130	98	70 - 130	<2.0	ug/L	NC (1)	30		
7152070	o-Xylene	2021/01/15	93	70 - 130	97	70 - 130	<0.20	ug/L	NC (1)	30		
7152070	p+m-Xylene	2021/01/15	99	70 - 130	102	70 - 130	<0.20	ug/L	NC (1)	30		
7152070	Toluene	2021/01/15	100	70 - 130	98	70 - 130	<0.20	ug/L	NC (1)	30		
7152070	Total Xylenes	2021/01/15					<0.20	ug/L	NC (1)	30		
7152070	Vinyl Chloride	2021/01/15	101	70 - 130	97	70 - 130	<0.20	ug/L				
7153053	Total Kjeldahl Nitrogen (TKN)	2021/01/19	NC	80 - 120	100	80 - 120	<0.7	mg/L	3.0 (2,1)	20	101	80 - 120
7155653	Total Phosphorus	2021/01/19	102	80 - 120	103	80 - 120	<0.030	mg/L	0.75 (1)	25	103	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: MSA

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7155857	Dissolved Organic Carbon	2021/01/19	NC (3)	80 - 120	96	80 - 120	<0.4	mg/L	2.3 (4)	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) TKN < NH4: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.
- (3) Matrix Spike Parent ID [OPK150-04]
- (4) Duplicate Parent ID [OPK150-04]

Report Date: 2021/01/20

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: MSA

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 10123733 Your Project #: 2101781-1000

> Report Date: 2021/07/13 Report #: R6717141 Version: 3 - Revision

Site#: 500

Site Location: ON07 Your C.O.C. #: N/A

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1D8133 Received: 2021/05/21, 10:45

Sample Matrix: Leachate # Samples Received: 2

# Samples Received: 2		Data	Data		
Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2021/05/28	2021/06/01	CAM SOP-00301	EPA 8270 m
Alkalinity	1	N/A	2021/05/25	CAM SOP-00448	SM 23 2320 B m
Biochemical Oxygen Demand (BOD)	2	2021/05/22	2021/05/27	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2021/05/25	CAM SOP-00463	SM 23 4500-Cl E m
Chemical Oxygen Demand	1	N/A	2021/05/27	CAM SOP-00416	SM 23 5220 D m
Conductance in Water - On-site	2	N/A	2021/05/31		
Conductivity	1	N/A	2021/05/25	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/05/26	CAM SOP-00446	SM 23 5310 B m
Field Measured Dissolved Oxygen in Water	2	N/A	2021/05/31		
Mercury in Water by CVAA	1	2021/05/31	2021/05/31	CAM SOP-00453	EPA 7470A m
Total Metals by ICPMS	1	N/A	2021/06/09	CAM SOP-00447	EPA 6020B m
Total Ammonia-N	1	N/A	2021/05/27	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	1	N/A	2021/05/25	CAM SOP-00440	SM 23 4500-NO3I/NO2B
pH	2	2021/05/21	2021/05/25	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2021/05/26	CAM SOP-00444	OMOE E3179 m
Field Measured pH (3)	2	N/A	2021/05/21		Field pH Meter
Sulphate by Automated Colourimetry	1	N/A	2021/05/25	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	1	2021/05/22	2021/05/25	CAM SOP-00428	SM 23 2540C m
Field Temperature (3)	2	N/A	2021/05/21		Field Thermometer
Total Kjeldahl Nitrogen in Water	2	2021/05/25	2021/05/27	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	1	2021/05/25	2021/05/26	CAM SOP-00407	SM 23 4500 B F m
Total Phosphorus (Colourimetric)	1	2021/05/26	2021/05/26	CAM SOP-00407	SM 23 4500 B F m
Low Level Total Suspended Solids	1	2021/05/22	2021/05/25	CAM SOP-00428	SM 23 2540D m
Turbidity - On-site	2	N/A	2021/05/31		
Un-ionized Ammonia	1	2021/05/21	2021/05/27	Auto Calc.	PWQO
Volatile Organic Compounds in Water	2	N/A	2021/05/27	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5 Your P.O. #: 10123733 Your Project #: 2101781-1000

Site#: 500

Site Location: ON07 Your C.O.C. #: N/A

Report Date: 2021/07/13

Report #: R6717141 Version: 3 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1D8133 Received: 2021/05/21, 10:45

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) This is a field test, therefore, the results relate to items that were not analysed at Bureau Veritas Laboratories.

Encryption Key

Patricia Legette Project Manager 13 Jul 2021 17:14:34

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

RESULTS OF ANALYSES OF LEACHATE

BV Labs ID		PQC038			PQC039		
Sampling Date		2021/05/19			2021/05/19		
COC Number		N/A			N/A		
	UNITS	EQUALIZATION TANK SEMI ANNUAL	RDL	QC Batch	EQUALIZATION TANK QUARTERLY	RDL	QC Batch
Calculated Parameters							
Total Un-ionized Ammonia	mg/L	32	0.09	7365762			
Field Measurements			•			•	
Field Conductivity	uS/cm	19.95	N/A	ONSITE	19.95	N/A	ONSITE
Field Dissolved Oxygen	mg/L	1.22	N/A	ONSITE	1.22	N/A	ONSITE
Field Temperature	Celsius	16.2	N/A	ONSITE	16.2	N/A	ONSITE
Field Turbidity	NTU	223.0	N/A	ONSITE	223.0	N/A	ONSITE
Field Measured pH	рН	7.7		ONSITE	7.7		ONSITE
Inorganics	-						
Total Ammonia-N	mg/L	1800 (1)	5.0	7369232			
Total BOD	mg/L	410	2	7367736	370	2	7367736
Total Chemical Oxygen Demand (COD)	mg/L	2600	120	7369120			
Conductivity	umho/cm	21000	1.0	7366624			
Total Dissolved Solids	mg/L	8280	20	7367699			
Total Kjeldahl Nitrogen (TKN)	mg/L	1500 (1)	50	7370377	1500	50	7370377
Dissolved Organic Carbon	mg/L				800	8	7369985
PΗ	рН	7.76		7366635	7.59		7366666
Phenols-4AAP	mg/L	0.26	0.010	7369682			
Total Phosphorus	mg/L	9.3	0.40	7369096	9.5	0.40	7369096
Total Suspended Solids	mg/L	45	5	7367623			
Dissolved Sulphate (SO4)	mg/L	<20 (2)	20	7366782			
Alkalinity (Total as CaCO3)	mg/L	10000	10	7366598			
Dissolved Chloride (Cl-)	mg/L	2200	20	7366774			
Nitrite (N)	mg/L	<0.10	0.10	7366905			
Nitrate (N)	mg/L	<1.0	1.0	7366905			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

- (1) TKN < NH4: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.
- (2) Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

BV Labs ID		PQC038			PQC038		
Sampling Date		2021/05/19			2021/05/19		
COC Number		N/A			N/A		
	UNITS	EQUALIZATION TANK SEMI ANNUAL	RDL	QC Batch	EQUALIZATION TANK SEMI ANNUAL Lab-Dup	RDL	QC Batch
Metals							
Mercury (Hg)	mg/L	<0.003	0.003	7379734	<0.003	0.003	7379734
Total Arsenic (As)	mg/L	0.12	0.005	7398083			
Total Barium (Ba)	mg/L	0.38	0.03	7398083			
Total Boron (B)	mg/L	24	0.1	7398083			
Total Cadmium (Cd)	mg/L	<0.0005	0.0005	7398083			
Total Calcium (Ca)	mg/L	89	1	7398083			
Total Chromium (Cr)	mg/L	0.53	0.03	7398083			
Total Copper (Cu)	mg/L	<0.01	0.01	7398083			
Total Iron (Fe)	mg/L	3.2	0.5	7398083			
Total Lead (Pb)	mg/L	0.005	0.003	7398083			
Total Magnesium (Mg)	mg/L	280	0.3	7398083			
Total Manganese (Mn)	mg/L	0.17	0.01	7398083			
Total Nickel (Ni)	mg/L	0.35	0.005	7398083			
Total Potassium (K)	mg/L	660	1	7398083			
Total Sodium (Na)	mg/L	2000	0.5	7398083			
Total Zinc (Zn)	mg/L	0.23	0.05	7398083			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

SEMI-VOLATILE ORGANICS BY GC-MS (LEACHATE)

BV Labs ID		PQC038							
Sampling Date		2021/05/19							
COC Number		N/A							
	UNITS	EQUALIZATION TANK SEMI ANNUAL	RDL	QC Batch					
Semivolatile Organics									
Benzo(a)pyrene	ug/L	<2.0	2.0	7377505					
1,2-Dichlorobenzene	ug/L	<5.0	5.0	7377505					
1,3-Dichlorobenzene	ug/L	<5.0	5.0	7377505					
1,4-Dichlorobenzene	ug/L	<5.0	5.0	7377505					
Hexachlorobenzene	ug/L	<5.0	5.0	7377505					
1,2,4-Trichlorobenzene	ug/L	<5.0	5.0	7377505					
2,4-Dichlorophenol	ug/L	<3.0	3.0	7377505					
Pentachlorophenol	ug/L	<10	10	7377505					
Phenol	ug/L	7.1	5.0	7377505					
2,4,6-Trichlorophenol	ug/L	<5.0	5.0	7377505					
Di-N-butyl phthalate	ug/L	<20	20	7377505					
Diethyl phthalate	ug/L	<10	10	7377505					
Dimethyl phthalate	ug/L	<10	10	7377505					
Surrogate Recovery (%)			-						
2,4,6-Tribromophenol	%	103		7377505					
2-Fluorobiphenyl	%	40		7377505					
2-Fluorophenol	%	20		7377505					
D14-Terphenyl	%	73		7377505					
D5-Nitrobenzene	%	46		7377505					
D5-Phenol	%	16		7377505					
RDL = Reportable Detection Limit QC Batch = Quality Control Batch									

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

VOLATILE ORGANICS BY GC/MS (LEACHATE)

BV Labs ID		PQC038	PQC039		
Sampling Date		2021/05/19	2021/05/19		
COC Number		N/A	N/A		
	UNITS	EQUALIZATION TANK SEMI ANNUAL	EQUALIZATION TANK QUARTERLY	RDL	QC Batch
Volatile Organics					
Benzene	ug/L	<10	<10	10	7367700
1,4-Dichlorobenzene	ug/L	<20	<20	20	7367700
Ethylbenzene	ug/L	18	17	10	7367700
Methylene Chloride(Dichloromethane)	ug/L	<100	<100	100	7367700
Toluene	ug/L	2400	2300	10	7367700
Vinyl Chloride	ug/L	<10	<10	10	7367700
p+m-Xylene	ug/L	41	40	10	7367700
o-Xylene	ug/L	17	17	10	7367700
Total Xylenes	ug/L	58	57	10	7367700
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	90	89		7367700
D4-1,2-Dichloroethane	%	109	109		7367700
D8-Toluene	%	95	95		7367700
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	0.3°C
Package 2	0.7°C
Package 3	1.7°C
Package 4	1.0°C

Revised Report (2021/07/13): Chromium has been reported under Metals scan in this CofA.

Sample PQC038 [EQUALIZATION TANK SEMI ANNUAL]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

TKN < Ammonia: Both values fall within the method uncertainty for duplicates and are likely equivalent.

VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly.

Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

ABN analysis: Due to the nature of the sample matrix, a smaller than usual portion of the sample was used for extraction. Detection limits were adjusted accordingly.

