RESPONSE 55
Table III-4-1: Regional Geologic Units and Their Water Bearing Properties

System	Series	Group	Stratigraphic Unit	Hydrologic Unit	Approximate Maximum Thickness (feet)	Character of RocksLithology	Water Bearing Properties/ Hydraulic Conductivities	Depositional Environment
	\# ¢ d ¢		Alluvium	Alluvium and Terrace Deposits	60	Water-stratified deposits of unconsolidated calcareous gravel, sand, silt, and clay, with coarser materials usually concentrated in the lower section.	Yields small to very large quantities of fresh to slightly saline water, chiefly along the Colorado River in eastern Travis County. $K=\leq 2,400$ feet per day for gravel alluvium from the Brazos River (Ryder 1996).	Alluvial
			Terrace Deposits		60	Water-stratified deposits of unconsolidated calcareous gravel, sand, silt, and clay, with the coarser materials at the base.	Yields very small to moderate quantities of fresh to moderately saline water.	Alluvial
			High gravel		20	Gravel and sand, sometimes mixed with clay from underlying formations.		Alluvial
	$\begin{aligned} & \mathscr{Q} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { O} \\ & \hline \end{aligned}$	Wilcox	Simsboro Sand Member	Wilcox	200	Fine-to-coarse sand and sandstone, sandy clay, with lenses of limestone and lignite.	Yields small to moderate quantities of fresh to moderately saline water. $\frac{K=2-204 \text { ft/day }}{}$ $\frac{\text { (Thorkildsen and Price }}{1991 \text {). }}$	$\frac{\text { Detrital }}{\text { sediments at }}$ or near a transgressive shoreline.
		Midway		Midway	300	Clay, silt, glauconitic sand, and thin beds of limestone and sandstone with gypsum, phosphatic nodules, and calcareous concretions.	Yields very small quantities of fresh to moderately saline water.	$\frac{\text { Detrital }}{\text { sediments at }}$ $\frac{\text { or near a }}{\text { transgressive }}$ shoreline.

p: $_2014$ project folders $\backslash 1400336$ - temple expansion\permit application\response to 1st nodlpart iiilatt 4liii-4_geologyreport_rev1.docx
Temple Recycling \& Disposal Facility
 Part III, Attachment 4, Geology Report

System	Series	Group	Stratigraphic Unit	Hydrologic Unit	Approximate Maximum Thickness (feet)	Charactor of RocksLithology	Water Bearing Properties/ Hydraulic Conductivities	Depositional Environment
	-	Navarro		Navarro and Taylor Groups	700	Massive beds of shale and marl with clayey chalk, clay, sand, and some nodular and phosphatic zones.	Yields very small quantities of fresh to moderately saline water.	Sediments deposited in a low-energy marine environment.
		Taylor						Sediments deposited in a low-energy marine environment.
		Austin		Austin Chalk	200	Massive beds of chalk and marl with bentonitic seams, glauconite, pyrite nodules.	Yields small quantities of fresh water.	$\frac{\text { Sediments }}{\text { deposited in a }}$ $\frac{\text { low-energy }}{\text { open marine }}$ $\frac{\text { shelf }}{\text { onvironment. }}$
		Eagle Ford		Confining Unit	40	Massive calcareous shale with thin interbeds of silty and sandy, flaggy limestone.	Not known to yield water in Bell County	
		Washita	Buda Limestone		50	Massive, fine-grained, borrowed, shell-fragment limestone. The upper portion is harder and bluffforming.	Not known to yield water Bell County.	Shallow subtidal and intertidal.
			Del Rio Clay	Confining Unit	60	Clay and marl with gypsum, pyrite, and a few thin siltstone and sandstone beds.	Not known to yield water in Bell County.	Lagoonal
			Georgetown Formation	Edwards and associated limestones	75	Thin interbeds of richly fossiliferous, nodular, massive fine-grained limestone and marl.	Yields small to very large quantities of fresh water, especially from cavernous zones in the Edwards Limestone.	Open-shelf subtidal.