Sample PQC039 [EQUALIZATION TANK QUARTERLY]: VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7367700	4-Bromofluorobenzene	2021/05/27	99	70 - 130	99	70 - 130	95	%				
7367700	D4-1,2-Dichloroethane	2021/05/27	105	70 - 130	102	70 - 130	104	%				
7367700	D8-Toluene	2021/05/27	103	70 - 130	104	70 - 130	97	%				
7377505	2,4,6-Tribromophenol	2021/05/31	106	10 - 130	109	10 - 130	81	%				
7377505	2-Fluorobiphenyl	2021/05/31	70	30 - 130	81	30 - 130	74	%				
7377505	2-Fluorophenol	2021/05/31	40	10 - 130	43	10 - 130	35	%				
7377505	D14-Terphenyl	2021/05/31	97	30 - 130	97	30 - 130	84	%				
7377505	D5-Nitrobenzene	2021/05/31	87	30 - 130	94	30 - 130	87	%				
7377505	D5-Phenol	2021/05/31	25	10 - 130	26	10 - 130	22	%				
7366598	Alkalinity (Total as CaCO3)	2021/05/25			96	85 - 115	<1.0	mg/L	0.49 (1)	20		
7366624	Conductivity	2021/05/25			99	85 - 115	<1.0	umho/c m	0.080 (1)	25		
7366635	рН	2021/05/25			102	98 - 103			0.054 (1)	N/A		
7366666	рН	2021/05/25			102	98 - 103			0.14 (1)	N/A		
7366774	Dissolved Chloride (Cl-)	2021/05/25	112	80 - 120	103	80 - 120	<1.0	mg/L	4.2 (1)	20		
7366782	Dissolved Sulphate (SO4)	2021/05/25	NC	75 - 125	104	80 - 120	<1.0	mg/L	1.4 (1)	20		
7366905	Nitrate (N)	2021/05/25	105	80 - 120	106	80 - 120	<0.10	mg/L	NC (1)	20		
7366905	Nitrite (N)	2021/05/25	108	80 - 120	108	80 - 120	<0.010	mg/L				
7367623	Total Suspended Solids	2021/05/25					<1	mg/L	8.0 (1)	25	98	85 - 115
7367699	Total Dissolved Solids	2021/05/25					<10	mg/L	12 (1)	25	102	90 - 110
7367700	1,4-Dichlorobenzene	2021/05/27	105	70 - 130	104	70 - 130	<0.40	ug/L	NC (1)	30		
7367700	Benzene	2021/05/27	89	70 - 130	88	70 - 130	<0.20	ug/L	NC (1)	30		
7367700	Ethylbenzene	2021/05/27	86	70 - 130	86	70 - 130	<0.20	ug/L	NC (1)	30		
7367700	Methylene Chloride(Dichloromethane)	2021/05/27	95	70 - 130	94	70 - 130	<2.0	ug/L	NC (1)	30		
7367700	o-Xylene	2021/05/27	83	70 - 130	85	70 - 130	<0.20	ug/L	NC (1)	30		
7367700	p+m-Xylene	2021/05/27	90	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30		
7367700	Toluene	2021/05/27	89	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7367700	Total Xylenes	2021/05/27					<0.20	ug/L	NC (1)	30		
7367700	Vinyl Chloride	2021/05/27	93	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7367736	Total BOD	2021/05/27					<2	mg/L	NC (1)	30	96	80 - 120

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPI	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7369096	Total Phosphorus	2021/05/26	101	80 - 120	100	80 - 120	<0.030	mg/L	0.42 (1)	25	100	N/A
7369120	Total Chemical Oxygen Demand (COD)	2021/05/25	103	80 - 120	105	80 - 120	<4.0	mg/L	NC (1)	20		
7369232	Total Ammonia-N	2021/05/27	91	75 - 125	100	80 - 120	<0.050	mg/L	0.68 (1)	20		
7369682	Phenols-4AAP	2021/05/26	104	80 - 120	100	80 - 120	<0.0010	mg/L	NC (1)	20		
7369985	Dissolved Organic Carbon	2021/05/26	88	80 - 120	95	80 - 120	<0.4	mg/L	0.33 (1)	20		
7370377	Total Kjeldahl Nitrogen (TKN)	2021/05/26	113	80 - 120	99	80 - 120	<0.7	mg/L	1.2 (1)	20	95	80 - 120
7377505	1,2,4-Trichlorobenzene	2021/05/31	62	30 - 130	76	30 - 130	<0.50	ug/L				
7377505	1,2-Dichlorobenzene	2021/05/31	58	30 - 130	74	30 - 130	<0.50	ug/L				
7377505	1,3-Dichlorobenzene	2021/05/31	56	30 - 130	72	30 - 130	<0.50	ug/L				
7377505	1,4-Dichlorobenzene	2021/05/31	59	30 - 130	74	30 - 130	<0.50	ug/L				
7377505	2,4,6-Trichlorophenol	2021/05/31	94	10 - 130	96	10 - 130	<0.50	ug/L				
7377505	2,4-Dichlorophenol	2021/05/31	82	10 - 130	103	10 - 130	<0.30	ug/L				
7377505	Benzo(a)pyrene	2021/05/31	93	30 - 130	91	30 - 130	<0.20	ug/L				
7377505	Diethyl phthalate	2021/05/31	109	30 - 130	109	30 - 130	<1.0	ug/L				
7377505	Dimethyl phthalate	2021/05/31	102	30 - 130	101	30 - 130	<1.0	ug/L				
7377505	Di-N-butyl phthalate	2021/06/01	107	30 - 130	112	30 - 130	<2.0	ug/L	NC (1)	40		
7377505	Hexachlorobenzene	2021/05/31	104	30 - 130	106	30 - 130	<0.50	ug/L				
7377505	Pentachlorophenol	2021/05/31	96	10 - 130	58	10 - 130	<1.0	ug/L				
7377505	Phenol	2021/05/31	28	10 - 130	29	10 - 130	<0.50	ug/L				
7379734	Mercury (Hg)	2021/05/31	94 (2)	75 - 125	100	80 - 120	<0.0002	mg/L	NC (3)	20		
7398083	Total Arsenic (As)	2021/06/09	100	80 - 120	97	80 - 120	<0.001	mg/L				
7398083	Total Barium (Ba)	2021/06/09	98	80 - 120	97	80 - 120	<0.005	mg/L				
7398083	Total Boron (B)	2021/06/09	97	80 - 120	93	80 - 120	<0.02	mg/L	0.95 (1)	20		
7398083	Total Cadmium (Cd)	2021/06/09	103	80 - 120	100	80 - 120	<0.0001	mg/L				
7398083	Total Calcium (Ca)	2021/06/09	NC	80 - 120	99	80 - 120	<0.2	mg/L	2.7 (1)	20		
7398083	Total Chromium (Cr)	2021/06/09	98	80 - 120	96	80 - 120	<0.005	mg/L	NC (1)	20		
7398083	Total Copper (Cu)	2021/06/09	101	80 - 120	98	80 - 120	<0.002	mg/L				
7398083	Total Iron (Fe)	2021/06/09	96	80 - 120	94	80 - 120	<0.1	mg/L	0.0045 (1)	20		
7398083	Total Lead (Pb)	2021/06/09	100	80 - 120	100	80 - 120	<0.0005	mg/L				
7398083	Total Magnesium (Mg)	2021/06/09	NC	80 - 120	95	80 - 120	<0.05	mg/L	3.4 (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7398083	Total Manganese (Mn)	2021/06/09	98	80 - 120	97	80 - 120	<0.002	mg/L				
7398083	Total Nickel (Ni)	2021/06/09	97	80 - 120	98	80 - 120	<0.001	mg/L	3.9 (1)	20		
7398083	Total Potassium (K)	2021/06/09	96	80 - 120	94	80 - 120	<0.2	mg/L	2.4 (1)	20		
7398083	Total Sodium (Na)	2021/06/09	NC	80 - 120	97	80 - 120	<0.1	mg/L	2.1 (1)	20		
7398083	Total Zinc (Zn)	2021/06/09	100	80 - 120	102	80 - 120	<0.01	mg/L	NC (1)	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [PQC038-08]
- (3) Duplicate Parent ID [PQC038-08]

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Anastassia Hamanov, Scientific Specialist

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 10123733

Your Project #: 2101781-1000

Site#: 500

Site Location: ON07 Your C.O.C. #: N/A

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5

Report Date: 2021/06/09

Report #: R6668727 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1D6502 Received: 2021/05/20, 10:30

Sample Matrix: Leachate # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	2	2021/05/26	2021/05/27	CAM SOP-00301	EPA 8270 m
ABN Compounds in Water by GC/MS	3	2021/05/26	2021/05/28	CAM SOP-00301	EPA 8270 m
Alkalinity	5	N/A	2021/05/21	CAM SOP-00448	SM 23 2320 B m
Biochemical Oxygen Demand (BOD)	5	2021/05/22	2021/05/27	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	5	N/A	2021/05/21	CAM SOP-00463	SM 23 4500-Cl E m
Chemical Oxygen Demand	4	N/A	2021/05/21	CAM SOP-00416	SM 23 5220 D m
Chemical Oxygen Demand	1	N/A	2021/05/25	CAM SOP-00416	SM 23 5220 D m
Conductance in Water - On-site	5	N/A	2021/05/27		
Conductivity	5	N/A	2021/05/21	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	5	N/A	2021/05/26	CAM SOP-00446	SM 23 5310 B m
Field Measured Dissolved Oxygen in Water	5	N/A	2021/05/27		
Mercury in Water by CVAA	5	2021/05/25	2021/05/25	CAM SOP-00453	EPA 7470A m
Total Metals by ICPMS	5	N/A	2021/05/27	CAM SOP-00447	EPA 6020B m
Ammonia-N	5	N/A	2021/05/26	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	5	N/A	2021/05/21	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	5	2021/05/20	2021/05/21	CAM SOP-00413	SM 4500H+ B m
Phenol (4AAP)	5	N/A	2021/05/25	CAM SOP-00444	OMOE E3179 m
Field Measured pH (3)	5	N/A	2021/05/20		Field pH Meter
Sulphate by Automated Colourimetry	5	N/A	2021/05/21	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	5	2021/05/21	2021/05/25	CAM SOP-00428	SM 23 2540C m
Field Temperature (3)	5	N/A	2021/05/20		Field Thermometer
Total Kjeldahl Nitrogen in Water	5	2021/05/25	2021/05/27	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	5	2021/05/25	2021/05/26	CAM SOP-00407	SM 23 4500 B F m
Total Suspended Solids	1	2021/05/25	2021/05/26	CAM SOP-00428	SM 23 2540D m
Low Level Total Suspended Solids	4	2021/05/22	2021/05/25	CAM SOP-00428	SM 23 2540D m
Turbidity - On-site	5	N/A	2021/05/27		
Un-ionized Ammonia	5	2021/05/20	2021/05/27	Auto Calc.	PWQO
Volatile Organic Compounds in Water	5	N/A	2021/05/25	CAM SOP-00228	EPA 8260C m
· ·					

Remarks:

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5 Your P.O. #: 10123733

Your Project #: 2101781-1000

Site#: 500

Site Location: ON07 Your C.O.C. #: N/A

Report Date: 2021/06/09

Report #: R6668727 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1D6502

Received: 2021/05/20, 10:30

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) This is a field test, therefore, the results relate to items that were not analysed at Bureau Veritas Laboratories.

Encryption Key

Patricia Legette Project Manager 09 Jun 2021 16:14:01

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 13

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

RESULTS OF ANALYSES OF LEACHATE

BV Labs ID		PPT229			PPT229			PPT230		
Sampling Date		2021/05/18			2021/05/18			2021/05/18		
COC Number		N/A			N/A			N/A		
	UNITS	MH18	RDL	QC Batch	MH18 Lab-Dup	RDL	QC Batch	LDUP	RDL	QC Batch
Calculated Parameters										
Total Un-ionized Ammonia	mg/L	43	0.78	7363358				43	0.78	7363358
Field Measurements	,									
Field Conductivity	uS/cm	9190	N/A	ONSITE				9190	N/A	ONSITE
Field Dissolved Oxygen	mg/L	2.71	N/A	ONSITE				2.71	N/A	ONSITE
Field Temperature	Celsius	15.4	N/A	ONSITE				15.4	N/A	ONSITE
Field Turbidity	NTU	28.5	N/A	ONSITE				28.5	N/A	ONSITE
Field Measured pH	рН	8.2		ONSITE				8.2		ONSITE
Inorganics	•									
Total Ammonia-N	mg/L	826	15	7369591				826 (1)	15	7369591
Total BOD	mg/L	180	2	7367402				190	2	7367402
Total Chemical Oxygen Demand (COD)	mg/L	750	20	7366016				740	20	7366608
Conductivity	umho/cm	9000	1.0	7364160				9300	1.0	7364160
Total Dissolved Solids	mg/L	3070	20	7365292				3070	20	7365292
Total Kjeldahl Nitrogen (TKN)	mg/L	830	20	7369586				710 (1)	20	7369586
Dissolved Organic Carbon	mg/L	240	2	7369140				250	2	7369140
рН	рН	8.05		7364161				8.03		7364161
Phenols-4AAP	mg/L	0.078	0.040	7365284	0.079	0.040	7365284	<0.080 (2)	0.080	7365284
Total Phosphorus	mg/L	1.7	0.40	7369096				1.7	0.40	7369096
Total Suspended Solids	mg/L	13	1	7367623				10	1	7367623
Dissolved Sulphate (SO4)	mg/L	100 (3)	10	7364201				97 (3)	10	7364201
Alkalinity (Total as CaCO3)	mg/L	5000	5.0	7364154				5500	5.0	7364154
Dissolved Chloride (Cl-)	mg/L	250	10	7364197				280	10	7364197
Nitrite (N)	mg/L	<0.050	0.050	7364414				<0.050	0.050	7364414
Nitrate (N)	mg/L	<0.50	0.50	7364414				<0.50	0.50	7364414

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

- (1) TKN < NH4: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.
- (2) Detection Limit was raised due to matrix interferences.
- (3) Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

V Labs Job #: C1D6502 eport Date: 2021/06/09

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

RESULTS OF ANALYSES OF LEACHATE

BV Labs ID		PPT231			PPT232			PPT233		
Sampling Date		2021/05/18			2021/05/18			2021/05/18		
COC Number		N/A			N/A			N/A		
	UNITS	SUMP	RDL	QC Batch	CFA-COMP	RDL	QC Batch	PS1	RDL	QC Batch
Calculated Parameters										
Total Un-ionized Ammonia	mg/L	0.69	0.015	7363358	1.9	0.046	7363358	25	0.21	7363358
Field Measurements			•	-						
Field Conductivity	uS/cm	9260	N/A	ONSITE	6590	N/A	ONSITE	20000	N/A	ONSITE
Field Dissolved Oxygen	mg/L	2.88	N/A	ONSITE	4.88	N/A	ONSITE	0.52	N/A	ONSITE
Field Temperature	Celsius	14.2	N/A	ONSITE	20.2	N/A	ONSITE	28.5	N/A	ONSITE
Field Turbidity	NTU	>1000	N/A	ONSITE	194.0	N/A	ONSITE	>1000	N/A	ONSITE
Field Measured pH	рН	6.8		ONSITE	7.1		ONSITE	7.2		ONSITE
Inorganics				-	_					
Total Ammonia-N	mg/L	349 (1)	7.5	7369591	302 (1)	7.5	7369591	1780	15	7369591
Total BOD	mg/L	37	2	7367402	38	2	7367402	940	2	7367402
Total Chemical Oxygen Demand (COD)	mg/L	450	20	7366608	330	12	7366016	4100	120	7366608
Conductivity	umho/cm	8900	1.0	7364160	6300	1.0	7364160	23000	1.0	7364160
Total Dissolved Solids	mg/L	3560	20	7365292	2400	10	7365292	8920	20	7365292
Total Kjeldahl Nitrogen (TKN)	mg/L	340 (1)	10	7369586	300 (1)	10	7369586	2200	50	7369586
Dissolved Organic Carbon	mg/L	140	2	7369140	110	2	7369140	890	8	7369140
рН	рН	7.29		7364161	7.57		7364161	7.64		7364161
PhenoIs-4AAP	mg/L	<0.020 (2)	0.020	7365284	<0.020 (2)	0.020	7365284	0.046	0.040	7365284
Total Phosphorus	mg/L	1.2	0.10	7369096	1.2	0.10	7369096	65	2.0	7369096
Total Suspended Solids	mg/L	270	5	7367623	180	5	7367623	18000	1000	7369348
Dissolved Sulphate (SO4)	mg/L	<1.0	1.0	7364201	190	1.0	7364201	<100 (3)	100	7364201
Alkalinity (Total as CaCO3)	mg/L	2900	5.0	7364154	2900	5.0	7364154	7800	5.0	7364154
Dissolved Chloride (Cl-)	mg/L	1500	20	7364197	590	6.0	7364197	3300	100	7364197
Nitrite (N)	mg/L	<0.050	0.050	7364414	0.095	0.010	7364414	<0.20	0.20	7364414
Nitrate (N)	mg/L	<0.50	0.50	7364414	0.13	0.10	7364414	<2.0	2.0	7364414

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

- (1) TKN < NH4: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.
- (2) Detection Limit was raised due to matrix interferences.
- (3) Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

BV Labs ID		PPT229			PPT229			PPT230		
Sampling Date		2021/05/18			2021/05/18			2021/05/18		
COC Number		N/A			N/A			N/A		
	UNITS	MH18	RDL	QC Batch	MH18 Lab-Dup	RDL	QC Batch	LDUP	RDL	QC Batch
Metals										
Mercury (Hg)	mg/L	<0.0015 (1)	0.0015	7368718				<0.0015 (1)	0.0015	7368718
Total Arsenic (As)	mg/L	0.02	0.01	7370960	0.02	0.01	7370960	0.02	0.01	7370960
Total Barium (Ba)	mg/L	0.06	0.05	7370960	0.06	0.05	7370960	0.06	0.05	7370960
Total Beryllium (Be)	mg/L	<0.006	0.006	7370960	<0.006	0.006	7370960	<0.006	0.006	7370960
Total Boron (B)	mg/L	75	1	7370960	80	1	7370960	74	1	7370960
Total Cadmium (Cd)	mg/L	<0.001	0.001	7370960	<0.001	0.001	7370960	<0.001	0.001	7370960
Total Calcium (Ca)	mg/L	44	2	7370960	42	2	7370960	43	2	7370960
Total Chromium (Cr)	mg/L	0.06	0.05	7370960	0.06	0.05	7370960	0.06	0.05	7370960
Total Copper (Cu)	mg/L	<0.02	0.02	7370960	<0.02	0.02	7370960	<0.02	0.02	7370960
Total Iron (Fe)	mg/L	<1	1	7370960	<1	1	7370960	<1	1	7370960
Total Lead (Pb)	mg/L	<0.005	0.005	7370960	<0.005	0.005	7370960	<0.005	0.005	7370960
Total Magnesium (Mg)	mg/L	82	0.5	7370960	81	0.5	7370960	83	0.5	7370960
Total Manganese (Mn)	mg/L	0.07	0.02	7370960	0.07	0.02	7370960	0.07	0.02	7370960
Total Nickel (Ni)	mg/L	0.08	0.01	7370960	0.07	0.01	7370960	0.08	0.01	7370960
Total Potassium (K)	mg/L	150	2	7370960	150	2	7370960	150	2	7370960
Total Sodium (Na)	mg/L	900	1	7370960	890	1	7370960	910	1	7370960
Total Zinc (Zn)	mg/L	<0.1	0.1	7370960	<0.1	0.1	7370960	<0.1	0.1	7370960

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

DV 1 1 1D		DDT224	DDT222		DDT222		
BV Labs ID		PPT231	PPT232		PPT233		
Sampling Date		2021/05/18	2021/05/18		2021/05/18		
COC Number		N/A	N/A		N/A		
	UNITS	SUMP	CFA-COMP	RDL	PS1	RDL	QC Batch
Metals							
Mercury (Hg)	mg/L	<0.00010	<0.00010	0.00010	<0.0015 (1)	0.0015	7368718
Total Arsenic (As)	mg/L	<0.005	0.018	0.005	0.64	0.01	7370960
Total Barium (Ba)	mg/L	0.24	0.22	0.03	1.5	0.05	7370960
Total Beryllium (Be)	mg/L	<0.003	<0.003	0.003	<0.006	0.006	7370960
Total Boron (B)	mg/L	18	8.6	0.1	13	0.2	7370960
Total Cadmium (Cd)	mg/L	<0.0005	<0.0005	0.0005	0.003	0.001	7370960
Total Calcium (Ca)	mg/L	150	180	1	380	2	7370960
Total Chromium (Cr)	mg/L	0.12	0.05	0.03	2.5	0.05	7370960
Total Copper (Cu)	mg/L	<0.01	0.01	0.01	0.23	0.02	7370960
Total Iron (Fe)	mg/L	54	11	0.5	250	1	7370960
Total Lead (Pb)	mg/L	0.006	0.005	0.003	0.091	0.005	7370960
Total Magnesium (Mg)	mg/L	170	170	0.3	300	0.5	7370960
Total Manganese (Mn)	mg/L	0.29	0.46	0.01	2.8	0.02	7370960
Total Nickel (Ni)	mg/L	0.18	0.089	0.005	1.2	0.01	7370960
Total Potassium (K)	mg/L	210	150	1	760	2	7370960
Total Sodium (Na)	mg/L	930	540	0.5	2400	1	7370960
Total Zinc (Zn)	mg/L	<0.05	<0.05	0.05	2.0	0.1	7370960

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

SEMI-VOLATILE ORGANICS BY GC-MS (LEACHATE)

BV Labs ID		PPT229	PPT230	PPT231	PPT232	PPT233		
Sampling Date		2021/05/18	2021/05/18	2021/05/18	2021/05/18	2021/05/18		
COC Number		N/A	N/A	N/A	N/A	N/A		
	UNITS	MH18	LDUP	SUMP	CFA-COMP	PS1	RDL	QC Batch
Semivolatile Organics								
Benzo(a)pyrene	ug/L	<0.80	<0.80	<0.80	<0.80	<0.80	0.80	7372388
1,2-Dichlorobenzene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7372388
1,3-Dichlorobenzene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7372388
1,4-Dichlorobenzene	ug/L	<2.0	<2.0	2.2	<2.0	<2.0	2.0	7372388
Hexachlorobenzene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7372388
1,2,4-Trichlorobenzene	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7372388
2,4-Dichlorophenol	ug/L	<1.2	<1.2	<1.2	<1.2	<1.2	1.2	7372388
Pentachlorophenol	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	4.0	7372388
Phenol	ug/L	11	8.7	<2.0	<2.0	7.2	2.0	7372388
2,4,6-Trichlorophenol	ug/L	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	7372388
Di-N-butyl phthalate	ug/L	<8.0	<8.0	<8.0	<8.0	<8.0	8.0	7372388
Diethyl phthalate	ug/L	6.6	5.7	<4.0	<4.0	<4.0	4.0	7372388
Dimethyl phthalate	ug/L	<4.0	<4.0	<4.0	<4.0	<4.0	4.0	7372388
Surrogate Recovery (%)								
2,4,6-Tribromophenol	%	106	108	110	102	98		7372388
2-Fluorobiphenyl	%	59	52	57	53	25 (1)		7372388
2-Fluorophenol	%	44	38	39	39	16		7372388
D14-Terphenyl	%	79	78	87	89	61		7372388
D5-Nitrobenzene	%	75	60	69	63	19 (1)		7372388
D5-Phenol	%	31	26	28	28	14		7372388

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

⁽¹⁾ Surrogate recovery was below the lower control limit due to matrix interference. This may represent a low bias in some results.