[^0]Temple Recycling \& Disposal Facility
Permit Amendment Application TCEQ Permit MSW-692B

Submitted: June 2016
\qquad III-4-9
Temple Recycling \& Disposal Facility
 Part III, Attachment 4, Geology Report

System	Series	Group	Stratigraphic Unit		Hydrologic Unit	Approximate Maximum Thickness (feet)	Charactor-of RocksLithology	Water Bearing Properties/ Hydraulic Conductivities	Depositional Environment
								overall Trinity aquifer (Ryder 1996).	
				Upper Member		600	Alternating beds of limestone, dolomite, shale, and marl with some anhydrite and gypsum.	Yields very small to moderate quantities of fresh and occasionally slightly saline water. $K=1-31 \mathrm{ft} /$ day for overall Trinity aquifer (Ryder 1996).	Marine.
				Lower Member	Middle Trinity	330	Massive, fossiliferous limestone and dolomite in the basal part grading upward into thin beds of limestone, shale, marl, and gypsum.	Yields very small to moderate quantities of fresh to moderately saline water. $K=1-31 \mathrm{ft} /$ day for overall Trinity aquifer (Ryder 1996).	Marine.
				Hensell Sand Member		75	Sand gravel, conglomerate, sandstone, siltstone, and shale.		Fluvial.
				Cow Creek Limestone Member		80	Massive, often sandy, dolomitic limestone, frequently forming cliffs and water falls. Contains gypsum and anhydrite beds.		Marine.
				Hammett Shale Member	Confining Unit	30	Shale and clay with some sand, dolomite, and limestone.	Not known to yield water in Bell County.	Marine.

 Part III，Attachment 4，Geology Report

	＇дәңем әu！jes Ł0 sə！！！！uenb әұеләрош 여 ॥eшs р рә！К Кеш ұпq ＇Kłunoэ ॥әg u！дәңем plo！$К$ of umouy łon	әuołsəu！！snoxə！！！！ssot ＇snoəэ！！！s ‘əл！sseu ‘snouxәле弓	00t		әuołsem！ 7 	puəg		
＇әu！	－Kıunoэ ॥әg дәұем 	－間 poـ elụoeno әપł u！sertzuenb ＇uo！̣od rəddn әчł u！әuotst！！s pue әuolspues प！！м әןечS	009		әрецS \％эıми！！us			
＇pep！qns	－Kıunoう ॥əg u！ләңем 	pue əuołspues ！o speq бu！̣euxə⿰丬士	008			UMEAS		
Fenn！		＇spəq әuołsəu！！ amos पұ！＇əןeys pue＇əuotsh！s ＇pues fo әגnұıuш e ołu！pıemdn бu！̣елб әұеләшоןదиоэ ןeseg	008	Ки！	ıəqயəю uOłssoh			
$\frac{\text { pep!pexdns }}{\text { of ןep!!qns }}$	әбле ‘‘иu！z！p！эe цџ！м рие＇әұеләрои 아｜feus splo！λ	！\ddagger sem ә૫ł 이 su！̣ц｀əjeys pue＇Kpues 	00¢		ıəquəฟ o6！Is			
$\begin{aligned} & \text { ఫuәuuod!inug } \\ & \text { [euol!!!sodəag } \end{aligned}$			（ұәәц） ssəuหग！ 1 unu！xew әұеш！холddv	I！un э！боןолрКН	ท！un э！чdeл6！！ents	dnoג	se！des	uels $^{\text {a }}$ S

> Notes：
> Modified from Duffin，G．and S．P．Musick．1991．TWDB Report 326

[^0]: p:\2014 project folders\1400336 - temple expansionlpermit application\response to 1st nodlpart iiilatt 4liii-4_geologyreport_rev1.docx