#: C1D6502 RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

VOLATILE ORGANICS BY GC/MS (LEACHATE)

BV Labs ID		PPT229	PPT230	PPT231	PPT232	PPT233		
Sampling Date		2021/05/18	2021/05/18	2021/05/18	2021/05/18	2021/05/18		
COC Number		N/A	N/A	N/A	N/A	N/A		
	UNITS	MH18	LDUP	SUMP	CFA-COMP	PS1	RDL	QC Batch
Volatile Organics								
Benzene	ug/L	<10	<10	64	<10	<10	10	7365244
1,4-Dichlorobenzene	ug/L	<20	<20	<20	<20	<20	20	7365244
Ethylbenzene	ug/L	14	13	110	<10	<10	10	7365244
Methylene Chloride(Dichloromethane)	ug/L	<100	<100	<100	<100	<100	100	7365244
Toluene	ug/L	140	130	<10	<10	16	10	7365244
Vinyl Chloride	ug/L	<10	<10	<10	<10	<10	10	7365244
p+m-Xylene	ug/L	40	39	120	<10	<10	10	7365244
o-Xylene	ug/L	15	15	23	<10	<10	10	7365244
Total Xylenes	ug/L	55	54	140	<10	<10	10	7365244
Surrogate Recovery (%)								
4-Bromofluorobenzene	%	94	94	94	93	93		7365244
D4-1,2-Dichloroethane	%	107	106	108	107	108		7365244
D8-Toluene	%	97	96	97	97	97		7365244

QC Batch = Quality Control Batch

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	-0.7°C
Package 2	-0.7°C
Package 3	0.7°C

Revised Report (2021/06/09): Chromium reported under Metals scan as per Jeff Cleland's request.

VOC Analysis: Due to the sample matrix, samples required dilution. Detection limits were adjusted accordingly.

ABN analysis: Due to the nature of the sample matrix, a smaller than usual portion of the sample was used for extraction. Detection limits were adjusted accordingly.

Sample PPT229 [MH18]: Nitrite/Nitrate: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly. Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample PPT230 [LDUP]: Nitrite/Nitrate: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly. TKN < Ammonia: Both values fall within the method uncertainty for duplicates and are likely equivalent.\
Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample PPT231 [SUMP]: Nitrite/Nitrate: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly. TKN < Ammonia: Both values fall within the method uncertainty for duplicates and are likely equivalent. Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample PPT232 [CFA-COMP]: TKN < Ammonia: Both values fall within the method uncertainty for duplicates and are likely equivalent. Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample PPT233 [PS1]: Nitrite/Nitrate: Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly. Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7365244	4-Bromofluorobenzene	2021/05/25	102	70 - 130	101	70 - 130	99	%				
7365244	D4-1,2-Dichloroethane	2021/05/25	106	70 - 130	100	70 - 130	102	%				
7365244	D8-Toluene	2021/05/25	99	70 - 130	103	70 - 130	97	%				
7372388	2,4,6-Tribromophenol	2021/05/27	108 (7)	10 - 130	101	10 - 130	81	%				
7372388	2-Fluorobiphenyl	2021/05/27	57 (7)	30 - 130	73	30 - 130	69	%				
7372388	2-Fluorophenol	2021/05/27	45 (7)	10 - 130	50	10 - 130	39	%				
7372388	D14-Terphenyl	2021/05/27	95 (7)	30 - 130	98	30 - 130	87	%				
7372388	D5-Nitrobenzene	2021/05/27	77 (7)	30 - 130	92	30 - 130	80	%				
7372388	D5-Phenol	2021/05/27	33 (7)	10 - 130	32	10 - 130	25	%				
7364154	Alkalinity (Total as CaCO3)	2021/05/21			96	85 - 115	<1.0	mg/L	0.23 (1)	20		
7364160	Conductivity	2021/05/21			101	85 - 115	<1.0	umho/c m	1.7 (1)	25		
7364161	рН	2021/05/21			102	98 - 103			0.16 (1)	N/A		
7364197	Dissolved Chloride (Cl-)	2021/05/21	NC	80 - 120	104	80 - 120	<1.0	mg/L	2.8 (1)	20		
7364201	Dissolved Sulphate (SO4)	2021/05/21	NC	75 - 125	101	80 - 120	<1.0	mg/L	0.92 (1)	20		
7364414	Nitrate (N)	2021/05/21	NC	80 - 120	99	80 - 120	<0.10	mg/L	2.4 (1)	20		
7364414	Nitrite (N)	2021/05/21	84	80 - 120	111	80 - 120	<0.010	mg/L	0.97 (1)	20		
7365244	1,4-Dichlorobenzene	2021/05/25	99	70 - 130	107	70 - 130	<0.40	ug/L	3.1 (1)	30		
7365244	Benzene	2021/05/25	88	70 - 130	89	70 - 130	<0.20	ug/L	0.19 (1)	30		
7365244	Ethylbenzene	2021/05/25	83	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7365244	Methylene Chloride(Dichloromethane)	2021/05/25	94	70 - 130	94	70 - 130	<2.0	ug/L	NC (1)	30		
7365244	o-Xylene	2021/05/25	80	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7365244	p+m-Xylene	2021/05/25	86	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30		
7365244	Toluene	2021/05/25	84	70 - 130	90	70 - 130	<0.20	ug/L	NC (1)	30		
7365244	Total Xylenes	2021/05/25					<0.20	ug/L	NC (1)	30		
7365244	Vinyl Chloride	2021/05/25	89	70 - 130	92	70 - 130	<0.20	ug/L	NC (1)	30		
7365284	Phenols-4AAP	2021/05/25	NC (2)	80 - 120	99	80 - 120	<0.0040	mg/L	0.13 (3)	25		
7365292	Total Dissolved Solids	2021/05/25					<10	mg/L	0.14 (1)	25	102	90 - 110
7366016	Total Chemical Oxygen Demand (COD)	2021/05/21	NC	80 - 120	102	80 - 120	<4.0	mg/L	1.9 (1)	20		
7366608	Total Chemical Oxygen Demand (COD)	2021/05/21	91	80 - 120	102	80 - 120	<4.0	mg/L	9.5 (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

			Matrix	Spike	SPIKED	BLANK	Method I	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7367402	Total BOD	2021/05/27					<2	mg/L	12 (1)	30	93	80 - 120
7367623	Total Suspended Solids	2021/05/25					<1	mg/L	8.0 (1)	25	98	85 - 115
7368718	Mercury (Hg)	2021/05/25	88	75 - 125	93	80 - 120	<0.00010	mg/L	NC (1)	20		
7369096	Total Phosphorus	2021/05/26	101	80 - 120	100	80 - 120	<0.030	mg/L	0.42 (1)	25	100	N/A
7369140	Dissolved Organic Carbon	2021/05/26	92	80 - 120	97	80 - 120	<0.4	mg/L	3.4 (1)	20		
7369348	Total Suspended Solids	2021/05/26					<10	mg/L	1.7 (1)	25	96	85 - 115
7369586	Total Kjeldahl Nitrogen (TKN)	2021/05/27	NC	80 - 120	99	80 - 120	<0.7	mg/L	1.7 (1)	20	95	80 - 120
7369591	Total Ammonia-N	2021/05/26	NC	75 - 125	98	80 - 120	<0.15	mg/L	0.41 (1)	20		
7370960	Total Arsenic (As)	2021/05/27	NC (4,5)	80 - 120	99	80 - 120	<0.001	mg/L	11 (6)	20		
7370960	Total Barium (Ba)	2021/05/27	NC (4,5)	80 - 120	97	80 - 120	<0.005	mg/L	0.55 (6)	20		
7370960	Total Beryllium (Be)	2021/05/27	NC (4,5)	80 - 120	100	80 - 120	<0.0006	mg/L	NC (6)	20		
7370960	Total Boron (B)	2021/05/27	NC (4,5)	80 - 120	94	80 - 120	<0.02	mg/L	6.2 (6)	20		
7370960	Total Cadmium (Cd)	2021/05/27	NC (4,5)	80 - 120	100	80 - 120	<0.0001	mg/L	NC (6)	20		
7370960	Total Calcium (Ca)	2021/05/27	NC (4,5)	80 - 120	99	80 - 120	<0.2	mg/L	3.0 (6)	20		
7370960	Total Chromium (Cr)	2021/05/27	NC (4,5)	80 - 120	93	80 - 120	<0.005	mg/L	3.9 (6)	20		
7370960	Total Copper (Cu)	2021/05/27	NC (4,5)	80 - 120	98	80 - 120	<0.002	mg/L	NC (6)	20		
7370960	Total Iron (Fe)	2021/05/27	NC (4,5)	80 - 120	95	80 - 120	<0.1	mg/L	NC (6)	20		
7370960	Total Lead (Pb)	2021/05/27	NC (4,5)	80 - 120	95	80 - 120	<0.0005	mg/L	NC (6)	20		
7370960	Total Magnesium (Mg)	2021/05/27	NC (4,5)	80 - 120	96	80 - 120	<0.05	mg/L	2.0 (6)	20		
7370960	Total Manganese (Mn)	2021/05/27	NC (4,5)	80 - 120	96	80 - 120	<0.002	mg/L	1.8 (6)	20		
7370960	Total Nickel (Ni)	2021/05/27	NC (4,5)	80 - 120	96	80 - 120	<0.001	mg/L	11 (6)	20		
7370960	Total Potassium (K)	2021/05/27	NC (4,5)	80 - 120	96	80 - 120	<0.2	mg/L	2.0 (6)	20		
7370960	Total Sodium (Na)	2021/05/27	NC (4,5)	80 - 120	98	80 - 120	<0.1	mg/L	1.9 (6)	20		
7370960	Total Zinc (Zn)	2021/05/27	NC (4,5)	80 - 120	101	80 - 120	<0.01	mg/L	NC (6)	20		
7372388	1,2,4-Trichlorobenzene	2021/05/27	55 (7)	30 - 130	60	30 - 130	<0.50	ug/L				
7372388	1,2-Dichlorobenzene	2021/05/27	50 (7)	30 - 130	54	30 - 130	<0.50	ug/L				
7372388	1,3-Dichlorobenzene	2021/05/27	48 (7)	30 - 130	52	30 - 130	<0.50	ug/L				
7372388	1,4-Dichlorobenzene	2021/05/27	48 (7)	30 - 130	54	30 - 130	<0.50	ug/L				
7372388	2,4,6-Trichlorophenol	2021/05/27	102 (7)	10 - 130	97	10 - 130	<0.50	ug/L				
7372388	2,4-Dichlorophenol	2021/05/27	84 (7)	10 - 130	90	10 - 130	<0.30	ug/L				

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RP	D	QC Sta	ındard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7372388	Benzo(a)pyrene	2021/05/27	92 (7)	30 - 130	95	30 - 130	<0.20	ug/L				
7372388	Diethyl phthalate	2021/05/27	95 (7)	30 - 130	101	30 - 130	<1.0	ug/L				
7372388	Dimethyl phthalate	2021/05/27	95 (7)	30 - 130	102	30 - 130	<1.0	ug/L				
7372388	Di-N-butyl phthalate	2021/05/28	97 (7)	30 - 130	102	30 - 130	<2.0	ug/L	NC (1)	40		
7372388	Hexachlorobenzene	2021/05/27	99 (7)	30 - 130	97	30 - 130	<0.50	ug/L				
7372388	Pentachlorophenol	2021/05/27	110 (7)	10 - 130	105	10 - 130	<1.0	ug/L				
7372388	Phenol	2021/05/27	35 (7)	10 - 130	32	10 - 130	<0.50	ug/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [PPT229-08]
- (3) Duplicate Parent ID [PPT229-08]
- (4) Matrix Spike not calculated. Original sample and matrix spike sample were analyzed at a dilution, due to high target analytes, or sample matrix interference.
- (5) Matrix Spike Parent ID [PPT229-06]
- (6) Duplicate Parent ID [PPT229-06]
- (7) Matrix Spike Parent ID [PPT232-01]

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: AUV

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 10123733

Your Project #: 2101781-1000

Site#: 500

Site Location: ON07 Your C.O.C. #: n/a

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5

Report Date: 2021/06/09

Report #: R6668733 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1D8071 Received: 2021/05/21, 10:45

Sample Matrix: Leachate # Samples Received: 2

•		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	2	2021/05/28	2021/06/01	CAM SOP-00301	EPA 8270 m
Alkalinity	2	N/A	2021/05/25	CAM SOP-00448	SM 23 2320 B m
Biochemical Oxygen Demand (BOD)	2	2021/05/22	2021/05/27	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	2	N/A	2021/05/25	CAM SOP-00463	SM 23 4500-Cl E m
Chemical Oxygen Demand	2	N/A	2021/05/25	CAM SOP-00416	SM 23 5220 D m
Conductance in Water - On-site	2	N/A	2021/05/26		
Conductivity	2	N/A	2021/05/25	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	2	N/A	2021/05/26	CAM SOP-00446	SM 23 5310 B m
Field Measured Dissolved Oxygen in Water	2	N/A	2021/05/26		
Mercury in Water by CVAA	1	2021/05/26	2021/05/28	CAM SOP-00453	EPA 7470A m
Mercury in Water by CVAA	1	2021/05/27	2021/05/28	CAM SOP-00453	EPA 7470A m
Total Metals by ICPMS	2	N/A	2021/05/28	CAM SOP-00447	EPA 6020B m
Ammonia-N	2	N/A	2021/05/26	CAM SOP-00441	USGS I-2522-90 m
Nitrate (NO3) and Nitrite (NO2) in Water (2)	2	N/A	2021/05/25	CAM SOP-00440	SM 23 4500-NO3I/NO2B
pH	2	2021/05/21	2021/05/25	CAM SOP-00413	SM 4500H+ B m
Phenol (4AAP)	2	N/A	2021/05/26	CAM SOP-00444	OMOE E3179 m
Field Measured pH (3)	2	N/A	2021/05/21		Field pH Meter
Sulphate by Automated Colourimetry	2	N/A	2021/05/25	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	2	2021/05/22	2021/05/25	CAM SOP-00428	SM 23 2540C m
Field Temperature (3)	2	N/A	2021/05/21		Field Thermometer
Total Kjeldahl Nitrogen in Water	1	2021/05/25	2021/05/26	CAM SOP-00938	OMOE E3516 m
Total Kjeldahl Nitrogen in Water	1	2021/05/25	2021/05/27	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	2	2021/05/25	2021/05/26	CAM SOP-00407	SM 23 4500 B F m
Total Suspended Solids	2	2021/05/26	2021/05/27	CAM SOP-00428	SM 23 2540D m
Turbidity - On-site	2	N/A	2021/05/26		
Un-ionized Ammonia	2	2021/05/21	2021/05/26	Auto Calc.	PWQO
Volatile Organic Compounds in Water	2	N/A	2021/05/25	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5 Your P.O. #: 10123733

Your Project #: 2101781-1000 Site#: 500

Site Location: ON07 Your C.O.C. #: n/a

Report Date: 2021/06/09

Report #: R6668733 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: C1D8071 Received: 2021/05/21, 10:45

Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) This is a field test, therefore, the results relate to items that were not analysed at Bureau Veritas Laboratories.

Encryption Key

Patricia Legette Project Manager 09 Jun 2021 16:15:44

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 11

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

RESULTS OF ANALYSES OF LEACHATE

BV Labs ID		PQB744		PQB745			PQB745		
Sampling Date		2021/05/19		2021/05/19			2021/05/19		
COC Number		n/a		n/a			n/a		
	UNITS	PS3	RDL	PS5	RDL	QC Batch	PS5 Lab-Dup	RDL	QC Batch
Calculated Parameters									
Total Un-ionized Ammonia	mg/L	210	0.37	13	0.031	7365762			
Field Measurements					•				
Field Conductivity	uS/cm	20000	N/A	16220	N/A	ONSITE			
Field Dissolved Oxygen	mg/L	1.63	N/A	1.05	N/A	ONSITE			
Field Temperature	Celsius	20.4	N/A	23.5	N/A	ONSITE			
Field Turbidity	NTU	173.0	N/A	270.0	N/A	ONSITE			
Field Measured pH	pН	8.2		7.3		ONSITE			
Inorganics									
Total Ammonia-N	mg/L	2790	5.0	1080 (1)	2.5	7370442			
Total BOD	mg/L	230	2	230	2	7367736			
Total Chemical Oxygen Demand (COD)	mg/L	4400	120	1600	80	7369120			
Conductivity	umho/cm	32000	1.0	16000	1.0	7366624			
Total Dissolved Solids	mg/L	13600	20	5510	20	7367699			
Total Kjeldahl Nitrogen (TKN)	mg/L	2900	100	1000 (1)	50	7370377			
Dissolved Organic Carbon	mg/L	1200	8	280	4	7369985			
рН	pН	8.09		7.62		7366635			
Phenols-4AAP	mg/L	0.070	0.010	0.036 (2)	0.010	7371871	0.035 (2)	0.010	7371871
Total Phosphorus	mg/L	9.7	0.40	5.9	0.40	7369096			
Total Suspended Solids	mg/L	2400	100	280	25	7372416			
Dissolved Sulphate (SO4)	mg/L	170 (3)	100	<20 (3)	20	7366782			
Alkalinity (Total as CaCO3)	mg/L	14000	10	7700	5.0	7366598			
Dissolved Chloride (Cl-)	mg/L	3600	100	1400	20	7366774			
Nitrite (N)	mg/L	1.12	0.50	<0.10	0.10	7366905			
Nitrate (N)	mg/L	<5.0	5.0	<1.0	1.0	7366905			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

- (1) TKN < NH4: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.
- (2) Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
- (3) Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

BV Labs ID		PQB744			PQB745		
Sampling Date		2021/05/19			2021/05/19		
COC Number		n/a			n/a		
	UNITS	PS3	RDL	QC Batch	PS5	RDL	QC Batch
Metals							
Mercury (Hg)	mg/L	<0.0015	0.0015	7373612	<0.00010	0.00010	7371337
Total Arsenic (As)	mg/L	0.19	0.01	7373568	0.06	0.01	7373568
Total Barium (Ba)	mg/L	0.14	0.05	7373568	0.31	0.05	7373568
Total Beryllium (Be)	mg/L	<0.006	0.006	7373568	<0.006	0.006	7373568
Total Boron (B)	mg/L	23	0.2	7373568	7.5	0.2	7373568
Total Cadmium (Cd)	mg/L	<0.001	0.001	7373568	<0.001	0.001	7373568
Total Calcium (Ca)	mg/L	120	2	7373568	130	2	7373568
Total Chromium (Cr)	mg/L	1.0	0.05	7373568	0.11	0.05	7373568
Total Copper (Cu)	mg/L	0.03	0.02	7373568	<0.02	0.02	7373568
Total Iron (Fe)	mg/L	64	1	7373568	24	1	7373568
Total Lead (Pb)	mg/L	0.013	0.005	7373568	0.007	0.005	7373568
Total Magnesium (Mg)	mg/L	330	0.5	7373568	380	0.5	7373568
Total Manganese (Mn)	mg/L	0.58	0.02	7373568	0.33	0.02	7373568
Total Nickel (Ni)	mg/L	0.88	0.01	7373568	0.32	0.01	7373568
Total Potassium (K)	mg/L	1200	2	7373568	510	2	7373568
Total Sodium (Na)	mg/L	3500	1	7373568	1400	1	7373568
Total Zinc (Zn)	mg/L	2.4	0.1	7373568	0.7	0.1	7373568

QC Batch = Quality Control Batch

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

SEMI-VOLATILE ORGANICS BY GC-MS (LEACHATE)

BV Labs ID		PQB744		PQB745		
Sampling Date		2021/05/19		2021/05/19		
COC Number		n/a		n/a		
	UNITS	PS3	RDL	PS5	RDL	QC Batch
Semivolatile Organics						
Benzo(a)pyrene	ug/L	<2.0	2.0	<0.20	0.20	7377505
1,2-Dichlorobenzene	ug/L	<5.0	5.0	<0.50	0.50	7377505
1,3-Dichlorobenzene	ug/L	<5.0	5.0	<0.50	0.50	7377505
1,4-Dichlorobenzene	ug/L	<5.0	5.0	<1.0 (1)	1.0	7377505
Hexachlorobenzene	ug/L	<5.0	5.0	<0.50	0.50	7377505
1,2,4-Trichlorobenzene	ug/L	<5.0	5.0	<0.50	0.50	7377505
2,4-Dichlorophenol	ug/L	<3.0	3.0	<0.30	0.30	7377505
Pentachlorophenol	ug/L	<10	10	<1.0	1.0	7377505
Phenol	ug/L	<5.0	5.0	<3.0 (1)	3.0	7377505
2,4,6-Trichlorophenol	ug/L	<5.0	5.0	<0.50	0.50	7377505
Di-N-butyl phthalate	ug/L	<20	20	<2.0	2.0	7377505
Diethyl phthalate	ug/L	<10	10	1.0	1.0	7377505
Dimethyl phthalate	ug/L	<10	10	<1.0	1.0	7377505
Surrogate Recovery (%)						
2,4,6-Tribromophenol	%	110		110		7377505
2-Fluorobiphenyl	%	58		54		7377505
2-Fluorophenol	%	36		NC (2)		7377505
D14-Terphenyl	%	73		49		7377505
D5-Nitrobenzene	%	68		81		7377505
D5-Phenol	%	22		NC (2)		7377505

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

- (1) Detection limit was raised due to matrix interference.
- (2) Surrogate recovery was not calculated (NC) due to matrix interferences.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

VOLATILE ORGANICS BY GC/MS (LEACHATE)

BV Labs ID		PQB744		PQB745		
Sampling Date		2021/05/19		2021/05/19		
COC Number		n/a		n/a		
	UNITS	PS3	RDL	PS5	RDL	QC Batch
Volatile Organics						
Benzene	ug/L	<10	10	4.3	2.0	7367669
1,4-Dichlorobenzene	ug/L	<20	20	<4.0	4.0	7367669
Ethylbenzene	ug/L	<10	10	10	2.0	7367669
Methylene Chloride(Dichloromethane)	ug/L	<100	100	<20	20	7367669
Toluene	ug/L	<10	10	1700	2.0	7367669
Vinyl Chloride	ug/L	<10	10	2.2	2.0	7367669
p+m-Xylene	ug/L	<10	10	22	2.0	7367669
o-Xylene	ug/L	<10	10	9.2	2.0	7367669
Total Xylenes	ug/L	<10	10	31	2.0	7367669
Surrogate Recovery (%)	,					
4-Bromofluorobenzene	%	92		92		7367669
D4-1,2-Dichloroethane	%	109		111		7367669
D8-Toluene	%	93		90		7367669
RDL = Reportable Detection Limit QC Batch = Quality Control Batch						

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	0.3°C
Package 2	0.7°C
Package 3	1.7°C
Package 4	1.0°C

Revised Report (2021/06/09): Chromium reported under Metals scan as per Jeff Cleland's request.

Sample PQB744 [PS3]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly. Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

ABN analysis: Due to the nature of the sample matrix, a smaller than usual portion of the sample was used for extraction and a further dilution was required. Detection limits were adjusted accordingly.

Sample PQB745 [PS5]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

VOC Analysis: Due to high concentrations of target analytes, sample required dilution. Detection limits were adjusted accordingly.

TKN < Ammonia: Both values fall within the method uncertainty for duplicates and are likely equivalent.

Metals Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

			Matrix Spike		SPIKED BLANK		Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7367669	4-Bromofluorobenzene	2021/05/25	103	70 - 130	101	70 - 130	96	%				
7367669	D4-1,2-Dichloroethane	2021/05/25	109	70 - 130	105	70 - 130	110	%				
7367669	D8-Toluene	2021/05/25	101	70 - 130	106	70 - 130	95	%				
7377505	2,4,6-Tribromophenol	2021/05/31	106	10 - 130	109	10 - 130	81	%				
7377505	2-Fluorobiphenyl	2021/05/31	70	30 - 130	81	30 - 130	74	%				
7377505	2-Fluorophenol	2021/05/31	40	10 - 130	43	10 - 130	35	%				
7377505	D14-Terphenyl	2021/05/31	97	30 - 130	97	30 - 130	84	%				
7377505	D5-Nitrobenzene	2021/05/31	87	30 - 130	94	30 - 130	87	%				
7377505	D5-Phenol	2021/05/31	25	10 - 130	26	10 - 130	22	%				
7366598	Alkalinity (Total as CaCO3)	2021/05/25			96	85 - 115	<1.0	mg/L	0.49 (1)	20		
7366624	Conductivity	2021/05/25			99	85 - 115	<1.0	umho/c m	0.080 (1)	25		
7366635	рН	2021/05/25			102	98 - 103			0.054 (1)	N/A		
7366774	Dissolved Chloride (Cl-)	2021/05/25	112	80 - 120	103	80 - 120	<1.0	mg/L	4.2 (1)	20		
7366782	Dissolved Sulphate (SO4)	2021/05/25	NC	75 - 125	104	80 - 120	<1.0	mg/L	1.4 (1)	20		
7366905	Nitrate (N)	2021/05/25	105	80 - 120	106	80 - 120	<0.10	mg/L	NC (1)	20		
7366905	Nitrite (N)	2021/05/25	108	80 - 120	108	80 - 120	<0.010	mg/L				
7367669	1,4-Dichlorobenzene	2021/05/25	107	70 - 130	114	70 - 130	<0.40	ug/L	NC (1)	30		
7367669	Benzene	2021/05/25	94	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7367669	Ethylbenzene	2021/05/25	85	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30		
7367669	Methylene Chloride(Dichloromethane)	2021/05/25	113	70 - 130	111	70 - 130	<2.0	ug/L	NC (1)	30		
7367669	o-Xylene	2021/05/25	87	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30		
7367669	p+m-Xylene	2021/05/25	90	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7367669	Toluene	2021/05/25	90	70 - 130	98	70 - 130	<0.20	ug/L	NC (1)	30		
7367669	Total Xylenes	2021/05/25					<0.20	ug/L	NC (1)	30		
7367669	Vinyl Chloride	2021/05/25	95	70 - 130	97	70 - 130	<0.20	ug/L	NC (1)	30		
7367699	Total Dissolved Solids	2021/05/25					<10	mg/L	12 (1)	25	102	90 - 110
7367736	Total BOD	2021/05/27					<2	mg/L	NC (1)	30	96	80 - 120
7369096	Total Phosphorus	2021/05/26	101	80 - 120	100	80 - 120	<0.030	mg/L	0.42 (1)	25	100	N/A
7369120	Total Chemical Oxygen Demand (COD)	2021/05/25	103	80 - 120	105	80 - 120	<4.0	mg/L	NC (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RPD		QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7369985	Dissolved Organic Carbon	2021/05/26	88	80 - 120	95	80 - 120	<0.4	mg/L	0.33 (1)	20		
7370377	Total Kjeldahl Nitrogen (TKN)	2021/05/26	113	80 - 120	99	80 - 120	<0.7	mg/L	1.2 (1)	20	95	80 - 120
7370442	Total Ammonia-N	2021/05/26	95	75 - 125	99	80 - 120	<0.15	mg/L	0.79 (1)	20		
7371337	Mercury (Hg)	2021/05/28	95	75 - 125	100	80 - 120	<0.00010	mg/L	NC (1)	20		
7371871	Phenols-4AAP	2021/05/26	101 (2)	80 - 120	100	80 - 120	<0.0040	mg/L	2.0 (3,4)	25		
7372416	Total Suspended Solids	2021/05/27					<10	mg/L	18 (1)	25	95	85 - 115
7373568	Total Arsenic (As)	2021/05/28	95	80 - 120	103	80 - 120	<0.001	mg/L				
7373568	Total Barium (Ba)	2021/05/28	88	80 - 120	97	80 - 120	<0.005	mg/L				
7373568	Total Beryllium (Be)	2021/05/28	94	80 - 120	99	80 - 120	<0.0006	mg/L				
7373568	Total Boron (B)	2021/05/28	NC	80 - 120	94	80 - 120	<0.02	mg/L	6.8 (1)	20		
7373568	Total Cadmium (Cd)	2021/05/28	91	80 - 120	100	80 - 120	<0.0001	mg/L				
7373568	Total Calcium (Ca)	2021/05/28	NC	80 - 120	102	80 - 120	<0.2	mg/L				
7373568	Total Chromium (Cr)	2021/05/28	92	80 - 120	99	80 - 120	<0.005	mg/L	NC (1)	20		
7373568	Total Copper (Cu)	2021/05/28	89	80 - 120	97	80 - 120	<0.002	mg/L				
7373568	Total Iron (Fe)	2021/05/28	91	80 - 120	99	80 - 120	<0.1	mg/L				
7373568	Total Lead (Pb)	2021/05/28	89	80 - 120	99	80 - 120	<0.0005	mg/L				
7373568	Total Magnesium (Mg)	2021/05/28	NC	80 - 120	103	80 - 120	<0.05	mg/L				
7373568	Total Manganese (Mn)	2021/05/28	91	80 - 120	100	80 - 120	<0.002	mg/L				
7373568	Total Nickel (Ni)	2021/05/28	92	80 - 120	101	80 - 120	<0.001	mg/L				
7373568	Total Potassium (K)	2021/05/28	95	80 - 120	96	80 - 120	<0.2	mg/L	3.6 (1)	20		
7373568	Total Sodium (Na)	2021/05/28	NC	80 - 120	104	80 - 120	<0.1	mg/L	4.9 (1)	20		
7373568	Total Zinc (Zn)	2021/05/28	93	80 - 120	102	80 - 120	<0.01	mg/L				
7373612	Mercury (Hg)	2021/05/28	94	75 - 125	95	80 - 120	<0.00010	mg/L	NC (1)	20		
7377505	1,2,4-Trichlorobenzene	2021/05/31	62	30 - 130	76	30 - 130	<0.50	ug/L				
7377505	1,2-Dichlorobenzene	2021/05/31	58	30 - 130	74	30 - 130	<0.50	ug/L				
7377505	1,3-Dichlorobenzene	2021/05/31	56	30 - 130	72	30 - 130	<0.50	ug/L				
7377505	1,4-Dichlorobenzene	2021/05/31	59	30 - 130	74	30 - 130	<0.50	ug/L				
7377505	2,4,6-Trichlorophenol	2021/05/31	94	10 - 130	96	10 - 130	<0.50	ug/L				
7377505	2,4-Dichlorophenol	2021/05/31	82	10 - 130	103	10 - 130	<0.30	ug/L				
7377505	Benzo(a)pyrene	2021/05/31	93	30 - 130	91	30 - 130	<0.20	ug/L				

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7377505	Diethyl phthalate	2021/05/31	109	30 - 130	109	30 - 130	<1.0	ug/L				
7377505	Dimethyl phthalate	2021/05/31	102	30 - 130	101	30 - 130	<1.0	ug/L				
7377505	Di-N-butyl phthalate	2021/06/01	107	30 - 130	112	30 - 130	<2.0	ug/L	NC (1)	40		
7377505	Hexachlorobenzene	2021/05/31	104	30 - 130	106	30 - 130	<0.50	ug/L				
7377505	Pentachlorophenol	2021/05/31	96	10 - 130	58	10 - 130	<1.0	ug/L				
7377505	Phenol	2021/05/31	28	10 - 130	29	10 - 130	<0.50	ug/L				

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [PQB745-12]
- (3) Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.
- (4) Duplicate Parent ID [PQB745-12]

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: SGW

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Chrone
Anastassia Hamanov, Scientific Specialist
Eva Prairie a CHEMIST
Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist
Patricia Legette, Project Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 10123733 Your Project #: 2101781-1000

Site#: 500

Site Location: ON07

Your C.O.C. #: TCEC-LCHCM-AUG

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5

> Report Date: 2021/08/20 Report #: R6773731

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1N0037
Received: 2021/08/13, 11:02

Sample Matrix: Leachate # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Biochemical Oxygen Demand (BOD)	1	2021/08/14	2021/08/19	CAM SOP-00427	SM 23 5210B m
Conductance in Water - On-site	1	N/A	2021/08/17		
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/08/16	CAM SOP-00446	SM 23 5310 B m
Field Measured Dissolved Oxygen in Water	1	N/A	2021/08/17		
pH	1	2021/08/14	2021/08/16	CAM SOP-00413	SM 4500H+ B m
Field Measured pH (2)	1	N/A	2021/08/13		Field pH Meter
Field Temperature (2)	1	N/A	2021/08/13		Field Thermometer
Total Kjeldahl Nitrogen in Water	1	2021/08/16	2021/08/17	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	1	2021/08/17	2021/08/18	CAM SOP-00407	SM 23 4500 B F m
Turbidity - On-site	1	N/A	2021/08/17		
Volatile Organic Compounds in Water	1	N/A	2021/08/17	CAM SOP-00228	EPA 8260C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested. This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5 Your P.O. #: 10123733 Your Project #: 2101781-1000

Site#: 500

Site Location: ON07

Your C.O.C. #: TCEC-LCHCM-AUG

Report Date: 2021/08/20

Report #: R6773731 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1N0037

Received: 2021/08/13, 11:02

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) This is a field test, therefore, the results relate to items that were not analysed at Bureau Veritas Laboratories.

Encryption Key

Patricia Legette Project Manager 20 Aug 2021 10:00:53

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia.Legette@bureauveritas.com

Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

RESULTS OF ANALYSES OF LEACHATE

BV Labs ID		QJK387			QJK387		
Sampling Date		2021/08/11			2021/08/11		
COC Number		TCEC-LCHCM-AUG			TCEC-LCHCM-AUG		
	UNITS	EQUALIZATION TANK	RDL	QC Batch	EQUALIZATION TANK Lab-Dup	RDL	QC Batch
Field Measurements	-				·		
Field Conductivity	uS/cm	20000	N/A	ONSITE			
Field Dissolved Oxygen	mg/L	0.60	N/A	ONSITE			
Field Temperature	Celsius	24.9	N/A	ONSITE			
Field Turbidity	NTU	234.0	N/A	ONSITE			
Field Measured pH	рН	7.61		ONSITE			
Inorganics	_						
Total BOD	mg/L	240	2	7520275			
Total Kjeldahl Nitrogen (TKN)	mg/L	1700	50	7522339			
Dissolved Organic Carbon	mg/L	850	8	7522392	860	8	7522392
рН	рН	7.84		7520918			
Total Phosphorus	mg/L	10	1.0	7523756			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

VOLATILE ORGANICS BY GC/MS (LEACHATE)

BV Labs ID		QJK387		
Sampling Date		2021/08/11		
COC Number		TCEC-LCHCM-AUG		
	UNITS	EQUALIZATION TANK	RDL	QC Batch
Volatile Organics				
Benzene	ug/L	<10	10	7520498
1,4-Dichlorobenzene	ug/L	<20	20	7520498
Ethylbenzene	ug/L	13	10	7520498
Methylene Chloride(Dichloromethane)	ug/L	<100	100	7520498
Toluene	ug/L	160	10	7520498
Vinyl Chloride	ug/L	<10	10	7520498
p+m-Xylene	ug/L	30	10	7520498
o-Xylene	ug/L	13	10	7520498
Total Xylenes	ug/L	43	10	7520498
Surrogate Recovery (%)	-			
4-Bromofluorobenzene	%	98		7520498
D4-1,2-Dichloroethane	%	105		7520498
D8-Toluene	%	98		7520498
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				

.abs Job #: C1N0037 RWI

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

	Package 1	3.3°C
--	-----------	-------

Sample QJK387 [EQUALIZATION TANK]: VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

			Matrix Spike		SPIKED	BLANK	Method Blank		RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7520498	4-Bromofluorobenzene	2021/08/16	100	70 - 130	100	70 - 130	100	%				
7520498	D4-1,2-Dichloroethane	2021/08/16	103	70 - 130	103	70 - 130	103	%				
7520498	D8-Toluene	2021/08/16	102	70 - 130	102	70 - 130	100	%				
7520275	Total BOD	2021/08/19					<2	mg/L	1.2 (1)	30	95	80 - 120
7520498	1,4-Dichlorobenzene	2021/08/16	108	70 - 130	105	70 - 130	<0.40	ug/L	NC (1)	30		
7520498	Benzene	2021/08/16	88	70 - 130	85	70 - 130	<0.20	ug/L	NC (1)	30		
7520498	Ethylbenzene	2021/08/16	90	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7520498	Methylene Chloride(Dichloromethane)	2021/08/16	95	70 - 130	91	70 - 130	<2.0	ug/L	NC (1)	30		
7520498	o-Xylene	2021/08/16	89	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7520498	p+m-Xylene	2021/08/16	92	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7520498	Toluene	2021/08/16	91	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7520498	Total Xylenes	2021/08/16					<0.20	ug/L	NC (1)	30		
7520498	Vinyl Chloride	2021/08/16	94	70 - 130	93	70 - 130	<0.20	ug/L	NC (1)	30		
7520918	рН	2021/08/16			102	98 - 103			0.35 (1)	N/A		
7522339	Total Kjeldahl Nitrogen (TKN)	2021/08/17	NC	80 - 120	98	80 - 120	<0.7	mg/L	0.85 (1)	20	101	80 - 120
7522392	Dissolved Organic Carbon	2021/08/16	NC (2)	80 - 120	93	80 - 120	<0.4	mg/L	1.3 (3)	20		

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

			Matrix	Spike	SPIKED	BLANK	Method E	3lank	RPI	כ	QC Sta	andard	
Ī	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
	7523756	Total Phosphorus	2021/08/18	95	80 - 120	102	80 - 120	<0.030	mg/L	3.2 (1)	25	103	80 - 120

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Matrix Spike Parent ID [QJK387-04]
- (3) Duplicate Parent ID [QJK387-04]

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Brad Newman, B.Sc., C.Chem., Scientific Service Specialist

Patricia Legette, Project Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 10123733 Your Project #: 2101781-1000

Site#: 500

Site Location: ON07

Your C.O.C. #: TCEC-LCHCM-NOV

Report Date: 2021/11/17 Report #: R6905541 Version: 1 - Final

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1W7028 Received: 2021/11/06, 13:17

Sample Matrix: Leachate # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
ABN Compounds in Water by GC/MS	1	2021/11/15	2021/11/15	CAM SOP-00301	EPA 8270 m
Alkalinity	1	N/A	2021/11/10	CAM SOP-00448	SM 23 2320 B m
Chloride by Automated Colourimetry	1	N/A	2021/11/11	CAM SOP-00463	SM 23 4500-Cl E m
Chemical Oxygen Demand	1	N/A	2021/11/11	CAM SOP-00416	SM 23 5220 D m
Conductance in Water - On-site	2	N/A	2021/11/08		
Conductivity	1	N/A	2021/11/10	CAM SOP-00414	SM 23 2510 m
Dissolved Organic Carbon (DOC) (1)	1	N/A	2021/11/10	CAM SOP-00446	SM 23 5310 B m
Field Measured Dissolved Oxygen in Water	2	N/A	2021/11/08		
Mercury in Water by CVAA	1	2021/11/10	2021/11/11	CAM SOP-00453	EPA 7470A m
Total Metals by ICPMS	1	N/A	2021/11/15	CAM SOP-00447	EPA 6020B m
Ammonia-N	1	N/A	2021/11/12	CAM SOP-00441	USGS I-2522-90 m
Nitrate & Nitrite as Nitrogen in Water (2)	1	N/A	2021/11/10	CAM SOP-00440	SM 23 4500-NO3I/NO2B
рН	2	2021/11/09	2021/11/10	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2021/11/09	CAM SOP-00444	OMOE E3179 m
Field Measured pH (3)	2	N/A	2021/11/06		Field pH Meter
Sulphate by Automated Colourimetry	1	N/A	2021/11/10	CAM SOP-00464	EPA 375.4 m
Total Dissolved Solids	1	2021/11/10	2021/11/11	CAM SOP-00428	SM 23 2540C m
Field Temperature (3)	2	N/A	2021/11/06		Field Thermometer
Total Kjeldahl Nitrogen in Water	2	2021/11/09	2021/11/12	CAM SOP-00938	OMOE E3516 m
Total Phosphorus (Colourimetric)	2	2021/11/10	2021/11/11	CAM SOP-00407	SM 23 4500 B F m
Low Level Total Suspended Solids	1	2021/11/10	2021/11/11	CAM SOP-00428	SM 23 2540D m
Turbidity - On-site	2	N/A	2021/11/08		
Un-ionized Ammonia	1	2021/11/08	2021/11/12	Auto Calc.	PWQO
Volatile Organic Compounds in Water	2	N/A	2021/11/10	CAM SOP-00228	EPA 8260C m

Sample Matrix: Water # Samples Received: 2

	Date	Date		
Analyses	Quantity Extracted	Analyzed	Laboratory Method	Analytical Method
Biochemical Oxygen Demand (BOD)	2 2021/11/0	08 2021/11/1	3 CAM SOP-00427	SM 23 5210B m

Attention: Brent Langille

RWDI Inc. 4510 Rhodes Drive Suite 530 Windsor, ON CANADA N8W 5K5 Your P.O. #: 10123733 Your Project #: 2101781-1000

Site#: 500

Site Location: ON07

Your C.O.C. #: TCEC-LCHCM-NOV

Report Date: 2021/11/17

Report #: R6905541 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C1W7028 Received: 2021/11/06, 13:17

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved Organic Carbon (DOC) present in the sample should be considered as non-purgeable DOC.
- (2) Values for calculated parameters may not appear to add up due to rounding of raw data and significant figures.
- (3) This is a field test, therefore, the results relate to items that were not analysed at Bureau Veritas Laboratories.

Encryption Key

Patricia Legette Project Manager 17 Nov 2021 15:06:46

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Patricia Legette, Project Manager

Email: Patricia. Legette @bureauveritas.com

Phone# (905)817-5799

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 2 Page 2 of 13

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

RESULTS OF ANALYSES OF LEACHATE

Bureau Veritas ID		RDW953			RDW953		
Sampling Date		2021/11/04			2021/11/04		
COC Number		TCEC-LCHCM-NOV			TCEC-LCHCM-NOV		
	UNITS	EQUALIZATION TANK QUARTERLY	RDL	QC Batch	EQUALIZATION TANK QUARTERLY Lab-Dup	RDL	QC Batch
Field Measurements							
Field Conductivity	uS/cm	12780	N/A	ONSITE			
Field Dissolved Oxygen	mg/L	0.76	N/A	ONSITE			
Field Temperature	Celsius	14.3	N/A	ONSITE			
Field Turbidity	NTU	178	N/A	ONSITE			
Field Measured pH	рН	7.4		ONSITE			
Inorganics		•					
Total Kjeldahl Nitrogen (TKN)	mg/L	900	50	7689998			
Dissolved Organic Carbon	mg/L	760	4	7687935			·
рН	рН	7.60		7690433			
Total Phosphorus	mg/L	4.2	0.20	7691564	4.4	0.20	7691564

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

RESULTS OF ANALYSES OF LEACHATE

Bureau Veritas ID		RDW954		
Sampling Date		2021/11/04		
COC Number		TCEC-LCHCM-NOV		
	UNITS	EQUALIZATION TANK SEMI ANNUAL	RDL	QC Batch
Calculated Parameters				
Total Un-ionized Ammonia	mg/L	5.6	0.12	7686778
Field Measurements				•
Field Conductivity	uS/cm	12780	N/A	ONSITE
Field Dissolved Oxygen	mg/L	0.76	N/A	ONSITE
Field Temperature	Celsius	14.3	N/A	ONSITE
Field Turbidity	NTU	178	N/A	ONSITE
Field Measured pH	рН	7.4		ONSITE
Inorganics				5
Total Ammonia-N	mg/L	705	15	7691896
Total Chemical Oxygen Demand (COD)	mg/L	2300	80	7691976
Conductivity	umho/cm	13000	1.0	7689759
Total Dissolved Solids	mg/L	6500	20	7693043
Total Kjeldahl Nitrogen (TKN)	mg/L	930	50	7689998
рН	рН	7.70		7689764
Phenols-4AAP	mg/L	0.87	0.10	7688884
Total Phosphorus	mg/L	4.6	0.20	7691564
Total Suspended Solids	mg/L	44	2	7691594
Dissolved Sulphate (SO4)	mg/L	<50 (1)	50	7690826
Alkalinity (Total as CaCO3)	mg/L	6400	5.0	7689698
Dissolved Chloride (Cl-)	mg/L	970	20	7690844
Nitrite (N)	mg/L	<0.050	0.050	7690451
Nitrate (N)	mg/L	<0.50	0.50	7690451
DDI Damantalala Dataatian Lincit				

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

(1) Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

Bureau Veritas ID		RDW954	RDW954		
Sampling Date		2021/11/04	2021/11/04		
COC Number		TCEC-LCHCM-NOV	TCEC-LCHCM-NOV		
	UNITS	EQUALIZATION TANK SEMI ANNUAL	EQUALIZATION TANK SEMI ANNUAL Lab-Dup	RDL	QC Batch
Metals					
Mercury (Hg)	mg/L	<0.0002	<0.0002	0.0002	7692276
Total Arsenic (As)	mg/L	0.077	0.074	0.005	7694873
Total Barium (Ba)	mg/L	0.36	0.36	0.03	7694873
Total Boron (B)	mg/L	8.2	8.4	0.1	7694873
Total Cadmium (Cd)	mg/L	<0.0005	0.0005	0.0005	7694873
Total Calcium (Ca)	mg/L	210	210	1	7694873
Total Chromium (Cr)	mg/L	0.22	0.22	0.03	7694873
Total Copper (Cu)	mg/L	0.01	0.01	0.01	7694873
Total Iron (Fe)	mg/L	1.6	1.6	0.5	7694873
Total Lead (Pb)	mg/L	0.004	0.004	0.003	7694873
Total Magnesium (Mg)	mg/L	210	210	0.3	7694873
Total Manganese (Mn)	mg/L	0.48	0.50	0.01	7694873
Total Nickel (Ni)	mg/L	0.20	0.20	0.005	7694873
Total Potassium (K)	mg/L	400	400	1	7694873
Total Sodium (Na)	mg/L	1100	1100	0.5	7694873
Total Zinc (Zn)	mg/L	0.34	0.34	0.05	7694873

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

SEMI-VOLATILE ORGANICS BY GC-MS (LEACHATE)

	RDW954		
	2021/11/04		
	TCEC-LCHCM-NOV		
UNITS	EQUALIZATION TANK SEMI ANNUAL	RDL	QC Batch
ug/L	<2.0	2.0	7700330
ug/L	<5.0	5.0	7700330
ug/L	<5.0	5.0	7700330
ug/L	<5.0	5.0	7700330
ug/L	<5.0	5.0	7700330
ug/L	<5.0	5.0	7700330
ug/L	<3.0	3.0	7700330
ug/L	<10	10	7700330
ug/L	39	5.0	7700330
ug/L	<5.0	5.0	7700330
ug/L	<20	20	7700330
ug/L	<10	10	7700330
ug/L	<10	10	7700330
%	68		7700330
%	24 (1)		7700330
%	18		7700330
%	72		7700330
%	28 (1)		7700330
%	12		7700330
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Color	Color

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Surrogate recovery was below the lower control limit due to matrix interference. This may represent a lower bias in some results.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

VOLATILE ORGANICS BY GC/MS (LEACHATE)

Bureau Veritas ID		RDW953	RDW954		
Sampling Date		2021/11/04	2021/11/04		
COC Number		TCEC-LCHCM-NOV	TCEC-LCHCM-NOV		
	UNITS	EQUALIZATION TANK QUARTERLY	TANK SEMI II		QC Batch
Volatile Organics					
Benzene	ug/L	6.1	5.9	2.0	7688826
1,4-Dichlorobenzene	ug/L	<4.0	<4.0	4.0	7688826
Ethylbenzene	ug/L	18	17	2.0	7688826
Methylene Chloride(Dichloromethane)	ug/L	<20	<20	20	7688826
Toluene	ug/L	200	190	2.0	7688826
Vinyl Chloride	ug/L	2.6	2.6	2.0	7688826
p+m-Xylene	ug/L	39	37	2.0	7688826
o-Xylene	ug/L	16	15	2.0	7688826
Total Xylenes	ug/L	55	52	2.0	7688826
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	97	96		7688826
D4-1,2-Dichloroethane	%	107	106		7688826
D8-Toluene	%	97	96		7688826
RDL = Reportable Detection Limit QC Batch = Quality Control Batch					

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

RESULTS OF ANALYSES OF WATER

Bureau Veritas ID		RDW953	RDW954		
Sampling Date		2021/11/04	2021/11/04		
COC Number		TCEC-LCHCM-NOV	TCEC-LCHCM-NOV		
	UNITS	EQUALIZATION TANK QUARTERLY	EQUALIZATION TANK SEMI ANNUAL	RDL QC Bat	
Inorganics				•	
Inorganics Total BOD	mg/L	790	790	2	7688145

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	2.7°C
-----------	-------

Sample RDW953 [EQUALIZATION TANK QUARTERLY]: VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Sample RDW954 [EQUALIZATION TANK SEMI ANNUAL]: Nitrite/Nitrate: Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

VOC Analysis: Due to the sample matrix, sample required dilution. Detection limits were adjusted accordingly.

Metals Analysis: Due to the sample matrix, the sample required dilution. Detection limits were adjusted accordingly.

ABN Analysis: Due to the sample matrix, a smaller amount was used for extraction. Detection limits were adjusted accordingly.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

			Matrix	Spike	SPIKED	BLANK	Method	Blank	RP	D	QC Sta	indard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7688826	4-Bromofluorobenzene	2021/11/10	100	70 - 130	100	70 - 130	103	%				
7688826	D4-1,2-Dichloroethane	2021/11/10	109	70 - 130	105	70 - 130	96	%				
7688826	D8-Toluene	2021/11/10	100	70 - 130	102	70 - 130	97	%				
7700330	2,4,6-Tribromophenol	2021/11/15			72	10 - 130	59	%				
7700330	2-Fluorobiphenyl	2021/11/15			46	30 - 130	43	%				
7700330	2-Fluorophenol	2021/11/15			31	10 - 130	32	%				
7700330	D14-Terphenyl	2021/11/15			85	30 - 130	79	%				
7700330	D5-Nitrobenzene	2021/11/15			56	30 - 130	53	%				
7700330	D5-Phenol	2021/11/15			21	10 - 130	19	%				
7687935	Dissolved Organic Carbon	2021/11/10	92	80 - 120	96	80 - 120	<0.4	mg/L	1.1 (1)	20		
7688145	Total BOD	2021/11/13					<2	mg/L	4.0 (1)	30	100	80 - 120
7688826	1,4-Dichlorobenzene	2021/11/10	114	70 - 130	109	70 - 130	<0.40	ug/L	NC (1)	30		
7688826	Benzene	2021/11/10	93	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7688826	Ethylbenzene	2021/11/10	91	70 - 130	89	70 - 130	<0.20	ug/L	NC (1)	30		
7688826	Methylene Chloride(Dichloromethane)	2021/11/10	111	70 - 130	103	70 - 130	<2.0	ug/L	NC (1)	30		
7688826	o-Xylene	2021/11/10	87	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7688826	p+m-Xylene	2021/11/10	94	70 - 130	91	70 - 130	<0.20	ug/L	NC (1)	30		
7688826	Toluene	2021/11/10	90	70 - 130	87	70 - 130	<0.20	ug/L	NC (1)	30		
7688826	Total Xylenes	2021/11/10					<0.20	ug/L	NC (1)	30		
7688826	Vinyl Chloride	2021/11/10	102	70 - 130	96	70 - 130	<0.20	ug/L	NC (1)	30		
7688884	Phenols-4AAP	2021/11/09	101	80 - 120	104	80 - 120	<0.0010	mg/L	4.1 (1)	20		
7689698	Alkalinity (Total as CaCO3)	2021/11/10			94	85 - 115	<1.0	mg/L	NC (1)	20		
7689759	Conductivity	2021/11/10			101	85 - 115	<1.0	umho/c m	2.8 (1)	25		
7689764	рН	2021/11/10			102	98 - 103			0.23 (1)	N/A		
7689998	Total Kjeldahl Nitrogen (TKN)	2021/11/12	64 (2)	80 - 120	98	80 - 120	<0.7	mg/L	NC (1)	20	95	80 - 120
7690433	рН	2021/11/10			101	98 - 103			1.6 (1)	N/A		
7690451	Nitrate (N)	2021/11/10	NC	80 - 120	101	80 - 120	<0.10	mg/L	0.43 (1)	20		
7690451	Nitrite (N)	2021/11/10	104	80 - 120	106	80 - 120	<0.010	mg/L	8.8 (1)	20		
7690826	Dissolved Sulphate (SO4)	2021/11/10	NC	75 - 125	105	80 - 120	<1.0	mg/L	0.59 (1)	20		

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

			Matrix	Spike	SPIKED	BLANK	Method B	Blank	RP	QC Sta		tandard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits	
7690844	Dissolved Chloride (Cl-)	2021/11/11	105	80 - 120	105	80 - 120	<1.0	mg/L	2.7 (1)	20			
7691564	Total Phosphorus	2021/11/11	93 (3)	80 - 120	96	80 - 120	<0.030	mg/L	3.7 (4)	25	92	80 - 120	
7691594	Total Suspended Solids	2021/11/11					<1	mg/L	0 (1)	25	101	85 - 115	
7691896	Total Ammonia-N	2021/11/12	98	75 - 125	97	80 - 120	<0.15	mg/L	3.3 (1)	20			
7691976	Total Chemical Oxygen Demand (COD)	2021/11/11	106	80 - 120	104	80 - 120	<4.0	mg/L	16 (1)	20			
7692276	Mercury (Hg)	2021/11/11	82 (5)	75 - 125	98	80 - 120	<0.0002	mg/L	NC (6)	20			
7693043	Total Dissolved Solids	2021/11/11					<10	mg/L	12 (1)	25	97	90 - 110	
7694873	Total Arsenic (As)	2021/11/15	NC (7,8)	80 - 120	101	80 - 120	<0.001	mg/L	4.1 (9)	20			
7694873	Total Barium (Ba)	2021/11/15	NC (7,8)	80 - 120	101	80 - 120	<0.005	mg/L	0.72 (9)	20			
7694873	Total Boron (B)	2021/11/15	NC (7,8)	80 - 120	99	80 - 120	<0.02	mg/L	3.1 (9)	20			
7694873	Total Cadmium (Cd)	2021/11/15	NC (7,8)	80 - 120	102	80 - 120	<0.0001	mg/L	0.60 (9)	20			
7694873	Total Calcium (Ca)	2021/11/15	NC (7,8)	80 - 120	100	80 - 120	0.3, RDL=0.2	mg/L	0.50 (9)	20			
7694873	Total Chromium (Cr)	2021/11/15	NC (7,8)	80 - 120	98	80 - 120	<0.005	mg/L	0.77 (9)	20			
7694873	Total Copper (Cu)	2021/11/15	NC (7,8)	80 - 120	99	80 - 120	<0.002	mg/L	5.4 (9)	20			
7694873	Total Iron (Fe)	2021/11/15	NC (7,8)	80 - 120	98	80 - 120	<0.1	mg/L	0.061 (9)	20			
7694873	Total Lead (Pb)	2021/11/15	NC (7,8)	80 - 120	96	80 - 120	<0.0005	mg/L	4.2 (9)	20			
7694873	Total Magnesium (Mg)	2021/11/15	NC (7,8)	80 - 120	99	80 - 120	<0.05	mg/L	1.0 (9)	20			
7694873	Total Manganese (Mn)	2021/11/15	NC (7,8)	80 - 120	102	80 - 120	<0.002	mg/L	2.9 (9)	20			
7694873	Total Nickel (Ni)	2021/11/15	NC (7,8)	80 - 120	98	80 - 120	<0.001	mg/L	0.66 (9)	20			
7694873	Total Potassium (K)	2021/11/15	NC (7,8)	80 - 120	100	80 - 120	<0.2	mg/L	0.18 (9)	20			
7694873	Total Sodium (Na)	2021/11/15	NC (7,8)	80 - 120	101	80 - 120	<0.1	mg/L	1.6 (9)	20			
7694873	Total Zinc (Zn)	2021/11/15	NC (7,8)	80 - 120	102	80 - 120	<0.01	mg/L	0.31 (9)	20			
7700330	1,2,4-Trichlorobenzene	2021/11/15			51	30 - 130	<0.50	ug/L	31 (1)	40			
7700330	1,2-Dichlorobenzene	2021/11/15			46	30 - 130	<0.50	ug/L	21 (1)	40			
7700330	1,3-Dichlorobenzene	2021/11/15			42	30 - 130	<0.50	ug/L	14 (1)	40			
7700330	1,4-Dichlorobenzene	2021/11/15			44	30 - 130	<0.50	ug/L	8.0 (1)	40			
7700330	2,4,6-Trichlorophenol	2021/11/15			73	10 - 130	<0.50	ug/L	0.64 (1)	40			
7700330	2,4-Dichlorophenol	2021/11/15			63	10 - 130	<0.30	ug/L	5.3 (1)	40			
7700330	Benzo(a)pyrene	2021/11/15			87	30 - 130	<0.20	ug/L	3.7 (1)	40			
7700330	Diethyl phthalate	2021/11/15			71	30 - 130	<1.0	ug/L	3.1 (1)	40			

QUALITY ASSURANCE REPORT(CONT'D)

RWDI Inc.

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

			Matrix	Spike	SPIKED	BLANK	Method E	Blank	RPD		QC Standard	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
7700330	Dimethyl phthalate	2021/11/15			73	30 - 130	<1.0	ug/L	4.1 (1)	40		
7700330	Di-N-butyl phthalate	2021/11/15			81	30 - 130	<2.0	ug/L	1.4 (1)	40		
7700330	Hexachlorobenzene	2021/11/15			72	30 - 130	<0.50	ug/L	10 (1)	40		
7700330	Pentachlorophenol	2021/11/15			59	10 - 130	<1.0	ug/L	4.1 (1)	40		
7700330	Phenol	2021/11/15			23	10 - 130	<0.50	ug/L	4.3 (1)	40		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

- (1) Duplicate Parent ID
- (2) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.
- (3) Matrix Spike Parent ID [RDW953-02]
- (4) Duplicate Parent ID [RDW953-02]
- (5) Matrix Spike Parent ID [RDW954-09]
- (6) Duplicate Parent ID [RDW954-09]
- (7) Matrix Spike not calculated. Original sample and matrix spike sample were analyzed at a dilution, due to high target analytes, or sample matrix interference.
- (8) Matrix Spike Parent ID [RDW954-06]
- (9) Duplicate Parent ID [RDW954-06]

Client Project #: 2101781-1000

Site Location: ON07 Your P.O. #: 10123733 Sampler Initials: EVH

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

assemb
Anastassia Hamanov, Scientific Specialist
EVA Praisic S
Ewa Pranjic, M.Sc., C.Chem, Scientific Specialist
Patricia Legette, Project Manager

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.